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Abstract

We further explore the explicit connections between supersingular curve
isogenies and Bruhat-Tits trees. By identifying a supersingular elliptic
curve E over Fp as the root of the tree, and a basis for the Tate mod-
ule Tℓ(E); our main result is that given a vertex M of the Bruhat-Tits
tree one can write down a generator of the ideal I ⊆ End(E) directly,
using simple linear algebra, that defines an isogeny corresponding to the
path in the Bruhat-Tits tree from the root to the vertex M . In contrast
to previous methods to go from a vertex in the Bruhat-Tits tree to an
ideal, once a basis for the Tate module is set up and an explicit map
Φ : End(E)⊗Zℓ → M2(Zℓ) is constructed, our method does not require
any computations involving elliptic curves, isogenies, or discrete logs. This
idea leads to simplifications and potential speedups to algorithms for con-
verting between isogenies and ideals.

1 Introduction

The supersingular ℓ-isogeny graph; whose vertices are Fp-isomorphism classes of
supersingular elliptic curves over Fp2 , and whose edges are ℓ-isogenies, is a well
studied graph with various applications to cryptography, such as [4,5,7,12–14].

A separable isogeny is determined up to isomorphism by its kernel, so an
ℓ-isogeny ϕ : E → E′ is defined by a cyclic subgroup ker(ϕ) ⊂ E(Fp) of order
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ℓ. The Deuring Correspondence associates to an isogeny ϕ : E → E′ of super-
singular curves an ideal I in O ∼= End(E) such that the left order of I is O and
the right order is O′ ∼= End(E′). The norm of the ideal I is equal to the degree
of the isogeny. It is known that an isogeny of degree ℓk having cyclic kernel can
be represented in any of the following ways:

1. A non-backtracking walk of length k in the supersingular ℓ-isogeny graph
from E to E′.

2. A cyclic subgroup of E[ℓk].

3. A maximal order O′ in the quaternion algebra such that [O : O∩O′] = ℓk.
(See Exercise 9 of Section 23 of [21].)

4. A left O-ideal I of norm ℓk.

It is well known [2, 18] that the ℓ-adic Bruhat-Tits tree; an infinite, rooted
(ℓ+1)-regular tree, is a covering graph of the ℓ-isogeny graph. The vertices (and
edges) of such a tree may be represented with equivalence classes of matrices in
M2(Qℓ), with representatives (

ℓr 0
m ℓs

)
(for integers r, s ≥ 0, 0 ≤ m < ℓs and gcd(m, ℓ) = 1), corresponding to a vertex
of distance r+ s from the root. Whilst performing computations, such as path-
finding, between vertices in the matrix description is straightforward, curiously,
this is not the case in the isogeny graph. In particular, a fundamental assump-
tion in isogeny-based cryptography is that it is computationally infeasible to find
paths between arbitrary vertices for a graph of sufficient size. This problem is
also equivalent to computing an effective basis of a supersingular elliptic curve’s
endomorphism ring, which is isomorphic to a quaternionic maximal order [22].

These reasons motivate the investigation of the explicit connections between
the Bruhat-Tits tree and the supersingular ℓ-isogeny graph, for example see
Amorós, Iezzi, Lauter, Martindale, and Sotáková [2]. In this work, the au-
thors describe how to explicitly translate between non-backtracking isogenies,
vertices of the Bruhat-Tits tree, and maximal orders of Bp,∞ corresponding
to endomorphism rings of supersingular elliptic curves over characteristic p.
In particular, fix a curve E, and a representation for its endomorphism ring
End(E) ∼= O ⊆ Bp,∞ as the root of the tree (which corresponds to the matrix
( 1 0
0 1 )). A representation of Bℓ = Bp,∞⊗Qℓ as M2(Qℓ) is shown in [2] such that

there exists a bijection between vertices in the Bruhat-Tits tree and maximal
orders in Bℓ. Recent developments have further shown this correspondence may
be leveraged for applications to constructing digital signature schemes [17], and
more efficient computation of endomorphism rings [9].

Our Contributions In [2] it is shown how to associate to a vertex in the
Bruhat-Tits tree any of the first 3 items listed above for representing an ℓk-
isogeny. The main contribution of this paper is to show how to include the
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4th item in this picture. More precisely, we extend the work of [2] to explic-
itly translate between paths in the tree and ideals, fully realising the Deuring
Correspondence in the Bruhat-Tits tree setting.

In particular, while [2] gives a description for translating between (1)-(3) and
endomorphism rings of the image curve of the isogeny paths, we construct an
efficient map which allows translating between vertices of the Bruhat-Tits tree
and corresponding kernel ideals. This also allows a new way to go from cyclic
kernels of isogenies directly to kernel ideals.

We express our main result in the following theorem.

Theorem 1 (Informal). Fix distinct primes p, ℓ and a supersingular elliptic
curve E such that End(E) ∼= O ⊆ Bp,∞. Let θ1, θ2, θ3, θ4 be a Z-module basis
for O. Identify the root of the ℓ-adic Bruhat-Tits tree with E. Then there exist
explicitly computable matrices M1, . . . ,M4 such that, for any vertex M in the
Bruhat-Tits tree of distance k from the root, any solution to the linear equations
M ≡

∑
i αiMi mod ℓk+1 gives an endomorphism α =

∑
i αiθi ∈ O for which

I = (α, ℓk) is the ideal corresponding to the isogeny whose kernel is described by
M via an explicitly computable basis of the Tate-module.

Our tool may prove useful for cryptographic applications, where modern
cryptographic protocols, such as [1, 3, 7, 16], make frequent use of translating
between kernel-representation, as scalar multiples of a basis of E[ℓk], and ideal-
representation for isogenies.

In addition we give a new method to efficiently compute the end-point elliptic
curve corresponding to a long walk in the Bruhat-Tits tree (see Section 4.1) and
give new translation maps between ideals and isogenies (see Sections 4.2 and
4.3).

2 Background

Qℓ denotes the set of ℓ-adic rational numbers, Zℓ denotes the set of ℓ-adic
integers, and vℓ(x) is the ℓ-adic valuation of an ℓ-adic rational number. We
write Bp,∞ for the quaternion algebra over Q ramified at p and ∞. If O is an
order and α, β ∈ O then we write (α, β) or O(α, β) for the left-O-ideal generated
by α and β. If M = ( a b

c d ) then adjM = ( d −b
−c a ).

2.1 Isogenies and elliptic curves

We give a brief overview of some of the relevant concepts related to isogenies and
elliptic curves. For a more thorough exploration of isogenies and elliptic curves
the reader can refer to the textbook from Silverman [20], and for an in-depth
treatment of the isogeny graph as it relates to isogeny-based cryptography see
the lecture notes from De Feo [11]. We focus entirely on the supersingular case
in this paper.

Isogenies are non-constant maps between elliptic curves. It is conjectured
that given two elliptic curves, finding an isogeny mapping from one to the other
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Figure 1: The supersingular 2-isogeny graph over F3832 .

is a (quantumly) hard problem. One way to think about these maps is via the
ℓ-isogeny graph.

Definition 1. Fix two primes ℓ < p, ℓ ̸= p. The supersingular ℓ-isogeny graph
is a graph whose vertex set is Fp-isomorphism classes of supersingular elliptic
curves. The edge set is such that two vertices are connected if and only if there
exists an ℓ-isogeny between the two isomorphism classes.

In this setting, finding an isogeny of degree ℓk between two curves is equiva-
lent to finding a path in the graph. Note that cycles in this graph are equivalent
to endomorphisms, that is, isogenies whose domain and codomain are the same
curve. The supersingular ℓ-isogeny graph is connected and (ℓ+ 1)-regular.

The Deuring Correspondence gives a direct correspondence between the
world of isogenies, and that of ideals in a quaternion algebra. We present the
basic ideas but for a more thorough introduction to the Deuring Correspondence
see the textbook from Voight [21] or the doctoral thesis of Leroux [15].

Consider a supersingular elliptic curve, E over Fp. Then the endomorphism
ring of E is isomorphic to a maximal order in the quaternion algebra, Bp,∞,
which is defined over Q and ramified at p and ∞. Thus, every other prime ℓ ̸= p
will be split in Bp,∞, meaning Bℓ := Bp,∞ ⊗Q Qℓ is isomorphic to M2(Qℓ).

Maximal orders O are 4-dimensional Z-modules and we will often represent
them by writing down a basis {θ1, θ2, θ3, θ4} as a Z-module. We sometimes
denote this by ⟨θ1, θ2, θ3, θ4⟩Z.

Isogenies between elliptic curves correspond to ideals in End(E). Consider
two (supersingular) elliptic curves, E,E′, whose endomorphism rings are isomor-
phic to the maximal orders O,O′ respectively. Then an isogeny, φ : E → E′

corresponds to an ideal Iφ ⊂ O whose left order is O and whose right order is
O′. The degree of the isogeny is the norm of the ideal, which is the square-root
of the index [O : Iφ] = [O′ : Iφ] (see Voight [21, Proposition 16.4.2]). This
notion is made explicit in the following definition.
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Definition 2. Let E be an elliptic curve such that End(E) = O ⊂ Bp,∞. Then
for α ∈ O where vℓ(N(α)) = k, we define the isogeny ϕα : E → E′ of degree ℓk

by the kernel kerϕα = {P ∈ E[ℓk] | α(P ) = 0}. For a given isogeny ϕ : E → E′,
we may also refer to its kernel ideal, Iϕ = {α ∈ O | α(kerϕ) = 0}.

Note that α is an endomorphism of degree ℓkd for some d co-prime to ℓ, and
ϕα : E → E′ is the ℓ-power part of α. So there is also an isogeny of degree d
from E′ back to E. We will not need any of this below, but mention it in case
the reader is confused by the relationship between α : E → E and ϕα : E → E′.

Our results are ℓ-adic in nature so we need some definitions.
Consider the group of ℓn-torsion points, E[ℓn]. Since ℓ ̸= p we have E[ℓn] ∼=

Z/ℓnZ× Z/ℓnZ. The Tate module is defined to be

Tℓ(E) = lim
←

E[ℓn],

where the connecting maps are given by the multiplication by ℓ map, [ℓ]. Note
that Tℓ(E) ∼= Zℓ × Zℓ so that Tℓ(E) admits a basis. This basis consists of pairs
(Pn, Qn)

∞
n=1 where (Pn, Qn) is a basis of E[ℓn], and ℓPn+1 = Pn, ℓQn+1 = Qn.

It is immediate that End(Tℓ(E)) = M2(Zℓ).
A Theorem of Tate (see [2, Section 4.2.1]) is that End(E)⊗ZZℓ

∼= End(Tℓ(E)).
If O = End(E) then we will write Oℓ for End(E)⊗Z Zℓ.

Lemma 1. Let O be a maximal order of the quaternion algebra Bp,∞ and I be
a left or right ideal of O. Then I is locally principal. That is, Iℓ := I ⊗ Zℓ is
principal for all primes ℓ ̸= p, and is generated by any element α ∈ I of minimal
valuation.

Proof. Since either O = OL(I) or O = OR(I), by [21, Prop. 16.6.16], we have
that I is invertible. Then by [21, Thm. 16.1.3] Iℓ is principal. Following the
approach in [21, 16.6.9], we see that any element of minimum valuation generates
Iℓ.

Lemma 2. Let O be a maximal order of Bp,∞ and I be a left ideal of O of
norm N(I) = ℓk. Let Oℓ = O ⊗Z Zℓ and Iℓ = I ⊗Z Zℓ. Let α ∈ Iℓ be such that
Iℓ = (α). Let α∗ ∈ O be such that α∗ ≡ α mod ℓk+1. Then I = (α∗, ℓk).

Proof. By Lemma 1, Iℓ is locally principal and has a generator α such that
vℓ(N(α)) = k.

Let O = ⟨θ1, θ2, θ3, θ4⟩Z, then

α = a1θ1 + a2θ2 + a3θ3 + a4θ4

for a1, a2, a3, a4 ∈ Zℓ. Now,

α∗ = a∗1θ1 + a∗2θ2 + a∗3θ3 + a∗4θ4

where a∗i = ai mod ℓk+1. Since a∗i ∈ Z, we have that α∗ ∈ O, and since

N(α∗) = N(α) + nℓk+1
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Figure 2: The 2-adic Bruhat-Tits Tree

for some n ∈ Zℓ, we have that vℓ(N(α∗)) = vℓ(N(α)) = k.
Since ℓk ∈ I it follows that α∗ ∈ Iℓ ∩ O = I. Hence (α∗, ℓk) ⊆ I.
Finally, we will show I = (α∗, ℓk) by showing that (α∗, ℓk)⊗Z Zℓ = Iℓ. This

is immediate, since α∗ ∈ Iℓ is an element of minimal valuation, so by Lemma 1,
α∗ is also a generator of I ⊗ Zℓ.

2.2 The Bruhat-Tits tree and the isogeny graph

The Bruhat-Tits tree is an infinite tree with vertex set PGL2(Qℓ)/PGL2(Zℓ).
Vertices also correspond to lattices. We describe how to work with the ma-
trix representation, and then later show the connections with elliptic curves
and maximal orders in the quaternion algebra M2(Qℓ). For a more thorough
treatment of these topics, see [2, 9, 21].

Given matrices in M2(Qℓ), we define an equivalence relation that identifies
the vertices of the Bruhat-Tits tree.

Definition 3. Let M,M ′ ∈ M2(Qℓ). We say that M and M ′ are equivalent
if there exists some U ∈ GL2(Zℓ) and non-zero λ ∈ Qℓ such that M = λM ′U .
In this case, we say M ∼ M ′. We denote an equivalence class using some
representative, M , as [M ]. We say that a representative is in standard form if

M =

[
ℓr 0
m ℓs

]
for some m, r, s ∈ Z≥0, 0 ≤ m < ℓs
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such that mini,j vℓ(Mi,j) = 0.

The standard form is an ℓ-adic analogue of the Hermite normal form for
integer matrices [6, §2.4].

Lemma 3. Every invertible matrix in M2(Qℓ) is equivalent to a unique matrix
in standard form.

Proof. We prove existence. Let M ∈ GL2(Qℓ) ⊂ M2(Qℓ). We apply a series
of column operations to put M in the desired form. First, swap the columns
if necessary to ensure that vℓ(M1,2) ≥ vℓ(M1,1). Next, add a multiple of the
first column to the second so that M1,2 = 0. Since the matrix has rank 2, we
know M2,2 ̸= 0. Multiplying the columns by units ensures that M1,1 and M2,2

are powers of ℓ. We then add a Zℓ-multiple of the second column to the first so
that 0 ≤ M2,1 < ℓs, where s = vℓ(M2,2). Finally, we multiply M by ℓ−a where
a = mini,j vℓ(Mi,j), putting M into the desired form.

To prove uniqueness, suppose

M =

[
ℓr 0
m ℓs

]
, M ′ =

[
ℓr

′
0

m′ ℓs
′

]
are equivalent matrices in standard form. Write M = λM ′U for some λ ∈ Qℓ

and U ∈ GL2(Zℓ). Note that M ′ = λ−1MU−1. It follows that vℓ(λ) = 0, since
otherwise the minimum valuation of the entries of either M or M ′ is nonzero.
To ensure M ′1,1 is a power of ℓ, it must be that λ = 1. Observe that

U = M ′−1M =

[
ℓr−r

′
0

ℓ−s
′
(m−m′ℓr−r

′
) ℓs−s

′

]
.

Since U ∈ GL2(Z), it follows that s = s′ and r = r′. Hence vℓ(m−m′) ≥ s, so
m = m′.

2.3 A correspondence between Bp,∞ ⊗Qℓ and M2(Qℓ)

Let Bp,∞ be the quaternion algebra ramified at p and ∞. For example, when
p ≡ 3 (mod 4) we have thatBp,∞ is generated by {1, i, j, k}, where i2 = −1, j2 =
−p, and k = ij = −ji. Generators for Bp,∞ in other cases are given in [2].

Define Bℓ := Bp,∞⊗QQℓ. Since Bp,∞ is ramified at only p and ∞, it will be
split at every prime ℓ ̸= p. By definition this means that Bℓ

∼= M2(Qℓ). When
p ≡ 3 mod 4 and ℓ > 2 we explicitly define the bijection Φ0 : Bℓ → M2(Qℓ)
such that

1 7→
[
1 0
0 1

]
, i 7→

[
0 1
−1 0

]
, j 7→

[√
−p 0
0 −

√
−p

]
, k 7→

[
0 −

√
−p

−
√
−p 0

]
.

Here
√
−p denotes an ℓ-adic number such that x2 = −p. This map also re-

spects quaternionic conjugation, since Φ0(ᾱ) = adj(Φ0(α)), where adjM is the
adjugate of M (swapping the diagonal elements and negating the off-diagonals).

The trace and norm of an element α ∈ Bℓ are equal to the matrix trace and
determinant (respectively) of Φ0(α) in M2(Qℓ).
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3 Main results

3.1 Constructing the Localized Matrix Representation of
Endomorphism Rings

Let E be a supersingular elliptic curve, O = End(E) ⊂ Bp,∞, and Oℓ = O⊗ZZℓ.
By [21, Lemma 23.2.3], if Φ : Bp,∞ ⊗ Qℓ → M2(Qℓ) is an isomorphism, then
Φ(Oℓ) is conjugate to M2(Zℓ) by an element of GL2(Qℓ). For the purposes of
this paper, we wish construct a representation Φ: Bℓ → M2(Qℓ) directly, such
that Φ(Oℓ) = M2(Zℓ).

Lemma 4. Let E be a supersingular elliptic curve and O = End(E). Let
{θ1, θ2, θ3, θ4} be a Z-module basis for O. Fix a basis {R,S} for the Tate module
Tℓ(E). For each 1 ≤ i ≤ 4 let ai, bi, ci, di ∈ Zℓ be such that

θi(R) = aiR+ biS, θi(S) = ciR+ diS.

Then Mi = ( ai bi
ci di

) lies in M2(Zℓ). Consider the map

Φ : O ⊗Z Zℓ → M2(Zℓ)

defined by Φ(θi) = Mi = ( ai bi
ci di

) and extended by Zℓ-linearity. Then Φ is in-
jective, surjective, is a ring anti-isomorphism (i.e., Φ(α ◦ β) = Φ(β)Φ(α)), and
Φ(ᾱ) = adjΦ(α).

Note that Φ(1) = ( 1 0
0 1 ).

Proof. It is immediate from the construction that, for any u, v ∈ Zℓ, θi(uR +
vS) = xR + yS if and only if (x, y) = (u, v)Mi. Hence, for any α ∈ End(E) we
have

α(uR+ vS) = xR+ yS where (x, y) = (u, v)Φ(α). (1)

From this it follows that

Φ(α ◦ β) = Φ(β)Φ(α)

for all α, β ∈ Oℓ.
The map Φ is injective, since if α ̸= 0 and Φ(α) = 0 then α(R) = α(S) = 0

and α corresponds to an isogeny of finite non-zero degree but infinite kernel.
Surjectivity follows since Oℓ is a maximal order, and so is M2(Zℓ). So Φ(Oℓ)

cannot be a sub-order of M2(Zℓ).
Finally, since Φ(ᾱα) = Φ([deg(α)]) is deg(α) times an identity matrix, it

follows that Φ(ᾱ) = adjΦ(α).

Remark 1. From the point of view of practical computations a statement like
θi(R) = aiR + biS should be interpreted as a statement about points of order
ℓk for every k. For each k, there are compatible points Rk, Sk of order ℓk and
integers ai,k, bi,k such that θi(Rk) = ai,kRk + bi,kSk etc.
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Remark 2. The representation maps described in Lemma 4 satisfy the formula

Φ(α ◦ β) = Φ(β)Φ(α),

and thus are anti-isomorphisms. This is a side-effect of acting on the right on
row vectors, instead of acting on the left on column vectors. We choose this
particular notation for matrix vertices of the Bruhat-Tits tree in order to be
consistent with the prior notation of [2]. If it causes the reader distress then
they may apply transposes to get a homomorphism.

The next Lemma is an immediate consequence of equation (1) in the above
proof.

Lemma 5. Let E be a supersingular elliptic curve such that End(E) = O ⊂
Bp,∞, and let Φ : O ⊗ Zℓ → M2(Zℓ) be the anti-isomorphism described in
Lemma 4. Then there exists a bijection η : Tℓ(E) → Z2

ℓ , such that for all
α ∈ Oℓ, and T ∈ Tℓ(E):

η(α(T )) = η(T ) · Φ(α). (2)

This map also respects the reduction map from Tℓ(E) to E[ℓk] (i.e., it also holds
for T ∈ E[ℓk]).

Proof. Let R,S be a basis for Tℓ(E). As explained above, such a choice of basis
defines a map Φ : O ⊗ Zℓ → M2(Zℓ).

Define η(R) = (1, 0) and η(S) = (0, 1). Then, as explained, for any u, v ∈ Zℓ

then θi(uR + vS) = xR + yS if and only if (x, y) = (u, v)Mi. By Zℓ-linearity
since any α ∈ Oℓ is a Zℓ-linear combination of the θi, we have that Equation (2)
holds.

3.2 Equivalence of isogenies from matrices and quater-
nions

Given a curve E, it’s endomorphism right O and the representation Φ into
M2(Zℓ), we now explain how to translate between different representations of
vertices of the Bruhat-Tits tree: matrices, endomorphisms generating principal
ideals, and their corresponding isogenies.

Fix a root vertex of the tree E such that End(E) = O = ⟨θ1, θ2, θ3, θ4⟩Z. Let
I1 be a left-O-ideal of norm ℓk for some integer k, such that I1 does not contain
(ℓ). Such an ideal corresponds to an ℓk-isogeny with cyclic kernel, and therefore
to a vertex in the Bruhats-Tits tree that is at distance k from the root vertex,
E. Then, by Lemma 1, I1 ⊗ Zℓ ⊂ O ⊗ Zℓ is a principal ideal.

We now state our main result, which is that our representation Φ allows us
to efficiently translate between ideals and kernels via vertices of the Bruhat-Tits
tree.

Theorem 2. Let E be a supersingular elliptic curve such that End(E) = O =
⟨θ1, θ2, θ3, θ4⟩Z for θi ∈ Bp,∞, and let Φ : O ⊗ Zℓ → M2(Zℓ), and η : Tℓ(E) →

9



Z2
ℓ be isomorphisms1 such that Equation (2) holds. Then there exists a basis

P,Q ∈ Tℓ(E) such that every standard form matrix,

M =

[
ℓr 0
m ℓs

]
m, r, s ∈ Z≥0, k = r + s

corresponds to a locally principal ideal generated by α = Φ−1(M) mod ℓk+1,
which is the kernel ideal of an isogeny ϕα : E → E′ given by the kernel:

kerϕα = ⟨ℓrPk +mQk, ℓ
sQk⟩,

where Pk and Qk are the projections of P and Q to E[ℓk].

Proof. Let α = Φ−1(M) mod ℓk+1. We note that:

kerϕα = kerα ∩ E[ℓk] = ᾱ(E[ℓk])

Hence, ᾱ(Rk) ∈ kerϕα for all Rk ∈ E[ℓk]. Since the matrix M has determinant
ℓk, we have that vℓ(α) = k and by Lemma 1 α generates the kernel ideal
corresponding to the isogeny ϕα.

By Lemma 5, we know that the map η : Tℓ(E) → Z2
ℓ explains the action of

Φ(α) on Tℓ(E). Hence,

ᾱ(Rk) = η−1(η(Rk) · adjM)

for all Rk ∈ E[ℓk], where

adjM =

(
ℓs 0
−m ℓr

)
.

Let P = η−1(0,−1) and Q = η−1(1, 0). THen

ᾱ(P ) = η−1(η(P ) adjM) = η−1((0,−1) adjM) = η−1(m,−ℓr) = ℓrP +mQ

and
ᾱ(Q) = η−1((1, 0) adjM) = ℓsQ.

Hence, ker(ϕα) = ᾱ(E[ℓk]) = ⟨ᾱ(P ), ᾱ(Q)⟩ = ⟨ℓrP +mQ, ℓsQ⟩.

Remark 3. Note that in our applications we will always have r = 0 or s = 0,
and when r = 0 then m = 0. Hence the group ⟨ℓrP +mQ, ℓsQ⟩ can always we
written as

⟨ℓrP + (m+ ℓs)Q⟩.
We use this formulation in our algorithms.

Our representation map Φ allows us to go directly between Zℓ-modules: Oℓ

and M2(Zℓ). However, when p = 3 mod 4 and O = ⟨θ1, θ2, θ3, θ4⟩Z where
vℓ(θi) ≥ 0 for all θi’s, then simply choosing Φ = Φ0 is sufficient, where Φ0 is the
isomorphism of quaternion algebras from Section 2.3. We show a special case
for this in the example below.

1More precisely, Φ is an anti-isomorphism. See Remark 2.
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Example 1. Let p = 3 mod 4 and ℓ ≥ 3. Let i2 = −1, j2 = −p in the quaternion
algebra Bp,∞. Consider E0 such that End(E0) = O0 = ⟨1, i, i+j

2 , 1+ij
2 ⟩. We

choose the representation Φ0 from Section 2.3, which maps O0 to M2(Zℓ) when
ℓ ̸= 2.

We show how to compute this representation using the method of Lemma 4.
Let R ∈ Tℓ(E) be such that ⟨R⟩ ∩ E[ℓ] is non-trivial. Further let R be an

eigenvector of j with eigenvalue λ =
√
−p. Let S = i(R). Note that

j(S) = j(i(R)) = −i(j(R)) = −i(λR) = −λi(R) = −λS,

hence S is an eigenvector of j with eigenvalue −λ. It also follows that {R,S} is
a basis for Tℓ(E).

Following the method in Lemma 4 we have Φ(j) = ( λ 0
0 −λ ), Φ(i) = ( 0 1

−1 0 ).
One sees these are the same matrices as written down in Section 2.3, so Φ = Φ0.

Defining M as

M =

(
a b
c d

)
= α1Φ(θ1) + α2Φ(θ2) + α3Φ(θ3) + α4Φ(θ4) (3)

where a, b, c, d ∈ Zℓ. We will show that Φ−1(M) ∈ Oℓ, and hence confirm that
Φ is surjective.

We see that

a = α1 +
α3

2

√
−p+

α4

2
, b = α2 +

α3

2
− α4

2

√
−p,

c = −α2 −
α3

2
− α4

2

√
−p, d = α1 −

α3

2

√
−p+

α4

2
.

Solving this system of equations, we obtain

α1 =
(a+ d)

√
−p+ b+ c

2
√
−p

, α2 =
(b− c)

√
−p− a+ d

2
√
−p

,

α3 =
a− d√
−p

, α4 =
−b− c√

−p
.

Hence, the αi’s will all be in Zℓ when ℓ ̸= 2 (and Φ is clearly surjective). Next,
since i, j ∈ O we may define the map η : Tℓ(E) → Z2

ℓ in a more convenient way.
Let v = (1, 0) be an eigenvector of Φ(j) with eigenvalue λ, and let w =

vΦ(i) = (0, 1). By the same reasoning as above, w is an eigenvector of Φ(j)
with eigenvalue −λ. Let η : Tl(E) → Z2

l be the linear isomorphism such that
η(R) = v and η(S) = w. Now, by construction, Equation (2) holds for R,S and
α ∈ {1, i, j, ij}. Hence, by Zℓ-linearity (and since ℓ ̸= 2), the equation holds
for all Tℓ(E) and O. Now setting P = η−1(0,−1) = −S,Q = η−1(1, 0) = R we
may now apply the machinery of Theorem 2 for our needs.

Let P = η−1(0,−1) = −S and Q = η−1(1, 0) = R. Given a matrix M =
( 1 0
m ℓk

) corresponding to an endomorphism α we have

α(P + [m]Q) = α([m]R− S)

11



which corresponds to
(m,−1)

(
1 0
m ℓk

)
= (0, 0).

This confirms that P + [m]Q is the kernel of the isogeny ϕα corresponding to
the given vertex in the Bruhat-Tits tree.

Example 2. As in the previous example, let p = 3 mod 4 and End(E0) = O0 =
⟨1, i, i+j

2 , 1+ij
2 ⟩; but this time, let ℓ = 2. Now Φ0 does not send O ⊗ Z2 to

M2(Z2). Hence, we must construct Φ as in Lemma 4. For this, we choose a
concrete example. Recall that

E0 : y2 = x3 + x,

we choose the Mersenne prime p = 231 − 1, working over Fp2 ∼= Fp[i] (where
i2 = −1) and projecting T2(E) onto E[230]. We chose an arbitrary basis

R30 = (1837916331 · i+ 985307470, 1546747127 · i+ 1565582437),

S30 = (1319845929 · i+ 78610875, 1085330991 · i+ 1076131300)

such that ⟨R30, S30⟩ = E[230]. Now, by computing the actions of the generators
of O on this basis, and solving the two-dimensional discrete logarithm, we obtain
that Φ modulo 231 is the linearisation of the map which sends:

1 7→
(
1 0
0 1

)
i 7→

(
978557856 48674073
703423703 95183968

)
i+ j

2
7→

(
364000032 305689881
1011325952 709741792

)
1 + ij

2
7→

(
201420800 402803584
317984800 872321025

)
Next, as a sanity check of Theorem 2, we compute a, b, c, d ∈ Z/231Z such

that:(
2r 0
m 2s

)
= aΦ(1) + bΦ(i) + cΦ

(
i+ j

2

)
+ dΦ

(
1 + ij

2

)
mod 230.

Which corresponds to an endomorphism:

α = a+ bi+ c

(
i+ j

2

)
+ d

(
1 + ij

2

)
∈ O.

Let P30 = −S30, Q30 = R30 as in Theorem 2. We now consider an arbitrary
matrix M , such as r = 0, s = 30,m = 3. By simple linear algebra we obtain the
coefficients:

(a, b, c, d) = (737652097, 866413973, 363817451, 672179455).

The kernel of the isogeny ϕα : E → E′ is generated by

K = P30 + 3Q30 = (879099442 · i+ 324669990, 1472827626 · i+ 1784986333).

Lastly, vℓ(N(α)) = 30 and it can be verified that α(K) = (0 : 1 : 0), and hence
α is a generator for Iϕα

⊗ Zℓ.
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Implementation As in Example 2, we ran sagemath experiments for com-
puting Φ (working in projections onto Z/2k+1Z) using code adapted from the
QFESTA implementation2. The experiments executed successfully for a range
of cryptographically sized primes, taking around 1 second for log p ≈ 256. In
order to avoid working over an extension of Fp2 , given that p = 2af−1, we work
over the 2k torsion for k < a since it is not true in general that for Fp2-rational
P ∈ E[2a], there exists a Fp2-rational Q such that 2Q = P , and solving for such
a Q is necessary in the evaluation of the fractional generators of O.

4 Applications to Isogeny and Ideal Translations

Our main contribution in this paper is to explain how to directly pass between
vertices in the Bruhat-Tits tree (represented by matrices in standard form) and
O-ideals, where O is the endomorphism ring of a supersingular elliptic curve E
identified with the root of the tree. In this section we show how this connection
allows to simplify some algorithms for passing between ideals and isogenies.

Our first novel application (Section 4.1) is primarily a theoretical one. Let
E be a supersingular elliptic curve identified with the root ( 1 0

0 1 ) in the ℓ-adic
Bruhat-Tits tree. Given a vertex in the tree at distance k from the root, a natu-
ral computational task is to compute the image of the corresponding ℓk-isogeny
from E in the isogeny graph. Such a task would be required, for example, in
the implementation of the signature scheme outlined in [17, p. 35]. Currently
the most efficient way to determine the j-invariant of the image curve is by Ler-
oux [15, Algorithm 23]. It requires poly(k) operations. The algorithm breaks up
the isogeny into O(k/f) distinct ℓf -isogenies, and computed each step by deter-
mining some information about the next curve in the path (e.g., its endomor-
phism ring and the connecting ideal). This involves evaluating endomorphisms
on points of order ℓf .

Our method, in some cases at least, allows to directly go from the matrix
corresponding to the vertex to the ideal I ⊆ O. One can then smooth the ideal
using KLPT and then compute the image of the isogeny efficiently in a manner
that is independent of k. Of course, the complexity must still grow linearly with
k, since the input size is O(k) bits and the norm of the ideal I is ℓk.

Our second contribution in this section is to discuss how the matrix represen-
tation techniques from Section 3.1 can be used in translation algorithms between
isogenies and quaternionic ideals. The IsogenyToIdeal and IdealToIsogeny sub-
routines in SQIsign [7] tackle exactly this problem. Most notably, our versions of
these algorithms (see Section 4.2 and Section 4.3) differ from the prior versions
in that they avoid the explicit evaluation of endomorphisms on points once the
basis for the Tate module is set up.

2Available at https://github.com/hiroshi-onuki/QFESTA-SageMath
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4.1 Computing elliptic curves corresponding to vertices in
Bruhat-Tits tree

Using the explicit correspondence between vertices in the Bruhat-Tits tree and
quaternion ideals defined in Section 3.1 we show how to take (long) walks in the
isogeny graph.

Fix a supersingular starting curve E0 with endomorphism ring O0, that
is sufficiently nice (for example, has basis containing i, j with i2 = −1 and
j2 = −p). There exists an eigenbasis (R,S) for the Tate module Tl(E0) with
respect to the choice of generators for O0. This is defined implicitly but is not
efficiently computable since points of order ℓk may be defined over large field
extensions.

Consider the vertex in the Bruhat-Tits tree

v =

[
1 0
m ℓk

]
,

where k is arbitrarily large. Since 0 ≤ m < ℓk the input size is O(k) bits for
fixed ℓ. This vertex corresponds to a path in the isogeny graph starting at E0

and ending at another supersingular elliptic curve E1.
One way to compute the j-invariant of E1 is to compute a basis (P,Q) for

the Tate module and to compute the point T = P +mQ, and use it to compute
E1 = E0/⟨T ⟩. From here the j-invariant can be computed. This approach is
infeasible in general since the computations are likely to be over a large field
extension in order for T to be defined. Other methods are described in the
literature such as in the thesis of Leroux [15, Algorithm 23], where, given an ideal
I of norm ℓk, the algorithm returns the corresponding isogeny in time polynomial
in O(k) (when all other parameters are fixed). Notably, this algorithm requires
knowledge of an ideal and isogeny mapping the left order of I back to a special
endomorphism ring O0. With this extra information, and after breaking up
the ideal I into a filtration of ideals of the form I = Iv ⊂ · · · ⊂ I0, where I0
is exactly the left order of I, the algorithm progressively applies KLPT [14]
to these smaller ideals and converts them to isogenies with the IdealToIsogeny
algorithm. This is necessary so that the kernels of the smaller ideals are defined
over a small enough field extension.

We now sketch our new approach to this problem, making use of Theorem 2
and the results from Section 3.2. Given the vertex M in the Bruhat-Tits tree,
we use linear algebra modulo ℓk+1 to write down α = a + bi + cj + dij ∈ O.
Here a, b, c, d ∈ Zℓk+1 so the representation has size O(k) bits and requires O(k2)
bit operations to compute using naive arithmetic (asymptotically one could use
quasi-linear arithmetic to compute α in Õ(k) operations). From here, we can
compute a Z-basis for the ideal I = (α, ℓk) by taking powers of α. Note that
all integers are modulo ℓk+1 so the size of integer coefficients does not blow
up. One then performs lattice basis reduction on this ideal in time O(k2) (or
quasi-linear using fast arithmetic) since the lattice dimension is 4.

At this stage we have a basis for the ideal I and can apply the method
of [14, Section 3.1] (generating a random small element of the ideal) to obtain
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Algorithm 1: NewIsogenyToIdeal

Input : E, O = End(E), ℓ, k, T ∈ E[ℓk]
Output: kernel ideal Iϕ where ϕ : E → E/⟨R⟩

1 Compute basis R,S of E[ℓk] and corresponding map

Φ : O ⊗Z (Z/ℓk+1Z) → M2(Z/ℓk+1Z), as in Section 3.2.
2 Compute P,Q as in Theorem 2.
3 Compute discrete log to get a, b such that T = [a]P + [b]Q
4 Compute associated vertex M in Bruhat-Tits tree in standard form

5 Compute α = Φ−1(M), set α⋆ = α mod ℓk+1.

6 return (α⋆, ℓk)

an equivalent ideal I ′ of prime norm bounded as O(p). The operations are all
O(k2) or quasi-linear bit operations and the output is now independent of k.

Once the ideal I ′ is computed, we apply KLPT to convert I ′ to an ideal
of smooth norm. This makes it possible to then evaluate the end point of the
corresponding isogeny. The isogeny computations have complexity independent
of the original value k, and so can be considered as O(1). So we have very
efficiently computable maps from v to an ideal, and hence from a Bruhat-Tits
tree vertex to an elliptic curve.

The key point about our approach is that we never need to write down points
of order ℓ or a power of ℓ, nor compute the map Φ.

Furthermore, this also gives an efficient method for computing a maximal
order isomorphic to O1, the order corresponding to the vertex v in the tree.

4.2 A new IsogenyToIdeal algorithm

The IsogenyToIdeal problem is to go from a cyclic ℓk-isogeny (e.g., a point of
order ℓk in E) to an ideal in O = End(E) such that I is the ideal of the isogeny.
It is known that the ideal will always be of the form (α, ℓk) and have N(I) = ℓk.

The main idea is to use the map Φ : O⊗ZZℓ → M2(Zℓ) restricted to the ℓk+1

part. If M ∈ M2(Z) is a matrix in standard form representing the ℓk-isogeny,
then the ideal is generated by any α ∈ O such that Φ(α) ≡ M (mod ℓk+1O).
Due to Lemma 5, computing such an α is just linear algebra modulo ℓk+1: we
compute 4 integers a, b, c, d such that M ≡ aΦ(θ1) + bΦ(θ2) + cΦ(θ3) + dΦ(θ4)
(mod ℓk+1), and then α = aθ1 + bθ2 + cθ3 + dθ4. It follows that the norm of α
is congruent modulo ℓk+1 to the determinant of M , which is ℓk. Hence, given
a curve E and effective knowledge of its endomorphism ring O, we are able to
efficiently translate kernels of cyclic ℓk isogenies in E[ℓk] to generators for their
kernel ideals in O. We outline this approach in Algorithm 1. Note that, since
we are assuming the input isogenies are cyclic, we represent the isogenies by a
point T ∈ E[ℓk] which generates their kernel.
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Algorithm 2: KernelToIdeal (Leroux’ thesis)

Input : A point P of order D in E[D]
Output: The ideal I(P )

1 Compute ι : End(E) ↪−→ Bp,∞ and set O = ι(End(E))
2 Compute basis θ1, θ2, θ3, θ4 of End(E) such that the norm of each θi

is coprime to D
3 Find i, j such that θi(P ), θj(P ) is a basis of E[D]
4 Take k ̸= i, j and compute a, b such that θk(P ) = aθi(P ) + bθj(P )
5 Compute α = ι(θk − aθi − bθj)
6 return (α,D)

Complexity. For comparison we use the KernelToIdeal algorithm from Leroux’
thesis [15, Algorithm 20], which is in turn based on an algorithm from Galbraith,
Petit, and Silva (GPS) [13]. The algorithm is given in Algorithm 2. Leroux
proves this algorithm has complexity O(

√
D), where D is the degree of the

isogeny. The bottleneck here is the discrete logarithm computation. When D
is power-smooth then one uses Pohlig-Hellman to compute the discrete logs
efficiently. Hence, it requires the input isogeny to have smooth degree to be
practical.

Our approach, Algorithm 1, also requires a discrete logarithm computation
on elliptic curve points, which will be the bottleneck of the algorithm. In the
case D = ℓk both methods require k iterations of solving a two-dimensional
discrete logarithm problem in E[ℓ]. When considering concrete costs, however,
Algorithm 1 avoids the evaluations of endomorphisms that are necessary in
Algorithm 2. Instead, the non-dominating costs are only linear algebra.

4.3 A new IdealToIsogeny algorithm

Suppose, given a curve of endomorphism ring O and a left O-ideal I = O(α, ℓk),
that we would like to determine the ℓk-isogeny whose kernel ideal corresponds
to I via the Deuring correspondence. This is possible using the techniques from
Section 3.1, and in particular, Theorem 2.

We begin by fixing our torsion basis, which in nice cases is defined in terms
of the eigenvalues of Frobenius. These eigenvalues can be computed using the
characteristic polynomial of Frobenius. From here we require the unique linear
combination of the torsion basis that will provide us with our kernel generator.
To obtain this information we use α to identify its node in the Bruhat-Tits tree,
and compute its Tate module labeling. The algorithm is outlined in Algorithm 3.

Complexity. Again we turn to Leroux’s thesis [15, Algorithm 19] as a baseline
for comparison. We recall the algorithm in Algorithm 4. Leroux proves that
this algorithm has complexity O(

√
D), where D is the norm of the input ideal.
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Algorithm 3: NewIdealToIsogeny

Input : E, O = End(E), α ∈ O such that (α, ℓk) is an ideal in O of
norm ℓk and cyclic kernel

Output: kernel representation of isogeny corresponding to ideal
under Deuring correspondence

1 Compute basis R, S for E[ℓk] and corresponding map

Φ : O ⊗Z (Z/ℓk+1Z) → M2(Z/ℓk+1Z) and mapping η as in
Section 3.1.

2 Compute the matrix M := Φ(α).

3 Reduce M to standard form ( ℓ
r 0
m ℓs ).

4 Compute P = η−1(0,−1), Q = η−1(1, 0).
5 Compute R = [ℓr]P + [m+ ℓs]Q.
6 return R

Algorithm 4: IdealToKernel (Leroux’ thesis)

Input : A curve E1, a cyclic ideal I ⊂ Bp,∞
Output: A generator PI of E1[I]

1 Compute D = N(I) and O1 = OL(I).
2 Compute a generator α ∈ I such that I = O1⟨α,D⟩.
3 Compute a basis P,Q of E1[D].
4 Compute R = α(P ), S = α(Q).
5 if The order of R < D then
6 Swap P with Q and R with S

7 Compute a = DLPD(R,S).
8 return [a]P −Q

In Algorithm 3 the bottle neck is Step 1, where we must compute the ℓk-
torsion basis. This can be done (as a precomputation) by randomly sampling
points from the curve, and multiplying them by a scalar (cofactor). Though we
also require the two points to be linearly independent, this is still done easily
in practice with only a few tries necessary. We assume for now that the torsion
basis exists over a small extension field of the base field, thus the complexity of
both this step and Algorithm 3 is O(log(p)).

Powersmooth norms. Suppose we are given a left O0 and right O1 ideal,
I = (N,α), where the prime factorisation of N(I) = N = ℓk1

1 . . . ℓkn
n . Then we

may relate this to an isogeny ϕI : E0 → E1 via the Deuring Correspondence
in the usual way, where End(Ei) ∼= Oi for i = 1, 2. So far we have been
representing the kernel subgroup using one single generator, but we can also
choose to represent it by a list of generators, one for each kerϕI∩E[ℓki

i ]. By CRT,
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this list can be used to generate the entire kernel subgroup. This representation
of an isogeny was called the multigenerator representation in the recent survey
from Robert [19]. To compute the multigenerator representation of ϕI using
Algorithm 3, we can input the ideal (ℓki

i , α) (instead of the original ideal (N,α))
for each i. This gives us our desired list of generators.

Note that while Algorithms 1 and 3 work for any prime power of the form
ℓk, in practice the speed of Algorithm 3 does not scale well for large ℓk. This
is because we must compute ℓk-torsion bases, which for large k are likely to
exist only over a very large field extension of Fp2 . Hence, as with most previous
works, we only recommend to use Algorithms 1 and 3 in the power-smooth case.

Remark 4. In Deuring for the People [10], Komada Eriksen, Panny, Sotáková,
and Veroni give algorithms for the translations between ideals and isogenies,
but focus on generalizing the context. In their IdealToIsogeny algorithm they
deviate from previous state-of-the-art in that they avoid all of the point divi-
sions by computing a torsion group that is slightly larger than necessary. Like
Algorithm 3, their algorithm also has O(log(p)) complexity and similarly avoids
using any discrete logarithms. We expect that any difference in performance
would come from the fact that the arithmetic in the non-dominating subroutines
in Algorithm 3 is mainly linear algebra, avoiding endomorphism evaluation and
thereby simplifying the overall algorithm.

5 Conclusion

Previous work [2] explored the connection between the Bruhat-Tits tree, the
ℓ-isogeny graph, and the world of quaternion algebras. In this work we explain
how to fit ideals into this picture, and in Section 3 show that one can compute
the ideal corresponding to an isogeny using simple linear algebra. Then in
Section 4 we showed how this mapping can be used to translate between a given
ideal and isogeny, a computation that has been the bottleneck of algorithms in
the NIST candidate signature scheme, SQIsign [7].

It remains unclear exactly how our algorithms would impact the efficiency
of SQIsign, and tackling this question is outside of the scope of our work. In
particular, due to the quick evolution of the scheme and now the several vari-
ants, changing the IdealToIsogeny algorithm in the overall signature is a highly
non-trivial task, with many trade-offs to consider. Some other works that use
IdealToIsogeny include the signature scheme GPS [13], the cryptanalytic work
on CGL in [8], and the recent timed commitment scheme [1]. We leave the
exploration of how Algorithms 1 and 3 impact the efficiency of these schemes
as future work.
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