
BitVM:Quasi-Turing Complete Computation on Bitcoin

ABSTRACT
A long-standing question in the blockchain community is which

class of computations are efficiently expressible in cryptocurren-

cies with limited scripting languages, such as Bitcoin Script. Such

languages expose a reduced trusted computing base, thereby being

less prone to hacks and vulnerabilities, but have long been believed

to support only limited classes of payments.

In this work, we confute this long-standing belief by showing for

the first time that arbitrary computations can be encoded in today’s

Bitcoin Script without introducing any language modification or

additional security assumptions, such as trusted hardware, trusted

parties, or committees with an honest majority. We present BitVM,

a two-party protocol that realizes a generic virtual machine by

combining cryptographic primitives and economic incentives. We

conduct a formal analysis of BitVM, characterizing its functionality,

system assumptions, and security properties. We further demon-

strate the practicality of our approach by implementing a prototype

and performing an experimental evaluation: in the optimistic case

(i.e., when parties agree), our protocol requires just three on-chain

transactions, whereas in the pessimistic case, the number of trans-

actions grows logarithmically with the size of the virtual machine.

We exemplify the deployment potential of BitVM by building a

Bitcoin-sidechain bridge application. This work not only solves a

long-standing theoretical problem, but it also promises a strong

practical impact, enabling the development of complex applications

in Bitcoin.

CCS CONCEPTS
• Security and privacy→ Distributed systems security.

KEYWORDS
Bitcoin, quasi-Turing completeness, off-chain protocols

ACM Reference Format:
. 2025. BitVM: Quasi-Turing Complete Computation on Bitcoin. In Pro-
ceedings of Make sure to enter the correct conference title from your rights
confirmation email (Conference acronym ’XX). ACM, New York, NY, USA,

34 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Smart contracts are a foundational component of modern

blockchain systems, enabling decentralized applications (dApps)

and programmable money without the need for trusted intermedi-

aries. These self-executing programs have unlocked a wide range

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

of use cases, spanning finance, governance, and supply chain man-

agement, by enforcing agreement logic directly on-chain.

While some blockchains, such as Ethereum, support quasi-Turing

complete
1
execution through bytecode languages like the Ethereum

Virtual Machine (EVM), others, most notably Bitcoin, opt for a min-

imalist approach. Bitcoin Script deliberately limits expressiveness

to minimize complexity and attack surface, trading expressiveness

for security and stability.

This trade-off has given rise to a long-standing open question:

Can general-purpose computation be supported on Bitcoin, using only
its existing scripting language and consensus rules? Unlocking such

expressiveness could expand Bitcoin’s utility for dApps and decen-

tralized finance (DeFi), while preserving its conservative security

model.

The prevailing belief in the blockchain community is that Bit-

coin Script cannot support general-purpose computation in practice.

This belief stems from several structural limitations of the language:

it is stateless, lacks loops and recursion, and enforces strict con-

straints on script and transaction size. These properties make it

well-suited for simple functionalities, such as multisignature pay-

ments or hashed timelock contracts, but appear to rule out the

execution of complex logic on-chain.

Several proposals have attempted to overcome these constraints,

either by extending Bitcoin with new opcodes (e.g., covenants [9]),

encoding computations into low-level counter machines [10], or

relying on trusted execution environments [15, 21] and oracles [16,

26]. However, these approaches either require consensus changes,

incur prohibitive on-chain costs, or compromise Bitcoin’s trust

model. As a result, it has long been assumed that supporting arbi-

trary computation on Bitcoin would require trade-offs incompatible

with its conservative design philosophy.

Contributions. In this work, we challenge this long-standing be-

lief by showing that arbitrary (bounded) computations can be ex-

ecuted securely on Bitcoin in a practical manner. We introduce

BitVM2
, a two-party protocol that enables expressive, verifiable

off-chain computation using only existing Bitcoin features. BitVM
requires no consensus changes, no new opcodes, and no trusted

hardware or oracles.

The core idea behind BitVM is to shift computation off-chain

while retaining on-chain verifiability through a fraud-proof mech-

anism. Specifically, a prover submits a claim about the output of

a bounded computation. The verifier can either accept the result

or, in case of disagreement, initiate an interactive dispute protocol.

This protocol relies on a custom virtual machine that encodes com-

putation as an execution trace, enabling the parties to identify a

point of disagreement and verify a single step of computation using

Bitcoin Script.

1
This term is adopted in the blockchain community to indicate Turing-complete lan-

guages that enforce termination by bounding the execution (e.g., via gas consumption

in Ethereum) [1].

2
This work extends and formalizes the original BitVM design, which was conceptual-

ized and developed by Robin Linus [30].

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

When both parties agree, the entire process completes with just

three on-chain transactions. In case of dispute, BitVM guarantees

that verification incurs only a logarithmic number of additional

transactions. This makes BitVM both practical and expressive, en-

abling Bitcoin to support advanced smart contract functionality

without compromising it trust model or requiring protocol changes.

To illustrate how BitVM operates in practice, consider a simple

two-party wager: a prover claims to have solved a chess puzzle,

and a verifier bets against them. Both parties lock funds into a

BitVM contract that verifies the claimed solution. If the verifier

agrees, the outcome is settled off-chain. If not, they can initiate

an on-chain dispute. The contract then executes the verification

step by step, and settles the funds accordingly, using only Bitcoin

Script to enforce the outcome. While conceptually simple, this

example demonstrates the core functionality of BitVM: enabling

trustless agreement on arbitrary computation, with minimal on-

chain footprint in the absence of disputes.

This same mechanism underpins more complex applications. A

key example, which we outline in this work, is a trust-minimized
bridge between Bitcoin and a sidechain. In typical designs, a commit-

tee of operators handles redemptions from the sidechain to Bitcoin,

with security guaranteed only under an honest-majority assump-

tion (𝑡-of-𝑛, where 𝑡 ≥ 𝑛/2). With BitVM, this trust requirement is

minimized to 𝑡 = 1: any operator can front coins to a user on Bitcoin

and later claim reimbursement by proving correctness. If another

committee member disputes the claim, they can initiate a BitVM
instance to verify or refute it on-chain. This approach reduces the
trust assumption from an honest majority to the existence of a sin-
gle honest party, while remaining fully compatible with Bitcoin’s

existing scripting model. Crucially, such a bridge serves as a foun-

dational building block for a broader ecosystem of decentralized

applications: once assets can move between Bitcoin and external

execution layers securely and trustlessly, DeFi protocols, from de-

centralized exchanges to lending platforms, can operate on top of

Bitcoin without compromising its security guarantees. This vision

is already being explored by several ongoing deployment efforts,

e.g., [14, 20, 31], based on the initial informal BitVM report [30].

This paper makes the following contributions:

• We present BitVM, the first protocol to encode quasi-Turing

complete computations in Bitcoin Script, requiring no consensus

changes or trusted third parties (Section 5).

• We provide a formal analysis of BitVM, characterizing its func-

tionality, system assumptions, and security properties (Section 6).

• To show the feasibility of our approach, we implement a pro-

totype ofBitVM in JavaScript.
3
Optimistic execution completes in

three on-chain transactions, costing approximately

5, 832 satoshis4 (as of April 2025). In case of disputes, the on-chain

footprint grows logarithmically with the computation size. For a

virtual machine with 2
32

memory cells and steps—comparable

to a high-end 1990s workstation—settlement requires up to 81

transactions, at a cost of approximately 732, 000 satoshis (Sec-

tion 7).

3
The prototype is available in an anonymized GitHub repository [3].

4
A satoshi is a fraction of a bitcoin, i.e., 1𝑠𝑎𝑡 = 10

−8
B.

• We demonstrate the capabilities of BitVM by constructing a trust-

minimized bridge protocol between Bitcoin and a sidechain, re-

ducing the traditional honest-majority assumption to that of a

single honest operator (Section 8).

Related work. Several works have attempted to overcome the

limited expressiveness of Bitcoin Script and enable more complex

smart contracts by combining UTXOs and scripts, effectively split-

ting functionality across multiple transactions. BitML [11] provides

a high-level, domain-specific language and compiler that translates

programs into Bitcoin transactions, illustrating Bitcoin’s potential

for intricate smart contract designs [8]. These methods, however,

incur substantial on-chain costs, as compiled programs often result

in numerous large transactions that must ultimately be recorded

on-chain.

To mitigate these costs, some approaches leverage Trusted Ex-

ecution Environments (TEEs). FastKitten [15] facilitates off-chain

computation within a secure hardware enclave, but relies on col-

lateral, rational adversaries, trusted TEE operators, and a limited

contract duration. POSE [21] improves upon FastKitten by remov-

ing collateral requirements and time constraints, and by enhancing

privacy, but it continues to rely on trusted TEE hardware.

A different approach uses Hashed Timelock Contracts (HTLCs)

to shift computation off-chain by encoding outcomes in preim-

ages of hash functions [7], similar in spirit to state channels on
Ethereum [17, 19]. This model underpins constructions such as

Discreet Log Contracts (DLCs)[16] and oracle-based conditional

payments[26], which depend on (semi-)trusted oracles to attest

to specific events. A key limitation of these approaches is that all

possible outcomes must be known and encoded in advance. Con-

sequently, they cannot support applications like the chess puzzle

or the bridge example, where the correct outcome—such as the

solution to a puzzle or the identity of the party holding funds on

the sidechain—may not be known a priori to any participant.

Unlike prior works, BitVM enables quasi-Turing complete com-

putation on Bitcoin without consensus changes or relying on exter-

nal trust assumptions, such as TEEs and semi-trusted oracles. It is

the first trustless protocol to allow arbitrary, bounded computation

on Bitcoin, while incurring logarithmic on-chain cost in the worst

case, unlocking a range of potential applications.

A concurrent line of work [24], informally referred to as BitVM2,

proposes an alternative approach with the primary goal of building

a bridge between Bitcoin and layer-2 systems. This work, released

as a technical draft at the time of writing, compiles a zk-verifier

program into large Bitcoin Scripts, splits them across transactions,

and commits to intermediary states on-chain. While this design

supports permissionless dispute resolution, it incurs high on-chain

cost, requiring at least one transaction that fills a 4MB Bitcoin

block in case of disputes (e.g., ∼ $2, 211). In contrast, our BitVM
construction is better suited for permissioned settings and dispute

resolution with significantly lower on-chain cost (e.g., ∼ $515 in

the same scenario), while offering formal security guarantees.

Table 1 summarizes the main distinctions between existing Bit-

coin smart contract approaches in terms of expressiveness, trust

assumptions, and on-chain cost.

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 1: Comparison of Bitcoin-based smart contract ap-
proaches. 𝑛 denotes the upper bound on computational steps,
and QT refers to Quasi-Turing completeness.

Approach Expressiveness Extra Assumptions On-chain cost
BitML [8, 11] QT None 𝑂 (𝑛)
TEEs [15, 21] QT TEE 𝑂 (𝑛)
Gen. Channels [7] Bitcoin None 𝑂 (1)
Oracles [16, 26] QT trusted oracle 𝑂 (1)
BitVM QT None 𝑂 (log(𝑛))

2 MODEL
BitVM is a protocol between two mutually distrusting parties, the

prover 𝑃 and the verifier 𝑉 , designed to enable 𝑃 to prove on the

Bitcoin blockchain that the outcome of a pre-agreed computation

with 𝑉 was performed correctly. Concretely, for an agreed-upon

Turing-complete program Π, a BitVM instance secures collateral

from both parties and it enables 𝑃 to enforce a transaction on-chain

based on the outcome Π(𝑥) for a specific input 𝑥 . In other words,

Π(𝑥) dictates the payout of the funds within the BitVM instance,

typically allocating them to 𝑃 and 𝑉 5
. If 𝑃 or 𝑉 stop collaborating

during protocol execution, after a designated period all the funds

are allocated to the other party.

2.1 System model
We assume time advances in discrete rounds (1, 2, . . .). Protocol par-

ticipants run in probabilistic polynomial time (PPT) in the security

parameter 𝜅. We assume synchronous communication, i.e., mes-

sages sent between parties arrive at the beginning of the next round,

as well as authenticated communication channels. Our protocol

employs a hash function modeled as a random oracle 𝐻 : {0, 1}∗ →
{0, 1}𝜅 which maps an input of arbitrary length to a fixed 𝜅-sized

output. Moreover, our protocol builds upon a distributed ledger

protocol (e.g., [6, 22, 32]).

Definition 1 (Distributed Ledger Protocol). A distributed
ledger protocol is an interactive Turingmachine exposing the following
functionality on each party.
• execute(): executes one protocol round and enables the machine
to communicate with the network, invoked by the environment
in every round;
• write(𝑡𝑥): takes as input a transaction from the environment;
• read(): outputs a finite, ordered sequence of transactions, also
known as transaction ledger L.

We denote L𝑃𝑟 as the output of invoking read() on party 𝑃 at the

end of round 𝑟 . We restrict honest parties to only include valid trans-
actions in their ledgers

6
. As we are interested in building BitVM on

Bitcoin, when we present the construction, transactions are deemed

(in)valid based on Bitcoin’s validation rules (see Section 3.1). How-

ever, BitVM can be built on top of any distributed ledger protocol

with validation rules as expressive as those of Bitcoin. We assume

that our protocol participants have access to the functionality ex-

posed by the distributed ledger protocol, either by being an active

5
Note that 𝑃 and 𝑉 can also agree to allocate the funds to a third party or, more

generally, make the funds spendable under any condition that can be expressed in

Bitcoin Script.

6
This is not strictly necessary and is done mainly for convenience. Parties could also

take an outputted ledger and remove invalid transactions from it.

participant or by running some (light) client protocol. We are in-

terested in distributed ledger protocols that are safe and live, as

defined below (cf. [6, 22, 32]). Given two sequences 𝐴 and 𝐵, we

use 𝐴 ⪯ 𝐵 to mean that 𝐴 is a prefix of 𝐵.

Definition 2 (Stickiness). A distributed ledger protocol is sticky
if for any honest party 𝑃 and any rounds 𝑟1 ≤ 𝑟2, it holds that
L𝑃𝑟1 ⪯ L𝑃𝑟2 .

Definition 3 (Safety). A distributed ledger protocol is safe, if
it is sticky and for any pair of honest parties 𝑃1, 𝑃2 and any pair of
rounds 𝑟1, 𝑟2, it holds that L

𝑃1
𝑟1 ⪯ L𝑃2𝑟2 ∨ L

𝑃2
𝑟2 ⪯ L𝑃1𝑟1 .

Definition 4 (Liveness). A distributed ledger protocol execution
is live(u), if any transaction that is written to an honest party’s ledger
at round 𝑟 , appears in the ledger of all honest parties by round 𝑟 + 𝑢,
denoted as L

⋂
𝑟+𝑢 .

Throughout this paper, we say “publish a transaction 𝑡𝑥 (on L)” to
denote calling the function write(tx). Furthermore, after publishing

a valid transaction 𝑡𝑥 , we sometimes say “wait until 𝑡𝑥 appears

(on L)”, to denote calling the function read() every round until

𝑡𝑥 ∈ L, which happens at most after 𝑢 rounds due to liveness.

When presenting the BitVM construction, we sometimes refer to

the ledger as blockchain even though the distributed ledger protocol

could be realized differently. We say something happens on-chain
if there are one or more corresponding transactions in the ledger,

and something happens off-chain if there are no corresponding

transactions on the ledger.

There is a ledger state that is induced by a ledger L, denoted
as st(L), by executing each transaction in order, starting with a

genesis state. The execution of transactions is captured by a state

transition function, taking a state and a transaction and outputting

a new state. We denote balL (𝑃) ∈ R≥0 as the balance of party 𝑃
in the state induced by L. A party can use parts of their balance

in𝑃 ∈ [0, balL (𝑃)] as monetary input for a transaction. For a given
ledger L, we define the on-chain (monetary) utility of a transaction

𝑡𝑥 ∈ L for a party 𝑃 as 𝑤L (𝑃, 𝑡𝑥) := balL1 (𝑃) − balL2 (𝑃), where
L1 ≺ L is the ledger up to (not including) 𝑡𝑥 and L2 := L1 | |𝑡𝑥 .
Usually, it is obvious which ledger we refer to, so we omit the

subscript. In addition to balances of parties, a ledger state st(L) can
include a string 𝑠 ∈ {0, 1}∗, denoted as 𝑠 ∈ st(L), if there exists a
transaction 𝑡𝑥 ∈ L, such that 𝑡𝑥 contains the string 𝑠 .

2.2 Threat model
We analyze BitVM in the presence of a PPT adversary that may cor-

rupt any protocol party {𝑃,𝑉 } during the execution of the protocol.

The adversary can corrupt parties, causing them to behave either

as Byzantine or as rational actors. Byzantine parties can deviate

arbitrarily from the honest protocol execution. Contrarily, rational

parties deviate from the honest protocol execution only when such

action increases their monetary utility.

The protocol gives different guarantees based on the type of

corruption. On a high level, we want to show that (i) honest protocol

participants are guaranteed their rightful balance even if the other

party is Byzantine, (ii) rational parties follow the honest protocol

execution, and (iii) if both parties behave rationally, the protocol

follows an optimistic execution (which is efficient). We formally

define these properties in Section 2.3.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

2.3 Protocol goals
The core objectives of BitVM are termed balance security and ra-
tional correctness. Informally, balance security ensures an honest

party will not lose their funds against Byzantine counterparties,

whereas rational correctness guarantees that rational parties will

follow the protocol. To formally define balance security we argue

in terms of utility, i.e., the utility of the on-chain state of an honest

party after the settlement of a BitVM instance will be at least equal

to its utility of the correct final state, regardless of the actions of

its counterparty. Rational correctness implies that if both parties

are rational, they will commit on-chain the correct final state of

the BitVM instance. These properties are standard in the literature:

for instance, an honest user of a Lightning channel [28] can al-

ways dispute a malicious commitment and claim the channel funds,

while rational players will always commit to the last agreed-upon

state [29].

We formalize these objectives on a generic primitive, which we

call on-chain state verification protocol and is defined as follows.

Definition 5 (On-chain State Verification Protocol). An
on-chain state verification protocol, parameterized over a distributed
ledger protocol that outputs a ledger L, is a two-party protocol that
exposes the two following functionalities:

• setup(in𝑃 , in𝑉 ,Π, 𝑓): takes as input monetary inputs in𝑃 ∈
[0, balL (𝑃)] and in𝑉 ∈ [0, balL (𝑉)] of parties 𝑃 and 𝑉 , a
computable function (or program) Π : S → O that maps a set
of states S to a set of outcomes O and an outcome mapping
function 𝑓 : O → R2≥0, that maps the set of outcomes O
to pairs of utilities (𝑣𝑃 , 𝑣𝑉) where 𝑣𝑃 + 𝑣𝑉 ≤ in𝑃 + in𝑉 and
returns an instance I.
• execute(I, 𝑥): takes as input an instance I returned by the
setup function and a function input 𝑥 ∈ S (for function Π).

Consider an execution of this primitive for given inputs in𝑃 , in𝑉 ,
Π, 𝑓 , where I ← setup(in𝑃 , in𝑉 ,Π, 𝑓), and then execute(I, 𝑥) are
called, and finish in round 𝑟 . Let T be the set of transactions that

are included in L
⋂
𝑟+𝑢 as a result of this execution. Moreover, we

denote the utility of party 𝐴 ∈ {𝑃,𝑉 } in 𝑓 (Π(𝑥)) by 𝑓𝐴 (Π(𝑥)).
Balance Security. An execution achieves balance security, if it

holds that

∑
𝑡𝑥∈T (𝑤 (𝑡𝑥, 𝐴)) ≥ 𝑣𝐴 where 𝑣𝐴 = 𝑓𝐴 (Π(𝑥)),

for any honest 𝐴 ∈ {𝑃,𝑉 }.
Rational Correctness. An execution achieves rational correct-

ness, if 𝑃 and 𝑉 are rational and

∑
𝑡𝑥∈T (𝑤 (𝑡𝑥, 𝐴)) = 𝑣𝐴

where 𝑣𝐴 = 𝑓𝐴 (Π(𝑥)), for any 𝐴 ∈ {𝑃,𝑉 } and Π(𝑥) ∈
st(L

⋂
𝑟+𝑢).

An on-chain state verification protocol achieves balance secu-

rity and rational correctness, respectively, if for any in𝑃 , in𝑉 ,Π, 𝑓
the probability that the corresponding execution does not achieve

balance security and rational correctness, resp., is negligible in 𝜅.

3 PRELIMINARIES
In this section, we present the necessary background concerning

Bitcoin Script and the key primitives our construction builds upon.

Notation. Given a sequence 𝐴 := (𝑎1, . . . , 𝑎𝑛), 𝐴[𝑖] represents its
𝑖-th element.We use 𝐴[𝑖 : 𝑗] to denote the subsequence (𝑎𝑖 , . . . , 𝑎 𝑗).

We use |𝐴| to denote the length of a sequence, e.g., | (𝑎1, . . . , 𝑎𝑛) | = 𝑛.
For a string 𝑠 ∈ {0, 1}∗, we use |𝑠 |𝑏𝑖𝑡 to denote its bit length.

3.1 Transactions in the UTXO model
A user U on a ledger L is identified by the secret-public key pair

(pkU, skU); by 𝜎U (𝑚) we denote the digital signature of U over the

message𝑚 ∈ {0, 1}∗.
In the unspent transaction output (UTXO) model, a transaction

Txmaps a (non-empty) list of existing, unspent, transaction outputs

to a (non-empty) list of new transaction outputs. A transaction out-

put is defined as an attribute tuple out := (𝑎B, lockScript), where
out.𝑎 ∈ R≥0 is the amount of coins (expressed in B) held by the out-

put out and out.lockScript is the condition that needs to be fulfilled

to spend it and transfer the coins to a new output, which we also

call UTXO. We distinguish the already existing transaction outputs

(input of a transaction Tx) from the newly created outputs calling

them Tx.inputs and Tx.outputs, respectively. A transaction input in
is defined as in := (PrevTx, outIndex, lockScript), where the output
being spent is uniquely identified by specifying the transaction

PrevTx and an output index outIndex. To improve readability, we

also give the locking script lockScript that is being fulfilled.
We formally define a transaction as a tuple

Tx := (inputs,witnesses, outputs) where Tx.inputs :=

[in1, . . . , in𝑛] are the transaction inputs, Tx.outputs :=

[out1, . . . , out𝑚] are the transaction outputs and Tx.witnesses :=
[w1, . . . ,w𝑛] represents the witness data, i.e., the list of the tuples
that fulfill the spending conditions of the inputs, one witness for

each input. The locking script of an output is expressed in the script-

ing language of the ledger. To transfer the coins held in a UTXO, its

locking script is executed with a witness as script input and must

return True; if successful, the condition is considered fulfilled. If

the script execution returns False, the condition is not fulfilled and

the UTXO is not spendable
7
.

A transaction is valid only if every UTXO in input is unspent,

the witnesses fulfill the conditions of the corresponding locking

scripts, and the sum of the coins held in the inputs is equal to or

greater than the sum of the coins held in the outputs.

Transaction spending conditions. Bitcoin has a stack-based script-

ing language. Below, we describe the subset of Bitcoin spending

conditions that we use in this paper.

• Signature locks. The spending condition CheckSigpkU (𝑚) is
fulfilled if the signature 𝜎U (𝑚) is part of the witness.
• Multisignature locks. To fulfill this spending condition, 𝑘 out

of 𝑛 signatures are required. In particular, for two users 𝐴 and 𝐵,

a spending condition that represents a 2-of-2multi-signature of a

message𝑚 between them is denoted as CheckMSigpk𝐴,𝐵
(𝑚) and

is fulfilled by giving the signature 𝜎𝐴,𝐵 (𝑚) as part of the witness
of the spending transaction.

• Relative timelocks make a transaction output spendable only

after a specified time Δ has elapsed since the transaction was

included on-chain. We denote the relative timelock spending

condition as TL(Δ).

7
In this work, we separate the locking script from the witness for readability. However,

note that in practice, the protocol is implemented using SegWit[25] transactions, where

the locking script is included in the witness.

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

• Taproot trees [33], also known as Taptrees, enable a UTXO to be

spent by satisfying one of several possible spending conditions.

These conditions, referred to as Tapleaves, form the leaves of a

Merkle tree. To spend a UTXO locked by a Taptree locking script,

the user must provide a witness for one of the Tapleaves along

with proof of inclusion of that leaf in the Taptree.

We denote the Tapleaves of a Taptree locking script as

⟨leaf1, . . . , leaf𝑟 ⟩. When a user fulfills the script leaf𝑖 to unlock
the 𝑗-th output of the transaction Tx, the corresponding input is

represented as (Tx, 𝑗, ⟨leaf𝑖 ⟩).
Whenever a user spends a UTXO via a Tapleaf of a Taptree, we

assume that they have provided a valid Merkle proof of inclusion

for that Tapleaf.

• Other conditions.We denote with True (False) a condition that

is always fulfilled (can never be fulfilled), and with ℎ(𝑥) the hash
of 𝑥 .

We use ∗ to denote a generic transaction input, witness, or output

that is not directly relevant to our protocol, provided it remains

valid under Bitcoin consensus rules.

Combining spending conditions. When presenting spending

conditions with complex logic, we explicitly provide their pseu-

docode. We use the conditions described in this section as building

blocks, combining them with standard Bitcoin Script constructions

using logical operators ∧ (and) and ∨ (or). Furthermore, for con-

venience, inside long scripts we append the keyword Verify to

sub-spending conditions that return either True or False with the

following meaning: if the sub-spending condition returns True, pop
True from the stack and continue to execute the rest of the script,

if it returns False, mark the transaction as invalid (and thus fail to

unlock the long script). This is meant to mimic how the Bitcoin

OP_VERIFY opcode works.

3.2 Lamport digital signature scheme
Let ℎ : 𝑋 → 𝑌 be a one-way function, where 𝑋 := {0, 1}∗ and
𝑌 := {0, 1}𝜆 , for a given security parameter 𝜆. Let𝑚 ∈ {0, 1}ℓ be a ℓ-
bit message, with ℓ ∈ N>0. A Lamport digital signature scheme [23]
Lamp consists of a triple of algorithms (KeyGen, Sig,Vrfy), where:

• (𝑝𝑘M , 𝑠𝑘M) ← Lamp.KeyGen(ℓ) (cf. Algorithm 1), is a Proba-

bilistic Polynomial Time (PPT) algorithm that takes as input a

positive integer ℓ and returns a key pair, consisting of a secret

key 𝑠𝑘M and a public key 𝑝𝑘M which can be used for one-time

signing an ℓ-bit message. We useM = {0, 1}ℓ as an alias for the

ℓ-bit message space.

• 𝑐𝑚 ← Lamp.Sig𝑠𝑘M (𝑚) (cf. Algorithm 2), is a Deterministic

Polynomial Time (DPT) algorithm parameterized by a secret key

𝑠𝑘M , that takes as input a message 𝑚 ∈ M and outputs the

signature 𝑐𝑚 , which we also call (Lamport) commitment.

• {True, False} ← Lamp.Vrfy𝑝𝑘M (𝑚,𝑐𝑚) (cf. Algorithm 3), is a

DPT algorithm parameterized by a public key 𝑝𝑘M that takes

as input a message𝑚, a signature 𝑐𝑚 , and outputs True iff 𝑐𝑚 is

a valid signature for𝑚 generated by the secret key 𝑠𝑘M , corre-

sponding to 𝑝𝑘M , i.e., (𝑝𝑘M , 𝑠𝑘M) is a key pair generated by

Lamp.KeyGen.

Lamport signatures are secure one-time signatures. Given a mes-

sage spaceM, it is possible to sign any message𝑚 ∈ M by using

Algorithm 1 The key generation algorithm Lamp.KeyGen for a ℓ-bit

messages space M. In the following algorithms, we use matrix notation,

i.e., for a given two-dimensional matrix 𝑎, 𝑎[𝑖, 𝑗] refers to the element at

row 𝑖 and column 𝑗 of it.

1: function Lamp.KeyGen(ℓ)

2: Let 𝑠𝑘M ←
(
𝑥 [0, 0], . . . , 𝑥 [0, ℓ − 1]
𝑥 [1, 0], . . . , 𝑥 [1, ℓ − 1]

)
, where every element 𝑥 [𝑖, 𝑗]

is sampled uniformly at random from the set 𝑋 ;

3: for 𝑖 = 0, 1 and 𝑗 = 0, . . . , ℓ − 1 do
4: 𝑦 [𝑖, 𝑗] ← ℎ (𝑥 [𝑖, 𝑗]) ;

5: Let 𝑝𝑘M ←
(
𝑦 [0, 0], . . . , 𝑦 [0, ℓ − 1]
𝑦 [1, 0], . . . , 𝑦 [1, ℓ − 1]

)
;

6: return (𝑠𝑘M , 𝑝𝑘M) .

Algorithm 2 The Lamport signature algorithm Lamp.Sig, parameterized

over a secret key 𝑠𝑘M for a ℓ-bit sized message spaceM.

1: function LampSigskM (𝑚)

2: for 𝑖 = 0, . . . , ℓ − 1 do
3: Let 𝑐𝑚 [𝑖] ← 𝑠𝑘M [𝑚[𝑖], 𝑖];
4: return 𝑐𝑚 .

Algorithm 3 Lamport verification algorithm Lamp.Vrfy, parameterized

over a public key 𝑝𝑘M for a ℓ-bit message spaceM.

1: function Lamp.Vrfy𝑝𝑘M (𝑚, 𝑐𝑚)

2: for 𝑖 = 0, . . . , ℓ − 1 do
3: if ℎ (𝑐𝑚 [𝑖]) ≠ 𝑝𝑘M [𝑚[𝑖], 𝑖] then
4: return False;
5: return True.

the secret key 𝑠𝑘M of the key pair (𝑠𝑘M , 𝑝𝑘M), i.e., the key pair

associated toM. When the message𝑚 is signed and 𝑐𝑚 is created,

the key pair becomes bound to𝑚. No polynomially bounded adver-

sary is able to forge a signature for a different message𝑚′ ≠𝑚 with

non-negligible probability. However, if the signer uses the same

secret key 𝑠𝑘M to sign another different ℓ-bit messages𝑚′′ ≠ 𝑚,

they can be held accountable. We call this action equivocation and

we show how to detect it in Algorithm 4.

Notice that signing the ℓ-bit message𝑚 with the secret key 𝑠𝑘M
consists in revealing for every bit 𝑖 = 0, . . . , ℓ − 1 of𝑚 one of the

two preimages that compose the 𝑖 − 𝑡ℎ column of secret key 𝑠𝑘M ,

namely, revealing 𝑥 [0, 𝑖] to claim that𝑚[𝑖] = 0, or revealing 𝑥 [1, 𝑖]
to claim that𝑚[𝑖] = 1. When the signer reveals both 𝑥 [0, 𝑖], 𝑥 [1, 𝑖]
for any bit 𝑖 , they are equivocating.

For a formal discussion about one-time security and a proof that

Lamport signatures are one-time secure (assuming the existence of

one-way functions), see [12]. One-time security is crucial for the

correctness of BitVM as it enables the signer of a message to make

a non-repudiable commitment to that message. Lamport signatures

are implementable using Bitcoin Script, as demostrated in [3].

In the following, we are interested in Lamport signatures as a

mechanism to enable a party to commit to (single or multiple bits)

messages. Thus, we will refer to Algorithm 2 as Comm instead of

Lamp.Sig and to Algorithm 3 asCheckComm instead of Lamp.Vrfy.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 4 The CheckEquivocation algorithm for a bit 𝑏 ∈ B = {0, 1}.
The input is the corresponding public key 𝑝𝑘B and two preimages 𝑥 ′, 𝑥 ′′ ∈
𝑋 .

1: function CheckEquivocation(𝑝𝑘B , 𝑥 ′ , 𝑥 ′′)

2: if
(
ℎ (𝑥 ′) = 𝑝𝑘B [0, 0] and ℎ (𝑥 ′′) = 𝑝𝑘B [1, 0]

)
then

3: return True;
4: ⊲ The committer is trying to commit to both 0 and 1 for the bit

𝑏. ⊳

5: else
6: return False.

3.3 Stateful Bitcoin scripting
Although the Bitcoin scripting language is stateless, a clever use

of one-time digital signature schemes, such as Lamport signatures,

enables state preservation across different Bitcoin transactions.

Consider the following example: Let a user U hold a Lamport key

pair (𝑠𝑘M , 𝑝𝑘M) associated withM, the set of all ℓ-bit messages.

We can think ofM as a variable that can hold any ℓ-bit string. U
can assign a value 𝑚 to M by creating the commitment 𝑐𝑚 ←
CommskM

(𝑚).
By hard-coding CheckComm𝑝𝑘M for a public key 𝑝𝑘M in the

locking script of multiple outputs, this variable assignment can not

only be verified but also transferred from one output to another, ef-

fectively establishing a global state in Bitcoin. This is accomplished

by reading𝑚 and 𝑐𝑚 from the unlocking script of one output and

passing them to another output through its witness. For exam-

ple, consider two different transactions Tx1 := (∗, ∗, [out1, ∗]) and
Tx2 := (∗, ∗, [out′

1
, ∗]), where the outputs are defined as out1 :=

(𝑎B,CheckComm𝑝𝑘M) and out
′
1
:= (𝑏B,CheckComm𝑝𝑘M). To un-

lock both out1 and out′
1
, a Lamport commitment 𝑐𝑚 must be pro-

vided. Since the same Lamport public key appears in both scripts,

every party in the network knows that whenU unlocks these scripts,

U is assigning a value to the same variableM. Following from one-
time security, no user other than U can assign a different value to

M without knowing 𝑠𝑘M . Moreover, U cannot assign two different

values𝑚1 ≠ 𝑚2 toM without equivocating, which is detectable

and can be punished on-chain.

4 BitVM VIRTUAL MACHINE
In the BitVM protocol, both parties employ a Virtual Machine (VM)

to run off-chain any deterministic program Π. Although the under-

lying concept closely resembles an abstract machine, we choose to
retain the term “VM" to stay consistent with the original naming

of the construction. In this section, we describe the components

of the VM and demonstrate how to initialize them for practical

deployment of the protocol.

VM components. At a high level, the virtual machine (VM) exe-

cutes programs composed of instructions written in a

VM-compatible language. While the program is running, the VM

continuously performs an instruction cycle, or state transition func-
tion. In each cycle, the VM fetches the instruction indicated by

the program counter, loads the values stored at specific memory

addresses referenced by the instruction, executes the operation

defined by the instruction on those values, stores the result at the

designated memory address, and updates the program counter ac-

cordingly (cf. Definition 7).

This process repeats until the program terminates or reaches

a predefined execution limit. Throughout its execution, the VM

produces an execution trace, recording (i) the current program

counter value and (ii) a commitment to the state of memory at each

step. The BitVM protocol leverages this execution trace for dispute

resolution, as described in Appendix A.3 and Appendix A.4.

Formally, let a VM address be an integer 𝑎𝑑𝑑𝑟 ∈ A :=

{0, 1, . . . ,MemLen−1} whereMemLen ∈ N>0 represents the mem-

ory length. We define the VM memory as the sequence𝑀 ∈ M :=

{0, 1, . . . , 𝑛}MemLen
, where 𝑛 ∈ N>0 specifies the range of values

stored at any memory address. The VM program counter, denoted
𝑝𝑐 , is an element of the set PC := {0, 1, . . . , ℓ − 1} ∪ {⊥}, where
ℓ ∈ {1, 2, . . . , 𝑛} is the maximum length of the program, and ⊥ indi-

cates termination. Let OP :=
{
𝑓OP : PC×{0, . . . , 𝑛}×{0, . . . , 𝑛} →

PC×{0, . . . , 𝑛}∪{⊥}
}
be a set of CPU instructions that the VM can

execute
8
. The function 𝑓OP takes as input a triple (𝑝𝑐, 𝑣𝑎𝑙𝐴, 𝑣𝑎𝑙𝐵)

and outputs a pair (𝑝𝑐, 𝑣𝑎𝑙𝐶) or ⊥. For any CPU instruction 𝑓OP ∈
OP, we require that 𝑓OP is executable in Bitcoin Script. A VM
program is an ordered sequence of ℓ elements, denoted Π ∈ Iℓ ,
where I :=

{
(𝑓OP, 𝑎𝑑𝑑𝑟𝐴, 𝑎𝑑𝑑𝑟𝐵, 𝑎𝑑𝑑𝑟𝐶) | 𝑎𝑑𝑑𝑟𝐴, 𝑎𝑑𝑑𝑟𝐵, 𝑎𝑑𝑑𝑟𝐶 ∈

A, 𝑓OP ∈ OP
}
. We can now define the following.

Definition 6 (VM State). A VM state, or simply, state, is a triple
𝑆 := (𝑀, 𝑝𝑐,Π), where𝑀 is the VM memory, 𝑝𝑐 is the VM program
counter, and Π is a VM program.

Definition 7 (State Transition Function). Let S := M ×
PC×Iℓ be the set of all VM states. We define the state transition func-
tion 𝑓𝑆𝑇 : S → S with 𝑓𝑆𝑇 taking as argument the state (𝑀𝑖 , 𝑝𝑐𝑖 ,Π)
and giving as output the state (𝑀𝑖+1, 𝑝𝑐𝑖+1,Π) as specified in Algo-
rithm 5.

Algorithm 5 State Transition Function 𝑓𝑆𝑇 .

1: function 𝑓𝑆𝑇 (𝑀 , 𝑝𝑐 , Π)
2: 𝑀 ′ ← 𝑀 ;
3: (𝑓OP, 𝑎𝑑𝑑𝑟𝐴, 𝑎𝑑𝑑𝑟𝐵, 𝑎𝑑𝑑𝑟𝐶) ← Π[𝑝𝑐];
4: 𝑣𝑎𝑙𝐴 ← 𝑀 [𝑎𝑑𝑑𝑟𝐴];
5: 𝑣𝑎𝑙𝐵 ← 𝑀 [𝑎𝑑𝑑𝑟𝐵];
6: (𝑝𝑐′, 𝑣𝑎𝑙𝐶) ← 𝑓OP (𝑣𝑎𝑙𝐴, 𝑣𝑎𝑙𝐵, 𝑝𝑐) ;
7: if 𝑣𝑎𝑙𝐶 ≠ ⊥ then
8: 𝑀 ′ [𝑎𝑑𝑑𝑟𝐶] ← 𝑣𝑎𝑙𝐶 ;
9: return (𝑀 ′, 𝑝𝑐′,Π) .

Given a program Π and a memory configuration𝑀 , we assume

that the entry point of the program, namely the first instruction

that a program executes, is always Π[0]. Thus, we define as initial
state the tuple 𝑆0 := (𝑀, 0,Π). We use the shorthand notation

𝑓 𝑖
𝑆𝑇
(𝑆) when we apply the state transition function 𝑓𝑆𝑇 to a state

𝑆 exactly 𝑖 times, 𝑓 𝑖
𝑆𝑇
(𝑆) := 𝑓𝑆𝑇 (𝑓𝑆𝑇 (. . . (𝑓𝑆𝑇 (𝑆)))). We say that a

state 𝑆𝑖 := (𝑀𝑖 , 𝑝𝑐𝑖 ,Π) at step 𝑖 is correct with respect to an initial

state 𝑆0 iff 𝑆𝑖 = 𝑓
𝑖
𝑆𝑇
(𝑆0). We avoid the subscripts (and simply refer

to the state 𝑆𝑖 as (𝑀, 𝑝𝑐,Π)) when it is clear from the context which

state we are referring to.

Finally, after a number of execution steps equal to final (final is
decided when a VM instance is created), the program terminates.

8
Even though OP can be arbitrary, we are interested in a Turing-complete instruction

set. In particular, we later use ADD, BEQ , and JMP, cf. Algorithm 7 – a well-known

Turing-complete instruction set [18].

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 1: Overview of the state transition function execu-
tion 𝑓𝑆𝑇 . Given a state 𝑆𝑖 : (1) instruction Π[𝑝𝑐𝑖] is fetched, (2)
values 𝑣𝑎𝑙𝐴, 𝑣𝑎𝑙𝐵 are taken from memory at their respective
addresses, (3) the instruction is executed, and (4) part of the
result (i.e., 𝑣𝑎𝑙𝐶) is stored in the memory. The state transition
function outputs the new state 𝑆𝑖+1.

We denote the final state, or outcome, as Π(𝑆0) := 𝑓 final𝑆𝑇
(𝑆0). Fig. 1

provides a visual representation of the execution of the state transi-

tion function 𝑓𝑆𝑇 .

We define a VM instance as a tuple

Γ := ⟨Π,MemLen, 𝑛, final⟩.
We write Γ𝐴 to refer to the VM instance executed by party 𝐴. We

write 𝑆𝐴
𝑖
to denote a VM state 𝑆𝑖 that 𝐴 claims to have produced

during the execution of 𝐴’s VM instance Γ𝐴 . We say that two

parties 𝐴 and 𝐵 agree on the state 𝑆𝑖 if 𝑆
𝐴
𝑖
= 𝑆𝐵

𝑖
, and disagree on 𝑆𝑖

otherwise.

Definition 8 (Execution Trace Element). Let (𝑀𝑖 , 𝑝𝑐𝑖 ,Π) :=
𝑓 𝑖
𝑆𝑇
(𝑆0), and let 𝑀𝑅𝑖 be the root of the Merkle tree with the entries

of𝑀𝑖 as its leaves. The 𝑖-th VM execution trace element, or simply,
𝑖-th trace element is the pair 𝐸𝑖 := (𝑀𝑅𝑖 , 𝑝𝑐𝑖), for 𝑖 ∈ {0, . . . , final}.

We write 𝐸𝐴
𝑖
to denote a VM execution trace element 𝐸𝑖 that 𝐴

claims to have produced during the execution of 𝐴’s VM instance

Γ𝐴 . The VM execution trace is defined as a sequence of consecutive

trace elements 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒 := (𝐸0, . . . , 𝐸final). We write 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒𝐴

as a short-hand for (𝐸𝐴
0
, . . . , 𝐸𝐴final).

We describe how the VM behaves in Algorithm 6: starting from

initial state 𝑆0, it applies the state transition function 𝑓𝑆𝑇 to the state

and records the related trace elements until the program Π ends,

namely, once 𝑝𝑐 is set to be ⊥. The VM algorithm is parameterized

by final, a parameter that represents the maximum number of state

transitions that the VM is allowed to perform. The VM algorithm

returns as output the VM execution trace 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒 , along with

the resulting memory𝑀 after the program execution.

A practical VM instance. For better readability and to provide a

protocol instance that can be deployed in practice, in the rest of the

paper, we will consider a VM instance Γ := ⟨Π,MemLen, 𝑛, final⟩
with the following initialization: We set the length of the memory

Algorithm 6 The VM algorithm. 𝑆0 is the initial VM state.

1: function VMfinal(𝑆0)

2: 𝑠𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡 ← 0;

3: while 𝑠𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡 < final do
4: 𝐸𝑠𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡 ← (𝑀𝑅, 𝑝𝑐) ;
5: (𝑀,𝑝𝑐,Π) ← 𝑓𝑆𝑇 (𝑀,𝑝𝑐,Π) ;
6: increment 𝑠𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡 by 1;

7: 𝐸𝑠𝑡𝑒𝑝𝐶𝑜𝑢𝑛𝑡 ← (𝑀𝑅, 𝑝𝑐) ;
8: 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒 ← (𝐸0, . . . , 𝐸final) ;
9: return (𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒,𝑀) .

asMemLen = 2
32

and the greatest integer that can be stored in any

entry of the memory as 𝑛 = 2
32
.

Furthermore, we assume that the input program Π has ℓ ≤ 2
32

number of instructions
9
and we set final = 2

32
.

As for the set OP of instructions that the VM can execute, our

VM instance employs the following: OP := {ADD,BEQ, JMP}.
This is a minimal set of computer instructions known to be Turing

complete [18]. We underscore that the BitVM protocol can func-

tion with any Turing-complete instruction set, provided that each

instruction within the set is implementable in Bitcoin script. In Al-

gorithm 7, we give an implementation of ADD, BEQ and JMP that

can be easily translated in Bitcoin script.

Algorithm 7 The Algorithms ADD, BEQ , and JMP, each taking as input

the tuple (𝑝𝑐, 𝑣𝑎𝑙𝐴, 𝑣𝑎𝑙𝐵) , and returning a pair (𝑝𝑐, 𝑣𝑎𝑙𝐶) .
1: function ADD(𝑝𝑐 , 𝑣𝑎𝑙𝐴 , 𝑣𝑎𝑙𝐵)
2: if 𝑝𝑐 = ⊥ then return (⊥,⊥) ;
3: return (𝑝𝑐 + 1, 𝑣𝑎𝑙𝐴 + 𝑣𝑎𝑙𝐵) .

4: function BEQ(𝑝𝑐 , 𝑣𝑎𝑙𝐴 , 𝑣𝑎𝑙𝐵)

5: if 𝑝𝑐 = ⊥ then return (⊥,⊥) ;
6: if 𝑣𝑎𝑙𝐴 = 𝑣𝑎𝑙𝐵 then
7: return (𝑝𝑐 + 1,⊥) .
8: else
9: return (𝑝𝑐 + 2,⊥) .

10: function JMP(𝑝𝑐 , 𝑣𝑎𝑙𝐴 , 𝑣𝑎𝑙𝐵)
11: if 𝑝𝑐 = ⊥ then return (⊥,⊥) ;
12: return (𝑣𝑎𝑙𝐴,⊥) .

5 THE BitVM PROTOCOL

The BitVM protocol enhances Bitcoin’s expressiveness by en-

abling spending conditions based on the result of general-purpose

computation—performed off-chain, but verifiable on-chain through

an interactive protocol. While Bitcoin Script is not (quasi-)Turing

complete, BitVM effectively simulates such computation by us-

ing cryptographic commitments, economic incentives, and Script-

compatible fraud proofs.

BitVM enables two mutually distrusting parties, the prover (𝑃)

and the verifier (𝑉), to agree on the output of a program Π run on

input 𝑆0. If both parties agree on the outcome, funds are distributed

9
In the BitVM protocol, we build a Taproot tree where every program instruction is

a Tapleaf script. We chose such ℓ since 232 << 2
128

, the maximum number of leaf

scripts in the current specification of Bitcoin [33].

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

accordingly with minimal on-chain interaction. In case of disagree-

ment, BitVM executes a dispute resolution protocol that isolates

the exact point of divergence and verifies correctness using Bitcoin

Script. All necessary transaction logic is expressible within Bitcoin,

utilizing Lamport signatures and other Bitcoin Script features.

In the following, we provide a high-level description of the pro-

tocol’s logic, and conclude with a discussion on its security guaran-

tees and on-chain performance. The full protocol specification and

concrete transaction constructions are deferred to Appendix A.

Protocol Phases. The BitVM protocol proceeds in four phases:

(1) Setup: 𝑃 and 𝑉 agree on:

• A program Π written for the BitVM virtual machine.

• An outcome mapping function 𝑓 , defining fund redistribution

based on program output.

• a time parameter Δ, used to timelock transactions to deter

inactivity,

• and a maximum execution trace length final = 2
32
.

They presign all necessary transactions, including outcomes

and disputes, and publish a Setup transaction locking funds

on-chain in a multisig with timeout clauses.

(2) Execution: 𝑃 communicates the initial input 𝑆0 to 𝑉 . Then,

both parties compute Π(𝑆0) off-chain, producing an execution

trace 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒 = (𝐸0, . . . , 𝐸final), where each 𝐸𝑖 is a full VM
state.

(3) Commitment: 𝑃 posts CommitComputation, committing to

both 𝑆0 and the claimed output Π(𝑆0) using Lamport-based

commitments. If 𝑉 agrees, 𝑃 finalizes with Close, spending
funds according to 𝑓 . Otherwise, a dispute begins.

(4) Dispute Resolution: If 𝑉 disagrees with the claimed output,

𝑉 engages 𝑃 in an on-chain bisection game over the execution

trace to identify a disputed VM step. Once found, this VM step is

executed on-chain using Bitcoin Script. If the result is different

from what 𝑃 claimed, their funds are forfeited.

5.1 Optimistic Case (Happy Path)
If both parties agree on the result of the off-chain computation,

only three transactions are posted on-chain:

(1) Setup — locks funds in a multisig.

(2) CommitComputation — 𝑃 commits to the input and the output

of the program using Lamport signatures.

(3) Close — 𝑃 spends CommitComputation’s transaction output

with a result consistent with 𝑓 , redistributing the funds.

This path avoids any dispute mechanism and results in minimal

on-chain cost.

5.2 Dispute Resolution (Unhappy Path)
If 𝑉 disagrees with 𝑃 ’s committed result, the protocol enters the

dispute phase. Let 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒 := (𝐸0, . . . , 𝐸final) be the off-chain VM
execution trace, where each element is defined as in Definition 8.

Notably, each successive element in this execution trace results

from applying a single VM instruction to the preceding element.

Since 𝑃 and𝑉 agree on 𝑆0
10
, any disagreement on the result implies

a disagreement on some 𝑆𝑖+1, while agreeing on 𝑆𝑖 . The bisection

10
They agree by default, since 𝑃 chooses the initial state 𝑆0 and communicates it to𝑉 .

game locates such an index N , enabling on-chain verification of a

single VM step. Fig. 2 illustrates an overview of the dispute process.

Identify Disagreement. 𝑉 initiates the dispute by publishing the

Kickoff transaction, starting a 32-round challenge-response game.

In each round 𝑗 , 𝑉 commits to a bit 𝑏32− 𝑗 via TraceChallengej,
directing the search left (𝑏32− 𝑗 = 0) or right (𝑏32− 𝑗 = 1).

𝑃 responds with TraceResponsej+1, revealing the midpoint 𝐸𝑛𝑟 ,

where 𝑟 = 32 − (𝑗 + 1) and 𝑛𝑟 =
∑
31

𝑖=𝑟 𝑏𝑖 · 2𝑖 + 2𝑟 . After 32 rounds,
the final index isN =

∑
31

𝑖=0 𝑏𝑖 · 2
𝑖
, withN ′ = N + 1. This yields the

first divergent pair: agreement on 𝑆N , disagreement on 𝑆N′ .

Instruction Commitment. 𝑃 must now prove that 𝑆N′ = 𝑓𝑆𝑇 (𝑆N).
To do so, they publish a CommitInstruction transaction, commit-

ting to:

• 𝑝𝑐𝜃 = 𝑝𝑐N and 𝑝𝑐𝜃 ′ = 𝑝𝑐N′ : the program counters of the states

𝑆N and 𝑆N′ , respectively;
• 𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 ∈ OP := {ADD,BEQ, JMP}: the instruction type at

Π[𝑝𝑐𝜃];
• 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃 : the memory addresses referenced in

Π[𝑝𝑐𝜃];
• 𝑣𝑎𝑙𝐴𝜃 , 𝑣𝑎𝑙𝐵𝜃 : the memory values at addresses 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃
in 𝑆N ;
• 𝑣𝑎𝑙𝐶𝜃 the memory value at address 𝑎𝑑𝑑𝑟𝐶𝜃 in 𝑆N′ , i.e., after
executing 𝑓𝑆𝑇 (𝑆N).
The Taproot script must enforce that:

(𝑝𝑐𝜃 ′ , 𝑣𝑎𝑙𝐶𝜃) = 𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 (𝑝𝑐𝜃 , 𝑣𝑎𝑙𝐴𝜃 , 𝑣𝑎𝑙𝐵𝜃)

Next, 𝑉 may challenge this step via several failure cases.

Verifier Challenges. There are five challenge paths to verify the

correctness of the transition 𝑆N → 𝑆N′ . In essence, either the

values are not correctly derived from the agreed upon state 𝑆N , or
the result is not stored correctly in 𝑆N′ . By executing this step, 𝑉

can pinpoint which of these errors occurred, and thus choose the

appropriate challenge path.

(i)-(ii) Program Counter (Current/Next). 𝑉 can dispute that 𝑝𝑐𝜃 ≠

𝑝𝑐N or 𝑝𝑐𝜃 ′ ≠ 𝑝𝑐N′ via ChallengeCurrPC or ChallengeNextPC.
If proven, 𝑉 claims the funds. If 𝑉 equivocates on their bitwise

commitment to N , 𝑃 can reveal equivocation via PunishCurrPC,
claiming all funds instead.

(iii) Instruction Mismatch. Each program line (indexed by 𝑝𝑐𝜃) is

encoded in a tapleaf with the expected 𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 ,

and 𝑎𝑑𝑑𝑟𝐶𝜃 . If 𝑃 commits to inconsistent values, 𝑉 can reveal this

via DisproveProgram, spending the corresponding tapleaf. If the
program counter matches but any operand or opcode does not, 𝑉

wins the dispute and claims the funds.

(iv) Read Error. To verify 𝑣𝑎𝑙𝐴𝜃 = 𝑀N [𝑎𝑑𝑑𝑟𝐴𝜃], 𝑉 initiates a

challenge by publishing ChallengeRead. A 5-round bisection game

over the Merkle path P𝑅 := (𝑀𝑅N , . . . , 𝑀N [𝑎𝑑𝑑𝑟𝐴𝜃]), i.e. the path
from the root 𝑀𝑅N to the leaf 𝑀N [𝑎𝑑𝑑𝑟𝐴𝜃], isolates a disagree-
ment (Npar,Nchild). If 𝑃 fails to justify it via a sibling hash Nsib
(such that 𝐻 (Nsib| |Nchild) = Npar) or equivocates on one of the

elements of P𝑅 , 𝑉 wins via PunishRead. Otherwise, 𝑃 claims the

funds after a timeout. The same logic applies to 𝑣𝑎𝑙𝐵𝜃 at address

𝑎𝑑𝑑𝑟𝐵𝜃 .

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

LEDGERPROVER VERIFIER

1. Identify Disagreement 2. Commit Instruction 3. Challenge Single Instruction
(Challenge Read)

Point of disagreement:

Commit to
(without equivocating)

and show that

Figure 2: Example of dispute resolution in the BitVM protocol: To resolve a dispute, (1) 𝑃 and 𝑉 engage in a bisection game to
identify the point of disagreement (𝐸N , 𝐸N′) in their execution traces, indicating a disagreement in the transition from state
𝑆N to 𝑆N′ . Next, (2) 𝑃 commits on-chain to all necessary information for executing 𝑆N′ = 𝑓𝑆𝑇 (𝑆N) (i.e., the values highlighted
by colored boxes in the figure). In this example, we assume that 𝑃 is committing to an incorrect value for 𝑣𝑎𝑙𝐴𝜃 , resulting in
incorrect value for 𝑣𝑎𝑙𝐶𝜃 and𝑀𝑅N′ . (3) 𝑉 challenges 𝑃 through a bisection game over the path in the memory Merkle tree𝑀N ,
from the root𝑀𝑅N to the leaf containing 𝑣𝑎𝑙𝐴𝜃 . This bisection game reveals two intermediate nodes, Npar and Nchild, on which
𝑃 and 𝑉 disagree. To get away while using an incorrect value, 𝑃 would need to prove that Nchild is indeed the left child of Npar,
which is impossible without equivocating, leading to punishment.

(v) Write Error. 𝑉 challenges 𝑣𝑎𝑙𝐶𝜃 ≠ 𝑀N′ [𝑎𝑑𝑑𝑟𝐶𝜃] by pub-

lishing ChallengeWrite. The bisection game now runs on two

Merkle paths (before and after the write). Again, 𝑉 identifies a dis-

agreement (Npar,Nchild) and challenges 𝑃 to provide a consistent

sibling node. If 𝑃 cannot do so,𝑉 wins via PunishWrite; otherwise,
𝑃 claims the funds after a timeout.

5.3 Security and Efficiency Guarantees
The security of the BitVM protocol rests on two key principles:

economic deterrence and verifiable execution.

Balance security is achieved by ensuring that every on-chain

transaction, including disputes, is publicly verifiable and enforce-

able through Bitcoin Script and Lamport commitments. An honest

party can always construct a valid fraud proof in case of misbehav-

ior by the counterparty, thereby guaranteeing that they can reclaim

their locked funds.

Rational correctness follows from the structure of the protocol

itself: cheating leads to an inescapable penalty, while following the

protocol allows both parties to exit with minimal cost. Since all

challenge paths are exhaustive and provably sound, any attempt to

deviate from correct execution is either detected or discouraged by

design. As a result, rational parties are incentivized to cooperate

rather than contest.

In terms of efficiency, the optimistic execution path requires

only three on-chain transactions: Setup, CommitComputation, and
Close. In the unhappy path, the number of transactions is loga-

rithmic in the VM’s size. For a VM execution trace length of 2
32
,

the entire dispute process requires at most 81 transactions: 1 setup,
1 commitment of the result of the computation, 65 for execution

trace bisection, 1 commitment of the single instruction, and up to

13 for a memory proof challenge (including read/write paths).

6 SECURITY ANALYSIS
We now show that BitVM is an on-chain state verification protocol
that satisfies two key properties: Balance Security, which ensures

that honest users never lose funds even if their counterparty be-

haves arbitrarily; and Rational Correctness, which guarantees that

rational participants always follow the intended optimistic execu-

tion path. Our analysis models BitVM as an Extensive Form Game
(EFG) (see Appendix C), which enables unified reasoning about

both Byzantine and rational adversaries. This approach builds on

recent work on incentive-compatible Layer-2 protocols [29], and

provides a natural way to establish equilibrium guarantees, which

are essential in financial settings.
11

Theorem 6.1. BitVM is an on-chain state verification protocol
that achieves balance security and rational correctness.

6.1 Balance Security
We consider two cases: (i) both parties behave honestly, and (ii) one

party 𝐴 ∈ {𝑃,𝑉 } deviates at any step. In both scenarios, we prove

that the honest party does not lose their funds.

We note that if either party deviates during Setup, the honest
partywill refuse to sign the Setup transaction, ensuring no coins are
locked unless both parties have received all necessary pre-signed

transactions (Lemma D.1). Thus, we assume that the setup phase

has concluded successfully.

11
While Universal Composability (UC) is well-suited for modeling arbitrary adversaries,

it does not support equilibrium reasoning. Formal tools targeting rational security

exist for simple constructions (e.g., Lightning’s closing game [13]), but do not scale to

BitVM ’s combinatorial structure (e.g., bisection-based disputes). Developing general-

purpose frameworks for rational security in expressive smart contract systems remains

an open challenge.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Honest parties. When both parties are honest, BitVM follows an

optimistic path: the prover posts the correct computation result

on-chain via CommitComputation, and after the timelock expires,

publishes Close to distribute the funds according to the outcome

function 𝑓 (Lemma D.3).

𝑉 honest, 𝑃 Byzantine. If the prover fails to publish in time

CommitComputation, either due to inactivity or incorrect compu-

tation, or subsequently fails to post Close, the verifier can reclaim

the funds after the respective timelocks expire (Lemmas D.2, D.3).

This mechanism prevents hostage scenarios by ensuring that the

verifier can recover their coins in case of non-responsiveness.

If the prover commits to an incorrect result in

CommitComputation, the verifier initiates the Identify Disagree-

ment phase by publishing KickOff. If the prover remains inac-

tive, the verifier can claim the coins after the timelock expires

(Lemma D.4). If the phase completes, the verifier obtains a VM step

for which the prover has incorrectly committed to the outcome of

the state transition function (Algorithm 5) (Lemma D.7).

The prover may have deviated by using an invalid program

counter (current or next), performing an incorrect memory read

or write, or executing an invalid instruction. For each case, the

verifier can post the corresponding on-chain transaction—such as

ChallengeCurrPC, ChallengeNextPC, ChallengeRead,
ChallengeWrite, or DisproveProgram—to initiate the appropri-

ate dispute path. This allows the verifier to disprove the prover’s

computation and claim the funds (Lemma D.14).

𝑃 honest, 𝑉 Byzantine. A malicious verifier may initiate the Dis-

pute Phase by publishing KickOff on-chain, even though the prover
has correctly committed to the result in CommitComputation. If
the verifier becomes inactive during the Identify Disagreement

phase, the prover can claim the funds once the timelock expires

(Lemma D.5).

If the phase completes, the verifier must follow up with a chal-

lenge by posting one of the transactions ChallengeCurrPC,
ChallengeNextPC, ChallengeRead, ChallengeWrite, or

DisproveProgram. Since the prover’s commitment is correct, the

verifier cannot produce a valid inconsistency and ultimately fails

to disprove the computation. In this case, the prover reclaims the

funds (Lemma D.15).

6.2 Rational Correctness
We now establish that rational participants are incentivized to

follow the optimistic execution path of BitVM. Specifically, in The-

orem D.16, we prove that the honest strategy profile constitutes a

Subgame Perfect Nash Equilibrium (SPNE). The proof proceeds by
backward induction on the game tree: in every subgame, deviation

results in strictly lower utility, since the honest counterparty can

either recover funds via timeouts or successfully disprove incorrect

behavior on-chain. These consequences are established through

the same mechanisms formalized in Lemmas D.2–D.15.

In particular, if the prover deviates by omitting

CommitComputation, failing to post Close, or committing an in-

valid transition, the verifier can either reclaim their funds or win

the dispute. Conversely, if the verifier initiates an unwarranted

dispute, they will be unable to disprove the prover and ultimately

forfeit their claim. As any unilateral deviation leads to lower utility,

both parties are incentivized to behave honestly. This establishes

that BitVM is incentive-compatible: rational players adhere to the

optimistic path without invoking the dispute mechanism.

7 IMPLEMENTATION AND EVALUATION
To show the feasibility of our approach, we implement a proto-

type of BitVM in JavaScript. The prototype can be found in an

anonymized GitHub repository [3]. In addition to showing how

BitVM can be implemented practically, we use it to compute the

transaction fees for both an optimistic run and the most expensive

dispute branch of BitVM.

We assume constant transaction fees of 3𝑠𝑎𝑡/𝑣𝐵12, a Bitcoin price
of 70, 300$ (as of April 7, 2025). Tomake the prototypemore efficient,

we realize the one-time signatures with Winternitz signatures [12]

instead of Lamport signatures. Using Winternitz signatures, both

the size of a signature and the size of a public key are around 5𝑣𝐵 per

message bit. As hash function, we use the Bitcoin Script primitive

OP_HASH160 [1]. We also assume that Δ = 12 hours, meaning

each timelock expires after half a day. Different concrete values can

be chosen, but any such selection would require scaling the time

evaluation accordingly.

Optimistic case. In the optimistic case, three on-chain transac-

tions are published: Setup, CommitComputation, and Close, total-
ing 1, 944𝑣𝐵. The protocol’s execution cost is 5, 832 sat (4.01$). In

terms of execution time, once Setup is published, BitVM completes

in at most 2Δ time, corresponding to 1 day.

Dispute case. We focus on the most expensive path in terms of

fees, theWrite Error path. Overall, 81 transactions are posted on-

chain; the path weighs 244, 040𝑣𝐵. The total protocol execution

cost is 732𝑘𝑠𝑎𝑡 , or about 515$, and, once the Setup transaction is

published on-chain, it takes at most 80 × Δ = 40 days to complete

its execution. We stress that in case of a dispute, all the fees needed

to run the protocol on-chain are covered by the misbehaving party.

8 BRIDGE APPLICATION
In this section, we leverage BitVM to instantiate a bridge applica-

tion between the Bitcoin ledger and a sidechain system running a

distributed ledger protocol, as defined in Definition 1, which sat-

isfies stickiness, safety, and liveness. This bridge enables users to
mint (wrapped) Bitcoin tokens on the sidechain and later redeem

them back on the Bitcoin blockchain and is secure, assuming only

existential honesty of the participants.

We first outline the bridge protocol, then present some high-level

security arguments and conclude this section with an evaluation.

8.1 A BitVM-based Bridge Design
Consider two users, Alice and Bob: Alice mints tokens on the

sidechain, transfers them to Bob, who then redeems the equiv-

alent amount back to Bitcoin. The protocol assumes a committee of

𝑛 members active during the BridgeSetup phase
13
, with at least one

12
In Bitcoin, the size of a SegWit [25] transaction is expressed in virtual Bytes, or vBytes

(𝑣𝐵). The number of vBytes of a transaction witness is equal to its number of Bytes

divided by four.

13
Otherwise, the committee is reshuffled until BridgeSetup completes.

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 3: Illustration of our BitVM-based bridge protocol. For
readability, we represent transactions as grey boxes, the value
carried by transaction inputs and output is written inside a
yellow and green rectangle, respectively. Pink dashed rectan-
gles around the inputs and outputs of Take and Slash transac-
tions denote that the transaction is pre-signed during Bridge-
Setup, while the black dashed rectangle indicates which por-
tion of the PegOut transaction Bob signed at PegOut time.
Above the arrows, we denote the condition that unlocks the
output from which the arrow start. The arrows are blue if
they represent a path taken by the operator, and red if the
path is taken by one of the other committee members. The
amount 𝑜𝑢𝑡 𝑗 , output of the BitVM instance 𝐼𝑖 , 𝑗 , depends on
the funds still present after the BitVM dispute phase.

assumed honest during execution. We illustrate the bridge protocol

in Fig. 3.

During the BridgeSetup phase, the committee members pre-sign

the transactions required for the protocol execution. The core pro-

cedures are PegIn (Alice mints tokens) and PegOut (Bob redeems

them). To enable PegOut, a committee member fronts coins to Bob

and later reclaims them in the reimbursement phase14. We refer to

this member as the operator. The remaining committee members

ensure that only honest operators can reclaim funds in the reim-

bursement phase by disproving any member falsely claiming to

have fronted coins to Bob.

BridgeSetup. The committee pre-signs, before the PegIn proce-

dure is executed, specific transactions to reimburse an honest oper-

ator or punish a misbehaving one.

First, for each distinct pair of committee members denoted 𝑐𝑖
and 𝑐 𝑗 , 𝑐𝑖 pre-signs and forwards the transaction Slash(i,j) to
𝑐 𝑗 , which 𝑐 𝑗 can later publish to punish 𝑐𝑖 upon misbehavior, as

14
To coordinate among committee members, we can define an operator schedule, for

example, in a round-robin fashion.

we explain below. Second, for any member 𝑐𝑖 , all the committee

members pre-sign the Takei transaction that refunds 𝑐𝑖 , according

to the conditions described below.

PegIn. Alice deposits 𝑢 coins on Bitcoin via a PegIn transaction.
This transaction has a single output that deposits the 𝑢 coins into

the multi-signature wallet controlled by the 𝑛 committee members.

The sidesystem verifies the inclusion of the PegIn transaction in

the Bitcoin blockchain using a Bitcoin light client. Once confirmed,

the sidesystem mints 𝑢 wrapped tokens to Alice’s account.

PegOut. To withdraw the 𝑢 coins, Bob first publishes a Burn trans-
action on the sidesystem. Then, he constructs a PegOut transaction
with a single output allocating 𝑢 − 𝑓0 coins to his Bitcoin address

where 𝑓0 is a service fee. Bob broadcasts this PegOut request to the

committee members. At least one committee member effectively

fronts the𝑢− 𝑓0 coins from their own funds to fulfill the withdrawal,

in exchange for 𝑓0.

Reimbursement. To facilitate the reimbursement of the commit-

tee member that fronted its coins to Bob, we proceed with the

following construction.

Claim. Each committee member 𝑐𝑖 can claim that they fronted

coins to Bob by posting the transaction Claimi on-chain. Claimi
takes as input an empty transaction from the committee member 𝑐𝑖
and has an empty output that can be spent after a timelock TL(Δ)
expires, along with a connector output, i.e., a transaction output

given as input to different transactions to guarantee that only one

of them will appear on-chain.

Slashing Mechanism. If 𝑐𝑖 falsely claims to have fronted coins

to Bob, any 𝑐 𝑗 can later publish on-chain Slash(i,j) to punish 𝑐𝑖 .

To achieve that, we employ a number of 𝑂 (𝑛2) BitVM instances as

follows. For every pair of distinct committee members 𝑐𝑖 and 𝑐 𝑗 ,

we consider the instance 𝐼𝑖, 𝑗 where 𝑐𝑖 acts as the prover and 𝑐 𝑗 as

the verifier.
15

For a fixed 𝑖 , the program Π, hardcoded into each instance 𝐼𝑖, 𝑗 ,

verifies the following conditions:

(1) Bob’s Burn transaction exists on the sidechain.

(2) A PegOut transaction, where operator 𝑐𝑖 fronts the coins to

Bob, exists on the Bitcoin ledger.

For example, the program Π could encode a zk-SNARK verifier

that verifies a proof of (1) and (2), making use of a light client of both

the sidechain and the Bitcoin ledger, as shown in, e.g., [4, 5, 24].

The transaction Slash(i,j) takes as input: i) the connector output
of Claimi and ii) an input from any transaction where 𝑐 𝑗 wins the

instance 𝐼𝑖, 𝑗 (i.e., any transaction where all the coins of the multi-

signature are attributed to 𝑐 𝑗) and has a single output where all the

remaining coins locked in the instance 𝐼𝑖, 𝑗 are given to 𝑐 𝑗 .

Take. The committee member 𝑐𝑖 that fronted coins to Bob, can

finally retrieve their funds by publishing transaction Takei on-

chain. The transaction Takei has the following inputs: i) the output
of PegIn, ii) the first output of Claimi, and iii) the connector output
of Claimi, and has a single output where the coins of the first input
are transferred to 𝑐𝑖 .

15
The only difference from the current protocol is that, in this case, the verifier commits

the BridgeSetup on-chain to initiate a dispute.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

For each operator 𝑐𝑖 , all committee members presign Takei only
if: (i) Claimi is constructed according to the protocol, and (ii) they

have received all the pre-signed transactions related to the BitVM
instance 𝐼𝑖, 𝑗 .

The size and cost of each of the additional transactions necessary

for the bridge are computed (according to Appendix E) in Table 2.

8.2 Security Arguments
Since the sidechain ensures the success of PegIn, our goal is to guar-
antee that a successful PegIn implies a corresponding successful

PegOut. That is, if Alice mints and transfers coins to Bob, Bob can

eventually reclaim the equivalent amount on Bitcoin. This relies

on two properties:

• (Safety) No false claims: A committee member cannot

falsely claim to have fronted coins to Bob. Otherwise, funds

in the multisig are stolen, and future honest operators are

unable to reclaim their coins.

• (Liveness) Honest redemption: Eventually, an honest op-

erator will front coins and reclaim them.

Safety holds because if a malicious member 𝑐𝑖 posts Claimi
without first posting PegOut, an honest challenger 𝑐 𝑗 can initiate

BitVM instance 𝐼𝑖, 𝑗 and post Slashi,j, which spends the connector

output of Claimi and invalidates Takei.
Liveness holds because an honest member 𝑐𝑖 who posts PegOut

is protected: no malicious 𝑐 𝑗 can succeed with Slashi,j, and after

the Claimi timelock, 𝑐𝑖 can post Takei to reclaim their funds.

8.3 Evaluation
In the most optimistic scenario, where all committee members

behave honestly, executing an instance of our bridge protocol re-

quires only four on-chain transactions—PegIn, PegOut, Claim, and
Take—resulting in a minimal total cost of approximately $2.

In the event of disputes, the worst-case total transaction fees are

as follows:

i) Cost for an honest operator: If all remaining 𝑛−1 commit-

tee members are adversarial and each initiates a correspond-

ing BitVM instance, the honest operator wins all dispute

games, incurring at most 515$ per game as detailed in Sec-

tion 7. Along with PegIn, PegOut, Claim, and the BitVM
instances, the honest operator publishes a Take transaction

on-chain to reclaim the funds. The overall transaction fee

cost is 515 · 𝑛 − 513$.
Importantly, the cost of the BitVM instances is borne by the

adversarial committee members. The honest operator only

pays the fees for PegIn, PegOut, Claim, and Take (approxi-
mately 2$), which can be covered by the application fee 𝑓0
paid by Bob.

ii) Cost for a faulty operator: If the operator is dishonest

and the remaining 𝑛 − 1 committee members are honest,

each initiates a BitVM instance to challenge the operator’s

claim leading to (𝑛 − 1) · 515$ coins paid in transaction fees.

Additionally, they will publish 𝑛 − 1 Slash transactions on-

chain. The cumulative transaction fees are 515.45·𝑛−514.46 $.
All transaction fees associated with the BitVM disputes are

paid by the faulty operator.

iii) Cost per bridge instance: In the worst-case scenario, 𝑛 − 1
faulty operators attempt to illegitimately reclaim coins, each

incurring the cost described in case (ii). In addition, a single

honest operator reclaims their funds, incurring the worst-

case cost as outlined in case (i).

We emphasize that in all scenarios, the transaction costs associ-

ated with disputes are borne by the malicious parties. The honest

operator consistently incurs only a minimal cost of around $2.

Table 2 summarizes the transaction costs associated with each

phase of the bridge protocol.

Table 2: Evaluation of a BitVM-based bridge instance in terms
of transaction sizes and on-chain costs.

Tx Size (𝑣𝐵) On-chain cost ($)
PegIn 117 0.25

PegOut 180 0.40

Claim 160 0.34

Slash 212 0.45

Take 475 1.00

9 CONCLUSION AND FUTUREWORK
This work presents BitVM, the first protocol to enable general-

purpose, trustless computation on Bitcoin without requiring con-

sensus changes, or additional assumptions, e.g., trusted hardware

or semi-trusted oracles. By combining off-chain execution with an

interactive, Bitcoin-compatible dispute resolution protocol, BitVM
achieves quasi-Turing completeness using only existing scripting

capabilities. We demonstrate the applicability of BitVM through

a trust-minimizing bridge construction and provide a prototype

implementation along with a concrete cost analysis.

BitVM extends the design space for Bitcoin-based applications,

enabling programmable logic and verifiable off-chain computation

in a trustless setting. Its ability to condition Bitcoin transactions

on arbitrary program outputs opens new avenues for decentralized

infrastructure anchored in Bitcoin’s security model.

Several directions remain for future work. First, while BitVM
currently supports two-party interactions, generalizing the pro-

tocol to support multiparty or permissionless settings—such as

decentralized oracle networks or bridges—is an important next step.

Second, further reducing on-chain cost through improved dispute

resolution mechanisms, such as more efficient encodings or batched

verifications, could improve scalability. Third, building higher-level

tooling, including compilers or domain-specific languages, would

help lower the barrier to adoption and enable broader experimenta-

tion with complex BitVM-based applications.

We believe BitVM marks a foundational step in unlocking the

next generation of Bitcoin-native applications.

REFERENCES
[1] 2025. Bitcoin Script. https://en.bitcoin.it/wiki/Script. Accessed: 2025-04.

[2] 2025. Bitcoin Transactions. https://en.bitcoin.it/wiki/Transaction. Accessed:

2025-04.

[3] 2025. BitVM Toy Implementation. https://anonymous.4open.science/r/bitvm-js-

E7C7/README.md.

[4] 2025. BOB Hybrid L2 Technical Blueprint. https://blog.gobob.xyz/posts/bob-

hybrid-l2-technical-blueprint. Accessed: 2025-04.

https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Transaction
https://anonymous.4open.science/r/bitvm-js-E7C7/README.md
https://anonymous.4open.science/r/bitvm-js-E7C7/README.md
https://blog.gobob.xyz/posts/bob-hybrid-l2-technical-blueprint
https://blog.gobob.xyz/posts/bob-hybrid-l2-technical-blueprint

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

[5] 2025. Unveiling Clementine - Citrea’s BitVM Based Trust-Minimized Two-Way

Peg Program. https://www.blog.citrea.xyz/unveiling-clementine/. Accessed:

2025-04.

[6] Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Giulia Scaffino, and Dionysis

Zindros. 2024. Blink: An Optimal Proof of Proof-of-Work. Cryptology ePrint

Archive. https://eprint.iacr.org/2024/692

[7] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. 2021. Gen-

eralized Channels from Limited Blockchain Scripts and Adaptor Signatures. In

ASIACRYPT.
[8] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. 2018. Fun with Bitcoin

Smart Contracts. In Leveraging Applications of Formal Methods, Verification and
Validation. Industrial Practice. Cham, 432–449.

[9] Massimo Bartoletti, Stefano Lande, and Roberto Zunino. 2020. Bitcoin Covenants

Unchained. In Leveraging Applications of Formal Methods, Verification and Valida-
tion: Applications. 25–42.

[10] Massimo Bartoletti, Riccardo Marchesin, and Roberto Zunino. 2024. Secure

compilation of rich smart contracts on poor UTXO blockchains. In 9th IEEE
European Symposium on Security and Privacy, EuroS&P. https://doi.org/10.1109/

EUROSP60621.2024.00021

[11] Massimo Bartoletti and Roberto Zunino. 2018. BitML: A Calculus for Bitcoin

Smart Contracts. In ACM CCS. 83–100. https://doi.org/10.1145/3243734.3243795

[12] Dan Boneh and Victor Shoup. 2023. A graduate course in applied cryptography.

Draft 0.6 (2023). https://toc.cryptobook.us/.
[13] Lea Salome Brugger, Laura Kovács, Anja Petkovic Komel, Sophie Rain, and

Michael Rawson. 2023. CheckMate: automated game-theoretic security rea-

soning. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security. 1407–1421.

[14] Citrea. 2024. Bitcoin Settlement Trust-Minimized BTC Bridge: BitVM.

https://docs.citrea.xyz/technical-specs/characteristics/bitcoin-settlement-trust-

minimized-btc-bridge/bitvm Accessed: 2025-04.

[15] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostáková,

Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi. 2019. FastKitten:

Practical Smart Contracts on Bitcoin. In USENIX Security 19.
[16] Contributor DLC. 2018. Discreet Log Contracts: An Overview. (2018). https:

//adiabat.github.io/dlc.pdf

[17] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. 2018. General

State Channel Networks. In ACM CCS. 949–966. https://doi.org/10.1145/3243734.

3243856

[18] Esolangs. 2025. Addleq. https://esolangs.org/wiki/Addleq.

[19] Ethereum Foundation. 2024. State Channels. https://ethereum.org/en/developers/

docs/scaling/state-channels/ Accessed: 2025-04.

[20] FairGate Labs. 2024. BitVMX & BitVM. https://fairgate.io Accessed: 2025-04.

[21] Tommaso Frassetto, Patrick Jauernig, David Koisser, David Kretzler, Benjamin

Schlosser, Sebastian Faust, and Ahmad-Reza Sadeghi. 2023. POSE: Practical Off-

chain Smart Contract Execution. In NDSS Symposium. Internet Society. https:

//doi.org/10.14722/ndss.2023.23118

[22] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2024. The Bitcoin Backbone

Protocol: Analysis and Applications. J. ACM 71, 4, Article 25 (Aug. 2024), 49 pages.

https://doi.org/10.1145/3653445

[23] Leslie Lamport. 1979. Constructing Digital Signatures from a One Way Function
(sri international ed.). Technical Report CSL-98. https://www.microsoft.com/en-

us/research/publication/constructing-digital-signatures-one-way-function/.

[24] Robin Linus, Lukas Aumayr, Alexei Zamyatin, Andrea Pelosi, Zeta Avarikioti,

and Matteo Maffei. 2024. BitVM2: Bridging Bitcoin to Second Layers. https:

//bitvm.org/bitvm_bridge.pdf Accessed: 2025-04.

[25] Eric Lombrozo and Pieter Wuille. 2015. BIP 141, Segregated Witness. https:

//github.com/bitcoin/bips/blob/master/bip-0141.mediawiki Accessed: 2025-04.

[26] Varun Madathil, Sri AravindaKrishnan Thyagarajan, Dimitrios Vasilopoulos,

Lloyd Fournier, Giulio Malavolta, and Pedro Moreno-Sanchez. 2023. Cryp-

tographic Oracle-Based Conditional Payments. In NDSS Symposium. https:

//doi.org/10.14722/ndss.2023.24024

[27] Martin J. Osborne and Ariel Rubinstein. 1994. A Course in Game Theory. MIT

Press, Cambridge, MA.

[28] Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network: Scalable

off-chain instant payments. (2016).

[29] Sophie Rain, Georgia Avarikioti, Laura Kovács, and Matteo Maffei. 2023. Towards

a Game-Theoretic Security Analysis of Off-Chain Protocols. In IEEE CSF. 107–122.
https://doi.org/10.1109/CSF57540.2023.00003

[30] Robin Linus. 2023. BitVM: Compute Anything on Bitcoin. https://bitvm.org/

bitvm.pdf Accessed: 2025-04.

[31] Sovryn. 2024. BitcoinOS. https://sovryn.com/bitcoinos Accessed: 2025-04.

[32] Apostolos Tzinas, Srivatsan Sridhar, and Dionysis Zindros. 2023. On-Chain

Timestamps Are Accurate. Cryptology ePrint Archive, Paper 2023/1648. https:

//eprint.iacr.org/2023/1648

[33] Pieter Wuille, Jonas Nick, and Anthony Towns. 2020. BIP 0341, Taproot: SegWit

version 1 spending rules. https://en.bitcoin.it/wiki/BIP_0341.

A THE BitVM PROTOCOL SPECIFICATION

In this section, we present the full BitVM protocol specification.

All scripts that we use comprise only (multi-) signature and Lamport

signature verification, if/else statements, timelocks, and hashing,

and are thus compatible with Bitcoin.

A.1 Setup
In the setup phase, the prover 𝑃 and the verifier𝑉 create and presign

the necessary transactions for both honest protocol execution and

potential dispute resolution; then both 𝑃 and 𝑉 lock an on-chain

deposit, in𝑃 and in𝑉 , respectively.
At first, both 𝑃 and 𝑉 create all the transactions that are defined

in this section and Appendix A.3, except Setup. Whenever such a

transaction contains a new Lamport public key, the corresponding

party creates one using Lamp.KeyGen and shares the public key

with the other party.

Each transaction output either requires a 2-of-2 multisignature

𝜎𝑃𝑉 to be spent and is presigned by both parties or requires a signa-

ture from one party along with a timelock. The timelock condition

ensures that if a party ceases participation in the BitVM protocol,

they forfeit the deposit, which the counterparty can then claim,

along with their deposit.

After creating the transactions, the parties exchange them for

presigning. For each transaction 𝑃 (𝑉) verifies it is well-formed

according to the definitions below. If verified, the transaction is

signed and sent to 𝑉 (𝑃). The

Finally, 𝑃 and 𝑉 sign and publish the Setup (cf. Eq. (1)) transac-

tion on-chain. This transaction takes inputs from 𝑃 (holding in𝑃B)
and 𝑉 (holding (in𝑉 B), creating an output that can be unlocked by

both parties under the following conditions: 𝑃 can spend the output

by presenting Lamport commitments to𝑀𝑅0 and𝑀𝑅final (i.e., the

commitments to the input and output of program Π), while 𝑉 can

spend the output after a timeout period Δ. For brevity, we use 𝜎U
when the signature is in a transaction’s witness; the message signed

in that case is the transaction body (inputs and outputs without

witnesses).

Setup :=(
𝑖𝑛 = [(∗, ∗,CheckSigpk𝑃), (∗, ∗,CheckSigpk𝑉)],

𝑤𝑖𝑡 = [(𝜎𝑃), (𝜎𝑉)],
𝑜𝑢𝑡 = [(𝑑B; ⟨CommitComputationScript, TL(Δ)∧

CheckSigpk𝑉 ⟩)]
)
,

(1)

The script CommitComputationScript is defined below.

CommitComputationScript :=

CheckMSigpk𝑃𝑉 ∧ CheckCommpk𝐸
0

∧ CheckCommpk𝐸final
.

A.2 VM Execute
The prover 𝑃 sends to the verifier 𝑉 the input 𝑥 of program Π

via a communication channel. Both 𝑃 and 𝑉 execute off-chain the

program Π with input 𝑥 on their VM instance. They copy 𝑥 into

the VM memory𝑀 and call Algorithm 6 with input 𝑆0 := (𝑀, 0,Π).

https://www.blog.citrea.xyz/unveiling-clementine/
https://eprint.iacr.org/2024/692
https://doi.org/10.1109/EUROSP60621.2024.00021
https://doi.org/10.1109/EUROSP60621.2024.00021
https://doi.org/10.1145/3243734.3243795
https://toc.cryptobook.us/
https://docs.citrea.xyz/technical-specs/characteristics/bitcoin-settlement-trust-minimized-btc-bridge/bitvm
https://docs.citrea.xyz/technical-specs/characteristics/bitcoin-settlement-trust-minimized-btc-bridge/bitvm
https://adiabat.github.io/dlc.pdf
https://adiabat.github.io/dlc.pdf
https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1145/3243734.3243856
https://esolangs.org/wiki/Addleq
https://ethereum.org/en/developers/docs/scaling/state-channels/
https://ethereum.org/en/developers/docs/scaling/state-channels/
https://fairgate.io
https://doi.org/10.14722/ndss.2023.23118
https://doi.org/10.14722/ndss.2023.23118
https://doi.org/10.1145/3653445
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://bitvm.org/bitvm_bridge.pdf
https://bitvm.org/bitvm_bridge.pdf
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://doi.org/10.14722/ndss.2023.24024
https://doi.org/10.14722/ndss.2023.24024
https://doi.org/10.1109/CSF57540.2023.00003
https://bitvm.org/bitvm.pdf
https://bitvm.org/bitvm.pdf
https://sovryn.com/bitcoinos
https://eprint.iacr.org/2023/1648
https://eprint.iacr.org/2023/1648
https://en.bitcoin.it/wiki/BIP_0341

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

They get as output the VM execution trace 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒 and the

memory𝑀 , from which they fetch the output 𝑦 of program Π with

input 𝑥 . We stress that this is the most resource-intensive phase of

BitVM and it is entirely performed off-chain.

A.3 Commit
The prover 𝑃 publishes the CommitComputation transaction

(cf. Eq. (2)) on-chain, which spends the output of the Setup transac-
tion by providing a Lamport commitment to 𝐸0 := (𝑀𝑅0, 𝑝𝑐0) and
𝐸final := (𝑀𝑅final, 𝑝𝑐final).

CommitComputation :=(
[𝑖𝑛 = (Setup, 0,CommitComputationScript)],

[𝑤𝑖𝑡 = (𝜎𝑃𝑉 , 𝐸0, 𝑐𝐸0 , 𝐸final, 𝑐𝐸final)],
[𝑜𝑢𝑡 = (𝑑B; ⟨CheckMSigpk𝑃𝑉 ,CloseScript,

CheckSigpk𝑉 ∧ TL(2Δ)⟩)]
)
.

(2)

The script CloseScripti is defined in Algorithm 8.

Algorithm 8 The script CloseScripti. In the setup phase, the public key

pk
𝑀𝑅final

is hard-coded in the script.

1: function CloseScripti(𝜎𝑃𝑉 ,𝑀𝑅final, 𝑐𝑀𝑅final)

2: TL(Δ) ;
3: CheckMSigVerifypk

𝑃𝑉
(𝜎𝑃𝑉) ;

4: CheckCommVerifypk
𝑀𝑅final

(𝑀𝑅final, 𝑐𝑀𝑅final) ;
5: if 𝑀𝑅final = MR𝑖 then
6: return True;
7: return False.

The verifier 𝑉 can either challenge 𝑃 if they disagree with the

𝑀𝑅final published on-chain by 𝑃 or simply take no action if they

agree. Since the VM execution is deterministic, honest parties run-

ning the same program on the same input naturally agree on𝑀𝑅final.

A disagreement, therefore, implies that one party is behaving dis-

honestly.

Close. 𝑉 agrees with 𝑃 ’s commitment to 𝑀𝑅final and does not

dispute it. The BitVM protocol follows the happy path: after a time-

out period Δ, 𝑃 publishes one of the close transactions Close1,
. . . , Closem. Each of these transactions distributes the funds ac-

cording to the outcome mapping function 𝑓 , applied to one of

the possible results of the computation
16
. If 𝑃 does not publish any

Closei transaction after that TL(2Δ) expires after the publication of
CommitComputation transaction, 𝑉 can unlock

CommitComputation output with their signature and claim all the

funds.

Transaction Closei (cf. Eq. (3)) spends the output of

CommitComputation by unlocking CloseScripti and creates two

outputs. The first output carries 𝑜𝑃B and can be unlocked by 𝑃

after a timeout period Δ or by 𝑉 if 𝑃 equivocates on 𝑀𝑅final (as

shown in Algorithm 9). The second output carries 𝑜𝑉 B and can be

unlocked by 𝑉 .

16
During the setup phase, 𝑃 and𝑉 agree on 𝑓 and jointly create and sign a finite set

of closing transactions, one for each possible outcome. The funds are distributed to 𝑃

and𝑉 according to the result of 𝑓 .

Closei :=(
[𝑖𝑛 = (CommitComputation, 0,CloseScript)],

[𝑤𝑖𝑡 = (𝜎𝑃𝑉 , 𝑀𝑅final, 𝑐𝑀𝑅final)],
[𝑜𝑢𝑡 = (𝑣𝑃 ; ⟨CheckSigpk𝑃 ∧ TL(Δ),

PunishCloseScript⟩), (𝑣𝑉 ;CheckSigpk𝑉)]
)
.

(3)

Algorithm 9 The script PunishCloseScript. In the setup phase, the public

key pk
𝑀𝑅final

is hard-coded in the script.

1: function PunishCloseScript(𝜎𝑃𝑉 , 𝑐0, 𝑐1)

2: CheckMSigVerifypk
𝑃𝑉
(𝜎𝑃𝑉) ;

3: for 𝑖 = 1, . . . , |𝑀𝑅final |𝑏𝑖𝑡 do
4: if Equivocation(pk

𝑀𝑅final [𝑖]
, 𝑐0, 𝑐1) = True then

5: return True;
6: return False.

Identify Disagreement. 𝑉 disagreeswith 𝑃 ’s commitment to𝑀𝑅final.

To dispute 𝑃 ’s result, 𝑉 publishes the KickOff transaction

(cf. Eq. (4)) by spending CommitComputation’s output, unlocking
it through the multisignature.

KickOff :=(
[𝑖𝑛 = (CommitComputation, 0,CheckMSigpk𝑃𝑉)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉)],

𝑜𝑢𝑡 = [(𝑑B; ⟨ChallScript1, TL(Δ) ∧ CheckSigpk𝑉 ⟩)]
)
.

(4)

The scriptChallScriptj, with j ∈ {1, . . . , 31}, is defined as follows:

ChallScriptj := CheckMSigpk𝑃𝑉 ∧ CheckCommpk𝐸𝑛
32− 𝑗

.

The parties engage in an on-chain interactive protocol known

as dispute bisection game (cf. Appendix B.1): the game is played

over the VM execution trace 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒 := (𝐸0, . . . , 𝐸final) and has

the goal to determine a pair of consecutive VM trace elements

(𝐸N , 𝐸N′), where N ′ := N + 1, such that they agree on 𝐸N and

disagree on 𝐸N′ .
After that, 𝑉 initiates the bisection game by publishing the

Kickoff transaction, 𝑃 responds by publishing the

TraceResponse1 transaction (cf. Eq. (5)), committing to 𝐸𝑛31 in

the witness, where 𝑛31 = 1 · 231.

TraceResponse1 :=(
𝑖𝑛 = [(KickOff, 0,CheckMSigpk𝑃𝑉 ∧

CheckCommpk𝐸𝑛
31

)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝐸𝑛31 , 𝑐𝐸𝑛
31

)],

𝑜𝑢𝑡 = [(𝑑B; ⟨RespScript1, TL(Δ) ∧ CheckSigpk𝑃 ⟩)]
)
.

(5)

The script RespScripti, with i ∈ {1, . . . , 32}, is defined as follows:

RespScripti := CheckMSigpk𝑃𝑉 ∧ CheckCommpk
𝑏
32−𝑖

.

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Next, 𝑉 publishes the TraceChallenge1 transaction (cf. Eq. (6)),

committing to bit 𝑏31 in the witness.

TraceChallenge1 :=(
𝑖𝑛 = [(TraceResponse1, 0,RespScript1)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑏31, 𝑐𝑏31)],

𝑜𝑢𝑡 = [(𝑑B; ⟨ChallScript2, TL(Δ) ∧ CheckSigpk𝑉 ⟩)]
)
.

(6)

During the dispute bisection game, 𝑃 publishes transactions

TraceResponsei (cf. Eq. (7)), with i = 1, . . . , 32, and 𝑉 publishes

transactions TraceChallengej (cf. Eq. (8)), with j = 1, . . . , 31.

TraceResponsei :=(
𝑖𝑛 = [(TraceChallengei−1, 0,ChallScripti−1)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝐸𝑛32−𝑖 , 𝑐𝐸𝑛
32−𝑖
)],

𝑜𝑢𝑡 = [(𝑑B; ⟨RespScripti, TL(Δ) ∧ CheckSigpk𝑃 ⟩)]
)
,

(7)

where 𝑛32−𝑖 = 1 · 232−𝑖 +∑31

𝑘=32−(𝑖+1) 𝑏𝑘 · 2
𝑘 .

TraceChallengej :=(
𝑖𝑛 = [(TraceResponsej, 0,RespScriptj)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑏32− 𝑗 , 𝑐𝑏32− 𝑗)],

𝑜𝑢𝑡 = [(𝑑B; ⟨ChallScriptj+1, TL(Δ) ∧ CheckSigpk𝑉 ⟩)]
)
,

(8)

Finally, 𝑉 publishes TraceChallenge32 (cf. Eq. (9)).

TraceChallenge32 :=(
𝑖𝑛 = [(TraceResponse32, 0,RespScript32)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑏0, 𝑐𝑏0)],
𝑜𝑢𝑡 = [(𝑑B; ⟨ADDScript,BEQScript, JMPScript,

TL(Δ) ∧ CheckSigpk𝑉 ⟩)]
)
,

(9)

To unlock the TraceChallenge32 output, 𝑃 is forced to provide

a commitment for 𝑝𝑐𝜃 , 𝑝𝑐𝜃 ′ , 𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃 ,

𝑣𝑎𝑙𝐴𝜃 , 𝑣𝑎𝑙𝐵𝜃 , 𝑣𝑎𝑙𝐶𝜃 . The instruction 𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 must match the leaf

being spent and 𝑝𝑐𝜃 , 𝑝𝑐𝜃 ′ , 𝑣𝑎𝑙𝐴𝜃 , 𝑣𝑎𝑙𝐵𝜃 , 𝑣𝑎𝑙𝐶𝜃 must align with the

instruction’s semantics. For instance, if 𝑃 unlocks the ADDScript
tapleaf (cf. Algorithm 10), the condition ADD(𝑝𝑐𝜃 , 𝑣𝑎𝑙𝐴𝜃 , 𝑣𝑎𝑙𝐵𝜃) =
(𝑝𝑐𝜃 ′ , 𝑣𝑎𝑙𝐶𝜃) must hold, where ADD is the VM instruction defined

in Algorithm 7, lines 1 to 3. The leaves BEQScript and JMPScript
are analogous to ADDScript but they encode the semantics of the

BEQ and JMP instructions, respectively. The resolve dispute phase
is deferred to Appendix A.3.

A.4 Dispute Resolution
𝑃 spends the TraceChallenge32 output by publishing the

CommitInstruction transaction (cf. Eq. (10)).

Algorithm 10 The script ADDScript. In the setup phase, the public keys

pk𝑝𝑐𝜃 , pk𝑝𝑐𝜃 ′ , pk𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃
, pk

𝑎𝑑𝑑𝑟𝐴𝜃
, pk

𝑎𝑑𝑑𝑟𝐵𝜃
, pk

𝑎𝑑𝑑𝑟𝐶𝜃
, pk

𝑣𝑎𝑙𝐴𝜃
,

pk
𝑣𝑎𝑙𝐵𝜃

, pk
𝑣𝑎𝑙𝐶𝜃

and the sematics of the ADD instruction are hard-coded

in the script.

1: function ADDScript(𝜎𝑃𝑉 , 𝑝𝑐𝜃 , 𝑐𝑝𝑐𝜃 , 𝑝𝑐𝜃 ′ , 𝑐𝑝𝑐𝜃 ′ , 𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃 ,

𝑐𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃
, 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐴𝜃

, 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐵𝜃
, 𝑎𝑑𝑑𝑟𝐶𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐶𝜃

,

𝑣𝑎𝑙𝐴𝜃 , 𝑐𝑣𝑎𝑙𝐴𝜃
, 𝑣𝑎𝑙𝐵𝜃 , 𝑐𝑣𝑎𝑙𝐵𝜃

, 𝑣𝑎𝑙𝐶𝜃 , 𝑐𝑣𝑎𝑙𝐶𝜃
)

2: CheckMSigVerifypk
𝑃𝑉
(𝜎𝑃𝑉) ;

3: CheckCommVerifypk𝑝𝑐𝜃
(𝑝𝑐𝜃 , 𝑐𝑝𝑐𝜃) ;

4: CheckCommVerifypk𝑝𝑐𝜃 ′
(𝑝𝑐𝜃 ′ , 𝑐𝑝𝑐𝜃 ′) ;

5: CheckCommVerifypk
𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃

(𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃 , 𝑐𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃
) ;

6: CheckCommVerifypk
𝑎𝑑𝑑𝑟𝐴𝜃

(𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐴𝜃
) ;

7: CheckCommVerifypk
𝑎𝑑𝑑𝑟𝐵𝜃

(𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐵𝜃
) ;

8: CheckCommVerifypk
𝑎𝑑𝑑𝑟𝐶𝜃

(𝑎𝑑𝑑𝑟𝐶𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐶𝜃
) ;

9: CheckCommVerifypk
𝑣𝑎𝑙𝐴𝜃

(𝑣𝑎𝑙𝐴𝜃 , 𝑐𝑣𝑎𝑙𝐴𝜃
) ;

10: CheckCommVerifypk
𝑣𝑎𝑙𝐵𝜃

(𝑣𝑎𝑙𝐵𝜃 , 𝑐𝑣𝑎𝑙𝐵𝜃
) ;

11: CheckCommVerifypk
𝑣𝑎𝑙𝐶𝜃

(𝑣𝑎𝑙𝐶𝜃 , 𝑐𝑣𝑎𝑙𝐶𝜃
) ;

12: if 𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃 = ADD ∧ ADD(𝑝𝑐𝜃 , 𝑣𝑎𝑙𝐴𝜃 , 𝑣𝑎𝑙𝐵𝜃) = (𝑝𝑐𝜃 ′ , 𝑣𝑎𝑙𝐶𝜃)
then

13: return True;
14: else
15: return False.

CommitInstruction :=(
𝑖𝑛 = [(TraceChallenge32, 0,OPScript)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑝𝑐𝜃 , 𝑐𝑝𝑐𝜃 , 𝑝𝑐𝜃 ′ , 𝑐𝑝𝑐𝜃 ′ , 𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 ,
𝑐𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐴𝜃

, 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃 ,

𝑐𝑎𝑑𝑑𝑟𝐶𝜃
, 𝑣𝑎𝑙𝐴𝜃 , 𝑐𝑣𝑎𝑙𝐴𝜃

, 𝑣𝑎𝑙𝐵𝜃 , 𝑐𝑣𝑎𝑙𝐵𝜃 , 𝑣𝑎𝑙𝐶𝜃 , 𝑐𝑣𝑎𝑙𝐶𝜃
)],

𝑜𝑢𝑡 = [(𝑑B; ⟨CheckMSigpk𝑃𝑉 , {CIScriptPCCurri}i∈{1,...,32} ,
{CISCriptPCNexti}i∈{1,...,32} , {CIScriptInstrj}j∈{1,...,ℓ } ,

TL(Δ) ∧ CheckSigpk𝑃 ⟩)]
)
.

(10)

The tapleaf that 𝑃 unlocks when publishing CommitInstruction
is OPScript ∈ {ADDScript,BEQScript, JMPScript}.

By publishing the CommitInstruction transaction, 𝑃 reveals all

the information necessary for the state transition from 𝑆N to 𝑆N′ .
Depending on the specific error that 𝑉 claims 𝑃 made, 𝑉 spends

the output of CommitInstruction in one of the following ways.

A.4.1 Challenging the Current Program Counter. 𝑉 is claiming

that, by publishing CommitInstruction, 𝑃 is committing to a pro-

gram counter 𝑝𝑐𝜃 at step N that differs from the program counter

𝑝𝑐N (previously committed by 𝑃 during the dispute bisection game).

𝑉 challenges the current program counter 𝑝𝑐𝜃 by unlocking one of

the leaves CIScriptPCCurri (cf. Algorithm 11) via the publication of

transaction ChallengeCurrPC (cf. Eq. (11)). We use Algorithm 12 to

map the challenge-response rounds to the leaves CIScriptPCCurr0,
. . . , CIScriptPCCurr31. When𝑉 unlocks leaf CIScriptPCCurri, they
challenge the program counter of the (32−𝑖)-th challenge-response
round of the dispute bisection game.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 11 The script CIScriptPCCurri, for i ∈ {0, . . . , 31}. For each
CIScriptPCCurri, in the setup phase, we hard-code the public keys pk𝑝𝑐𝜃 ,
pkN . For each CIScriptPCCurri, for i ∈ {1, . . . , 31}, we hard-code the same

public key pk𝑝𝑐𝑖 hard-coded in ChallScripti. For CIScriptPCCurr0, we hard-
code the same public key pk𝑝𝑐0 hard-coded in CommitComputationScript.

1: function CIScriptPCCurri(𝜎𝑃𝑉 , N, 𝑐N , 𝑝𝑐𝑖 , 𝑐𝑝𝑐𝑖 , 𝑝𝑐𝜃 , 𝑐𝑝𝑐𝜃)
2: CheckMSigVerifypk

𝑃𝑉
(𝜎𝑃𝑉) ;

3: CheckCommVerifypkN
(N, 𝑐N) ;

4: if CountZeroes(N) ≠ i then
5: ⊲ Maps N to one of the 32 program counters 𝑝𝑐𝑛0

, . . . , 𝑝𝑐𝑛31
. ⊳

6: return False;
7: CheckCommVerifypk𝑝𝑐𝑖

(𝑝𝑐𝑖 , 𝑐𝑝𝑐𝑖) ;
8: CheckCommVerifypk𝑝𝑐𝜃

(𝑝𝑐𝜃 , 𝑐𝑝𝑐𝜃) ;
9: if 𝑝𝑐𝑖 ≠ 𝑝𝑐𝜃 then
10: return True;
11: else
12: return False.

Algorithm 12 The algorithm CountZeroes. It counts the number of

consecutive bits set to 0 in the binary representation of a number𝑁 , starting

from the least significant bit (LSB), until the first occurrence of a bit set to

1.

1: function CountZeroes(𝑁)

2: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 0;

3: 𝑓 𝑙𝑎𝑔← False;
4: for 𝑖 = 0, . . . , |𝑁 |𝑏𝑖𝑡 − 1 do
5: if 𝑁 [|𝑁 |𝑏𝑖𝑡 − 𝑖] = 1 then
6: 𝑓 𝑙𝑎𝑔← True;
7: ⊲ Set the flag, stop incrementing the counter. ⊳

8: else
9: if 𝑓 𝑙𝑎𝑔 = False then
10: 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ← 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1;
11: return 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 .

ChallengeCurrPC :=(
𝑖𝑛 = [(CommitInstruction, 0,CIScriptPCCurrN)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 ,N , 𝑐N , 𝑝𝑐N , 𝑐𝑝𝑐N , 𝑝𝑐𝜃 , 𝑐𝑝𝑐𝜃)],

𝑜𝑢𝑡 = [(𝑑B; ⟨ChallPCScript, TL(Δ) ∧ CheckSigpk𝑉 ⟩)]
)
.

(11)

In the ChallengeCurrPC transaction, 𝑉 commits again to N ,

potentially equivocating. 𝑃 can punish equivocation by unlocking

ChallPCScript script (cf. Algorithm 13).

Algorithm 13 The script ChallPCScript. In the setup phase, the public

key pkN is hard-coded in the script.

1: function ChallPCScript(𝜎𝑃𝑉 , 𝑐0, 𝑐1)

2: CheckMSigVerifypk
𝑃𝑉
(𝜎𝑃𝑉) ;

3: for 𝑖 = 1, . . . , |N |𝑏𝑖𝑡 do
4: if Equivocation(pkN[𝑖] , 𝑐0, 𝑐1) = True then
5: return True;
6: return False.

If 𝑉 equivocates, 𝑃 publishes PunishCurrPC (cf. Eq. (12)), re-

deeming all the funds in the multisignature.

PunishCurrPC :=(
𝑖𝑛 = [(ChallengeCurrPC, 0,ChallPCScript)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑐0, 𝑐1)],

𝑜𝑢𝑡 = [(𝑑B;CheckSigpk𝑃)]
)
.

(12)

A.4.2 Challenging the Next Program Counter. 𝑉 is claiming that,

by publishing CommitInstruction, 𝑃 is committing to a program

counter 𝑝𝑐𝜃 ′ at step N ′ (output of the VM operation executed on-

chain) that differs from the previously committed program counter

𝑝𝑐N′ .𝑉 challenges the next program counter 𝑝𝑐𝜃 ′ by unlocking one

of the leaves CIScriptPCNexti (cf. Algorithm 14) via the publication

of transaction ChallengeNextPC (cf. Eq. (13)).

Algorithm 14 The script CIScriptPCNexti, for i ∈ {0, . . . , 31}. In the

script CIScriptPCNexti, during the setup phase we hard-code the same

public keys that we hard-code in the script CIScriptPCCurri, except for
public key pk𝑝𝑐𝜃 . We hard-code pk𝑝𝑐𝜃 ′ instead.

1: function CIScriptPCNexti(𝜎𝑃𝑉 , N′ , 𝑐N′ , 𝑝𝑐𝑖 , 𝑐𝑝𝑐𝑖 , 𝑝𝑐𝜃 ′ , 𝑐𝑝𝑐𝜃 ′)
2: CheckMSigVerifypk

𝑃𝑉
(𝜎𝑃𝑉) ;

3: CheckCommVerifypkN
(N′, 𝑐N′) ;

4: if CountZeroes(N′) ≠ i then
5: ⊲ Maps N′ to one of the 32 program counters 𝑝𝑐𝑛0

, . . . , 𝑝𝑐𝑛31
. ⊳

6: return False;
7: CheckCommVerifypk𝑝𝑐𝑖

(𝑝𝑐𝑖 , 𝑐𝑝𝑐𝑖) ;
8: CheckCommVerifypk𝑝𝑐𝜃 ′

(𝑝𝑐𝜃 ′ , 𝑐𝑝𝑐𝜃 ′) ;
9: if 𝑝𝑐𝑖 ≠ 𝑝𝑐𝜃 ′ then
10: return True;
11: else
12: return False.

ChallengeNextPC :=(
𝑖𝑛 = [(CommitInstruction, 0,CIScriptPCNextN′)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 ,N ′, 𝑐N′ , 𝑝𝑐N′ , 𝑐𝑝𝑐N′ , 𝑝𝑐𝜃 ′ , 𝑐𝑝𝑐𝜃 ′)],

𝑜𝑢𝑡 = [(𝑑B; ⟨ChallPCScript, TL(Δ) ∧ CheckSigpk𝑉 ⟩)]
)
.

(13)

In this challenge path, 𝑉 can equivocate on N ′17. 𝑃 can punish

equivocation by publishing the PunishNextPC transaction

(cf. Eq. (14)), which unlocks ChallPCScript by proving the equiv-

ocation. Upon doing so, 𝑃 redeems all the funds locked in the

multisignature.

PunishNextPC :=(
𝑖𝑛 = [(ChallengeNextPC, 0,ChallPCScript)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑐0, 𝑐1)], 𝑜𝑢𝑡 = [(𝑑B;CheckSigpk𝑃)]
)
.

(14)

17
We use N′ to emphasize that challenging the next program counter is a distinct

path from challenging the current program counter. However, in practice,𝑉 commits

to the same bits 𝑏0, . . . , 𝑏31 , i.e. , the same public key pkN is used in both current and

next program counter challenge paths.

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

A.4.3 Punish Wrong Instruction. 𝑃 has committed to a current pro-

gram counter 𝑝𝑐𝜃 that does not correspond to the correct program

instruction, specifically:

Π[𝑝𝑐𝜃] ≠ (𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃).
𝑉 spends the CommitInstruction output by unlocking the script

CIScriptInstrj (cf. Algorithm 15) and publishing the

DisproveProgram transaction (cf. Eq. (15)). A script CIScriptInstr
exists for each of the ℓ instructions in the program Π.

Algorithm 15 The script CIScriptInstrj, for j ∈ {1, ..., ℓ }. In the script

CIScriptInstrj, during the setup phase we hard-code the public keys pk𝑝𝑐𝜃 ,
pk

𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃
, pk

𝑎𝑑𝑑𝑟𝐴𝜃
, pk

𝑎𝑑𝑑𝑟𝐵𝜃
, pk

𝑎𝑑𝑑𝑟𝐶𝜃
, for 𝑗 ∈ {1, . . . , ℓ }. In addi-

tion to the public keys, the 𝑗-th instruction of Π is also hard-coded into the

script CIScriptInstrj.

1: function CIScriptInstrj(𝜎𝑃𝑉 , 𝑝𝑐𝜃 , 𝑐𝑝𝑐𝜃 , 𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃 , 𝑐𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃
,

𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐴𝜃
, 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐵𝜃

, 𝑎𝑑𝑑𝑟𝐶𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐶𝜃
)

2: CheckMSigVerifypk
𝑃𝑉
(𝜎𝑃𝑉) ;

3: CheckCommVerifypk𝑝𝑐𝜃
(𝑝𝑐𝜃 , 𝑐𝑝𝑐𝜃) ;

4: CheckCommVerifypk
𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃

(𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃 , 𝑐𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃
) ;

5: CheckCommVerifypk
𝑎𝑑𝑑𝑟𝐴𝜃

(𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐴𝜃
) ;

6: CheckCommVerifypk
𝑎𝑑𝑑𝑟𝐵𝜃

(𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐵𝜃
) ;

7: CheckCommVerifypk
𝑎𝑑𝑑𝑟𝐶𝜃

(𝑎𝑑𝑑𝑟𝐶𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐶𝜃
) ;

8: if
(
(𝑝𝑐𝜃 = 𝑗) ∧ (𝑖𝑛𝑠𝑇 𝑦𝑝𝑒 𝑗 ≠ 𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃 ∨ 𝑎𝑑𝑑𝑟𝐴 𝑗 ≠ 𝑎𝑑𝑑𝑟𝐴𝜃 ∨

𝑎𝑑𝑑𝑟𝐵 𝑗 ≠ 𝑎𝑑𝑑𝑟𝐵𝜃 ∨ 𝑎𝑑𝑑𝑟𝐶 𝑗 ≠ 𝑎𝑑𝑑𝑟𝐶𝜃)

)
then

9: return True;
10: else
11: return False.

DisproveProgram :=(
𝑖𝑛 = [(CommitInstruction, 0,CIScriptInstrpc𝜃)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑝𝑐𝜃 , 𝑐𝑝𝑐𝜃 , 𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑐𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃 ,
𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐴𝜃

, 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃 , 𝑐𝑎𝑑𝑑𝑟𝐶𝜃
)],

𝑜𝑢𝑡 = [(𝑑B;CheckSigpk𝑉)]
)
.

(15)

A.4.4 Challenge Read. 𝑉 starts the challenge by publishing the

ChallengeRead transaction (cf. Eq. (16)), spending the

CommitInstruction output18.

ChallengeRead :=(
𝑖𝑛 = [(CommitInstruction, 0,CheckMSigpk𝑃𝑉)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉)],

𝑜𝑢𝑡 = [(𝑑B; ⟨ReadChallScript1, TL(Δ) ∧ CheckSigpk𝑉 ⟩)]
)
.

(16)

The script ReadChallScriptj, with 𝑗 ∈ {1, . . . , 5} is defined as

follows:

ReadChallScriptj := CheckMSigpk𝑃𝑉 ∧ CheckCommpkNoded5−j
.

18
We explain how Challenge Read works by presenting a challenge to 𝑣𝑎𝑙𝐴𝜃 ; the

process for challenging 𝑣𝑎𝑙𝐵𝜃 is analogous.

The parties engage in the read bisection game (cf. Appendix B.2) .

The game is played over the sequence

P𝑅 := (𝑀𝑅N , . . . , 𝑀N [𝑎𝑑𝑑𝑟𝐴𝜃]), namely, a path from the root

to one of the leaves in 𝑀𝑒𝑟𝑘𝑙𝑒𝑇𝑟𝑒𝑒𝑀N , i.e., the Merkle tree of the

memory at step N . 𝑃 responds by publishing the ReadResponse1
transaction (cf. Eq. (17)), committing to Noded4 := P𝑅 [d4] in the

witness, where d4 = 1 · 24.

ReadResponse1 :=(
𝑖𝑛 = [(ChallengeRead, 0,ReadChallScript1)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 ,Noded4 , 𝑐Noded4)],

𝑜𝑢𝑡 = [(𝑑B; ⟨ReadRespScript1, TL(Δ) ∧ CheckSigpk𝑃 ⟩)]
)
.

(17)

ReadRespScripti with 𝑖 ∈ {1, . . . , 5} is defined as:

ReadRespScripti := CheckMSigpk𝑃𝑉 ∧ CheckCommpk
𝑏′
5−𝑖
.

Then, 𝑉 publishes ReadChallenge1 transaction (cf. Eq. (18)),

committing to bit 𝑏′
4
in the witness, where 𝑏′

4
= 1 if 𝑉 agrees with

Noded4 , and 𝑏
′
4
= 0 otherwise.

ReadChallenge1 :=(
𝑖𝑛 = [(ReadResponse1, 0,ReadRespScript1)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑏′4, 𝑐𝑏′
4

)],

𝑜𝑢𝑡 = [(𝑑B; ⟨ReadChallScript2, TL(Δ) ∧ CheckSigpk𝑉 ⟩))]
)
;

(18)

𝑃 and 𝑉 continue playing the read bisection game by publish-

ing transactions ReadResponsei (cf. Eq. (19) and ReadChallengej
(cf. Eq. (20)), respectively, with 𝑖 = 2, . . . , 5 and 𝑗 = 1, . . . , 4.

ReadResponsei :=(
𝑖𝑛 = [(ReadChallengei−1, 0,ReadChallScripti)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 ,Noded5−i , 𝑐Noded5−i)],

𝑜𝑢𝑡 = [(𝑑B; ⟨ReadRespScripti, TL(Δ) ∧ CheckSigpk𝑃 ⟩)]
)
;

(19)

ReadChallengej :=(
𝑖𝑛 = [(ReadResponsej, 0,ReadRespScriptj)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑏′5− 𝑗 , 𝑐𝑏′
5− 𝑗
)],

𝑜𝑢𝑡 = [(𝑑B; ⟨ReadChallScriptj+1, TL(Δ) ∧ CheckSigpk𝑉 ⟩)]
)
;

(20)

where d5−i = 1 · 25−𝑖 +∑4

𝑘=5−𝑖+1 𝑏
′
𝑘
· 2𝑘 .

Then,𝑉 publishes the ReadChallenge5 transaction (cf. Eq. (21)).

In total,𝑉 has committed to the bits 𝑏′
4
, . . . , 𝑏′

0
. These bits determine

the last element on the path P𝑅 upon which 𝑃 and 𝑉 agree. Let

N𝑀𝑒𝑟 be the corresponding integer, computed asN𝑀𝑒𝑟 =
∑
4

𝑘=0
𝑏′
𝑘
·

2
𝑘
.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

ReadChallenge5 :=(
𝑖𝑛 = [(ReadResponse5, 0,ReadRespScript5)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑏′0, 𝑐𝑏′
0

)],
𝑜𝑢𝑡 = [(𝑑B; ⟨HashReadScript1, . . . ,HashReadScript20,
RootReadScript1, . . . ,RootReadScript32,ValueAScript,

TL(Δ) ∧ CheckSigpk𝑉 ⟩)]
)
.

(21)

The integer N𝑀𝑒𝑟 , chosen by 𝑉 , conditions which Tapleaves 𝑃

can unlock to spend the ReadChallenge5 output. We can distin-

guish three cases.

(A) Commit Read. The point of disagreement is between two

consecutive elements of the path P𝑅 , excluding the first and the

last. 𝑃 publishes the CommitRead1 transaction (cf. Eq. (22)) to spend

the ReadChallenge5 output. To do so, 𝑃 provides a witness that

unlocks one of the scriptsHashReadScript1, . . . ,HashReadScript20.
Each script hard-codes the public key of a pair of nodes belong-

ing to {Noded0 , . . . ,Noded4 }, the first being the parent node in

𝑀𝑒𝑟𝑘𝑙𝑒𝑇𝑟𝑒𝑒𝑀𝑅N and the second being the child node
19
. Addition-

ally, 𝑃 provide a sibling node Nsib, claiming whether it is the left

or right sibling by committing to the bit 𝑣𝑝𝑜𝑠 , the N𝑀𝑒𝑟 -th bit of

𝑎𝑑𝑑𝑟𝐴𝜃 . To unlock the script, it must hold that the child node, when

concatenated with the sibling node, hashes to the parent node.

We present the pseudocode of the script in HashReadScript1
in Algorithm 16. The scripts HashReadScript2, . . . ,

HashReadScript20 are identical except for the public keys hard-

coded to set the parent and the child nodes, and the mapping from

N𝑀𝑒𝑟 to the appropriate Tapleaf.

CommitRead1 :=(
𝑖𝑛 = [(ReadChallenge5, 0,HashReadScripti)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 ,N𝑀𝑒𝑟 , 𝑐N𝑀𝑒𝑟
, 𝑣𝑝𝑜𝑠 , 𝑐𝑣𝑝𝑜𝑠 , 𝑐𝑎𝑑𝑑𝑟𝐴𝜃

,Nsib,

Npar, 𝑐Npar,Nchild, 𝑐Nchild)],

𝑜𝑢𝑡 = [(𝑑B; ⟨CommitRead1Script, TL(Δ) ∧ CheckSigpk𝑃 ⟩)]
)
.

(22)

𝑉 can punish 𝑃 if they equivocate either on Npar, Nchild, 𝑣𝑝𝑜𝑠
by publishing PunishRead1 (cf. Eq. (23)), which requires to unlock

the CommitRead1Script (cf. Algorithm 17) script.

PunishRead1 :=(
𝑖𝑛 = [(CommitRead1, 0,CommitRead1Script)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑐0, 𝑐1)], 𝑜𝑢𝑡 = [(𝑑B;CheckSigpk𝑉]
)
.

(23)

(B) Commit Value A. If 𝑉 agrees with every element that 𝑃 com-

mitted (i.e., 𝑏′
4
= · · · = 𝑏′

0
= 1), N𝑀𝑒𝑟 is set to 31. The point of

disagreement is between the last intermediate node published by

𝑃 , Noded0 , and 𝑣𝑎𝑙𝐴𝜃 ; To spend the ReadChallenge5 output, 𝑃 un-

locks ValueAScript. ValueAScript is analogous to HashReadScripti
with the following differences: (i) CountZeroes(N𝑀𝑒𝑟) = 0; (ii) the

19
Since any node can be the parent of any other, we need 20 scripts to capture all the

possibilities.

Algorithm 16 The script HashReadScript1. The bit 𝑣𝑝𝑜𝑠 ∈ {0, 1} rep-
resents the position of the child node (𝑣𝑝𝑜𝑠 = 0 means that Noded0 is the
left child of Noded4 , 𝑣𝑝𝑜𝑠 = 1 means the opposite. Nsib is the sibling node

of Noded0 that 𝑃 presents. In the setup phase, the public keys pkN𝑀𝑒𝑟
,

pk
𝑎𝑑𝑑𝑟𝐴𝜃

, pkNoded4
, pkNoded0

, are hard-coded in the script.

1: functionHashReadScript1(𝜎𝑃𝑉 , N𝑀𝑒𝑟 , 𝑐N𝑀𝑒𝑟
, 𝑣𝑝𝑜𝑠 , 𝑐𝑣𝑝𝑜𝑠 , 𝑐𝑎𝑑𝑑𝑟𝐴𝜃

,

Nsib, Noded4 , 𝑐Noded4 , Noded0 , 𝑐Noded0)
2: CheckMSigVerifypk

𝑃𝑉
(𝜎𝑃𝑉) ;

3: CheckCommVerifypkN𝑀𝑒𝑟

(N𝑀𝑒𝑟 , 𝑐N𝑀𝑒𝑟
) ;

4: ⊲ Since𝑉 committed to N𝑀𝑒𝑟 , 𝑃 does not know skN𝑀𝑒𝑟
. Therefore,

to satisfy this guard, has to provide the commitment that𝑉 made
⊳

5: if CountZeroes(N𝑀𝑒𝑟) ≠ 5 − 1 then
6: ⊲ Since Noded4 is the parent node here, CountZeroes(N𝑀𝑒𝑟)

should be 4. ⊳

7: return False;
8: CheckCommVerifypk

𝑎𝑑𝑑𝑟𝐴𝜃 [N𝑀𝑒𝑟]
(𝑣𝑝𝑜𝑠 , 𝑐𝑎𝑑𝑑𝑟𝐴𝜃 [N𝑀𝑒𝑟]) ;

9: ⊲ The whole public key pk
𝑎𝑑𝑑𝑟𝐴𝜃

is hard-coded in the script, but
only the the N𝑀𝑒𝑟 -th entry is used ⊳

10: CheckCommVerifypkNoded4
(Noded4 , 𝑐Noded4) ; ⊲ Parent node

11: CheckCommVerifypkNoded0
(Noded0 , 𝑐Noded0) ; ⊲ Child node

12: if 𝑣𝑝𝑜𝑠 = 0 then
13: if 𝐻 (Noded0 | |Nsib) = Noded4 then
14: return True;
15: else
16: return False;
17: else
18: if 𝐻 (Nsib | |Noded0) = Noded4 then
19: return True;
20: else
21: return False.

Algorithm 17 The script CommitRead1Script. The public keys pkNpar,
pkNchild, and pk

𝑎𝑑𝑑𝑟𝐴𝜃
are hard-coded during the setup.

1: function CommitRead1Script(𝜎𝑃𝑉 , 𝑐0, 𝑐1)

2: CheckMSigVerifypk
𝑃𝑉
(𝜎𝑃𝑉) ;

3: for 𝑖 = 1, . . . , |Npar |𝑏𝑖𝑡 do
4: if Equivocation(pkNpar[𝑖] , 𝑐0, 𝑐1) = True ∨

Equivocation(pkNchild[𝑖] , 𝑐0, 𝑐1) = True ∨
Equivocation(pk

𝑎𝑑𝑑𝑟𝐴𝜃 [𝑖]
, 𝑐0, 𝑐1) = True then

5: return True;
6: return False.

parent node is Noded0 ; (iii) the child node is not one of the nodes

Noded4 , . . . , Noded0 , but 𝑣𝑎𝑙𝐴𝜃 instead.

𝑃 publishes CommitRead2 transaction (analogous to

CommitRead1, but unlocking ValueAScript instead). 𝑉 can publish

transaction PunishRead2 (analogous to PunishRead1) if 𝑃 equivo-

cates on the values committed in the CommitRead2 transaction.
(C) Commit Read Root. If 𝑉 disagrees with every element that 𝑃

committed (i.e., 𝑏′
4
= · · · = 𝑏′

0
= 0), N𝑀𝑒𝑟 is set to 0. The point of

disagreement is between the last intermediate node published by 𝑃 ,

Noded0 , and𝑀𝑅N . 𝑃 unlocks one of the leavesRootReadScript1, . . . ,
RootReadScript32, according to which number N 𝑉 committed at

the end of the dispute bisection game. We provide RootReadScripti
in Algorithm 18.

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 18 The script RootReadScripti. In the setup phase, the public

keys pkN𝑀𝑒𝑟
, pkN , pkNoded0

, pk
𝑀𝑅𝑖

are hard-coded in the script.

1: function RootReadScripti(𝜎𝑃𝑉 , N𝑀𝑒𝑟 , 𝑐N𝑀𝑒𝑟
, 𝑣𝑝𝑜𝑠 , 𝑐𝑣𝑝𝑜𝑠 , 𝑐𝑎𝑑𝑑𝑟𝐴𝜃

,

Nsib, N, 𝑐N , Noded0 , 𝑐Noded0 ,𝑀𝑅𝑖 , 𝑐𝑀𝑅𝑖)

2: CheckMSigVerifypk
𝑃𝑉
(𝜎𝑃𝑉) ;

3: CheckCommVerifypkN𝑀𝑒𝑟

(N𝑀𝑒𝑟 , 𝑐N𝑀𝑒𝑟
) ;

4: ⊲ Since𝑉 committed to N𝑀𝑒𝑟 , 𝑃 does not know skN𝑀𝑒𝑟
. Therefore,

to satisfy this guard, 𝑃 has to provide the commitment that 𝑉
made ⊳

5: CheckCommVerifypkN
(N, 𝑐N) ;

6: ⊲ 𝑃 has to provide the commitment that𝑉 made in the dispute phase ⊳
7: if CountZeroes(N) ≠ i then
8: return False;
9: if CountZeroes(N𝑀𝑒𝑟) ≠ 5 then ⊲ N𝑀𝑒𝑟 must be equal to 0
10: return False;
11: CheckCommVerifypk

𝑎𝑑𝑑𝑟𝐴𝜃 [N𝑀𝑒𝑟]
(𝑣𝑝𝑜𝑠 , 𝑐𝑎𝑑𝑑𝑟𝐴𝜃 [N𝑀𝑒𝑟]) ;

12: CheckCommVerifypkNoded0
(Noded0 , 𝑐Noded0) ;

13: ⊲ for any RootReadScripti, Noded0 is always the child node ⊳

14: CheckCommVerifypk
𝑀𝑅𝑖

(Noded0 , 𝑐Noded0) ;
15: if 𝑣𝑝𝑜𝑠 = 0 then
16: if 𝐻 (Noded0 | |Nsib) = 𝑀𝑅𝑖 then
17: return True;
18: else
19: return False;
20: else
21: if 𝐻 (Nsib | |Noded0) = 𝑀𝑅𝑖 then
22: return True;
23: else
24: return False.

𝑃 unlocksRootReadScripti by publishing the CommitRead3 trans-
action (cf Eq. (24)).

CommitRead3 :=(
𝑖𝑛 = [(ReadChallenge5, 0,ReadRootScripti)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 ,N𝑀𝑒𝑟 , 𝑐N𝑀𝑒𝑟
,N , 𝑐N ,Noded0 , 𝑐Noded0)],

𝑜𝑢𝑡 = [(𝑑B; ⟨CommitRead3Script, TL(Δ) ∧ CheckSigpk𝑃 ⟩)]
)
.

(24)

𝑉 can punish 𝑃 if they equivocate on Noded0 ,𝑀𝑅𝑖 or 𝑎𝑑𝑑𝑟𝐴𝜃 by

publishing PunishRead3 (cf. Eq. (25)), which unlocks

CommitRead3Script, analogous to CommitRead1Script but with
pk
𝑀𝑅𝑖

, pkNoded0
instead of pkNpar, pkNchild.

PunishRead3 :=(
𝑖𝑛 = [(CommitRead3, 0,CommitRead3Script)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 , 𝑐0, 𝑐1)], 𝑜𝑢𝑡 = [(𝑑B;CheckSigpk𝑉]
)
.

(25)

A.4.5 Challenge Write. 𝑉 challenges the result of the writing op-

eration. Specifically, 𝑉 claims that 𝑃 is writing 𝑣𝑎𝑙𝐶′
𝜃
≠ 𝑣𝑎𝑙𝐶𝜃 in

𝑀N′ [𝑎𝑑𝑑𝑟𝐶𝜃] in their local VM execution
20
. As a result, the mem-

ory root𝑀𝑅N′ is incorrect.
The parties engage in the write bisection game (cf. Appendix B.3)

over the sequences P𝑊 := (𝑀𝑅N , . . . , 𝑀N [𝑎𝑑𝑑𝑟𝐶𝜃]) and P′𝑊 :=

(𝑀𝑅N′ , . . . , 𝑀′N [𝑎𝑑𝑑𝑟𝐶𝜃]), that are paths in the merkle trees

𝑀𝑒𝑟𝑘𝑙𝑒𝑇𝑟𝑒𝑒𝑀N and𝑀𝑒𝑟𝑘𝑙𝑒𝑇𝑟𝑒𝑒𝑀N′ , respectively. The transactions

and locking scripts in the challenge write branch of the protocol

closely follow the structure of those in the challenge read branch,

with the following differences:

• The structure of the WriteResponsei transaction is analogous to

ReadResponsei transaction but, in the witness, 𝑃 provides two

values (and their commitments) instead of one. These values are

the 𝑑5−𝑖 -th elements of P𝑊 and P′
𝑊
, respectively.

• As long as𝑉 agrees on the elements of the pathP𝑊 , they focus on

finding the disagreement in the path P′
𝑊
. In the

WriteChallengej transaction (analogously to ReadChallengej),
𝑉 sets (and commits to) the bit 𝑏′

5− 𝑗 = 0 if 𝑉 agrees with the

element of P′
𝑊

provided by 𝑃 . Otherwise, 𝑉 sets (and commits

to) the bit 𝑏′
5− 𝑗 = 1. However, once 𝑉 finds a disagreement in an

element of P𝑊 , from that point on,𝑉 focuses on P𝑊 and set the

bit 𝑏′
5− 𝑗 as in the Challenge Read branch.

During the write bisection game, 𝑃 commits to the pairs nodes

{(Noded4 , Node′d4), . . . , (Noded0 , Node′d0)},
where Noded4 , . . . ,Noded0 ∈ P𝑊 and Node′d4 , . . . ,Node

′
d0
∈ P′

𝑊
.

Analogous to the Challenge Read branch,𝑉 commits bit by bit to an

integer N𝑀𝑒𝑟 =
∑
4

𝑘=0
𝑏′
𝑘
· 2𝑘 , which conditions how 𝑃 can unlock

WriteChallenge5. There are three cases.
Note that 𝑃 does not explicitly know which pair of elements

in P𝑊 or P′
𝑊
𝑉 disagrees with. However, as long as 𝑃 is able

to provide a pair of nodes (Npar,Nchild) for P𝑊 , a pair of nodes

(Npar′,Nchild′) for P′
𝑊
, and a node Nsib such that

𝐻 (Nsib| |Nchild) = Npar and 𝐻 (Nsib| |Nchild′) = Npar′, they will

be able to unlock WriteChallenge5.
(A) CommitWrite. The point of disagreement is between two

consecutive elements of P𝑊 or between two consecutive elements

ofP′
𝑊
, excluding for both paths the first and the last elements. 𝑃 can

unlock one of the scripts HashWriteScript1 (cf. Algorithm 19) , . . . ,

HashWriteScript20 via publishing the CommitWrite1 transaction

(cf. Eq. (26)).

CommitWrite1 :=(
𝑖𝑛 = [(WriteChallenge5, 0,HashWriteScripti)],

𝑤𝑖𝑡 = [(𝜎𝑃𝑉 ,N𝑀𝑒𝑟 , 𝑐N𝑀𝑒𝑟
, 𝑣𝑝𝑜𝑠 , 𝑐𝑣𝑝𝑜𝑠 , 𝑐𝑎𝑑𝑑𝑟𝐶𝜃

,Nsib,

Npar, 𝑐Npar,Nchild, 𝑐Nchild,Npar
′, 𝑐Npar′ ,Nchild

′,

𝑐Nchild′)],

𝑜𝑢𝑡 = [(𝑑B; ⟨CommitWrite1Script, TL(Δ) ∧ CheckSigpk𝑃 ⟩)]
)
;

(26)

The script CommitWrite1Script is identical to

CommitRead1Script (cf. Algorithm 17) except that it also checks for

potential equivocation on Npar’, Nchild’, and 𝑎𝑑𝑑𝑟𝐶𝜃 rather than

20
We assume 𝑃 commits correctly to 𝑣𝑎𝑙𝐶𝜃 in the witness of the CommitInstruction

transaction, regardless of local execution. For example, if 𝑖𝑛𝑠𝑇 𝑦𝑝𝑒𝜃 := ADD, then
𝑣𝑎𝑙𝐴𝜃 + 𝑣𝑎𝑙𝐵𝜃 = 𝑣𝑎𝑙𝐶𝜃 . If 𝑣𝑎𝑙𝐶𝜃 is incorrect,𝑉 can challenge 𝑣𝑎𝑙𝐴𝜃 or 𝑣𝑎𝑙𝐵𝜃 .

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 19 The script HashWriteScript1. The bit 𝑣𝑝𝑜𝑠 ∈ {0, 1} rep-
resents the position of the child nodes (𝑣𝑝𝑜𝑠 = 0 means that Noded0 and
Node′d0 are the left childs of Noded4 and Node′d4 , respectively). Nsib is the

sibling node of Noded0 in P𝑊 and of Node′d0 in P
′
𝑊

. In the setup phase,

the public keys pkN𝑀𝑒𝑟
, pk

𝑎𝑑𝑑𝑟𝐶𝜃
, pkNoded4

, pkNoded0
, pkNode′d4

, pkNode′d0
are hard-coded in the script.

1: functionHashWriteScript1(𝜎𝑃𝑉 , N𝑀𝑒𝑟 , 𝑐N𝑀𝑒𝑟
, 𝑣𝑝𝑜𝑠 , 𝑐𝑣𝑝𝑜𝑠 , 𝑐𝑎𝑑𝑑𝑟𝐶𝜃

,

Nsib, Noded4 , 𝑐Noded4 , Noded0 , 𝑐Noded4 , Node
′
d4
, 𝑐Node′d4

, Node′d0 ,

𝑐Node′d4
)

2: CheckMSigVerifypk
𝑃𝑉
(𝜎𝑃𝑉) ;

3: CheckCommVerifypkN𝑀𝑒𝑟

(N𝑀𝑒𝑟 , 𝑐N𝑀𝑒𝑟
) ;

4: ⊲ Since𝑉 committed to N𝑀𝑒𝑟 , 𝑃 does not know skN𝑀𝑒𝑟
. Therefore,

to satisfy this guard, has to provide the commitment that𝑉 made ⊳

5: if CountZeroes(N𝑀𝑒𝑟) ≠ 5 − 1 then
6: ⊲ Since Noded4 , Node

′
d4

are the parent nodes here,
CountZeroes(N𝑀𝑒𝑟) should be 4. ⊳

7: return False;
8: CheckCommVerifypk

𝑎𝑑𝑑𝑟𝐶𝜃 [N𝑀𝑒𝑟]
(𝑣𝑝𝑜𝑠 , 𝑐𝑎𝑑𝑑𝑟𝐶𝜃 [N𝑀𝑒𝑟]) ;

9: ⊲ The whole public key pk
𝑎𝑑𝑑𝑟𝐶𝜃

is hardcoded in the script, but
only the the N𝑀𝑒𝑟 -th entry is used ⊳

10: CheckCommVerifypkNoded4
(Noded4 , 𝑐Noded4) ; ⊲ Parent node in

P𝑊
11: CheckCommVerifypkNoded0

(Noded0 , 𝑐Noded0) ; ⊲ Child node in P𝑊
12: CheckCommVerifypk

Node′d4

(Node′d4 , 𝑐Node′d4
) ; ⊲ Parent node in

P′
𝑊

13: CheckCommVerifypk
Node′d0

(Node′d0 , 𝑐Node′d0
) ; ⊲ Child node in P′

𝑊

14: if 𝑣𝑝𝑜𝑠 = 0 then
15: if 𝐻 (Noded0 | |Nsib) = Noded4 ∧𝐻 (Node′d0 | |Nsib) = Node′d4

then
16: return True
17: else
18: return False
19: else
20: if 𝐻 (Nsib | |Noded0) = Noded4 ∧𝐻 (Nsib | |Node′d0) = Node′d4

then
21: return True
22: else
23: return False

𝑎𝑑𝑑𝑟𝐴𝜃 . As a consequence, the PunishWrite1 transaction is anal-

ogous to PunishRead1. Thus, if 𝑃 equivocates while committing

to Npar,Nchild,Npar′,Nchild′, 𝑉 can claim all the coins locked in

the multisignature.

(B) Commit Value C. N𝑀𝑒𝑟 = 31, the point of disagreement is

betweenNoded0 and 𝑣𝑎𝑙𝐶𝜃 or betweenNode
′
d0

and 𝑣𝑎𝑙𝐶𝜃 . This case

is analogous to the “commit value A" case of the Challenge Read
branch. For ValueCScript, the difference with HashWriteScripti,
is that: (i) CountZero = 0; (ii) the parent nodes are Noded0 and
Node′d0 , and (iii) the child node is 𝑣𝑎𝑙𝐶𝜃 .

𝑃 publishes CommitWrite2 transaction (analogous to

CommitWrite1, but unlocking ValueCScript instead). 𝑉 can pub-

lish transaction PunishWrite2 (analogous to PunishWrite1) if 𝑃
equivocates on the values committed in the CommitWrite2 trans-
action.

(C) Commit Write Root. N𝑀𝑒𝑟 = 0, the point of disagreement

is between𝑀𝑅N and Noded0 or between𝑀𝑅N′ and Node′d0 . This
case is analogous to the “commit read root" case of the Challenge
Read branch. The script RootWriteScripti, with i ∈ {0, . . . , 31} is
the same as RootReadScripti but takes as additional inputs Node′d0 ,
𝑀𝑅𝑖+1 (their public key are hard-coded in the script accordingly),

and takes as input 𝑐𝑎𝑑𝑑𝑟𝐶𝜃
instead of 𝑐𝑎𝑑𝑑𝑟𝐴𝜃

.

In RootWriteScripti, instead of lines 15 to 24 of Algorithm 18 the

code is the one in Algorithm 20. 𝑉 can punish 𝑃 if they equivocate

on Noded0 , Node
′
d0
,𝑀𝑅𝑖 ,𝑀𝑅𝑖+1, 𝑎𝑑𝑑𝑟𝐶𝜃 .

Algorithm 20 The script RootWriteScripti. In the setup phase, the public

keys pkN𝑀𝑒𝑟
, pkN , pkNoded0

, pk
𝑀𝑅𝑖

are hard-coded in the script.

1: function RootWriteScripti
2: ⊲ ... ⊳

3: if 𝑣𝑝𝑜𝑠 = 0 then
4: if𝐻 (Noded0 | |Nsib) = 𝑀𝑅𝑖∧𝐻 (Node′d0 | |Nsib) = 𝑀𝑅𝑖+1 then
5: return True;
6: else
7: return False;
8: else
9: if𝐻 (Nsib | |Noded0) = 𝑀𝑅𝑖∧𝐻 (Nsib | |Node′d0 = 𝑀𝑅𝑖+1) then
10: return True;
11: else
12: return False.

B BISECTION GAME
In this section, we formally describe the bisection games that the

prover and verifier play interactively during the dispute, challenge
read, and challenge write subphases of the BitVM protocol. These

are referred to as the dispute bisection game, read bisection game,
and write bisection game, respectively.

In general, the bisection game is played as follows. 𝑃 and𝑉 each

hold a sequence of values, which are assumed to be identical. The

prover makes public the first and the last elements of their sequence.

If the verifier disagrees with one of these two values, 𝑉 initiates

a bisection game to find a point of disagreement, i.e. , a pair of

consecutive sequence elements such that they agree on one of them

and disagree on the other. Given sequences 𝐴𝑃 and 𝐴𝑉 , a point of

disagreement is defined as a tuple (𝐴𝑃 [𝑖], 𝐴𝑃 [𝑖+1], 𝐴𝑉 [𝑖], 𝐴𝑉 [𝑖+1])
such that either 𝐴𝑃 [𝑖] = 𝐴𝑉 [𝑖] ∧𝐴𝑃 [𝑖 + 1] ≠ 𝐴𝑉 [𝑖 + 1] or 𝐴𝑃 [𝑖] ≠
𝐴𝑉 [𝑖] ∧𝐴𝑃 [𝑖 + 1] = 𝐴𝑉 [𝑖 + 1] (for brevity, we refer to such a point

of disagreement as (𝐴[𝑖], 𝐴[𝑖 + 1])).
The first stage of the game is called disagreement phase: the game

progresses as the prover responds to the verifier’s challenges by

revealing specific elements of their sequence. A response consists

of publishing an on-chain transaction with a commitment to a

sequence element in the witness, while a challenge consists of

publishing a transaction with a commitment to a bit, indicating

which element should be revealed next.

After a point of disagreement has been found, the dispute bisec-

tion game ends, while the read and write bisection games proceed

to the solve phase. At the end of the solve phase, either 𝑃 or 𝑉 is

declared the winner, and the other one is declared the loser of the

bisection game.

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

For brevity and readability, we use a shorthand notation for trans-

actions that abstracts away all but the fundamental components

needed to present the bisection game. Specifically, if party 𝐴 ∈
{𝑃,𝑉 } wants to publish a transaction with𝑚 variables 𝑣1, . . . , 𝑣𝑚
as part of the witness, and for 𝑛 of them they want to publish

their Lamport commitment as well, we express this by writing

Tx𝐴 [{𝑣1, . . . , 𝑣𝑛}, 𝑣𝑛+1, . . . , 𝑣𝑚]. Furthermore, we assume that every

transaction that we describe in this section has a timelock mecha-

nism that punishes inactivity.

B.1 Dispute bisection game
Disagreement phase. 𝑃 and 𝑉 play the dispute bisection game to

find a point of disagreement in their VM execution traces. 𝑃 runs

DisagreeP(𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒𝑃 , |𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒𝑃 |) (cf. Algorithm 21, lines 1

to 14), where 𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒𝑃 is the VM execution trace of the VM

instance Γ𝑃 run by the prover during the BitVM protocol. 𝑉 runs

DisagreeV(𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒𝑉 , |𝐸𝑥𝑒𝑐𝑇𝑟𝑎𝑐𝑒𝑉 |) (cf. Algorithm 21, lines 15

to 32).

B.2 Read bisection game
Disagreement phase. 𝑃 and 𝑉 play this phase of the read bisec-

tion game to find a point of disagreement in the path from the

root to 𝑀N [𝑎𝑑𝑑𝑟𝐴𝜃] in the merkle tree of the memory 𝑀N . 𝑃
runs DisagreeP(P𝑃

𝑅
, |P𝑃

𝑅
|) (cf. Algorithm 21, lines 1 to 14), where

P𝑃
𝑅
:= (𝑀𝑅𝑃N , . . . , 𝑀

𝑃
N [𝑎𝑑𝑑𝑟𝐴𝜃]). The algorithm outputs the index

of a point of disagreement. 𝑉 runs DisagreeV(P𝑉
𝑅
, |P𝑉

𝑅
|) (cf. Algo-

rithm 21, lines 15 to 32). The algorithm outputs the index of a point

of disagreement.

Solve phase. Let (Npar,Nchild) be the point of disagreement iden-

tified by 𝑃 and 𝑉 during the disagreement phase. In the read bi-

section game, a point of disagreement is a pair of intermediate

Merkle tree nodes, where one is the parent of the other. 𝑃 runs

SolveReadP(Npar𝑃 ,Nchild𝑃 ,Nsib, 𝑣𝑝𝑜𝑠) (cf. Algorithm 22, lines 1

to 7). In the algorithm, 𝑃 asserts that Nchild𝑃 is the left or right

child of Npar𝑃 by setting the bit 𝑣𝑝𝑜𝑠 to 0 or 1, respectively. To

do so, 𝑃 provides a sibling node Nsib. 𝑃 publishes the transac-

tion CommitRead𝑃 , where they provide a commitment for Npar𝑃 ,
Nchild𝑃 , 𝑣𝑃𝑝𝑜𝑠 .𝑉 runs SolveReadV(.) (cf. Algorithm 22, lines 8 to 14),

where𝑉 publishes the transaction PunishRead𝑉 if 𝑃 equivocated on

any of the values published as part of the witness of CommitRead𝑃 .
Notice that 𝑃 does not risk equivocation only if Nchild𝑃 is a real

child node of Npar𝑃 , meaning that the leaf that they provided in

𝑀𝑃
N [𝑎𝑑𝑑𝑟𝐴𝜃] is really the 𝑎𝑑𝑑𝑟𝐴𝜃 -th leaf of the Merkle tree with

root𝑀𝑅𝑃N .
The winning conditions of the prover and the verifier for the

read bisection game are shown in Fig. 4.

B.3 Write bisection game
Disagreement phase. Let P𝑊 := (𝑀𝑅𝑃N , . . . , 𝑀

𝑃
N [𝑎𝑑𝑑𝑟𝐶𝜃]) be the

path from the root to𝑀𝑃
N [𝑎𝑑𝑑𝑟𝐶𝜃] in the merkle tree of the mem-

ory𝑀𝑃
N . Let P

′
𝑊

:= (𝑀𝑅𝑃N′ , . . . , 𝑀
𝑃
N′ [𝑎𝑑𝑑𝑟𝐶𝜃]) be the path in the

merkle tree of the memory𝑀𝑃
N′ from the root to𝑀𝑃

N′ [𝑎𝑑𝑑𝑟𝐶𝜃].
𝑃 runs DisagreeWriteP(P𝑃

𝑊
,P′
𝑊
𝑃 , |P𝑃

𝑊
|), which returns the in-

dex of a point of disagreement. 𝑉 runs

Algorithm 21 DisagreeP and DisagreeV are the algorithms run by 𝑃

and 𝑉 as they interact with each other through the ledger L through the

dispute/read bisection game. The variable 𝐼𝑃 denotes the prover’s sequence

and 𝑛 denotes its length. Likewise, the variable 𝐼𝑉 denotes the verifier’s

sequence and 𝑛 denotes its length.

1: function DisagreeP(𝐼𝑃 , 𝑛)
2: 𝑙 ← 1; ⊲ Left search boundary
3: 𝑟 ← 𝑛; ⊲ Right search boundary
4: 𝑖 ← 1; ⊲ Counter
5: while 𝑙 + 1 < 𝑟 do
6: 𝑚 ← ⌊ 𝑙+𝑟

2
⌋;

7: Publish Tx𝑃
𝑖
[{𝐼𝑃 [𝑚] }] on L;

8: Wait until Tx𝑉
𝑖
[{𝑏𝑖 }] appears in L, where 𝑏𝑖 is part of the wit-

ness of transaction Tx𝑉
𝑖

published by 𝑉 . Then, fetch 𝑏𝑖 from

Tx𝑉
𝑖
[{𝑏𝑖 }];

9: if 𝑏𝑖 = 0 then
10: 𝑟 ←𝑚;

11: else
12: 𝑙 ←𝑚;

13: 𝑖 ← 𝑖 + 1;
14: return 𝑟 − 1.

15: function DisagreeV(𝐼𝑉 , 𝑛)

16: 𝑙 ← 1; ⊲ Left search boundary
17: 𝑟 ← 𝑛; ⊲ Right search boundary
18: 𝑖 ← 1; ⊲ Counter
19: while 𝑙 + 1 < 𝑟 do
20: Wait until Tx𝑃

𝑖
[{𝐼𝑃 [𝑚] }] appears in L, where 𝐼𝑃 [𝑚] is part

of the witness of transaction Tx𝑃
𝑖
published by 𝑃 . Then, fetch

𝐼𝑃 [𝑚] from Tx𝑃
𝑖
[{𝐼𝑃 [𝑚] }];

21: 𝑚 ← ⌊ 𝑙+𝑟
2
⌋;

22: if 𝐼𝑃 [𝑚] ≠ 𝐼𝑉 [𝑚] then ⊲ Disagreement
23: 𝑏𝑖 ← 0;

24: else
25: 𝑏𝑖 ← 1;

26: Publish Tx𝑉
𝑖
[{𝑏𝑖 }] on L;

27: if 𝑏𝑖 = 0 then
28: 𝑟 ←𝑚; ⊲ Challenge the left half of at the next step
29: else
30: 𝑙 ←𝑚; ⊲ Challenge the right half of at the next step
31: 𝑖 ← 𝑖 + 1;
32: return 𝑟 − 1.

DisagreeWriteV(P𝑉
𝑊
,P′
𝑊
𝑉 , |P𝑉

𝑊
|), which returns the index of a

point of disagreement.

In the disagreement phase, the verifier seeks a point of disagree-

ment in the path P′
𝑊
, given that 𝑃 and 𝑉 agree on the sequence

P𝑊 . However, as soon as the verifier identifies a disagreement in

P𝑊 (cf. Algorithm 23, l. 24), 𝑉 shifts focus to finding a point of

disagreement within P𝑊 . From this point forward, 𝑉 disregards

the elements of P′
𝑊

published by 𝑃 and considers only the elements

of P𝑊 to determine how to set the bit 𝑏𝑖 .

Solve phase. The point of disagreement is either the pair

(Npar,Nchild) or the pair (Npar′,Nchild′). 𝑃 runs

SolveWriteP(Npar𝑃 ,Nchild𝑃 ,Npar′𝑃 ,Nchild′𝑃 ,Nsib, 𝑣𝑝𝑜𝑠) (cf. Al-
gorithm 24, Lines 1 to 7). In the algorithm, 𝑃 asserts that Nchild𝑃

and Nchild′𝑃 are the left or right child of the nodes Npar𝑃 and

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 22 SolveReadP and SolveReadV are the algorithms executed

by 𝑃 and𝑉 , respectively, as they interact through the ledger L to resolve

the disagreement in the read bisection game in favor of either 𝑃 or𝑉 . The

variablesNpar,Nchild, andNsib represent a triple, whereNpar is the parent
node in a Merkle tree, and Nchild and Nsib are the child nodes, with Nchild
being the left or right child based on the bit 𝑣𝑝𝑜𝑠 .

1: function SolveReadP(Npar, Nchild, Nsib, 𝑣𝑝𝑜𝑠)
2: if 𝑣𝑝𝑜𝑠 = 0 then
3: if 𝐻 (Nchild | |Nsib) = Npar then
4: Publish CommitRead𝑃 [{Npar,Nchild, 𝑣𝑝𝑜𝑠 },Nsib] on L.
5: else
6: if 𝐻 (Nsib | |Nchild) = Npar then
7: Publish CommitRead𝑃 [{Npar,Nchild, 𝑣𝑝𝑜𝑠 },Nsib] on L.

8: function SolveReadV(.)
9: Wait untilCommitRead𝑃 [{Npar,Nchild, 𝑣𝑝𝑜𝑠 },Nsib] appears in L,

where Npar,Nchild, 𝑣𝑝𝑜𝑠 ,Nsib is part of the witness of transaction

CommitRead𝑃 published by 𝑃 .

10: if there is a bit 𝑏 of Npar, Nchild, 𝑣𝑝𝑜𝑠 for which there are two

different commitments then
11: ⊲ Recall that𝑉 cannot forge such commitments if 𝑃 has not

equivocated ⊳

12: Let 𝑐0 be the commitment for 𝑏 = 0;

13: Let 𝑐1 be the commitment for 𝑏 = 1;

14: Publish PunishRead𝑉 [𝑐0, 𝑐1] on L.

Verifier wins. The verifier wins once one of these events happens:
(1) During the execution of DisagreeP (DisagreeWriteP) algo-

rithm, 𝑃 fails to publish Responsei transaction within Δ
rounds after Challengei transaction has been published.

(2) During the execution of SolveReadP (SolveWriteP) algo-
rithm, 𝑃 fails to publish CommitRead (CommitWrite) trans-
action within Δ rounds after the last tx Challengei has been
published.

(3) 𝑉 publishes PunishRead (PunishWrite) transaction.

Prover wins. The prover wins once one of these events happens:
(1) During the execution of DisagreeV (DisagreeWriteV) algo-

rithm, 𝑉 fails to publish Challengei transaction within Δ
rounds after Responsei transaction has been published.

(2) During the execution of SolveReadV (SolveWriteV) algo-
rithm, 𝑉 fails to publish PunishRead (PunishWrite) trans-
action within Δ rounds after CommitRead (CommitWrite)
transaction has been published.

Figure 4: The conditions that determine the winner of the
read bisection game (write bisection game).

Npar′𝑃 , respectively, based on the bit 𝑣𝑝𝑜𝑠 (similar to the read bi-

section game). 𝑃 demonstrates this by providing a node Nsib that
serves as the sibling of both Nchild𝑃 and Nchild′𝑃 . 𝑃 publishes the

transaction CommitWrite𝑃 , where they provide a commitment for

Npar𝑃 ,Nchild𝑃 ,Npar′𝑃 ,Nchild′𝑃 , 𝑣𝑃𝑝𝑜𝑠 . Intuitively, the prover can
commit to all the aforementioned elements without equivocating

only if they previously committed to𝑀𝑅𝑃N′ and𝑀
𝑃
N′ [𝑎𝑑𝑑𝑟𝐶𝜃] such

that 𝑀𝑃
N′ [𝑎𝑑𝑑𝑟𝐶𝜃] is really the 𝑎𝑑𝑑𝑟𝐶𝜃 -th leaf of the Merkle tree

with root𝑀𝑅𝑃N′ .

Algorithm 23 DisagreeWriteP and DisagreeWriteV are the algorithms

run by 𝑃 and𝑉 as they interact with each other through the ledger L through
the write bisection game. The variable 𝐼𝑃 denotes the prover’s sequence

and 𝑛 denotes its length. Likewise, the variable 𝐼𝑉 denotes the verifier’s

sequence and 𝑛 denotes its length.

1: function DisagreeWriteP(𝐼𝑃 , 𝐼 ′𝑃 , 𝑛)
2: 𝑙 ← 1; ⊲ Left search boundary
3: 𝑟 ← 𝑛; ⊲ Right search boundary
4: 𝑖 ← 1; ⊲ Counter
5: while 𝑙 + 1 < 𝑟 do
6: 𝑚 ← ⌊ 𝑙+𝑟

2
⌋;

7: Publish Tx𝑃
𝑖
[{𝐼𝑃 [𝑚], 𝐼 ′𝑃 [𝑚] }] on L;

8: Wait until Tx𝑉
𝑖
[{𝑏𝑖 }] appears in L, where 𝑏𝑖 is part of the wit-

ness of transaction Tx𝑉
𝑖

published by 𝑉 . Then, fetch 𝑏𝑖 from

Tx𝑉
𝑖
[{𝑏𝑖 }];

9: if 𝑏𝑖 = 0 then
10: 𝑟 ←𝑚;

11: else
12: 𝑙 ←𝑚;

13: 𝑖 ← 𝑖 + 1;
14: return 𝑟 − 1.

15: function DisagreeWriteV(𝐼𝑉 , 𝐼 ′
𝑉
, 𝑛)

16: 𝑙 ← 1; ⊲ Left search boundary
17: 𝑟 ← 𝑛; ⊲ Right search boundary
18: 𝑖 ← 1; ⊲ Counter
19: 𝑓 𝑙𝑎𝑔← False;
20: while 𝑙 + 1 < 𝑟 do
21: Wait until Tx𝑃

𝑖
[{𝐼𝑃 [𝑚], 𝐼 ′𝑃 [𝑚] }] appears in L, where

𝐼𝑃 [𝑚], 𝐼 ′𝑃 [𝑚] is part of thewitness of transaction Tx
𝑃
𝑖
published

by 𝑃 . Then, fetch 𝐼𝑃 [𝑚], 𝐼 ′𝑃 [𝑚] from Tx𝑃
𝑖
[{𝐼𝑃 [𝑚], 𝐼 ′𝑃 [𝑚] }];

22: 𝑚 ← ⌊ 𝑙+𝑟
2
⌋;

23: if 𝑓 𝑙𝑎𝑔 = False then
24: if 𝐼𝑃 [𝑚] ≠ 𝐼𝑉 [𝑚] then
25: 𝑓 𝑙𝑎𝑔 = True;⊲ From now on, look only for disagreement

on 𝐼𝑉
26: 𝑏𝑖 ← 0;

27: else
28: if 𝐼 ′

𝑃
[𝑚] = 𝐼 ′

𝑉
[𝑚] then

29: 𝑏𝑖 ← 0;

30: else
31: 𝑏𝑖 ← 1;

32: else
33: if 𝐼𝑃 [𝑚] ≠ 𝐼𝑉 [𝑚] then
34: 𝑏𝑖 ← 0;

35: else
36: 𝑏𝑖 ← 1;

37: Publish Tx𝑉
𝑖
[{𝑏𝑖 }] on L;

38: if 𝑏𝑖 = 0 then
39: 𝑟 ←𝑚; ⊲ Challenge the left half of at the next step
40: else
41: 𝑙 ←𝑚; ⊲ Challenge the right half of at the next step
42: 𝑖 ← 𝑖 + 1;
43: return 𝑟 − 1.

𝑉 runs SolveWriteV(.)(cf. Algorithm 24, lines 8 to 14), where 𝑉

publishes the transaction PunishWrite𝑉 if 𝑃 equivocated on any of

the values published as part of the witness of CommitWrite𝑃 .

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Algorithm 24 SolveWriteP and SolveWriteV are the algorithms executed

by 𝑃 and𝑉 , respectively, as they interact through the ledger L to resolve

the disagreement in the write bisection game in favor of either 𝑃 or 𝑉 .

The variables Npar, Nchild, Npar′,Nchild′ , and Nsib represent two triples,

where Npar and Npar′ are the parent nodes in a Merkle tree, with Nchild,
Nsib and Nchild′,Nsib as the child nodes, respectively. The nodes Nchild,
Nchild′ are the left or right children based on the bit 𝑣𝑝𝑜𝑠 .

1: function SolveWriteP(Npar, Nchild, Npar’, Nchild’, Nsib, 𝑣𝑝𝑜𝑠)
2: if 𝑣𝑝𝑜𝑠 = 0 then
3: if (𝐻 (Nchild | |Nsib) = Npar) ∧ (𝐻 (Nchild′ | |Nsib) = Npar′)

then
4: Publish CommitWrite𝑃 [{Npar,Nchild,

Npar′,Nchild′, 𝑣𝑝𝑜𝑠 },Nsib] on L.
5: else
6: if (𝐻 (Nsib | |Nchild) = Npar) ∧ (𝐻 (Nsib | |Nchild′) = Npar′)

then
7: Publish CommitWrite𝑃 [{Npar,Nchild,

Npar′,Nchild′, 𝑣𝑝𝑜𝑠 },Nsib] on L.

8: function SolveWriteV(.)
9: Wait until CommitWrite𝑃 [{Npar,Nchild,

Npar′,Nchild′, 𝑣𝑝𝑜𝑠 },Nsib] appears in L, where

Npar,Nchild,Npar′,Nchild′, 𝑣𝑝𝑜𝑠 ,Nsib is part of the witness
of transaction CommitWrite𝑃 published by 𝑃 .

10: if there is a bit 𝑏 of Npar, Nchild, Npar’, Nchild’, 𝑣𝑝𝑜𝑠 for which
there are two different commitments then

11: ⊲ Recall that𝑉 cannot forge such commitments if 𝑃 has not
equivocated ⊳

12: Let 𝑐0 be the commitment for 𝑏 = 0;

13: Let 𝑐1 be the commitment for 𝑏 = 1;

14: Publish PunishWrite𝑉 [𝑐0, 𝑐1] on L.

The winning conditions of the prover and the verifier for the

write bisection game are the same as the read bisection game, thus

in Fig. 4.

C EXTENSIVE FORM GAMES WITH PERFECT
INFORMATION

We introduce the concept of Extensive FormGames (EFG) as follows.

In an EFG, a game tree encapsulates all possible protocol executions,

with nodes representing players’ decision points, branches indi-

cating possible actions, and leaves denoting the utility outcomes

associated with chosen strategies.

Definition 9 (Extensive Form Game-EFG). An Extensive Form
Game (EFG) is a tuple G = (𝑁,𝐻, 𝑃,𝑢), where set 𝑁 represents the
game player, the set 𝐻 captures EFG game history, 𝑇 ⊆ 𝐻 is the set
of terminal histories, 𝑃 denotes the next player function, and 𝑢 is the
utility function. The following properties are satisfied.

(A) The set 𝐻 of histories is a set of sequence actions with

(1) ∅ ∈ 𝐻 ;
(2) if the action sequence (𝑎𝑘)𝐾𝑘=1 ∈ 𝐻 and 𝐿 < 𝐾 , then also
(𝑎𝑘)𝐿𝑘=1 ∈ 𝐻 ;

(3) an action sequence is terminal (𝑎𝑘)𝐾𝑘=1 ∈ 𝑇 , if there is no
further action 𝑎𝐾+1 that (𝑎𝑘)𝐾+1𝑘=1

∈ 𝐻 .

(B) The next player function 𝑃

(1) assigns the next player 𝑝 ∈ 𝑁 to every non-terminal history
(𝑎𝑘)𝐾𝑘=1 ∈ 𝐻 \𝑇 ;

(2) after a non-terminal historyℎ, it is player 𝑃 (ℎ)’s turn to choose
an action from the set 𝐴(ℎ) = {𝑎 : (ℎ, 𝑎) ∈ 𝐻 }.

A player 𝑝’s strategy is a function 𝜎𝑝 mapping every history ℎ ∈ 𝐻
with 𝑃 (ℎ) = 𝑝 to an action from 𝐴(ℎ). Formally,

𝜎𝑝 : {ℎ ∈ 𝐻 : 𝑃 (ℎ) = 𝑝} → {𝑎 : (ℎ, 𝑎) ∈ 𝐻,∀ℎ ∈ 𝐻 },
such that 𝜎𝑝 (ℎ) ∈ 𝐴(ℎ).

A subgame of an EFG is defined as a subtree rooted at a specific

history node, representing the last decision point in that sequence

of actions.

Definition 10 (EFG subgame). The subgame of an EFG 𝜑 =

(𝑁,𝐻, 𝑃,𝑢) associated to history ℎ ∈ 𝐻 is the EFG
𝜑 (ℎ) = (𝑁,𝐻 |ℎ, 𝑃 |ℎ, 𝑢 |ℎ) defined as follows: 𝐻 |ℎ := ℎ′ | (ℎ,ℎ′) ∈ 𝐻 ,
𝑃 |ℎ (ℎ′) := 𝑃 (ℎ,ℎ′), and 𝑢 |ℎ (ℎ′) := 𝑢 (ℎ,ℎ′).

The core concept of our proof methodology is to demonstrate

that utility-maximizing players will choose to adhere to the protocol

specification at each step of the protocol. We further show that this

implies rational parties will follow the optimistic path of BitVM.

This is accomplished by leveraging the notion of a Subgame Perfect

Nash Equilibrium (Definition 11) [27]. Specifically, we show that the

strategy profile encompassing the "correct protocol execution" of

BitVM constitutes an SPNE of our game, using a technique known

as backward induction.

In backward induction, we evaluate each decision point by

traversing backwards the EFG, i.e., starting from the final outcomes

andmoving backward to the initial decision. At each step, the player

selects the action that maximizes their utility, assuming that sub-

sequent players will also choose optimal actions in response. This

process continues up the game tree until the root is reached, yield-

ing a sequence of optimal strategies that together form a Subgame

Perfect Nash Equilibrium.

Definition 11 (Subgame Perfect Nash Eqilibrium (SPNE)).

A subgame perfect equilibrium strategy is a joint strategy
𝜎 = (𝜎1, ..., 𝜎𝑛) ∈ 𝑆 , s.t. 𝜎 |ℎ = (𝜎

1 |ℎ, ..., 𝜎𝑛 |ℎ) is a Nash Equilib-
rium of the subgame 𝜑 (ℎ), for every ℎ ∈ 𝐻 . The strategies 𝜎𝑖 |ℎ are
functions that map every ℎ′ ∈ 𝐻 |ℎ with 𝑃 |ℎ (ℎ′) = 𝑖 to an action from
𝐴 |ℎ (ℎ′).

D SECURITY ANALYSIS
Notation and Assumptions. We denote by 𝑁1 the number of

execution steps of the VM and by 𝑁2 the size of the memory. For

convenience, we denote the logarithm of a quantity 𝑥 as 𝑥 = 𝑙𝑜𝑔(𝑥)
and the nested logarithmic value as

˜𝑥 = 𝑙𝑜𝑔(𝑙𝑜𝑔(𝑥)).
Moreover, we denote the balance account of a user 𝐴 ∈ {𝑃,𝑉 }

by ⟨𝑢⟩𝐴 , meaning that there are 𝑢 coins to the account associated

with 𝐴. We consider only funds related to the execution of BitVM
and assume a constant fee 𝑓 for each transaction.

In the Setup phase, 𝑃 locks in𝑃 = 𝛼 + (2𝑁1 + 2 ˜
𝑁2 + 7) 𝑓 coins in

the multisignature, and 𝑉 in𝑉 = 𝛽 + (2𝑁1 + 2 ˜
𝑁2 + 7) 𝑓 coins. This

amount ensures that if, w.l.o.g., 𝑃 deviates from the protocol and

the execution follows the longest path until𝑉 claims the remaining

funds, 𝑉 will not lose money even if 𝛽 = 0. That is because, as

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

we will show in Lemma D.11, in the worst case 2𝑁1 + 2 ˜
𝑁2 + 7

transactions are posted on-chain.

Last, for the pair of utilities corresponding to any final state by

the outcome mapping function we assume that 𝑣𝑃 + 𝑣𝑉 ≤ in𝑃 +
in𝑉 − (2𝑁1 + 2 ˜

𝑁2 + 7) 𝑓 . We interpret that cost as application fees,

which is again analogous to the longest path of the execution.

D.1 Agreement phase
Lemma D.1 (Correctness of the setup). Let 𝑃𝑟𝑒𝑠𝑖𝑔𝑛𝑒𝑑𝑃 be the

set of presigned transactions 𝑉 handovers to 𝑃 and 𝑃𝑟𝑒𝑠𝑖𝑔𝑛𝑒𝑑𝑉 be
the set of presigned transactions 𝑃 handovers to 𝑉 during the Setup
phase. If Setup is published on chain, then:

(1) Presigned transactions availability: 𝑃 possesses all the trans-
actions ∈ 𝑃𝑟𝑒𝑠𝑖𝑔𝑛𝑒𝑑𝑃 along with𝑉 ’s signature.𝑉 possesses all
the transactions ∈ 𝑃𝑟𝑒𝑠𝑖𝑔𝑛𝑒𝑑𝑉 along with 𝑃 ’s signature.

(2) Locking the deposit: 𝛼 +𝛽+ (4𝑁1+4 ˜
𝑁2+14) 𝑓 coins are locked

in the multisig 𝜎𝑃𝑉 of 𝑃 and 𝑉 .

Proof: First, since Setup is accepted by the miners, both 𝑃 and

𝑉 must have signed Setup. Given that, the following holds:

(1) 𝑃 signed Setup only after receiving the set of transactions

in 𝑃𝑟𝑒𝑠𝑖𝑔𝑛𝑒𝑑𝑃 signed by 𝑉 . Similarly, 𝑉 signed Setup only
after receiving the transactions in 𝑃𝑟𝑒𝑠𝑖𝑔𝑛𝑒𝑑𝑉 signed by 𝑃 .

(2) Setup has an output of 𝛼+𝛽+(4𝑁1+4 ˜
𝑁2+14) to the multisig

𝜎𝑃𝑉 of 𝑃 and 𝑉 .

□

D.2 Execution phase
Lemma D.2 (𝑃 does not post CommitComputation). If Setup

is published on chain and CommitComputation is not published on
chain within the timelock Δ, it is a dominant strategy for 𝑉 to claim
the output of Setup. As a result, 𝑃 ’s balance account is ⟨0⟩𝑃 and 𝑉 ’s

⟨𝛼 + 𝛽 + (4𝑁1 + 4 ˜
𝑁2 + 12) 𝑓 ⟩𝑣 .

Proof: 𝑃 can only spend Setup by publishing

CommitComputation on chain. If 𝑃 does not publish

CommitComputation after Δ when the timelock in Setup expires,
𝑉 can claim the output of Setup. If 𝑉 claims the collateral, she

spends 𝑓 coins in transaction fees. Moreover, since 𝑃 has already

posted Setup on-chain, 2𝑓 has been spent in transaction fees in

total. Therefore 𝑉 ’s account is 𝑢1 = ⟨𝛼 + 𝛽 + (4𝑁1 + 4 ˜
𝑁2 + 12) 𝑓 ⟩𝑉 .

Otherwise, if𝑉 does not claim the collateral, the respective balance

account is 𝑢2 = ⟨0⟩𝑉 . Since 𝑢1 > 𝑢2, it is a dominant strategy for 𝑉

to claim the output of Setup when the timelock expires. □

D.3 Identify Disagreement phase
D.3.1 Normal closing.

Lemma D.3 (𝑉 does not publish KickOff to initiate a dis-

pute. 𝑃 is supposed publish a Close transaction). Assume that
CommitComputation is published on-chain and KickOff is not pub-
lished on-chain within the timelock Δ. Moreover, consider 𝑓 (𝑅𝑓 𝑖𝑛𝑎𝑙) =
(𝑓𝑃 , 𝑓𝑉) where 𝑅𝑓 𝑖𝑛𝑎𝑙 the final state that uniquely corresponds to
𝑀𝑅final which 𝑃 has committed in CommitComputation, 𝑓 is the
outcome mapping function and Closei for some 𝑖 ∈ {1, ...,𝑚} is the

corresponding transaction that distributes the funds accordingly. Then,
the following statements hold:
• If 𝑃 publishes on-chain Closei, 𝑃 ’s balance account will be

⟨𝑓𝑃 + (2𝑁1 + 2 ˜
𝑁2 + 5.5) 𝑓 ⟩𝑃 , and 𝑉 ’s balance account will be

⟨𝑓𝑉 + (2𝑁1 + 2 ˜
𝑁2 + 5.5) 𝑓 ⟩𝑉 .

• If 𝑃 publishes on-chain Closej, for some 𝑗 ∈ {1, ...,𝑚}, 𝑗 ≠ 𝑖 ,
it is dominant strategy for 𝑉 to claim the coins in the multi-

signature. Then, 𝑃 ’s balance account is ⟨𝛼 + 𝛽 + (4𝑁1 + 4 ˜
𝑁2 +

11) 𝑓 ⟩𝑃 and 𝑉 ’s ⟨0⟩𝑣 .
• If none of transactions in the set S = ∪{1,...,𝑚}Closei is pub-
lished on-chainwithin 2Δ since CommitInstructionwas pub-
lished, it is a dominant strategy for 𝑉 to claim the coins in
the multisignature. In that scenario, 𝑉 ’s balance account is

⟨𝛼 + 𝛽 + (4𝑁1 + 4 ˜
𝑁2 + 11) 𝑓 ⟩𝑉 and 𝑃 ’s ⟨0⟩𝑆 .

Proof: Since CommitComputation is posted on chain, the trans-

action Setupmust have been previously published. That is because

CommitComputation spends Setup. Therefore 2𝑓 of the coins in

the multisignature have already been spent in transaction fees.

• Closei redistributes the rest of the coins to the parties ac-

cording to the outcomes mapping function 𝑓 , namely (𝑓𝑃 +
(2𝑁1 + 2 ˜

𝑁2 + 5.5) 𝑓) coins to 𝑃 and (𝑓𝑃 + (2𝑁1 + 2 ˜
𝑁2 + 5.5) 𝑓)

coins to 𝑉 , where 𝑓 (𝑆𝑓 𝑖𝑛𝑎𝑙 , 𝛼, 𝛽) = (𝑓𝛼 , 𝑓𝛽). Since the result
𝑅𝑃
𝑓 𝑖𝑛𝑎𝑙

corresponds to𝑀𝑅final 𝑉 cannot spend Closei.

• Since 𝑖 ≠ 𝑗 and each transaction in S uniquely corresponds

to an outcome of the computation, in Closej 𝑃 commits

to an 𝑀𝑅′final ≠ 𝑀𝑅final. 𝑉 can show the equivocation of

𝑃 by providing the conflicting commitments since for each

𝑘 ∈ {1, ...,𝑚} the Script CloseScripti (Algorithm 8) has the

same hard-code keys with CommitComputationScript. As

a result 𝑃 will have a balance 𝑢1 = ⟨𝛼 + 𝛽 + (4𝑁1 + 4 ˜
𝑁2 +

10) 𝑓 ⟩𝑉 , since 4𝑓 are spent in the transaction fees for Setup,
CommitComputation, Closej and the transaction sending

the collateral to their account. In this scenario, 𝑃 ’s balance

account is ⟨0⟩𝑃 . Otherwise, if𝑉 does not utilize the timelock,

their balance account is 𝑢2 = ⟨0⟩𝑃 . Since 𝑢1 > 𝑢2 it is a

dominant strategy for 𝑉 to use the timelock.

• 𝑃 can only spend CommitComputation by posting exactly

one transaction in S, otherwise 𝑉 can utilize the timelock

after 2Δ. Since 𝑃 any transaction in S, 𝑃 can claim the coins

of the multisig after the timelock 2Δ, leading to a balance

account𝑢1 = ⟨𝛼 +𝛽 + (4𝑁1+4 ˜
𝑁2+11) 𝑓 ⟩𝑉 , since 3𝑓 are spent

in the transaction fees for Setup, CommitComputation, and
the transaction sending the collateral to their account. In this

scenario, 𝑃 ’s balance account is ⟨0⟩𝑃 . Otherwise, if 𝑉 does

not utilize the timelock, their balance account is 𝑢2 = ⟨0⟩𝑃 .
Since 𝑢1 > 𝑢2 it is a dominant strategy for 𝑉 to use the

timelock.

□

D.3.2 Dispute bisection game.

Lemma D.4 (𝑃 is inactive during the challenge path). Con-
sider a set of transactions {𝑡𝑥} ⊆ {KickOff} ∪
{TraceChallengei}𝑖∈{1,...,𝑁1 } , where {𝑡𝑥} ≠ ∅, is published on-
chain and one of the following scenarios is true:

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(1) KickOff ∈ {𝑡𝑥} (let 𝑗 = 0) and 𝑃 has not posted
TraceResponse

1
within Δ,

(2) TraceChallenge𝑖 ∈ {𝑡𝑥} for 𝑖 < 𝑁1 (let 𝑗 = 𝑖) and 𝑃 has not
posted TraceResponse𝑖+1 within Δ,

(3) TraceChallenge
𝑁1

∈ {𝑡𝑥} (let 𝑗 = 𝑁1) and 𝑃 has not posted
CommitInstruction within Δ.

Then, it is a dominant strategy for𝑉 to utilize the timelock. 𝑃 ’s balance

account is then ⟨0⟩𝑃 , and𝑉 ’s balance account is ⟨𝛼 +𝛽 + (4𝑁1+4 ˜
𝑁2−

2 𝑗 + 10) 𝑓 ⟩𝑉 .

Proof: Since {𝑡𝑥} ≠ ∅, KickOff has been published on-chain, 𝑃

has previously published on-chain Setup, and CommitComputation,
which cost 3𝑓 in transaction fees. If scenario 1 is true and 𝑉 uti-

lizes the timelock to claim the output of KickOff, which costs

another 𝑓 in fees (thus 4𝑓 in total), her balance account is 𝑢1 =

⟨𝛼 + 𝛽 + (4𝑁1 + 4 ˜
𝑁2 + 10)⟩𝑉 , and 𝑃 ’s balance account is ⟨0⟩𝑃 . If 𝑉

does not utilize the timelock, her balance account is 𝑢2 = ⟨0⟩𝑣 < 𝑢1,
which shows that it is a dominant strategy for her to utilize the

timelock.

Otherwise, if scenario 2 or 3 is true, 𝑃 has posted on-chain before

{TraceResponsek}𝑘∈{1,..., 𝑗 } paying extra 𝑗 𝑓 in transaction fees,

and𝑉 , in turn, has posted {TraceChallengek}𝑘∈{1,..., 𝑗 } paying 𝑗 𝑓
in fees too. Now, if 𝑉 utilizes the timelock, her balance account is

⟨𝑢1 = 𝛼 + 𝛽 + (4𝑁1 + 4 ˜
𝑁2 − 2 𝑗 + 10) 𝑓 ⟩𝑉 and 𝑃 ’s balance account

is ⟨0⟩𝑃 . Otherwise, if 𝑉 does not utilize the timelock, 𝑉 ’s balance

account is 𝑢2 = ⟨0⟩𝑉 < 𝑢1, which again shows that it is a dominant

strategy for her to use the timelock. □

Lemma D.5 (𝑉 is inactive during the challenge path). Con-
sider a set of transactions {𝑡𝑥} ⊆ {TraceChallengei}𝑖∈{1,...,𝑁1 } ∪
{CommitInstruction}, where {𝑡𝑥} ≠ ∅, is published on-chain and
one of the following scenarios is true:

(1) TraceResponse𝑖 ∈ {𝑡𝑥} for some 𝑖 ≤ 𝑁1 (let 𝑗 = 𝑖), and 𝑉
has not posted TraceChallenge𝑖 within Δ,

(2) CommitInstruction ∈ {𝑡𝑥} (let 𝑗 = 𝑁1 + 1) and 𝑉 has not
posted any transaction 𝑡𝑥 ′ ∈ {ChallengeCurrPC,
PunishInstruction, ChallengeRead, ChallengeWrite}
within Δ.

Then, it is a dominant strategy for 𝑃 to utilize the timelock. 𝑃 ’s balance

account is then ⟨𝛼 + 𝛽 + (4𝑁1 + 4 ˜
𝑁2 − 2 𝑗 + 11) 𝑓 ⟩𝑃 , and 𝑉 ’s balance

account is ⟨0⟩𝑉 .

Proof: Since TraceResponse𝑖 is posted on-chain, Setup, Close,
KickOff are posted on-chain as well. Moreover, if 𝑖 > 1,

{TraceResponsek}𝑘∈{1,...,𝑖−1} and

{TraceChallengek}𝑘∈{1,...,𝑖−1} are also published on-chain. More

specifically, first, 𝑃 committed the Setup and the Close. Then, 𝑉
posted KickOff. Furthermore, if 𝑖 > 1, 𝑃 has also published on-

chain {TraceResponsek}𝑘∈{1,...,𝑖−1} and 𝑉 the respective

{TraceChallengek}𝑘∈{1,...,𝑖−1} . This results in (2 𝑗 + 2) 𝑓 in trans-

action fees. Now, if Scenario 2 is true, then 𝑉 has published on-

chain TraceChallenge ~N1 which 𝑃 spent by publishing on-chain

CommitInstruction. In both scenarios, 1 and 2, 𝑃 spends extra 𝑓

in transaction fees to claim the collateral. Therefore, 𝑃 ’s balance

account will now be 𝑢1 = ⟨𝛼 + 𝛽 + (4𝑁1 + 4 ˜
𝑁2 − 2 𝑗 + 11)⟩𝑃 . In that

case, 𝑉 ’s balance account is ⟨0⟩𝑉 . Otherwise, 𝑃 ’s balance account

is 𝑢2 = ⟨0⟩𝑃 < 𝑢1, which means that it is a dominant strategy for 𝑃

to use the timelock. □

Lemma D.6. Consider parties 𝑃 and 𝑉 play the bisection game on-
chain described in Algorithm 21. 𝑃 runs the functionDisagreeP(A, n)
where A is a sequence of 𝑛 values, and 𝑉 runs the function
DisagreeV(B, n) where B is a sequence of 𝑛 values. The following
statements hold:
• if A[1] = B[1] and A[𝑛] ≠ B[𝑛], the protocol pinpoints
an index 𝑗 such that A[𝑗] = B[𝑗] and A[𝑗 + 1] ≠ B[𝑗 + 1]
where 𝑗 ∈ {1, ..., 𝑛 − 1},
• The bisection game finishes after 𝑂 (𝑙𝑜𝑔𝑛) steps.

Proof: We denote the local variable 𝑖 of 𝑃 and 𝑉 by 𝑖𝑃 and 𝑖𝑉

respectively. We say we are in the 𝑖−th step of the bisection game

(or the loop) if 𝑖𝑃 = 𝑖 . Moreover, we denote the local variables 𝑙, 𝑟 of

𝑃 and𝑉 in the 𝑖-th step of the loop by 𝑙𝑃
𝑖
, 𝑟𝑃
𝑖
, and 𝑙𝑉

𝑖
, 𝑟𝑉
𝑖
respectively.

Precondition. The following condition holds: A[1] = B[1], and
A[𝑛] ≠ B[𝑛], 𝑃 starts with the local variables 𝑙𝑃

0
= 1, 𝑟𝑃

0
= 𝑛, 𝑙𝑃

0
<

𝑟𝑃
0
, 𝑖𝑃 = 1 and 𝑉 with the local variables 𝑙𝑉

0
= 1, 𝑟𝑉

0
= 𝑛, 𝑙𝑉

0
<

𝑟𝑉
0
, 𝑖𝑉 = 1.

Loop invariant.We will prove that, in every step of the loop the

protocol maintains the following loop invariant by induction on

the number of steps.

After the 𝑖-th step of the loop, 𝑃 and 𝑉 have the same local

variables 𝑖𝑃 = 𝑖𝐿 = 𝑖 , and 𝑙𝑃
𝑖
= 𝑙𝑉
𝑖

= 𝑙𝑖 , 𝑟
𝑃
𝑖
= 𝑟 𝑙

𝑖
= 𝑟𝑖 with 𝑙𝑖 < 𝑟𝑖 , and

therefore, they continue with the subsequencesA[𝑙𝑖 : 𝑟𝑖],B[𝑙𝑖 : 𝑟𝑖]
respectively. Moreover, it holds that A[𝑙𝑖] = B[𝑙𝑖] and A[𝑟𝑖] ≠
B[𝑟𝑖].

Base Case. In the base case where 𝑛 = 2 and A[1] = B[1],
A[2] ≠ B[2], then 𝑙𝑃 = 𝑙𝑉 = 𝑙 = 2, 𝑟𝑃 = 𝑟𝑉 = 2, and since

𝑟 − 𝑙 = 1 the condition in line 19 is not satisfied so the bisection

game pinpoints as the point of disagreement 𝑗 = 1.

Induction Step. Assume that in the 𝑖−th step of the loop the

invariant holds. So, 𝑃 and𝑉 have the same local variables 𝑖𝑃 = 𝑖𝐿 =

𝑖 , 𝑙𝑃
𝑖

= 𝑙𝑉
𝑖

= 𝑙𝑖 , 𝑟
𝑃
𝑖

= 𝑟𝑉
𝑖

= 𝑟𝑖 , 𝑙𝑖 < 𝑟𝑖 , and for their subsequences

A[𝑙𝑖] = B[𝑙𝑖] and A[𝑠𝑖] ≠ B[𝑠𝑖] respectively. We will show that

the invariant holds for the step 𝑖 + 1.
First, 𝑃 publishes on-chain the value A[𝑚], where𝑚 = ⌊ 𝑙𝑖+𝑟𝑖

2
⌋

(line 7). When 𝑉 witnesses A[𝑚] on-chain, we have the following
cases:

• Case 1, A[𝑚] ≠ B[𝑚] : 𝑉 sets 𝑏𝑖 = 0 (line 23), publishes 𝑏𝑖

on-chain (line 26) and updates its local variables 𝑖𝑉 ← 𝑖 + 1
(line 31) and 𝑟𝑉

𝑖+1 ← 𝑚 (line 28). As soon as 𝑃 witnesses

𝑏𝑖 = 0 on-chain it updates its local variables 𝑖𝑃 ← 𝑖 + 1 (line
13) and 𝑟𝑃

𝑖+1 ←𝑚 (line 10). Moreover, since 𝑃 and 𝑉 entered

the loop at step 𝑖 , 𝑟𝑖 ≠ 𝑙𝑖 + 1, and 𝑟𝑖 > 𝑙𝑖 (by assumption), it

must be 𝑟𝑖 ≥ 𝑙𝑖 +2. Therefore, 𝑟𝑃𝑖+1 =𝑚 = ⌊ 𝑙𝑖+𝑟𝑖
2
⌋ ≥ ⌊ 2𝑙𝑖+2

2
⌋ =

𝑙𝑖 + 1 = 𝑙𝑃𝑖+1 + 1.
Therefore, since 𝑙𝑖+1 = 𝑙𝑃𝑖+1 = 𝑙

𝑉
𝑖+1 = 𝑙𝑖 , 𝑟𝑖+1 = 𝑟

𝑃
𝑖+1 = 𝑟

𝑙
𝑖+1 =𝑚,

𝑟𝑖+1 > 𝑙𝑖+1, 𝑖𝑉 = 𝑖𝑃 = 𝑖 + 1, 𝑃 and 𝑉 continue with the

subsequences A[𝑙𝑖+1 : 𝑟𝑖+1],B[𝑙𝑖+1 : 𝑟𝑖+1] respectively s.t.

A[𝑙𝑖+1] = B[𝑙𝑖+1], A[𝑟𝑖+1] ≠ B[𝑟𝑖+1], the invariant still

holds.

• Case 2, A[𝑚] = B[𝑚]: 𝑉 sets 𝑏𝑖 = 1 (line 25), publishes 𝑏𝑖
on-chain (line 26) and updates its local variables 𝑙𝑉 ← 𝑚

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(line 30) and 𝑖𝑉 ← 𝑖+1 (line 13). As soon as party 𝑃 witnesses

𝑏𝑖 = 1 on-chain it updates its local variables 𝑙𝑃 ←𝑚 (line 12)

and 𝑖𝑃 ← 𝑖 + 1 (line 13). Moreover, since 𝑃 and𝑉 entered the

loop at step 𝑖 , 𝑙𝑖 ≤ 𝑟𝑖 − 2 and by assumption 𝑟𝑖 > 𝑙𝑖 , which

means that 𝑙𝑖+1 = 𝑚 = ⌊ 𝑙𝑖+𝑟𝑖
2
⌋ ≤ ⌊ 2𝑟𝑖−2

2
⌋ = 𝑟𝑖 − 1. Since

𝑟𝑖+1 = 𝑟𝑖 , it holds that 𝑟𝑖+1 > 𝑙𝑖+1.
Again, since, 𝑙𝑃 = 𝑙𝑉 = 𝑙𝑖+1,𝑟𝑃 = 𝑟 𝑙 = 𝑟𝑖+1, 𝑟𝑖+1 > 𝑙𝑖+1, 𝑖𝑉 =

𝑖𝑃 = 𝑖 + 1 and both parties continue with the subsequences

A[𝑙𝑖+1 : 𝑟𝑖+1],B[𝑙𝑖+1 : 𝑟𝑖+1], such that A[𝑙𝑖+1] = B[𝑙𝑖+1],
A[𝑟𝑖+1] ≠ B[𝑟𝑖+1] the invariant still holds.

Termination: In every step of the bisection game the interval of the

sequences of 𝑃 and 𝑉 remains the half. Moreover, after the step 𝑖

of the loop for the local variables of 𝑃 and 𝑉 it holds that 𝑙𝑃
𝑖+1 =

𝑙𝑉
𝑖+1 = 𝑙𝑖+1, 𝑟𝑃𝑖+1 = 𝑟 𝑙

𝑖+1 = 𝑟𝑖+1, 𝑟𝑖+1 > 𝑙𝑖+1. Since, the subsequences
are decreasing to the half after every step 𝑖 and 𝑟𝑖+1 > 𝑙𝑖+1, after
𝑂 (𝑙𝑜𝑔𝑛) steps the algorithmwill pinpoint the point of disagreement.

□

Lemma D.7 (𝑃 has committed to the wrong state and 𝑉

initiates a dispute). Assume that 𝑃 has committed to an execution
trace 𝐸𝑃

𝑓 𝑖𝑛𝑎𝑙
in CommitComputation different than the VM execution

trace element at step 𝑓 𝑖𝑛𝑎𝑙 , i.e., 𝐸𝑃
𝑓 𝑖𝑛𝑎𝑙

≠ 𝐸𝑓 𝑖𝑛𝑎𝑙 . Assume that 𝑉
follows the protocol specifications, publishes on-chain Kickoff and
𝑃 and 𝑉 run Algorithm 21. Algorithm 21 outputs a step N such that
𝑃 has committed to the execution traces 𝐸𝑃N = 𝐸N at step N and
𝐸𝑃N+1 ≠ 𝐸N+1 at step N + 1.

Proof: Let I be the set which consists of i) all the VM steps to

which 𝑃 has committed to an execution trace on-chain (line 7), ii)

step 𝑖 = 1, for which 𝑃 has committed to 𝐸𝑃
0
], and 𝑖 = 𝑓 𝑖𝑛𝑎𝑙 for

which 𝑃 has committed to 𝐸𝑃
𝑓 𝑖𝑛𝑎𝑙

in CommitInstruction.

By assumption 𝑉 follows the protocol specification and, there-

fore, runs the functionDisagreeV(B, 𝑓 𝑖𝑛𝑎𝑙) of Algorithm 21, where

the sequence B consists of the VM execution trace element at each

step, i.e., ∀𝑖 ∈ {1, ..., 𝑓 𝑖𝑛𝑎𝑙} : B[𝑖] = 𝐸𝑖 .
𝑃 runs the functionDisagreeP(A, 𝑓 𝑖𝑛𝑎𝑙) of Algorithm 21, where

the sequence of valuesA is constructed as follows. For every 𝑖 ∈ I,
A[𝑖] = 𝐸𝑃

𝑓 𝑖𝑛𝑎𝑙
, i.e., A[𝑖] is the execution trace to which 𝑃 has

committed on-chain for step 𝑖 . For the rest indices, 𝑖 ∈ {1, ..., 𝑓 𝑖𝑛𝑎𝑙}\
I, without loss of generality, we assume that A[𝑖] = 𝐸𝑖 , i.e, A[𝑖]
is the correct VM execution trace element at step 𝑖 .

By assumption A[1] = B[1] and A[𝑓 𝑖𝑛𝑎𝑙] ≠ B[𝑓 𝑖𝑛𝑎𝑙], and
therefore according to Lemma D.6 the bisection game outputs a

step N such that A[N] = B[N] and A[N + 1] ≠ B[N + 1]. □

D.4 Punishment phase
In this section, we consider the case where 𝑃 has posted on-chain

CommitInstruction along with the witness, which consists of the

values 𝑝𝑐𝜃 , 𝑝𝑐𝜃 ′ , 𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃 , 𝑣𝑎𝑙𝐴𝜃 , 𝑣𝑎𝑙𝐵𝜃 ,

𝑣𝑎𝑙𝐶𝜃 and the respective commitments that correspond to the VM

state at step 𝜃 . This means that the following arguments are true:

• Since CommitInstruction is accepted by the miners, Setup
must have been first published on the chain. That is because

CommitInstruction spends TraceChallenge ~N1, which can

only exist on-chain if Setup has previously been published

on-chain too. Therefore, according to Lemma D.1, 𝑃 has pre-

signed and sent to𝑉 the transactions ChallengeCurrPC, (or
ChallengeNextPC), PunishInstruction, ChallengeRead,
ChallengeWrite.
• Moreover, during the dispute bisection game 𝑉 has commit-

ted to the bits 𝑏 𝑗 ∈ {0, 1}, 𝑗 ∈ {0, ..., 𝑁1 − 1} which form the

𝑁1-bit integer N =
∑𝑁1−1
𝑗=0

2
𝑗𝑏 𝑗 .

• All the presigned transaction assiociated with the resolve dis-

pute phase are available to the parties according

to Lemma D.1.

Lemma D.8 (Inconsistent program counter). Consider that𝑉
publishes on-chain the transaction ChallengeCurrPC, committing
to a number 𝑁 ′ ∈ {0, ..., 𝑁1} and providing 𝑃 ’s commitment for the
program counter at a step 𝑁 ∗ ∈ {0, ..., 𝑁1}, 𝑝𝑐𝑁 ∗ ≠ 𝑝𝑐𝜃 . Then the
following scenarios hold.
• 𝑉 equivocates: If 𝑝𝑐𝜃 = 𝑝𝑐N , namely, the program counter
that 𝑃 included as part of the witness to CommitInstruction
is the one he committed during the dispute bisection game at
stepN , then it is a dominant strategy for 𝑃 to claim the output
of CommitInstruction. As a result, 𝑃 ’s balance account will

be ⟨𝛼 + 𝛽 + (2𝑁1 + 4 ˜
𝑁2 + 8) 𝑓 ⟩𝑃 , and𝑉 ’s balance account ⟨0⟩𝑉 .

• 𝑃 misbehaved: If 𝑝𝑐𝜃 ≠ 𝑝𝑐N and 𝑁 ′ = N , namely the pro-
gram counter that 𝑃 included as part of witness to
CommitInstruction is different than the one he committed
during the dispute bisection game at step N , then it is a domi-
nant strategy for 𝑉 to claim the output of
CommitInstruction. As a result, 𝑃 ’s balance account will
be ⟨0⟩𝑃 , and𝑉 ’s balance account ⟨𝛼 + 𝛽 + (2𝑁1 + 4 ˜

𝑁2 + 9) 𝑓 ⟩𝑉 .

Proof: Since ChallengeCurrPC is published on-chain, 𝑃 has pub-

lished on chain the set of transactions Setup∪CommitComputation
∪ {TraceResponsei}𝑖∈{1,...,𝑁1 } ∪ CommitInstruction and 𝑉 has

published KickOff ∪ {TraceChallengei}𝑖∈{1,...,𝑁1 }
∪ ChallengeCurrPC so (2𝑁1 + 5) 𝑓 coins have been already spent

in transaction fees.

Moreover, ChallengeCurrPC is accepted by the miners which

means that 𝑉 unlocked the 𝑖 − 𝑡ℎ spending condition of

CommitInstruction for some 𝑖 ∈ {0, ..., 𝑁1 − 1}, by committing

to the bits 𝑏 𝑗 , 𝑗 ∈ {0, ..., 𝑁1 − 1} which form the 𝑁1-bit integer

𝑁 ′ =
∑𝑁1−1
𝑗=0

2
𝑗𝑏 𝑗 such that CountZeroes(𝑁 ′) = 𝑖 .

Furthermore, for 𝑃 ’s commitment 𝑝𝑐𝑁 ∗ it must be that 𝑝𝑐𝑁 ∗ =

𝑝𝑐𝑁 ′ . Namely, 𝑉 can only provide as a witness 𝑃 ’s commitment at

step𝑁 ′, which is the execution step𝑉 claimed they disagree. That is,

because ChallengeCurrPCi and the i-th spending condition have

the same hard-coded public key. Therefore, from all of 𝑃 ’s com-

mitments to program counters shared during the dispute bisection

game, only the one for 𝑝𝑐𝑁 ′ satisfies the condition in Algorithm 11,

line 8 .

• 𝑃 is honest (𝑝𝑐𝜃 = 𝑝𝑐N): Since 𝑝𝑐𝜃 = 𝑝𝑐N and 𝑝𝑐𝜃 ≠ 𝑝𝑐𝑁 ∗ by

assumption, and 𝑝𝑐𝑁 ∗ = 𝑝𝑐𝑁 ′ as explained before, it must

hold that 𝑝𝑐N ≠ 𝑝𝑐𝑁 ′ . Therefore 𝑁
′ ≠ 𝑁 , which means

that 𝑉 committed now to 𝑁 ′ which is different than 𝑁 , to

which𝑉 committed during the dispute bisection game. Since

𝑁 ′ ≠ 𝑁 , the two numbers must differ in at least one bit.

W.l.o.g., assume the two numbers differ in the 𝑘 − 𝑡ℎ bit. 𝑃

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

can spend the transaction ChallengeCurrPC to claim the

coins in the multisignature, spending extra 𝑓 in transaction

fees too, showing that𝑉 equivocates by providing the secret

key to the commitment of 𝑏′
𝑘
≠ 𝑏𝑘 .

• 𝑃 is malicious (𝑝𝑐𝜃 ≠ 𝑝𝑐N and 𝑁 ′ = N): 𝑃 cannot spend the

transaction ChallengeCurrPC, since 𝑉 included to

ChallengeCurrPC indeed the number N to which she has

committed before. 𝑉 will do Therefore, after Δ where the

timelock expires,𝑉 can claim the coins in the multisignature.

□

LemmaD.9 (𝑃 claims an incorrect instruction). If and only if
the instruction that 𝑃 claims for the program counter
𝑝𝑐𝜃 is the wrong instruction, i.e.,
Π(𝑝𝑐𝜃) ≠ (𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃), then 𝑉 can claim
the output of CommitInstruction by publishing on-chain
PunishInstruction. In that scenario, 𝑃 ’s balance account is ⟨0⟩𝑃 ,
and 𝑉 ’s balance account ⟨𝛼 + 𝛽 + (2𝑁1 + 4 ˜

𝑁2 + 9) 𝑓 ⟩𝑉 .

Proof: First, since PunishInstruction is published on-chain, 𝑃

has published on-chain the set of transactions Setup ∪
CommitComputation ∪ {TraceResponsei}𝑖∈{1,...,𝑁1 } ∪
CommitInstruction and 𝑉 has published KickOff ∪
{TraceChallengei}𝑖∈{1,...,𝑁1 } ∪ PunishInstruction so (2𝑁1 +
5) 𝑓 coins have been spent in transaction fees.

We remind that the 𝑝𝑐𝜃 -th spending condition of

CIScriptPCCurri in CommitInstruction is true if and only if it re-

ceives aswitness 𝑃 ’s commitment to the program counter 𝑝𝑐𝜃 and to

the tuple (𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃) such that

(𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃) ≠ Π(𝑝𝑐𝜃).
⇒: 𝑉 provides 𝑃 ’s commitments to 𝑝𝑐𝜃 and (𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐴𝜃 ,

𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃) as witnesses to unlock the transaction

PunishInstruction by spending the 𝑝𝑐𝜃 -th condition of

CIScriptPCCurri.
Since Π(𝑝𝑐𝜃) ≠ (𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃) by assump-

tion,𝑉 will successfully unlock the 𝑝𝑐𝜃 -th locking script and spend

PunishInstruction to claim the output of CommitInstruction.

Therefore, 𝑉 ’s balance account is ⟨𝛼 + 𝛽 + (2𝑁1 + 4 ˜
𝑁2 + 9) 𝑓 ⟩𝑉 and

𝑃 ’s balance account ⟨0⟩𝑃 .
⇐ Assume that 𝑉 has managed to spend the transaction

PunishInstruction. That means that 𝑉 has unlocked the 𝑝𝑐 𝑗 −
𝑡ℎ spending condition for 𝑝𝑐 𝑗 ∈ {1, ..., 𝑙𝑒𝑛(Π)}, which in turn

means 𝑉 provided as witness 𝑃 ’s commitment to 𝑝𝑐 𝑗 for which

Π(𝑝𝑐 𝑗) ≠ (𝑖𝑛𝑠𝑡𝑟𝑇𝑦𝑝𝑒 𝑗 , 𝑎𝑑𝑑𝑟𝐴 𝑗 , 𝑎𝑑𝑑𝑟𝐵 𝑗 , 𝑎𝑑𝑑𝑟𝐶 𝑗). Since the transac-
tion PunishInstruction and CommitInstruction have the same

hard-coded keys, it must be that 𝑝𝑐 𝑗 = 𝑝𝑐𝜃 since this is the only

commitment at program counter which satisfies the condition in Al-

gorithm 15, line 3. □

D.4.1 Read bisection game.

Lemma D.10 (A party is inactive during the read bisection

game). Assume that 𝑉 publishes on-chain the transaction
ChallengeRead by spending the script CIScriptRead𝐴
(or CIScriptRead𝐵) of CommitInstruction.

(1) Scenario 1, 𝑉 is inactive: Assume that ReadResponsei, 𝑖 ∈
{1, ..., ˜

𝑁2} is published on-chain. If ReadChallengei is not
published on-chain after time Δ, then it is a dominant strategy

for 𝑃 to claim the coins locked in the multisignature. As a result,

𝑃 ’s balance account is (𝛼 + 𝛽 + (2𝑁1 + 4 ˜
𝑁2 + 0 − 2𝑖) 𝑓)𝑃 , and

𝑉 ’s balance account is (0)𝑉 .
(2) Scenario 2, 𝑃 is inactive: Assume that a set of transactions
{𝑡𝑥} ⊆ {ChallengeRead} ∪ {ReadChallengei}

𝑖∈{1,..., ˜𝑁2 }
,

where {𝑡𝑥} ≠ ∅, is published on-chain and one of the following
scenarios is true:

(a) ChallengeRead ∈ {𝑡𝑥} (let 𝑗 = 0) and 𝑃 has not posted
ReadResponse

1
within Δ,

(b) ReadChallenge𝑖 ∈ {𝑡𝑥} for 𝑖 < ˜
𝑁2 (let 𝑗 = 𝑖) and 𝑃 has

not posted ReadResponse𝑖+1 within Δ,

(c) ReadChallenge ~~N2 ∈ {𝑡𝑥} (let 𝑗 =
˜
𝑁2) and 𝑃 has not posted

exactly one transaction
𝑡𝑥 ′ ∈ {MerkleRootHash} ∪ {MerkleHashi}

𝑖∈{1,..., ˜𝑁2 }
within Δ,

Then, it is a dominant strategy for 𝑉 to claim the coins locked
in the multisignature. 𝑃 ’s balance account is then ⟨0⟩𝑃 , and
𝑉 ’s balance account is ⟨𝛼 + 𝛽 + (2𝑁1 + 4 ˜

𝑁2 − 2 𝑗 + 8) 𝑓 ⟩𝑉 .

Proof: First, in every case, since ChallengeRead is published

on-chain, 𝑃 has published on-chain the set of transactions 𝑆𝑃 =

Setup ∪ CommitComputation,∪{MerkleResponsei}𝑖∈{1,...,𝑁1 } ∪
CommitInstruction and 𝑉 has published 𝑆𝑉 = KickOff ∪
{MerkleChallengei}𝑖∈{1,...,𝑁1 } ∪ ChallengeRead so (2𝑁1 + 5) 𝑓
coins have been already spent in transaction fees.

(1) In this scenario, 𝑃 has published on-chain 𝑆𝑃 ∪
{ReadResponsek}𝑘∈{1,...,𝑖 } , and 𝑉 has published on-chain

𝑆𝑉 ∪ 𝑆𝑉 ′ , where 𝑆𝑉 ′ = {ReadChallengek}𝑘∈{1,...,𝑖−1} if 𝑖 >
0, otherwise 𝑉 ′ = ∅. Therefore, extra 2𝑖 − 1 have been spent

in fees. Since ReadResponsei is published on-chain and 𝑉

has not published ReadChallengei on-chain after Δ, 𝑃 can

activate the timelock to claim the coins locked in themultisig-

nature. To this end, 𝑃 spends extra 𝑓 in transaction fees. As a

result, his balance account is𝑢1 = (𝛼+𝛽+(2𝑁1+4 ˜
𝑁2+9−2𝑖) 𝑓)

and 𝑉 ’s account is ⟨0⟩𝑉 . Otherwise, 𝑃 ’s balance account is
0 < 𝑢1, and therefore activating the timelock is a dominant

strategy.

(2) In all of the scenarios Items 2a to 2c extra 2 𝑗 have been

spent in transaction fees. Moreover, since 𝑃 is inactive, 𝑉

can activate the timelock to claim the coins locked in the

multisignature, spending an extra 𝑓 in transaction fees. As a

result,𝑉 ’s balance account is𝑢1 = (𝛼+𝛽+(𝛼+𝛽+(2𝑁1+4 ˜
𝑁2+

8 − 2 𝑗) 𝑓) and 𝑉 ’s account is ⟨0⟩𝑉 . Otherwise, 𝑉 ’s balance
account is 0 < 𝑢1, and therefore activating the timelock is a

dominant strategy. □

Lemma D.11 (Read bisection game completes). Assume that𝑉
publishes on-chain the transaction ChallengeRead by spending the
script CIScriptRead𝐴 (or CIScriptRead𝐵) of CommitInstruction.

(1) Scenario 1, 𝑃 reads an incorrect value from the memory:

Consider N the number to which 𝑉 has committed during
the dispute bisection game. If 𝑃 has committed to a correct
execution trace element for step N in the dispute bisection
game, i.e., 𝐸𝑃N = 𝐸N , and 𝑃 has committed to a value 𝑣𝑎𝑙𝐴𝜃 ≠

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

𝑀 [𝑎𝑑𝑑𝑟𝐴𝜃] (or to a value 𝑣𝑎𝑙𝐵𝜃 ≠ 𝑀 [𝑎𝑑𝑑𝑟𝐵𝜃]), it is a domi-
nant strategy for𝑉 to claim the coins in the multisignature. As
a result, 𝑃 ’s balance account is ⟨0⟩𝑃 , and 𝑉 ’s balance account
is ⟨𝛼 + 𝛽 + (2𝑁1 + 2 ˜

𝑁2 + 7) 𝑓 ⟩𝑉 .
(2) Scenario 2, 𝑃 follows the protocol specifications: If 𝑃 has

followed the protocol specifications, 𝑃 will eventually claim
the coins in the multisignature. In that scenario, 𝑉 ’s balance
account is ⟨0⟩𝑃 , and 𝑃 ’s balance account is ⟨𝛼 + 𝛽 + (2𝑁1 +
2
˜
𝑁2 + 8) 𝑓 ⟩𝑉 .

Proof: As explained in Lemma D.10, when ChallengeRead is

published on-chain (2𝑁1 + 5) 𝑓 coins have been already spent in

transaction fees.

(1) Consider the Merkle tree of the memory at stepN with root

𝑀𝑅N . Moreover, consider the path 𝜋 from the root𝑀𝑅N to

𝑀N [𝑎𝑑𝑑𝑟𝐴𝜃], i.e., 𝜋 := (𝑀𝑅N , . . . , 𝑀N [𝑎𝑑𝑑𝑟𝐴𝜃]).
By assumption, 𝑉 follows the protocol specification and

therefore runs the functionDisagreementReadP(B, n) of Al-
gorithm 21, where the sequence B of length 𝑛 = 𝑁2 consists

of the values of 𝜋 , i.e., ∀𝑖 ∈ {1, ...𝑁2},B[𝑖] = 𝜋 [𝑖]. 𝑃 runs the

function DisagreementReadP(A, n) of Algorithm 21, where

the sequence A of length 𝑛 = 𝑁2 is constructed as follows.

Let I be the set of all the nodes to which 𝑃 commits on-chain

(line 7) including the root (𝑖 = 1), since 𝑃 has committed to

the root 𝑀𝑅𝑃N in the dispute bisection game (in the trace

element 𝐸𝑃N), and the leaf of the path (𝑖 = 𝑁2) to which 𝑃 com-

mitted in CommitInstruction, i.e., 𝑀𝑃
N [𝑎𝑑𝑑𝑟𝐴𝜃] = 𝑣𝑎𝑙𝐴𝜃 .

For every 𝑖 ∈ I, A[𝑖] = 𝜋𝑃 [𝑖], where by 𝜋𝑆 [𝑖] we de-

note the nodes of level (𝑖 − 1) to which 𝑃 has committed

on-chain. For the rest indices, 𝑖 ∈ {1, ..., 𝑁2} \ I, without
loss of generality we assume that A[𝑖] = 𝜋 [𝑖], i.e, A[𝑖]
is the correct node of 𝜋 at level (𝑖 − 1). By assumption

A[1] = B[1] andA[𝑁2] ≠ B[𝑁2], and therefore according
to Lemma D.6 the bisection game outputs a step N𝑀𝑒𝑟 such
thatA[N𝑀𝑒𝑟] = B[N𝑀𝑒𝑟] andA[N𝑀𝑒𝑟+1] ≠ B[N𝑀𝑒𝑟+1]
and finishes in

˜
𝑁2 steps. Depending on the value of N𝑀𝑒𝑟 ,

𝑃 can spend the transaction ReadChallenge ~~N2 as follows.

N𝑀𝑒𝑟 = 0. 𝑃 can unlock the script RootReadScripti (Algo-
rithm 18) for some 𝑖 ∈ {1, ..., 𝑁1} by providing the com-

mitment of 𝑉 to N𝑀𝑒𝑟 made in the disagreement phase of

the read bisection game (line 3). and the commitment of

𝑉 to N , the number output in the Identify Disagreement

phase (line 5), for which it must hold Count_Zeroes(N) = i.
Since 𝑉 follows the protocol specifications, the condition

N𝑀𝑒𝑟 = 0 is true only when 𝑉 disagrees with every node

committed by 𝑃 , including the node 𝑢 = 𝐵 [2] committed

in ReadResponse ~~N2 which is on of the children of the root

B[1] = 𝑀𝑅𝑃N . To unlock the script, 𝑃 must provide as

input three nodes (Npar,Nchild,Nsib) s.t. Npar = B[1],
Nchild = B[2], and i) ifNchild is the right child ofNpar then
𝐻 (Nchild| |Nsib) = Npar (line 16), ii) else𝐻 (Nsib| |Nchild) =
Npar (line 21). We enforce the position of the child Nchild
as follows. We take the N𝑀𝑒𝑟 -th bit of the binary represen-

tation of 𝑎𝑑𝑑𝑟𝐴𝜃 which we denote by 𝑏N𝑀𝑒𝑟
. By construc-

tion of a Merkle Tree, 𝑏N𝑀𝑒𝑟
defines the position of Nchild,

namely if𝑏N𝑀𝑒𝑟
= 1 theNchild is the right child ofNpar, else

Nchild is the left child child of Npar. 𝑃 can only provide the

wrong position of Nchild only by providing a commitment

to 𝑎𝑑𝑑𝑟𝐴′
𝜃
≠ 𝑎𝑑𝑑𝑟𝐴𝜃 , i.e., in which case 𝑉 can prove the

equivocation and publish PunishRead3 to claim the coins in

the multisignature. That is because the scripts for unlocking

CommitInstruction and RootReadScripti hard-code the
same public key pk

𝑎𝑑𝑑𝑟𝐴𝜃
for 𝑎𝑑𝑑𝑟𝐴𝜃 (line 11). For the rest

of the proof, we assume that 𝑃 did not equivocate at this

point and that, w.l.o.g., Nchild is the right child of Npar.
Since 𝑉 has followed the protocol specifications, 𝑉 knows

a node Nsib𝑉 that satisfies this condition, i.e., for the input

𝑥 = Nsib𝑉 | |A[2] the hash function 𝐻 returns 𝐻 (𝑥) = A[1].
𝑃 must find a value Nsib s.t. 𝑥 ′ = Nsib| |B[2] ≠ 𝑥 (since

B[2] ≠ A[2]), and 𝐻 (𝑥) = B[1] = 𝐻 (𝑥 ′) (since B[1] =
A[1],) which can happen only with a negligible probability

since 𝐻 is a collision-resistant function. Therefore, to sat-

isfy the condition, 𝑃 must equivocate and provide Nchild =

A[2] ≠ B[2] or Npar = A[1] ≠ B[1]. In both cases 𝑉

proves the equivocation and publish on-chain PunishRead3
to claim the coins in the multisignature, since the scripts

ChallScripti and RootReadScripti have the same hard-coded

public key for 𝑀𝑅𝑃N and the scripts ReadChallScript5 and
RootReadScripti have the same hard-coded public key for

Noded0 .

N𝑀𝑒𝑟 ≠ 0. To spend the transaction ReadChallenge ~N2 𝑃

must unlock the script ValueAScript if N𝑀𝑒𝑟 = 𝑁2 − 1, oth-
erwise unlock the scriptHashReadScripti (Algorithm 16) for

some 𝑖 s.t. Count_Zero(NMer) = i. In both scenarios, 𝑃 must

provide as input three nodes in the path (Npar,Nchild,Nsib)
s.t. Npar = B[𝑗], Nchild = B[𝑗 + 1], and i) if Nchild is the

right child of Npar then 𝐻 (Nsib| |Nchild) = Npar, ii) else
𝐻 (Nchild| |Nsib) = Npar. Again, we enforce the position of

Nchild using the N𝑀𝑒𝑟 -th bit of the binary representation

of 𝑎𝑑𝑑𝑟𝐴𝜃 . W.l.o.g., we assume that Nchild is the right child

of Npar.
Since 𝑉 has followed the protocol specifications 𝑉 knows a

node Nsib𝑉 s.t. for the input 𝑥 = Nsib𝑉 | |A[𝑗 + 1] the hash
function 𝐻 returns 𝐻 (𝑥) = A[𝑗]. 𝑃 must find a value Nsib
s.t. 𝑥 ′ = Nsib| |B[𝑗 + 1] ≠ 𝑥 (since B[𝑗 + 1] ≠ A[𝑗 + 1]),
and 𝐻 (𝑥) = B[𝑗] = 𝐻 (𝑥 ′) (since B[𝑗] = A[𝑗],) which can

happen only with a negligible probability since we assume a

collision-resistant function 𝐻 .

To provide such a pair 𝑃 has to equivocate and therefore

present a pair s.t. at least Npar ≠ B[𝑗] or Nchild ≠ B[𝑗 + 1].
More specifically, we have the following scenarios:

• N𝑀𝑒𝑟 ∈ {1, ..., 𝑁2 − 2} : In this scenario, 𝑉 can show the

equivocation because the hard-coded public keys for the

pair Nchild,Npar corresponding to HashReadScripti are
the same to which 𝑃 commits during the disagreement

phase of the read bisection game.

• N𝑀𝑒𝑟 = 𝑁2 − 1 : If 𝑃 equivocates on Npar, 𝑉 can prove

the equivocation as explained for N𝑀𝑒𝑟 ∈ {1, ..., 𝑁2 −
2}. The extra condition in this situation is that the hard-

coded public key of Nchild is the same with 𝑣𝑎𝑙𝐴𝜃 in

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

CommitInstruction. Therefore, if 𝑃 equivocates on

Nchild, 𝑉 can again provide the conflicting commitments.

In theworst case, the set of transactions {ReadChallengei,
WriteChallengei}

𝑖∈{1,..., ˜𝑁2 }
is published on-chain along

with two extra transactions, when 𝑃 equivocate while.

Thus, (2 ˜
𝑁2+2) 𝑓 have been spent in transaction fees. There-

fore, if𝑉 disproves 𝑃 ,𝑉 ’s balance account is ⟨𝛼+𝛽+(2𝑁1+
2
˜
𝑁2 + 7) 𝑓 ⟩𝑉 and 𝑃 ’s balance account is ⟨0⟩𝑃 . If𝑉 does not

disprove 𝑃 the respective balance account is ⟨0⟩𝑃 , and thus
it is a dominant strategy to disprove 𝑃 .

(2) For any numberN andN𝑀𝑒𝑟 committed by𝑉 during the dis-

pute bisection game and the read bisection game, 𝑃 will use

the respective script (eitherValueAScript orHashReadScripti
or RootReadScripti for some 𝑖 ∈ {1, ..., 𝑁1}), to spend the

transaction ReadChallenge ~~N2 . In the worst case, one less

transaction is published than Scenario 1 since 𝑉 cannot

prove an equivocation when 𝑃 provides the required triple of

nodes. Therefore, if 𝑃 claim the deposits 𝑃 ’s balance account

is ⟨𝛼 + 𝛽 + (2𝑁1 + 2 ˜
𝑁2 + 8) 𝑓 ⟩𝑃 and 𝑉 ’s balance account is

⟨0⟩𝑉 . This is the dominant strategy for 𝑃 , since otherwise

the respective balance account is ⟨0⟩𝑃 . □

D.4.2 Write bisection game.

Lemma D.12 (A party is inactive during the Write bisec-

tion game). Assume that 𝑉 spends the script CIScriptWrite𝐶 of
CommitInstruction to publish on-chain the transaction
ChallengeWrite. The following statements hold for the Write bi-
section game.

(1) 𝑉 is inactive: Assume WriteResponsei, 𝑖 ∈ {1, ..., ˜
𝑁2} is

published on-chain. If WriteChallengei is not published on-
chain after time Δ, then it is a dominant strategy for 𝑃 to claim
the coins locked in the multisignature. As a result, 𝑃 ’s balance

account is (𝛼 + 𝛽 + (2𝑁1 + 4 ˜
𝑁2 + 0 − 2𝑖) 𝑓)𝑃 , and 𝑉 ’s balance

account is (0)𝑉 .
(2) 𝑃 is inactive: Assume that a set of transactions {𝑡𝑥} ⊆
{ChallengeValueC}∪{WriteChallengei}

𝑖∈{1,..., ˜𝑁2 }
, where

{𝑡𝑥} ≠ ∅, is published on-chain and one of the following sce-
narios is true:

(a) ChallengeValueC ∈ {𝑡𝑥} (let 𝑗 = 0) and 𝑃 has not posted
WriteResponse

1
within Δ,

(b) WriteChallenge𝑖 ∈ {𝑡𝑥} for 𝑖 < ˜
𝑁2 (let 𝑗 = 𝑖) and 𝑃 has

not posted WriteResponse𝑖+1 within Δ,

(c) WriteChallenge
˜
𝑁2

∈ {𝑡𝑥} (let 𝑗 =
˜
𝑁2) and 𝑃 has not

posted exactly one transaction
𝑡𝑥 ′ ∈ {MerkleRootHash} ∪ {MerkleHashi}

𝑖∈{1,..., ˜𝑁2 }
within Δ,

Then, it is a dominant strategy for 𝑉 to claim the coins locked
in the multisignature. 𝑃 ’s balance account is then ⟨0⟩𝑃 , and
𝑉 ’s balance account is ⟨𝛼 + 𝛽 + (2𝑁1 + 4 ˜

𝑁2 − 2 𝑗 + 8) 𝑓 ⟩𝑉 .

Proof: Since ChallengeWrite is published on-chain, 𝑃 has pub-

lished on-chain the set of transactions 𝑃 = Setup ∪
CommitComputation ∪ {TraceResponsei}𝑖∈{1,...,𝑁1 } ∪
CommitInstruction and 𝑉 has published 𝑉 = KickOff ∪

{TraceChallengei}𝑖∈{1,...,𝑁1 } ∪ ChallengeRead so (2𝑁1 + 5) 𝑓
coins have been already spent in transaction fees.

(1) In this scenario, 𝑃 has published on-chain 𝑃 ∪
{WriteResponsek}𝑘∈{1,...,𝑖 } , and 𝑉 has published on-chain

𝑉 ∪𝑉 ′, where𝑉 ′ = {WriteChallengek}𝑘∈{1,...,𝑖−1} if 𝑖 > 0,

otherwise 𝑉 ′ = ∅. Therefore, extra 2𝑖 − 1 have been spent

in fees. Since WriteResponsei is published on-chain and 𝑉

has not published WriteChallengei on-chain after Δ, 𝑃 can

activate the timelock to claim the coins locked in themultisig-

nature. To this end, 𝑃 spends extra 𝑓 in transaction fees. As a

result, his balance account is𝑢1 = (𝛼+𝛽+(2𝑁1+4 ˜
𝑁2+9−2𝑖) 𝑓)

and 𝑉 ’s account is ⟨0⟩𝑉 . Otherwise, 𝑃 ’s balance account is
0 < 𝑢1, and therefore activating the timelock is a dominant

strategy.

(2) In all of the scenarios Items 2a to 2c extra 2 𝑗 have been

spent in transaction fees. Moreover, since 𝑃 is inactive, 𝑉

can activate the timelock to claim the coins locked in the

multisignature, spending an extra 𝑓 in transaction fees. As a

result,𝑉 ’s balance account is𝑢1 = (𝛼+𝛽+(𝛼+𝛽+(2𝑁1+4 ˜
𝑁2+

8 − 2 𝑗) 𝑓) and 𝑉 ’s account is ⟨0⟩𝑉 . Otherwise, 𝑉 ’s balance
account is 0 < 𝑢1, and therefore activating the timelock is a

dominant strategy. □

Lemma D.13 (The Write bisection game completes). Assume
that 𝑉 spends the script CIScriptWrite𝐶 of CommitInstruction to
publish on-chain the transaction ChallengeWrite. The following
statements hold for the Write Bisection game.

(1) Scenario 1, 𝑃 has written incorrect values in the memory:

Consider the numberN the number to which𝑉 has committed
during the dispute bisection game. If 𝑃 has committed to two
execution trace elements for steps N and N + 1 s.t. 𝐸𝑃N = 𝐸N
and 𝐸𝑃N+1 ≠ 𝐸N+1 and 𝑃 has committed only correct values in
CommitInstruction, then it is a dominant strategy for 𝑉 to
claim the coins in the multisignature. As a result, 𝑃 ’s balance
account is ⟨0⟩𝑃 , and 𝑉 ’s balance account is ⟨𝛼 + 𝛽 + (2𝑁1 +
2
˜
𝑁2 + 7) 𝑓 ⟩𝑉 .

(2) Scenario 2, 𝑃 follows the protocol specifications: If 𝑃 has
followed the protocol specifications, 𝑃 will eventually claim the
coins in the multisignature. As a result, 𝑃 ’s In that scenario,
𝑉 ’s balance account is ⟨0⟩𝑃 , and 𝑃 ’s balance account is ⟨𝛼 +
𝛽 + (2𝑁1 + 2 ˜

𝑁2 + 8) 𝑓 ⟩𝑉 .

Proof: First, in both scenarios, since ChallengeWrite is pub-

lished on-chain (2𝑁1 + 5) 𝑓 coins have been already spent in trans-

action fees as explained in Lemma D.12.

(1) Consider the Merkle trees of the memory at steps N , N + 1
with the respective roots𝑀𝑅N , 𝑀𝑅N+1. Moreover, consider

the path 𝜋 from the root𝑀𝑅N to𝑀N [𝑎𝑑𝑑𝑟𝐶𝜃] and the path
𝜋 ′ from the root𝑀𝑅N+1 to𝑀N+1 [𝑎𝑑𝑑𝑟𝐶𝜃], where 𝑎𝑑𝑑𝑟𝐶𝜃
was committed by 𝑃 in CommitInstruction .
By assumption, 𝑉 follows the protocol specifications and

therefore runs function DisagreeWriteV(B1,B2, 𝑁2) of Al-
gorithm 23, where the pair of sequences (B1,B2) consists
of the values of 𝜋 and 𝜋 ′ respectively, i.e., ∀𝑖 ∈ {1, ..., 𝑁2},
it holds that (B1 [𝑖],B2 [𝑖]) = (𝜋 [𝑖], 𝜋 ′ [𝑖]). On the other

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

side, 𝑃 runs function DisagreeWriteP(A1,A2, 𝑁2) of Algo-
rithm 23where the pair of sequences (A1,A2) is constructed
as follows. Let I be the set of all the nodes to which 𝑃

commits on-chain (line 7) including the root (𝑖 = 1) for

which A1 [1] = 𝑀𝑅𝑃N ,A2 [1] = 𝑀𝑅𝑃N+1 to which 𝑃 com-

mitted via the respective execution trace elements in the

dispute bisection game, and the leaf of the paths (𝑖 = 𝑁2),
A1 [1] = 𝑀𝑅𝑃N ,A2 [1] = 𝑀𝑅𝑃N+1 which are the values 𝑃

committed in CommitInstruction. For every 𝑖 ∈ I, the pair
(A1 [𝑖],A2 [𝑖]) consists of the nodes to which 𝑃 has commit-

ted on-chain. For the rest indices, 𝑖 ∈ {1, ..., 𝑁2} \ I, with-
out loss of generality, we assume that 𝑃 ’s pair of sequences

holds the correct nodes of the paths, i.e., (A1 [𝑖],A2 [𝑖]) =
(𝜋 [𝑖], 𝜋 ′ [𝑖]).
We will show that Algorithm 23 pinpoints a step N𝑀𝑒𝑟
such that A𝑖 [N𝑀𝑒𝑟] = B𝑖 [N𝑀𝑒𝑟] and A𝑖 [N𝑀𝑒𝑟 + 1] ≠

B𝑖 [N𝑀𝑒𝑟 + 1] for at least one 𝑖 ∈ {1, 2}. To this end, we

decompose the result of the execution of Algorithm 23 in

the following cases:

• There is a step of the bisection game 𝑖 s.t. for some 𝑗 ∈
{1, ..., 𝑁2} s.t. A1 [𝑗] ≠ B1 [𝑗]: 𝑉 will set its local variable

𝑓 𝑙𝑎𝑔 to 𝑇𝑟𝑢𝑒 (line 25. In that situation, starting from the

next iteration 𝑖 +1,𝑉 will always skips the lines 24-31. The

remaining code that𝑉 and 𝑃 run, given that the sequences

A2 and B2 do not affect the execution, is similar to run-

ning Appendix B.2 where 𝑉 has the sequence A1 [1 : 𝑗]
and 𝑃 has the sequence B1 [1 : 𝑗]. Therefore with a proof

similar to Lemma D.7, we can show that Algorithm 23

pinpoints a step N𝑀𝑒𝑟 s.t. 𝐴2 [N𝑀𝑒𝑟] = 𝐵2 [N𝑀𝑒𝑟] and
𝐴2 [N𝑀𝑒𝑟 + 1] ≠ 𝐵2 [N𝑀𝑒𝑟 + 1].
Otherwise: 𝑉 ’s local variable 𝑓 𝑙𝑎𝑔 is always 𝐹𝑎𝑙𝑠𝑒 . In this

case,𝑉 will always skips the lines 32-36. For the remaining

code that 𝑉 and 𝑃 run the sequences A2 and B2 do not

affect the execution. We can prove that since 𝐴2 [1] ≠

𝐵2 [1] and𝐴2 [𝑁2] = 𝐵2 [𝑁2] Algorithm 23 pinpoints a step

N𝑀𝑒𝑟 s.t. 𝐴2 [N𝑀𝑒𝑟] = 𝐵2 [N𝑀𝑒𝑟] and 𝐴2 [N𝑀𝑒𝑟 + 1] ≠
𝐵2 [N𝑀𝑒𝑟 + 1] with a proof similar to Lemma D.7.

In any case, since the point of disagreement is identified,

we can prove that 𝑉 will eventually manage to disprove 𝑃

similar to the Read Bisection game (Lemma D.11).

(2) Similar to the Read Bisection game (Lemma D.11), since 𝑃

has committed to only correct values, 𝑉 cannot dispove the

computation. Therefore, 𝑃 will eventually claim the coins in

the multisignature. □

D.5 Concluding Lemmas
Lemma D.14 (𝑃 has committed to the wrong state and

CommitInstruction is published on-chain). Assume that 𝑃 has
committed to the execution trace 𝐸𝑃

𝑓 𝑖𝑛𝑎𝑙
in CommitComputation s.t.

𝐸𝑃
𝑓 𝑖𝑛𝑎𝑙

≠ 𝐸𝑓 𝑖𝑛𝑎𝑙 , and 𝑃 has also published on-chain
CommitInstruction committing to the values 𝑝𝑐𝜃 , 𝑝𝑐𝜃 ′ , 𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 ,
𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃 , 𝑣𝑎𝑙𝐴𝜃 , 𝑣𝑎𝑙𝐵𝜃 , 𝑣𝑎𝑙𝐶𝜃 . It is a feasible and
dominant strategy for 𝑉 to prove the misbehavior. As a result, 𝑉 ’s

balance account will be (𝑢)𝑉 , where 𝑢 ≥ 𝛼 + 𝛽 + (2𝑁1 + 2 ˜
𝑁2 + 7) 𝑓

and 𝑃 ’s balance account (0)𝑃 .

Proof: We will prove that 𝑉 will eventually claim the coins in

the multisignature by following the protocol specifications. We will

also show that this is the dominant strategy for 𝑉 .

CommitInstruction is published on-chain which means that 𝑉

initiated the dispute bisection game. That is because

CommitInstruction spends TraceChallenge ~N1 which can only be

published on chain if the set of transactions {KickOff} ∪
{TraceChallengei}𝑖∈{1,...,𝑁1−1}∪{TraceResponsei}𝑖∈{1,...,𝑁1 } is
already on-chain. Since follows the protocol specifications,𝑉 holds

a sequence consisting of the correct execution trace elements during

the dispute bisection game, i.e., 𝐸𝑉
𝑖
= 𝐸𝑖 ,∀𝑖 ∈ {1, ..., 𝑓 𝑖𝑛𝑎𝑙}.

By assumption, 𝑃 and 𝑉 agree on the initial execution trace,

i.e., 𝐸𝑃
0

= 𝐸𝑉
0

= 𝐸0, and disagree in the execution trace of the

final step, i.e., 𝐸𝑃
𝑓 𝑖𝑛𝑎𝑙

≠ 𝐸𝑉
𝑓 𝑖𝑛𝑎𝑙

= 𝐸𝑓 𝑖𝑛𝑎𝑙 . According to Lemma D.7,

the Identify Disagreement phase outputs a step N for which the

following condition holds: for the VM execution stepsN andN + 1,
𝑃 has committed to the execution trace elements 𝐸𝑃N = 𝐸𝑉N = 𝐸N
and 𝐸𝑃N+1 ≠ 𝐸

𝑉
N+1 = 𝐸N+1.

Since 𝐸𝑃N = 𝐸N and 𝐸𝑃N+1 ≠ 𝐸N+1, 𝑃 has executed the state

transition of the VM at step N + 1 (Algorithm 6, line 5) incorrectly.

The possible ways that 𝑃 has run incorrectly Algorithm 5 at step

N + 1, are the following:

• Using incorrect inputs:
– 𝑃 uses an incorrect program counter: Since 𝐸𝑃N =

(𝑀𝑅𝑃N , 𝑝𝑐
𝑃
N) = 𝐸N , the program counter to which 𝑃 com-

mitted during the dispute bisection game, i.e., 𝑝𝑐𝑃N , is cor-
rect. However, 𝑃 can use a different program counter at

step N + 1 in lines 3 6. 𝑃 commits to the program counter

of the program at step N in CommitInstruction, so 𝑃
can commit to 𝑝𝑐𝑃

𝜃
≠ 𝑝𝑐𝑃N . Then, according to Lemma D.8,

it is a dominant strategy for 𝑉 to claim the coins in the

multisignature. 𝑃 ’s balance account will be ⟨0⟩𝑃 , and 𝑉 ’s
balance account ⟨𝛼 + 𝛽 + (2𝑁1 + 4 ˜

𝑁2 + 9) 𝑓 ⟩𝑉 .
– 𝑃 sets a program instruction which is either invalid or does
not correspond to the instruction of Π at the program counter
𝑝𝑐N : 𝑃 can set an incorrect program instruction in line 3.

However, in that case, 𝑃 commits to a program instruction

such that Π(𝑝𝑐𝜃) ≠ (𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐴𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃)
in CommitInstruction. Following from Lemma D.9, if

𝑃 commits such an invalid program instruction, it is a

dominant strategy for 𝑉 to claim the coins in the mul-

tisignature. 𝑃 ’s balance account is ⟨0⟩𝑃 , and 𝑉 ’s balance
account ⟨𝛼 + 𝛽 + (2𝑁1 + 4 ˜

𝑁2 + 9) 𝑓 ⟩𝑉 .
– 𝑃 reads incorrect values from the memory: 𝑃 can read incor-

rect values (𝑣𝑎𝑙𝐴 or 𝑣𝑎𝑙𝐵) from the memory (𝑀N [𝑎𝑑𝑑𝑟𝐴]
or 𝑀N [𝑎𝑑𝑑𝑟𝐵]) at step N (lines 4, 5). However, 𝑃 has

committed to the correct memory root at step N (mem-

ory output by executing Algorithm 6 correctly),𝑀𝑅𝑃N =

𝑀𝑅N of the dispute bisection game (since 𝐸𝑃N = 𝐸N). In
LemmaD.10 we show that if 𝑃 remains inactive in the Read

bisection game, it is a dominant strategy 𝑉 to claim the

coins in the multisignature. Similarly, in Lemma D.11, we

show that if 𝑣𝑎𝑙𝐴 ≠ 𝑀 [𝑎𝑑𝑑𝑟𝐴] or 𝑣𝑎𝑙𝐵 ≠ 𝑀 [𝑎𝑑𝑑𝑟𝐵] and
the Read bisection game completes, it is again a dominant

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

strategy for 𝑉 to claim the coins. Moreover, 𝑃 ’s balance

account is ⟨0⟩𝑃 , and 𝑉 ’s balance account is in the worst

case ⟨𝛼 + 𝛽 + (2𝑁1 + 2 ˜
𝑁2 + 7) 𝑓 ⟩𝑉 .

• Using correct inputs but executing incorrectly the algorithm.
Here we assume that 𝑃 has provided the correct inputs

i.e., the inputs when executing Algorithm 6 correctly. Since

CommitInstruction is successfully published on-chain it

must be that (𝑝𝑐𝜃 ′ , 𝑣𝑎𝑙𝐶𝜃) = 𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 (𝑝𝑐𝜃 , 𝑣𝑎𝑙𝐴𝜃 , 𝑣𝑎𝑙𝐵𝜃)
since this is a necessary condition to unlock the script of

TraceChallenge32. Therefore the values related to the exe-

cution of stepN+1 that 𝑃 committed in CommitInstruction
are correct. However, since 𝑃 has committed to a wrong exe-

cution trace element for step N + 1 in the dispute bisection

game, i.e., 𝐸𝑃N+1 = (𝑀𝑅𝑃N+1, 𝑝𝑐
𝑃
N+1) ≠ 𝐸N+1, one of the

following conditions hold:

– 𝑝𝑐𝑃
𝜃 ′

≠ 𝑝𝑐𝑃N+1: Then, according to Lemma D.8, it is a domi-

nant strategy for𝑉 to claim the coins in the multisignature.

𝑃 ’s balance account will be ⟨0⟩𝑃 , and 𝑉 ’s balance account
⟨𝛼 + 𝛽 + (2𝑁1 + 4 ˜

𝑁2 + 9) 𝑓 ⟩𝑉 .
– 𝑃 has committed to all the correct values in
CommitInstruction but 𝐸𝑃N+1 ≠ 𝐸N+1 or is inactive dur-
ing the Write bisection game: according to

Lemmas D.13, D.12,𝑉 can show that 𝑃 has written a wrong

value in the memory and claim the coins in the multisigna-

ture. 𝑃 ’s balance account is ⟨0⟩𝑃 , and 𝑉 ’s balance account
is in the worst case ⟨𝛼 + 𝛽 + (2𝑁1 + 2 ˜

𝑁2 + 7) 𝑓 ⟩𝑉 .
In any case, it is a dominant strategy for 𝑉 to prove 𝑃 ’s misbe-

havior and claim the coins in the multisig. As a result, 𝑉 ’s balance

account is (𝑢)𝑉 , where𝑢 ≥ 𝛼 +𝛽 + (2𝑁1 +2 ˜
𝑁2 +7) 𝑓 and 𝑃 ’s balance

account is in any case (0)𝑃 . □

Lemma D.15 (𝑃 follows the protocol specifications and

CommitInstruction is published on-chain). Assume that 𝑃 has
published on-chain CommitInstruction committing to the values
𝑝𝑐𝜃 , 𝑝𝑐𝜃 ′ , 𝑖𝑛𝑠𝑇𝑦𝑝𝑒𝜃 , 𝑎𝑑𝑑𝑟𝐵𝜃 , 𝑎𝑑𝑑𝑟𝐶𝜃 , 𝑣𝑎𝑙𝐴𝜃 , 𝑣𝑎𝑙𝐵𝜃 , 𝑣𝑎𝑙𝐶𝜃 . If 𝑃 fol-
lows the protocol specifications, 𝑃 will eventually claim the coins in the
multisignature. As a result, 𝑃 ’s balance account will be (𝑢)𝑃 , where
𝑢 ≥ 𝛼 + 𝛽 + (2𝑁1 + 2 ˜

𝑁2 + 8) 𝑓 and 𝑉 ’s balance account (0)𝑃 .

Proof: CommitInstruction is posted on-chain whichmeans that

𝑉 initiated the dispute bisection game (as explained in D.14). Since

𝑃 follows the protocol specifications, 𝑃 has executed the VM al-

gorithm (Algorithm 6) correctly. Therefore, for any step 𝑖 s.t. 𝑃

committed to an execution trace element during the dispute bisec-

tion game it holds that 𝐸𝑃
𝑖
= 𝐸𝑖 . Moreover, the values that 𝑃 has

committed in CommitInstruction are correct (they are derived by

executing Algorithm 6 correctly).

The possible ways for 𝑉 to spend CommitInstruction is pub-

lishing on-chain one of the following transactions:

• 𝑉 publishes on-chain PunishFaultyProgramCounter claim-

ing that 𝑝𝑐𝜃 ≠ 𝑝𝑐𝑃N (or 𝑝𝑐𝜃 ′ ≠ 𝑝𝑐
𝑃
N+1): By assumption, 𝑝𝑐𝜃 =

𝑝𝑐𝑃N and 𝑝𝑐𝜃 ′ = 𝑝𝑐
𝑃
N+1, and according to Lemma D.8, it is a

dominant strategy for 𝑃 to claim the deposits. 𝑃 ’s balance

account will be in the worst case ⟨𝛼 + 𝛽 + (2𝑁1 +4 ˜
𝑁2 +8) 𝑓 ⟩𝑃 ,

and 𝑉 ’s balance account ⟨0⟩𝑉 .

• 𝑉 publishes on-chain ChallengeRead to claim that 𝑣𝑎𝑙𝐴𝜃 ≠

𝑀N [𝑎𝑑𝑑𝑟𝐴𝜃] (or 𝑣𝑎𝑙𝐵𝜃 ≠ 𝑀N [𝑎𝑑𝑑𝑟𝐵𝜃]): Then, if i) 𝑉 re-

mains inactive, or ii) the Read Bisection game finishes, it is a

dominant strategy for 𝑉 to claim the deposits as we prove

Lemmas D.10, D.11 accordingly. ⟨𝛼 + 𝛽 + (2𝑁1 + 2 ˜
𝑁2 + 8) 𝑓 ⟩𝑃 ,

and 𝑉 ’s balance account ⟨0⟩𝑉 .
• 𝑉 publishes ChallengeWrite to claim that 𝑃 has written an
incorrect value in the memory: either 1) 𝑉 remains inactive,

or ii) the Write bisection game completes, we show in Lem-

mas D.12, D.13 that 𝑉 will eventually claim the coins in the

multisignature. Therefore, 𝑃 ’s balance account is in the worst

case ⟨𝛼 + 𝛽 + (2𝑁1 + 4 ˜
𝑁2 + 8) 𝑓 ⟩𝑃 , and 𝑉 ’s balance account

⟨0⟩𝑉 .
To summarize, 𝑃 ’s balance account is ⟨𝑢⟩𝑉 , where 𝑢 ≥ (2𝑁1 +

2
˜
𝑁2 + 8) 𝑓 and 𝑉 ’s balance account is in any case ⟨𝑢⟩𝑉 . □

D.6 Theorems
To prove that BitVM satisfies Rational Validity and Balance Security,
we first represent BitVM as an EFG which we illustrate in Figs. 5

and 6.

BitVM as an EFG. We represent BitVM as an extensive-form game,

where the players are 𝑃 and 𝑉 . The state of a node in the game

tree is defined by the pair (𝐴, 𝐵), where 𝐴 represents the balance

account of 𝑃 and 𝐵 represents the balance account of 𝑉 .

The game begins after Setup is posted on-chain. The action set

is the following. Initially, 𝑃 has the possible actions: i) not post a

CommitComputation transaction on-chain, ii) post a

CommitComputation and commit to the correct result, or iii) post

a CommitComputation but commit to an incorrect result. In case i),

it is a dominant strategy for𝑉 to claim the funds after the timelock

expires (cf. Lemma D.2). In the other cases (ii and iii), 𝑉 must de-

cide whether to post a KickOff transaction, initiating the dispute
phase, or remain inactive. If 𝑉 does not respond, 𝑃 has the follow-

ing actions: i) post a Close transaction corresponding to the result

committed to CommitComputation, ii) remain inactive, or iii) post

a Close transaction that does not match the result 𝑃 committed

to CommitComputation. In the latter two cases (ii and iii), it is a

dominant strategy for 𝑉 to claim the funds once the timelock ex-

pires or to prove the equivocation made by 𝑃 (cf. Lemma D.3). For

convenience, and due to similarity, we combine cases i), ii) in the

same node.

On the other side, if 𝑉 initiates the dispute phase by posting

KickOff, the game enters the Identify Disagreement phase. During

this phase, if either player remains inactive, it is a dominant strategy

for the other party to claim the funds (cf. Lemmas D.4, D.5). If the

dispute completes, the outcome depends on the correctness of the

result to which 𝑃 committed in CommitInstruction. More specifi-

cally, we have the following scenarios, i) Dispute A: if 𝑃 committed

to an incorrect result, 𝑉 will claim the funds in the Punishment

subtree A (cf. Lemma D.14), ii) Dispute B: if 𝑃 committed to the

correct result in CommitComputation, 𝑃 will eventually claim the

funds in the Punishment subtree B (cf. Lemma D.15).

Theorem D.16. The strategy profile representing the honest exe-
cution of BitVM forms a Subgame Perfect Nash Equilibrium.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Proof: We prove that by backward induction on Γ depicted in

Figs. 5 and 6.

If 𝑃 does not post CommitComputation on-chain, 𝑉 will claim

the funds after the timelock expires. If 𝑃 posts CommitComputation
committing to an incorrect result of the computation, 𝑉 will pub-

lish KickOff and eventually claim the funds in the multisigna-

ture. If 𝑃 commits to the correct result of the computation in

CommitComputation but does not post the respective Close trans-

action, 𝑉 will again claim the funds. On the other side, if 𝑃 posts

the correct result of the computation in CommitComputation and
𝑉 posts KickOff on-chain, 𝑃 will eventually claim the coins. □

Theorem D.17. (Balance Security) BitVM satisfies Balance Secu-
rity.

Proof: Let us fix one party 𝐴 ∈ {𝑃,𝑉 } and assume that 𝑝 fol-

lows the protocol specifications. We prove that no matter what

strategy the other party 𝑝′ chooses, 𝑝 will eventually claim at least

𝑓𝐴 (𝑆∗𝑓 𝑖𝑛𝑎𝑙) coins, i.e., the coins which 𝐴 should receive according

to the outcome mapping function taking as input the correct result

of the computation.

To prove that, we only consider the subtree 𝛾 ⊆ Γ, which gives a

comprehensive description of BitVM given that party𝐴 follows the

protocol specification. Below, we consider the respective scenarios

where 𝑃 or 𝑉 follow the protocol specifications.

• Case 1: 𝑃 follows the protocol specifications.We consider the

subtree 𝛾 ⊆ Γ, which we derive as follows. First, consider the
subtree 𝛾 ′ derived by Γ with the following changes. After 𝑃

posts Setup on-chain, the only possible action is to commit to

the correct final result (by posting CommitComputation on-

chain). Moreover, after 𝑃 has posted the correct result, in the

case where 𝑉 has not disputed the result, the only possible

action for 𝑃 is to publish on-chain the corresponding Close

transaction. Then, we derive 𝛾 by deleting any action (or

edge) in 𝛾 ′ where 𝑃 remains inactive. The subtree 𝛾 gives a

comprehensive description of BitVM given that 𝑃 follows

the protocol specification. For any node𝑢 ∈ 𝛾 , there is a path
leading to a leaf node where 𝑃 claims at least (𝛼 + 𝛽 + (2𝑁1 +
2
˜
𝑁2 + 8) 𝑓) ≥ 𝑓𝑃 by assumption.

• Case 2: 𝑉 follows the protocol specifications. Now consider

the subtree 𝛾 ⊆ Γ, which we derive as follows. First, if 𝑃 has

posted the correct final result, 𝑉 does not publish dispute.
Moreover, we delete the actions where 𝑉 remains inactive.

The subtree 𝛾 gives a comprehensive description of BitVM
given that𝑉 follows the protocol specification. For any node

𝑢 ∈ 𝛾 , there is a path leading to a leaf node where 𝑉 claims

at least (𝛼 + 𝛽 + (2𝑁1 + 2 ˜
𝑁2 + 5.5) 𝑓) ≥ 𝑓𝑉 by assumption. □

E TRANSACTION COMPUTATION
In this section, we provide a detailed overview of how we compute

the size of transactions published on the Bitcoin blockchain during

the execution of the BitVM-based bridge protocol.

As shown in [2], computing the size of a SegWit [25] transaction

requires computing both its non-witness and witness components.

For the non-witness portion, each Byte counts as a vByte, whereas

in the witness, 4 Bytes count as a vByte.

The non-witness portion consists of three main parts(for fields

with variable sizes, we fix the vByte count based on the transaction

that we have in our protocol):

Overhead • The transaction version number (4𝑣𝐵).

• The input count (1𝑣𝐵) and the output count (1𝑣𝐵).

• The timestamp until which the transaction is locked (4𝑣𝐵).

• SegWit transaction flag (1𝑣𝐵).

Input • The previous transaction ID and index of the output being

spent in the previous transaction (36𝑣𝐵)

Output • The amount of B being transferred (8𝑣𝐵).

• The length of the scriptPubKey field (1𝑣𝐵).

• The scriptPubKey (it varies. In our protocol, it can be

up to 37𝑣𝐵: 34𝑣𝐵 the size of the scriptPubKey for the

PayToTaproot(P2TR)), which we use to implement the

𝑛-of-𝑛 multisignature, 3𝑣𝐵 for the size of a relative time-

lock.

We can distinguish between two kinds of witnesses, according

to which scriptPubKey they unlock:

• PayToWitnessPublicKeyHash(P2WPKH): witness size is ap-
proximately 27𝑣𝐵.

• PayToTaproot: includes a control block, a script, and the

script data. The witness size varies, for a witness of a 𝑛-of-𝑛

multisignature, the size of the control block is 33𝐵, the size

of the script is (35 · 𝑛 + 2)𝐵 and the size of the script data is

(65 ·𝑛)𝐵, resulting in vByte size equal to ((100 ·𝑛) + 35)/4𝑣𝐵.

BitVM:Quasi-Turing Complete Computation on Bitcoin Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

P

P

V

incorrect
final result

correctfinal result
inactive

(0, +(4 +12)f)

tim
elock

Setup

V

P

V
co

rr
es

po
nd

in
g

cl
os

e
tr

an
sa

ct
io

n

dispute
B

dispute A

(0, +(4 +10)f)

V

incorrect close

transaction or inactive

disputes

does not dispute

(+(2 +5.5)f , +(2 +5.5)f)

disputes
do

es
 n

ot
 d

isp
ut

e

P

V

co
rre

sp
on

di
ng

cl
os

e
tra

ns
ac

tio
n

tim
elock or

equivocation

incorrect close

transaction or inactive

(+(2 +5.5)f , +(2 +5.5)f)

(0, +(4 +10)f)

tim
elock or

equivocation

Figure 5: Tree representation Γ of the EFG describing BitVM. We underline with red the actions each parties takes at each step.
The subtrees dispute A and dispute B are depicted in Fig. 6.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

V

P

Kickoff

Res1

V

...

V timelock
Chal1

inactive

P

tim
elock

P

V

chal

P
P

V

common subtree
punishment subtree P
punishment subtree V

punishment
subtree P

(0, +(4 +10)f)

(+ (4 +9)f, 0)

(0, +(2 +10)f)

(+(2 +11)f, 0)

(+(2 +8)f, 0)

(0, ++(2 +7)f)

V

CommitInstructionTx

P
timelock

inactive

inactive

timelock

tim
elock

inactive

inactive

(0, +(2 +7)f)

(0, +(2 +9)f)

punishment
subtree V

Figure 6: The tree Γ′ illustrates Subtree A and Subtree B as depicted in Fig. 5. Subtree A, initiated by an honest 𝑉 to disprove a
malicious 𝑃 , consists of the "Common Subtree" and "Punishment subtree 𝑃 ". Subtree B, initiated by a malicious 𝑉 trying to a
correct 𝑃 , consists of the "Common Subtree" and "Punishment subtree 𝑉 ".

	Abstract
	1 Introduction
	2 Model
	2.1 System model
	2.2 Threat model
	2.3 Protocol goals

	3 Preliminaries
	3.1 Transactions in the UTXO model
	3.2 Lamport digital signature scheme
	3.3 Stateful Bitcoin scripting

	4 BitVM Virtual Machine
	5 The BitVM Protocol
	5.1 Optimistic Case (Happy Path)
	5.2 Dispute Resolution (Unhappy Path)
	5.3 Security and Efficiency Guarantees

	6 Security Analysis
	6.1 Balance Security
	6.2 Rational Correctness

	7 Implementation and Evaluation
	8 Bridge Application
	8.1 A BitVM-based Bridge Design
	8.2 Security Arguments
	8.3 Evaluation

	9 Conclusion and Future Work
	References
	A The BitVM protocol specification
	A.1 Setup
	A.2 VM Execute
	A.3 Commit
	A.4 Dispute Resolution

	B Bisection game
	B.1 Dispute bisection game
	B.2 Read bisection game
	B.3 Write bisection game

	C Extensive Form Games with Perfect Information
	D Security Analysis
	D.1 Agreement phase
	D.2 Execution phase
	D.3 Identify Disagreement phase
	D.4 Punishment phase
	D.5 Concluding Lemmas
	D.6 Theorems

	E Transaction computation

