All papers (Page 9 of 24080 results)

Last updated:  2024-12-20
Anonymous credentials from ECDSA
Matteo Frigo and abhi shelat
Anonymous digital credentials allow a user to prove possession of an attribute that has been asserted by an identity issuer without revealing any extra information about themselves. For example, a user who has received a digital passport credential can prove their “age is $>18$” without revealing any other attributes such as their name or date of birth. Despite inherent value for privacy-preserving authentication, anonymous credential schemes have been difficult to deploy at scale. Part of the difficulty arises because schemes in the literature, such as BBS+, use new cryptographic assumptions that require system-wide changes to existing issuer infrastructure. In addition, issuers often require digital identity credentials to be *device-bound* by incorporating the device’s secure element into the presentation flow. As a result, schemes like BBS+ require updates to the hardware secure elements and OS on every user's device. In this paper, we propose a new anonymous credential scheme for the popular and legacy-deployed Elliptic Curve Digital Signature Algorithm (ECDSA) signature scheme. By adding efficient zk arguments for statements about SHA256 and document parsing for ISO-standardized identity formats, our anonymous credential scheme is that first one that can be deployed *without* changing any issuer processes, *without* requiring changes to mobile devices, and *without* requiring non-standard cryptographic assumptions. Producing ZK proofs about ECDSA signatures has been a bottleneck for other ZK proof systems because standardized curves such as P256 use finite fields which do not support efficient number theoretic transforms. We overcome this bottleneck by designing a ZK proof system around sumcheck and the Ligero argument system, by designing efficient methods for Reed-Solomon encoding over the required fields, and by designing specialized circuits for ECDSA. Our proofs for ECDSA can be generated in 60ms. When incorporated into a fully standardized identity protocol such as the ISO MDOC standard, we can generate a zero-knowledge proof for the MDOC presentation flow in 1.2 seconds on mobile devices depending on the credential size. These advantages make our scheme a promising candidate for privacy-preserving digital identity applications.
Last updated:  2024-12-12
The Mis/Dis-information Problem is Hard to Solve
Gregory Hagen, Reihaneh Safavi-Naini, and Moti Yung
Securing information communication dates back thousands of years ago. The meaning of information security, however, has evolved over time and today covers a very wide variety of goals, including identifying the source of information, the reliability of information, and ultimately whether the information is trustworthy. In this paper, we will look at the evolution of the information security problem and the approaches that have been developed for providing information protection. We argue that the more recent problem of misinformation and disinformation has shifted the content integrity problem from the protection of message syntax to the protection of message semantics. This shift, in the age of advanced AI systems, a technology that can be used to mimic human-generated content as well as to create bots that mimic human behaviour on the Internet, poses fundamental technological challenges that evade existing technologies. It leaves social elements, including public education and a suitable legal framework, as increasingly the main pillars of effective protection, at least in the short run. It also poses an intriguing challenge to the scientific community: to design effective solutions that employ cryptography and AI, together with incentivization to engage the global community, to ensure the safety of the information ecosystem.
Last updated:  2024-12-12
PrivCirNet: Efficient Private Inference via Block Circulant Transformation
Tianshi Xu, Lemeng Wu, Runsheng Wang, and Meng Li
Homomorphic encryption (HE)-based deep neural network (DNN) inference protects data and model privacy but suffers from significant computation overhead. We observe transforming the DNN weights into circulant matrices converts general matrix-vector multiplications into HE-friendly 1-dimensional convolutions, drastically reducing the HE computation cost. Hence, in this paper, we propose PrivCirNet, a protocol/network co-optimization framework based on block circulant transformation. At the protocol level, PrivCirNet customizes the HE encoding algorithm that is fully compatible with the block circulant transformation and reduces the computation latency in proportion to the block size. At the network level, we propose a latency-aware formulation to search for the layer-wise block size assignment based on second-order information. PrivCirNet also leverages layer fusion to further reduce the inference cost. We compare PrivCirNet with the state-of-the-art HE-based framework Bolt (IEEE S&P 2024) and HE-friendly pruning method SpENCNN (ICML 2023). For ResNet-18 and Vision Transformer (ViT) on Tiny ImageNet, PrivCirNet reduces latency by $5.0\times$ and $1.3\times$ with iso-accuracy over Bolt, respectively, and improves accuracy by $4.1\%$ and $12\%$ over SpENCNN, respectively. For MobileNetV2 on ImageNet, PrivCirNet achieves $1.7\times$ lower latency and $4.2\%$ better accuracy over Bolt and SpENCNN, respectively. Our code and checkpoints are available at https://github.com/Tianshi-Xu/PrivCirNet.
Last updated:  2024-12-12
A Combinatorial Attack on Ternary Sparse Learning with Errors (sLWE)
Abul Kalam, Santanu Sarkar, and Willi Meier
Sparse Learning With Errors (sLWE) is a novel problem introduced at Crypto 2024 by Jain et al., designed to enhance security in lattice-based cryptography against quantum attacks while maintaining computational efficiency. This paper presents the first third-party analysis of the ternary variant of sLWE, where both the secret and error vectors are constrained to ternary values. We introduce a combinatorial attack that employs a subsystem extraction technique followed by a Meet-in-the-Middle approach, effectively recovering the ternary secret vector. Our comprehensive analysis explores the attack's performance across various sparsity and modulus settings, revealing critical security limitations inherent in ternary sLWE. Our analysis does not claim to present any attack on the proposal of Jain et al.; rather, it supports their assertion that sparse LWE is vulnerable for small secrets, particularly for ternary secrets and ternary errors. Notably, our findings indicate that the recommended parameters, which the developers claim provide security equivalent to LWE with a dimension of 1024, may not hold true for the ternary variant of sLWE. Our research highlights that, particularly with a modulus of $2^{64}$, the secret key can be recovered in a practical timeframe, supporting the developers' claim of vulnerability in this case. Additionally, for configurations with moduli of $2^{32}$ and $2^{16}$, we observe a significant reduction in the security margin. This suggests that the actual security level may be significantly weaker than intended. Overall, our work contributes crucial insights into the cryptographic robustness of ternary sLWE, emphasizing the need for further strengthening to protect against potential attacks and setting the stage for future research in this area.
Last updated:  2024-12-12
Data Decryption and Analysis of Note-Taking Applications
Seyoung Yoon, Myungseo Park, Kyungbae Jang, and Hwajeong Seo
As smartphone usage continues to grow, the demand for note-taking applications, including memo and diary apps, is rapidly increasing. These applications often contain sensitive information such as user schedules, thoughts, and activities, making them key targets for analysis in digital forensics. Each year, new note-taking applications are released, most of which include lock features to protect user data. However, these security features can create challenges for authorized investigators attempting to access and analyze application data. This paper aims to support investigators by conducting a static analysis of Android-based note-taking applications. It identifies how and where data is stored and explains methods for extracting and decrypting encrypted data. Based on the analysis, the paper concludes by proposing future research directions in the field of digital forensics.
Last updated:  2024-12-12
Post-Quantum Secure Channel Protocols for eSIMs
Luk Bettale, Emmanuelle Dottax, and Laurent Grémy
The transition to Post-Quantum (PQ) cryptography is increasingly mandated by national agencies and organizations, often involving a phase where classical and PQ primitives are combined into hybrid solutions. In this context, existing protocols must be adapted to ensure quantum resistance while maintaining their security goals. These adaptations can significantly impact performance, particularly on embedded devices. In this article, we focus on standardized protocols which support application management on eSIMs across different modes. This is a complex use-case, involving constrained devices with stringent security requirements. We present PQ adaptations, including both hybrid and fully PQ versions, for all modes. Using ProVerif, we provide automated proofs that verify the security of these PQ variants. Additionally, we analyze the performance impact of implementing PQ protocols on devices, measuring runtime and bandwidth consumption. Our findings highlight the resource overhead associated with achieving post-quantum security for eSIM management.
Last updated:  2024-12-13
Regev's attack on hyperelliptic cryptosystems
Razvan Barbulescu and Gaetan Bisson
Hyperelliptic curve cryptography (HECC) is a candidate to standardization which is a competitive alternative to elliptic curve cryptography (ECC). We extend Regev's algorithm to this setting. For genus-two curves relevant to cryptography, this yields a quantum attack up to nine times faster than the state-of-the-art. This implies that HECC is slightly weaker than ECC. In a more theoretical direction, we show that Regev's algorithm obtains its full speedup with respect to Shor's when the genus is high, a setting which is already known to be inadequate for cryptography.
Last updated:  2024-12-12
Exploring the Optimal Differential Characteristics of SM4 (Full Version): Improving Automatic Search by Including Human Insights
Bingqing Li and Ling Sun
This study aims to determine the complete and precise differential properties of SM4, which have remained unknown for over twenty years after the cipher was initially released. A Boolean Satisfiability Problem (SAT) based automatic search approach is employed to achieve the objective. To improve the limited efficiency of the search focused on differential probabilities, we want to investigate the feasibility of integrating human expertise into an automatic approach to enhance the search speed. This study presents the construction of four new SAT models that describe the human-identified specific properties of short differential characteristics. All of these models are integrated into the fundamental model, and the SAT solver is implemented to assess the acceleration capabilities of the new models. The experimental results indicate that including three new models effectively decreases the overall execution time of the SAT solver. Using the novel models, we obtain the first precise minimal values for the number of active S-boxes of SM4 under single-key (complete rounds) and related-key (1-round to 19-round) settings. The first precise upper bound for differential probabilities of SM4 (1-round to 20-round) is also determined. In addition, we present the first publicly revealed optimal 19-round differential characteristic of SM4.
Last updated:  2024-12-12
Improving Differential-Neural Distinguisher For Simeck Family
Xue Yuan and Qichun Wang
In CRYPTO 2019, Gohr introduced the method of differential neural cryptanalysis, utilizing neural networks as the underlying distinguishers to achieve distinguishers for (5-8)-round of the Speck32/64 cipher and subsequently recovering keys for 11 and 12 rounds. Inspired by this work, we propose an enhanced neural cryptanalysis framework that combines the Efficient Channel Attention (ECA) module with residual networks. By introducing the channel attention mechanism to emphasize key features and leveraging residual networks to facilitate efficient feature extraction and gradient flow, we achieve improved performance. Additionally, we employ a new data format that combines the ciphertext and the penultimate round ciphertext as input samples, providing the distinguisher with more useful features. Compared with the known results, our work enhance the accuracy of the neural distinguishers for Simeck32/64 (10-12)-round and achieve a new 13-round distinguisher. We also improve the accuracy of the Simeck48/96 (10-11)-round distinguishers and develop new (12-16)-round neural distinguishers. Moreover, we enhance the accuracy of the Simeck64/128 (14-18)-round distinguishers and obtain a new 19-round neural distinguisher. As a result, we achieve the highest accuracy and the longest rounds distinguishers for Simeck32/64, Simeck48/96, and Simeck64/128.
Last updated:  2024-12-11
Xiezhi: Toward Succinct Proofs of Solvency
Youwei Deng and Jeremy Clark
A proof of solvency (or proof of reserves) is a zero-knowledge proof conducted by centralized cryptocurrency exchange to offer evidence that the exchange owns enough cryptocurrency to settle each of its users' balances. The proof seeks to reveal nothing about the finances of the exchange or its users, only the fact that it is solvent. The literature has already started to explore how to make proof size and verifier time independent of the number of (i) users on the exchange, and (ii) addresses used by the exchange. We argue there are a few areas of improvement. First, we propose and implement a full end-to-end argument that is fast for the exchange to prove (minutes), small in size (KBs), and fast to verify (seconds). Second, we deal with the natural conflict between Bitcoin and Ethereum's cryptographic setting (secp256k1) and more ideal settings for succinctness (e.g., pairing-based cryptography) with a novel mapping approach. Finally, we discuss how to adapt the protocol to the concrete parameters of bls12-381 (which is relevant because the bit-decomposition of all user balances will exceed the largest root of unity of the curve for even moderately-sized exchanges).
Last updated:  2024-12-11
Evasive LWE Assumptions: Definitions, Classes, and Counterexamples
Chris Brzuska, Akin Ünal, and Ivy K. Y. Woo
The evasive LWE assumption, proposed by Wee [Eurocrypt'22 Wee] for constructing a lattice-based optimal broadcast encryption, has shown to be a powerful assumption, adopted by subsequent works to construct advanced primitives ranging from ABE variants to obfuscation for null circuits. However, a closer look reveals significant differences among the precise assumption statements involved in different works, leading to the fundamental question of how these assumptions compare to each other. In this work, we initiate a more systematic study on evasive LWE assumptions: (i) Based on the standard LWE assumption, we construct simple counterexamples against three private-coin evasive LWE variants, used in [Crypto'22 Tsabary, Asiacrypt'22 VWW, Crypto'23 ARYY] respectively, showing that these assumptions are unlikely to hold. (ii) Based on existing evasive LWE variants and our counterexamples, we propose and define three classes of plausible evasive LWE assumptions, suitably capturing all existing variants for which we are not aware of non-obfuscation-based counterexamples. (iii) We show that under our assumption formulations, the security proofs of [Asiacrypt'22 VWW] and [Crypto'23 ARYY] can be recovered, and we reason why the security proof of [Crypto'22 Tsabary] is also plausibly repairable using an appropriate evasive LWE assumption.
Last updated:  2024-12-11
Multivariate Encryptions with LL’ perturbations - Is it possible to repair HFE in encryption? -
Jacques Patarin and Pierre Varjabedian
We will present here new multivariate encryption algorithms. This is interesting since few multivariate encryption scheme currently exist, while their exist many more multivariate signature schemes. Our algorithms will combine several ideas, in particular the idea of the LL’ perturbation originally introduced, but only for signature, in [GP06]. In this paper, the LL’ perturbation will be used for encryption and will greatly differ from [GP06]. As we will see, our algorithms resists to all known attacks (in particular Gröbner attacks and MinRank attacks) and have reasonable computation time.
Last updated:  2025-01-28
Impossible Differential Automation: Model Generation and New Techniques
Emanuele Bellini, Paul Huynh, David Gerault, Andrea Visconti, Alessandro De Piccoli, and Simone Pelizzola
In this paper, we aim to enhance and automate advanced techniques for impossible differential attacks. To demonstrate these advancements, we present improved attacks on the LBlock and HIGHT block ciphers. More precisely, we (a) introduce a methodology to automatically invert symmetric ciphers when represented as directed acyclic graphs, a fundamental step in the search for impossible differential trails and in key recovery techniques; (b) automate the search for impossible differential distinguishers, reproducing recent techniques and results; (c) present a new hybrid model combining cell-wise properties and bit-wise granularity; (d) integrate these techniques in the automated tool CLAASP; (e) demonstrate the effectiveness of the tool by reproducing a state-of-the-art 16-round impossible differential for LBlock previously obtained using a different technique and exhibiting a new 18-round improbable trail; (f) improve the state-of-the-art single-key recovery of HIGHT for 27 rounds, by automating the use of hash tables to current state-of-the-art results.
Last updated:  2024-12-11
On format preserving encryption with nonce
Alexander Maximov and Jukka Ylitalo
In this short paper we consider a format preserving encryption when a nonce is available. The encryption itself mimics a stream cipher where the keystream is of a (non-binary) radix $R$. We give a few practical and efficient ways to generate such a keystream from a binary keystream generator.
Last updated:  2025-01-10
A Framework for Generating S-Box Circuits with Boyar-Peralta Algorithm-Based Heuristics, and Its Applications to AES, SNOW3G, and Saturnin
Yongjin Jeon, Seungjun Baek, Giyoon Kim, and Jongsung Kim
In many lightweight cryptography applications, low area and latency are required for efficient implementation. The gate count in the cipher and the circuit depth must be low to minimize these two metrics. Many optimization strategies have been developed for the linear layer, led by the Boyar-Peralta (BP) algorithm. The Advanced Encryption Standard (AES) has been a focus of extensive research in this area. However, while the linear layer uses only XOR gates, the S-box, which is an essential nonlinear component in symmetric cryptography, uses various gate types, making optimization challenging, particularly as the bit size increases. In this paper, we propose a new framework for a heuristic search to optimize the circuit depth or XOR gate count of S-box circuits. Existing S-box circuit optimization studies have divided the nonlinear and linear layers of the S-box, optimizing each separately, but limitations still exist in optimizing large S-box circuits. To extend the optimization target from individual internal components to the entire S-box circuit, we extract the XOR information of each node in the target circuit and reconstruct the nodes based on nonlinear gates. Next, we extend the BP algorithm-based heuristics to address nonlinear gates and incorporate this into the framework. It is noteworthy that the effects of our framework occur while maintaining the AND gate count and AND depth without any increase. To demonstrate the effectiveness of the proposed framework, we apply it to the AES, SNOW3G, and Saturnin S-box circuits. Our results include depth improvements by about 40% and 11% compared to the existing AES S-box [BP10] and Saturnin super S-box [CDL+20] circuits, respectively. We implement a new circuit for the SNOW3G S-box, which has not previously been developed, and apply our framework to reduce its depth. We expect the proposed framework to contribute to the design and implementation of various symmetric-key cryptography solutions.
Last updated:  2025-04-16
BitVM: Quasi-Turing Complete Computation on Bitcoin
Lukas Aumayr, Zeta Avarikioti, Robin Linus, Matteo Maffei, Andrea Pelosi, Christos Stefo, and Alexei Zamyatin
A long-standing question in the blockchain community is which class of computations are efficiently expressible in cryptocurrencies with limited scripting languages, such as Bitcoin Script. Such languages expose a reduced trusted computing base, thereby being less prone to hacks and vulnerabilities, but have long been believed to support only limited classes of payments. In this work, we confute this long-standing belief by showing for the first time that arbitrary computations can be encoded in today's Bitcoin Script without introducing any language modification or additional security assumptions, such as trusted hardware, trusted parties, or committees with an honest majority. We present BitVM, a two-party protocol that realizes a generic virtual machine by combining cryptographic primitives and economic incentives. We conduct a formal analysis of BitVM, characterizing its functionality, system assumptions, and security properties. We further demonstrate the practicality of our approach by implementing a prototype and performing an experimental evaluation: in the optimistic case (i.e., when parties agree), our protocol requires just three on-chain transactions, whereas in the pessimistic case, the number of transactions grows logarithmically with the size of the virtual machine. We exemplify the deployment potential of BitVM by building a Bitcoin-sidechain bridge application. This work not only solves a long-standing theoretical problem, but it also promises a strong practical impact, enabling the development of complex applications in Bitcoin.
Last updated:  2024-12-10
Token-Based Key Exchange - Non-Interactive Key Exchange meets Attribute-Based Encryption
Elsie Mestl Fondevik and Kristian Gjøsteen
In this paper we define the novel concept token-based key exchange (TBKE), which can be considered a cross between non-interactive key exchange (NIKE) and attribute-based encryption (ABE). TBKE is a scheme that allows users within an organization to generate shared keys for a subgroup of users through the use of personal tokens and secret key. The shared key generation is performed locally and no interaction between users or with a server is needed. The personal tokens are derived from a set of universal tokens and a master secret key which are generated and stored on a trusted central server. Users are only required to interact with the server during setup or if new tokens are provided. To reduce key escrow issues the server can be erased after all users have received their secret keys. Alternatively, if the server is kept available TBKE can additionally provide token revocation, addition and update. We propose a very simple TBKE protocol using bilinear pairings. The protocol is secure against user coalitions based upon a novel hidden matrix problem. The problems requires an adversary to compute where the adversary must compute a matrix product in the exponent, where some components are given in the clear and others are hidden as unknown exponents. We argue that the hidden matrix problem is as hard as dLog in the bilinear group model.
Last updated:  2024-12-09
BOIL: Proof-Carrying Data from Accumulation of Correlated Holographic IOPs
Tohru Kohrita, Maksim Nikolaev, and Javier Silva
In this paper, we present a batching technique for oracles corresponding to codewords of a Reed–Solomon code. This protocol is inspired by the round function of the STIR protocol (CRYPTO 2024). Using this oracle batching protocol, we propose a construction of a practically efficient accumulation scheme, which we call BOIL. Our accumulation scheme can be initiated with an arbitrary correlated holographic IOP, leading to a new class of PCD constructions. The results of this paper were originally given as a presentation at zkSummit12.
Last updated:  2024-12-09
Improved Quantum Linear Attacks and Application to CAST
Kaveh Bashiri, Xavier Bonnetain, Akinori Hosoyamada, Nathalie Lang, and André Schrottenloher
This paper studies quantum linear key-recovery attacks on block ciphers. The first such attacks were last-rounds attacks proposed by Kaplan et al. (ToSC 2016), which combine a linear distinguisher with a guess of a partial key. However, the most efficient classical attacks use the framework proposed by Collard et al. (ICISC 2007), which computes experimental correlations using the Fast Walsh-Hadamard Transform. Recently, Schrottenloher (CRYPTO 2023) proposed a quantum version of this technique, in which one uses the available data to create a quantum \emph{correlation state}, which is a superposition of subkey candidates where the amplitudes are the corresponding correlations. A limitation is that the good subkey is not marked in this state, and cannot be found easily. In this paper, we combine the correlation state with another distinguisher. From here, we can use Amplitude Amplification to recover the right key. We apply this idea to Feistel ciphers and exemplify different attack strategies on LOKI91 before applying our idea on the CAST-128 and CAST-256 ciphers. We demonstrate the approach with two kinds of distinguishers, quantum distinguishers based on Simon's algorithm and linear distinguishers. The resulting attacks outperform the previous Grover-meet-Simon attacks.
Last updated:  2024-12-09
CHLOE: Loop Transformation over Fully Homomorphic Encryption via Multi-Level Vectorization and Control-Path Reduction
Uncategorized
Song Bian, Zian Zhao, Ruiyu Shen, Zhou Zhang, Ran Mao, Dawei Li, Yizhong Liu, Masaki Waga, Kohei Suenaga, Zhenyu Guan, Jiafeng Hua, Yier Jin, and Jianwei Liu
Show abstract
Uncategorized
This work proposes a multi-level compiler framework to transform programs with loop structures to efficient algorithms over fully homomorphic encryption (FHE). We observe that, when loops operate over ciphertexts, it becomes extremely challenging to effectively interpret the control structures within the loop and construct operator cost models for the main body of the loop. Consequently, most existing compiler frameworks have inadequate support for programs involving non-trivial loops, undermining the expressiveness of programming over FHE. To achieve both efficient and general program execution over FHE, we propose CHLOE, a new compiler framework with multi-level control-flow analysis for the effective optimization of compound repetition control structures. We observe that loops over FHE can be classified into two categories depending on whether the loop condition is encrypted, namely, the transparent loops and the oblivious loops. For transparent loops, we can directly inspect the control structures and build operator cost models to apply FHE-specific loop segmentation and vectorization in a fine-grained manner. Meanwhile, for oblivious loops, we derive closed-form expressions and static analysis techniques to reduce the number of potential loop paths and conditional branches. In the experiment, we show that \NAME can compile programs with complex loop structures into efficient executable codes over FHE, where the performance improvement ranges from $1.5\times$ to $54\times$ (up to $10^{5}\times$ for programs containing oblivious loops) when compared to programs produced by the-state-of-the-art FHE compilers.
Last updated:  2024-12-09
How To Scale Multi-Party Computation
Marcel Keller
We propose a solution for optimized scaling of multi-party computation using the MP-SPDZ framework (CCS’20). It does not use manual optimization but extends the compiler and the virtual machine of the framework, thus providing an improvement for any user. We found that our solution improves timings four-fold for a simple example in MP-SPDZ, and it improves an order of magnitude on every framework using secret sharing considered by Hastings et al. (S&P’19) either in terms of time or RAM usage. The core of our approach is finding a balance between communication round optimization and memory usage.
Last updated:  2024-12-09
Revisiting OKVS-based OPRF and PSI: Cryptanalysis and Better Construction
Kyoohyung Han, Seongkwang Kim, Byeonghak Lee, and Yongha Son
Oblivious pseudorandom function (OPRF) is a two-party cryptographic protocol that allows the receiver to input $x$ and learn $F(x)$ for some PRF $F$, only known to the sender. For private set intersection (PSI) applications, OPRF protocols have evolved to enhance efficiency, primarily using symmetric key cryptography. Current state-of-the-art protocols, such as those by Rindal and Schoppmann (Eurocrypt '21), leverage vector oblivious linear evaluation (VOLE) and oblivious key-value store (OKVS) constructions. In this work, we identify a flaw in an existing security proof, and present practical attacks in the malicious model, which results in additional PRF evaluations than the previous works' claim. In particular, the attack for malicious model is related to the concept of OKVS overfitting, whose hardness is conjectured in previous works. Our attack is the first one to discuss the concrete hardness of OKVS overfitting problem. As another flavour of contribution, we generalize OKVS-based OPRF constructions, suggesting new instantiations using a VOLE protocol with only Minicrypt assumptions. Our generalized construction shows improved performance in high-speed network environments, narrowing the efficiency gap between the OPRF constructions over Cryptomania and Minicrypt.
Last updated:  2025-03-12
BitGC: Garbled Circuits with 1 Bit per Gate
Hanlin Liu, Xiao Wang, Kang Yang, and Yu Yu
We present BitGC, a garbling scheme for Boolean circuits with 1 bit per gate communication based on either ring learning with errors (RLWE) or NTRU assumption, with key-dependent message security. The garbling consists of 1) a homomorphically encrypted seed that can be expanded to encryption of many pseudo-random bits and 2) one-bit stitching information per gate to reconstruct garbled tables from the expanded ciphertexts. By using low-complexity PRGs, both the garbling and evaluation of each gate require only O(1) homomorphic addition/multiplication operations without bootstrapping.
Last updated:  2024-12-09
Side-Channel Attack on ARADI
Donggeun Kwon and Seokhie Hong
In this study, we present the first side-channel attack on the ARADI block cipher, exposing its vulnerabilities to physical attacks in non-profiled scenarios. We propose a novel bitwise divide-and-conquer methodology tailored for ARADI, enabling key recovery. Furthermore, based on our attack approach, we present a stepwise method for recovering the full 256-bit master key. Through experiments on power consumption traces from an ARM processor, we demonstrate successful recovery of target key bits, validating the effectiveness of our proposed method. Our findings highlight critical weaknesses in physical security of ARADI and underscore the necessity of implementing effective countermeasures to address side-channel vulnerabilities.
Last updated:  2024-12-08
Improved Quantum Analysis of ARIA
Yujin Oh, Kyungbae Jang, and Hwajeong Seo
As advancements in quantum computing present potential threats to current cryptographic systems, it is necessary to reconsider and adapt existing cryptographic frameworks. Among these, Grover's algorithm reduces the attack complexity of symmetric-key encryption, making it crucial to evaluate the security strength of traditional symmetric-key systems. In this paper, we implement an efficient quantum circuit for the ARIA symmetric-key encryption and estimate the required quantum resources. Our approach achieves a reduction of over 61\% in full depth and over 65.5\% in qubit usage compared to the most optimized previous research. Additionally, we estimate the cost of a Grover attack on ARIA and evaluate its post-quantum security strength.
Last updated:  2025-04-02
Endomorphisms for Faster Cryptography on Elliptic Curves of Moderate CM Discriminants
Dimitri Koshelev and Antonio Sanso
This article generalizes the widely-used GLV decomposition for (multi-)scalar multiplication to a much broader range of elliptic curves with moderate CM discriminant \( D < 0 \). Previously, it was commonly believed that this technique can only be applied efficiently for small values of \( D \) (e.g., up to \( 100 \)). In practice, curves with \( j \)-invariant \( 0 \) are most frequently employed, as they have the smallest possible \( D = -3 \). However, $j = 0$ curves are either too suspicious for conservative government regulators (e.g., for Russian ones, which prefer $D = -619$) or unavailable under imposed extra restrictions in a series of cryptographic settings. The article thus participates in the decade-long development of numerous curves with moderate \( D \) in the context of zk-SNARKs. Such curves are typically derived from others, which limits the ability to generate them while controlling the magnitude of \( D \).
Last updated:  2025-03-12
Low Communication Threshold Fully Homomorphic Encryption
Uncategorized
Alain Passelègue and Damien Stehlé
Show abstract
Uncategorized
This work investigates constructions of threshold fully homomorphic encryption with low communication, i.e., with small ciphertexts and small decryption shares. In this context, we discuss in detail the technicalities for achieving full-fledged threshold FHE, and put forward limitations regarding prior works, including an attack against the recent construction of Boudgoust and Scholl [ASIACRYPT 2023]. In light of our observations, we generalize the definition of threshold fully homomorphic encryption by adding an algorithm which allows to introduce additional randomness in ciphertexts before they are decrypted by parties. In this setting, we are able to propose a construction which offers small ciphertexts and small decryption shares.
Last updated:  2025-01-11
UTRA: Universe Token Reusability Attack and Verifiable Delegatable Order-Revealing Encryption
Jaehwan Park, Hyeonbum Lee, Junbeom Hur, Jae Hong Seo, and Doowon Kim
As dataset sizes grow, users increasingly rely on encrypted data and secure range queries on cloud servers, raising privacy concerns about potential data leakage. Order-revealing encryption (ORE) enables efficient operations on numerical datasets, and Delegatable ORE (DORE) extends this functionality to multi-client environments, but it faces risks of token forgery. Secure DORE (SEDORE) and Efficient DORE (EDORE) address some vulnerabilities, with EDORE improving speed and storage efficiency. However, we find that both schemes remain susceptible to token forgery. To address this issue, we propose the concept of Verifiable Delegatable Order-Revealing Encryption (VDORE) with a formal definition of token unforgeability. We then construct a new VDORE scheme $\mathsf{TUDORE}$ (Token Unforgebale DORE), which ensures token unforgeability. Furthermore, our $\mathsf{TUDORE}$ achieves about 1.5× speed-up in token generation compared to SEDORE and EDORE.
Last updated:  2024-12-12
New Results in Quantum Analysis of LED: Featuring One and Two Oracle Attacks
Siyi Wang, Kyungbae Jang, Anubhab Baksi, Sumanta Chakraborty, Bryan Lee, Anupam Chattopadhyay, and Hwajeong Seo
Quantum computing has attracted substantial attention from researchers across various fields. In case of the symmetric key cryptography, the main problem is posed by the application of Grover's search. In this work, we focus on quantum analysis of the lightweight block cipher LED. This paper proposes an optimized quantum circuit for LED, minimizing the required number of qubits, quantum gates, and circuit depth. Furthermore, we conduct Grover's attack and Search with Two Oracles (STO) attack on the proposed LED cipher, estimating the quantum resources required for the corresponding attack oracles. The STO attack outperforms the usual Grover's search when the state size is less than the key size. Beyond analyzing the cipher itself (i.e., the ECB mode), this work also evaluates the effectiveness of quantum attacks on LED across different modes of operation.
Last updated:  2024-12-06
Shutter Network: Private Transactions from Threshold Cryptography
Stefan Dziembowski, Sebastian Faust, and Jannik Luhn
With the emergence of DeFi, attacks based on re-ordering transactions have become an essential problem for public blockchains. Such attacks include front-running or sandwiching transactions, where the adversary places transactions at a particular place within a block to influence a financial asset’s market price. In the Ethereum space, the value extracted by such attacks is often referred to as miner/maximal extractable value (MEV), which to date is estimated to have reached a value of more than USD 1.3B. A promising approach to protect against MEV is to hide the transaction data so block proposers cannot choose the order in which transactions are executed based on the transactions’ content. This paper describes the cryptographic protocol underlying the Shutter network. Shutter has been available as an open-source project since the end of 2021 and has been running in production since Oct. 2022.
Last updated:  2024-12-06
Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs
Amit Singh Bhati, Elena Andreeva, Simon Müller, and Damian Vizar
A message authentication code (MAC) is a symmetric-key cryptographic function used to authenticate a message by assigning it a tag. This tag is a short string that is difficult to reproduce without knowing the key. The tag ensures both the authenticity and integrity of the message, enabling the detection of any modifications. A significant number of existing message authentication codes (MACs) are based on block ciphers (BCs) and tweakable block ciphers (TBCs). These MACs offer various trade-offs in properties, such as data processing rate per primitive call, use of single or multiple keys, security levels, pre- or post-processing, parallelizability, state size, and optimization for short/long queries. In this work, we propose the $\mathsf{Sonikku}$ family of expanding primitive based MACs, consisting of three instances: $\mathsf{BabySonic}$, $\mathsf{DarkSonic}$, and $\mathsf{SuperSonic}$. The $\mathsf{Sonikku}$ MACs are -- 1) faster than the state-of-the-art TBC-based MACs; 2) secure beyond the birthday bound in the input block size; 3) smaller in state size compared to state-of-the-art MACs; and 4) optimized with diverse trade-offs such as pre/post-processing-free execution, parallelization, small footprint, and suitability for both short and long queries. These attributes make them favorable for common applications as well as ``IoT'' and embedded devices where processing power is limited. On a Cortex-M4 32-bit microcontroller, $\mathsf{BabySonic}$ with $\mathsf{ForkSkinny}$ achieves a speed-up of at least 2.11x (up to 4.36x) compared to state-of-the-art ZMAC with $\mathsf{SKINNY}$ for 128-bit block sizes and queries of 95B or smaller. $\mathsf{DarkSonic}$ and $\mathsf{SuperSonic}$ with $\mathsf{ForkSkinny}$ achieve a speed-up of at least 1.93x for small queries of 95B or smaller and 1.48x for large queries up to 64KB, respectively, against ZMAC with $\mathsf{SKINNY}$ for both 64- and 128-bit block sizes. Similar to ZMAC and PMAC2x, we then demonstrate the potential of our MAC family by using $\mathsf{SuperSonic}$ to construct a highly efficient, beyond-birthday secure, stateless, and deterministic authenticated encryption scheme, which we call SonicAE.
Last updated:  2024-12-06
On the Security of LWE-based KEMs under Various Distributions: A Case Study of Kyber
Mingyao Shao, Yuejun Liu, Yongbin Zhou, and Yan Shao
Evaluating the security of LWE-based KEMs involves two crucial metrics: the hardness of the underlying LWE problem and resistance to decryption failure attacks, both significantly influenced by the secret key and error distributions. To mitigate the complexity and timing vulnerabilities of Gaussian sampling, modern LWE-based schemes often adopt either the uniform or centered binomial distribution (CBD). This work focuses on Kyber to evaluate its security under both distributions. Compared with the CBD, the uniform distribution over the same range enhances the LWE hardness but also increases the decryption failure probability, amplifying the risk of decryption failure attacks. We introduce a majority-voting-based key recovery method, and carry out a practical decryption failure attack on Kyber512 in this scenario with a complexity of $2^{37}$. Building on this analysis, we propose uKyber, a variant of Kyber that employs the uniform distribution and parameter adjustments under the asymmetric module-LWE assumption. Compared with Kyber, uKyber maintains comparable hardness and decryption failure probability while reducing ciphertext sizes. Furthermore, we propose a multi-value sampling technique to enhance the efficiency of rejection sampling under the uniform distribution. These properties make uKyber a practical and efficient alternative to Kyber for a wide range of cryptographic applications.
Last updated:  2024-12-06
µLAM: A LLM-Powered Assistant for Real-Time Micro-architectural Attack Detection and Mitigation
Upasana Mandal, Shubhi Shukla, Ayushi Rastogi, Sarani Bhattacharya, and Debdeep Mukhopadhyay
The rise of microarchitectural attacks has necessitated robust detection and mitigation strategies to secure computing systems. Traditional tools, such as static and dynamic code analyzers and attack detectors, often fall short due to their reliance on predefined patterns and heuristics that lack the flexibility to adapt to new or evolving attack vectors. In this paper, we introduce for the first time a microarchitecture security assistant, built on OpenAI's GPT-3.5, which we refer to as µLAM. This assistant surpasses conventional tools by not only identifying vulnerable code segments but also providing context-aware mitigations, tailored to specific system specifications and existing security measures. Additionally, µLAM leverages real-time data from dynamic Hardware Performance Counters (HPCs) and system specifications to detect ongoing attacks, offering a level of adaptability and responsiveness that static and dynamic analyzers cannot match. For fine-tuning µLAM, we utilize a comprehensive dataset that includes system configurations, mitigations already in place for different generations of systems, dynamic HPC values, and both vulnerable and non-vulnerable source codes. This rich dataset enables µLAM to harness its advanced LLM natural language processing capabilities to understand and interpret complex code patterns and system behaviors, learning continuously from new data to improve its predictive accuracy and respond effectively in real time to both known and novel threats, making it an indispensable tool against microarchitectural threats. In this paper, we demonstrate the capabilities of µLAM by fine-tuning and testing it on code utilizing well-known cryptographic libraries such as OpenSSL, Libgcrypt, and NaCl, thereby illustrating its effectiveness in securing critical and complex software environments.
Last updated:  2025-02-22
Bounded CCA2 Secure Proxy Re-encryption Based on Kyber
Shingo Sato and Junji Shikata
Proxy re-encryption (PRE) allows a semi-honest party (called a proxy) to convert ciphertexts under a public key into ciphertexts under another public key. Due to this functionality, there are various applications such as encrypted email forwarding, key escrow, and secure distributed file systems. On the other hand, post-quantum cryptography (PQC) is one of the most important research areas. However, there is no post-quantum PRE scheme with security against adaptive chosen ciphertext attacks (denoted by $\mathsf{CCA}2$ security) while many PRE schemes have been proposed so far. In this paper, we propose a bounded $\mathsf{CCA}2$ secure PRE scheme based on CRYSTALS-Kyber (Kyber, for short) which is a selected algorithm in the NIST PQC competition. To this end, we present generic constructions of bounded $\mathsf{CCA}2$ secure PRE. Our generic constructions start from PRE with (a variant of) security against chosen plaintext attacks (denoted by $\mathsf{CPA}$ security) and a new PRE's property introduced in this paper. In order to instantiate our generic constructions, we present a Kyber-based PRE scheme with the required property. As a result, we can construct a bounded $\mathsf{CCA}2$ secure PRE scheme from Kyber.
Last updated:  2024-12-06
HI-CKKS: Is High-Throughput Neglected? Reimagining CKKS Efficiency with Parallelism
Fuyuan Chen, Jiankuo Dong, Xiaoyu Hu, Zhenjiang Dong, Wangchen Dai, Jingqiang Lin, and Fu Xiao
The proliferation of data outsourcing and cloud services has heightened privacy vulnerabilities. CKKS, among the most prominent homomorphic encryption schemes, allows computations on encrypted data, serving as a critical privacy safeguard. However, performance remains a central bottleneck, hindering widespread adoption. Existing optimization efforts often prioritize latency reduction over throughput performance. This paper presents HI-CKKS, a throughput-oriented High-performance Implementation of CKKS homomorphic encryption, addressing these challenges. Our HI-CKKS introduces a batch-supporting asynchronous execution scheme, effectively mitigating frequent data interactions and high waiting delays between hosts and servers in service-oriented scenarios. We analyze the fundamental (I)NTT primitive, which is critical in CKKS, and develop a hierarchical, hybrid high-throughput implementation. This includes efficient arithmetic module instruction set implementations, unified kernel fusion, and hybrid memory optimization strategies that significantly improve memory access efficiency and the performance of (I)NTT operations. Additionally, we propose a multi-dimensional parallel homomorphic multiplication scheme aimed at maximizing throughput and enhancing the performance of (I)NTT and homomorphic multiplication. In conclusion, our implementation is deployed on the RTX 4090, where we conduct a thorough throughput performance evaluation of HI-CKKS, enabling us to pinpoint the most effective parallel parameter settings. Compared to the CPU implementation, our system achieves throughput increases of $175.08\times$, $191.27\times$, and $679.57\times$ for NTT, INTT, and HMult, respectively. And our throughput performance still demonstrates a significant improvement, ranging from $1.54\times$ to $693.17\times$ compared to the latest GPU-based works.
Last updated:  2025-01-28
Quadratic Modelings of Syndrome Decoding
Alessio Caminata, Ryann Cartor, Alessio Meneghetti, Rocco Mora, and Alex Pellegrini
This paper presents enhanced reductions of the bounded-weight and exact-weight Syndrome Decoding Problem (SDP) to a system of quadratic equations. Over $\mathbb{F}_2$, we improve on a previous work and study the degree of regularity of the modeling of the exact weight SDP. Additionally, we introduce a novel technique that transforms SDP instances over $\mathbb{F}_q$ into systems of polynomial equations and thoroughly investigate the dimension of their varieties. Experimental results are provided to evaluate the complexity of solving SDP instances using our models through Gröbner bases techniques.
Last updated:  2024-12-06
Efficient and Practical Multi-party Private Set Intersection Cardinality Protocol
Shengzhe Meng, Xiaodong Wang, Zijie Lu, and Bei Liang
We present an efficient and simple multi-party private set intersection cardinality (PSI-CA) protocol that allows several parties to learn the intersection size of their private sets without revealing any other information. Our protocol is highly efficient because it only utilizes the Oblivious Key-Value Store and zero-sharing techniques, without incorporating components such as OPPRF (Oblivious Programmable Pseudorandom Function) which is the main building block of multi-party PSI-CA protocol by Gao et al. (PoPETs 2024). Our protocol exhibits better communication and computational overhead than the state-of-the-art. To compute the intersection between 16 parties with a set size of $2^{20}$ each, our PSI-CA protocol only takes 5.84 seconds and 326.6 MiB of total communication, which yields a reduction in communication by a factor of up to 2.4× compared to the state-of-the-art multi-party PSI-CA protocol of Gao et al. (PoPETs 2024). We prove that our protocol is secure in the presence of a semi-honest adversary who may passively corrupt any $(t-2)$-out-of-$t$ parties once two specific participants are non-colluding.
Last updated:  2024-12-06
Privately Compute the Item with Maximal Weight Sum in Set Intersection
Hongyuan Cai, Xiaodong Wang, Zijie Lu, and Bei Liang
Private Set Intersection (PSI) is a cryptographic primitive that allows two parties to obtain the intersection of their private input sets while revealing nothing more than the intersection. PSI and its numerous variants, which compute on the intersection of items and their associated weights, have been widely studied. In this paper, we revisit the problem of finding the best item in the intersection according to weight sum introduced by Beauregard et al. (SCN '22), which is a special variant of PSI. We present two new protocols that achieve the functionality. The first protocol is based on Oblivious Pseudorandom Function (OPRF), additively homomorphic encryption and symmetric-key encryption, while the second one is based on Decisional Diffie-Hellman (DDH) assumption, additively homomorphic encryption and symmetric-key encryption. Both protocols are proven to be secure against semi-honest adversaries. Compared with the original protocol proposed by Beauregard et al. (abbreviated as the FOCI protocol), which requires all weights in the input sets to be polynomial in magnitude, our protocols remove this restriction. We compare the performance of our protocols with the FOCI protocol both theoretically and empirically. We find out that the performance of FOCI protocol is primarily affected by the size of the intersection and the values of elements’ weights in intersection when fixing set size, while the performance of ours is independent of these two factors. In particular, in the LAN setting, when the set sizes are $n=10000$, intersection size of $\frac{n}{2}$, the weights of the elements are uniformly distributed as integers from $\left[0, n-1\right]$, our DDH-based protocol has a similar run-time to the FOCI protocol. However, when the weights of the elements belonging to $\left[0, 10n-1\right]$ and $\left[0, 100n-1\right]$, our DDH-based protocol is between a factor $2\times$ and $5\times$ faster than the FOCI protocol.
Last updated:  2024-12-13
RoK, Paper, SISsors – Toolkit for Lattice-based Succinct Arguments
Michael Klooß, Russell W. F. Lai, Ngoc Khanh Nguyen, and Michał Osadnik
Lattice-based succinct arguments allow to prove bounded-norm satisfiability of relations, such as $f(\vec{s}) = \vec{t} \bmod q$ and $\|\vec{s}\|\leq \beta$, over specific cyclotomic rings $\mathcal{O}_\mathcal{K}$, with proof size polylogarithmic in the witness size. However, state-of-the-art protocols require either 1) a super-polynomial size modulus $q$ due to a soundness gap in the security argument, or 2) a verifier which runs in time linear in the witness size. Furthermore, construction techniques often rely on specific choices of $\mathcal{K}$ which are not mutually compatible. In this work, we exhibit a diverse toolkit for constructing efficient lattice-based succinct arguments: (i) We identify new subtractive sets for general cyclotomic fields $\mathcal{K}$ and their maximal real subfields $\mathcal{K}^+$, which are useful as challenge sets, e.g. in arguments for exact norm bounds. (ii) We construct modular, verifier-succinct reductions of knowledge for the bounded-norm satisfiability of structured-linear/inner-product relations, without any soundness gap, under the vanishing SIS assumption, over any $\mathcal{K}$ which admits polynomial-size subtractive sets. (iii) We propose a framework to use twisted trace maps, i.e. maps of the form $\tau(z) = \frac{1}{N} \cdot \mathsf{Trace}_{\mathcal{K}/\mathbb{Q}}( \alpha \cdot z )$, to embed $\mathbb{Z}$-inner-products as $\mathcal{R}$-inner-products for some structured subrings $\mathcal{R} \subseteq \mathcal{O}_\mathcal{K}$ whenever the conductor has a square-free odd part. (iv) We present a simple extension of our reductions of knowledge for proving the consistency between the coefficient embedding and the Chinese Remainder Transform (CRT) encoding of $\vec{s}$ over any cyclotomic field $\mathcal{K}$ with a smooth conductor, based on a succinct decomposition of the CRT map into automorphisms, and a new, simple succinct argument for proving automorphism relations. Combining all techniques, we obtain, for example, verifier-succinct arguments for proving that $\vec{s}$ satisfying $f(\vec{s}) = \vec{t} \bmod q$ has binary coefficients, without soundness gap and with polynomial-size modulus $q$.
Last updated:  2024-12-05
Further Connections Between Isogenies of Supersingular Curves and Bruhat-Tits Trees
Steven Galbraith, Valerie Gilchrist, Shai Levin, and Ari Markowitz
We further explore the explicit connections between supersingular curve isogenies and Bruhat-Tits trees. By identifying a supersingular elliptic curve $E$ over $\mathbb{F}_p$ as the root of the tree, and a basis for the Tate module $T_\ell(E)$; our main result is that given a vertex $M$ of the Bruhat-Tits tree one can write down a generator of the ideal $I \subseteq \text{End}(E)$ directly, using simple linear algebra, that defines an isogeny corresponding to the path in the Bruhat-Tits tree from the root to the vertex $M$. In contrast to previous methods to go from a vertex in the Bruhat-Tits tree to an ideal, once a basis for the Tate module is set up and an explicit map $\Phi : \text{End}(E) \otimes_{\mathbb{Z}_\ell} \to M_2( \mathbb{Z}_\ell )$ is constructed, our method does not require any computations involving elliptic curves, isogenies, or discrete logs. This idea leads to simplifications and potential speedups to algorithms for converting between isogenies and ideals.
Last updated:  2024-12-05
Scribe: Low-memory SNARKs via Read-Write Streaming
Anubhav Baweja, Pratyush Mishra, Tushar Mopuri, Karan Newatia, and Steve Wang
Succinct non-interactive arguments of knowledge (SNARKs) enable a prover to produce a short and efficiently verifiable proof of the validity of an arbitrary NP statement. Recent constructions of efficient SNARKs have led to interest in using them for a wide range of applications, but unfortunately, deployment of SNARKs in these applications faces a key bottleneck: SNARK provers require a prohibitive amount of time and memory to generate proofs for even moderately large statements. While there has been progress in reducing prover time, prover memory remains an issue. In this work, we describe Scribe, a new low-memory SNARK that can efficiently prove large statements even on cheap consumer devices such as smartphones by leveraging a plentiful, but heretofore unutilized, resource: disk storage. In more detail, instead of storing its (large) intermediate state in RAM, Scribe's prover instead stores it on disk. To ensure that accesses to state are efficient, we design Scribe's prover in a *read-write streaming* model of computation that allows the prover to read and modify its state only in a streaming manner. We implement and evaluate Scribe's prover, and show that, on commodity hardware, it can easily scale to circuits of size $2^{28}$ gates while using only 2GB of memory and incurring only minimal proving latency overhead (10-35%) compared to a state-of-the-art memory-intensive baseline (HyperPlonk [EUROCRYPT 2023]) that requires much more memory. Our implementation minimizes overhead by leveraging the streaming access pattern to enable several systems optimizations that together mask I/O costs.
Last updated:  2025-02-18
SoK: Security of the Ascon Modes
Charlotte Lefevre and Bart Mennink
The Ascon authenticated encryption scheme and hash function of Dobraunig et al (Journal of Cryptology 2021) were recently selected as winner of the NIST lightweight cryptography competition. The mode underlying Ascon authenticated encryption (Ascon-AE) resembles ideas of SpongeWrap, but not quite, and various works have investigated the generic security of Ascon-AE, all covering different attack scenarios and with different bounds. This work systemizes knowledge on the mode security of Ascon-AE, and fills gaps where needed. We consider six mainstream security models, all in the multi-user setting: (i) nonce-respecting security, reflecting on the existing bounds of Chakraborty et al (ASIACRYPT 2023, ACISP 2024) and Lefevre and Mennink (SAC 2024), (ii) nonce-misuse resistance, observing a non-fixable flaw in the proof of Chakraborty et al (ACISP 2024), (iii) nonce-misuse resilience, delivering missing security analysis, (iv) leakage resilience, delivering a new security analysis that supersedes the informal proof sketch (though in a different model) of Guo et al (ToSC 2020), (v) state-recovery security, expanding on the analysis of Lefevre and Mennink, and (vi) release of unverified plaintext, also delivering missing security analysis. We also match all bounds with tight attacks. As a bonus, we systemize the knowledge on Ascon-Hash and Ascon-PRF (but there are no technical novelties here).
Last updated:  2025-04-10
A Systematic Analysis of Pseudorandom Generation for Masked Cryptographic Implementation
Rei Ueno, Naofumi Homma, and Kazuhiko Minematsu
This study analyzes and investigates pseudorandom generation (PRG) in the context of masked cryptographic implementation. Although masking and PRGs have been distinctly studied for a long time, little literature studies how the randomness in the masked implementation should be generated. The lack of analysis on mask-bits generators makes the practical security of masked cryptographic implementation unclear, and practitioners (e.g., designers, implementers, and evaluators) may be confused about how to realize it. This study provides its systematic analysis by developing new three adversarial models, which correspond to respective practical scenarios of leakage assessment, quantitative evaluation of sidechannel security (e.g., success rate and key-lifetime), and practical deployment. We present the properties required for each scenario by a stage-by-stage analysis. In particular, we support a long-held belief/folklore with a proof: for the output of PRG for masking, cryptographic security is sufficient but unnecessary, but only a statistical uniformity (precisely, high-dimensional uniform equidistribution) is necessary. In addition, we thoroughly investigate the side-channel security of PRGs in the wild in the masking context. We conclude this study with some recommendations for practitioners and a proposal of leakage-resilient method of comparative performance.
Last updated:  2024-12-05
Analysis of REDOG: The Pad Thai Attack
Alex Pellegrini and Marc Vorstermans
This paper introduces the Pad Thai message recovery attack on REDOG, a rank-metric code-based encryption scheme selected for the second round of evaluation in the Korean Post-Quantum Cryptography (KPQC) competition. The attack exploits the low rank weight of a portion of the ciphertext to construct multiple systems of linear equations, one of which is noise-free and can be solved to recover the secret message. The Pad Thai attack significantly undermines the security of REDOG, revealing that its provided security is much lower than originally claimed.
Last updated:  2024-12-04
Efficient Succinct Zero-Knowledge Arguments in the CL Framework
Agathe Beaugrand, Guilhem Castagnos, and Fabien Laguillaumie
The CL cryptosystem, introduced by Castagnos and Laguillaumie in 2015, is a linearly homomorphic encryption scheme that has seen numerous developments and applications in recent years, particularly in the field of secure multiparty computation. Designing efficient zero-knowledge proofs for the CL framework is critical, especially for achieving adaptive security for such multiparty protocols. This is a challenging task due to the particularities of class groups of quadratic fields used to instantiate the groups of unknown order required in the CL framework. In this work, we provide efficient proofs and arguments for statements involving a large number of ciphertexts. We propose a new batched proof for correctness of CL ciphertexts and new succinct arguments for correctness of a shuffle of these ciphertexts. Previous efficient proofs of shuffle for linearly homomorphic encryption were designed for Elgamal “in the exponent” which has only a limited homomorphic property. In the line of a recent work by Braun, Damgard and Orlandi (CRYPTO 2023), all the new proofs and arguments provide partial extractability, a property that we formally introduce here. Thanks to this notion, we show that bulletproof techniques, which are in general implemented with groups of known prime order, can be applied in the CL framework despite the use of unknown order groups, giving non interactive arguments of logarithmic sizes. To prove the practicability of our approach we have implemented these protocols with the BICYCL library, showing that computation and communication costs are competitive. We also illustrate that the partial extractability of our proofs provide enough guarantees for complex applications by presenting a bipartite private set intersection sum protocol which achieves security against malicious adversaries using CL encryption, removing limitations of a solution proposed by Miao et al. (CRYPTO 2020).
Last updated:  2025-01-23
Onion Franking: Abuse Reports for Mix-Based Private Messaging
Matthew Gregoire, Margaret Pierce, and Saba Eskandarian
The fast-paced development and deployment of private messaging applications demands mechanisms to protect against the concomitant potential for abuse. While widely used end-to-end encrypted (E2EE) messaging systems have deployed mechanisms for users to verifiably report abusive messages without compromising the privacy of unreported messages, abuse reporting schemes for systems that additionally protect message metadata are still in their infancy. Existing solutions either focus on a relatively small portion of the design space or incur much higher communication and computation costs than their E2EE brethren. This paper introduces new abuse reporting mechanisms that work for any private messaging system based on onion encryption. This includes low-latency systems that employ heuristic or opportunistic mixing of user traffic, as well as schemes based on mixnets. Along the way, we show that design decisions and abstractions that are well-suited to the E2EE setting may actually impede security and performance improvements in the metadata-hiding setting. We also explore stronger threat models for abuse reporting and moderation not explored in prior work, showing where prior work falls short and how to strengthen both our scheme and others' -- including deployed E2EE messaging platforms -- to achieve higher levels of security. We implement a prototype of our scheme and find that it outperforms the best known solutions in this setting by well over an order of magnitude for each step of the message delivery and reporting process, with overheads almost matching those of message franking techniques used by E2EE encrypted messaging apps today.
Last updated:  2024-12-04
Lova: Lattice-Based Folding Scheme from Unstructured Lattices
Giacomo Fenzi, Christian Knabenhans, Ngoc Khanh Nguyen, and Duc Tu Pham
Folding schemes (Kothapalli et al., CRYPTO 2022) are a conceptually simple, yet powerful cryptographic primitive that can be used as a building block to realise incrementally verifiable computation (IVC) with low recursive overhead without general-purpose non-interactive succinct arguments of knowledge (SNARK). Most folding schemes known rely on the hardness of the discrete logarithm problem, and thus are both not quantum-resistant and operate over large prime fields. Existing post-quantum folding schemes (Boneh, Chen, ePrint 2024/257) based on lattice assumptions instead are secure under structured lattice assumptions, such as the Module Short Integer Solution Assumption (MSIS), which also binds them to relatively complex arithmetic. In contrast, we construct Lova, the first folding scheme whose security relies on the (unstructured) SIS assumption. We provide a Rust implementation of Lova, which makes only use of arithmetic in hardware-friendly power-of-two moduli. Crucially, this avoids the need of implementing and performing any finite field arithmetic. At the core of our results lies a new exact Euclidean norm proof which might be of independent interest.
Last updated:  2025-02-18
Proof of Time: A Method for Verifiable Temporal Commitments Without Timestamp Disclosure
Alexander John Lee
This paper introduces a cryptographic method that enables users to prove that an event occurred in the past and that a specified amount of time has since elapsed, without disclosing the exact timestamp of the event. The method leverages zero-knowledge proofs and an on-chain Incremental Merkle Tree to store hash commitments. By utilizing the Poseidon hash function and implementing zero-knowledge circuits in Noir, this approach ensures both the integrity and confidentiality of temporal information.
Last updated:  2025-02-24
uKNIT: Breaking Round-alignment for Cipher Design -- Featuring uKNIT-BC, an Ultra Low-Latency Block Cipher
Kai Hu, Mustafa Khairallah, Thomas Peyrin, and Quan Quan Tan
Automated cryptanalysis has seen a lot of attraction and success in the past decade, leading to new distinguishers or key-recovery attacks against various ciphers. We argue that the improved efficiency and usability of these new tools have been undervalued, especially for design processes. In this article, we break for the first time the classical iterative design paradigm for symmetric-key primitives, where constructions are built around the repetition of a round function. We propose instead a new design framework, so-called uKNIT, that allows a round-by-round optimization-led automated construction of the primitives and where each round can be entirely different from the others (the security/performance trade-off actually benefiting from this non-alignment). This new design framework being non-trivial to instantiate, we further propose a method for SPN ciphers using a genetic algorithm and leveraging advances in automated cryptanalysis: given a pool of good cipher candidates on $x$ rounds, our algorithm automatically generates and selects $(x+1)$-round candidates by evaluating their security and performance. We emphasize that our design pipeline is also the first to propose a fully automated design process, with completely integrated implementation and security analysis. We finally exemplify our new design strategy on the important use-case of low-latency cryptography, by proposing the uKNIT-BC block cipher, together with a complete security analysis and benchmarks. Compared to the state-of-the-art in low-latency ciphers (PRINCEv2), uKNIT-BC improves on all crucial security and performance directions at the same time, reducing latency by 10\%, while increasing resistance against classical differential/linear cryptanalysis by more than 10\%. It also reduces area by 17\% and energy consumption by 44\% when fixing the latency of both ciphers. As a contribution of independent interest, we discovered a generalization of the Superposition-Tweakey (STK) construction for key schedules, unlocking its application to bit-oriented ciphers. We also discuss the benefits of uKNIT to many other possible use-cases.
Last updated:  2024-12-04
On the (Im)possibility of Game-Theoretically Fair Leader Election Protocols
Ohad Klein, Ilan Komargodski, and Chenzhi Zhu
We consider the problem of electing a leader among $n$ parties with the guarantee that each (honest) party has a reasonable probability of being elected, even in the presence of a coalition that controls a subset of parties, trying to bias the output. This notion is called ``game-theoretic fairness'' because such protocols ensure that following the honest behavior is an equilibrium and also the best response for every party and coalition. In the two-party case, Blum's commit-and-reveal protocol (where if one party aborts, then the other is declared the leader) satisfies this notion and it is also known that one-way functions are necessary. Recent works study this problem in the multi-party setting. They show that composing Blum's 2-party protocol for $\log n$ rounds in a tournament-tree-style manner results with {perfect game-theoretic fairness}: each honest party has probability $\ge 1/n$ of being elected as leader, no matter how large the coalition is. Logarithmic round complexity is also shown to be necessary if we require perfect fairness against a coalition of size $n-1$. Relaxing the above two requirements, i.e., settling for approximate game-theoretic fairness and guaranteeing fairness against only constant fraction size coalitions, it is known that there are $O(\log ^* n)$ round protocols. This leaves many open problems, in particular, whether one can go below logarithmic round complexity by relaxing only one of the strong requirements from above. We manage to resolve this problem for commit-and-reveal style protocols, showing that - $\Omega(\log n/\log\log n)$ rounds are necessary if we settle for approximate fairness against very large (more than constant fraction) coalitions; - $\Omega(\log n)$ rounds are necessary if we settle for perfect fairness against $n^\epsilon$ size coalitions (for any constant $\epsilon>0$). These show that both relaxations made in prior works are necessary to go below logarithmic round complexity. Lastly, we provide several additional upper and lower bounds for the case of single-round commit-and-reveal style protocols.
Last updated:  2025-02-13
Share the MAYO: thresholdizing MAYO
Sofia Celi, Daniel Escudero, and Guilhem Niot
We present the first comprehensive study on thresholdizing practical OV-based signature schemes, specifically focusing on MAYO and UOV. Our approach begins by addressing the challenges associated with thresholdizing algorithms that sample solutions to linear equation systems of the form $Ax = y$, which are fundamental to OV-based signature schemes. Previous attempts have introduced levels of leakage that we deem insecure. We propose a novel minimum-leakage solution and assess its practicality. Furthermore, we explore the thresholdization of the entire functionality of these signature schemes, demonstrating their unique applications in networks and cryptographic protocols.
Last updated:  2024-12-03
SoK: Privacy-Preserving Transactions in Blockchains
Foteini Baldimtsi, Kostas Kryptos Chalkias, Varun Madathil, and Arnab Roy
Ensuring transaction privacy in blockchain systems is essential to safeguard user data and financial activity from exposure on public ledgers. This paper conducts a systematization of knowledge (SoK) on privacy-preserving techniques in cryptocurrencies with native privacy features. We define and compare privacy notions such as confidentiality, k-anonymity, full anonymity, and sender-receiver unlinkability, and categorize the cryptographic techniques employed to achieve these guarantees. Our analysis highlights the trade-offs between privacy guarantees, scalability, and regulatory compliance. Finally, we evaluate the usability of the most popular private cryptocurrencies providing insights into their practical deployment and user interaction. Through this analysis, we identify key gaps and challenges in current privacy solutions, highlighting areas where further research and development are needed to enhance privacy while maintaining scalability and security.
Last updated:  2024-12-03
M-Sel: A Message Selection Functional Encryption from Simple Tool
Ahmad Khoureich Ka
In this paper, we put forward a new practical application of Inner-Product Functional Encryption (IPFE) that we call Message Selection functional encryption (M-Sel) which allows users to decrypt selected portions of a ciphertext. In a message selection functional encryption scheme, the plaintext is partitioned into a set of messages M = {m1, . . . , mt}. The encryption of M consists in encrypting each of its elements using distinct encryption keys. A user with a functional decryption key skx derived from a selection vector x can access a subset of M from the encryption thereof and nothing more. Our construction is generic and combines a symmetric encryption scheme and an inner product functional encryption scheme, therefore, its security is tied to theirs. By instantiating our generic construction from a DDH-based IPFE we obtain a message selection FE with constant-size decryption keys suitable for key storage in lightweight devices in the context of Internet of Things (IoT).
Last updated:  2025-02-15
NICE-PAKE: On the Security of KEM-Based PAKE Constructions without Ideal Ciphers
Nouri Alnahawi, Jacob Alperin-Sheriff, Daniel Apon, Gareth T. Davies, and Alexander Wiesmaier
Password Authenticated Key Exchange (PAKE) is a fundamental cryptographic component that allows two parties to establish a shared key using only (potentially low-entropy) passwords. The interest in realizing generic KEM-based PAKEs has increased significantly in the last few years as part of the global migration effort to quantum-resistant cryptography. One such PAKE is the CAKE protocol, proposed by Beguinet et al. (ACNS ’23). However, despite its simple design based on the well-studied EKE protocol both CAKE and its variant OCAKE do not fully protect against quantum adversaries, as they rely on the Ideal Cipher (IC) model. Related and follow-up works, although touching on that issue, still rely on an IC. Considering the lack of a quantum IC model and the difficulty of using the classical IC to achieve secure instantiations on public keys in general and PQC in particular, we set out to eliminate it from PAKE design. In this paper, we present the No IC Encryption (NICE)-PAKE, a (semi)-generic symmetric PAKE framework providing a quantum-safe alternative for the IC, utilizing simpler cryptographic components for the authentication step. To give a formal proof for our construction, we introduce the notions of A-Part Secrecy (A-SEC-CCA), Splittable Collision Freeness (A-CFR-CCA) and Public Key Uniformity (SPLIT-PKU) for splittable LWE KEMs. We show the relation of the former to the Non-uniform LWE and the Weak Hint LWE assumptions, as well as its application to ring and module LWE. Notably, this side quest led to some surprising discoveries: the new notion is not directly interchangeable between the LWE variants, at least not in a straightforward manner. Further, we show how to obtain a secure PAKE from our construction with concrete parameter choices for both FrodoKEM and CRYSTALS-Kyber. We also address fundamental issues with common IC usage and identify differences between lattice KEMs (and their public keys) regarding their suitability for generic post-quantum PAKEs.
Last updated:  2025-03-17
MultiReg-FE: Registered FE for Unbounded Inner-Product and Attribute-Weighted Sums
Qiuyan Du, Qiaohan Chu, Jie Chen, Man Ho Au, and Debiao He
Recently, Francati et al. (Asiacrypt 2023) provided the first registered functional encryption (Reg-FE) beyond predicates. Reg-FE addresses the key escrow problem in functional encryption by allowing users to generate their own key pairs, effectively replacing the traditional private-key generator with a key curator. The key curator holds no secret information and runs deterministic algorithms to generate master public key for encryption and helper keys for decryption. However, existing Reg-FE schemes under standard assumptions require fixed data sizes, which limits their practicality in real-world applications. In this work, we introduce Multi-Function Registered Functional Encryption for Inner-Product (MultiReg-FE for IP), a novel extension of Reg-FE. It enables users to register multiple functions under a single public key. With MultiReg-FE, we achieve both Reg-FE for Unbounded Inner-Product (Unbounded IP), which removes the need to predetermine vector lengths, and Reg-FE for Attribute-Weighted Sums with Inner-Product (AWSw/IP), allowing computations over arbitrary numbers of attribute-value pairs. Specifically, we present: -MultiReg-FE for Inner-Product, which supports unbounded number of function vectors from each user and achieves adaptive-IND-security; - Reg-FE for Unbounded Inner-Product, removing the need for preset vector lengths and achieves adaptive-IND-security; - The first Reg-FE for AWSw/IP in public-key settings with weekly security.
Last updated:  2024-12-02
Gold OPRF: Post-Quantum Oblivious Power Residue PRF
Yibin Yang, Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, and Tal Rabin
We propose plausible post-quantum (PQ) oblivious pseudorandom functions (OPRFs) based on the Power Residue PRF (Damgård CRYPTO’88), a generalization of the Legendre PRF. For security parameter $\lambda$, we consider the PRF $\mathsf{Gold}_k(x)$ that maps an integer $x$ modulo a public prime $p = 2^\lambda\cdot g + 1$ to the element $(k + x)^g \bmod p$, where $g$ is public and $\log g \approx 2\lambda$. At the core of our constructions are efficient novel methods for evaluating $\mathsf{Gold}$ within two-party computation ($\mathsf{2PC}\text{-}\mathsf{Gold}$), achieving different security requirements. Here, the server $\mathcal{P}_s$ holds the PRF key $k$ whereas the client $\mathcal{P}_c$ holds the PRF input $x$, and they jointly evaluate $\mathsf{Gold}$ in 2PC. $\mathsf{2PC}\text{-}\mathsf{Gold}$ uses standard Vector Oblivious Linear Evaluation (VOLE) correlations and is information-theoretic and constant-round in the (V)OLE-hybrid model. We show: • For a semi-honest $\mathcal{P}_s$ and a malicious $\mathcal{P}_c$: a $\mathsf{2PC}\text{-}\mathsf{Gold}$ that just uses a single (V)OLE correlation, and has a communication complexity of $3$ field elements ($2$ field elements if we only require a uniformly sampled key) and a computational complexity of $\mathcal{O}(\lambda)$ field operations. We refer to this as half-malicious security. • For malicious $\mathcal{P}_s$ and $\mathcal{P}_c$: a $\mathsf{2PC}\text{-}\mathsf{Gold}$ that just uses $\frac{\lambda}{4} + \mathcal{O}(1)$ VOLE correlations, and has a communication complexity of $\frac{\lambda}{4} + \mathcal{O}(1)$ field elements and a computational complexity of $\mathcal{O}(\lambda)$ field operations. These constructions support additional features and extensions, e.g., batched evaluations with better amortized costs where $\mathcal{P}_c$ repeatedly evaluates the PRF under the same key. Furthermore, we extend $\mathsf{2PC}\text{-}\mathsf{Gold}$ to Verifiable OPRFs and use the methodology from Beullens et al. (ePrint’24) to obtain strong OPRF security in the universally composable setting. All the protocols are efficient in practice. We implemented $\mathsf{2PC}\text{-}\mathsf{Gold}$—with (PQ) VOLEs—and benchmarked them. For example, our half-malicious (resp. malicious) $n$-batched PQ OPRFs incur about $100$B (resp. $1.9$KB) of amortized communication for $\lambda = 128$ and large enough $n$.
Last updated:  2024-12-02
A Complete Characterization of One-More Assumptions In the Algebraic Group Model
Jake Januzelli and Jiayu Xu
One-more problems like One-More Discrete Logarithm (OMDL) and One-More Diffie--Hellman (OMDH) have found wide use in cryptography, due to their ability to naturally model security definitions for interactive primitives like blind signatures and oblivious PRF. Furthermore, a generalization of OMDH called Threshold OMDH (TOMDH) has proven useful for building threshold versions of interactive protocols. However, due to their complexity it is often unclear how hard such problems actually are, leading cryptographers to analyze them in idealized models like the Generic Group Model (GGM) and Algebraic Group Model (AGM). In this work we give a complete characterization of known group-based one-more problems in the AGM, using the $Q$-DL hierarchy of assumptions defined in the work of Bauer, Fuchsbauer and Loss (CRYPTO '20). 1. Regarding (T)OMDH, we show (T)OMDH is part of the $Q$-DL hierarchy in the AGM; in particular, $Q$-OMDH is equivalent to $Q$-DL. Along the way we find and repair a flaw in the original GGM hardness proof of TOMDH, thereby giving the first correct proof that TOMDH is hard in the GGM. 2. Regarding OMDL, we show the $Q$-OMDL problems constitute an infinite hierarchy of problems in the AGM incomparable to the $Q$-DL hierarchy; that is, $Q$-OMDL is separate from $Q'$-OMDL if $Q' \neq Q$, and also separate from $Q'$-DL unless $Q = Q' = 0$.
Last updated:  2025-03-18
Truncation Untangled: Scaling Fixed-Point Arithmetic for Privacy-Preserving Machine Learning to Large Models and Datasets
Christopher Harth-Kitzerow, Ajith Suresh, and Georg Carle
Fixed Point Arithmetic (FPA) is widely used in Privacy-Preserving Machine Learning (PPML) to efficiently handle decimal values. However, repeated multiplications in FPA can lead to overflow, as the fractional part doubles in size with each multiplication. To address this, truncation is applied post-multiplication to maintain precision. Various truncation schemes based on Secure Multiparty Computation (MPC) exist, but trade-offs between accuracy and efficiency in PPML models and datasets remain underexplored. In this work, we analyze and consolidate different truncation approaches from the MPC literature, focusing on their slack sizes---extra bits required per secret share to ensure correctness. We present improved constructions for these truncation methods in state-of-the-art three-party semi-honest (3PC) and four-party malicious (4PC) settings, achieving up to a threefold reduction in communication and round complexity over existing schemes. Additionally, we introduce optimizations tailored for PPML, such as strategically fusing different neural network layers. This leads to a mixed-truncation scheme that balances truncation costs with accuracy, eliminating communication overhead in the online phase while maintaining the accuracy of plaintext floating-point PyTorch inference for VGG-16 on the ImageNet dataset. We conduct the first large-scale systematic evaluation of PPML inference accuracy across truncation schemes, ring sizes, neural network architectures, and datasets. Our study provides clear guidelines for selecting the optimal truncation scheme for PPML inference. All evaluations are implemented in the open-source HPMPC MPC framework, facilitating future research and adoption.
Last updated:  2025-02-07
Worst-Case Lattice Sampler with Truncated Gadgets and Applications
Corentin Jeudy and Olivier Sanders
Gadget-based samplers have proven to be a key component of several cryptographic primitives, in particular in the area of privacy-preserving mechanisms. Most constructions today follow the approach introduced by Micciancio and Peikert (MP) yielding preimages whose dimension linearly grows with that of the gadget. To improve performance, some papers have proposed to truncate the gadget but at the cost of an important feature of the MP sampler, namely the ability to invert arbitrary syndromes. Technically speaking, they replace the worst-case MP sampler by an average-case sampler that can only be used in specific contexts. Far from being a mere theoretical restriction, it prevents the main applications of gadget-based samplers from using truncated variants and thus from benefiting from the associated performance gains. In this paper, we solve this problem by describing a worst-case sampler that still works with truncated gadgets. Its main strength is that it retains the main characteristics of the MP sampler while providing flexibility in the choice of the truncation parameter. As a consequence, it can be used as a plug-in replacement for all applications relying on the MP sampler so far, leading to performance improvements up to 30% as illustrated by several examples in this paper. Our sampler is supported by a thorough security analysis that addresses the hurdles met by previous works and its practicality is demonstrated by a concrete implementation.
Last updated:  2025-03-24
Vote&Check: Secure Postal Voting with Reduced Trust Assumptions
Véronique Cortier, Alexandre Debant, Pierrick Gaudry, and Léo Louistisserand
Postal voting is a frequently used alternative to on-site voting. Traditionally, its security relies on organizational measures, and voters have to trust many entities. In the recent years, several schemes have been proposed to add verifiability properties to postal voting, while preserving vote privacy. Postal voting comes with specific constraints. We conduct a systematic analysis of this setting and we identify a list of generic attacks, highlighting that some attacks seem unavoidable. This study is applied to existing systems of the literature. We then propose Vote&Check, a postal voting protocol which provides a high level of security, with a reduced number of authorities. Furthermore, it requires only basic cryptographic primitives, namely hash functions and signatures. The security properties are proven in a symbolic model, with the help of the ProVerif tool.
Last updated:  2025-03-05
Two-Round 2PC ECDSA at the Cost of 1 OLE
Michael Adjedj, Constantin Blokh, Geoffroy Couteau, Arik Galansky, Antoine Joux, and Nikolaos Makriyannis
We present a novel protocol for two-party ECDSA that achieves two rounds (a single back-and-forth communication) at the cost of a single oblivious linear function evaluation (OLE). In comparison, the previous work of [DKLs18] (S&P 2018) achieves two rounds at the cost of three OLEs, while [BHL24] (EUROCRYPT 2025) requires expensive zero-knowledge proofs on top of the OLE. We demonstrate this by proving that in the generic group model, any adversary capable of generating forgeries for our protocol can be transformed into an adversary that finds preimages for the ECDSA message digest function (e.g., the SHA family). Interestingly, our analysis is closely related to, and has ramifications for, the `presignatures' mode of operation—[CGGMP20] (CCS 2020), [GroSho22] (EUROCRYPT 2022). Motivated by applications to embedded cryptocurrency wallets, where a single server maintains distinct, shared public keys with separate clients (i.e., a star-shaped topology), and with the goal of minimizing communication, we instantiate our protocol using Paillier encryption and suitable zero-knowledge proofs. To reduce computational overhead, we thoroughly optimize all components of our protocol under sound cryptographic assumptions, specifically small-exponent variants of RSA-style assumptions. Finally, we implement our protocol and provide benchmarks. At the 128-bit security level, the signing phase requires approximately 50ms of computation time on a standard linux machine, and 2KB of bandwidth.
Last updated:  2024-12-02
Avenger Ensemble: Genetic Algorithm-Driven Ensemble Selection for Deep Learning-based Side-Channel Analysis
Zhao Minghui and Trevor Yap
Side-Channel Analysis (SCA) exploits physical vulnerabilities in systems to reveal secret keys. With the rise of Internet-of-Things, evaluating SCA attacks has become crucial. Profiling attacks, enhanced by Deep Learning-based Side-Channel Analysis (DLSCA), have shown significant improvements over classical techniques. Recent works demonstrate that ensemble methods outperform single neural networks. However, almost every existing ensemble selection method in SCA only picks the top few best-performing neural networks for the ensemble, which we coined as Greedily-Selected Method (GSM), which may not be optimal. This work proposes Evolutionary Avenger Initiative (EAI), a genetic algorithm-driven ensemble selection algorithm, to create effective ensembles for DLSCA. We investigate two fitness functions and evaluate EAI across four datasets, including \AES and \ascon implementations. We show that EAI outperforms GSM, recovering secrets with the least number of traces. Notably, EAI successfully recovers secret keys for \ascon datasets where GSM fails, demonstrating its effectiveness.
Last updated:  2024-12-02
ARK: Adaptive Rotation Key Management for Fully Homomorphic Encryption Targeting Memory Efficient Deep Learning Inference
Jia-Lin Chan, Wai-Kong Lee, Denis C.-K Wong, Wun-She Yap, and Bok-Min Goi
Advancements in deep learning (DL) not only revolutionized many aspects in our lives, but also introduced privacy concerns, because it processed vast amounts of information that was closely related to our daily life. Fully Homomorphic Encryption (FHE) is one of the promising solutions to this privacy issue, as it allows computations to be carried out directly on the encrypted data. However, FHE requires high computational cost, which is a huge barrier to its widespread adoption. Many prior works proposed techniques to enhance the speed performance of FHE in the past decade, but they often impose significant memory requirements, which may be up to hundreds of gigabytes. Recently, focus has shifted from purely improving speed performance to managing FHE’s memory consumption as a critical challenge. Rovida and Leporati introduced a technique to minimize rotation key memory by retaining only essential keys, yet this technique is limited to cases with symmetric numerical patterns (e.g., -2 -1 0 1 2), constraining its broader utility. In this paper, a new technique, Adaptive Rotation Key (ARK), is proposed that minimizes rotation key memory consumption by exhaustively analyzing numerical patterns to produce a minimal subset of shared rotation keys. ARK also provides a dual-configuration option, enabling users to prioritize memory efficiency or computational speed. In memory-prioritized mode, ARK reduces rotation key memory consumption by 41.17% with a 12.57% increase in execution time. For speed-prioritized mode, it achieves a 24.62% rotation key memory reduction with only a 0.21% impact on execution time. This flexibility positions ARK as an effective solution for optimizing FHE across varied use cases, marking a significant advancement in optimization strategies for FHE-based privacy-preserving systems.
Last updated:  2024-12-02
One-More Unforgeability for Multi- and Threshold Signatures
Sela Navot and Stefano Tessaro
This paper initiates the study of one-more unforgeability for multi-signatures and threshold signatures as a stronger security goal, ensuring that ℓ executions of a signing protocol cannot result in more than ℓ signatures. This notion is widely used in the context of blind signatures, but we argue that it is a convenient way to model strong unforgeability for other types of distributed signing protocols. We provide formal security definitions for one-more unforgeability (OMUF) and show that the HBMS multi-signature scheme does not satisfy this definition, whereas MuSig and MuSig2 do. We also show that mBCJ multi-signatures do not satisfy OMUF, as well as expose a subtle issue with their existential unforgeability (which does not contradict their original security proof). For threshold signatures, we show that FROST satisfies OMUF, but ROAST does not.
Last updated:  2025-03-05
Distributed Differentially Private Data Analytics via Secure Sketching
Jakob Burkhardt, Hannah Keller, Claudio Orlandi, and Chris Schwiegelshohn
We introduce the linear-transformation model, a distributed model of differentially private data analysis. Clients have access to a trusted platform capable of applying a public matrix to their inputs. Such computations can be securely distributed across multiple servers using simple and efficient secure multiparty computation techniques. The linear-transformation model serves as an intermediate model between the highly expressive central model and the minimal local model. In the central model, clients have access to a trusted platform capable of applying any function to their inputs. However, this expressiveness comes at a cost, as it is often prohibitively expensive to distribute such computations, leading to the central model typically being implemented by a single trusted server. In contrast, the local model assumes no trusted platform, which forces clients to add significant noise to their data. The linear-transformation model avoids the single point of failure for privacy present in the central model, while also mitigating the high noise required in the local model. We demonstrate that linear transformations are very useful for differential privacy, allowing for the computation of linear sketches of input data. These sketches largely preserve utility for tasks such as private low-rank approximation and private ridge regression, while introducing only minimal error, critically independent of the number of clients.
Last updated:  2024-11-30
Multi-Client Attribute-Based and Predicate Encryption from Standard Assumptions
David Pointcheval and Robert Schädlich
Multi-input Attribute-Based Encryption (ABE) is a generalization of key-policy ABE where attributes can be independently encrypted across several ciphertexts, and a joint decryption of these ciphertexts is possible if and only if the combination of attributes satisfies the policy of the decryption key. We extend this model by introducing a new primitive that we call Multi-Client ABE (MC-ABE), which provides the usual enhancements of multi-client functional encryption over multi-input functional encryption. Specifically, we separate the secret keys that are used by the different encryptors and consider the case that some of them may be corrupted by the adversary. Furthermore, we tie each ciphertext to a label and enable a joint decryption of ciphertexts only if all ciphertexts share the same label. We provide constructions of MC-ABE for various policy classes based on SXDH. Notably, we can deal with policies that are not a conjunction of local policies, which has been a limitation of previous constructions from standard assumptions. Subsequently, we introduce the notion of Multi-Client Predicate Encryption (MC-PE) which, in contrast to MC-ABE, does not only guarantee message-hiding but also attribute-hiding. We present a new compiler that turns any constant-arity MC-ABE into an MC-PE for the same arity and policy class. Security is proven under the LWE assumption.
Last updated:  2024-11-30
SoK: The apprentice guide to automated fault injection simulation for security evaluation
Asmita Adhikary, Giacomo Tommaso Petrucci, Philippe Tanguy, Vianney Lapôtre, and Ileana Buhan
Identifying and mitigating vulnerable locations to fault injections requires significant expertise and expensive equipment. Fault injections can damage hardware, cause software crashes, and pose safety and security hazards. Simulating fault injections offers a safer alternative, and fault simulators have steadily developed, though they vary significantly in functionality, target applications, fault injection methods, supported fault models, and guarantees. We present a taxonomy categorizing fault simulators based on their target applications and development cycle stages, from source code to final product. Our taxonomy provides insights and comparisons to highlight open problems.
Last updated:  2024-12-13
$\textsf{LiLAC}$: Linear Prover, Logarithmic Verifier and Field-agnostic Multilinear Polynomial Commitment Scheme
Kyeongtae Lee, Seongho Park, Byeongjun Jang, Jihye Kim, and Hyunok Oh
In this paper, we propose $\textsf{LiLAC}$, a novel field-agnostic, transparent multilinear polynomial commitment scheme (MLPCS) designed to address key challenges in polynomial commitment systems. For a polynomial with $N$ coefficients, $\textsf{LiLAC}$ achieves $\mathcal{O}(N)$ prover time, $\mathcal{O}(\log N)$ verifier time, and $\mathcal{O}(\log N)$ proof size, overcoming the limitations of $\mathcal{O}(\log^2 N)$ verification time and proof size without any increase in other costs. This is achieved through an optimized polynomial commitment strategy and the recursive application of the tensor IOPP, making $\textsf{LiLAC}$ both theoretically optimal and practical for large-scale applications. Furthermore, $\textsf{LiLAC}$ offers post-quantum security, providing robust protection against future quantum computing threats. We propose two constructions of $\textsf{LiLAC}$: a field-agnostic $\textsf{LiLAC}$ and a field-specific $\textsf{LiLAC}$. Each construction demonstrates superior performance compared to the state-of-the-art techniques in their respective categories of MLPCS. First, the field-agnostic $\textsf{LiLAC}$ is compared against Brakedown (CRYPTO 2023), which is based on a tensor IOP and satisfies field-agnosticity. In experiments conducted over a 128-bit field with a coefficient size of $2^{30}$, the field-agnostic $\textsf{LiLAC}$ achieves a proof size that is $3.7\times$ smaller and a verification speed that is $2.2\times$ faster, while maintaining a similar proof generation time compared to Brakedown. Furthermore, the field-specific $\textsf{LiLAC}$ is evaluated against WHIR (ePrint 2024/1586), which is based on an FRI. With a 128-bit field and a coefficient size of $2^{30}$, the field-specific $\textsf{LiLAC}$ achieves a proof generation speed that is $2.8\times$ faster, a proof size that is $27\%$ smaller, and a verification speed that is $14\%$ faster compared to WHIR.
Last updated:  2024-12-06
DGMT: A Fully Dynamic Group Signature From Symmetric-key Primitives
Mojtaba Fadavi, Sabyasachi Karati, Aylar Erfanian, and Reihaneh Safavi-Naini
A group signatures allows a user to sign a message anonymously on behalf of a group and provides accountability by using an opening authority who can ``open'' a signature and reveal the signer's identity. Group signatures have been widely used in privacy-preserving applications including anonymous attestation and anonymous authentication. Fully dynamic group signatures allow new members to join the group and existing members to be revoked if needed. Symmetric-key based group signature schemes are post-quantum group signatures whose security rely on the security of symmetric-key primitives such as cryptographic hash functions and pseudorandom functions. In this paper, we design a symmetric-key based fully dynamic group signature scheme, called DGMT, that redesigns DGM (Buser et al. ESORICS 2019) and removes its two important shortcomings that limit its application in practice: (i) interaction with the group manager for signature verification, and (ii) the need for storing and managing an unacceptably large amount of data by the group manager. We prove security of DGMT (unforgeability, anonymity, and traceability) and give a full implementation of the system. Compared to all known post-quantum group signature schemes with the same security level, DGMT has the shortest signature size. We also analyze DGM signature revocation approach and show that despite its conceptual novelty, it has significant hidden costs that makes it much more costly than using traditional revocation list approach.
Last updated:  2024-11-29
Universally Composable Server-Supported Signatures for Smartphones
Nikita Snetkov, Jelizaveta Vakarjuk, and Peeter Laud
Smart-ID is an application for signing and authentication provided as a service to residents of Belgium, Estonia, Latvia and Lithuania. Its security relies on multi-prime server-supported RSA, password-authenticated key shares and clone detection mechanism. Unfortunately, the security properties of the underlying protocol have been specified only in ``game-based'' manner. There is no corresponding ideal functionality that the actual protocol is shown to securely realize in the universal composability (UC) framework. In this paper, we remedy that shortcoming, presenting the functionality (optionally parameterized with a non-threshold signature scheme) and prove that the existing Smart-ID protocol securely realizes it. Additionally, we present a server-supported protocol for generating ECDSA signatures and show that it also securely realizes the proposed ideal functionality in the Global Random Oracle Model (UC+GROM).
Last updated:  2024-11-29
A Comprehensive Review of Post-Quantum Cryptography: Challenges and Advances
Seyed MohammadReza Hosseini and Hossein Pilaram
One of the most crucial measures to maintain data security is the use of cryptography schemes and digital signatures built upon cryptographic algorithms. The resistance of cryptographic algorithms against conventional attacks is guaranteed by the computational difficulties and the immense amount of computation required to them. In the last decade, with the advances in quantum computing technology and the realization of quantum computers, which have higher computational power compared to conventional computers and can execute special kinds of algorithms (i.e., quantum algorithms), the security of many existing cryptographic algorithms has been questioned. The reason is that by using quantum computers and executing specific quantum algorithms through them, the computational difficulties of conventional cryptographic algorithms can be reduced, which makes it possible to overcome and break them in a relatively short period of time. Therefore, researchers began efforts to find new quantum-resistant cryptographic algorithms that would be impossible to break, even using quantum computers, in a short time. Such algorithms are called post-quantum cryptographic algorithms. In this article, we provide a comprehensive review of the challenges and vulnerabilities of different kinds of conventional cryptographic algorithms against quantum computers. Afterward, we review the latest cryptographic algorithms and standards that have been proposed to confront the threats posed by quantum computers. We present the classification of post-quantum cryptographic algorithms and digital signatures based on their technical specifications, provide examples of each category, and outline the strengths and weaknesses of each category.
Last updated:  2024-12-04
Machine Learning-Based Detection of Glitch Attacks in Clock Signal Data
Asier Gambra, Durba Chatterjee, Unai Rioja, Igor Armendariz, and Lejla Batina
Voltage fault injection attacks are a particularly powerful threat to secure embedded devices because they exploit brief, hard-to-detect power fluctuations causing errors or bypassing security mechanisms. To counter these attacks, various detectors are employed, but as defenses strengthen, increasingly elusive glitches continue to emerge. Artificial intelligence, with its inherent ability to learn and adapt to complex patterns, presents a promising solution. This research presents an AI-driven voltage fault injection detector that analyzes clock signals directly. We provide a detailed fault characterization of the STM32F410 microcontroller, emphasizing the impact of faults on the clock signal. Our findings reveal how power supply glitches directly impact the clock, correlating closely with the amount of power injected. This led to developing a lightweight Multi-Layer Perceptron model that analyzes clock traces to distinguish between safe executions, glitches that keep the device running but may introduce faults, and glitches that cause the target to reset. While previous fault injection AI applications have primarily focused on parameter optimization and simulation assistance, in this work we use the adaptability of machine learning to create a fault detection model that is specifically adjusted to the hardware that implements it. The developed glitch detector has a high accuracy showing this a promising direction to combat FI attacks on a variety of platform.
Last updated:  2024-11-29
A Formal Treatment of Key Transparency Systems with Scalability Improvements
Nicholas Brandt, Mia Filić, and Sam A. Markelon
Key Transparency (KT) systems have emerged as a critical technology for securely distributing and verifying the correctness of public keys used in end-to-end encrypted messaging services. Despite substantial academic interest, increased industry adoption, and IETF standardization efforts, KT systems lack a holistic and formalized security model, limiting their resilience to practical threats and constraining future development. In this paper, we introduce the first cryptographically sound formalization of KT as an ideal functionality, clarifying the assumptions, security properties, and potential vulnerabilities of deployed KT systems. We identify a significant security concern — a possible impersonation attack by a malicious service provider — and propose a backward-compatible solution. Additionally, we address a core scalability bottleneck by designing and implementing a novel, privacy-preserving verifiable Bloom filter (VBF) that significantly improves KT efficiency without compromising security. Experimental results demonstrate the effectiveness of our approach, marking a step forward in both the theoretical and practical deployment of scalable KT solutions.
Last updated:  2024-11-29
Asynchronous Byzantine Consensus with Trusted Monotonic Counters
Yackolley Amoussou-Guenou, Maurice Herlihy, and Maria Potop Butucaru
The paper promotes a new design paradigm for Byzantine tolerant distributed algorithms using trusted abstractions (oracles) specified in a functional manner. The contribution of the paper is conceptual. The objective here is to design distributed fundamental algorithms such as reliable broadcast and asynchronous byzantine consensus using trusted execution environments and to help designers to compare various solutions on a common ground. In this framework we revisit the Bracha's seminal work on Asynchronous Byzantine Consensus. Our solution uses trusted monotonic counters abstraction and tolerates $t$ Byzantine processes in a system with $n$ processes, $n \geq 2t+1$. The keystone of our construction is a novel and elegant Byzantine Reliable Broadcast algorithm resilient to $t<n$ Byzantine processes that uses an unique trusted monotonic counter (at the initiator).
Last updated:  2025-04-06
Multiparty Shuffle: Linear Online Phase is Almost for Free
Jiacheng Gao, Yuan Zhang, and Sheng Zhong
Shuffle is a frequently used operation in secure multiparty computations, with applications including joint data analysis, anonymous communication systems, secure multiparty sorting, etc. Despite a series of ingenious works, the online (i.e. data-dependent) complexity of malicious secure $n$-party shuffle protocol remains $\Omega(n^2m)$ for shuffling data array of length $m$. This potentially slows down the application and MPC primitives built upon MPC shuffle. In this paper, we study the online complexities of MPC shuffle protocol. We observe that most existing works follow a ``permute-in-turn'' paradigm,where MPC shuffle protocol consists of $n$ sequential calls to a more basic MPC permutation protocol. We hence raise the following question: given only black-box access to an arbitrary MPC framework and permutation protocol, can we build an MPC shuffle, whose online complexities are independent of the underlying permutation protocol? We answer this question affirmatively, offering generic transformation from semi-honest/malicious MPC permutation protocolsto MPC shuffle protocols with semi-honest/malicious security and only $O(nm)$ online communication and computation. The linear online phase is obtained almost for free via the transformation, in the sense that in terms of overall complexities, the generated protocolequals the protocol generated by naive permute-in-turn paradigm. Notably, instantiating our construction with additive/Shamir secret sharing and corresponding optimal permutation protocol, we obtain the first malicious secure shuffle protocols with linear online complexities for additive/Shamir secret sharing, respectively. These results are to be compared with previous optimal online communication complexities of $O(Bn^2m)$ and $O(n^2m\log m)$ for malicious secure shuffle, for additive and Shamir secret sharing, respectively. We provide formal security proofs for both semi-honest and malicious secure transformations,showing that our malicious secure construction achieves universally composable security. Experimental results indicate that our construction significantly improves online performance while maintaining a moderate increase in offline overhead. Given that shuffle is a frequently used primitive in secure multiparty computation, we anticipate that our constructions will accelerate many real-world MPC applications.
Last updated:  2024-12-05
RevoLUT : Rust Efficient Versatile Oblivious Look-Up-Tables
Sofiane Azogagh, Zelma Aubin Birba, Marc-Olivier Killijian, and Félix Larose-Gervais
In this paper we present RevoLUT, a library implemented in Rust that reimagines the use of Look-Up-Tables (LUT) beyond their conventional role in function encoding, as commonly used in TFHE's programmable boostrapping. Instead, RevoLUT leverages LUTs as first class objects, enabling efficient oblivious operations such as array access, elements sorting and permutation directly within the table. This approach supports oblivious algortithm, providing a secure, privacy-preserving solution for handling sensitive data in various applications.
Last updated:  2024-11-28
Quantum One-Time Programs, Revisited
Aparna Gupte, Jiahui Liu, Justin Raizes, Bhaskar Roberts, and Vinod Vaikuntanathan
One-time programs (Goldwasser, Kalai and Rothblum, CRYPTO 2008) are functions that can be run on any single input of a user's choice, but not on a second input. Classically, they are unachievable without trusted hardware, but the destructive nature of quantum measurements seems to provide a quantum path to constructing them. Unfortunately, Broadbent, Gutoski and Stebila showed that even with quantum techniques, a strong notion of one-time programs, similar to ideal obfuscation, cannot be achieved for any non-trivial quantum function. On the positive side, Ben-David and Sattath (Quantum, 2023) showed how to construct a one-time program for a certain (probabilistic) digital signature scheme, under a weaker notion of one-time program security. There is a vast gap between achievable and provably impossible notions of one-time program security, and it is unclear what functionalities are one-time programmable under the achievable notions of security. In this work, we present new, meaningful, yet achievable definitions of one-time program security for *probabilistic* classical functions. We show how to construct one time programs satisfying these definitions for all functions in the classical oracle model and for constrained pseudorandom functions in the plain model. Finally, we examine the limits of these notions: we show a class of functions which cannot be one-time programmed in the plain model, as well as a class of functions which appears to be highly random given a single query, but whose one-time program form leaks the entire function even in the oracle model.
Last updated:  2024-11-28
On Concrete Security Treatment of Signatures Based on Multiple Discrete Logarithms
George Teseleanu
In this paper, we present a generalization of Schnorr's digital signature that allows a user to simultaneously sign multiple messages. Compared to Schnorr's scheme that concatenates messages and then signs them, the new protocol takes advantage of multiple threads to process messages in parallel. We prove the security of our novel protocol and discuss different variants of it. Last but not least, we extend Ferradi et al.'s co-signature protocol by exploiting the inherent parallelism of our proposed signature scheme.
Last updated:  2025-01-06
On Witness Encryption and Laconic Zero-Knowledge Arguments
Yanyi Liu, Noam Mazor, and Rafael Pass
Witness encryption (WE) (Garg et al, STOC’13) is a powerful cryptographic primitive that is closely related to the notion of indistinguishability obfuscation (Barak et, JACM’12, Garg et al, FOCS’13). For a given NP-language $L$, WE for $L$ enables encrypting a message $m$ using an instance $x$ as the public-key, while ensuring that efficient decryption is possible by anyone possessing a witness for $x \in L$, and if $x\notin L$, then the encryption is hiding. We show that this seemingly sophisticated primitive is equivalent to a communication-efficient version of one of the most classic cryptographic primitives—namely that of a zero-knowledge argument (Goldwasser et al, SIAM’89, Brassard et al, JCSS’88): for any NP-language $L$, the following are equivalent: - There exists a witness encryption for L; - There exists a laconic (i.e., the prover communication is bounded by $O(\log n)$) special-honest verifier zero-knowledge (SHVZK) argument for $L$. Our approach is inspired by an elegant (one-sided) connection between (laconic) zero-knowledge arguments and public-key encryption established by Berman et al (CRYPTO’17) and Cramer-Shoup (EuroCrypt’02), and the equivalence between a notion of so-called “predictable arguments” and witness encryption by Faonio, Nielsen, and Venturi (PKC’17).
Last updated:  2024-11-28
On White-Box Learning and Public-Key Encryption
Yanyi Liu, Noam Mazor, and Rafael Pass
We consider a generalization of the Learning With Error problem, referred to as the white-box learning problem: You are given the code of a sampler that with high probability produces samples of the form $y,f(y)+\epsilon$ where is small, and $f$ is computable in polynomial-size, and the computational task consist of outputting a polynomial-size circuit $C$ that with probability, say, $1/3$ over a new sample $y$? according to the same distributions, approximates $f(y)$ (i.e., $|C(y)-f(y)$ is small). This problem can be thought of as a generalizing of the Learning with Error Problem (LWE) from linear functions $f$ to polynomial-size computable functions. We demonstrate that worst-case hardness of the white-box learning problem, conditioned on the instances satisfying a notion of computational shallowness (a concept from the study of Kolmogorov complexity) not only suffices to get public-key encryption, but is also necessary; as such, this yields the first problem whose worst-case hardness characterizes the existence of public-key encryption. Additionally, our results highlights to what extent LWE “overshoots” the task of public-key encryption. We complement these results by noting that worst-case hardness of the same problem, but restricting the learner to only get black-box access to the sampler, characterizes one-way functions.
Last updated:  2024-12-27
Algebraic Zero Knowledge Contingent Payment
Javier Gomez-Martinez, Dimitrios Vasilopoulos, Pedro Moreno-Sanchez, and Dario Fiore
In this work, we introduce Modular Algebraic Proof Contingent Payment (MAPCP), a novel zero-knowledge contingent payment (ZKCP) construction. Unlike previous approaches, MAPCP is the first that simultaneously avoids using zk-SNARKs as the tool for zero-knowledge proofs and HTLC contracts to atomically exchange a secret for a payment. As a result, MAPCP sidesteps the common reference string (crs) creation problem and is compatible with virtually any cryptocurrency, even those with limited or no smart contract support. Moreover, MAPCP contributes to fungibility, as its payment transactions blend seamlessly with standard cryptocurrency payments. We analyze the security of MAPCP and demonstrate its atomicity, meaning that, (i) the buyer gets the digital product after the payment is published in the blockchain (buyer security); and (ii) the seller receives the payment if the buyer gets access to the digital product (seller security). Moreover, we present a construction of MAPCP in a use case where a customer pays a notary in exchange for a document signature.
Last updated:  2024-11-29
LightCROSS: A Secure and Memory Optimized Post-Quantum Digital Signature CROSS
Puja Mondal, Suparna Kundu, Supriya Adhikary, and Angshuman Karmakar
CROSS is a code-based post-quantum digital signature scheme based on a zero-knowledge (ZK) framework. It is a second-round candidate of the National Institute of Standards and Technology’s additional call for standardizing post-quantum digital signatures. The memory footprint of this scheme is prohibitively large, especially for small embedded devices. In this work, we propose various techniques to reduce the memory footprint of the key generation, signature generation, and verification by as much as 50%, 52%, and 74%, respectively, on an ARM Cortex-M4 device. Moreover, our memory-optimized implementations adapt the countermeasure against the recently proposed (ASIACRYPT-24) fault attacks against the ZK-based signature schemes.
Last updated:  2024-11-27
Generic Security of GCM-SST
Akiko Inoue, Ashwin Jha, Bart Mennink, and Kazuhiko Minematsu
Authenticated encryption schemes guarantee that parties who share a secret key can communicate confidentially and authentically. One of the most popular and widely used authenticated encryption schemes is GCM by McGrew and Viega (INDOCRYPT 2004). However, despite its simplicity and efficiency, GCM also comes with its deficiencies, most notably devastating insecurity against nonce-misuse and imperfect security for short tags. Very recently, Campagna, Maximov, and Mattsson presented GCM-SST (IETF Internet draft 2024), a variant of GCM that uses a slightly more involved universal hash function composition, and claimed that this construction achieves stronger security in case of tag truncation. GCM-SST already received various interest from industries (e.g., Amazon and Ericsson) and international organizations (e.g., IETF and 3GPP) but it has not received any generic security analysis to date. In this work, we fill this gap and perform a detailed security analysis of GCM-SST. In particular, we prove that GCM-SST achieves security in the nonce-misuse resilience model of Ashur et al.~(CRYPTO 2017), roughly guaranteeing that even if nonces are reused, evaluations of GCM-SST for new nonces are secure. Our security bound also verified the designers' (informal) claim on tag truncation. Additionally, we investigate and describe possibilities to optimize the hashing in GCM-SST further, and we describe a universal forgery attack in a complexity of around $2^{33.6}$, improving over an earlier attack of $2^{40}$ complexity of Lindell, when the tag is 32 bits.
Last updated:  2025-04-15
ToFA: Towards Fault Analysis of GIFT and GIFT-like Ciphers Leveraging Truncated Impossible Differentials
Anup Kumar Kundu, Shibam Ghosh, Aikata Aikata, and Dhiman Saha
In this work, we introduce ToFA, the first fault attack (FA) strategy that attempts to leverage the classically well-known idea of impossible differential cryptanalysis to mount practically verifiable attacks on bit-oriented ciphers like GIFT and BAKSHEESH. The idea used stems from the fact that truncated differential paths induced due to fault injection in certain intermediate rounds of the ciphers lead to active SBox-es in subsequent rounds whose inputs admit specific truncated differences. This leads to a (multi-round) impossible differential distinguisher, which can be incrementally leveraged for key-guess elimination via partial decryption. The key-space reduction further exploits the multi-round impossibility, capitalizing on the relations due to the quotient-remainder (QR) groups of the GIFT and BAKSHEESH linear layer, which increases the filtering capability of the distinguisher. Moreover, the primary observations made in this work are independent of the actual SBox. Clock glitch based fault attacks were mounted on 8-bit implementations of GIFT-64/GIFT-128 using a ChipWhisperer Lite board on an 8-bit ATXmega128D4-AU micro-controller. Unique key recovery was achieved for GIFT-128 with 3 random byte faults, while for GIFT-64, key space was reduced to $2^{32}$, the highest achievable for GIFT-64, with a single level fault due to its key-schedule. This work also reports the highest fault injection penetration for any variant of GIFT and BAKSHEESH. Finally, this work reiterates the role of classical cryptanalysis strategies in fault vulnerability assessment while leading to the most efficient fault attacks on GIFT.
Last updated:  2024-11-27
Cryptanalysis of BAKSHEESH Block Cipher
Shengyuan Xu, Siwei Chen, Xiutao Feng, Zejun Xiang, and Xiangyong Zeng
BAKSHEESH is a lightweight block cipher following up the well-known cipher GIFT-128, which uses a 4-bit SBox that has a non-trivial Linear Structure (LS). Also, the Sbox requires a low number of AND gates that makes BAKSHEESH stronger to resist the side channel attacks compared to GIFT-128. In this paper, we give the first third-party security analysis of BAKSHEESH from the traditional attacks perspective: integral, differential and linear attacks. Firstly, we propose a framework for integral attacks based on the properties of BAKSHEESH's Sbox and its inverse. By this, we achieve the 9- and 10-round practical key-recovery attacks, and give a 15-round theoretical attack. Secondly, we re-evaluate the security bound against differential cryptanalysis, correcting two errors from the original paper and presenting a key-recovery attack for 19 rounds. At last, for linear cryptanalysis, we develop an automated model for key-recovery attacks and then demonstrate a key-recovery attack for 21 rounds. We stress that our attacks cannot threaten the full-round BAKSHEESH, but give a deep understanding on its security.
Last updated:  2024-11-29
EndGame: Field-Agnostic Succinct Blockchain with Arc
Simon Judd and GPT
We present EndGame, a novel blockchain architecture that achieves succinctness through Reed-Solomon accumulation schemes. Our construction enables constant-time verification of blockchain state while maintaining strong security properties. We demonstrate how to efficiently encode blockchain state transitions using Reed-Solomon codes and accumulate proofs of state validity using the ARC framework. Our protocol achieves optimal light client verification costs and supports efficient state management without trusted setup.
Last updated:  2024-11-27
The complexity of solving a random polynomial system
Giulia Gaggero and Elisa Gorla
In this paper, we discuss what it means for a polynomial system to be random and how hard it is to solve a random polynomial system. We propose an algebraic definition of randomness, that we call algebraic randomness. Using a conjecture from commutative algebra, we produce a sharp upper bound for the degree of regularity, hence the complexity of solving an algebraically random polynomial system by Groebner bases methods. As a proof of concept, we apply our result to Rainbow and GeMSS and show that these systems are far from being algebraically random.
Last updated:  2024-11-27
Implementation analysis of index calculus method on elliptic curves over prime finite fields
Jianjun HU
In 2016,Petit et al. first studied the implementation of the index calculus method on elliptic curves in prime finite fields, and in 2018, Momonari and Kudo et al. improved algorithm of Petit et al. This paper analyzes the research results of Petit, Momonari and Kudo, and points out the existing problems of the algorithm. Therefore, with the help of sum polynomial function and index calculus, a pseudo-index calculus algorithm for elliptic curves discrete logarithm problem over prime finite fields is proposed, and its correctness is analyzed and verified. It is pointed out that there is no subexponential time method for solving discrete logarithms on elliptic curves in the finite fields of prime numbers, or at least in the present research background, there is no method for solving discrete logarithms in subexponential time.
Last updated:  2024-11-27
Deterministic Consensus using Overpass Channels in Distributed Ledger Technology
Brandon "Cryptskii" Ramsay
Presenting a formal analysis of the Overpass protocol's hierarchical state channel architecture, focusing on its unique approach to state synchronization and tamper detection through cryptographic primitives. The protocol achieves global state consistency without traditional consensus mechanisms by leveraging Sparse Merkle Trees (SMTs), zero-knowledge proofs, and a deterministic hierarchical structure. We provide mathematical proofs of security properties and analyze the protocol's efficiency in terms of computational and communication complexity.
Last updated:  2024-11-26
Downlink (T)FHE ciphertexts compression
Antonina Bondarchuk, Olive Chakraborty, Geoffroy Couteau, and Renaud Sirdey
This paper focuses on the issue of reducing the bandwidth requirement for FHE ciphertext transmission. While this issue has been extensively studied from the uplink viewpoint (transmission of encrypted inputs towards a FHE calculation) where several approaches exist to essentially cancel FHE ciphertext expansion, the downlink case (transmission of encrypted results towards an end-user) has been the object of much less attention. In this paper, we address this latter issue with a particular focus on the TFHE scheme for which we investigate a number of methods including several approaches for switching to more compact linearly homomorphic schemes, reducing the precision of T(R)LWE coefficients (while maintaining acceptable probabilities of decryption errors) and others. We also investigate how to use these methods in combination, depending on the number of FHE results to transmit. We further perform extensive experiments demonstrating that the downlink FHE ciphertext expansion factor can be practically reduced to values below 10, depending on the setup, with little additional computational burden.
Last updated:  2025-01-20
An Extended Hierarchy of Security Notions for Threshold Signature Schemes and Automated Analysis of Protocols That Use Them
Cas Cremers, Aleksi Peltonen, and Mang Zhao
Despite decades of work on threshold signature schemes, there is still limited agreement on their desired properties and threat models. In this work we significantly extend and repair previous work to give a unified syntax for threshold signature schemes and a new hierarchy of security notions for them. Moreover, our new hierarchy allows us to develop an automated analysis approach for protocols that use threshold signatures, which can discover attacks on protocols that exploit the details of the security notion offered by the used scheme, which can help choose the correct security notion (and scheme that fulfills it) that is required for a specific protocol. Unlike prior work, our syntax for threshold signatures covers both non-interactive and interactive signature schemes with any number of key generation and signing rounds, and our hierarchy of security notions additionally includes elements such as various types of corruption and malicious key generation. We show the applicability of our hierarchy by selecting representative threshold signature schemes from the literature, extracting their core security features, and categorizing them according to our hierarchy. As a side effect of our work, we show through a counterexample that a previous attempt at building a unified hierarchy of unforgeability notions does not meet its claimed ordering, and show how to repair it without further restricting the scope of the definitions. Based on our syntax and hierarchy, we develop the first systematic, automated analysis method for higher-level protocols that use threshold signatures. We use a symbolic analysis framework to abstractly model threshold signature schemes that meet security notions in our hierarchy, and implement this in the Tamarin prover. Given a higher-level protocol that uses threshold signatures, and a security notion from our hierarchy, our automated approach can find attacks on such protocols that exploit the subtle differences between elements of our hierarchy. Our approach can be used to formally analyze the security implications of implementing different threshold signature schemes in higher-level protocols.
Last updated:  2024-11-26
PASTA on Edge: Cryptoprocessor for Hybrid Homomorphic Encryption
Aikata Aikata, Daniel Sanz Sobrino, and Sujoy Sinha Roy
Fully Homomorphic Encryption (FHE) enables privacy-preserving computation but imposes significant computational and communication overhead on the client for the public-key encryption. To alleviate this burden, previous works have introduced the Hybrid Homomorphic Encryption (HHE) paradigm, which combines symmetric encryption with homomorphic decryption to enhance performance for the FHE client. While early HHE schemes focused on binary data, modern versions now support integer prime fields, improving their efficiency for practical applications such as secure machine learning. Despite several HHE schemes proposed in the literature, there has been no comprehensive study evaluating their performance or area advantages over FHE for encryption tasks. This paper addresses this gap by presenting the first implementation of an HHE scheme- PASTA. It is a symmetric encryption scheme over integers designed to facilitate fast client encryption and homomorphic symmetric decryption on the server. We provide performance results for both FPGA and ASIC platforms, including a RISC-V System-on-Chip (SoC) implementation on a low-end 130nm ASIC technology, which achieves a 43–171$\times$ speedup compared to a CPU. Additionally, on high-end 7nm and 28nm ASIC platforms, our design demonstrates a 97$\times$ speedup over prior public-key client accelerators for FHE. We have made our design public and benchmarked an application to support future research.
Last updated:  2025-04-20
Accelerating Hash-Based Polynomial Commitment Schemes with Linear Prover Time
Florian Hirner, Florian Krieger, Constantin Piber, and Sujoy Sinha Roy
Zero-knowledge proofs (ZKPs) are cryptographic protocols that enable one party to prove the validity of a statement without revealing any information beyond its truth. A central building block in many ZKPs are polynomial commitment schemes (PCS) where constructions with \textit{linear-time provers} are especially attractive. Two such examples are Brakedown and its extension Orion which enable linear-time and quantum-resistant proving by leveraging linear-time encodable Spielman codes. However, these PCS operate over large datasets, creating significant computational bottlenecks. For example, committing to and proving a degree $2^{28}$ polynomial requires around 1.1 GB of data while taking 463 seconds on a high-end server CPU. This work addresses the performance bottleneck in Orion-like PCS by optimizing their most critical operations: Spielman encoding and Merkle commitments. These operations involve Gigabytes of data and suffer from random off-chip memory access patterns that drastically reduce off-chip bandwidth. We resolve this issue and introduce \textit{inverted expander graphs} to eliminate random writes and reduce off-chip memory accesses by over 50\%. Additionally, we propose an on-the-fly graph sampling method that avoids streaming large auxiliary data by generating expander graphs dynamically on-chip. We also provide a formal security proof for our proposed graph transformation. Beyond encoding, we accelerate Merkle Tree construction over large data sets through a scalable multi-pass SHA3 pipeline. Finally, we reutilize existing hardware components used in commitment to accelerate the so-called proximity and consistency checks during proof generation. Building upon these concepts, we present the first hardware architecture for PCS -- with linear prover time -- on a Xilinx Alveo U280 FPGA. In addition, we discuss the practical challenges of manually partitioning, placing, and routing our large-scale architecture to efficiently map it to the multi-SLR and HBM-equipped FPGA. The final implementation achieves a speedup of two orders of magnitude for full proof generation, covering commitment and proving steps. When combined with Virgo as an outer CP-SNARK protocol, our accelerator reduces end-to-end latency by up to 3.85$\times$ --- close to the theoretical maximum of 3.9$\times$.
Last updated:  2024-11-30
Decentralized FHE Computer
Gurgen Arakelov, Sergey Gomenyuk, and Hovsep Papoyan
The concept of a decentralized computer is a powerful and transformative idea that has proven its significance in enabling trustless, distributed computations. However, its application has been severely constrained by an inability to handle private data due to the inherent transparency of blockchain systems. This limitation restricts the scope of use cases, particularly in domains where confidentiality is critical. In this work, we introduce a model for a Fully Homomorphic Encryption (FHE) decentralized computer. Our approach leverages recent advancements in FHE technology to enable secure computations on encrypted data while preserving privacy. By integrating this model into the decentralized ecosystem, we address the long-standing challenge of privacy in public blockchain environments. The proposed FHE computer supports a wide range of use cases, is scalable, and offers a robust framework for incentivizing developer contributions.
Last updated:  2024-11-25
Fast, Compact and Hardware-Friendly Bootstrapping in less than 3ms Using Multiple Instruction Multiple Ciphertext
Seunghwan Lee, Dohyuk Kim, and Dong-Joon Shin
This paper proposes a fast, compact key-size, and hardware-friendly bootstrapping using only 16-bit integer arithmetic and fully homomorphic encryption FHE16, which enables gate operations on ciphertexts using only 16-bit integer arithmetic. The proposed bootstrapping consists of unit operations on ciphertexts, such as (incomplete) number theoretic transform (NTT), inverse NTT, polynomial multiplication, gadget decomposition, and automorphism, under a composite modulus constructed from 16-bit primes. Since our bootstrapping does not use any floating-point operations, extra floating-point errors do not occur so that FHE16 can pack more message bits into a single ciphertext than TFHE-rs which utilizes floating-point operations. Furthermore, we propose multiple instruction multiple ciphertext(MIMC) method to accelerate the simultaneous execution of different homomorphic operations across multiple ciphertexts. Finally, experimental results show that the bootstrapping operation completes in 2.89 milliseconds for ciphertext dimension of 512.
Last updated:  2025-03-27
MULTISS: a protocol for long-term secure distributed storage over multiple remote QKD networks
Thomas Prévost, Olivier Alibart, Anne Marin, and Marc Kaplan
We introduce MULTISS, a new distributed storage protocol over multiple remote Quantum Key Distribution (QKD) networks that ensures long-term data confidentiality. Our protocol extends LINCOS, a secure storage protocol that uses Shamir secret sharing to distribute data in a single QKD network. Instead MULTISS uses a hierarchical secret scheme that makes certain shares mandatory for the reconstruction of the original secret. We prove that MULTISS ensures that the stored data remain secure even if an eavesdropper (1) gets full access to all storage servers of some of the QKD networks or (2) stores and breaks later all the classical communication between the QKD networks. We demonstrate that this is strictly more secure than LINCOS which is broken as soon as one QKD network is compromised. Our protocol, like LINCOS, has a procedure to update the shares stored in each QKD network without reconstructing the original data. In addition, we provide a procedure to recover from a full compromission of one of the QKD network. In particular, we introduce a version of the protocol that can only be implemented over a restricted network topologies, but minimizes the communication required in the recovery procedure. In practice, the MULTISS protocol is designed for the case of several QKD networks at the metropolitan scale connected to each other through channels secured by classical cryptography. Hence, MULTISS offers a secure distributed storage solution in a scenario that is compatible with the current deployment of quantum networks.
Last updated:  2024-11-29
Generic, Fast and Short Proofs for Composite Statements
Zhuo Wu, Shi Qi, Xinxuan Zhang, and Yi Deng
This work introduces a novel technique to enhance the efficiency of proving composite statements. We present the \textit{Hash-and-Prove} framework to construct zkSNARKs for proving satisfiability of arithmetic circuits with additional \textit{Algebraic Gate}. These algebraic gates serve as building blocks for forming more generalized relations in algebra. Unlike Pedersen-committed \textit{Commit-and-Prove} SNARKs, which suffer from increased proof size and verification overhead when proving composite statements, our solution significantly improves both proof size and verification time while maintaining competitive and practical prover efficiency. In the application of proof of solvency where we need to prove knowledge of $x$ such that SHA$256(g^x)=y$, our approach achieves a 100$\times$ reduction in proof size and a 500$\times$ reduction in verification time, along with a 2$\times$ speedup in proving time compared to the work of Agrawal et al.(CRYPTO 2018). For proving ECDSA signatures verification, we achieve a proof time of 2.1 seconds, which is a 70$\times$ speedup compared to using Groth16, and a proof size of 4.81 kb, which is a 160$\times$ reduction compared to Field Agnostic SNARKs(Block et al., CRYPTO 2024).
Last updated:  2025-03-02
Key Guidance Invocation: A White-box Mode Enables Strong Space Hardness under Adaptively Chosen-Space Attacks
Yipeng Shi, Xiaolin Zhang, Boshi Yuan, Chenghao Chen, Jintong Yu, Yuxuan Wang, Chi Zhang, and Dawu Gu
The notion of space hardness serves as a quantitative measure to characterize the resilience of dedicated white-box schemes against code-lifting attacks, making it a widely utilized metric in the field. However, achieving strong space hardness (SSH) under the adaptively chosen-space attack model (ACSAM) remains an unresolved challenge, as no existing white-box scheme has given SSH guarantees under ACSAM. \par To address the problem, we introduce a novel mode of operation tailored for white-box cryptography, termed the Key Guidance Invocation (KGI) mode. Our security analysis reveals that the KGI mode not only significantly strengthens the resistance to adaptively chosen-space attacks, but also ensures SSH under ACSAM. Moreover, we propose a dedicated white-box construction, RubikStone-($n$,$n_{in}$,$R$,$s$), which directly leverages the concept of the lookup table pool. RubikStone offers enhanced flexibility in lookup table utilization compared to existing white-box constructions and is particularly well-suited to the KGI mode. \par Additionally, we instantiate RubikStone-(256,8,12,$2^{16}$) with the KGI mode, resulting in $\mathsf{RS_{KGI}}$-256, which delivers $(T/4,127.99)$-SSH security guarantees under ACSAM. Remarkably, $\mathsf{RS_{KGI}}$-256 also shows superior performance, surpassing the efficiency of white-box AES based on the CEJO framework by $27.1\%$ in real-world settings. Besides, we conduct a comprehensive statistical analysis of the operations in all existing white-box ciphers. Our findings indicate that $\mathsf{RS_{KGI}}$-256 remains highly competitive in computational efficiency despite offering unprecedented security.
Last updated:  2024-12-03
Universally Composable and Reliable Password Hardening Services
Shaoqiang Wu and Ding Wang
The password-hardening service (PH) is a crypto service that armors canonical password authentication with an external key against offline password guessing in case the password file is somehow compromised/leaked. The game-based formal treatment of PH was brought by Everspaugh et al. at USENIX Security'15. Their work is followed by efficiency-enhancing PO-COM (CCS'16), security-patching Phoenix (USENIX Security'17), and functionality-refining PW-Hero (SRDS'22). However, the issue of single points of failure (SPF) inherently impairs the availability of these PH schemes. More specifically, the failure of a single PH server responsible for crypto computation services will suspend password authentication for all users. We propose the notion of reliable PH, which improves the availability of PH by eliminating SPF. We present a modular PH construction, TF-PH, essentially a generic compiler that can transform any PH protocol into a reliable one without SPF via introducing threshold failover. Particularly, we propose a concrete reliable PH protocol, called TF-RePhoenix, a simple and efficient construction with RePhoenix (which improves over Phoenix at USENIX Security'17) as the PH module. Security is proven within the universally composable (UC) security framework and the random oracle model (ROM), where we, for the first time, formalize the ideal UC functionalities of PH and reliable PH. We comparatively evaluate the efficiency of our TF-PH with the canonical threshold method (taken as an example, the threshold solution introduced by Brost et al. at CCS'20 in a PH-derived domain -- password-hardened encryption). Results show that our threshold failover-based solution to SPF provides optimal performance and achieves failover in a millisecond.
Last updated:  2025-01-10
Deletions and Dishonesty: Probabilistic Data Structures in Adversarial Settings
Mia Filić, Keran Kocher, Ella Kummer, and Anupama Unnikrishnan
Probabilistic data structures (PDS) are compact representations of high-volume data that provide approximate answers to queries about the data. They are commonplace in today's computing systems, finding use in databases, networking and more. While PDS are designed to perform well under benign inputs, they are frequently used in applications where inputs may be adversarially chosen. This may lead to a violation of their expected behaviour, for example an increase in false positive rate. In this work, we focus on PDS that handle approximate membership queries (AMQ). We consider adversarial users with the capability of making adaptive insertions, deletions and membership queries to AMQ-PDS, and analyse the performance of AMQ-PDS under such adversarial inputs. We argue that deletions significantly empower adversaries, presenting a challenge to enforcing honest behaviour when compared to insertion-only AMQ-PDS. To address this, we introduce a new concept of an honest setting for AMQ-PDS with deletions. By leveraging simulation-based security definitions, we then quantify how much harm can be caused by adversarial users to the functionality of AMQ-PDS. Our resulting bounds only require calculating the maximal false positive probability and insertion failure probability achievable in our novel honest setting. We apply our results to Cuckoo filters and Counting filters. We show how to protect these AMQ-PDS at low cost, by replacing or composing the hash functions with keyed pseudorandom functions in their construction. This strategy involves establishing practical bounds for the probabilities mentioned above. Using our new techniques, we demonstrate that achieving security against adversarial users making both insertions and deletions remains practical.
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.