
Sonikku: Gotta Speed, Keed!
A Family of Fast and Secure MACs

Amit Singh Bhati1,2, Elena Andreeva3, Simon Müller3 and Damian Vizár4

1 COSIC, KU Leuven, Belgium
2 3MI Labs, Belgium
3 TU Wien, Austria

4 CSEM, Switzerland.
amitsingh.bhati@3milabs.tech, {elena.andreeva,simon.mueller}@tuwien.ac.at,

damian.vizar@csem.ch

Abstract.
A message authentication code (MAC) is a symmetric-key cryptographic function
used to authenticate a message by assigning it a tag. This tag is a short string that is
difficult to reproduce without knowing the key. The tag ensures both the authenticity
and integrity of the message, enabling the detection of any modifications.
A significant number of existing message authentication codes (MACs) are based on
block ciphers (BCs) and tweakable block ciphers (TBCs). These MACs offer various
trade-offs in properties, such as data processing rate per primitive call, use of single
or multiple keys, security levels, pre- or post-processing, parallelizability, state size,
and optimization for short/long queries.
In this work, we propose the Sonikku family of expanding primitive based MACs,
consisting of three instances: BabySonic, DarkSonic, and SuperSonic. The Sonikku
MACs are – 1) faster than the state-of-the-art TBC-based MACs; 2) secure beyond
the birthday bound in the input block size; 3) smaller in state size compared to
state-of-the-art MACs; and 4) optimized with diverse trade-offs such as pre/post-
processing-free execution, parallelization, small footprint, and suitability for both
short and long queries. These attributes make them favorable for common applications
as well as “IoT” and embedded devices where processing power is limited.
On a Cortex-M4 32-bit microcontroller, BabySonic with ForkSkinny achieves a speed-
up of at least 2.11x (up to 4.36x) compared to state-of-the-art ZMAC with SKINNY
for 128-bit block sizes and queries of 95B or smaller. DarkSonic and SuperSonic with
ForkSkinny achieve a speed-up of at least 1.93x for small queries of 95B or smaller
and 1.48x for large queries up to 64KB, respectively, against ZMAC with SKINNY
for both 64- and 128-bit block sizes.
Similar to ZMAC and PMAC2x, we then demonstrate the potential of our MAC
family by using SuperSonic to construct a highly efficient, beyond-birthday secure,
stateless, and deterministic authenticated encryption scheme, which we call SonicAE.

Keywords: Authentication, MAC, forkcipher, lightweight cryptography, provable
security, related-tweakey, parallel, sequential, length independent security, short
queries.

1 Introduction
Message Authentication Codes (MACs) are fundamental to cryptography, ensuring au-
thenticity and integrity in two-party, secret key communication. The sender generates a
tag over the intended message using a MAC with the secret key K. Upon receiving the

mailto:amitsingh.bhati@3milabs.tech
mailto:{elena.andreeva, simon.mueller}@tuwien.ac.at
mailto:damian.vizar@csem.ch

2 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

message-tag pair, the receiver verifies the message’s authenticity and integrity by running
a MAC verification algorithm with the same secret key K.

In recent years, numerous MACs based on block cipher (BC) and tweakable block cipher
(TBC) have been proposed, including the NIST standardized CMAC [26], PMAC [17], the
ISO/IEC standard LightMAC [34], and their optimized successors such as PMAC1 [40],
PMAC_Plus [45], 1k-PMAC_Plus [21], PMAC_TBC1k [35], and the state-of-the-art
(SotA) MACs PMAC2x [32] and ZMAC [27].

Many of these MACs offer birthday-bound (BB) security guarantees, i.e., to achieve
n/2-bit security, a (T)BC with an n-bit block size is required. (T)BCs with small block
sizes (n = 64) have a smaller footprint and are better suited for constrained environments
when compared with larger block (T)BCs such as with n = 128. However, using BB-secure
MACs with such a 64-bit small block size is prohibitive due to practical attacks [12]. This
makes MACs with beyond BB security desirable for many lightweight platforms.

(T)BC-based MACs can be further divided into sequential and parallel processing types.
Sequential MACs have a smaller footprint and often avoid post-processing/finalization
call overheads, making them useful for memory-constrained applications processing pre-
dominantly short messages. Parallel MACs allow full parallelization and enjoy significant
speedups with hardware acceleration on multi-core platforms. Parallel MACs can also
benefit from incremental processing [9], where a change in a few message bits/blocks does
not require recomputing the entire message, reducing tag re-computation costs for long
messages. This property is useful when the tag is frequently generated and updated.

(T)BC-based MACs can also be divided into deterministic and nonce-based types [18].
As such, (T)BC-based MACs are important components not only for authentication but
also in authenticated encryption (AE) schemes.

MACs suitable for low-cost, low-power IoT or embedded small devices, which may
lack cryptographic hardware acceleration, must balance several conflicting design choices.
For example, large block sizes for adequate security increase the area, while smaller state
size or reduced number of TBC primitive calls with no pre-/post-processing improves
performance for short message setups but may reduce security.

For instance, when messages need to be authenticated by the remote control of industrial
heavy machinery, the data is typically a few bytes, consisting of a bitmap of pressed buttons
and a quantized joystick position, sent by an optimized application-specific protocol. The
communication round trip must meet stringent latency restrictions for safety, with an upper
bound of 100 ms common in the industry [1, 42, 46]. Reducing the total computational
time for tag computation is critical in such applications.

Longer messages that need authentication include large binary files verifiable at runtime,
such as multimedia content for embedded devices with displays. These messages range from
KB (pictures) to MB (videos). On low-end microcontrollers, content manipulation can
drain most computational resources, leaving little time for MAC computation, especially
without cryptographic hardware acceleration.

While an expanding primitive may seem counterintuitive for authentication, this work
shows that tweakable expanding primitive (such as forkciphers [6] like ForkSkinny [38]
and expanding PRFs like ButterKnife [4], ForkEDMD [23] and ForkCENC [23]) based
MACs can overcome traditional barriers in lightweight MAC design. A forward forkcipher
evaluation is equivalent to two parallel (T)BC calls with two independent keys at a lower
cost whereas an n-to-2n-bit expanding PRF is equivalent to two parallel n-to-n-bit PRFs
with independent keys at a lower cost.

In literature, Forkciphers and expanding PRFs have been shown useful to construct
cryptographic schemes with optimized performance and/or security of – 1) authenti-
cated encryption with associated data (AEAD) for short messages [6] and with leakage
resilience [11, 19]; 2) robust online authenticated encryption [3, 5, 13] for traditional ap-
plications; 3) transciphering-friendly AEAD schemes [15] for IoT-to-cloud use cases; 4)

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 3

efficient and beyond BB-secure confidentiality-only encryption schemes [2] and tweakable
enciphering schemes [16]; 5) pseudo random number generators [7] and 6) key derivation
functions [14]. For example, ForkSkinny is a forkcipher, which forks the internal SKINNY
state approximately halfway through execution, provide favorable performance-security
trade-offs.
Our Contribution. In this work, we propose the Sonikku MAC family based on expanding
primitives. Sonikku includes two sequential MACs BabySonic and DarkSonic and one fully
parallelizable MAC SuperSonic. Sonikku MACs achieve the strong notion of variable-input-
length (VIL) pseudorandom function (PRF) security ranging from beyond birthday bound
(BBB) to full n bits levels. DarkSonic and SuperSonic achieve the PRF security when the
forkcipher is a secure pseudorandom tweakable forkcipher (prtfp) [6]. Further, under our
extended security definition for forkcipher under XOR-related-tweakey setting (xrtk-prtfp),
all Sonikku members achieve PRF security. All Sonics provide security strictly beyond
the birthday bound in n, the forkcipher input block size, assuming its tweak size t ≥ n.
More precisely, DarkSonic and SuperSonic achieve close to full n-bit security and BabySonic
achieves 3n/4-bit security. In addition, our MACs significantly improve over SotA TBC
based MACs in terms of performance and flexibility. When compared to ZMAC, the
Sonikku members:

1. require smaller state for a given security level.

2. require significantly lower number of rounds (at least 33% less rounds).

3. more concretely, on 32-bit Cortex-M4 processor with n = 64 (or 128), can save at
least 40% (or 34%) number of clockcycles, respectively for any message size. For
short messages of size ≤ 48B, BabySonic with n = 128 can save 77% number of
clockcycles.

4. come with pre-processing and post-processing optimizations, parallelization and
small footprint, are optimized for short queries and long queries, etc.

We refer the reader to Table 1 for a detailed comparison of Sonikku MACs with
a number of existing and relevant (T)BC-based MACs and to Fig. 5 and Table 2 for
performance comparisons of Sonikku MACs instantiated with ForkSkinny with SotA ZMAC
and PMAC2x instantiated with SKINNY. For simplicity, in the rest of this work, we use
Π[E] to denote the MAC function Π instantiated with the primitive E.

BabySonic[ForkSkinny] gains a speed-up of at least 2.11x (and up to 4.36x) against
ZMAC[SKINNY] for n = t = k = 128 (where k is the key size) for queries of size 95B or
smaller and DarkSonic[ForkSkinny] and SuperSonic[ForkSkinny] gain a speed-up of at least
1.93x and 1.48x against ZMAC[SKINNY] for k = 128 and t = n ∈ {64, 128} for small
queries of size 95B (or smaller) and large queries up to 64KB, respectively.

Finally, we propose an authenticated encryption with associated data (AEAD) scheme
named SonicAE based on the SIV-type composition of SuperSonic and the GCTR2-3 [2]
encryption scheme in Sec. 6. Our SonicAE mode provides the stronger AEAD security
guarantee of misuse-resistant AE (MRAE) [41]. We refer the reader to Fig. 7 and Table 3
for more details on performance estimation and comparison of SonicAE with other SotA
AEAD schemes. SonicAE[ForkSkinny] gains a speed-up of at least factor 1.41x and 1.32x
against existing MRAE schemes ZAE[SKINNY] and Deoxys-II[SKINNY] under k = 128,
t = n ∈ {64, 128} for small queries of size 95B and large queries up to 64KB, respectively.
Related Work. In [20], Datta et al. proposed LightFORK, a forkcipher variant of
LightMAC that improves it by achieving beyond birthday security. However, in contrast to
our parallel MAC – SuperSonic who can process at least n+k bit per one-legged forkcipher
call, LightFORK can only process n bits per two-legged forkcipher call which makes it at
least 3x costlier than SuperSonic for k ≥ n.

4 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

Table 1: Comparison of Sonikku modes with state of the art MACs with comparable instances.
Each entry referring to a binary string size or security parameter of a MAC is in bits. n, t
and k are the block, tweak and key sizes of the underlying primitive, respectively whereas
e = log2

(⌈ maxi mi
n+t+k−e

⌉)
and s = log2

(⌊maxi mi
n−s

⌋)
are the reserved tweak bits for the counter in

the corresponding MAC. BC, TBC, FC, BM, Par., L.I.Sec. and IT are short for block cipher,
tweakable block cipher, forkcipher, binary (field) multiplications, parallelization support, (message)
length independent security and information-theoretic security, respectively. The two columns |K|
and |T ag| represent the key length and the maximum possible tag length of the MAC, respectively.
For DarkSonic and SuperSonic, the table rows remain intact correct if the parts in blue are removed,
i.e. the security still holds but at the cost of reduced performance. The cells in red highlight the
key points of comparison in a MAC against Sonics.

MAC Primitive PRF Security (IT) |K| Minimal State Cost 1(to process an m-bit message) |Tag| L.I.Sec. Par.

CMAC [26] BC as prp [31] n/2 k 3n + k (⌈m/n⌉+ 1)BC + 2BM ≤ n ✗ ✗

PMAC [17] BC as prp n/2 k 3n + k (⌈m/n⌉+ 1)BC + ⌈m/n⌉BM ≤ n ✗ ✓

PMAC1 [40] TBC as tprp [31] n/2 k 2n + t + k ⌈m/n⌉TBC ≤ n ✗ ✓

lightMAC [34] BC as prp n/2 2k 3n + 2k ⌈m/(n− s)⌉BC ≤ n ✓ ✓

SUM-ECBC [44] BC as prp 2n/3 4k 2n + 4k 2(⌈m/n⌉+ 1)BC ≤ n ✗ ✗

PMAC_Plus [45] BC as prp 2n/3 3k 5n + 3k (⌈m/n⌉+ 4)BC + (3⌈m/n⌉-1)BM ≤ n ✗ ✓

1k-PMAC_Plus [21] BC as prp 2n/3 k 5n + k (⌈m/n⌉+ 4)BC + (3⌈m/n⌉)BM ≤ n ✗ ✓

ZMAC [27] TBC as tprp min{n, (n + t)/2} k 4n + 2t + k
(⌈

m
(n+t−4)

⌉
+ 6
)

TBC +
(

2
⌈

m
(n+t−4)

⌉
− 1
)

BM ≤ 2n ✗ ✓

PMAC_TBC1k [35] TBC as tprp n (if t ≥ n/2) k 3n + t + k (⌈m/n⌉+ 2)TBC + (⌈m/n⌉ − 1)BM ≤ n ✓ ✓

PMACx/PMAC2x [32] TBC as tprp n k 3n + t + k (⌈m/n⌉+ 2)TBC + ⌈m/n⌉BM ≤ 2n ✓ ✓

BabySonic [Our Work] FC as xrtk-prtfp 3n/4 k 2n + t + k
(⌈

m
n+t+k−2

⌉)
FC ≤ 1.5n ✗ ✗

DarkSonic [Our Work] FC as xrtk-prtfp min{n, t} − log2 µ k 2n + t + 2k
(⌈

m−2(t+k−2)
n+t+k−2

⌉)
TBC + 2FC ≤ 2n ✗ ✗

SuperSonic [Our Work] FC as xrtk-prtfp min{n, (n + t)/2} k 2n + 2t + 3k
(⌈

m
n+t+k−e

⌉)
(TBC + BM) + 1FC ≤ 2n ✓ ✓

Paper Organization. In Sec. 2, we give the necessary notations and the security
notions. In Sec. 3, we formally describe Sonikku and the related security results and we
defer in parts the security analysis to Sec. 5. We discuss our Sonikku results and their
software performances in Sec. 4. We present SonicAE as an application of SuperSonic for
misuse-resistant authenticated encryption in Sec. 6. We conclude the paper in Sec. 7.

2 Preliminaries

Strings and Operations. All strings are considered as binary strings. The set of all
strings of all possible lengths is denoted by {0, 1}∗ and the set of all strings of length n (a
positive integer) is denoted by {0, 1}n. We denote by Perm(n) the set of all permutations of
{0, 1}n and by Func(m, n) the set of all functions with domain {0, 1}m and range {0, 1}n.

For a string X of ℓ bits, we denote by X[i] the ith bit of X for i = 1, . . . , ℓ (counting
from left to right) and define X[i . . . j] = X[i]∥X[i + 1]∥ . . . ∥X[j] for 1 ≤ i < j ≤ ℓ. For
two strings X, Y ∈ {0, 1}∗ with (w.l.o.g.) |X| ≤ |Y |, we let X ⊕Y denote the bitwise XOR
of X∥0|Y |−|X| and Y . For the same strings, we define X ⊕a Y = (X ⊕ Y)[0 . . . a− 1].

We fix an arbitrary integer n for this work and call it the block size. We use
X1, . . . , Xx, X∗

n←− X to define the partitioning of X into n-bit blocks, such that
X = X1∥ . . . ∥Xx∥X∗ with |Xi| = n for i = 1, . . . , x and 0 < |X∗| ≤ n. Hence,
x = ⌈|X|/n⌉ − 1. For two distinct strings X, Y ∈ {0, 1}∗ with |X| ≤ |Y | w.l.o.g, we
let llcpn(X, Y) = max{1 ≤ i ≤ ⌈|X|/n⌉ − 1|Xj = Yj for 1 ≤ j ≤ i} denote the length of
the longest common prefix (in n-bit blocks) of X and Y .
Miscellaneous. We let X ←$ X denote the sampling of an element X from a finite set X
under the uniform distribution. We let (p)q denote the falling factorial p · (p− 1) · (p− 2) ·

1Actual performance cost of a FC, BC and TBC depend on their instantiations. To exemplify, when
instantiated using SKINNY’s round function with the same key, block and/or tweak size, 1 FC costs approx
1.6(T)BC. For concrete performance comparison, see Sec. 4.

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 5

. . . · (p− q + 1) where (p)0 = 1. We define a predicate P(x) as P(x) = 1 if it is true and
P(x) = 0 if it is false. We use lexicographic comparison for integer tuples (to exemplify,
(i′, j′) < (i, j) iff i′ < i or i′ = i and j′ < j).

2.1 MAC Syntax and Security Definition
Let X and Y be non-empty finite sets. Let Func(X ,Y) be the set of all functions from X to
Y. A uniform random function (URF) with domain X and range Y, denoted R : X → Y,
is a random function with uniform distribution over Func(X ,Y).

A MAC is a tuple of function MAC : K × X → Y with non-empty key space K,
and a tag verification function Verify : K × X × Y → {1,⊥}, where for all K ∈ K and
X ∈ X , VerifyK(X, Y) returns 1 iff MACK(X) = Y and ⊥ otherwise. It is well-known that
if MAC is a secure PRF, it is also a secure MAC; however, the converse statement is not
necessarily true. We now recall the standard security definition of PRF security for a
MAC.

Definition 1 (PRF Advantage). For MAC : K × X → Y, let A be an adversary whose
goal is to distinguish MACK and a URF R : X → Y by their oracle access. The advantage
of A against the PRF-security of MAC is then defined as

AdvPRF
MAC(A) =

∣∣Pr[K ←$ K : AMACK ⇒ 1]− Pr[R←$ Func(X ,Y) : AR ⇒ 1]
∣∣.

2.2 Tweakable Expanding Primitives
A tweakable expanding primitive Fα : {0, 1}k×{0, 1}t×{0, 1}n → {0, 1}αn maps a k-bit key
K, t-bit tweak T and n-bit input X to α ≥ 2 many n-bit outputs Y1, Y2, . . . , Yα. Further,
when all α outputs are permutations of the input, Fα is called a multiforkcipher (MFC) [2].
For this work, we set α = 2 and hence restrict Fα to (n + t + k)-to-2n-bit expanding
functions and forkciphers [6] (i.e., MFCs with α = 2). We drop the subscript α now and
denote an (n + t + k)-to-2n-bit expanding primitive by F. We call k, n and t the keysize,
blocksize and tweaksize of F, respectively. We use F(K, T, M) = FK(T, M) = FT

K(M)
interchangeably.

We note that an (n + t + k)-to-2n-bit function may not seem expanding on its full
domain, however, the term “expanding” here refers to the input space to output space
expansion which is n-bit to 2n-bit. We use an additional parameter s ∈ {0, 1, b} to separate
partial and full F calls as FT,s

K (M) := FT
K(M)[1 . . . n] when s = 0, FT

K(M)[n + 1 . . . 2n]
when s = 1 and FT

K(M) when s = b. For the rest of the paper, we use K := {0, 1}k and
T := {0, 1}t.
XOR-related-tweakey (xrtk) Security of Tweakable Expanding Primitives. We
define a strong security notion for tweakable expanding primitives that generalizes standard
security notions of PRFs and forkciphers to related-tweakey setting [10]. Related-key
security for block ciphers was originally proposed by Bellare and Kohno at Eurocrypt’03 [10].
Their proposed security model allows the adversary to choose a related key derivation
(RKD) function ϕ which transforms the target key K into the key ϕ(K), and then to obtain
the value of the block cipher, on an input of adversary’s choice, under this transformed
key. We naturally extend this definition to expanding primitives and further restrict the
relation of keys ϕ to XOR i.e. ϕ ∈ Φ⊕k = {C ∈ {0, 1}k | ϕC} where ϕC(K) = K ⊕ C. We
refer the reader to [10, Corollary 1] for more details on concrete security results for XOR
restricted RKDs.
Forkcipher Security (Related-tweakey Setting). Formally, we define the xrtk
forkcipher security of an expanding primitive F as the indistinguishability between the
real xrtk-realF and the ideal xrtk-ideal-prtfpF worlds when adversary accesses either
worlds in a chosen plaintext fashion. In the real world, the forkcipher oracle implements

6 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

Game xrtk-realF

f1 ←$ Func(k, t), f2 ←$ Func(k, k)

K ←$ K,K1 ← f1(K),K2 ← f2(K)

b← AE

return b

Oracle E(T1,T2, X)

return FK2⊕T2(K1 ⊕ T1, X)

Game xrtk-prtfp-idealF

for T1∥T2 ∈ {0, 1}t+k do

πT1∥T2,0, πT1∥T2,1 ←$ Perm(n)

b← AE

return b

Oracle E(T1, T2, X)

return πT1∥T2,0(X), πT1∥T2,1(X)

Game xrtk-prf-idealF

for T1∥T2 ∈ {0, 1}t+k do

fT1∥T2,0, fT1∥T2,1 ←$ Func(n, n)

b← AE

return b

Oracle E(T1, T2, X)

return fT1∥T2,0(X), fT1∥T2,1(X)

Figure 1: xrtk security games for an expanding primitive F.

the true F algorithm faithfully but with the tweak set to K1 ⊕ T1 and the key set
to K2 ⊕ T2 for the adversarial chosen inputs (T1, T2) ∈ T × K and random subkeys
K1 := f1(K) and K2 := f2(K) for some f1 ←$ Func(k, t), f2 ←$ Func(k, k) and K ←$ K
whereas in the latter world, the oracle replaces F by two tweakable random permutations
πT1∥T2,0, πT1∥T2,1 ←$ Perm(n) for (T1, T2) ∈ T × K. Both worlds are depicted in Fig. 1.
We then define the xrtk-prtfp advantage of A as:

Advxrtk-prtfp
F (A) = |Pr[Axrtk-realF ⇒ 1]− Pr[Axrtk-prtfp-idealF ⇒ 1]| .

In a nutshell, under xrtk-prtfp notion, a forkcipher is expected to behave like a pair
of random permutations that can be tweaked with two inputs T1 and T2. Changing
any of them under the same but secret and random key results into two freshly sampled
independent random permutations. We emphasize that for a given primitive F, xrtk-prtfp
is a stronger assumption in the sense that it allows the adversary to attempt related-tweakey
attacks and is a weaker assumption in the sense that it restricts the adversary to make
inverse oracle calls when compared with the standard prtfp [6] assumption.
Expanding PRF Security (Related-tweakey Setting). Formally, the xrtk
PRF security of an expanding primitive F is defined in the exact same manner
as the xrtk forkcipher security defined above but with two tweakable random per-
mutations πT1∥T2,0, πT1∥T2,1 ←$ Perm(n) in the ideal world replaced with two func-
tions fT1∥T2,0, fT1∥T2,1 ←$ Func(n, n) for (T1, T2) ∈ T × K. We call this ideal world
xrtk-prf-idealF and formally describe it in Fig. 1. We then define the xrtk-prf advantage
of A as:

Advxrtk-prf
F (A) = |Pr[Axrtk-realF ⇒ 1]− Pr[Axrtk-prf-idealF ⇒ 1]| .

The related-(twea)key security is the most suitable notion to work with when arguing
security of feedback-based MAC designs. Key feedbacks allow MACs to achieve a state
size equal to that of the underlying primitive e.g., BabySonic (see Table 1).
Relation Between Single-key and XOR-related-key Security. We emphasize that
the generic results of [10][Lemma 5.3, 5.4, Theorem 6.3 and 8.8] show that any standard
single-key prtfp and prf can directly be used as XOR-related-key prtfp and prf, respectively
but with an additional birthday degradation term in the security bound of pσ/2|K1|+|K2|

where p and σ are numbers of primitive calls with different adversary-chosen random keys
and with the secret key XORed with adversary chosen relations/values, respectively.

For example, with ForkSkinny, we have |K1| + |K2| ≥ 2n and therefore, the security
degradation from single-key to XOR-related-key setting becomes significant only after
O(2n) primitive calls. In other words, we have at least n bits of security for using a
single-key secure primitive in XOR-related-key setting.

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 7

We also note that the xor-related-tweakey security of ForkSkinny has not been challenged
by existing cryptanalysis results. The tweakey results of [8, 22,33,39,47] and the related-
tweakey security of SKINNY and ForkSkinny are evidences in that direction.

3 Sonikku Family of Fast and Secure MACs
Sonikku is a family of three fast and secure expanding primitive based MACs - BabySonic,
SuperSonic and DarkSonic. All Sonics provably achieve BBB PRF-security and a significant
speed-up compared to the SotA MACs under various application settings (see Sect. 4 for
full details). To achieve a significant speed-up, all Sonics not only effectively utilize the
input-space and tweak-space of the underlying primitive but also its key-space to securely
combining message blocks with the available key material.
Design Choices. We discuss the distinct choices towards designing our concrete MACs.
SuperSonic is designed with HW parallelization support and fast performance for long
queries in mind. Towards these goals, it uses parallel primitive calls to process the message
and maintains an extra state to store the chained internal values for the final F call a.k.a.
the finalization call of the MAC (see Fig. 3 for details). Compared to SuperSonic, the
other two MACs - DarkSonic and BabySonic trade the HW parallelization support for
reducing the minimal state size (which is a part of the required RAM). Hence, they are
more suitable for applications where parallelization is not supported or where resource
constraints such as small and fixed state size are present.

BabySonic uses the key only once during the initialization, and hence it avoids the
need to store the key. As a consequence, BabySonic achieves the optimal minimal-state
size i.e., same as the state of the underlying expanding primitive. BabySonic also uses
both branches of F to generate an internal pseudorandom state and uses that to eliminate
pre-processing and post-processing calls such as the first F call in DarkSonic and the last F
call in SuperSonic which makes it faster and optimized for short queries up to 95B.

On the other hand, DarkSonic makes use of a nonce input and eliminates the need of
computing the second leg in F calls. This way it achieves significantly better performance
with increasing message length (close to SuperSonic for queries of any size) when compared
to BabySonic but with a nonce-based security (see Table 1 for full details).
Our Pick. We pick BabySonic (for short messages of size < 136B, see Fig. 5(b)) followed
by SuperSonic (for long queries of size > 96B, see Fig. 5(b)) as our best choices and keep
DarkSonic as a bonus MAC with intermediate trade-offs.

In the following sections, we formally define each of the Sonics and state their PRF
security results. Our security results are backed-up with concrete mathematical proofs.

3.1 BabySonicn/a and its PRF Security
BabySonicn/a is a sequential MAC that uses a tweakable expanding primitive F (as
defined in Sec. 2.2) as an underlying primitive with T = {0, 1}t for positive integers t.
BabySonicn/a[F] = (K, MAC) has a key space K = {0, 1}k and message space M = {0, 1}∗.
It provides “optimal” internal state-size which is equal to the minimal argument-size of an
expanding primitive (in other words, theoretically there is no overhead in the state when
shifting from the cipher to the MAC). The MAC algorithm of BabySonicn/a is illustrated
in Fig. 2 and pseudocode of the same is provided in Fig. 8. We state the formal claim
about the PRF security of BabySonicn/a in Theorem 1 and provide its proof in Sec. 5.1.

Theorem 1. Let F be a tweakable expanding primitive with T = {0, 1}t and k ≤ n + a for
some integer 1 ≤ a ≤ n. Then for any adversary A who makes at most q queries (with
maximum query length of ℓ blocks) to the BabySonicn/a MAC such that the total number of

8 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

primitive calls induced by all the queries is at most σ and 10 ≤ a ≤ min{n− 10, 11n/12},
we have

AdvPRF
BabySonicn/a[F](A) ≤ ℓ · Advxrtk-prtfp

F (B) + (σ − q)2

2n+a+1 + 6σ

2n−a/2

for some adversary B, making at most q many F queries (under fixed but secret and
random key), and running in time given by the running time of A plus γ · x where γ is the
runtime of an F call in the model of computation.

Clearly, from the bound above one can notice that BabySonicn/a provides maximum
(information theoretic) PRF security of ≈ 3n/4 bits (in terms of primitive queries) when
a = n/2 and hence, BabySonic2 turns out to be the best variant of BabySonicn/a. For
brevity, we drop the subscript and refer this variant by BabySonic.

Figure 2: TheBabySonicn/a MAC mode. The picture illustrates the processing of message M of size
x(n + t + k − 2) for some positive integer x. We note that for arbitrary messages of any length, a padding
of 10∗ is used to make the message size x′(n + t + k − 2) for the smallest possible positive integer x′.
Further, in this block diagram, for the last processed message block, I′pad is set to 01 if the size of M is
x(n + t + k − 2) for some positive integer x and to 11, otherwise. The small function diagram of STH2
(short for Summation-Truncation Hybrid-2 [25]) shown in the lower half of this figure shows how the 2n-bit
outputs of F are processed to generate the n + a bits of internal chaining value (or tag) where n + a ≥ k.
The MAC key K of k bits is used (with a key derivation function) to generate the sub-keys K1 and K2
here of size k and t − 2 bits, respectively.

3.2 SuperSonic and its PRF Security
SuperSonic is a parallel MAC that uses a tweakable expanding primitive F (as defined in
Sec. 2.2) as an underlying primitive with T = {0, 1}t for positive integers t. SuperSonic[F] =
(K, MAC) has a key space K = {0, 1}k and message spaceM = {0, 1}∗. The MAC algorithm
of SuperSonic is illustrated in Fig. 3 and pseudocode of the same is provided in Fig. 8.

We state the formal claim about the PRF security of SuperSonic in Theorem 2 and
provide its proof in Sec. 5.2.

Theorem 2. Let F be a tweakable expanding primitive with T = {0, 1}t. Then for any
adversary A who makes at most q queries to the SuperSonic MAC such that the total
number of primitive calls induced by all the queries is at most σ, we have

AdvPRF
SuperSonic[F](A) ≤ Advxrtk-prtfp

F (B) + 4 · q2

2n+min{n,t−2}

for some adversary B, making at most σ queries, and running in time given by the running
time of A plus γ · σ where γ is the runtime of an F call in the model of computation.

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 9

Figure 3: The SuperSonic MAC mode. The picture illustrates the processing of message M of size
x(n + t + k − e) for some positive integers x and a pre-defined constant e. We note that for arbitrary
messages of any length, a padding of 10∗ is used to make the message size the smallest possible multiple
of (n + t + k − e) (See Fig. 8 for details). Further, in this block diagram, for the last processed message
block, I′pad is set to 01 if the size of M is x(n + t + k − e) for some positive integer x and to 11, otherwise.
The MAC key K of k bits is used (with a key derivation function) to generate the sub-keys K1 and K2
here of size k and t − 2 bits, respectively.

3.3 DarkSonic and its PRF Security
DarkSonic is a nonce-based sequential MAC that uses a tweakable expanding primitive F
(as defined in Sec. 2.2) as an underlying primitive with T = {0, 1}t for positive integers
t. DarkSonic[F] = (K, MAC) has a key space K = {0, 1}k, nonce space N = {0, 1}n and
message space M = {0, 1}∗. The MAC algorithm of DarkSonic is illustrated in Fig. 4 and
pseudocode of the same is provided in Fig. 8. We state the formal claim about the PRF
security of DarkSonic in Theorem 3 and provide its proof in Sec. 5.3.

Theorem 3. Let F be a tweakable expanding primitive with K = {0, 1}k and T = {0, 1}t.
Then for any nonce-misusing adversary A who makes at most q queries to the DarkSonic
nonce-based MAC such that the total number of primitive calls induced by all the queries
is at most σ and the maximum number of times a nonce is repeated is µ, we have
AdvPRF

DarkSonic[F](A)

≤ Advxrtk-prtfp
F (B) + 6(σ − q)2

2n+min{n,t−2} + 2q(µ − 1)
2min{n,t−2}

for some adversary B, making at most σ queries, and running in time given by the running
time of A plus γ · σ where γ is the runtime of an F call in the model of computation.

Novelty. Below we elaborate on the novelty elements of the Sonikku MACs.

• BabySonic - while the design is intuitive, none of the existing MACs uses the key
in a feedback manner to avoid its storage, processes at rate 1 and achieves beyond
BB security. Nested-MAC (NMAC) [24] comes closest with a rate of (n + t)/(n +
t + k), yet it requires a FIL-PRF primitive and achieves security below BB (in k).
Further, due to the key-feedback property of BabySonic, we need a dedicated proof
where the information-theoretic counterpart of the MAC is defined through iterative
replacements of the FC calls with pairs of tweakable random permutations (TRPs)
(see Sec. 5.1 for details).

• DarkSonic - the design is the first nonce-based efficient MAC (with nonce-misuse
security) that is solely based on (T)BCs or FCs. It is the first MAC that achieves full
n-bit security with only n bits of chaining state (compared to the standard 2n bits).
This improvement is achieved by securely reusing the randomness of the previous
n-bit state instead of an extra n-bit state. The analysis of DarkSonic captures all
possible bad cases that can happen due to this new design strategy with the use of
H-coefficient’s technique.

10 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

Figure 4: The DarkSonic MAC mode. The picture illustrates the processing of a full message M (including
the n-bit nonce N) of size x(n + t + k − 2) − n for some positive integer x. We note that for arbitrary
messages of any length, a padding of 10∗ is used to make the message size x′(n + t + k − 2) − n for
the smallest possible positive integer x′ (See Fig. 8 for details). Further, in this block diagram, for the
last processed message block, I′pad is set to 01 if the size of M is x(n + t + k − 2) − n for some positive
integer x and to 11, otherwise. Here for any arbitrary string X ∈ {0, 1}∗, the function trnct−2(X) returns
X∥0t−2[1 . . . t − 2]. The MAC key K of k bits is used (with a key derivation function) to generate the
sub-keys K1 and K2 here of size k and t − 2 bits, respectively.

• SuperSonic - SuperSonic follows the common beyond BB-secure parallel MAC de-
sign strategy as used by many popular existing MACs such as PMAC_Plus, 1k-
PMAC_Plus, PMACx/2x, and ZMAC. The design novelty here lies in: 1) existing
designs and proof analyses do not directly allow passing message blocks into the key
argument (XORed with the key). SuperSonic efficiently achieves this by maintaining
a checksum of these extra message blocks and processing it in the finalization call.
2) SuperSonic comes with a redefined efficient finalization call when compared with
the SotA ZMAC. More concretely, we replace the four final TBC calls with one FC
call which is relevant for short query applications.
3) SuperSonic uses strategies of “counter-in-tweak” and tweak domain separation
to keep the design simple, less error-prone and maintains smaller long-term secret
material which can potentially reduce the cost of threshold implementations. We
give a very “compact” and “simple” n-bit security proof with “length-independent”
bound when compared with the existing related MACs results.

• DarkSonic and SuperSonic can also be instantiated with TBCs instead of FCs and
the security results are transferred from related-key to single-key setting without
any changes to the MAC designs, except by fixing all the message blocks in the key
arguments to 0s.

• Switching to single-key setting reduces the performance of Sonikku MACs, yet even
after this step the speed-ups of DarkSonic and SuperSonic against ZMAC remain
significant. More concretely, comparing against Table 2, we obtain that DarkSonic
and SuperSonic (with n = 128) in single-key setting still reach up to 1.6x and 1.77x
speed-ups for messages of length ≤95B, respectively and these speed-ups converge
close to 1x when the message lengths are very long (64KB or more).

4 Performance and Discussion
For the performance evaluation of Sonics, we used a 32-bit Cortex-M4 processor. Our
proposed fully parallelizable MAC SuperSonic when compared with ZMAC provides length
independent security up to full n bits and when instantiated with ForkSkinny [6] (and ZMAC
with SKINNY [8]) with k = 128 bits and t = n ∈ {64, 128}, reduces the computational cost

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 11

of computing an authentication tag by a factor of 2.76x, 1.93x and 1.58x for n = 64 bits and
of 2.66x, 2.15x and 1.48x for n = 128 bits when used for messages with maximum length of
16B (useful in IoT applications and embedded devices), 95B (the maximum authenticated
message size in Noise framework [37] based protocols) and any longer length up to 64KB,
respectively. On top of that, SuperSonic requires up to 2n-bit smaller minimal-state than
ZMAC.

Adding to that, when compared with PMAC_TBC1k and PMACx/PMAC2x schemes,
SuperSonic processes ≈ n + t + k bits of inputs per FC call whereas both of these compared
schemes are limited to n bits of inputs per TBC call independent of the tweak/key size.
We refer the reader to Table 1 for a rich comparison of Sonikku modes with existing state
of the art MACs.

The two sequential MACs DarkSonic and BabySonic can be well-suited for applications
where parallelization is not supported or resource constraints such as small and fixed
statesize are present. On one hand, we have BabySonic that uses the key only once
during the initialization and, hence avoids the need of extra state for storing the key and
achieves the optimal minimal-state size (i.e. minimal-state same as the minimal-state of
the underlying primitive itself) whereas on the other, we have DarkSonic that makes use of
a nonce input and eliminates the need of computing the second leg in FC calls. This way
it achieves significantly better performance with a slightly traded but comparable security.

We recall that in the work of [27], ZMAC was advertised as the first TBC-based MAC
which has optimal efficiency/rate as it can process n + t bits of data per TBC call as an
n-bit block, t-bit tweak and k-bit key TBC was assumed to handle no more than n + t
bits of public input per call. In this work, we try to exploit the k-bit key argument space
of a tweakable primitive (particularly, FC) in each one of the three Sonikku MACs to
incorporate an extra k-bit of public input per call and hence resetting the margin for
actual optimality.

We note that passing public inputs to the key argument of a traditional (tweakable)
cipher is not in general a good idea as it can decrease both the security (e.g. with
related-key attacks) and efficiency (e.g. cost of re-keyscheduling per call).

While key schedules are routinely precomputed to improve performance in software,
many (T)BCs targeting constrained environments, such as SKINNY, feature lightweight
key schedules where the effect of precomputation brings little benefit. In hardware, the
key schedule can be computed “for free” thanks to HW parallelism. Constructions relying
on frequent rekeying thus do not suffer from a performance penalty when implemented in
HW and/or when using (T)BCs with a lightweight key schedule.

Adding to that, there exist concrete security analyses and results such as in [8, 22,33,
39,47] for the tweakey framework [28] and for the related-tweakey security of SKINNY [8]
and ForkSkinny [6] that reasonably motivates this direction of research.

In Fig. 5, we provide an efficiency comparison of Sonic MACs (instantiated with
ForkSkinny) with the existing state-of-the-arts (SotA) TBC-based MAC designs (instan-
tiated with SKINNY) under the setting n = k = 128. The plot shows that the number
of clockcycles required (on a typical 32-bit Cortex-M4 precessor) for SotA MACs like
PMAC2x or ZMAC is quite higher when compared with Sonic MACs. Among Sonics,
DarkSonic and SuperSonic require almost similar number of rounds and are better than
BabySonic for longer message queries as they make one-legged FC calls. But for small
message queries BabySonic performs better as it does not require pre- or post-processing
primitive calls. To confirm these claims, we provide a full detailed comparison of Sonikku
MACs against ZMAC in Table 2 under both n = 64 and n = 128 settings.

We also infer from our data that using a longer tweak can improve the performance
of a Sonic MAC by a significant margin but only after a certain threshold of minimum
message length. For Cortex-M4, this threshold is ≈2KB.

12 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

0

100000

200000

300000

400000

500000

600000

700000

800000

16 116 216 316 416 516 616 716 816 916 1016

of

cl
oc

kc
yc

le
s

re
qu

ire
d

to
 p

or
ce

ss

Message length (in bytes)

PMAC2x (t=n) ZMAC (t=n) BabySonic (t=n) BabySonic (t=2n)
DarkSonic (t=n) DarkSonic (t=2n) SuperSonic (t=n) SuperSonic (t=2n)

20000

30000

40000

50000

60000

70000

80000

90000

100000

16 32 48 64 80 96 112 128

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

16 116 216 316 416 516 616 716 816 916 1016

of

cl
oc

kc
yc

le
s

re
qu

ire
d

to
 p

or
ce

ss

Message length (in bytes)

PMAC1 PMAC2x (t=n) ZMAC (t=n) DarkSonic (t=n) SuperSonic (t=n)

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

16 32 48 64 80 96 112 128

(a) MACs targeting 64 bits of security

0

100000

200000

300000

400000

500000

600000

700000

800000

16 116 216 316 416 516 616 716 816 916 1016

of

cl
oc

kc
yc

le
s

re
qu

ire
d

to
 p

or
ce

ss

Message length (in bytes)

PMAC2x (t=n) ZMAC (t=n) BabySonic (t=n) BabySonic (t=2n)
DarkSonic (t=n) DarkSonic (t=2n) SuperSonic (t=n) SuperSonic (t=2n)

20000

30000

40000

50000

60000

70000

80000

90000

100000

16 32 48 64 80 96 112 128

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

16 116 216 316 416 516 616 716 816 916 1016

of

cl
oc

kc
yc

le
s

re
qu

ire
d

to
 p

or
ce

ss
Message length (in bytes)PMAC1 PMAC2x (t=n) ZMAC (t=n) DarkSonic (t=n) SuperSonic (t=n)

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

16 32 48 64 80 96 112 128

(b) MACs targeting 96 to 128 bits of security

Figure 5: Efficiency comparison of Sonics with other (tweakable) primitive based SotA MACs under
setting k = 128 and n = 64 or 128 bits (depending on the targeted security). All TBCs and FCs are
instantiated with SKINNY and ForkSkinny, respectively. The plot shows the number of clockcycles that
are required to process a message of corresponding length.

5 Security Analysis of Sonikku MACs
5.1 BabySonicn/a: Proof of Theorem 1
Let us recall the alternative representation of PRF security through indistinguisha-
bility games, which is equivalent with the notion introduced in Sec. 2.1. We define
two games, PRF-realΠ and PRF-idealΠ. In both games A is given access to an ora-
cle Π. In the game PRF-realΠ the oracle Π faithfully implement the corresponding
MAC algorithm of BabySonicn/a using a randomly sampled secret key whereas in the
game PRF-idealΠ, the oracle returns a uniformly sampled random string as the tag
for each distinct message query. With this representation, we have that AdvPRF

Π (A) =∣∣Pr[APRF-realΠ ⇒ 1]− Pr[APRF-idealΠ ⇒ 1]
∣∣ or in short=

∣∣Pr[APRF-realΠ]− Pr[APRF-idealΠ]
∣∣ .

Recursively replacing F. We first replace the first FK2⊕T2(K1 ⊕ T1, ·) with
a pair of independent random tweakable permutations π0 = (πT1∥T2,0 ←$
Perm(n))T1∥T2∈{0,1}t+k and π1 = (πT1∥T2,1 ←$ Perm(n))T1∥T2∈{0,1}t+k and let
BabySonic′n/a[STH2[(π0, π1)], STH2[F], . . . , STH2[F]] denote the BabySonic mode that uses

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 13

Table 2: Efficiency comparison of Sonics (instantiated with ForkSkinny) against ZMAC (instantiated with
SKINNY) under settings k = 128 bits and t = n ∈ {64, 128} bits. The entries in this table show the ratio
of number of clockcycles required by ZMAC and by corresponding Sonikku MAC (under same values of
n, t and k) to process a message of the given maximum length. Here green and red cells represent settings
where the corresponding Sonic is better and worse than ZMAC, respectively.

MAC → BabySonic DarkSonic SuperSonic

Block size n (in bits) → 128 64 128 64 128

IT PRF Security (in bits) → 96 64 128 64 128

Max. message length ↓ Speed-up (in factors) against ZMAC

16B 4.36x 2.49x 2.19x 2.76x 2.66x

95B 2.11x 2.26x 2.39x 1.93x 2.15x

4KB 1.02x 1.66x 1.56x 1.60x 1.51x

64KB 0.98x 1.64x 1.52x 1.58x 1.48x

(π0, π1) in place of the first F call, which yields AdvPRF
BabySonicn/a[F](A) ≤ Advxrtk-prtfp

F (Bq1)+
AdvPRF

BabySonic′
n/a

[STH2[(π0,π1)],STH2[F],...,STH2[F]](A) where qi ≤ q denotes the number of queries
made by A that contain at least i many primitive calls. In other words,

∑ℓ
i=1 qi = σ with

ℓ = max{ℓ1, . . . , ℓq} and ℓi as the length of the ith query (in n + t + k bit blocks). Here
Bqi is an xrtk-prtfp-adversary against F that can make at most qi queries to F.

Let us now further replace the first (π0, π1) call and its following STH2 call to-
gether with a random function f = (fT1∥T2 ←$ Func(n, n + a))T1∥T2∈{0,1}t+k , denote
it by BabySonic′n/a[f, STH2[F], . . . , STH2[F]] and apply the summation-truncation results
from [25, Theorem 2]. This gives us for 0 ≤ a ≤ min{n− 10, 11n/12},

AdvPRF
BabySonic′

n/a
[STH2[(π0,π1)],STH2[F],...,STH2[F]](A)

≤ AdvPRF
BabySonic′

n/a
[f,STH2[F],...,STH2[F]](A) + 3

(
q1

2n−a/3

)3/2
+ 1√

2π

(
q1

2n−5

)2n−a−2

+
√

2q1

2n−a/2

≤ AdvPRF
BabySonic′

n/a
[f,STH2[F],...,STH2[F]](A) + 6q1

2n−a/2 when a ≥ 10, q ≤ 2n−a/2 .

We note that at this step the key input, let say Ki
2, to the second primitive call

(or the current first FC call) in ith query of BabySonic′n/a[f, STH2[F], . . . , STH2[F]] can
be written as (Ki

2 ⊕ K) ⊕ K where (Ki
2 ⊕ K) is independent of K as Ki

2 is originally
sampled independently and uniformly at random (using f). Hence, we can follow the
same steps as above for this second primitive call and iterate this procedure until the last
primitive call (in the longest query). Combining the bounds from all these steps, we get
for 10 ≤ a ≤ min{n− 10, 11n/12} and q ≤ 2n−a/2,

AdvPRF
BabySonicn/a[F](A) ≤

ℓ∑
i=1

Advxrtk-prtfp
F (Bqi) +

6
∑ℓ

i=1 qi

2n−a/2 + AdvPRF
BabySonic′

n/a
[f,...,f](A)

≤ ℓ · Advxrtk-prtfp
F (Bq) + 6σ

2n−a/2 + AdvPRF
BabySonic′

n/a
[f,...,f](A) . (1)

Note that since σ ≥ q, for q > 2n−a/2 this bound becomes void and hence the assumption
of q ≤ 2n−a/2 can be dropped. Now, the adversary is left with the goal of distinguishing
between the games PRF-realBabySonic′

n/a
[f,...,f] and PRF-idealBabySonic′

n/a
[f,...,f]. We note

that these games are indistinguishable if there are no collisions among the inputs of f calls
that correspond to non-prefixed message blocks in BabySonic′n/a[f, . . . , f] over q queries.
We also note that there are total σ many f calls (taking corresponding F’s (X, T1, T2) triplet

14 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

as input) out of which q calls correspond to the domain separated last f calls in q queries.
Now, since each non-prefixed internal state (of n + a-bit) is sampled uniformly at random
using a random function, we have AdvPRF

BabySonic′
n/a

[f,...,f](A) ≤ (
(

σ−q
2
)

+
(

q
2
)
−
(

q
2
)
)/2n+a

where the subtracted term corresponds to the
(

q
2
)

pairs of input-tweak pairs that are the
first distinct input-tweak pairs in their corresponding queries (and hence there will be no
collisions among them). Or we have for 10 ≤ a ≤ min{n− 10, 11n/12},

AdvPRF
BabySonicn/a[F](A) ≤ ℓ · Advxrtk-prtfp

F (Bq) + (σ − q)2

2n+a+1 + 6σ

2n−a/2

and hence the result of Theorem 1.

5.2 SuperSonic: Proof of Theorem 2
We use the same definition of AdvPRF

Π (A) for a MAC Π as defined in Sec. 5.1.

Replacing F. We first replace FK2⊕T2(K1 ⊕ T1, ·) with a pair of independent ran-
dom tweakable permutations π0 = (πT1∥T2,0 ←$ Perm(n))T1∥T2∈{0,1}t+k and π1 =
(πT1∥T2,1 ←$ Perm(n))T1∥T2∈{0,1}t+k and let SuperSonic[(π0, π1)] denote the SuperSonic
mode that uses π0, π1 instead of F, which yields AdvPRF

SuperSonic[F](A) ≤ Advxrtk-prtfp
F (B) +

AdvPRF
SuperSonic[(π0,π1)](A) .

Now, the adversary is left with the goal of distinguishing between the games
PRF-realSuperSonic[(π0,π1)] and PRF-idealSuperSonic[(π0,π1)]. For simplicity, we denote these
games by “real world” and “ideal world”, respectively. Hence, we want to bound
AdvPRF

SuperSonic[(π0,π1)](A) =
∣∣Pr[APRF-realSuperSonic[(π0,π1)]]− Pr[APRF-idealSuperSonic[(π0,π1)]]

∣∣ .

We now recall the notation that for the ith query to the MAC oracle with input M i and
output Tagi, SuperSonic (with a provided integer e) first adds padding of 10∗ in the end
of M i and then internally processes the updated M i in blocks P i

1, . . . , P i
ℓi−1 (as defined

in the MAC algorithm of SuperSonic, Fig. 8). Here ℓi − 1 represents, the length of M i in
(n+t+k−e)-bit blocks. SuperSonic also processes and XORs the internal chaining values as
the accumulated randomness to its last primitive call which we denote here by (∆i

1, ∆i
2, ∆i

3)s
where ∆i

1, ∆i
2 and ∆i

3 correspond to the final chaining values used in (or XORed to) the final
primitive call’s input, tweak T1 and tweak T2, respectively. Let us denote the internally
processed π0 calls’ outputs as αi

js (corresponding to P i
j = M i

3j−2∥M i
3j−1∥M i

3j) then we
can define ∆s as ∆i

1 = ⊕ℓi−1
j=1 2ℓi−jαi

j , ∆i
2 = ⊕ℓi−1

j=1 (αi
j ⊕M3j−1) and ∆i

3 = ⊕ℓi−1
j=1 M3j . Let

us now define the bad events when the real world can be distinguished from the ideal
world.

BadT1 a.k.a. “Final Input Collision in Real-world”: There exists a pair of queries 1 ≤ i′ <
i ≤ q such that, the (i, ℓi) block call has tweak-input collision with the (i′, ℓi′) block
call, i.e., Ti

ℓi = Ti′

ℓi′ and ∆i
2 = ∆i′

2 .

BadT2 a.k.a. “Output Collision in Ideal-world”: There exists a pair of queries 1 ≤ i′ < i ≤ q
such that, they have same tag in the ideal-world and in real-world, the (i, ℓi) block
call has tweak collision with the (i′, ℓi′) block call given that the inputs to these calls
are distinct, i.e., in real world we have Ti

ℓi = Ti′

ℓi′ , ∆i
2 ̸= ∆i′

2 and in ideal world we
have (Tagi

1 = Tagi′

1) ∨ (Tagi
2 = Tagi′

2) .

Note that the last condition in BadT2 of ideal-world tag collision is independent of the
other two real-world conditions. Let us define BadT2r (resp., BadT2i) as BadT2 with the
ideal-world tag collision condition (resp., the other two real-world conditions) removed.

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 15

Now, it is easy to see that for Πss = SuperSonic[(π0, π1)] we have AdvPRF
Πss

(A)

≤Pr[BadT1] +
∣∣Pr[APRF-realΠss ∧ ¬BadT1]− Pr[APRF-idealΠss ∧ ¬BadT1]

∣∣
= Pr[BadT1] +

∣∣Pr[APRF-realΠss ∧ BadT2r]− Pr[APRF-idealΠss ∧ BadT2r]
∣∣

= Pr[BadT1] + Pr[BadT2r] ·
∣∣Pr[APRF-realΠss | BadT2r]− Pr[APRF-idealΠss | BadT2r]

∣∣
≤Pr[BadT1] + Pr[BadT2r] · Pr[BadT2i] = Pr[BadT1] + Pr[BadT2] . (2)

Distribution of ∆s. We can notice that ∆3s are deterministic and defined using public
input, however, the other two ∆ values are sampled using random tweakable permutations.
We now define the exhaustive set of possible cases on how these ∆s are sampled in the ith

query (for any 1 ≤ i ≤ q) to define an upper bound on their sampling probability.

1. For given ith query, if there exists at least 2 underlying block calls (each processing
input of size n + t + k − e bits) that contain unique input when compared with any
of the previous queries i′ < is: Clearly then there are at least two α values that are
fresh outputs of random permutations in both ∆1 and ∆2 equations and hence for
any c1, c2 ∈ {0, 1}n we have Pr[∆i

1 = c1 ∧∆i
2 = c2] = Pr[∆i

1 = c1] · Pr[∆i
2 = c2] ≤

1/(2n − q)2 .

2. For given ith query, if there exists only one underlying block call (processing input of
size n + t + k− e bits) that contains unique input when compared with some previous
query i′ < is: Now, there is only one α value that is fresh output of a random
permutation in both ∆1 and ∆2 equations and hence for any c1, c2 ∈ {0, 1}n we have
Pr[∆i

1 = c1∧∆i
2 = c2] = Pr[∆i

1 = c1] ·Pr[∆i
2 = c2 | ∆i

1 = c1] ≤ (1/(2n−q)) ·Pr[∆i
2 =

c2 | ∆i
1 = c1] .

Note that since query i and i′ share all except one block input, lets say ath one
(P i

a), we have that ∆i
1 ⊕ ∆i′

1 = 2ℓ−a(∆i
2 ⊕ ∆i′

2 ⊕ M i
3a−1 ⊕ M i′

3a−1)[1 . . . n] which
means if c1 = ∆i′

1 and c2 = ∆i′

2 then one of the following two always holds: 1.
∆i

3 ̸= ∆i′

3 and Pr[∆i
1 = c1 ∧ ∆i

2 = c2] ≤ (1/(2n − q)) · 1 = 1/(2n − q) . and 2.
∆i

3 = ∆i′

3 and Pr[∆i
1 = c1 ∧ ∆i

2 = c2] ≤ (1/(2n − q)) · 0 = 0 . Or in other words,
Pr[∆i

1 = ∆i′

1 ∧∆i
2 = ∆i′

2 ∧∆i
3 = ∆i′

3] = 0 .

Hence, we can say that for distinct messages Pr[∆i
1 = ∆i′

1 ∧ ∆i
2 = ∆i′

2 ∧ ∆i
3 = ∆i′

3] ≤
1/(2n − q)2 .

Bounding bad cases: BadT1. Note that under BadT1, we know that there exists at

least one pair of indices i′ < i such that Ti
ℓi = Ti′

ℓi′ and ∆i
2 = ∆i′

2 . Now, as analyzed above
we have that for all i′ < i, the two ∆ masks (∆i

1, ∆i
2) are sampled randomly such that

the required collisions can only occur with at most probability 2n−min{n,t−2}(1/(2n − q)2).
Since there are total q possible values of i in a session, each having no more than q possible
values of i′, we get Pr[BadT1] ≤ 2q2

2n+min{n,t−2} for q ≤ 2n−1 .

BadT2. Similarly, under BadT2, we know that there exists at least one pair of indices
i′ < i such that Ti

ℓi = Ti′

ℓi′ , ∆i
2 ̸= ∆i′

2 but (Tagi
1 = Tagi′

1) ∨ (Tagi
2 = Tagi′

2). Note that
from the same analysis as BadT1, the first collision of tweaks here can occur with at
most probability of 2n−min{n,t−2}/(2n − q) and further the tags in the ideal world are
chosen independently and uniformly at random. Since there are total q possible values
of i in a session, each having no more than q possible values of i′, we get Pr[BadT2] ≤
q2

2 ·
2

2min{n,t−2}

(1
2n + 1

2n

)
= 2q2

2n+min{n,t−2} for q ≤ 2n−1 .

Now, combining with Exp. 2, we get that AdvPRF
SuperSonic[(π0,π1)](A) ≤ 4·q2

2n+min{n,t−2} (we
drop the condition q ≤ 2n−1 as for q > 2n−1, this bound anyway becomes void) and hence
the result of Theorem 2.

16 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

5.3 DarkSonic: Proof of Theorem 3

Coefficient H Technique. The coefficient H is a simple but powerful proof technique by
Patarin [36]. It is often used to prove indistinguishability of a provided construction from
an idealized object for an information-theoretic adversary. Coefficient-H based proofs use
the concept of “transcripts”. A transcript is defined as a complete record of the interaction
of an adversary A with its oracles in the indistinguishability experiment. For example,
if (Mi, Ti) represents the input and output of the i-th query of A to its oracle and the
total number of queries made by A is q then the corresponding transcript (denoted by τ)
is defined as τ = ⟨(M1, T1), . . . , (Mq, Tq)⟩. The goal of an adversary A is to distinguish
interactions in the real world Oreal from the ones in ideal world Oideal.

We denote the distribution of transcripts in the real and the ideal world by Θreal and
Θideal, respectively. We call a transcript τ attainable if the probability of achieving τ in
the ideal world is non-zero. Further, w.l.o.g. we also assume that A does not make any
duplicate or prohibited queries. We can now state the fundamental Lemma of coefficient H
technique.

Lemma 1 (Fundamental Lemma of the coefficient H Technique [36]). Consider that
the set of attainable transcripts is partitioned into two disjoint sets Tgood and Tbad. Also,
assume there exist ϵ1, ϵ2 ≥ 0 such that for any transcript τ ∈ Tgood, we have Pr[Θreal=τ]

Pr[Θideal=τ] ≥
1− ϵ1, and Pr[Θideal ∈ Tbad] ≤ ϵ2. Then, for all adversaries A, it holds that

|Pr[AOreal]− Pr[AOideal]| ≤ ϵ1 + ϵ2.

5.3.1 Proof of Theorem 3

We use the same definition of AdvPRF
Π (A) for a MAC Π as defined in Sec. 5.1.

Replacing F. We first replace FK2⊕T2(K1 ⊕ T1, ·) with a pair of independent ran-
dom tweakable permutations π0 = (πT1∥T2,0 ←$ Perm(n))T1∥T2∈{0,1}t+k and π1 =
(πT1∥T2,1 ←$ Perm(n))T1∥T2∈{0,1}t+k and let DarkSonic[(π0, π1)] denote the DarkSonic
mode that uses π0, π1 instead of F, which yields AdvPRF

DarkSonic[F](A) ≤ Advxrtk-prtfp
F (B) +

AdvPRF
DarkSonic[(π0,π1)](A) .

Now, the adversary is left with the goal of distinguishing between the games
PRF-realDarkSonic[(π0,π1)] and PRF-idealDarkSonic[(π0,π1)]. For simplicity, we denote these
games by “real world” and “ideal world”, respectively. Hence, we want to bound
AdvPRF

DarkSonic[(π0,π1)](A) =
∣∣Pr[APRF-realDarkSonic[(π0,π1)]]− Pr[APRF-idealDarkSonic[(π0,π1)]]

∣∣ .

Transcripts. Following the coefficients H technique [36], we describe the interactions of
A with its oracles in a transcript:

τ = ⟨(M i, Tagi)q
i=1⟩

For the ith query to the MAC oracle with input M i (inc. nonce N i as M i
1) and output

Tagi, DarkSonic first adds necessary padding of 10∗ in the end of M i and then internally
processes the updated M i in blocks P i

1, . . . , P i
ℓi−1, P i

∗ (as defined in the MAC algorithm of
DarkSonic, Fig. 8). Here ℓi − 1 represents, the length of M i in (n + t + k − 2)-bit blocks.
DarkSonic also processes internal chaining values defined using underlying permutation
calls π0s which we denote here by ∆i,js. Here (i, j) represents the jth primitive call under
the ith message query. We note that the first and the last primitive call in every query
require both permutation calls (π0, π1) internally and hence generate an extra ∆ value
each (from their π1 permutation calls) which we denote by ∆i,0 and ∆i,ℓi+1, respectively.
Now, the final non-shortened/full 2n-bit tag value of Tagi can be written as ∆i,ℓi∥∆i,ℓi+1.

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 17

Additional information. To make the proof analysis simple, we additionally provide
the adversary with all the chaining values ∆i,js for 0 ≤ j ≤ ℓi + 1 when it has made all its
queries and only the final response is pending.

In the real world, all of these ∆ variables are internally computed by the MAC oracle
that faithfully evaluates DarkSonic. However, in the ideal world, the underlying oracle
does not make any computations, and hence ∆i,js are not defined. We therefore have to
define the sampling of these variables which will be done at the end of the experiment
(and thus have no effect on the adversarial queries).

We sample each of the ∆i,js with 1 ≤ j ≤ ℓi uniformly and independently at random,
except

1. when such a value is trivially defined due to a “common prefix” with a previous
query i.e. when j ≤ llcpn+k+t−2(M i, M i′) for some i′ < i. To simplify the notations
further, we let llcpn+k+t−2(i) denote max1≤i′<i llcpn+k+t−2(M i, M i′). Hence, a
primitive query (i, j) will be considered as “prefixed-delta” if j ≤ llcpn+k+t−2(i).

2. when such a value is the output of the first fresh primitive call of the query with
old/repeating message in the tweak part i.e. when j = llcpn+k+t−2(i) + 1 and
(M i⊕M i′)[(j−1)(n+t+k−2)+n+1 . . . (j−1)(n+t+k−2)+n+k+t−2] = 0k+t−2

for some i′ < i. In such cases, we sample ∆i,js randomly from space {0, 1}n but
without replacement (like a random permutation) i.e. if there are x many previous
queries i′ < is satisfying the above requirement then ∆i,js are sampled randomly
with probability 1/(2n − x) from the space {0, 1}n with excluding all x many ∆i′,js.

Further, we sample ∆i,0 (and ∆i,ℓi+1) identically to ∆i,1 (and ∆i,ℓi) but with redefining
the sampling excluded set using previous x many ∆i′,0 (and ∆i′,ℓi′

+1) values, respectively.
Clearly, this give away of additional information can only help the adversary by increasing
its advantage and hence can be considered here for upper bounding the targeted (above
mentioned) adversarial advantage.
Extended transcripts. With the defined additional information to the adversary, we
can now re-define the extended transcripts as

τ =
〈((

P i
j

)ℓi

j=1 ,
(
∆i,j

)ℓi+1
j=0

)q

i=1

〉
where P i

ℓi
= P i

∗.
Coefficient-H. Let us represent the distribution of the transcript in the real world and
the ideal world by Θre and Θid, respectively.

The proof relies on the fundamental lemma of the coefficient H technique as defined in
Lemma 1 above. We say an attainable transcript τ is bad if one of the following conditions
occurs:

BadT1 a.k.a. “Input Collision”: There exists (i′, j′) < (i, j) with (j′ > llcpn+k+t−2(i′)) ∧
(j > llcpn+k+t−2(i)), 1 ≤ j ≤ ℓi, 1 ≤ j′ ≤ ℓi′ and max{j, j′} ̸= 1 such that, the
(i, j)th primitive call has tweak-input collision with the (i′, j′)th primitive call, i.e.
for z = min{n, t− 2}

1. with (j ̸∈ {1, ℓi} ∧ j′ ̸∈ {1, ℓi′}) ∨ (j = ℓi ∧ j′ = ℓi′), P i
j ⊕ P i′

j′ = (∆i,j−2 ⊕
∆i′,j′−2)∥(∆i,j−1 ⊕∆i′,j′−1)[1 . . . z]∥0k+t−2−z

2. or with j = 1 ∧ j′ ̸∈ {1, ℓi′}, P i
j ⊕ P i′

j′ = ∆i′,j′−2∥∆i′,j′−1[1 . . . z]∥0k+t−2−z

3. or with j ̸∈ {1, ℓi} ∧ j′ = 1, P i
j ⊕ P i′

j′ = ∆i,j−2∥∆i,j−1[1 . . . z]∥0k+t−2−z

18 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

BadT2 a.k.a. “Output Collision”: There exists (i′, j′) < (i, j) with (j′ > llcpn+k+t−2(i′))∧
(j > llcpn+k+t−2(i)), 1 ≤ j ≤ ℓi, 1 ≤ j′ ≤ ℓi′ and max{j, j′} ̸= 1 such that, the
(i, j)th primitive call has tweak-output collisions with the (i′, j′)th primitive call given
that the inputs to these calls are distinct, i.e. for z = min{n, t− 2}

1. with (j ̸∈ {1, ℓi}∧j′ ̸= 1)∨(j = ℓi∧j′ ̸∈ {1, ℓi′}), (P i
j⊕P i′

j′)[n+1 . . . n+k+t−2] =
(∆i,j−1 ⊕∆i′,j′−1)[1 . . . z]∥0k+t−2−z, (P i

j ⊕ P i′

j′)[1 . . . n] ̸= ∆i,j−2 ⊕∆i′,j′−2 and
∆i,j = ∆i′,j′

3. or with j ̸∈ {1, ℓi} ∧ j′ = 1, (P i
j ⊕ P i′

j′)[n + 1 . . . n + k + t − 2] =
∆i,j−1[1 . . . z]∥0k+t−2−z, (P i

j ⊕ P i′

j′)[1 . . . n] ̸= ∆i,j−2 and ∆i,j = ∆i′,j′

3. or with j = 1 ∧ j′ ̸∈ {1, ℓi′}, (P i
j ⊕ P i′

j′)[n + 1 . . . n + k + t − 2] =
∆i′,j′−1[1 . . . z]∥0k+t−2−z, (P i

j ⊕ P i′

j′)[1 . . . n] ̸= ∆i′,j′−2 and ∆i,j = ∆i′,j′

4. or with j = ℓi ∧ j′ = ℓi′ , (P i
j ⊕ P i′

j′)[n + 1 . . . n + k + t − 2] = (∆i,j−1 ⊕
∆i′,j′−1)[1 . . . z]∥0k+t−2−z, (P i

j ⊕ P i′

j′)[1 . . . n] ̸= ∆i,j−2 ⊕∆i′,j′−2 and (∆i,j =
∆i′,j′ ∨∆i,j+1 = ∆i′,j′+1)

We note that these collisions cannot occur in the real world where the tags are generated
using permutation but they can still occur in the ideal world. We also note that for
the missing possible cases of (j, j′) here, the targeted tweak-input (or tweak-output,
respectively) pairs of any primitive query pairs are always distinct (due to tweak T1’s
domain separating last two bits or both primitive queries being the first fresh primitive
queries of their corresponding messages) and thus are trivially excluded from the bad
cases BadT1 (or BadT2, respectively). We denote by Tbad, the set of “bad” transcripts
that is defined as the subset of attainable transcripts for which the transcript predicate
BadT(τ) = (BadT1(τ) ∨ BadT2(τ)) = 1. We denote by Tgood, the set of attainable
transcripts which are not in the set Tbad.

Lemma 2. For Tbad above, we have

Pr[Θid ∈ Tbad] ≤ 6(σ − q)2

2n+min{n,t−2} + 2q(µ− 1)
2min{n,t−2} .

Lemma 3. Let τ ∈ Tgood i.e. τ is a good transcript. Then Pr[Θre=τ]
Pr[Θid=τ] ≥ 1 .

With the well-defined bad events, both lemmas can be proved using standard probability
analysis. We defer the proof of Lemma 2 and 3 to Appendix A.

Combining the results of Lemma 2 and 3 (taking ϵ1 = 0) into Lemma 1, we obtain the
upper bound AdvPRF

DarkSonic[(π0,π1)](A) ≤ 6(σ−q)2

2n+min{n,t−2} + 2q(µ−1)
2min{n,t−2} and hence the result of

Theorem 3.

6 SonicAE: SuperSonic based deterministic AE
Following PMAC2x based SIVx [32] and ZMAC based ZAE [27], we also use SuperSonic
to construct a stateless or deterministic authenticated encryption (DAE) [41] scheme. A
DAE is an AE scheme whose security does not rely on additional inputs such as random
IVs or nonces. We refer the reader to [41] for more details on DAE syntax and security
(known as dae). We note that a DAE scheme with dae security can also take a nonce
input as part of the associated data (AD) and hence by definition provides security against
nonce-misuse. Such schemes and achieved security are known as misuse resistant AEs
(MRAEs) and mrae, respectively.

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 19

As a result, we provide SonicAE, an SIV [41]-like composition of SuperSonic MAC and
GCTR′2-3 encryption mode as shown in Fig. 6. Here GCTR′2-3 is defined as GCTR2-3 [2]
mode but with two changes; 1. tweak domain separated from SuperSonic by fixing the last
two tweak-bits to 10 and 2. nonce input replaced by the second half of 2n-bit Tag value.

SonicAE is a dae-secure scheme that provides beyond birthday security of min{n, (n +
t)/2} bits (see Theorem 4) and processes on average 2n(n + t + k)/(3n + t + k) bits per FC
call. We note that for the least settings of t and k i.e. t = 0 and k = n, we get a processing
rate of n bits per FC call which is same as the existing FC-based AE schemes [6] PAEF,
SAEF and RPAEF, however unlike them SonicAE provides stronger security guarantee of
dae. On the other hand, for higher settings when one increases t and/or k, the processing
rate of SonicAE moves towards 2n bits per FC call which is really high and better when
compared with the SotA AE schemes ZAE and Deoxys-II [29].

For concrete improvements, we provide in Fig. 7 and Table 3, a comparison of SonicAE
with other SotA AEs - ZAE, Deoxys-I [29], Deoxys-II, OCB3 [30], SIV [41] and CCM [43]
where all FCs and TBCs are instantiated with ForkSkinny and SKINNY, respectively. For
the same, we set AD length to 0 to obtain a conservative prediction of speedup, seeing as
increasing the AD length improves the performance of SonicAE.

Figure 6: The SonicAE AEAD mode. The picture illustrates the processing of arbitrary length associated
data AD and message M using the MAC mode SuperSonic and encryption mode GCTR′

2-3 with key K.

64

1064

2064

3064

4064

5064

6064

16 116 216 316 416 516 616 716 816 916 1016

of

ro
un

ds
 re

qu
ire

d
to

 p
or

ce
ss

Message length (in bytes)

CCM, SIV OCB3, Deoxys-I Deoxys-II ZAE SonicAE

Figure 7: Efficiency comparison of SonicAE (defined as the SIV composition of SuperSonic and GCTR′
2-3)

with other SotA AEs under setting n = k = 128 bits. All TBCs and FCs are instantiated with SKINNY
and ForkSkinny, respectively. The plot shows the number of rounds that are required to process a message
of corresponding length.

Clearly, from Fig. 7 and Table 3 we can infer that SonicAE performs significantly better
than the SotA AEs that provide some level of nonce-misuse (mrae) security. In particular,
SonicAE[ForkSkinny] gains a speed-up of at least factor 1.41x and 1.32x against existing
MRAE schemes ZAE[SKINNY] and Deoxys-II[SKINNY] under k = 128, t = n ∈ {64, 128}
for small queries of size 95B and large queries up to 64KB, respectively.

20 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

Table 3: Efficiency comparison of SonicAE (instantiated with ForkSkinny) against the SotA AE modes
(instantiated with SKINNY) under settings k = 128 bits, n ∈ {64, 128} bits and t ∈ {0, n} depending on
the need of the compared AE mode. The entries in this table show the ratio of number of rounds required
by the corresponding SotA AE mode and by SonicAE (under same values of n, t and k) to process a
message of the given maximum length. Here green and red cells represent settings where SonicAE is better
and worse than the compared mode, respectively.

AE → ZAE Deoxys-II OCB3, Deoxys-I CCM, SIV

Block size n (in bits) → 64 128 64 128 64 128 64 128

IT nAE Security (in bits) → 64 128 64 128 32, 64 64, 128 32 64

IT MRAE Security (in bits) → 64 128 <64 <128 NIL NIL NIL, 32 NIL, 64

Max. message length SonicAE speed-up/slow-down (in multiplicative factors) against the mode

16B 2.41x 1.94x 1.20x 0.73x 0.72x 0.48x 1.30x 0.81x

95B 1.56x 1.73x 1.56x 1.41x 0.81x 0.76x 1.46x 1.26x

4KB 1.33x 1.35x 1.74x 1.77x 0.87x 0.88x 1.57x 1.47x

64KB 1.32x 1.34x 1.75x 1.78x 0.87x 0.89x 1.57x 1.48x

Security of SonicAE. We state the formal claim about the dae security of SonicAE in
Theorem 4 and defer its proof to Appendix B.
Theorem 4. Let F be a tweakable expanding primitive with T = {0, 1}t. Then for any
adversary A who makes at most q queries to the SonicAE such that the total number of
primitive calls induced by all the queries is at most σ, we have Advdae

SonicAE[F](A)

≤ Advxrtk-prtfp
F (B) + 3q(σ + q)

2n+min{n,t−2} + q

22n

for some adversary B, making at most σ queries, and running in time given by the running
time of A plus γ · σ where γ is the runtime of an F call in the model of computation.

7 Conclusion
We proposed Sonikku family consisting of two sequential MACs BabySonic and DarkSonic,
and one fully parallelizable MAC SuperSonic. BabySonic outperforms ZMAC in applications
where parallelization is not available and small footprint is desired. It is also overall the
best MAC choice for small queries in terms of both security and efficiency as it does not
have pre- or post-processing overhead. It also comes with “optimal” state size. BabySonic
gains a speed-up of at least 2.11x (and up to 4.36x) against ZMAC with n = t = k = 128
for queries of size 95B or smaller.

When compared against BabySonic, DarkSonic improves its security level and perfor-
mance by a reasonably large margin with the use of only one primitive leg for most of the
processing, and adding one pre-processing call for the mandatory nonce. Even when the
nonce is repeated, DarkSonic provides security that only degrades logarithmically with the
number of nonce repetitions.

Finally, SuperSonic comes with security that is message length independent and has no
nonce requirement. The design is fully parallelizable and offers comparable performance
to DarkSonic when run sequentially at the cost of a relatively large state size. DarkSonic
and SuperSonic gain a speed-up of at least 1.93x and 1.48x against ZMAC with k = 128,
t = n ∈ {64, 128} for small queries of size 95B (or smaller) and large queries up to 64KB,
respectively.

Acknowledgments
This work was supported by CyberSecurity Research Flanders with reference number
VR20192203. This work was supported in part by the Research Council KU Leuven C1 on

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 21

Security and Privacy for Cyber-Physical Systems and the Internet of Things with contract
number C16/15/058 and by the Flemish Government through FWO Project G.0835.16 A
security Architecture for IoT.

References
[1] BRICK Radio Remote Control. 2018. https://www.controldevices.group/PDFS/

TER/TER%20Brick%20Radio%20Remote%20Control%20Data%20Sheet.pdf.

[2] Elena Andreeva, Amit Singh Bhati, Bart Preneel, and Damian Vizár. 1, 2, 3, Fork:
Counter Mode Variants based on a Generalized Forkcipher. IACR Trans. Symmetric
Cryptol., 2021(3):1–35, 2021.

[3] Elena Andreeva, Amit Singh Bhati, and Damian Vizár. Nonce-misuse security of
the SAEF authenticated encryption mode. In Selected Areas in Cryptography: 27th
International Conference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020,
Revised Selected Papers 27, pages 512–534. Springer, 2021.

[4] Elena Andreeva, Benoit Cogliati, Virginie Lallemand, Marine Minier, Antoon Purnal,
and Arnab Roy. Masked Iterate-Fork-Iterate: A new Design Paradigm for Tweakable
Expanding Pseudorandom Function. In 22nd International Conference on Applied
Cryptography and Network Security, 2024.

[5] Elena Andreeva, Arne Deprez, Jowan Pittevils, Arnab Roy, Amit Singh Bhati, and
Damian Vizár. New results and insighs on forkae. In NIST LWC workshop, 2020.

[6] Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab Roy,
and Damian Vizár. Forkcipher: a New Primitive for Authenticated Encryption of
Very Short Messages. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 153–182. Springer, 2019.

[7] Elena Andreeva and Andreas Weninger. A forkcipher-based pseudo-random number
generator. In International Conference on Applied Cryptography and Network Security,
pages 3–31. Springer, 2023.

[8] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block
ciphers and its low-latency variant MANTIS. In Annual International Cryptology
Conference, pages 123–153. Springer, 2016.

[9] Mihir Bellare, Oded Goldreich, and Shafi Goldwasser. Incremental Cryptography:
The Case of Hashing and Signing. In Yvo G. Desmedt, editor, Advances in Cryptology

— CRYPTO ’94, pages 216–233, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[10] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks:
RKA-PRPs, RKA-PRFs, and applications. In International Conference on the Theory
and Applications of Cryptographic Techniques, pages 491–506. Springer, 2003.

[11] Francesco Berti, François-Xavier Standaert, and Itamar Levi. Authenticity in the
presence of leakage using a forkcipher. Cryptology ePrint Archive, Paper 2024/1325,
2024.

[12] Karthikeyan Bhargavan and Gaëtan Leurent. On the Practical (In-)Security of 64-Bit
Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security, CCS
’16, page 456–467, New York, NY, USA, 2016. Association for Computing Machinery.

https://www.controldevices.group/PDFS/TER/TER%20Brick%20Radio%20Remote%20Control%20Data%20Sheet.pdf
https://www.controldevices.group/PDFS/TER/TER%20Brick%20Radio%20Remote%20Control%20Data%20Sheet.pdf

22 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

[13] Amit Singh Bhati, Elena Andreeva, and Damian Vizár. OAE-RUP: a strong online
AEAD security notion and its application to SAEF. In International Conference on
Security and Cryptography for Networks, pages 117–139. Springer, 2024.

[14] Amit Singh Bhati, Antonín Dufka, Elena Andreeva, Arnab Roy, and Bart Preneel.
Skye: An Expanding PRF based Fast KDF and its Applications. In Proceedings of
the 19th ACM Asia Conference on Computer and Communications Security, pages
1082–1098, 2024.

[15] Amit Singh Bhati, Erik Pohle, Aysajan Abidin, Elena Andreeva, and Bart Preneel.
Let’s Go Eevee! A Friendly and Suitable Family of AEAD Modes for IoT-to-Cloud
Secure Computation. In Proceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pages 2546–2560, 2023.

[16] Amit Singh Bhati, Michiel Verbauwhede, and Elena Andreeva. Breaking, Repairing
and Enhancing XCBv2 into the Tweakable Enciphering Mode GEM. Cryptology
ePrint Archive, 2024. https://eprint.iacr.org/2024/1554.

[17] John Black and Phillip Rogaway. A Block-Cipher Mode of Operation for Parallelizable
Message Authentication. In EUROCRYPT 2002, pages 384–397, 2002.

[18] Benoît Cogliati, Jooyoung Lee, and Yannick Seurin. New Constructions of MACs
from (Tweakable) Block Ciphers. IACR Transactions on Symmetric Cryptology,
2017(2):27–58, 2017.

[19] Nilanjan Datta, Avijit Dutta, Eik List, and Sougata Mandal. FEDT: Forkcipher-based
leakage-resilient beyond-birthday-secure AE. IACR Communications in Cryptology,
1(2), 2024.

[20] Nilanjan Datta, Avijit Dutta, and Cuauhtemoc Mancillas-López. LightMAC: Fork it
and make it faster. Advances in Mathematics of Communications, 18(5):1406–1441,
2024.

[21] Nilanjan Datta, Avijit Dutta, Mridul Nandi, Goutam Paul, and Liting Zhang. Single
key variant of PMAC_Plus. IACR Transactions on Symmetric Cryptology, pages
268–305, 2017.

[22] Xiaoyang Dong, Lingyue Qin, Siwei Sun, and Xiaoyun Wang. Key guessing strategies
for linear key-schedule algorithms in rectangle attacks. In Advances in Cryptology–
EUROCRYPT 2022: 41st Annual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, Trondheim, Norway, May 30–June 3, 2022,
Proceedings, Part III, pages 3–33. Springer, 2022.

[23] Avijit Dutta, Jian Guo, and Eik List. Forking Sums of Permutations for Optimally
Secure and Highly Efficient PRFs. Cryptology ePrint Archive, 2022.

[24] Peter Gaži, Krzysztof Pietrzak, and Michal Rybár. The exact prf-security of nmac
and hmac. Cryptology ePrint Archive, Paper 2014/578, 2014. https://eprint.iacr.
org/2014/578.

[25] Aldo Gunsing and Bart Mennink. The Summation-Truncation Hybrid: Reusing
Discarded Bits for Free. In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology – CRYPTO 2020, pages 187–217, Cham, 2020. Springer
International Publishing.

[26] Tetsu Iwata and Kaoru Kurosawa. OMAC: One-Key CBC MAC. In Thomas Johansson,
editor, Fast Software Encryption, pages 129–153, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

https://eprint.iacr.org/2024/1554
https://eprint.iacr.org/2014/578
https://eprint.iacr.org/2014/578

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 23

[27] Tetsu Iwata, Kazuhiko Minematsu, Thomas Peyrin, and Yannick Seurin. ZMAC: a
fast tweakable block cipher mode for highly secure message authentication. In Annual
international cryptology conference, pages 34–65. Springer, 2017.

[28] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Tweaks and keys for block ciphers: the
TWEAKEY framework. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 274–288. Springer, 2014.

[29] Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin. Deoxys v1.41, 2016.
https://competitions.cr.yp.to/round3/deoxysv141.pdf.

[30] Ted Krovetz and Phillip Rogaway. The Software Performance of Authenticated-
Encryption Modes. In Antoine Joux, editor, Fast Software Encryption, pages 306–327,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[31] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable Block Ciphers. In
CRYPTO 2002, pages 31–46, 2002.

[32] Eik List and Mridul Nandi. Revisiting full-PRF-secure PMAC and using it for beyond-
birthday authenticated encryption. In Cryptographers’ Track at the RSA Conference,
pages 258–274. Springer, 2017.

[33] Guozhen Liu, Mohona Ghosh, and Ling Song. Security analysis of SKINNY under
related-tweakey settings. Cryptology ePrint Archive, 2016.

[34] Atul Luykx, Bart Preneel, Elmar Tischhauser, and Kan Yasuda. A MAC mode for
lightweight block ciphers. In International Conference on Fast Software Encryption,
pages 43–59. Springer, 2016.

[35] Yusuke Naito. Full PRF-secure message authentication code based on tweakable block
cipher. In International Conference on Provable Security, pages 167–182. Springer,
2015.

[36] Jacques Patarin. The “Coefficients H” Technique, page 328–345. Springer-Verlag,
Berlin, Heidelberg, 2009.

[37] Trevor Perrin. The Noise protocol framework. 2016. noiseprotocol.org.

[38] Antoon Purnal, Elena Andreeva, Arnab Roy, and Damian Vizár. What the Fork:
Implementation Aspects of a Forkcipher. In NIST Lightweight Cryptography Workshop
2019, 2019.

[39] Lingyue Qin, Xiaoyang Dong, Xiaoyun Wang, Keting Jia, and Yunwen Liu. Automated
Search Oriented to Key Recovery on Ciphers with Linear Key Schedule. IACR
Transactions on Symmetric Cryptology, pages 249–291, 2021.

[40] Phillip Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In Pil Joong Lee, editor, ASIACRYPT 2004, volume
3329 of LNCS, pages 16–31. Springer, 2004.

[41] Phillip Rogaway and Thomas Shrimpton. A provable-security treatment of the key-
wrap problem. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 373–390. Springer, 2006.

[42] Soliton. Teleoperation of Remote Machinery. https://www.solitonsystems.com/
low-latency-video/remote-operation/remote-operation-of-machinery.

[43] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC (CCM). IETF
RFC 3610 (Informational), September 2003.

https://competitions.cr.yp.to/round3/deoxysv141.pdf
noiseprotocol.org
https://www.solitonsystems.com/low-latency-video/remote-operation/remote-operation-of-machinery
https://www.solitonsystems.com/low-latency-video/remote-operation/remote-operation-of-machinery

24 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

[44] Kan Yasuda. The sum of CBC MACs is a secure PRF. In Cryptographers’ Track at
the RSA Conference, pages 366–381. Springer, 2010.

[45] Kan Yasuda. A new variant of PMAC: beyond the birthday bound. In Annual
Cryptology Conference, pages 596–609. Springer, 2011.

[46] YOURCONTROL. The Proxo Wireless Remote Control System. https://
your-control.com/proxo/.

[47] Boxin Zhao, Xiaoyang Dong, Willi Meier, Keting Jia, and Gaoli Wang. Generalized
related-key rectangle attacks on block ciphers with linear key schedule: applications
to SKINNY and GIFT. Designs, Codes and Cryptography, 88(6):1103–1126, 2020.

A Omitted Lemma Proofs
A.1 Proof of Lemma 2

Proof. BadT1. For any transcript in Tbad with BadT1 set to 1, we know that there exists
(i′, j′) < (i, j) with (j′ > llcpn+k+t−2(i′)) ∧ (j > llcpn+k+t−2(i)), 1 ≤ j ≤ ℓi, 1 ≤ j′ ≤ ℓi′

and max{j, j′} ≠ 1 such that, one of the three statements of BadT1 (as defined above)
holds.

Note that under any of these statements, we have the following cases for the mentioned
∆s (being ∆i,j−1, ∆i′,j′−1, ∆i,j−2 or ∆i′,j′−2).

I. When j = j′ = llcpn+k+t−2(M i, M i′) + 1: ∆i,j−1 = ∆i′,j′−1 and ∆i,j−2 = ∆i′,j′−2.
However, the message parts P i

j ̸= P i′

j′ and therefore, any of the targeted BadT1
collisions can occur here with probability 0.

II. When j = j′ = llcpn+k+t−2(M i, M i′) + 2 > 2: ∆i,j−2 = ∆i′,j′−2. However, ∆i,j−1

and ∆i′,j′−1 (if defined) are fresh and chosen uniformly at random from a subspace
of {0, 1}n with probability at most (1/(2n − q)) each. This implies that any of the
targeted BadT1 collisions can occur here with probability ≤ 2n−z/(2n − q).

III. Otherwise: all mentioned ∆s here are relatively fresh which means in the ideal
world, each one of these ∆s even when fixing the rest three, is chosen uniformly at
random from a subspace of {0, 1}n with probability at most (1/(2n − q)) each (“at
most” because for message queries, the very first fresh ∆s are chosen using a random
permutation or a random permutation pair without replacement). Hence, any of the
targeted BadT1 collisions can occur here with probability ≤ 2n−z/(2n − q)2.

Now, since there are total of q many message queries containing σ ≥ 2q many total
primitive calls, we have at most

(
σ−q

2
)

many (among all except last primitive calls) and(
q
2
)

many (among the last primitive calls) possible pairs of (i′, j′) < (i, j) satisfying all the
three statements of BadT1. Out of these,

(
q
2
)

and at most
(

q
1
)(

µ−1
1
)

pairs satisfy the above
conditions I and II, respectively where µ denotes the maximum number of times a nonce
N can repeat over q queries. With this, we get under q ≤ 2n−1, Pr[BadT1(Θid) = 1] ≤
(σ−q

2)+(q
2)−(q

2)−q(µ−1)
2n+z−2 + q(µ−1)

2z−1 ≤ (σ−q)2

2n+z−1 + q(µ−1)
2z−1 .

BadT2. Similarly, for any transcript in Tbad with BadT2 set to 1, we know that there exists
(i′, j′) < (i, j) with (j′ > llcpn+k+t−2(i′)) ∧ (j > llcpn+k+t−2(i)), 1 ≤ j ≤ ℓi, 1 ≤ j′ ≤ ℓi′

and max{j, j′} ≠ 1 such that, one of the four statements of BadT2 (as defined above)
holds.

Note that under any of these statements, we have the following cases for the mentioned
∆s (being ∆i,j−1, ∆i′,j′−1, ∆i,j , ∆i′,j′∆i,j+1 or ∆i′,j′+1).

https://your-control.com/proxo/
https://your-control.com/proxo/

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 25

I. When j = j′ = llcpn+k+t−2(M i, M i′) + 1: Here distinct inputs with same tweak
imply that ∆i,j ̸= ∆i′,j′ (and additionally when j = ℓi = ℓi′ , ∆i,j+1 ̸= ∆i′,j′+1) and
therefore, any of the targeted BadT2 collisions can occur here with probability 0.

II. Otherwise: all mentioned ∆s here are relatively fresh which means in the ideal world,
each one of these ∆s even when fixing the rest five, is chosen uniformly at random
from a subspace of {0, 1}n with probability at most (1/(2n − q)) each. Hence, any of
the targeted BadT2 collisions can occur with probability ≤ 2n−z · (2/(2n − q)2).

Now, since there are total of q many message queries containing σ many total primitive calls,
we have at most

(
σ−q

2
)

many (among all except last primitive calls) and
(

q
2
)

many (among
the last primitive calls) possible pairs of (i′, j′) < (i, j) satisfying the four statements.
Out of these,

(
q
2
)

pairs satisfy the above conditions I. Hence, we get under q ≤ 2n−1,
Pr[BadT2(Θid) = 1] ≤ (σ−q

2)+(q
2)−(q

2)
2n+z−3 ≤ 2(σ−q)2

2n+z−1 .

Thus, we obtain by the union bound that Pr[Θid ∈ Tbad] ≤ 6(σ−q)2

2n+min{n,t−2} + 2q(µ−1)
2min{n,t−2} .

A.2 Proof of Lemma 3
Proof. Note that a good transcript has the following property that for each (i′, j′) < (i, j)
if the permutation pairs have same tweaks (i.e. the T1∥T2 part) then these pairs will
always have different inputs and different outputs.

The probability to obtain a good transcript τ in the real and the ideal worlds can
now be computed. Let x denote the number of total permutation queries (π0 and π1 are
considered two different queries) that return prefixed-deltas (i.e. queries that output some
repeated old ∆s within τ due to sharing a common prefix in their corresponding message
with some previously queried message) over all σ + 2q permutation calls. Let yT′ and y′T′

denote the number of permutation queries (i, j, b)s that share a same tweak T1∥T2∥b as
T′ (for some T′ ∈ {0, 1}t+k+1) over all σ + 2q permutation calls that return no prefixed
deltas and over just the first fresh primitive (can be a permutation or a pair of them) calls,
respectively. Here b ∈ {0, 1} is a bit defining the index of permutation πb. Also, let us
denote the set of all distinct tweaks used in a session of σ + 2q permutation queries and
just the first fresh primitive queries as Ttotal and Tfirst, respectively. Clearly, with this, we
can say

∑
T′∈Ttotal

yT′ = σ + 2q − x and yT′ ≥ y′T′ .
Since in the ideal world, all these non-prefixed ∆s are sampled uniformly and indepen-

dently at random except when they are the outputs of the first fresh primitive query of
their messages and are sampled using a random permutation (or a pair of these), we get for
g =

∑
T′∈Tfirst

y′T′ , Pr[Θid = τ] = (1x ·(1/2n)(σ+2q−x)−g ·(
∏

T′∈Tfirst
1/(2n)y′

T′
)). On the other

hand, in the real world these entities are computed using random tweaked permutations
for similar queries which gives Pr[Θre = τ] = (1x · (

∏
T′∈Ttotal

1/(2n)yT′)) and consequently

Pr[Θre = τ]
Pr[Θid = τ] =

(
2n((σ+2q−x)−g) ·

∏
T′∈Tfirst

(2n)y′
T′∏

T′∈Ttotal
(2n)yT′

)

=

(∏
T′∈Ttotal

(2n)yT′ ·
∏

T′∈Tfirst
(2n)y′

T′∏
T′∈Tfirst

(2n)y′
T′ ·
∏

T′∈Ttotal
(2n)yT′

)

=


∏

T′∈Ttotal

(2n)yT′

(2n)yT′∏
T′∈Tfirst

(2n)
y′

T′

(2n)y′
T′

 ≥ 1 .

We note that the last inequality holds here because yT′ ≥ y′T′ and Tfirst ⊆ Ttotal.

26 Sonikku: Gotta Speed, Keed! A Family of Fast and Secure MACs

B Proof of Theorem 4

Proof of Theorem 4. We provide the proof for the information-theoretic (IT) security of
SonicAE[(π0, π1)] where (π0, π1) is a pair of independent random tweakable permutations
π0 = (πT1∥T2,0 ←$ Perm(n))T1∥T2∈{0,1}t+k and π1 = (πT1∥T2,1 ←$ Perm(n))T1∥T2∈{0,1}t+k

replacing F in SonicAE (then from there, the proof for the computational counterpart is
standard and straightforward). The proof of IT security of SonicAE follows as a corollary
from Theorem 2 and the following two results derived in order from [41, Theorem 2]
and [2, GCTR2-3 proof and App. B.2], respectively: there exists an adversary A′ attacking
SuperSonic and an adversary A′′ attacking GCTR′2-3, both making at most q queries such
that the total number of primitive calls induced is at most σ and we have

Advdae
SonicAE[(π0,π1)](A) ≤ Advprf

SuperSonic[(π0,π1)](A
′) +

q

22n
+ Advive

GCTR′
2-3[(π0,π1)](A

′′) , (3)

Advive
GCTR′

2-3[(π0,π1)](A
′′) ≤

2(2σ − q)q
2n+min{n,t−2}+1 + P r[V for GCTR′

2-3 | r = min{n, t − 2}]

≤
(2σ − q)q

2n+min{n,t−2} + P r[V for GCTR2-3 | x = q ∧ r = min{n, t − 2}] · max
i ̸=i′≤q

{Pr[N i = N i′
]}

≤
(2σ − q)q

2n+min{n,t−2} +
(2σ − q)q

2min{n,t−2}+1 ·
1

2n
=

6qσ − 3q2

2n+min{n,t−2}+1 (4)

where ive is the IV-based encryption security notion and V is the event of cross-query
input-tweak pair collisions. We refer the reader to [2] for more details on these used
notations. Here maxi ̸=i′≤q{Pr[N i = N i′]} denotes the maximum probability of a nonce
repetition over q queries which is equal to 1/2n here as nonce inputs in GCTR′2-3 are
defined as the second halves of uniform random 2n-bit tags. Now, simply combining
Exp. 3, 4 and the result from Theorem 2 gives us the corresponding IT security claim of
Theorem 4.

C Sonikku: Pseudocodes

Amit Singh Bhati, Elena Andreeva, Simon Müller and Damian Vizár 27

1: function Pad(x, y, M) // y ≤ x
2: I′pad ← 01; res← |M |%x
3: if res ̸= y then
4: I′pad ← 11
5: if res < y then
6: M ←M∥10y−1−res

7: else
8: M ←M∥10x+y−1−res

9: end if
10: end if
11: return M, I′pad
12: end function
13:
14: function MAC(K, a, τ, M) // k ≤ n + a
15: K1, K2 ← Derive(K)
16: M, I′pad ← Pad(n + t + k − 2, 0, M)

17: P1, . . . , Pℓ−1, P∗
n+t+k−2←−−−−−−−M

18: (∆1, ∆2)← (K1, K2)

19: for i← 1 to ℓ− 1 do
20: M3i−2 ← Pi[1 . . . n]
21: M3i−1 ← Pi[n + 1 . . . n + t− 2]
22: M3i ← Pi[n + t− 1 . . . n + t + k − 2]
23: T←M3i−1∥00
24: (∆′

1, ∆′
2)← F∆2⊕T,b

∆1⊕M3i
(M3i−2)

25: ∆ ← ∆′
1[1 . . . a]∥∆′

2[1 . . . a]∥((∆′
1 ⊕

∆′
2)[a + 1 . . . n])

26: (∆1, ∆2)← (∆[1 . . . k], ∆[k + 1 . . . n + a])
27: end for
28: T← (P∗[n + 1 . . . n + t− 2])∥I′pad

29: X, Y ← F∆2⊕T,b
∆1⊕P∗[n+t−1...

30: n+t+k−2](P∗[1 . . . n])
31: Z ← X[1 . . . a]∥Y [1 . . . a]∥
32: ((X ⊕ Y)[a + 1 . . . n])
33: T ag ← Z[1 . . . τ]
34: return T ag
35: end function

1: function Pad(x, y, M) // y ≤ x
2: I′pad ← 01; res← |M |%x
3: if res ̸= y then
4: I′pad ← 11
5: if res < y then
6: M ←M∥10y−1−res

7: else
8: M ←M∥10x+y−1−res

9: end if
10: end if
11: return M, I′pad
12: end function
13:
14: function MAC(K, e, τ, M)
15: K1, K2 ← Derive(K)
16: M, I′pad ← Pad(n + t + k − e, 0, M)

17: P1, . . . , Pℓ−1
n+t+k−e←−−−−−−−M

18: ∆1, ∆2, ∆3 ← 0n

19: for i← 1 to ℓ− 1 do
20: M3i−2 ← Pi[1 . . . n]
21: M3i−1 ← Pi[n + 1 . . . n + t− e]
22: M3i ← Pi[n + t− e + 1 . . . n + t + k − e]
23: T←M3i−1∥⟨i⟩e−2∥00
24: ∆1 ← (FK2⊕T,0

K1⊕M3i
(M3i−2) ⊕ ∆1) ⊕t−2

M3i−1

25: ∆2 ← 2 · (FK2⊕T,0
K1⊕M3i

(M3i−2)⊕∆2)
26: ∆3 ←M3i ⊕∆3
27: end for
28: T← ∆1∥I′pad

29: X, Y ← FK2⊕T,b
K1⊕∆3

(∆2)
30: T ag ← (X∥Y)[1 . . . τ]
31: return T ag
32: end function

1: function Pad(a, b, M) // b ≤ a
2: I′pad ← 01; res← |M |%a
3: if res ̸= b then
4: I′pad ← 11
5: if res < b then
6: M ←M∥10b−1−res

7: else
8: M ←M∥10a+b−1−res

9: end if
10: end if
11: return M, I′pad
12: end function
13:
14: function MAC(K, τ, N, M)
15: K1, K2 ← Derive(K)
16: M ← N∥M
17: M, I′pad ← Pad(n + t + k − 2, t + k − 2, M)

18: P1, . . . , Pℓ−1, P∗
n+t+k−2←−−−−−−−M

19: (∆1, ∆2)← (0n, 0n)

20: for i← 1 to ℓ− 1 do
21: M3i−2 ← Pi[1 . . . n]
22: M3i−1 ← Pi[n + 1 . . . n + t− 2]
23: M3i ← Pi[n + t− 1 . . . n + t + k − 2]
24: T← (M3i−1 ⊕t−2 ∆2)∥00
25: if i = 1 then
26: (∆2, ∆1)← FK2⊕T,b

K1⊕M3i
(M3i−2)

27: else
28: ∆← ∆2
29: ∆2 ← FK2⊕T,0

K1⊕M3i
(M3i−2 ⊕∆1)

30: ∆1 ← ∆
31: end if
32: end for
33: T← (P∗[1 . . . t− 2]⊕t−2 ∆2)∥I′pad

34: X, Y ← FK2⊕T,b
K1⊕P∗[t−1...t+k−2](∆1)

35: T ag ← (X∥Y)[1 . . . τ]
36: return T ag
37: end function

Figure 8: MAC algorithm/pseudocode of BabySonicn/a (top), SuperSonic (center) and
DarkSonic (bottom) mode. Here Derive is some secure key derivation fumction that is used
to generate k-bit and (t− 2)-bit keys K1 and K2, respectively.

	Introduction
	Preliminaries
	MAC Syntax and Security Definition
	Tweakable Expanding Primitives

	Sonikku Family of Fast and Secure MACs
	BabySonicn/a and its PRF Security
	SuperSonic and its PRF Security
	DarkSonic and its PRF Security

	Performance and Discussion
	Security Analysis of Sonikku MACs
	BabySonicn/a: Proof of Theorem 1
	SuperSonic: Proof of Theorem 2
	DarkSonic: Proof of Theorem 3

	SonicAE: SuperSonic based deterministic AE
	Conclusion
	Omitted Lemma Proofs
	Proof of Lemma 2
	Proof of Lemma 3

	Proof of Theorem 4
	Sonikku: Pseudocodes

