
Efficient and Practical Multi-party Private Set
Intersection Cardinality Protocol

1st Shengzhe Meng
Beijing Institute of Mathematical

Sciences and Applications
and

Tsinghua University
Beijing, China

msz22@mails.tsinghua.edu.cn

3rd Zijie Lu
Beijing Institute of Mathematical

Sciences and Applications
Beijing, China

lzjluzijie@gmail.com

2nd Xiaodong Wang
Beijing Institute of Mathematical

Sciences and Applications
and

Tsinghua University
Beijing, China

wangxd22@mails.tsinghua.edu.cn

4th Bei Liang
Beijing Institute of Mathematical

Sciences and Applications
Beijing, China
lbei@bimsa.cn

Abstract—We present an efficient and simple multi-party
private set intersection cardinality (PSI-CA) protocol that allows
several parties to learn the intersection size of their private sets
without revealing any other information. Our protocol is highly
efficient because it only utilizes the Oblivious Key-Value Store and
zero-sharing techniques, without incorporating components such
as OPPRF (Oblivious Programmable Pseudorandom Function)
which is the main building block of multi-party PSI-CA protocol
by Gao et al. (PoPETs 2024). Our protocol exhibits better
communication and computational overhead than the state-of-
the-art. To compute the intersection between 16 parties with a set
size of 220 each, our PSI-CA protocol only takes 5.84 seconds and
326.6 MiB of total communication, which yields a reduction in
communication by a factor of up to 2.4× compared to the state-
of-the-art multi-party PSI-CA protocol of Gao et al. (PoPETs
2024). We prove that our protocol is secure in the presence of
a semi-honest adversary who may passively corrupt any (t− 2)-
out-of-t parties once two specific participants are non-colluding.

Index Terms—Secure multi-party computation, PSI-CA,
OKVS.

I. INTRODUCTION

Private Set Intersection Cardinality (PSI-CA), a variant of
the Private Set Intersection (PSI) problem, is a special case of
multi-party computation (MPC), which allows several parties
to learn the intersection size of their private sets without
learning any element in the intersection. PSI-CA has been
found as a crucial cryptographic tool in many real-world
applications such as private contact tracing platforms related
to COVID-19 [1]–[4] and so on. Relying on PSI-CA, Trieu et
al. [5] proposed a privacy-preserving contact tracing system,
allowing multiple participants (users and healthcare providers)

This work is supported by National Key R&D Program of China (No.
2021YFB2701304).

to privately match contact information and notify users who
may have been infected.

Moreover, Trieu et al. [5] proposed a specific PSI-CA
application scenario that has been widely studied. In this
scenario, the health authorities maintain a database of tokens
corresponding to users diagnosed with the disease, while every
user maintains a small database of tokens corresponding to
their close contacts. In this situation, the user does not want
to disclose information about their contacts, and the health
authorities need to protect the privacy of diagnosed patients.
The user only needs to know how many of their contacts have
been diagnosed to assess their risk. A user can run a multi-
party PSI-CA protocol with health authorities and nearby
users to assess the risk of infection. In this case, the user
(receiver) is not likely to collude with the health authorities.
We will study PSI-CA in this setting, where we assume
two specific participants are non-colluding. This is a weaker
security model than the general setting where an arbitrary
collusion is allowed. PSI-CA can also be applied to privately
solve aggregate conversion rates for advertising campaigns [6].
In addition, PSI-CA can be extended to other protocols that
allow participants to compute functions on the payloads in
the intersection [7]. Very recently, Gao et al. [8] illustrated
that PSI-CA can be used to implement and improve the
performance of two privacy-preserving applications, including
COVID-19 heatmap computation and associated rule learning
(ARL).

PSI-CA offers enhanced privacy protection compared to
PSI, and as a result, it makes the construction of the protocol
more challenging. The studies of PSI-CA are mainly focused
on the two-party setting, and over the last several years, two-
party PSI-CA protocols have become practical with extremely
fast cryptographically secure implementations [1], [2], [4],

[6], [9]. However, there have been only a small number of
results dealing with the multi-party setting. Although the state-
of-the-art protocol for multi-party PSI-CA [8] only relies on
fast symmetric-key primitives, which is much more efficient
than prior multi-party PSI-CA protocols that require expensive
public-key operations for each item [10] or computation on
secret-shared data [11], it might not scale well for a large
number of parties over the low and middle range of bandwidth
networks due to its massive communication overhead. In this
work, we present a newly efficient multi-party PSI-CA proto-
col that is secure against semi-honest adversaries and achieves
a better balance between computation and communication
trade-offs.

A. State-of-the-Art for Multiparty PSI-CA

The first multi-party PSI-CA protocol was proposed by
Kissner et al. [10]. They leveraged the oblivious polynomial
evaluation [12] and additively homomorphic cryptosystem
technique to construct a PSI-CA protocol with O(n2) com-
putation cost and O(nt2) communication cost, where t is the
number of parties, and n is the private set size of each party.
Vaidya et al. [13] proposed another protocol from commutative
one-way hash functions [14] and reduced the computation cost
to O(nt). Mohassel et al. [15] utilized an oblivious switching
network [16] to construct a three-party PSI-CA protocol in the
honest-majority setting with O(n) communication cost. They
then extended their protocol to a multi-party protocol, where
each party secretly shared their private inputs with those three
parties. Fenske et al. [17] presented a server-aided multi-party
PSI-CA protocol from additively homomorphic encryption.
Their protocol takes advantage of multiple cloud servers and
assumes that at least one cloud server does not collude with
all the participants. Jolfaei et al. [18] also proposed a server-
aided EO-PSI-CA (fficient outsourced private set intersection
cardinality) protocol with one cloud server. Their protocol
requires each party to construct an encrypted Bloom filter [19]
with ElGamal encryption [20], resulting in high computation
costs.

Recently, based on OKVS (Oblivious Key-Value Store)
data structure [21] and OPPRF (Oblivious Programmable
PRF) [22], Gao et al. [8] present a multi-party PSI-CA protocol
paradigm with an assumption that a subset of particular parties
does not collude. They offer two variants, the first of which
is a server-aided protocol that relies on a non-colluding semi-
honest server with no input, while the second is a server-less
one that removes the need for an outside server by converting
the problem of t-party PSI-CA to the problem of server-aided
(t− 1)-party PSI-CA with the use of an untrusted participant
(say Pt) who has a private input. Consequently, their server-
less t-party PSI-CA is reduced into a two-party PSI-CA where
P1 acts as a receiver and Pt acts as a sender with n times calcu-
lations of zero-sharing function for each party and (t−2) times
evaluations of OPPRF. In the implementation of Gao et al.’s
server-less t-party PSI-CA, the two-party PSI-CA is a server-
aided protocol (described in Protocol 10 by [8]) in which P2

is assigned the role of the server and required to be non-

colluding with both P1 and Pt. For completeness, we provide
their server-aided two-Party PSI-CA, server-aided OPPRF, and
server-less multiparty PSI-CA protocols in Section II-E, and
Appendix A, B, respectively.

Gao et al. [8] demonstrate that their multi-party PSI-CA
protocol is much more efficient than prior protocols. When
there are four parties with 223 items each, the total run time
of their protocol is 27.2 seconds, while protocol from [15]
takes 74 seconds. They also reduce the communication cost
by a factor up to 4.76× compared to the protocol proposed
by [15].

Although Gao et al.’s protocol [8] takes advantage of
symmetric-key techniques and outperforms existing protocols,
it relies on a server-aided OPPRF and a zero-sharing protocol,
which requires the computation of n times the zero-sharing
function and O(n) times PRF for each party. We find out that
it can be improved further. We propose a simpler and more
efficient protocol that does not need OPPRF, cutting about half
of the total communication overhead. Moreover, our proposed
protocol only requires parties to agree on a single time zero-
sharing in contrast with Gao et al.’s protocol [8] with n times
zero-sharing, thereby reducing the computational cost.

B. Our Contributions and Techniques

Our contribution in this work is twofold. First, we propose a
novel and efficient multi-party PSI-CA protocol that relies on
the OKVS data structure and zero-sharing technique without
incorporating components such as OPPRF, which is the main
building block of multi-party PSI-CA protocol by Gao et al.
[8]. We prove that our protocol is secure in the presence
of a semi-honest adversary who may passively corrupt any
(t− 2)-out-of-t parties once two specific participants are non-
colluding.

The second contribution is the implementation and evalu-
ation of our protocol. We conduct an extensive experiment
over both LAN and WAN and up to 16 parties with up to
220 items each. We provide a comparison of the performance
of our protocol to the state-of-the-art [8]. Our experiments
show that in all settings we considered, our protocol has less
communication and computational cost than the state-of-the-
art [8]. For example, in the case of 16 parties with a private
set of 220 items each, our protocol reduces communication
by a factor up to 2.4× compared to their server-less multi-
party PSI-CA protocol, which implies that our protocol offers
greater advantages under real-world settings with moderate
network bandwidth. In the 20 Mbps network, our protocol
runs in 144.06 seconds, which is 2.38× faster than Gao et al.’
s [8] that runs in 343.46 seconds.

The main idea of our protocol is shown below.

Main idea: Assume that there are t parties P1, . . . , Pt, and
each party owns a private set with n items, denoted as Xi =
{xi,1, . . . , xi,n} for all i ∈ [t].

In the first step, P2, . . . , Pt use the linear OKVS scheme
to encode their private set into vectors Ti ∈ Fm such
that for i ∈ [3, t], Pi’s items are encoded to 0, whereas

P2’s items are encoded to random values. Specifically, for
i ∈ [3, t], Pi’s OKVS Ti satisfies that Decode(Ti, xi,j) = 0
(j ∈ [n]), whereas for P2’s OKVS T2 it satisfies that
Decode(T2, x2,j) ∈ Γ (j ∈ [n]) where Γ is a set of random
values selected by P2.

In the next step, P2, . . . , Pt will send and aggregate their
OKVS in P1. However, sending {Ti}i∈[2,t] directly to P1 is
not secure, so each party Pi (i ∈ [2, t]) needs to invoke the
zero-sharing protocol to generate ri, which satisfies

∑t
i=2 ri =

0. Thus, they can send the masked OKVS vector Ti + ri to
P1. After P1 receives Ti + ri, it will aggregate those OKVS
together as T =

∑t
i=2 (Ti + ri) =

∑t
i=2 Ti.

Then, we can transform the multi-party PSI-CA problem
into a two-party PSI-CA problem. Notice that for x ∈
X1 and x ∈

⋂t
i=2 Xi, it holds that Decode(T, x) =∑t

i=2 Decode(Ti, x) ∈ Γ according to the homomorphic
property of linear OKVS. Thus, P1 can decode the OKVS
T with his private set as V = {Decode(T, x1,j)j∈[n]}. Then,
P1 and P2 can invoke a two-party PSI-CA protocol where P1

is the sender with input set V and P2 is the receiver with input
set Γ. As a result, P1 obtains |V ∩Γ|, which equals |

⋂t
i=1 Xi|

except for a negligible probability.
We can prove that our protocol is secure in the presence

of a semi-honest adversary who may corrupt any subset of
{P2, . . . , Pt} or a proper subset of {P1, P3, . . . , Pt}.

Similar to the protocol in [8], we employ a server-aided two-
party PSI-CA protocol, which can be constructed efficiently
by viewing another party Pi ∈ {P3, . . . , Pt} as the server.1

We will introduce the detailed version of our protocol in
Section III-A. The server-aided two-party PSI-CA protocol
ΠSA-2-PSI-CA proposed by [8] will be introduced in Section
II-E. Our protocol can be easily transformed into a multi-party
PSI protocol by replacing the last step with a two-party PSI
protocol instead of a PSI-CA protocol.

C. Paper Organization

Section II provides the security model of PSI-CA and
introduces the OKVS and zero-sharing technique we used
to construct our protocol. In Section III-A, we present our
multi-party private set intersection cardinality protocol and the
proof of security for it in Section III-B. We present theoretical
communication and computation cost in Section III-C and
compare our protocol with the state-of-the-art work through
code implementation in Section IV.

II. PRELIMINARY

A. Notation

Throughout the paper, we use the following notation: We
denote the parties as P1, . . . , Pt, and their respective input
sets as Xi (i ∈ [t]). We use κ, λ to denote the computational
and statistical security parameters, respectively. We use [a]
to denote the set {1, 2, . . . , a} and [a, b] to denote the set
{a, a+ 1, . . . , b}. For some set S, the notation s← S means

1In this case, for security reasons, we need additional conditions that Pi

does not collude with P1 or P2.

that s is assigned a uniformly random element from S. By
negl(κ), we denote a negligible function, i.e., a function f
such that f(κ) < 1/p(κ) holds for any polynomial p(·) and
sufficiently large κ.

B. Private Set Intersection Cardinality and Security Model

Private set intersection cardinality (PSI-CA) allows t parties,
each holding a set of n items, to learn the intersection size of
their private sets without revealing anything else. The ideal
functionality for PSI-CA FPSI-CA is presented in Fig. 1. We
denote the ideal functionality for 2-party PSI-CA as F2-PSI-CA
specially.

Functionality 1. (PSI Cardinality - FPSI-CA)
• Parameters: t parties P1, . . . , Pt; the set size n.
• Inputs: Pi’s input set Xi = (xi,1, . . . , xi,n).
• Outputs: Give P1 the intersection set size∣∣∣⋂t

i=1 Xi

∣∣∣.
Fig. 1. Ideal functionality for PSI-CA FPSI-CA

Security Model. A semi-honest adversary is one who
corrupts parties but follows the protocol as specified. In other
words, the corrupt parties run the protocol honestly, but they
may try to learn as much as possible from the messages they
receive from other parties. Semi-honest adversaries are also
considered passive in that they cannot take any actions other
than attempting to learn private information by observing a
view of protocol execution.

We work in a multi-party setting where the semi-honest
corrupt parties may collude. This is modeled by considering
a single monolithic adversary that obtains the views of all
corrupt parties. The protocol is secure if the joint distribution
of those views can be simulated.

Similar to the security assumption in [8], in this work, we
present a PSI-CA protocol in the multi-party setting, assuming
that a particular subset of parties refrains from collusion. This
is a reasonable assumption for real-life applications, especially
when performance is critical, so a weaker security guarantee
is applied as a trade-off. Specifically, our PSI-CA protocol
ensures security in the presence of a semi-honest adversary
who may corrupt any subset of {P2, . . . , Pt} or a proper subset
of {P1, P3, . . . , Pt}.2

C. Zero Sharing

In zero-sharing, t parties generate shares of zero. Specif-
ically, it provides the parties with a sharing function S :
{0, 1}κ × {0, 1}l → {0, 1}l′ and a key Ki for party Pi, and
satisfies the following properties:

• Correctness. For common seed x ∈ {0, 1}l, the Pi’s
random share si = S(Ki, x) will satisfy ⊕t

i=1si = 0.
• Privacy. Any coalition of τ < t − 1 corrupt parties will

not reveal any information about honest party Pi’s share
si.

2That means {P1, P2} do not collude, and {P1, P3, . . . , Pt} are not
simultaneously corrupted.

The zero-sharing protocol from [22] is given in Fig. 2.

PROTOCOL 1. (Zero-Sharing - ΠZS [22])
• Parameters: t parties P1, . . . , Pt; a PRF F : {0, 1}κ×
{0, 1}l → {0, 1}κ, a common seed x ∈ {0, 1}l.

• Protocol:
1) Each party Pi picks random seeds ri,j for j = i +

1, . . . , t and sends seed ri,j to Pj . The party Pi’s key
Ki = (r1,i, . . . , ri−1,i, . . . , ri,i+1, . . . , ri,t).

2) To obtain its share, each Pi computes: S(Ki, x) =(⊕i−1

j=1
F (rj,i, x)

)
⊕
(⊕t

j=i+1
F (ri,j , x)

)
Fig. 2. The zero-sharing protocol

D. Oblivious Key-Value Store (OKVS)

Definition 1. A Key-Value Store (KVS) is parameterized by a
set K of keys, a set V of values, and consists of two algorithms:

• Encode: Takes as input a set of (ki, vi) key-value pairs
and outputs an object T (or, with statistically small
probability, an error indicator ⊥).

• Decode: Takes as input an object T , a key k, and outputs
a value v.

A KVS is correct if, for all A ⊆ K× V with distinct keys:

(k, v) ∈ A and ⊥̸= T ← Encode(A) =⇒ Decode(T, k) = v

An oblivious key-value store (OKVS) is a data structure
that, when the vi values are random, conceals the ki values
that were used to generate them.

Definition 2. [21] A KVS is an oblivious KVS (OKVS) if,
for all distinct

{
k01, . . . , k

0
n

}
and all distinct

{
k11, . . . , k

1
n

}
, if

Encode does not output ⊥ for
(
k01, . . . , k

0
n

)
or

(
k11, . . . , k

1
n

)
,

then the output of ExpA (
K =

(
k01, . . . , k

0
n

))
is computation-

ally indistinguishable to that of ExpA (
K =

(
k11, . . . , k

1
n

))
,

where:

ExpA (K = (k1, . . . , kn)):
(1) for i ∈ [n] : choose uniform vi ← V
(2) return A (Encode ({(k1, v1) , . . . (kn, vn)}))

In our construction, we need an OKVS with homomorphic
properties. Specifically, we need Decode(·, k) to be a linear
function for all k.

Definition 3. An OKVS is linear (over a field F) if V = F
(”values” are elements of F), the output of Encode is a vector
T in Fm, and the Decode function is defined as:

Decode(T, k) = ⟨d(k), T ⟩ def
=

m∑
j=1

d(k)jTj

for some function d : K → Fm. Hence Decode (·, k) is a
linear map from Fm to F.

For a linear OKVS, one can view the Encode function as
generating a solution to the linear system of equations:

−d (k1)−
−d (k2)−

...
−d (kn)−

T⊤ =


v1
v2
...
vn


We will use the homomorphic property that: If T1 and T2 have
the same dimension, then we have:

Decode(T1 ⊕ T2, k) = Decode(T1, k)⊕ Decode(T2, k)

A binary OKVS over a field F is a special case of a linear
OKVS, where the d(k) vectors are restricted to {0, 1}m ⊆ Fm.
Then Decode(T, k) is simply the sum of some positions in T .
We generally restrict our attention to F = GF

(
2ℓ
) ∼= {0, 1}ℓ,

in which case the addition operation over F is XOR of strings.
In [23], a binary OKVS is called a probe and XOR of strings
(PaXoS) data structure.

Definition 4. An OKVS is doubly oblivious if, for all sets of
n distinct keys {k1, . . . , kn} ⊆ K and n values v1, . . . , vn
each drawn uniformly at random from V , the encoding
T = Encode ({(k1, v1) , . . . , (kn, vn)}) is statistically indis-
tinguishable from an uniformly random element in Fm.

To facilitate easier proof of security, we need the addi-
tional property denoted as doubly oblivious. Note that being
doubly oblivious directly implies being oblivious as, if the
output encoding is a uniformly random element, no adversary
may distinguish two different output encodings. The OKVS
schemes in [24], [25] can both satisfy this property.

E. Server-Aided Two-Party PSI-CA [8]

Gao et al. [8] introduced an efficient server-aided two-
party PSI-CA protocol only utilizing symmetric key technique.
The protocol runs between a sender S, a receiver R, and a
cloud server C. The sender and receiver have a private set
X = {x1, . . . , xm1

} and Y = {y1, . . . , ym2
}, respectively.

Both parties will agree on a PRF F : {0, 1}κ × {0, 1}l →
{0, 1}l before the protocol. The sender will first choose two
random PRF keys (k1, k2) ∈ {0, 1}κ and send k1, k2 to
R, C, respectively. For yi ∈ Y , the receiver will compute
Y ′ = {F (k1, yi)} = {y′1, . . . , y′m2

} and send the set Y ′ to
the cloud server. The cloud server will compute F (k2, y

′
j) for

every y′j ∈ Y ′. Then, it will permute those PRF values with
a random permutation and send the permuted set Y ′′ to the
receiver. The sender will also compute x′

i = F (k2, F (k1, xi))
for xi ∈ X . It will also permute those PRF values with a
random permutation and send the permuted set X ′ to the
receiver. The receiver can obtain the intersection set size by
comparing the PRF values in sets Y ′′ and X ′. It will output
|X ′ ∩ Y ′′| at the end of the protocol. The detailed protocol is
shown in Fig. 3.

PROTOCOL 2. (Server-Aided Two-Party PSI-CA
ΠSA-2-PSI-CA [8])
• Parameters: The protocol runs between a sender S, a

receiver R and a server C. S and R have input size of
m1 and m2. A PRF F : {0, 1}κ × {0, 1}l → {0, 1}l.

• Inputs:
– Sender S has input X = {x1, . . . , xm1

}.
– Receiver R has input Y = {y1, . . . , ym2

}.
– Cloud C has no input.

• Protocol:
1) S chooses random keys (k1, k2) ∈ {0, 1}κ and send

k1, k2 to R, C, respectively.
2) R computes Y ′ = F (k1, Y) and sends Y ′ to C.
3) C computes Y ′′ = F (k2, Y

′) and sends a random
permutation π of Y ′′ to R.

4) S sends to R a random permutation of X ′ =
{F (k2, F (k1, X))} .

5) R output |X ′ ∩ Y ′′|.
Fig. 3. Server-Aided Two-Party PSI-CA protocol from [8]

III. MULTI-PARTY PRIVATE SET INTERSECTION
CARDINALITY

A. Multi-Party PSI-CA Protocol

In this section, we propose a multi-party PSI-CA protocol
built on OKVS and zero-sharing techniques. We assume that
there are t parties and each party holds a private set of n
items Xi = {xi,1, . . . , xi,n}, for i ∈ [t]. P1 will act as the
receiver who receives the cardinality of the intersection set
|
⋂t

i=1 Xi|. Each party agrees on a linear OKVS scheme with
d : {0, 1}ℓ → Fm beforehand. Then parties P1, . . . , Pt will
act as follows: At the beginning, party P2, . . . , Pt will agree
on a zero sharing function S : {0, 1}κ × {0, 1}l → Fm and
a zero sharing seed z ∈ {0, 1}l. Then P2, . . . , Pt invoke the
zero-sharing protocol ΠZS such that Pi receives a key Ki ∈
{0, 1}κ for all i ∈ [2, t]. Pi can calculate its zero-shares ri :=
S(Ki, z) ∈ Fm. Then P2 will generate n random values Γ =
{γ1, . . . , γn} from F, and construct an OKVS by solving the
system below: 

−d (x2,1)−
−d (x2,2)−

...
−d (x2,n)−

T⊤
2 =


γ1
γ2
...
γn


Then P2 sends T ′

2 = T2 + r2 to P1. Whereas, for i ∈ [3, t],
Pi will solve the system below:

−d (xi,1)−
−d (xi,2)−

...
−d (xi,n)−

T⊤
i =


0
0
...
0


Then each Pi sends T ′

i = Ti + ri to P1.

Upon receiving those masked OKVS vectors, P1 will calcu-
late T =

∑t
i=2 T

′
i . Remind that ri is a zero-sharing satisfying∑t

i=2 ri = 0, so T =
∑t

i=2 Ti. Then P1 will decode the
aggregated OKVS T with his private set {x1,j}j∈[n], namely
V = {Decode(T, x1,j)j∈[n]} = {vj}j∈[n]. After that, P1, P2

will invoke the two-party PSI-CA protocol where P2 acts as a
sender with input Γ and P1 acts as a receiver with input V . P1

outputs |V ∩ Γ| as the intersection set cardinality of t parties.
The Multi-Party PSI-CA construction is presented formally in
Fig. 4.

PROTOCOL 3. (Multi-Party PSI-CA)
• Parameters:

– The protocol runs between P1, . . . , Pt for t > 2.
– A finite field F = GF (2λ+2 logn).
– Linear OKVS scheme (Encode,Decode) mapping
n items to m slots.

– Zero-sharing S : {0, 1}κ × {0, 1}l →
{0, 1}m·(λ+2 logn).

• Inputs: Pi’s set Xi = {xi,1, . . . , xi,n}.
• Protocol:

1) Parties P2, . . . , Pt agree on a zero-sharing seed z ∈
{0, 1}l and invoke zero-sharing protocol ΠZS, each
party Pi obtains the key Ki and computes ri :=
S(Ki, z) ∈ Fm such that

∑t
j=2 rj = 0.

2) P2 generates n random values Γ = {γ1, . . . , γn}
from F.

3) P2 generates an OKVS over T2 ← Encode({x2,j , γj
}j∈[n]) and sends T

′

2 = T2 + r2 to P1.
4) For all i ∈ [3, t], Pi constructs an KVS over Ti ←

Encode({xi,j , 0}j∈[n]), and sends T
′

i = Ti + ri to
P1.

5) P1 computes T =
∑t

i=2 T
′

i =
∑t

i=2 Ti and V =
{Decode(T, x1,j)j∈[n]}.

6) P1 and P2 invoke the two-party PSI-CA functionality
F2-PSI-CA where P2 acts as a sender with input Γ and
P1 acts as a receiver with input V .

7) P1 obtains and outputs |V ∩ Γ|.
Fig. 4. Multi-party PSI-CA protocol

Our Multi-Party PSI-CA protocol can also be transformed
easily into a Multi-Party PSI protocol. We only need to change
the Step 6 that P1 and P2 invoke the two-party FPSI instead
of FPSI-CA. P1 can determine that x1,j is in the intersection
set

⋂t
i=2 Xi iff. vj ∈ Γ according to our correctness proven

below.

B. Security Proof

Theorem 1. Assume that the two-party PSI-CA protocol and
the zero-sharing protocol are secure in the semi-honest model,
and the OKVS scheme is doubly oblivious. Then the protocol
in Fig. 4 securely implements the functionality FPSI-CA for
arbitrary t, in the presence of a semi-honest adversary who
may corrupt any subset of {P2, . . . , Pt} or a proper subset of
{P1, P3, . . . , Pt}.

Proof. Correctness. We now show if P1, . . . , Pt run the
protocol honestly, P1 will know the intersection set cardi-
nality of t parties after the protocol with high probability. If
item x1,j ∈

⋂t
i=2 Xi, without loss of generality we assume

that x1,j = x2,k. Thus, in Step 5, the decode result of
P1 will be Decode(T, x1,j) = Decode(

∑t
i=2 Ti, x1,j) =∑t

i=2 Decode(Ti, x1,j) = γk according to the homomorphic
property of linear OKVS. Thus, x1,j will be counted as a
member of the intersection set in Step 7. Otherwise, we claim
that vj = Decode(T, x1,j) be a random value in F since T2 is
oblivious. Then, if we set |F| ≥ 2λ+2 logn, by union bound, the
probability that any Decode(T, x1,j) ∈ Γ for x1,j /∈

⋂t
i=2 Xi

is less than n2

|F| ≤
1
2λ

. In this case, the item x1,j /∈
⋂t

i=2 Xi

will not be counted in Step 7 with high probability.

Privacy. We separate the proof into the maximal collusion
case, from which security for non-maximal collusions can be
derived. We exhibit simulators in two different cases and argue
the indistinguishability of the produced transcripts from the
real execution.
• Case 1: P2, . . . , Pt are passively corrupted. In this case,

the view of P2, . . . , Pt consists only of the transcripts in two-
party PSI-CA protocol. Thus, the simulator is the same as the
one in the two-party PSI-CA protocol. Since the two-party
PSI-CA protocol is secure in the semi-honest model, the joint
view of the parties P2, . . . , Pn is identically distributed in the
simulation.
• Case 2: P1 is passively corrupted, and P3, . . . , Pt are

not all corrupted. Without loss of generality, assume that
P3, . . . , Pt−1 are passively corrupted, but Pt is not corrupted.
In this case, the corrupt parties’ view consists of the following:

1) The transcripts in ΠZS (Step 1).
2) The masked OKVS T ′

2 = T2+r2 and T ′
t = Tt+rt (Step

3, 4).
3) The transcripts in F2-PSI-CA (Step6).
We construct simulator S as follows. S runs the protocol

honestly to generate its view with the following exceptions: In
step 1, S runs the zero-sharing simulator to simulate the view.
In step 3, 4, S use random matrix to simulate T ′

2 and T ′
t . In

step 6, S runs the two-party PSI-CA simulator to simulate the
view. We argue the indistinguishability via following hybrid:
• Hyb0: The {P1, P3, . . . , Pt−1}’s view in the real protocol.
• Hyb1: Same as Hyb0 except that in step 1, S runs the

zero-sharing simulator to simulate the view. This hybrid is
computationally indistinguishable from Hyb0 by security of
the zero-sharing protocol.

• Hyb2: Same as Hyb0 except that in step 3, S use random
matrix to simulate T ′

2. Since the OKVS T2 is encoded by
the random values Γ, according to the doubly oblivious
property of OKVS, the matrix T2 is pseudorandom. Thus,
T ′
2 = T2 + r2 is computationally indistinguishable from the

random matrix.
• Hyb3: Same as Hyb0 except that in step 4, S use random

matrix to simulate T ′
t . By the privacy of zero-sharing,

the coalition of {P1, P3, . . . , Pt−1} will not reveal any
information about the Pt’s zero share st. Thus, the masked

OKVS T ′
t = Tt + rt is computationally indistinguishable

from the random matrix. Furthermore, the joint distribution
of (T ′

2, T
′
t) is indistinguishable to the uniform distribution

on {0, 1}m×(λ+2 logn) × {0, 1}m×(λ+2 logn). Specifically,
consider the conditional distribution. Given the value of
T

′

t = Tt + rt, consider the distribution of T
′

2. Since
T

′

2 = T2 + r2 which T2 is pseudorandom and independent
of rt + Tt, the conditional distribution is uniform and
matches the marginal distribution of T

′

2. Therefore, T
′

2 and
T

′

t are independent. Thus, this hybrid is computationally
indistinguishable from Hyb2.

• Hyb4: Same as Hyb3 except that in step 6, S runs the two-
party PSI-CA simulator to simulate the view. This hybrid is
computationally indistinguishable from Hyb3 by security of
the two-party PSI-CA protocol.

C. Complexity Analysis

In this section, we denote P1 as the two-party PSI-CA
receiver and P2 as the sender in Step 6 of our protocol. The
communication cost of our protocol mainly consists of the
m × |F| bits masked OKVS that P2, . . . , Pt send to P1 in
steps 4 and 5, and the communication cost of the two-party
PSI-CA protocol in step 6. We assume that there is a protocol
Π2-PSI-CA realizes the functionality F2-PSI-CA and we denote
Comm(Π2-PSI-CA) as the communication cost of the protocol.
We set |F| = 2λ+2 logn, so the total communication cost in
our protocol is (t − 1)m (λ+ 2 log n) + Comm(Π2-PSI-CA)
bits. The total computation cost of our protocol mostly comes
from calculating n times zero-sharing function S, encoding
t−1 OKVS, P1 decoding an OKVS with n keys, and the cost
of the two-party PSI-CA protocol Comp(Π2-PSI-CA) in step 6.

We claim that our protocol is much more efficient than the
state-of-the-art multi-party PSI-CA protocol proposed by [8].
In their protocol, all parties must invoke t − 2 times server-
aided OPPRF, which will bring (t− 2)(m+2n) (λ+ 2 log n)
bits communication cost according to the server-aided OPPRF
protocol in Appendix A. Their protocol must also decode for
n(t − 2) times and calculate 4nt − 7n times PRF function.
The zero-sharing process of their protocol is also much more
complicated than ours. The comparison of the two protocols
is shown in Table I. We also compare each party’s communi-
cation and computation costs in Table II and Table III.

We instantiate our protocol using the OKVS scheme pro-
posed by [25], which satisfies m = 1.23n. We utilize the
server-aided two-party PSI-CA protocol proposed by [8],
and party P3 will act as the server in the two-party PSI-
CA protocol. The total computation cost of our protocol is
((t− 1)m+ 3n) (λ+ 2 log n) bits while all parties need to
send ((t− 2)(m+ 2n) + 3n) (λ+ 2 log n) bits in total in the
protocol proposed by [8]. Our computation cost is about 0.45
times that of theirs when t = 16. The computation cost of our
protocol is also less than theirs.

TABLE I
TOTAL COMMUNICATION COST (IN BITS) OF ALL PARTIES AND

COMPUTATION COST FOR OUR MULTI-PARTY PSI-CA PROTOCOL AND
PROTOCOL [8]. WE ONLY ACCOUNTED FOR THE TOTAL AMOUNT OF DATA

SENT BY EACH PARTY. WE DENOTED Comm(Π2-PSI-CA),
Comp(Π2-PSI-CA) AS THE COMMUNICATION AND COMPUTATION COST OF

THE TWO-PARTY PSI-CA PROTOCOL, RESPECTIVELY. WE ASSUME
|F| = 2λ+2 logn .

Scheme Total Communication Cost Total Computation Cost

Our pro-
tocol

(t − 1)m (λ+ 2 logn) +
Comm(Π2-PSI-CA)

1 execution of ΠZS
(t− 1) times Encode

n times Decode
Comp(Π2-PSI-CA)

[8] (t−2)(m+2n) (λ+ 2 logn)+
Comm(Π2-PSI-CA)

1 execution of ΠZS
(t− 2) times Encode
n(t− 2) times Decode

4nt− 7n PRF
Comp(Π2-PSI-CA)

TABLE II
COMMUNICATION COST (IN BITS) OF EVERY PARTY IN OUR MULTI-PARTY

PSI-CA PROTOCOL AND PROTOCOL BY [8]. WE ACCOUNTED FOR THE
AMOUNT OF DATA SENT AND RECEIVED FOR EACH PARTY. WE DENOTE P1

AS THE TWO-PARTY PSI-CA RECEIVER AND P2 AS THE SENDER,
Comm(Π2-PSI-CA) AS THE COMMUNICATION COST OF THE TWO-PARTY

PSI-CA PROTOCOL. WE ASSUME |F| = 2λ+2 logn .

Scheme P1 P2
Pi

(∀ i ∈ [3, t])

Our
proto-
col

Comm(Π2-PSI-CA)+
(t− 1)m (λ+ 2 logn)

m (λ+ 2 logn)+
Comm(Π2-PSI-CA)

m (λ+ 2 logn)

[8]
2(t− 2)n (λ+ 2 logn)
+Comm(Π2-PSI-CA)

(t− 2)(m+ 2n)
(λ+ 2 logn)+

Comm(Π2-PSI-CA)

m (λ+ 2 logn)

TABLE III
COMPUTATION COST FOR OUR MULTI-PARTY PSI-CA PROTOCOL AND

PROTOCOL [8]. WE DENOTE P1 AS THE TWO-PARTY PSI-CA RECEIVER
AND P2 AS THE SENDER, S(Ki, ·) AS THE ZERO-SHARING FUNCTION,

Compr(Π2-PSI-CA), Comps(Π2-PSI-CA) AS THE COMPUTATION COST OF
THE RECEIVER AND THE SENDER, RESPECTIVELY.

Scheme P1 P2
Pi

(∀ i ∈ [3, t])

Our
proto-
col

n times Decode
Compr(Π2-PSI-CA)

1 calculation of
S(Ki, ·)

1 times Encode
Comps(Π2-PSI-CA)

1 calculation of
S(Ki, ·)

1 times Encode

[8] (t− 1)n PRF
Compr(Π2-PSI-CA)

(t− 2)n times
Decode

(t− 2)n PRF
n calculation of

S(Ki, ·)
Comps(Π2-PSI-CA)

n calculation of
S(Ki, ·)

1 times Encode
2n PRF

IV. IMPLEMENTATION AND PERFORMANCE COMPARISON

We implement our protocol in C++ using libOTe [26].
Our implementation is available on GitHub: https://github.
com/lzjluzijie/mpsi. Our implementation uses the OKVS code
from [25], where Encode and Decode are based on the
PaXoS data structure. The expansion parameter of the OKVS
code we used in our protocol is 1.23, namely m = 1.23n.

We use the zero sharing protocol in Section II-C with
AES as PRF. All evaluations were performed with each item
input length of 128 bits, the statistical security parameter is
λ = 40, and the computational security parameter is κ = 128.
Our implementation uses the server-aided two-party PSI-CA
protocol from [8], where P3 acts as the server.

A. Benchmark

The experiments were run on a desktop computer with 16
cores AMD 3950X CPU and 32GiB RAM. We considered the
localhost environment and simulated WAN network settings
using the Linux tc command, with 200 Mbps bandwidth
and 96 ms round-trip latency. The implementation is single-
threaded, so we expect an approximately linear speedup for
computation when using multithreading.

In the same environment, we run the state-of-the-art mul-
tiparty PSI-CA code provided in [8]. Note that the printed
running time of their program did not include the time of zero
sharing, so we measured the duration directly from the begin-
ning of execution to termination. Although our experiment of
their program didn’t match the data in [8], the data in Table.
IV confirms our previous analysis in Section III-C.

To understand the efficiency of our protocol, we evaluate
it on the range of the number of parties t ∈ {3, 4, 8, 16} on
the set size n ∈ {212, 216, 220}. Due to the different roles of
parties, our protocol is asymmetric with respect to the receiver
P1, sender P2, and the server P3 of the server-aided two-party
PSI-CA as well as other parties Pi for i ∈ [4, t]. Thus, we
report the performance results of these parties separately. In
our protocol, the workload of the receiver is to compute n
times Decode of OKVS and n times PRF evaluations (i.e.,
AES instances). The majority of the receiver’s running time
is to wait for other parties to finish their work. For example,
P1 takes 5.84 seconds to compute PSI-CA with t = 16 and
n = 220 in the localhost setting. Furthermore, as P1 receives
encoded OKVS table from all other parties (i.e., P2, . . . , Pt),
P1’s communication cost is highest amongst other participants.
For t = 16 and n = 220, the protocol PSI-CA requires 326.6
MiB communication cost in total, where there are 310 MiB
on P1’s side. Our protocol’s communication and computational
overhead are better than the state-of-the-art protocol proposed
by [8]. The detailed experiment results are shown below.

Computation Improvement. Table. IV presents the running
time of protocols in both LAN and WAN settings. We sepa-
rately report the running time of P1, P2, P3, and other parties
Pi for i ∈ [4, t]. In the Localhost setting, where the running
time is dominated by computation, our protocol requires less
computation cost than Gao et al.’ s [8]. For example, to

https://github.com/lzjluzijie/mpsi
https://github.com/lzjluzijie/mpsi

TABLE IV
RUNNING TIME (IN SECONDS).

n t Protocol
Running Time

localhost 200 mbps 20 mbps
P1 P2 P3 Pi∈[4,t] P1 P2 P3 Pi∈[4,t] P1 P2 P3 Pi∈[4,t]

212

3 Ours 0.01 0.01 0.01 - 0.68 0.20 0.53 - 0.74 0.21 0.57 -
[8] 0.07 0.07 0.07 - 1.13 1.22 1.22 - 1.18 1.28 1.28 -

4 Ours 0.01 0.01 0.01 0.01 0.68 0.20 0.53 0.14 0.75 0.22 0.58 0.14
[8] 0.07 0.07 0.07 0.07 1.56 1.66 1.75 1.70 1.65 1.74 1.84 1.79

8 Ours 0.02 0.01 0.01 0.01 0.69 0.20 0.54 0.14 0.84 0.22 0.67 0.15
[8] 0.08 0.08 0.08 0.08 2.46 2.56 2.65 2.75 2.80 2.89 2.97 3.08

16 Ours 0.04 0.04 0.04 0.04 0.70 0.20 0.55 0.14 1.26 0.22 1.09 0.15
[8] 0.10 0.10 0.10 0.10 4.07 4.17 4.26 4.36 5.17 5.26 5.36 5.46

216

3 Ours 0.07 0.04 0.04 - 1.46 0.23 0.90 - 2.93 0.24 2.07 -
[8] 0.17 0.16 0.16 - 3.06 3.16 3.16 - 4.86 4.96 4.95 -

4 Ours 0.07 0.04 0.04 0.04 1.50 0.33 0.93 0.18 3.44 0.26 2.58 0.18
[8] 0.19 0.19 0.19 0.19 3.38 3.48 3.57 3.52 6.47 6.56 6.66 6.61

8 Ours 0.08 0.05 0.06 0.05 1.67 0.33 1.11 0.20 5.61 0.30 4.75 0.19
[8] 0.21 0.21 0.21 0.21 4.58 4.68 4.77 4.87 13.05 13.15 13.25 13.34

16 Ours 0.13 0.09 0.11 0.08 2.05 0.33 1.49 0.20 9.91 0.61 9.05 0.20
[8] 0.25 0.25 0.25 0.25 7.02 7.12 7.21 7.31 26.01 26.11 26.20 26.30

220

3 Ours 2.90 1.52 2.09 - 7.99 5.63 7.10 - 34.19 25.49 32.65 -
[8] 5.07 5.07 5.07 - 10.74 10.83 10.83 - 47.68 47.77 47.77 -

4 Ours 3.20 1.74 2.36 1.74 8.90 6.52 7.99 4.86 42.59 33.82 40.94 25.97
[8] 5.10 5.09 5.09 5.09 13.62 13.70 13.80 13.75 70.54 70.63 70.73 70.68

8 Ours 3.83 2.41 3.02 2.21 12.27 9.88 11.35 7.61 76.10 67.22 74.44 52.74
[8] 5.55 5.54 5.54 5.54 25.65 25.74 25.84 25.93 161.22 161.32 161.41 161.51

16 Ours 5.84 4.00 4.96 3.67 20.37 17.96 19.44 14.70 144.06 135.25 142.40 123.14
[8] 6.71 6.71 6.70 6.70 50.71 50.80 50.90 50.99 343.46 343.55 343.64 343.74

compute PSI-CA with t = 16 parties and set size n = 220,
our protocol runs in 5.84 seconds, which is 1.15× faster than
Gao et. al.’s [8] that runs in 6.71 seconds.

In the WAN setting, as shown in the Table. IV, in moderate
bandwidth (i.e., 20 ∼ 200 Mbps), our protocol takes much less
time than that in the localhost setting because we have lower
communication overhead than Gao et al.’s [8]. For example,
for t = 16 parties and set size n = 220, in the 20 Mbps
network, our protocol runs in 144.06 seconds, which is 2.38×
faster than Gao et al.’ s [8] that runs in 343.46 seconds.
Communication Improvement. Table. V shows the com-
munication overhead of the protocols, measured in one-way
cost. The total communication cost of our protocol is about
m+2n

m × smaller than that of Gao et al.’ s [8]. For example,
to compute PSI-CA with t = 16 parties and set size n = 220,
our protocol requires 326.6 MiB communication, which is a
2.38× improvement of Gao et. al.’s [8] that requires 780.48
MiB communication.

V. CONCLUSIONS

In this paper, we propose an efficient multi-party PSI-CA
protocol only from OKVS and zero-sharing techniques. We
compare the communication and computation with state-of-

the-art multi-party PSI-CA protocol [8] theoretically and ex-
perimentally. We measured our protocol on a WiFi connection
of 200 Mbps bandwidth. It only needs 20.37 seconds and
310.6 MiB communication when computing the intersection
between 16 parties with 220 private items each. In this case,
our protocol reduces the total communication by a factor
up to 2.4× compared to that of [8]. We also demonstrate
that our protocol has higher computational efficiency than
their protocol from theoretical analysis. However, our protocol
still has a limitation. Our protocol requires two specific non-
colluding participants instead of the setting of non-colluding
participants. Thus, future research will focus on constructing
PSI-CA protocols under stronger security settings. We also
observe the potential adaptation of other OKVS schemes to
our protocol. Our future work will also focus on the specific
implementation.

ACKNOWLEDGMENT

This work is supported by National Key R&D Program of
China (No. 2021YFB2701304).

REFERENCES

[1] S. Dittmer, Y. Ishai, S. Lu, R. Ostrovsky, M. Elsabagh, N. Kiourtis,
B. Schulte, and A. Stavrou, “Function secret sharing for psi-ca: With ap-

TABLE V
COMMUNICATION COST (IN MIB).

n t
Ours [8]

P1 P2 P3 Pi∈[4,t] Total P1 P2 P3 Pi∈[4,t] Total

212
3 0.23 0.15 0.21 - 0.30 0.31 0.27 0.21 - 0.40
4 0.31 0.15 0.21 0.08 0.38 0.44 0.47 0.21 0.08 0.60
8 0.64 0.15 0.21 0.08 0.70 0.94 1.29 0.21 0.08 1.42
16 1.31 0.15 0.21 0.08 1.36 1.94 2.93 0.21 0.08 3.06

216
3 3.49 2.24 3.24 - 4.49 5.00 4.27 3.27 - 6.27
4 4.73 2.24 3.24 1.24 5.73 7.00 7.54 3.27 1.27 9.54
8 9.71 2.24 3.24 1.24 10.70 15.00 20.62 3.27 1.27 22.62
16 19.67 2.24 3.24 1.24 20.64 31.00 46.78 3.27 1.27 47.78

220
3 55.28 35.64 51.64 - 71.28 80.00 68.32 52.32 - 100.32
4 74.92 35.64 51.64 19.64 90.92 112.00 120.64 52.32 20.32 152.64
8 153.48 35.64 51.64 19.64 169.48 240.00 329.92 52.32 20.32 361.92
16 310.60 35.64 51.64 19.64 326.60 496.00 748.48 52.32 20.32 780.48

plications to private contact tracing,” arXiv preprint arXiv:2012.13053,
2020.

[2] T. Duong, D. H. Phan, and N. Trieu, “Catalic: Delegated psi cardinality
with applications to contact tracing,” in International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2020, pp. 870–899.

[3] K. Michael and R. Abbas, “Behind covid-19 contact trace apps: The
google–apple partnership,” IEEE Consumer electronics magazine, vol. 9,
no. 5, pp. 71–76, 2020.

[4] J. Gao, C. Surana, and N. Trieu, “Secure contact tracing platform from
simplest private set intersection cardinality,” IET information security,
vol. 16, no. 5, pp. 346–361, 2022.

[5] N. Trieu, K. Shehata, P. Saxena, R. Shokri, and D. Song, “Epi-
one: Lightweight contact tracing with strong privacy,” arXiv preprint
arXiv:2004.13293, 2020.

[6] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena, K. Seth,
M. Raykova, D. Shanahan, and M. Yung, “On deploying secure comput-
ing: Private intersection-sum-with-cardinality,” in 2020 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2020, pp. 370–
389.

[7] K. Chida, K. Hamada, A. Ichikawa, M. Kii, and J. Tomida,
“Communication-efficient inner product private join and compute with
cardinality,” in Proceedings of the 2023 ACM Asia Conference on
Computer and Communications Security, 2023, pp. 678–688.

[8] J. Gao, N. Trieu, and A. Yanai, “Multiparty private set intersection
cardinality and its applications,” Proceedings on Privacy Enhancing
Technologies, 2024.

[9] M. Wu and T. H. Yuen, “Efficient unbalanced private set intersection
cardinality and user-friendly privacy-preserving contact tracing,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 283–300.

[10] L. Kissner and D. Song, “Privacy-preserving set operations,” in Annual
International Cryptology Conference. Springer, 2005, pp. 241–257.

[11] N. Chandran, N. Dasgupta, D. Gupta, S. L. B. Obbattu, S. Sekar, and
A. Shah, “Efficient linear multiparty psi and extensions to circuit/quorum
psi,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 1182–1204.

[12] M. Naor and B. Pinkas, “Oblivious transfer and polynomial evaluation,”
in Proceedings of the thirty-first annual ACM symposium on Theory of
computing, 1999, pp. 245–254.

[13] J. Vaidya and C. Clifton, “Secure set intersection cardinality with
application to association rule mining,” Journal of Computer Security,
vol. 13, no. 4, pp. 593–622, 2005.

[14] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography. CRC press, 2018.

[15] P. Mohassel, P. Rindal, and M. Rosulek, “Fast database joins and psi
for secret shared data,” in Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, 2020, pp.
1271–1287.

[16] P. Mohassel and S. Sadeghian, “How to hide circuits in mpc an efficient
framework for private function evaluation,” in Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques.
Springer, 2013, pp. 557–574.

[17] E. Fenske, A. Mani, A. Johnson, and M. Sherr, “Accountable private set
cardinality for distributed measurement,” ACM Transactions on Privacy
and Security, vol. 25, no. 4, pp. 1–35, 2022.

[18] A. A. Jolfaei, H. Mala, and M. Zarezadeh, “Eo-psi-ca: Efficient out-
sourced private set intersection cardinality,” Journal of Information
Security and Applications, vol. 65, p. 102996, 2022.

[19] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[20] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469–472, 1985.

[21] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Obliv-
ious key-value stores and amplification for private set intersection,” in
CRYPTO 2021, Proceedings, Part II 41. Springer, 2021, pp. 395–425.

[22] V. Kolesnikov, N. Matania, B. Pinkas, M. Rosulek, and N. Trieu, “Practi-
cal multi-party private set intersection from symmetric-key techniques,”
in Proceedings of ACM CCS 2017, 2017, pp. 1257–1272.

[23] B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai, “Psi from paxos: fast,
malicious private set intersection,” in Annual International Conference
on the Theory and Applications of Cryptographic Techniques. Springer,
2020, pp. 739–767.

[24] A. Bienstock, S. Patel, J. Y. Seo, and K. Yeo, “{Near-Optimal}
oblivious {Key-Value} stores for efficient {PSI},{PSU} and {Volume-
Hiding}{Multi-Maps},” in 32nd USENIX Security Symposium (USENIX
Security 23), 2023, pp. 301–318.

[25] S. Raghuraman and P. Rindal, “Blazing fast psi from improved okvs and
subfield vole,” in Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, 2022, pp. 2505–2517.

[26] L. R. Peter Rindal, “libOTe: an efficient, portable, and easy to use
Oblivious Transfer Library,” https://github.com/osu-crypto/libOTe.

APPENDIX

A. Server-Aided OPPRF protocol from [8]

A server-aided OPPRF protocol runs between a sender, a
receiver, and a cloud server. The sender and receiver have
a private set X = {(x1, v1), . . . , (xm1

, vm1
)} and Y =

{y1, . . . , ym2
}, respectively. For yi ∈ Y , the receiver will

receive OPPRF output vj if yi = xj after the protocol.
Otherwise, it will receive a random value as the OPPRF output.
The detailed protocol is shown in Protocol 4.

B. Multi-party PSI-CA from [8]

The original protocol proposed by [8] involved n parties,
where P1, Pn, and P2 act as the receiver, sender, and server
of ΠSA-2-PSI-CA, respectively. We change the numbering of the

https://github.com/osu-crypto/libOTe

PROTOCOL 4. (Server-Aided OPPRF Πsopprf [8])
• Parameters:

– The protocol runs between a sender S , a receiver R
and a server C. S and R have input size of m1 and
m2. A PRF F : {0, 1}κ × {0, 1}l → {0, 1}l.

• Inputs:
– Sender S has input X = {(x1, v1), . . . , (xm1

, vm1
)}

with (pseudo) random vi’s
– Receiver R has input Y = {y1, . . . , ym2

}.
– Cloud C has no input.

• Protocol:
1) S chooses random keys (k1, k2) ∈ {0, 1}κ and send

k1, k2 to R, C, respectively.
2) R computes Y ′ = F (k1, Y) and sends Y ′ to C.
3) C computes Y ′′ = F (k2, Y

′) = {y′′1 , . . . , y′′m2
} and

sends Y ′′ to R.
4) S constructs an OKVS T ←

Encode({xi, F (k2, F (k1, xi))
⊕

vi}i∈[m1]) and
sends T to R.

5) For every j ∈ [m2], R outputs v′j =
y′′j

⊕
Decode(T, yj).

Fig. 5. Server-Aided OPPRF protocol from [8]

parties in their protocol, adapting to our notation such that
P1, P2, and P3 act as the receiver, sender, and server of
ΠSA-2-PSI-CA. The detailed protocol is shown in Protocol 2.

PROTOCOL 5. (Multi-party PSI-CA [8])
• Parameters:

– The protocol runs between parties P1, . . . , Pt for
t > 2. A PRF F : {0, 1}κ × {0, 1}l → {0, 1}l.

• Inputs: Pi has Xi = {xi,1, . . . , xi,n}.
• Protocol:

1) Parties P2, . . . , Pt invoke ΠZS and each party Pi

obtains the key Ki for a sharing function S.
2) Parties P1 and P3 agree on a random PRF key s.
3) Parties P3, . . . , Pt agree on a random PRF key k.
4) Party Pi for i ∈ [3, t] computes the set of points
Pi where:

– P3 =
{(F (k, x3,j), S(K3, x3,j)

⊕
F (s, x3,j))}j∈[n].

– For i ∈ [4, t] Pi =
{(F (k, xi,j), S(Ki, xi,j)

⊕
F (s, xi,j))}j∈[n].

5) P2 and Pi (for every i ∈ [3, t]) invoke an instance
of the server-aided OPPRF Πsopprf where:

– Pi acts as a sender with input Pi.
– P1 acts as a cloud server with no input.
– P2 acts as a receiver with input X2. P2 obtains

the result yi,j on the query x2,j .
6) For every j ∈ [n], P2 computes wj =⊕t

i=3 yi,j
⊕

S(K2, x2,j). Then, P2 sets W to be
{w1, . . . , wn}.

7) P1 and P2 invoke the server-aided ΠSA-2-PSI-CA
protocol with P3 as a server, where:

– P2 acts as a sender with input W .
– P3 acts as a cloud server with no input.
– P1 acts as a receiver with input V = F (s,X1),

and obtains |W ∩ V |.
Fig. 6. Multi-party PSI-CA protocol from [8]

	Introduction
	State-of-the-Art for Multiparty PSI-CA
	Our Contributions and Techniques
	Paper Organization

	Preliminary
	Notation
	Private Set Intersection Cardinality and Security Model
	Zero Sharing
	Oblivious Key-Value Store (OKVS)
	Server-Aided Two-Party PSI-CA gao2024multiparty

	Multi-party Private Set Intersection Cardinality
	Multi-Party PSI-CA Protocol
	Security Proof
	Complexity Analysis

	Implementation and Performance Comparison
	Benchmark

	Conclusions
	References
	Appendix
	Server-Aided OPPRF protocol from gao2024multiparty
	Multi-party PSI-CA from gao2024multiparty

