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We propose a solution for optimized scaling of multi-party computation using the MP-SPDZ framework (CCS’20). It does not use
manual optimization but extends the compiler and the virtual machine of the framework, thus providing an improvement for any user.
We found that our solution improves timings four-fold for a simple example in MP-SPDZ, and it improves an order of magnitude on
every framework using secret sharing considered by Hastings et al. (S&P’19) either in terms of time or RAM usage. The core of our

approach is finding a balance between communication round optimization and memory usage.
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1 INTRODUCTION

Multi-party computation (MPC) is a cryptographic technique that allows a set of parties to compute on their private
data without revealing any of it. Results will only be released to some or all parties if they agree to do so. One
could think of the computation happening in a black box that is coordinated by the parties. Another mental model
is the replacement of a trusted third party by a protocol between the parties. Since its original proposition in the
1980s [3, 8, 16], MPC has emerged as a major privacy-enhancing technology with endorsements by several international
organizations [2, 34, 35, 38].

Over the last two decades, a long line of works has focused on improving the practicability of MPC, both in terms of
implementations and simpler protocols. The former was started by Malkhi et al. [31] while two examples of the latter
are Damgard et al. [11] and Araki et al. [1]. Since Malkhi et al., many frameworks for MPC were released as open-source
software. They cover a range of protocols and approaches as covered by Hastings et al. [19].

One reason for this diversity is that some MPC protocols requires an increasing number of communication rounds as
the computation grows whereas others only need a constant number of rounds in theory. Yao’s garbled circuits [28]
are the classical example for the latter. In this work, we will focus more on the former because applications such as
privacy-preserving machine learning often use non-constant-round protocols [26].

However, these protocols pose the following challenge: Communication rounds are so expensive that is beneficial to
reduce them by combining parallel computation, but it can be prohibitively expensive in terms of memory to reduce
the computation to the minimal number of rounds possible. It is therefore imperative to find a trade-off between these
two goals, and we propose a new solution to do so based on the commonly used MP-SPDZ framework [21].

At the heart of our solution lies the question of how to represent the computation most efficiently. Common
representations of computation are binaries for CPUs or non-machine specific representations such as the internal
representation of LLVM [27] or Java [17]. However, these are geared towards the properties of CPUs, which are not
encumbered by the issue of communication rounds. MP-SPDZ uses its own bytecode, which allows for an unlimited
parallelization of operations reliant on networking. We have extended MP-SPDZ’s representation, compiler, and virtual

machine to implement our solution, and we show that it makes computation of a simple example more efficient.
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2 PRELIMINARIES
2.1 Multi-Party Computation

Multi-party computation denotes computation on data that is shared between several parties in a black-box manner,
that is, no data input or intermediate data is revealed unless the parties chose to do so. A key technique in MPC is secret
sharing, which is used for all intermediate values in a computation. The simplest scheme is additive secret sharing
where every party knows a random value x; such that all the values add up to the secret: x = }; x;. This requires a
finite domain for choosing the shares uniformly at random, for example a modular integer domain: Z,, = Z/(mZ).
Clearly, adding shares corresponds to adding secrets if addition is transitive, which is the case for the domain
mentioned above. It is not known how to multiply additive shares in secret without more complex cryptographic
machinery such as oblivious transfer [15, 24] or homomorphic encryption [9]. However, this can be achieved by assigning
several additive shares to every party, resulting in a scheme called replicated secret sharing. The simplest case of this
features three parties with every parting holding two shares. For a secret x, the i-th party holds (X1 mod 3> Xi—1 mod 3)

such that x = Z,?:o x; for random x;. In addition, if y has been shared in the same way;, it holds that

x-y=(xo+x1+x2) - (Yo +Yy1+y2)
= (x0 - (yo +y1) +x1 - Yo)
+(x1 - (y1+y2) +x2 - 1)
+ (x2 - (Y2 + yo) +x0 - y2)-

Every summand of the last term can be computed by a single party. For example, the last line only contains indices 0
and 2 and can thus be computed by party 1. It follows that the parties can compute an additive secret sharing of the
product of two numbers available in replicated secret sharing. To make the result available for further multiplications,
the parties have to communicate to turn the additive secret sharing into a replicate one again. Furthermore, they have
to randomize the shares because the additive secret is not uniformly random. See Araki et al. [1] for a full specification.

Many operations that are atomic on CPUs, such as comparisons or divisions, have to be implemented using multi-
plications in MPC. See Catrina and de Hoogh [6, 7] for examples. This raises the question on how to schedule larger
computations efficiently in MPC, in particular with regard to networking rounds. For example, it might make sense to
run two independent multiplications in parallel to save on network rounds when using the above multiplication (or any
other multiplication protocol because it is known that multiplication requires communication). In the following section,

we will discuss the various approaches in prior work.

2.2 Approaches for Implementing MPC

2.2.1 The Plain Approach. The straight-forward approach is to simply instruct the MPC framework on the desired
operations, which will be executed immediately, including networking operations. Given the cost of network rounds,
this imposes considerable onus on the developer for every added computation as they have to put great effort into

finding operations that can be parallelized. This approach is used by many implementations of MPC [12, 13, 32, 39].

2.2.2  Online Scheduling. VIFF [10] was the first framework to deviate from the above approach by introducing dynamic
scheduling. The core idea there is to maintain a dependency graph of values “behind the scenes”, that is, every share or

output value seen by the developer in the computation is only a promise of a value available in the future. Whenever
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an operation on these values is called, a new future value is created, and it is attached to the actual operation to be
executed when the actual value arrives via the network.

The cost of this approach is the maintenance of the graph of value dependencies, although the use of Python makes
this easy. A further cost comes from the fact that the parties are not synchronized. In a three-party protocol for example,
one party might receive the necessary values for two parallel multiplications in a different order than another party.
VIFF maintains a program counter to identify values according to the order of their creation. However, this is not
straightforward because values are sometimes created only as a reaction to incoming information.

VIFF’s successor MPyC [36] uses the same approach and is also based on Python. We are not aware of any framework
using a similar approach with a more low-level implementation (e.g., C++). It is therefore hard to make a fair comparison

to other approaches they have been implemented in more efficient settings.

2.2.3 Compilation. Some MPC frameworks use a representation of computation, which can be optimized [4, 20, 25, 29,
33, 40, 41]. Keller et al. [25] focus on reducing the number of communication rounds. This approach was later refined in
MP-SPDZ [21].

Some of these frameworks involve a full unrolling of all loops, i.e., a loop over n leads to a representation of size
O(n). This clearly is not suitable to scaling. For example, CBMC-GC [20] cannot handle a relatively simple example
with 1000 data points as shown in Figure 6.

Other frameworks do not seem to undertake an attempt to optimize the network rounds [4, 29, 41]. If the computation
is done using garbled circuits as in ObliVM [29], this matters less, however.

Somewhat interestingly, Frigate [33] seems attempting to achieve a trade-off as evidenced by the fact that repre-
sentation first grows quickly than falls down and grows more slowly with a growing data size. This is reflected in the
running times in Figure 6.

In the following section, we will discuss the MP-SPDZ compilation and representation in more detail.

2.3 Compilation in MP-SPDZ

MP-SPDZ stands out in the way that it defines an entire instruction set geared towards many kinds of MPC, totaling
more than 200 instructions [22]. The most comparable framework, Sharemind, features about 150 implemented instruc-
tions [37]. However, there are notable differences between the two. First, Sharemind instructions are type-independent
unlike MP-SPDZ instructions that use different codes for different type combinations. Second, Sharemind uses more
instructions for cases where the use could be reduced. For example, there are 11 “jump” instructions including six for
all possible comparisons. Lastly, MP-SPDZ has more instructions that are more specific to MPC such as for secure
shuffling, matrix multiplication, probabilistic truncation, and edaBit [14] generation.

We will use the example of a simple loop to illustrate MP-SPDZ’s compilation process and instruction set. The
high-level code in Figure 1 uses a function decorator to avoid unrolling the loop at compile time.

The code features the following instructions:

ldint Load a compile-time integer to a cleartext integer register.

addint Add two integer registers.

ldmsi Load a secret integer register from run-time memory address (cleartext integer register).
stmsi Store a secret integer register to a run-time memory address (cleartext integer register).
muls Multiply secret integers. The additional parameters assist in parallelization.

Itc Compares cleartext integer registers.
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a, b, ¢ = [sint.Array(10) for i in range(3)]
@for_range(10)
def _(i):

c[i] = al[i] = b[i]

ldint cio, 0@ # 0

ldint ci3, 8192 # 1
addint ci2, ci@, ci3 # 2
ldmsi s1, ci2 # 3

ldint ci1, 8202 # 4
addint ci3, ci@, cil # 5
ldmsi s2, ci3 # 6

muls 4, 1, s@, s1, s2 # 7
ldint ci2, 8212 # 8
addint cil, ci@, ci2 # 9
stmsi s@, cil # 10

ldint ci3, 1 # 11

addint ci2, ci@Q, ci3 # 12
ldint cil, o # 13

addint cio@, ci2, cil # 14
ldint ci3, 10 # 15

ltc cil, ci2, ci3 # 16
jmpnz cil, -17 # 17

Fig. 1. High- and low-level code for run-time loop in MP-SPDZ. Run-time range checks have been deactivated for simplicity.

a, b, ¢ = [sint.Array(10) for i in range(3)]
for i in range(10):

c[i] = al[i] * b[i]

ldms s10, 8192 # @

...)

ldms s29, 8211 # 19

muls 40, 1, s9, s10, s11, 1, s8, s12, s13, (...) # 20
stms s9, 8212 # 21

...

stms s@, 8221 # 30

Fig. 2. High- and low-level code for compile-time loop in MP-SPDZ. Run-time range checks have been deactivated for simplicity.

jmpnz Jump in the bytecode if the given cleartext integer registers is non-zero.

Lines 1-10 are concerned with the multiplication and the array accesses, while lines 11-17 are concerned with
the loop. ci2 defined on line 12 grows one bigger with every execution of the loop body, and after 10 loop bodies,
the comparison on line 16 results 0, avoid jumping back on line 17 for the first time. In contrast, Figure 2 shows the
equivalent code with Python loop that is unrolled at compile time.

Lastly, Figure 3 shows the same functionality using MP-SPDZ’s vector capabilities. This is clearly the most compact

code, but it puts the onus on the programmer by using unusual structures. While it is round-optimal as it allows the


https://orcid.org/0000-0003-2261-9376

How To Scale Multi-Party Computation 5

a, b, ¢ = [sint.Array(10) for i in range(3)]
cl:]1 =al:] = b[:]

vldms 10, s10, 8192 # 0
vldms 10, s20, 8202 # 1
muls 4, 10, s0@, s10, s20 # 2
vstms 10, s@, 8212 # 3

Fig. 3. High- and low-level code for vectorized computation in MP-SPDZ. Run-time range checks have been deactivated for simplicity.

virtual machine to execute all operations in parallel, it might use too much memory when scaling up because it requires
all intermediate protocol information to be held at once. In Section 4, we will explore a way of scaling up while striking

a balance between memory usage, network rounds, and programmer involvement.

3 AN EXAMPLE STUDY

We will use the cross-tabulation example by Hastings et al. [19]. The task can be understood as summing the salaries of
employees by same category (e.g., age or location). The input is given as two tables, one linking unique identifiers to the
salary, and another linking the same identifiers to a category identifier. A simple solution is given in Algorithm 1. While
it is not the most efficient algorithm for plaintext computation, it is possible to implement it in secure computation
without the use of sophisticated data structures that are more challenging in secure computation. Furthermore, the

purpose of this work is assessing the scalability rather finding the most efficient approach for the example.

,-[ Algorithm 1: Cross-tabulation } <

Input Salary table, category table

Output Sum of salaries for every category
1: Initialize output table
2. for Every ID in the salary table do
3 for Every ID in the category table do

4 if IDs are the same then

5 Increase salary sum of the category in the output table
6: end if

7 end for

8: end for

Consider the scheduling in the context of multi-party computation. The comparisons on line 4 are independent of
anything else; they thus could be computed in parallel at the beginning. However, this might exhaust the storage as it
would require quadratic storage for all the results. On the other hand, running the comparison strictly one after leads to
a large number of communication rounds in non-constant round protocols while likely not underutilizing the memory.
The optimal solution is therefore most likely in a solution that computes some comparisons in parallel but not all of
them. To this end, Biischer et al. [5] have proposed a measured loop unrolling that unrolls the loop partially until a

specified budget is reached. The partially unrolled loop is then optimized for communication rounds, that is, all the
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comparisons in the partially unrolled loop are scheduled in parallel in our example. MP-SPDZ [21] implements this

approach by using the number of instructions in its internal representation as the relevant parameter for the budget.

4 SCALING COMPUTATION IN MP-SPDZ

MP-SPDZ executes high-level code in Python at compilation time. This means that Python loops are fully executed, or
in other words, completely unrolled. Clearly, this does not scale well as the size of the representation grows with the
size of the dataset. The other extreme is to not unroll the loop at all. While this keeps the representation of constant
size, not only the number of communication rounds goes up but also the average communication per round remains at
a very low level. This means that the wall clock time is dominated by the number of rounds (which could be lowered)
as opposed to the amount of communication (which is determined by the protocol and the computation). Algorithms 2

and 3 detail the two procedures. They are illustrated by the two code examples in Section 2.3.

,_{ Algorithm 2: Compilation with unrolling }

Input Loop in MP-SPDZ high-level code
Output MP-SPDZ bytecode without jump instructions

1: for every loop iteration do

2: Translate the high-level code to the internal representation
3. end for

4: Optimize the entire internal representation at once

5: return bytecode of internal representation

,_[ Algorithm 3: Compilation without unrolling }

Input Loop in MP-SPDZ high-level code

Output MP-SPDZ bytecode with jump instructions
1: Translate the high-level code of one loop body to the internal representation
2: Optimize the loop body alone
3: Add jump instructions to repeat execution of loop body

4: return bytecode of internal representation

Figures 4 and 5 show the running time and the bytecode size for the two approaches. As expected, loop unrolling
decreases the time but increases the bytecode size. We have used the three-party computation protocol suite in
Appendix A of Keller and Sun [26] for the timing, and we have run the three party on a single machine. While this does
not reflect the cost in a more realistic setting, it does reflect the computational cost. We have used a single thread per
party.

Figure 5 also demonstrates that, once the bytecode size would near 1 GB, the compiler cannot handle it memory
anymore, hence the lack of figures for the unrolling approach above a dataset size of 128.

The fact that unrolling leads to almost one order of magnitude savings in time raises the desire to achieve a

compromise between the two approaches. HyCC [5] partially provides this compromise by proposing a budgeting
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Fig. 5. Bytecode size for different variants with cross-tabulation in 3PC.

approach: Loops are unrolled until some threshold is crossed. The partially unrolled loop is then optimized for the
number of rounds before completing the unrolling without optimization. The paper is not entirely clear about the last
step, but we conclude this from the code because the underlying circuit representation does not support jumps which
would be required for run-time loops.

In contrast, MP-SPDZ supports jump instructions which make it possible to have loops that are not completely
unrolled at compile time. Algorithm 4 explains the procedure for creating run-time loops that are still optimized to

some extent, and Algorithm 5 details its extension to nested loops.
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Figures 4 and 5 also show results for the MP-SPDZ implementation thereof with budget 10° and 10°. The number
refers to the number of instruction calls in the unrolled loop. The approach proves to be as competitive on time as

unrolling while maintaining an upper limit on the bytecode.

,_[ Algorithm 4: Compilation with budget }

Input Loop in MP-SPDZ high-level code
Output MP-SPDZ bytecode potentially with jump instructions

1: while size of internal representation is within the budget do

2: Translate the high-level code to the internal representation

3. end while

4: Optimize the internal representation created so far at once

5: Add jump instructions to complete the loop execution if necessary

6: return bytecode of internal representation

,_[ Algorithm 5: Compilation with budget across nested loops }

Input Nested loops in MP-SPDZ high-level code
Output MP-SPDZ bytecode with jump instructions

1: while size of internal representation is within the budget do

2] while there is an unprocessed loop do
3 Translate the innermost loop body to the internal representation
4 end while

s5: end while
6: Optimize the internal representation at once
7: Add jump instructions to complete the loop execution for remaining loops if any

8: return bytecode of internal representation

However, it is not entirely satisfying as it involves transcribing the same operation (equality testing) repeated to the
low-level operations supported by the MP-SPDZ virtual machine design. This is where our contribution comes in. We
added a call facility to the virtual machine, and used this call facility to call the same code for equality testing whenever
needed. This considerably improves the timing and slightly decreases the bytecode size compared to the prior approach.

An added benefit is that only this approach allows for vectorization without the programmer having to take care of
it. This means that a programmer can specify single-value comparisons as on line 4, and the compiler first treats them
atomically (i.e., without turning them into low-level instructions). Only after seeing how many equality tests to execute
in parallel, the compiler creates a vectorized function for equality testing and adds a call to this function. This way, the
compiler never considers more than one execution of equality testing, which reduces the number of instructions in the

internal representation and thus the memory usage. Algorithm 6 outlines our approach as pseudocode.
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,_[ Algorithm 6: Compilation with budget and placeholders }

Input Loop in MP-SPDZ high-level code, list of operations to retain
Output MP-SPDZ bytecode with jump and call instructions

1: while size of internal representation is within the budget do

2: Translate the high-level code to the internal representation but retain operations on input list as a
single instruction call

3. end while

4. Optimize the internal representation created so far at once. This might include vectorization of retained
operations.

5: Optimize the retained operations individually and add call instructions accordingly

6: Add jump instructions to complete the loop execution

7: return bytecode of internal representation

5 OTHER FRAMEWORKS

Hastings et al. [19] have started a GitHub repository [18] with Docker images to easily run every framework considered
in their paper. It has been extended by contributors to include further frameworks. The repository also includes an
implementation of the cross-tabulation example used in this work. Figure 6 shows the time it takes a selection of
frameworks to compile and execute the cross-tabulation example depending on the dataset size. We have run them up
to one hour or until the memory usage exceeded 10 GB. The latter explains why some stop far below one hour. The
best-performing framework is EMP [39], which implements Yao’s garbled circuits. These require constant rounds of
communication, which is why they are less affected by the trade-off elaborated on in this work. This also holds for
Obliv-C [40]. All other frameworks perform worse than our solution based on MP-SPDZ, including the emulation of
Sharemind.

An usual case is using SecretFlow [30] with JAX, which allows for maximum parallelization, corresponding to full
unrolling in Section 4. This approach quickly exhausts the memory as the dataset grows. It also is less intuitive than the

other code examples, see Figure 7.
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Round optimization. The Tape class in Compiler/program.py holds all instructions for one bytecode object by basic
blocks, which in turn contain a sequence of instructions without jumps. The optimize method runs an instance of
the Merger class in Compiler/allocator.py for every in basic block. The Merger class figures out dependencies
between instructions to see which communication-inducing instructions such as multiplication can be merged. See
prior work [21, 25] for details. The class also contains code for eliminating dead code, that is, code whose results are
not used in any way. This is not activated by default as to not disrupt benchmarking but can be activated using the

--dead-code-elimination with the compiler.

Loop unrolling with budget. While the documented function for this is for_range_opt in Compiler/library.py
(to be used as function decorator), most of the logic sits in map_reduce_single in the same file, in particular the
“else” portion of the condition on n_parallel is not None. The code not only involves the unrolling of the loop
but also stitching basic blocks together in order to allow for further round optimization. Another issue solved are
memory accesses conditioned on the loop counter that are very common in code. The loop counter is a run-time
variable (regint), which makes it impossible for the compiler link memory accesses when optimizing rounds. The
RegintOptimizer class in Compiler/allocator.py makes sure that different regint variables containing the same
number (as seen by static analysis) are merged into the same regint or compile-time constant. This in turn makes sure

that the order of memory accesses on the same address is preserved during the round optimization.

Run-time functions. Compiler/library.py contains several subclasses of Function for different purposes. FunctionTape
is the oldest one and represents a function to be called in a different thread while FunctionCallTape represents a
function to be called in the same thread. The latter makes use of the virtual machine capabilities introduced in version
0.3.9. Based on it, ExportFunction represents a function to be called from C++ code [23]. Lastly, FunctionBlock
represents an earlier way of calling functions within the same thread without the capabilities of version 0.3.9. We
discourage its use due issues with register allocation. The classes are associated with functions to be used as decorators
to turn Python functions into run-time functions. In addition, method_call_tape allows turning class method into

run-time functions executed in the same thread.

Retained operations. MergeCISC in Compiler/instructions_base.py represents retained by emulating an instruc-
tion that can be merged. This instruction is then turned into instructions that the virtual machine actually provides.'
The default tool to do so is the the in-thread run-time function using the post-0.3.9 capabilities, with the pre-0.3.9
capabilities as fallback. Functions can be marked as retained operations using the following decorators:

cisc for functions that take the outputs as uninitialized registers. There is an optional parameter for the number
of outputs (default is 1). This is used for older functionality such as LTZ in Compiler/comparison.py.

ret_cisc for functions where the output is a returned register.

sfix_cisc for functions where the first argument and the return value are of type sfix. This is used for the
mathematical functions in Compiler/mpc_math.py.

bit_cisc for bit decomposition where the number of bits is an argument.

The virtual machine for emulation provides some of these instructions directly for more efficient emulation.
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