
SCRIBE: Low-memory SNARKs via Read-Write Streaming

Anubhav Baweja
abaweja@upenn.edu

UPenn

Pratyush Mishra
prat@upenn.edu

UPenn

Tushar Mopuri
tmopuri@upenn.edu

UPenn

Karan Newatia
knewatia@upenn.edu

UPenn

Steve Wang
qwang97@upenn.edu

UPenn

December 5, 2024

Abstract

Succinct non-interactive arguments of knowledge (SNARKs) enable a prover to produce a short and
efficiently verifiable proof of the validity of an arbitrary NP statement. Recent constructions of efficient
SNARKs have led to interest in using them for a wide range of applications, but unfortunately, deployment
of SNARKs in these applications faces a key bottleneck: SNARK provers require a prohibitive amount of
time and memory to generate proofs for even moderately large statements. While there has been progress
in reducing prover time, prover memory remains an issue.

In this work, we describe SCRIBE, a new low-memory SNARK that can efficiently prove large
statements even on cheap consumer devices such as smartphones by leveraging a plentiful, but heretofore
unutilized, resource: disk storage. In more detail, instead of storing its (large) intermediate state in
RAM, SCRIBE’s prover instead stores it on disk. To ensure that accesses to state are efficient, we design
SCRIBE’s prover in a read-write streaming model of computation that allows the prover to read and
modify its state only in a streaming manner.

We implement and evaluate SCRIBE’s prover, and show that, on commodity hardware, it can easily
scale to circuits of size 228 gates while using only 2GB of memory and incurring only minimal prov-
ing latency overhead (10-35%) compared to a state-of-the-art memory-intensive baseline (HyperPlonk
[EUROCRYPT 2023]) that requires much more memory. Our implementation minimizes overhead by
leveraging the streaming access pattern to enable several systems optimizations that together mask I/O
costs.

mailto:abaweja@upenn.edu
mailto:prat@upenn.edu
mailto:tmopuri@upenn.edu
mailto:knewatia@upenn.edu
mailto:qwang97@upenn.edu

Contents
1 Introduction 1

1.1 Our results . 1

2 Techniques 3
2.1 Notation . 3
2.2 Starting point: HyperPlonk . 4
2.3 Read-write streams . 6
2.4 SNARKs from RW streaming PIOPs and PC schemes . 7
2.5 Read-write streaming sumcheck . 9
2.6 Read-write streaming PIOPs . 10
2.7 PIOP for HyperPlonk . 14
2.8 Read-write streaming polynomial commitments . 14
2.9 Implementation . 20
2.10 Evaluation . 21

3 Related work 24
3.1 Similar memory models . 24
3.2 Read-only streaming SNARKs . 24
3.3 Complexity-preserving SNARKs . 25

4 Read-write streaming algorithms 27
4.1 Common read-write streaming subroutines . 29

5 Read-write streaming PIOP for HyperPlonk 31
5.1 Preliminaries . 31
5.2 RW streaming prover for sumcheck . 32
5.3 Read-write streaming prover for HyperPlonk’s PIOP . 36

6 Streaming polynomial commitment schemes 44
6.1 Multilinear polynomial commitment schemes . 44
6.2 The PST13 PC scheme . 44

A An alternative PIOP for permcheck 47
A.1 Sumcheck for rational functions . 47
A.2 Split multiset-equality-check . 48
A.3 Split permcheck . 49
A.4 Using split permcheck for the wiring constraint . 50

B Generalized inner product arguments 52
B.1 Commitment schemes . 52
B.2 Generalized inner product arguments . 53
B.3 The MIPP Protocol . 56
B.4 The FIP protocol . 57

C Constructing polynomial commitment schemes with square-root SRS 59
C.1 Constructing VMV arguments . 59
C.2 Constructing PC schemes from VMV arguments . 61
C.3 The Hyrax PC scheme . 62
C.4 The PC scheme implicit in BMMTV21 . 62

2

D Vector-matrix-vector product arguments from Dory 63
D.1 Dory.Reduce . 64
D.2 Read-write streaming prover for Dory.Reduce . 65
D.3 Dory-InnerProduct . 66
D.4 VMV from Dory-Innerproduct . 66

References 68

3

1 Introduction

SNARKs enable a prover to convince a verifier of the validity of correct program execution via a succinct
proof that can be checked much more quickly than running the program itself. There has been much recent
interest in the construction of efficient SNARKs for a wide range of applications, including blockchain rollup
systems [Whi18] and cryptocurrency bridges [Xie+22]. Many of these applications require proving the
correctness of large computations. For instance, both the rollup and bridge applications require proving
satisfiability of circuits with billions of gates. Unfortunately, existing SNARKs incur large time and space
overheads when proving large computations, requiring the use of powerful machines to generate proofs. For
instance, recent industry benchmarks rely on server-class machines with powerful GPUs1 and hundreds of
gigabytes of RAM2 to prove such statements.

Much effort [BCGJM18; Set20; CBBZ23; GLSTW23; HLP24; Pol; AST24] has been devoted to reducing
the time overhead of SNARKs. While these efforts have greatly reduced prover latency, they do not address
the high memory overheads. This overhead occurs because the size of the prover’s internal state scales
linearly with the size of the computation, as opposed to scaling with the (potentially much smaller) space
complexity of the computation itself. For example, the HyperPlonk SNARK [CBBZ23] requires over 16GB
of RAM just to prove that 10 kB of data was hashed correctly with SHA256. As a result, these SNARKs
cannot be used in systems with limited memory.

This has motivated recent efforts to reduce these memory requirements. These efforts all proceed
by reducing the size of the prover’s internal state via disparate techniques such as complexity-preserving
SNARKs [BC12; BCCT13; BBHV22], SNARKs with streaming provers [BHRRS20; BHRRS21; BCHO22;
ZCLKZ24], and recursive composition [BCTV14; BCMS20; BCLMS21; BDFG21; KST22]. However, as
we explain in detail in Section 3, these approaches achieve lower memory usage only by sacrificing prover
latency (both asymptotically and concretely). Moreover, some approaches even seem to require an inherent
space-time tradeoff [BBHV22; CM24].

In sum, we do not have concretely efficient SNARKs that can prove large computations on commodity
devices quickly without requiring a prohibitive amount of memory.

1.1 Our results

In this work, we tackle the foregoing problem via a new approach: instead of trying to reduce the size of the
prover’s internal state, we propose to instead change where it is stored and how it accessed by the prover. We
formalize our approach via a new way to model low-memory algorithms, and construct in this model a new
SNARK, SCRIBE, that effectively scales to large computations even on commodity devices. We detail our
contributions below.

Read-write streaming. We introduce a new algorithm design framework which we call the read-write
streaming model. Algorithms in this model have access to a small amount of random-access memory (e.g.,
RAM), and a large amount of external storage (e.g., disk) that stores streams containing the algorithm’s state.
These streams can be read and modified only sequentially from beginning to end.

Our model is motivated by the observation that while RAM is expensive and limited, disk storage is
plentiful and cheap, and so it is natural to store an algorithm’s (possibly large) internal state on disk. However,
because random disk accesses are much costlier than RAM accesses, a naive attempt to port an algorithm to
our model could incur significant latency overheads due to I/O costs. To avoid this, our model restricts the

1https://www.risczero.com/blog/beating-moores-law-with-zkvm-1-0.
2https://blog.succinct.xyz/sp1-is-live/.

1

https://www.risczero.com/blog/beating-moores-law-with-zkvm-1-0
https://blog.succinct.xyz/sp1-is-live/

algorithm’s disk accesses to follow a predictable and data-independent streaming access pattern. This in turn
enables numerous systems optimizations such as prefetching, pipelining, and caching that mask I/O costs.

We formalize read-write streams and algorithms that use them, provide efficiency measures for such
algorithms, and describe how to efficiently compose them to minimize time and space overheads. We use this
model to construct a new ‘read-write streaming SNARK’ that we describe next.

SCRIBE: a linear-time read-write streaming SNARK. We construct SCRIBE, a SNARK for arithmetic
circuit satisfiability with a read-write streaming prover. To prove satisfiability of a circuit of size N , SCRIBE’s
prover requires: (i) O(N) cryptographic (group) operations and O(N) field operations, (ii) O(logN)
random-access memory, and (iii) O(N) external storage. SCRIBE is based on the HyperPlonk SNARK
[CBBZ23], and preserves the latter’s prover and verifier time complexity and succinct proof size, while
reducing the prover’s random-access memory from O(N) to O(logN).

We obtain SCRIBE by adapting the popular “Polynomial IOP + Polynomial Commitment→ SNARK”
paradigm [CHMMVW20; BFS20] to the read-write streaming model. To do so, we first construct read-write
streaming versions of polynomial IOPs (PIOPs) that are commonly used as building blocks in the literature,
and show how to combine these to obtain a read-write streaming prover for HyperPlonk’s PIOP. We also
construct read-write streaming provers for a variety of popular polynomial commitment schemes [PST13;
BGH19; WTSTW18; BMMTV21; Lee21]. All our PIOP and PC constructions preserve the time complexity
of their non-streaming counterparts, while reducing their random-access space to logarithmic.

Implementation. We implement SCRIBE as a Rust library based on the arkworks framework [con22].
Our implementation uses CPU RAM for random-access, and relies on disk storage for externally stored
streams. To efficiently work with these streams, we develop new abstractions over file I/O that enable features
such as prefetching, batch operations, and parallelization. We provide details about our implementation and
optimizations in Section 2.9.

Evaluation. We perform a thorough evaluation of SCRIBE’s performance, and show that it can scale to prove
circuits of size 228 gates in just 1.5 h on a server-class machine. Our evaluation demonstrates that assuming
reasonable hardware, read-write streaming imposes minimal overheads (10-25%) over the memory-intensive
baseline of HyperPlonk. Furthermore, compared to a prior state-of-the-art low-memory SNARK [BCHO22],
SCRIBE improves proving latency by almost an order of magnitude.

We also evaluate SCRIBE’s performance on a commodity smartphone, and show that it can scale to prove
computations 32× larger than the memory-intensive baseline. We believe that this is the largest circuit that
has been proven on a smartphone-class device to date.

2

2 Techniques

We describe the main ideas underlying SCRIBE.We begin by describing notation that we use in the following
sections in Section 2.1. Then, in Section 2.2, we recall the popular ‘PIOP + PC→ SNARK’ methodology
[CHMMVW20; BFS20] of constructing SNARKs, and also recall how the HyperPlonk SNARK [CBBZ23],
a state-of-the-art memory-intensive SNARK that achieves cryptographic linear time, is constructed using this
methodology. HyperPlonk will serve as the starting point for our construction of SCRIBE.

Next, in Section 2.3, we introduce the notion of read-write (RW) streaming algorithms. We show in
Section 2.4 how to construct RW streaming prover algorithms for ‘PIOP + PC’ SNARKs from RW streaming
algorithms for the underlying components. We then proceed to construct the latter in Sections 2.5 and 2.6
(PIOPs) and Section 2.8 (PC schemes). Finally, in Section 2.9, we describe our implementation of SCRIBE,
and evaluate its performance in Section 2.10.

The RW streaming algorithms we construct will often be derived in a simple way from their non-streaming
counterparts. We view this simplicity as a strength of our approach, as it shows that our model is expressive
enough to capture existing state-of-the-art algorithms, while also showing that these algorithms can be
implemented with little random-access space with minimal time overhead.

2.1 Notation

We introduce some notation that we will use in the rest of this paper.

Vector and set notation. We use [a1, . . . , an] to denote ordered sets, and denote the set [1, 2, . . . , n] by
[n]. Let S be a finite set. An N -dimensional vector of elements is denoted by x ∈ SN , and xi denotes the
i-th element of the vector. Vectors are indexed as x = [xi]

N
i=1 = [x1, x2, . . . , xN].3 We denote matrices by

M ∈ SN×N , where Mi represents the i-th row of the matrix. Given a vector x = [xi]
N
i=1, we use x[i:j] to

denote the vector [xk]
j
k=i and y · x to denote the vector [y · xi]Ni=1 for y ∈ S. x $← S denotes sampling x

uniformly at random from a finite set S.

Vector partitions. For a vector x ∈ FN , xE = [x2i]
N/2−1
i=0 and xO = [x2i+1]

N/2−1
i=0 are vectors containing

the even-indexed and odd-indexed elements of x respectively, while xL = [xi]
N/2−1
i=0 and xR = [xi]

N−1
i=N/2

are vectors containing the left and right halves of x respectively.4

Binary representation. Given integers i and n, binn(i) represents the n-bit binary representation of i in
the most-significant-bit order, and binn(i, j) represents the j-th bit of binn(i). We omit n when it is clear
from context. We also define the inverse operation int(x) which maps x = binn(v) ∈ {0, 1}n to v.

Multilinear polynomials. A polynomial is multilinear if the degree of each variable in every monomial
is at most 1. A multilinear polynomial f is uniquely defined by its evaluations f := [f(binn(i))]

2n−1
i=0 over

the n-dimensional boolean hypercube {0, 1}n. We sometimes denote a polynomial f(X1, . . . , Xn) by f(X)
when n is clear from context.

Multilinear extension. The multilinear extension of a vector v ∈ F2n is the unique multilinear polynomial
v̂(X) ∈ F[X1, . . . , Xn] such that v̂(i) = vint(i) for all i ∈ {0, 1}n.

Lagrange basis polynomial. The Lagrange basis polynomial eqn(X,Y) :=
∏n

i=1(XiYi+(1−Xi)(1−Yi))
checks that X = Y for any X,Y ∈ {0, 1}n. We omit n when it is clear from context.

3We make an exception when indexing vectors corresponding to coefficients of multilinear polynomials; these are indexed as
x = [xi]

N−1
i=0 .

4These definitions assume that N is even and the vector is indexed from 0, which is true whenever they are used.

3

Oracle access. For an n-variate polynomial p ∈ F[X], JpK denotes an oracle for p that can be queried at
any point x ∈ Fn to receive the evaluation p(x) ∈ F.

Multisets. We use the double braces notation {{·}} to represent multisets.

Algebraic notation. We use additive notation for groups. We rely on bilinear groups sampled by a
randomized algorithm SampleGrp that outputs a tuple (F,G1,G2,GT , e,G,H) where F is a field of prime
order q, G1, G2 and GT are groups of order q, e : G1 ×G2 → GT is a bilinear map, G generates G1, and H
generates G2.

Inner products. We use three types of inner products: (a) the scalar product ⟨x,y⟩F :=
∑N

i=1 xiyi, (b) the
group inner product ⟨x,Y ⟩G :=

∑N
i=1 xi · Yi, and (c) the pairing inner product ⟨X,Y ⟩e :=

∑N
i=1 e(Xi, Yi).

We omit subscripts when it is clear from context which inner product is being used.

2.2 Starting point: HyperPlonk

To construct an efficient read-write streaming SNARK, our starting point will be the memory-inefficient
SNARK of HyperPlonk [CBBZ23]. We choose this starting point because:
• asymptotically, HyperPlonk achieves cryptographic linear time5: it requires just O(N) field operations and
O(N) group operations to prove satisfaction of an arithmetic circuit of size N .

• concretely, HyperPlonk achieves better prover times than almost all prior SNARKs, and additionally
supports attractive features such as custom gates [GW19].

Background: SNARKs from Polynomial IOPs and PC schemes. The SNARK of HyperPlonk (as well
as SCRIBE) is obtained via the methodology introduced by Chiesa et al. [CHMMVW20] and Bünz et al.
[BFS20], which constructs SNARKs from two ingredients: Polynomial Interactive Oracle Proofs (PIOPs)
and Polynomial Commitment (PC) schemes.
• PIOPs are interactive proofs where the prover’s messages are polynomial oracles. The verifier does not

read these messages in their entirety, but instead queries these polynomials at evaluation points of its choice.
The verifier also often has oracle access to polynomial representations of the NP statement being proved;
such PIOPs are called holographic PIOPs [CHMMVW20]. For example, a PIOP for circuit satisfiability
provides an oracle representation of the circuit to the verifier.

• PC schemes are commitment schemes which enable the prover to commit to a polynomial p, and then later
‘open’ the commitment to prove the claim “p(z) = v”, where z is an evaluation point chosen by the verifier
and v is the prover’s claimed evaluation of p at z.

The framework of [CHMMVW20; BFS20] composes these ingredients to construct succinct arguments as
follows. First, if the PIOP verifier is supposed to have oracle access to a polynomial encoding of the NP
statement, then the argument’s preprocessing phase commits to this polynomial using the PC scheme, and
provides this commitment to the argument verifier. The argument prover P and verifier V then engage in
an interaction: in each round, P invokes the PIOP prover P for that round, commits to the polynomials
produced by P via the PC scheme, and sends these commitments to V . V then invokes the PIOP verifier V
to compute its message for that round, and sends this to P . At the end of the interaction, when V wishes to
query its polynomial oracles at certain evaluation points, V sends these points to P , which replies with the
corresponding evaluation values and evaluation proofs for these using the PC scheme. A SNARK can then be
constructed by invoking the Fiat–Shamir transform [FS86] on this interactive argument.

5In this paper, we say that an algorithm requires ‘cryptographic X time’ if it performs O(X) group operations, Some prior work
omits the distinction between cryptographic and non-cryptographic operations, but this is inaccurate [GLSTW23] because some
group operations, in particular multi-scalar multiplications, are asymptotically super-linear even with the best known algorithms
[Pip80].

4

HyperPlonk [CBBZ23] constructs a SNARK via this methodology by constructing a PIOP for circuit
satisfiability. The PIOP relies on multilinear polynomial oracles, and so the corresponding PC scheme used
in HyperPlonk is one that supports committing to these. We briefly recall HyperPlonk’s constructions of
these ingredients, starting with an overview of their circuit representation.

HyperPlonk’s circuit representation. Consider an arithmetic circuit C : Fn → F with m gates, each of
which is a fan-in 2 addition or multiplication gate.6 HyperPlonk represents C as three vectors ℓ, r,o ∈ Fm,
where ℓi, ri, oi denote the left input, right input, and output of the i-th gate in the circuit, respectively. The
circuit is satisfied if and only if the following constraints are satisfied:
1. Gate satisfaction constraints: enforce that the gate operations are applied correctly. If the i-th gate is an

addition gate, then oi = ℓi + ri; if it is a multiplication gate, then oi = ℓi · ri.
2. Wiring constraints: enforce that wires between gates are connected correctly. For example, if the output of

gate j is the left input of gate i, then there is a wiring constraint that enforces that ℓi = oj .
To encode this circuit representation in polynomial form, HyperPlonk associates with each circuit the
following vectors: (a) a selector vector s ∈ Fm such that si is 0 if the i-th gate is an addition gate, and is 1
if it is a multiplication gate, and (b) permutation vectors π,σ ∈ Fm that encode the wiring constraints as
follows: if the left input of gate i is the output of gate j, then πi = j, and similarly, if the right input of gate i
is the output of gate j then σi = j.7

HyperPlonk’s PIOP. In a preprocessing phase, the circuit C is arithmetized by encoding the vectors s, π,
σ as multilinear polynomials ŝ, π̂, σ̂.8 The PIOP prover receives these polynomials as explicit input, while
the PIOP verifier is given oracle access to them.

During the interactive phase, the PIOP prover receives as additional input the witness vectors ℓ, r,o, and
proceeds as follows. The PIOP prover computes the multilinear extensions ℓ̂, r̂, ô of the witness vectors,
and sends oracles for these to the PIOP verifier. The PIOP prover and verifier than engage in two subPIOPs
corresponding to each of the checks above.
1. Gate satisfaction: The gate constraints are satisfied if and only if for all i ∈ {0, . . . ,m− 1}, it holds that

si · (oi − ℓi − ri) + (1 − si) · (oi − ℓi · ri) = 0. It leverages this idea by encoding these checks as the
polynomial p = ŝ · (ô− ℓ̂− r̂) + (1− ŝ) · (ô− ℓ̂ · r̂), and enforcing that p(i) = 0 for all i ∈ {0, 1}logm.
This check is done via a zerocheck PIOP that enforces that a given polynomial evaluates to zero at all
points in the boolean hypercube.

2. Wiring: The wiring constraints are satisfied if and only if for all i ∈ [m], the left input ℓi of the i-th gate
is the output oπi of the πi-th gate, and the right input ri of the i-th gate is the output oσi of the σi-th
gate. That is, ℓ is a permutation of o with respect to π, and similarly for r with respect to σ. These
‘permutation checks’ are done via a permcheck PIOP that uses multilinear extensions π̂, σ̂ to ensure that
ℓ̂(i) = ô(bin(π̂(i))) and r̂(i) = ô(bin(σ̂(i))), for every i ∈ {0, 1}logm.

Both these subPIOPs in turn depend on the PIOP for the sumcheck relation as noted in Fig. 1. We provide
details about these PIOPs in Sections 2.5 and 2.6; as we explain there, existing prover algorithms for these
PIOPs achieve the optimal linear time, but also require a linear amount of random-access space.

HyperPlonk’s PC scheme. Chen et al. use the PST multilinear PC scheme [PST13]. We provide details
6HyperPlonk supports circuits that have higher arity gates that enforce complex logic, such as evaluating a degree-d polynomial

over the gate inputs. We omit these details for brevity, but the HyperPlonk circuit relation definition in Definition 5.20 supports such
‘custom gates’.

7For brevity, we omit a discussion of how HyperPlonk’s representation handles inputs to the circuit and assume that every gate
is an ‘internal’ gate with both left and right inputs. Our formal definition in Definition 5.20 lifts these restrictions and considers a
standard circuit model.

8Formally, this preprocessing step is performed by the PIOP indexer, which we have not described here for brevity. Our formal
definition of PIOPs in Section 5.1.1 describes the indexer’s task in detail.

5

Permcheck

Sumcheck

Zerocheck
Prodcheck

MultisetEq

HyperPlonk

Figure 1: Components of the HyperPlonk PIOP. We make each
component read-write streaming.

about this scheme in Section 2.8.1, but note here that while both the commitment and opening algorithms
require only a linear number of field operations and a linear-sized multi-scalar multiplication, they also
require a linear amount of space.

2.3 Read-write streams

As explained in the introduction, we will rely on a new model of ‘read-write’ streaming to construct SNARK
provers that can efficiently prove large statements on devices with limited memory by relying on external
memory. We describe our model below, including descriptions of read-write streams, algorithms that use
these, efficiency measures for these algorithms, and how one can compose read-write streaming algorithms.
We provide formal definitions in Section 4, and focus here on high-level intuition.

Read-write streams. A stream consists of a tape containing elements from some alphabet Σ, a pointer
to a position on the tape, and a mode that is either ‘read’ or ‘write’. If the stream’s mode is ‘read’, then
an algorithm can sequentially read elements from the stream (starting from the location pointed to by the
pointer), while if its mode is ‘write’, the algorithm can sequentially write elements to the stream. More
precisely, our model supports the following operations on streams:
• init(·), which initializes a stream in write mode and allocates space for it,
• restart(), which resets the pointer to the beginning of the stream,
• read(), which reads a stream element from the location pointed to by the pointer (incrementing the pointer)

if the stream is in read mode,
• write(·), which writes the input value to the location pointed to by the pointer (incrementing the pointer) if

the stream is in write mode.

Read-write streaming algorithms. A read-write (RW) streaming algorithm A has the following interface
and behavior. It obtains its input via a stream I in read mode, and writes its output to a stream O in write mode.
It has random-access to a small number of registers, and has read-write streaming access to a small number
of intermediate read-write streams that are stored in a large external storage.9 We denote an invocation of A
on input I that produces output O as A(I) 7→ O.

Efficiency measures. The time complexity tA of a read-write streaming algorithm A is defined as the total
number of operations on registers plus the total number of stream operations performed during execution.

9Concretely, the number of registers and streams is at most logarithmic in the size of the input. Our model can support a
logarithmic number of input streams without overhead by viewing the single input stream as the concatenation of these multiple
streams, and by performing a single pass over it to copy each stream’s contents to different intermediate streams. A similar statement
holds for multiple output streams.

6

The random-access space complexity mA of A is the maximum number of registers it uses during execution,
and the streaming space complexity sA is the maximum number of elements it stores in its intermediate
read-write streams during execution.
Composing read-write streaming algorithms. A read-write streaming algorithm A can invoke another
read-write streaming algorithm B as a subroutine. We call this process composition of read-write streaming
algorithms, and at a high level, it works as follows. A allocates two intermediate streams: I, the input
stream of B, and O, the output stream of B. A writes the input for B to I, and then invokes B on I. Once
B terminates, A can read the output in O by re-interpreting it as a read stream, and can continue the rest
of its computation. Composition is well-behaved with respect to time and space efficiency, as we show in
Lemma 2.1.

Lemma 2.1 (informal). LetA be a read-write streaming algorithm that invokes another read-write streaming
algorithm B as a subroutine L times. Denote by t′A, m′

A, and s′A the time complexity, random-access space
complexity, and streaming space complexity, respectively, of A when ignoring the cost of running B. Then the
time complexity of A is tA = t′A + L · tB, the random-access space complexity is mA = m′

A +mB, and the
streaming space complexity is sA = s′A + sB.

In the foregoing lemma, the space complexity costs of A do not incur a factor of L multiplicative blowup
with respect to the same costs for B; A can reclaim the space used internally by each invocation of B after it
finishes executing.

The notion of composition can be straightforwardly generalized to support multiple subroutines call, with
the corresponding changes to total time and space complexities. For details, see Remark 4.5.

Remark 2.2 (applicability of read-write streaming). While in this paper we primarily instantiate RW streams
as files on disk storage, the RW streaming model is flexible enough to capture other settings where there
is an imbalance between small (but fast) and large (but slow) memory. We provide some examples below,
specialized for our use case of SNARK proving.
• Specialized hardware provers: there has been much recent industrial interest in hardware-accelerated

proving (e.g., via GPUs, FPGAs, or custom ASICs). Unfortunately, such specialized hardware tends to
have small on-device memory, which bottlenecks the size of the computations that can be proven. The CPU
or other host device, on the other hand, has access to large CPU RAM, but moving data between the two
types of memory is expensive. An RW streaming prover is a natural fit for this setting: the prover can run
on the hardware device, and use the host device’s memory as a large external storage. The streaming access
pattern is entirely predictable, so the host device can efficiently pre-fetch data from its slow memory.

• Hardware-constrained devices: users of private cryptocurrencies cannot utilize hardware wallets to create
private transactions without incurring privacy leakage. This is because these transactions contain SNARK
proofs that cannot be proven in the wallet’s limited memory, and so today wallets outsource proof generation
to a host device, leaking sensitive transaction details in the process. However, if these SNARKs were
equipped with an RW streaming prover, then hardware wallets could prove these SNARKs themselves
by utilizing the host device’s memory as external storage, and encrypting the contents of streams before
sending them to the host device.

We leave it to future work to explore these applications of our RW streaming model.

2.4 SNARKs from RW streaming PIOPs and PC schemes

Let P be a RW streaming PIOP prover, and let PC be an RW streaming PC scheme. Then we can construct
the RW streaming argument prover P in a manner analogous to the non-streaming case (Section 2.2): P

7

receives on its input stream (s) any preprocessed polynomials and the NP witness and initializes P with these.
In each round of the protocol, P invokes P with the latest verifier message to obtain a stream containing the
current round polynomials. P then passes this stream to PC.Commit to obtain commitments to the round
polynomials, and sends these to V . At the end of the interaction, P invokes PC.Open with input streams
comprised of both the preprocessed polynomials and the round polynomials produced during the interactive
phase. P assembles the resulting opening proof and the commitments into the final SNARK proof and outputs
this.

Efficiency. The argument prover P calls 3 subroutines: the PIOP Prover P, and the PC scheme algorithms
PC.Commit and PC.Open Applying the version of Lemma 2.1 that supports multiple subroutines gives the
following lemma:

Lemma 2.3. Consider the following ingredients:
• A PIOP whose prover, on inputs of size N , requires time tPIOP(N), random-access space mPIOP(N), and

streaming space sPIOP(N). The PIOP prover produces c polynomials and the PIOP verifier queries o
polynomials.

• A PC scheme whose algorithms have the following complexities on inputs of size N .
– PC.Commit requires time tC(N), random-access space mC(N), and streaming space sC(N).
– PC.Open requires time tO(N), random-access space, mO(N), and streaming space sO(N).

Then there exists a read-write streaming argument whose prover P has the following efficiency properties:
• Time complexity tP(N) = tPIOP(N) + c · tC(N) + o · tO(N).
• Random-access space complexity mP(N) = mPIOP(N) +mC(N) +mO(N).
• Streaming space complexity sP(N) = sPIOP(N) + sC(N) + sO(N).

Applying Lemma 2.3 to the RW streaming PIOP and PC scheme10 that we construct in Sections 2.6
and 2.8 leads to the following corollary:

Corollary 2.4. There exists a RW streaming argument prover P for circuit satisfiability that requires O(N)
cryptographic time, O(logN) random-access space, and O(N) streaming space, where N is the size of the
circuit.

Proof. The prover for the PIOP of Section 2.6 requires O(N) time, O(logN) random-access space, and
O(N) streaming space and the verifier queries L = 6 polynomials, while the commitment and opening
algorithms of the PC scheme in Section 2.8 both require O(N) cryptographic time, O(logN) random-access
space, and O(N) streaming space.

We further note that the RW streaming model not only improves upon the asymptotic efficiency of
state-of-the-art read-only streaming SNARKs [BCHO22; ZCLKZ24], but also allows us to make concrete
optimizations that are not possible in the read-only setting; we detail these in Section 3.

Remark 2.5. The foregoing discussion does not specify how RW streams for the witness are produced. We
show in Section 2.9 how to do this for the HyperPlonk relation in a way that allows random-access space
complexity to scale with the space complexity of the computation, as opposed to the size of the corresponding
circuit.

10We say that a PIOP or argument is read-write streaming if it has a read-write streaming prover algorithm, and that a PC scheme
is read-write streaming if it has read-write streaming commitment and opening algorithms.

8

2.5 Read-write streaming sumcheck

A core component of many PIOPs (including ours) is the celebrated sumcheck protocol [LFKN92]. In this
section, we show how to construct linear-time read-write streaming provers for the sumcheck protocol when
specialized to (products of) multilinear polynomials. We begin below with an overview of existing (non-
streaming) algorithms, and then show how to adapt these to the read-write streaming setting in Section 2.5.1.
Background: sumcheck protocol. At a high level, the sumcheck problem requires a prover P to convince
a verifier V with only oracle access to an n-variate multilinear11 polynomial p(X), that its evaluations over
the boolean hypercube {0, 1}n ⊂ Fn sum up to a claimed value σ. The sumcheck protocol [LFKN92] is
a protocol for this problem that allows the verifier to run in time O(n) (whereas the naive algorithm takes
time 2n). We describe a variant of the sumcheck protocol below that iterates from the last variable to the
first; this deviation from the standard presentation (which iterates from the first variable to the last) is for
ease of exposition of our results. We note that this variant, called the ‘LSB’ sumcheck because it starts the
summation from the least significant bit of the input, has been used in prior streaming focused work as well
[BHRRS20].

PIOP 1: SUMCHECK
⟨P(p),V(JpK, σ)⟩:
For i in [n, . . . , 1]:
1. P sends to V the univariate polynomial ai defined as:

ai(Xi) :=
∑

b∈{0,1}i−1

p(b, Xi, ri+1, . . . , rn)

2. If i = n, V sets σi := σ; else, it sets σi := ai−1(ri−1).
3. V checks if ai(0) + ai(1) = σi.
4. If i ̸= 1: V samples ri

$← F and sends it to P.
5. Else: V samples r1

$← F and accepts if a1(r1) = p(r1, . . . , rn).

Thaler [Tha13; XZZPS19] proposed a linear-time prover for the sumcheck PIOP. Below we recap the
adaptation of this to the LSB setting, as we will show how to convert it to a streaming algorithm. We assume,
like all prior work that relies on sumcheck [Set20; CBBZ23], that the prover P’s input polynomial p(X) is
represented by p, its evaluations over the boolean hypercube {0, 1}n ordered lexicographically. We omit the
details of the work of V since they are unchanged:

P(p):
1. Initialize a table T ← p.
2. For i in [n, . . . , 1]:
3. Define Ni := N/2n−i.
4. Compute evaluations (ei, oi)← Sum(Ni,T).
5. Send ai(0) := ei and ai(1) := oi to V.
6. If i ̸= 1:
7. Receive challenge ri

$← F from V.
8. FoldInPlace(Ni, 1− ri, ri,T).

Sum(N,T)→ (F,F):
1. Initialize e← 0; o← 0.
2. For j in [1, . . . , N/2]:
3. e← e+ T [2j]; o← o+ T [2j + 1].
4. Output (e, o)

FoldInPlace(N,α, β,T):
1. For j in [1, . . . , N/2]:
2. T [j]← α · T [2j] + β · T [2j + 1].

The foregoing algorithm requires a table of size N = 2n, and at the i-th iteration, it performs Ni = N/2n−i

reads and writes from this table. This leads to the claimed time complexity of O(N), but also, unfortunately,
to a space complexity of O(N).

11We describe how to handle more general polynomials in Section 5.2.

9

2.5.1 Linear-time RW streaming sumcheck

To improve this space complexity, we observe that in each iteration, all operations except Sum and Fold
require O(1) time and space. Thus, it suffices to design streaming algorithms for the latter two subroutines.
Unfortunately, in the read-only streaming model, one cannot rely on the existence of the table T across
iterations, and the prover naively recomputing it from scratch in each round leads to a time complexity of
O(N logN). (But see Section 3 for ideas on how to reduce this to O(N logN/ log logN)). We further
generalize these algorithms to kSum and kFoldInPlace, which can return more evaluations and handle
multiple input streams (these are useful for the (d, ℓ)-sumprod sumcheck protocol, described in Section 5.2).

Our algorithm. In the read-write streaming model, on the other hand, we can initialize the table T in an
intermediate read-write stream, and then read from and write to this stream to compute the folded tables. This
leads to the following linear-time streaming prover for the sumcheck PIOP. (a) kSum reads from the table T
in a streaming manner to compute ai(0) and ai(1), and (b) kFoldInPlace reads from and writes to the table
T in a streaming manner using an intermediate stream. The resulting algorithm works as follows, where we
highlight the streaming operations in blue:

P(p):
1. Initialize a read-stream T := p.
2. For i in [n, . . . , 1]:
3. Define Ni := N/2n−i.
4. Compute evaluations (ei, oi)← Sum(N,T).
5. Send ai(0) := ei & ai(1) := oi to V.
6. If i ̸= 1:
7. Receive challenge ri

$← F from V.
8. FoldInPlace(Ni, 1− ri, ri,T).

Sum(N,T)→ (e, o):
1. Initialize e← 0; o← 0.
2. For j in [1, . . . , N/2]:
3. e← e+ T .read(); o← o+ T .read().
4. Output (e, o).

FoldInPlace(N,α, β,T):
1. Initialize intermediate write-stream I .
2. For j in [1, . . . , N/2]:
3. a← T .read(); b← T .read().
4. I.write(α · a+ β · b).
5. Return I .

It is straightforward to see that this algorithm preserves the desired time complexity of O(N) and reduces the
random-access space complexity to just O(1). In Section 5.2, we extend this algorithm to support sums of
products of multilinear polynomials (these are (d, ℓ)-sumprod polynomials in Table 1); this is necessary for
building read-write streaming variants of the PIOPs in Section 2.6.

2.6 Read-write streaming PIOPs

With our RW streaming sumcheck PIOP in hand, we are now equipped to construct read-write streaming
variants of the various PIOPs underlying the HyperPlonk PIOP.

2.6.1 Zerocheck

Given a polynomial p, the zerocheck PIOP [CBBZ23] aims to prove the following claim: “for all x ∈
{0, 1}n : p(x) = 0”.

Reduction to sumcheck. The PIOP reduces the zerocheck claim to the sumcheck claim “
∑

b∈{0,1}n−1 p(b) ·
eq(r, b) = 0”, where r is a random point sent by the verifier. (Recall that eq(r, b) =

∏n
i=1((1 − ri)(1 −

bi) + ribi).)

10

PIOP 2: ZEROCHECK
⟨P(p),V(Jp(X)K)⟩:
1. V samples r $← Fn and sends it to P.
2. P and V engage in a sumcheck of the product of p(X) and eq(r,X), with the target σ = 0.

Read-write streaming PIOP for zerocheck. We show how to create a streaming prover P for the zerocheck
PIOP by designing a read-only streaming algorithm that generates the evaluations of the Lagrange basis
polynomial, [eq(r, b)]b∈{0,1}n . P then uses the read-write streaming sumcheck PIOP to prove the desired
sumcheck claim.12The time and space complexity of this PIOP are determined by the cost of sumcheck and
the cost of generating a stream for the evaluations of the Lagrange basis polynomials over {0, 1}n. The
former requires O(N) time with read-write streams as shown in Section 2.5.1, and we show below how to
achieve the latter in O(N) time with just read-only streams.

Computing the Lagrange basis polynomial. Given any b ∈ {0, 1}n, computing eq(r, b) takes O(logN)
time. Therefore, at first glance it may seem like producing a stream of the evaluations of the Lagrange
basis polynomial requires O(N logN) time in total. However, we can be more careful: to generate the
stream [eq(r, b)]b∈{0,1}n , we use two methods: we first run Eq.Init(r), which initializes a state given input
r in O(logN) time, and then for each b ∈ {0, 1}n we run Eq.Next(), which updates this state and outputs
eq(r, b), in O(1) amortized time.

Eq.Init(r):
1. Define S := {i ∈ [n] : ri ∈ {0, 1}}.
2. Set start← 0 and out← 0.
3. Set prod ←

∏
i/∈S(1 − ri). // (run-

ning evaluation of eq)
4. Set b← [0]ni=1 and store r.

Eq.Next():
1. If bin(b, i) = bin(r, i) for all i ∈ S: // (O(1) time)
2. If start = 0:
3. Set start← 1; out← prod. // (first non-zero eval)
4. Else: For j in [n, . . . , 1] \ S:
5. If bin(b, j) = 0: set prod← prod · (1− rj)/rj .
6. Else: Set out← prod← prod · rj/(1− rj); Break.
7. Else: Set out← 0. // (there exists i ∈ S s.t. ri ̸= bi)
8. Increment b← bin(int(b) + 1). // (O(1) time)
9. Output out.

We first analyze the case where r ∈ (F \ {0, 1})n, implying that S = ∅. Eq.Init initializes b with
[0]ni=1 and prod with eq(r, [0]ni=1) =

∏n
i=1(1 − ri), and Eq.Next then maintains the following invariant:

prod =
∏

i∈[n](ribi + (1− ri)(1− bi)), while incrementing b.
One single call to Eq.Next might cost O(n) = O(logN) time, but if used N times, the calls have an

amortized O(1) cost. This is because each multiplication with ri/(1 − ri) or (1 − ri)/ri corresponds to
flipping the i-th bit of b. For each i ∈ [n] this occurs at most 2n−i times, and therefore the total number
of flips is at most 2N , which corresponds to the total number of multiplications required to compute the
evaluations of eq. As an additional optimization, Steps 1 and 8 can be performed in O(1) time by storing b
as an integer and using bitwise operations.

For the other case where some ri ∈ {0, 1}, we cannot divide by ri or (1− ri), so we need to specially
handle this. If b and r are equal on all the indices in S, then

∏
i∈S((1− ri)(1− bi)+ ribi) = 1, and therefore

we simply return eq(r, b) =
∏

i/∈S((1 − ri)(1 − bi) + ribi), which we iteratively update as required. If b
and r are not equal on the indices in S, there exists an index i ∈ S such that ri ̸= bi, and therefore eq(r, b)
evaluates to 0.

12We provide a concrete optimization of this reduction via the Lagrange sumcheck protocol in Section 5.2.

11

Remark 2.6. As noted by Rothblum [Rot24], this approach was observed in an unpublished manuscript of
Vu in 2013; however their description only provides a high-level overview of the technique, and does not
provide a detailed algorithm. In particular, we handle the case where some of the ri’s are boolean, which is
important for supporting batch opening of multiple polynomials at different points [CBBZ23].

2.6.2 Prodcheck

A prodcheck claim for two n-variate multilinear polynomials p and q says that the product of their evaluations
over the hypercube

∏
x∈{0,1}n(p(x)/q(x)) equals a claimed product σ ∈ F. PIOPs for prodcheck claims are

a fundamental tool for constructing PIOPs for more complex statements, including multiset-equality-check
and permcheck.

Reduction to zerocheck. HyperPlonk relies on the prodcheck PIOP introduced by Setty and Lee [SL20]. In
this PIOP, the prover P computes and sends to the verifier an (n+1)-variate polynomial ν defined as follows:

ν(0,X) = p(X)/q(X) ν(1,X) = ν(X, 0) · ν(X, 1)

P and V then engage in a zerocheck PIOP for the claims “ν(0,X) · q(X) − p(X) = 0” and “ν(1,X) −
ν(X, 0) · ν(X, 1) = 0”, which together ensure that ν is constructed correctly from p and q, and hence
ν(1, 1, . . . , 1, 0) =

∏
x∈{0,1}n p(x)/q(x). If this holds, then by construction of ν, the verifier V can simply

query ν(1, 1, . . . , 1, 0) and check that it equals σ to verify the prodcheck claim.
Because each zerocheck PIOP only requires O(N) time and O(logN) random-access space, the only

remaining challenge is to compute ν with the same complexity. The standard algorithm for computing ν does
so recursively: for each x ∈ {0, 1}n, let ν(0)(x) = p(x)/q(x), and, for each i ∈ {0, . . . , n− 1} and each
x ∈ {0, 1}n−i, set ν(i+1)(x) = ν(i)(1,x) · ν(i)(0,x). Then ν is the concatenation of the ν(i)’s. With linear
space, this computation can be done in O(N) time. What about when we have only logarithmic space?

Barrier to read-only streaming. A streaming variant of the foregoing algorithm would only be able to
produce a stream for ν by producing, in order, streams for ν(0), ν(1), . . . , ν(n−1). While doing so for ν(0) is
straightforward, producing the stream for ν(i+1) requires computing the product of two evaluations of ν(i),
which in turn would either require recomputing ν(i) (and hence every ν(j) for j < i), or storing it in memory.
Since the latter is not an option in the read-only streaming model, we are left with former approach which
requires O(N logN) time overall.

Remark 2.7. There is an alternative approach that outputs a stream containing the entries of the ν(i)’s, but
in an interleaved form. The idea is to make explicit the tree induced by the recursion, and then, instead of
exploring the tree in a breadth-first manner (i.e., producing the leaves ν(0), then the layer above it, and so
on), we explore it in a depth-first manner. This approach works and achieves O(N) time with O(logN)
space, but it produces ν’s evaluations in an interleaved manner, which is incompatible with our zerocheck
and sumcheck PIOPs, as the latter expect lexicographically ordered evaluations.

Producing ν using RW streams. In the read-write setting, we can store the evaluations of ν(i) on disk, and
therefore we can produce the stream for ν in O(N) time and O(logN) random-access space. We defer to
Section 5.3 a detailed description of this algorithm and the overall PIOP. We describe the algorithm below.

12

P(p, q):
1. Initialize a read-stream ν(0) := p/q.
2. For i in [1, . . . , n− 1]:
3. Initialize a write-stream ν(i) of size 2n−i.
4. For j in [1, . . . , 2n−i]:
5. a← ν(i−1).read(); b← ν(i−1).read().
6. ν(i).write(a · b).
7. Re-initialize ν(i) as a read-stream.
8. Return read-stream ν :=

(ν(0) || ν(1) || . . . || ν(n−1)).

Further details are provided in Section 5.3.2.

2.6.3 Multiset-equality-check

Given two n-variate multilinear polynomials p and q, the multiset-equality-check PIOP aims to prove that the
evaluation tables over the boolean hypercube of p and q are equal as multisets. More precisely, it aims to
prove the following claim: “{{p(x) : x ∈ {0, 1}n}} = {{q(x) : x ∈ {0, 1}n}}”.

Reduction to prodcheck. This claim is proven via a reduction to a prodcheck claim: V sends a random
challenge α ∈ F to P, and then P and V engage in a prodcheck PIOP for the claim that

∏
x∈{0,1}n(p(x) +

α)/(q(x) + α) = 1.

Streaming PIOP. The prodcheck PIOP is invoked on the polynomials (p(x) + α)x∈{0,1}n and (q(x) +
α)x∈{0,1}n . Streaming access to these polynomials can be easily simulated with streaming access to p and
q, and therefore the reduction is in fact read-only streaming. In order to be more concretely efficient and
avoid disk accesses, we leverage read-only streaming reductions whenever possible. Therefore, the reduction
requires O(N) time, and only O(1) additional space (both streaming and random-access). Further details are
provided in Section 5.3.3.

Multiset-equality-check with log derivatives. We also present an RW streaming version of this PIOP
that relies on the PIOP of Haböck [Hab22], which reduces a multiset-equality instance to sumcheck and
zerocheck instances directly. We also discuss some concrete optimizations for this PIOP through a reduction
to a sumcheck for rational functions as described in Appendix A.

2.6.4 Permcheck

Given two n-variate multilinear polynomials p and q, and a permutation π : {0, 1}n → {0, 1}n, the
permcheck PIOP aims to prove the following claim: “p(x) = q(π(x)) for all x ∈ {0, 1}n”.

Reduction to multiset-equality-check. This claim is proven via through a reduction to a multiset-equality-
check claim: V sends a random challenge β ∈ F to P, and then P and V engage in a multiset-equality-check
PIOP for the claim {p(x) + β · int(x)}x∈{0,1}n = {q(x) + β · int(π(x))}x∈{0,1}n .13

Streaming PIOP. Similar to the reduction from multiset-equality-check to prodcheck, the read-streams for
both {p(x) + β · int(x)}x∈{0,1}n and {p(x) + β · int(x)}x∈{0,1}n can be simulated efficiently in a read-only
streaming manner. For any x ∈ {0, 1}n, P can compute p(x) + β · int(x) and q(x) + β · int(π(x)) in
constant time and space since it has access to p(x), q(x), int(x), int(π(x)). Therefore, both streams can be

13The stream of int(x) can be easily simulated because it consists of integers from 0 to N − 1. P also receives π̂ as input, which
is the multilinear extension of π̃, where π̃ : {0, 1}n → F is obtained by casting the output of π to an element of F.

13

produced in O(N) time, and only O(1) additional space (both streaming and random-access). Further details
are provided in Section 5.3.4.

2.7 PIOP for HyperPlonk

As described in Section 2.2, the HyperPlonk PIOP reduces circuit satisfiability to a permcheck claim and a
zerocheck claim. We show in Section 5.3 how to construct a read-write PIOP that performs this reduction.
Our PIOP requires O(N) time, O(logN) random-access space, and O(N) streaming space complexity and
satisfies Corollary 2.4.

The time and space complexity of the aforementioned PIOPs are summarized in Table 1.

PIOP time space

random-access streaming

multilinear sumcheck O(N) O(1) O(N)
(d, ℓ)-sumprod sumcheck O(dℓN) O(d+ ℓ) O(dN)
(d, ℓ)-sumprod zerocheck O(dℓN) O(d+ ℓ+ logN) O(dN)
prodcheck O(N) O(logN) O(N)
multiset-equality O(N) O(logN) O(N)
permcheck O(N) O(logN) O(N)
HyperPlonk O(N) O(logN) O(N)

Table 1: Efficiency of our read-write streaming PIOPs. All complexities are in terms of number of field
elements/operations. The verifier time, query complexity and soundness error are the same as their non-streaming
counterparts in HyperPlonk [CBBZ23].

2.8 Read-write streaming polynomial commitments

We now show how to construct read-write streaming variants of a number of popular polynomial commitment
schemes for multilinear polynomials. Our constructions preserve the cryptographic linear-time complexity of
the prover, while reducing the random-access space to just O(logN). Our results are summarized in Table 2.

scheme SRS size time streaming space check time proof size
commit open commit open

PST13 [PST13] O(N) O(N) O(N) O(1) O(N) O(logN) O(logN)

Hyrax [WTSTW18] O(1) O(N) O(N) O(1) O(
√
N) O(

√
N) O(

√
N)

Multilinear Halo [BGH19; Set20] O(1) O(N) O(N) O(1) O(N) O(N) O(logN)

BMMTV21 [BMMTV21] O(
√
N) O(N) O(N) O(

√
N) O(

√
N) O(logN) O(logN)

Dory [Lee21] O(
√
N) O(N) O(N) O(

√
N) O(

√
N) O(logN) O(logN)

Table 2: Efficiency of our read-write streaming polynomial commitment schemes for n-variate multilinear
polynomials, where N = 2n. All sizes are specified in number of group elements, and all time complexities in
number of group operations.

We now provide high-level overviews of the techniques used to obtain the results in Table 2. We begin
in Section 2.8.1 by describing the read-write streaming variant of the scheme of Papamanthou, Shi, and
Tamassia (PST) [PST13]. Then, in Section 2.8.2, we show how to obtain a cryptographic linear-time RW

14

VM
V

ba
se

d
PC

Generalized IPA

Vector-Matrix-Vector
Product Arguments

Hyrax DoryBMMTV21
Multilinear Halo
[BGH19, S21] PST13

Figure 2: Our read-write streaming PC schemes.

streaming prover for generalized inner product arguments [BMMTV21], and then show how to use the latter
to construct RW streaming variants of the schemes of Bowe et al. [BGH19] (Section 2.8.3), and of Wahby et
al. [WTSTW18], Bünz et al. [BMMTV21] and of Lee [Lee21] (Section 2.8.4). In all cases, we focus on the
commitment and opening algorithms, as these are the ones that are invoked by the RW streaming SNARK
prover.

Building block: multi-scalar multiplication. A key component of all the aforementioned constructions is a
multi-scalar multiplication (MSM) operation, which computes

∑N
i=1 ai ·Gi for given scalars (field elements)

a1, . . . , aN and group elements G1, . . . , GN . Given streaming access to a and G, clearly this operation can
be performed in a read-only streaming manner in cryptographic linear time: simply stream through a and G
in parallel, and compute the sum incrementally.

2.8.1 Read-write streaming variant of PST

The PST scheme [PST13] extends the ideas of the KZG scheme [KZG10] from univariate polynomials to
multilinear polynomials. We start by recalling a version of the PST scheme presented in Libra [XZZPS19].

Setup. Setup samples a bilinear group ⟨group⟩ = (G1,G2,GT , q, G,H, e)← SampleGrp(1λ), and outputs
a commitment key of the form ck := ([ckj]

n
j=0), where ckj := [eqj(α[n−j+1:n], i)·G]i∈{0,1}j ,

14 and α
$← Fn

is a randomly sampled field vector. Each ckj enables committing to a j-variate multilinear polynomial.15

Commit. Given an n-variate multilinear polynomial p represented as its evaluations over the boolean hy-
percube p := [p(bin(i))]2

n−1
i=0 , Commit computes the commitment C := ⟨p, ckn⟩ via a read-write streaming

MSM.
Opening. Computing an evaluation proof is more challenging. For an n-variate multilinear polynomial
p(X1, . . . , Xn) and an evaluation point z ∈ Fn, PST relies on the fact that p(z) = v if and only if there exist
polynomials q1(X2, . . . , Xn), q2(X3, . . . , Xn), . . . , qn−1(Xn), qn such that

p(X)− v =

n∑
i=1

qi(Xi+1, . . . , Xn) · (Xi − zi) .

PST leverages this fact as follows: to prove that p(z) = v, Open computes commitments π1, . . . , πn to the n
‘witness’ polynomials q1, . . . , qn with respect to keys ckn−1, . . . , ck0 respectively. Since these polynomials
are respectively of sizes 2n−1, 2n−2, . . . , 1, these commitments can be computed in overall cryptographic
linear-time, and so we are left to reason about the time complexity of computing the witness polynomials
themselves.

14Given a vector a = [ai]
n
i=0, we use a[j:k] to denote [ai]

k
i=j .

15To avoid any ambiguity, we explicitly define ck0 := G.

15

Zhang et al. [ZGKPP18, Appendix G] demonstrate a linear-time algorithm for computing these polyno-
mials that relies on the following decomposition of the multilinear polynomial p:

p(X1, . . . , Xn) = g(X2, . . . , Xn) +X1 · h(X2, . . . , Xn)

= (g(X2, . . . , Xn) + z1 · h(X2, . . . , Xn))

+ (X1 − z1) · h(X2, . . . , Xn)

:= r1(X2, . . . , Xn) + (X1 − z1) · q1(X2, . . . , Xn)

With q1 in hand, Open proceeds to compute q2 by recursively invoking the foregoing decomposition on
the ‘remainder’ polynomial r1(X2, . . . , Xn). Then for each j ∈ {2, 3, . . . , n}, Open recursively invokes the
foregoing decomposition on the ‘remainder’ polynomial rj−1(Xj , . . . , Xn) to obtain the witness polynomial
qj(Xj+1, . . . , Xn) and the next remainder polynomial rj(Xj+1, . . . , Xn). Zhang et al. [ZGKPP18] show
how to compute this decomposition in linear time.

Limitations of read-only streaming. While Commit is computable in a read-only streaming manner, it is
more difficult to realize a read-only streaming variant of Open that runs in cryptographic linear-time.

In more detail, a naive read-only streaming adaptation of the algorithm of Zhang et al. would require
O(N logN) time because, for each i ∈ [logN], it would have to compute the evaluations qi of the polynomial
qi(X) from scratch, which would take O(N) time for each i.

We can avoid this by using ideas similar to those in our streaming prodcheck algorithm in Section 2.6.2,
and changing the order in which we produce the evaluations qi. Namely, we can view the computation that
produces these polynomials as implicitly traversing a binary tree. The naive adaptation of the algorithm
of Zhang et al. would traverse this tree in a level-by-level order manner, computing all the evaluations
of a particular qi before moving on to the next one. We could instead traverse it in a depth-first manner,
thus not having to compute each element of each qi from scratch, and only requiring O(N) time overall.
The downside to this approach is that since the evaluations of the witness polynomial are now produced
in an interleaved manner, committing to these in a read-only streaming manner would require a similarly
interleaved commitment key, which would double the size of the overall commitment key.

Achieving RW streaming in cryptographic linear-time. We instead describe a simpler, cryptographic
linear-time, RW streaming Open algorithm, that avoids interleaving the commitment key. Our construction
follows from the observation that each step of the algorithm of Zhang et al. closely parallels the kFoldInPlace
step of the sumcheck protocol. Thus we can apply similar techniques to those used in Section 2.5 and leverage
intermediate work streams to obtain a RW streaming version of Open.

Let p, g and h be vectors consisting of evaluations (over the corresponding boolean hypercubes) of
p(X1, . . . , Xn), g(X2, . . . , Xn) and h(X2, . . . , Xn) respectively. Then, given a point i ∈ {0, 1}n with
i1 = 0, clearly p(0, i2, . . . , in) = g(i2, . . . , in). Similarly, if i1 = 1, then p(1, i2, . . . , in) = g(i2, . . . , in) +
h(i2, . . . , in), implying that h(i2, . . . , in) = p(1, i2, . . . , in) − p(0, i2, . . . , in), and so we can set g := pL

and h := pR − g, where pL and pR are the left and right halves of the evaluations of p, respectively.
Given streaming access to p, clearly the prover can write g and h onto intermediate write streams. The

prover then sets q1 := h and commits to it (we show how to do this in the next paragraph). Finally, the
prover computes r1 := g + z1 · h using the streams containing g and h and continues to iteratively obtain
q2, . . . , qn.

The streaming prover needs to compute the commitment Cj to the witness polynomial qj(Xj+1, . . . , Xn)
for all j ∈ [n]. The commitment is defined as follows: Cj :=

∑
i∈{0,1}n−j qj(i) · eqn−j(α[j+1,n], i) · G.

This can be computed in a streaming manner straightforwardly, given streaming access to ckn−j and qj . The
full details of our RW streaming construction are presented in Section 6.2.1.

16

2.8.2 Building block: read-write streaming inner product arguments

A core building block for many polynomial commitment schemes [BCCGP16; WTSTW18; Lee21; BMMTV21;
BGH19; BCMS20] is an inner product argument (IPA) [BCCGP16; BBBPWM18] or its generalization
[LMR19; BMMTV21]. Thus, if we wish to design RW streaming variants of these polynomial commitments,
it is essential to first design RW streaming variants of these IPAs.

Generalized Inner Product Arguments. We construct a RW streaming prover that requires only logarithmic
random access space for the generalized inner product argument (GIPA) of [BMMTV21]. For the purposes
of this section, an inner product argument allows a prover P to convince a verifier V that the inner product
⟨w,x⟩ = v, where w ∈ FN is a private vector committed to in a Pedersen commitment C and x ∈ FN is a
public vector shared by both P and V .16

At a high level, the construction works as follows: P and V both receive as input (1) a commitment key
consisting of a vector of group generators G ∈ GN , (2) the Pedersen commitment C :=

∑n
i=1wi·Gi = ⟨w,G⟩,

(3) the public vector x, and (4) the claimed inner product value v. P additionally receives as input the private
witness w.
P and V engage in the following interactive protocol that reduces verifying the validity of the above claim

to verifying the validity of a claim of half the size. (Recall that, for a vector a, aE is the vector containing
the elements of a that appear at even indices, and aO is the vector containing elements at odd indices.)

1. P computes C+ := ⟨wE ,GO⟩ and C− := ⟨wO,GE⟩.
2. P computes v+ := ⟨wE ,xO⟩ and v− := ⟨wO,xE⟩.
3. P sends the cross-terms C+, C−, v+, v− to V .
4. V samples α $← F and sends it to P .
5. P sets w′ := αwE +wO.
6. P and V set

G′ := α−1GE +GO,

C ′ := C + αC+ + α−1C−,

x′ := α−1xE + xO,

v′ := v + αv+ + α−1v−.

This reduction guarantees, except with negligible probability over the choice of α, that if C ′ = ⟨w′,G′⟩
and v′ = ⟨w′,x′⟩, then it must have been the case that C = ⟨w,G⟩ and v = ⟨w,x⟩. Clearly the prover in
this reduction runs in cryptographic linear-time as it only performs inner-products and linear combinations.

In the full GIPA, P and V run this interactive reduction recursively for logN rounds until w′ is of
length O(1), at which point P can send w′ to V in the clear and V can check that C ′ = ⟨w′,G′⟩ and
v′ = ⟨w′,x′⟩. Since the vectors in each round are respectively of sizes 2n−1, 2n−2, . . . , 1, the whole protocol
can be executed in cryptographic linear-time.

Additionally, since this protocol is public-coin, it can be turned non-interactive via the Fiat–Shamir
transform [FS86].

Barrier to read-only streaming. In each of the logN rounds, P has to compute and send the cross terms
C+, C−, v+, v− to V . This requires access to the intermediate vectors G′, x′ and w′, and the computation
of these closely resembles the Fold step of the sumcheck protocol (see Section 2.5). Indeed, just like in
sumcheck, the GIPA prover ‘folds’ the vectors G, x and w in half with respect to the challenge α. As a
result, a read-only streaming version of the GIPA prover P would encounter the same bottleneck as the

16Generalized inner product arguments consider statements of a more general form: w,x do not need to be vectors over F. Further
details can be found in Appendix B.

17

read-only streaming sumcheck prover: it would need to recompute the ‘state’ G′, x′ and w′ for each round
from scratch, which takes O(N) work for each of the logN rounds. This is the approach taken by Block et
al. [BHRRS20], and as a result they suffer from a logN overhead on the prover time.

Achieving RW streaming in cryptographic linear-time. We present a direct construction for a RW
streaming GIPA prover that achieves cryptographic linear-time and logarithmic random-access space. Given
streaming access to G, x and w, the RW streaming prover can compute the cross-terms as well as compute
and write out G′, x′ and w′ to an intermediate stream in a straightforward way using O(N) group and field
operations. It then iteratively applies the streaming reduction on these intermediate streams logN − 1 more
times, where the size of each stream is halved, resulting in a total of O(N) operations. The prover only
requires O(1) random-access space to keep track of the pointers for the input and intermediate streams.

We note that there is another, more indirect path to obtaining a RW streaming GIPA prover: Bootle, Chiesa,
and Sotiraki [BCS21] show how to interpret IPAs as sumcheck arguments where the prover’s algorithm closely
resembles the sumcheck prover’s algorithm. We can exploit this interpretation by applying our techniques
from Section 2.5 to obtain a RW streaming GIPA prover with the same asymptotic efficiency as our direct
construction.

2.8.3 PC schemes directly from inner product arguments

Evaluating a multilinear polynomial p(X) at a point z is equivalent to computing the inner product
⟨p, eqz⟩ =

∑
b∈{0,1}n p(b)eq(z, b), where p := [p(bin(i))]2

n−1
i=0 is the evaluation of the polynomial over

its corresponding boolean hypercube and eqz := [eq(z, bin(i))]2
n−1

i=0 (i.e. the vector consisting of the i-th
Lagrange polynomials evaluated at z, for all i ∈ {0, 1}n). Thus, an IPA immediately implies a polynomial
commitment scheme:
• PC.Setup: Sample the commitment key G

$← GN .
• PC.Commit: Compute a Pedersen-style commitment to the polynomial p as C := ⟨p,G⟩.
• PC.Open: Use the GIPA to prove that p(z) = v by proving C = ⟨p,G⟩ and v = ⟨p, eqz⟩.
Clearly, the RW streaming IPA from Section 2.8.2 implies RW streaming versions of the commitment and
opening algorithms, with the only subtlety arising in the computation of eqz , which we demonstrated how to
compute in a read-only streaming manner in Section 2.6.1.

This is precisely the PC scheme from [BGH19]. It requires linear verifier time and a linear-sized
commitment key. We describe next RW streaming algorithms for PC schemes that avoid these drawbacks.

2.8.4 PC schemes from VMV products

Background: polynomials as matrices. Wahby et al. [WTSTW18] proposed an alternate recipe for con-
structing polynomial commitment schemes from inner product arguments, where the size of the commitment
key is sublinear in the size of the polynomial being committed to. At a high level, the recipe proceeds by
viewing an n-variate multilinear polynomial p(X), represented by its evaluation over the boolean hypercube
p, as a matrix M ∈ F

√
N×

√
N defined as follows:

Mij := pk for k = i · 2m + j ,

where N := 2n and m := n/2.
They observe that evaluating p(X1, . . . , Xn) at a point z = (z1, z2, . . . , zn) is equivalent to computing

the vector-matrix-vector (VMV) product ℓ⊤Mr, where ℓ := [eq(zL, binn(i))]
√
N−1

i=0 = ⊗m
i=1(1− zi, zi) and

18

r := [eq(zR, binn(i))]
√
N−1

i=0 = ⊗n
i=m+1(1− zi, zi).17

This can be illustrated as follows: consider a multilinear polynomial in four variables p(X1, X2, X4, X4).
Then for any z ∈ F4 we can write p(z) =

∑
b∈{0,1}4 p(b)

∏
i∈[4](1− zi)

1−bizbii . Now consider the following
vectors:

ℓ = (1− z1, z1)⊗ (1− z2, z2) = ((1− z1)(1− z2), (1− z1)z2, z1(1− z2), z1z2),

r = (1− z3, z3)⊗ (1− z4, z4) = ((1− z3)(1− z4), (1− z3)z4, z3(1− z4), z3z4),

M =


p0 p1 p2 p3
p4 p5 p6 p7
p8 p9 p10 p11
p12 p13 p14 p15

 =


M0

M1

M2

M3


It can be inspected that ℓ⊤Mr =

∑
b∈{0,1}4 p(b)

∏
i∈[4](1 − zi)

1−bizbii = p(z). This idea leads to the
following blueprint for building polynomial commitment schemes:

Setup. Sample the commitment key G
$← G

√
N .

Commit. To commit to the polynomial p, Commit commits to the corresponding matrix M by Pedersen
committing to each row Mi as Ci := ⟨Mi,G⟩, obtaining

√
N row commitments. Some schemes like

Hyrax [WTSTW18] directly use these row commitments C := [Ci]
√
N−1

i=0 as a
√
N -sized commitment to the

polynomial. Other schemes, like Dory [Lee21] and that of Bünz et al. (BMMTV21) [BMMTV21], further
commit to these row commitments (which are group elements) via a structure-preserving commitment scheme
in groups with bilinear pairings [AFGHO16] to obtain a constant-sized commitment C to the matrix M. This
step imposes marginal overhead in the prover time and commitment key size. For simplicity of exposition,
below we focus on Hyrax and defer the discussion of how to achieve RW streaming algorithms for Dory and
BMMTV21 to Appendices B to D.
Opening. To prove that p(z) = v, Open uses a ‘vector-matrix-vector’ product argument that allows a
prover to convince a verifier that ℓ⊤Mr = v for a matrix M committed via the commitment C, where ℓ and
r are public vectors constructed from z as above.

It is easy to see that ℓ⊤M =
∑√

N−1
i=0 ℓi ·Mi and ℓ⊤Mr = ⟨

∑√
N−1

i=0 ℓi ·Mi, r⟩ = v. Thus, Hyrax’s
vector-matrix-vector product argument proceeds by having the verifier directly compute the commitment
C to the vector ℓ⊤M by computing the linear combination of the row commitments with the ℓ vector,
C :=

∑√
N−1

i=0 ℓi · Ci. Open then uses an IPA to produce a proof that the inner product of the resulting
committed vector C with r equals the claimed evaluation v.

Since vector-matrix multiplication can be computed in time O(N) for matrices of dimension
√
N ×

√
N ,

and running an IPA over vectors of length
√
N only takes O(

√
N) cryptographic time, Open requires O(N)

(non-cryptographic) time overall.
Barrier to read-only streaming. It seems that we cannot simultaneously achieve (cryptographic) linear-time
and logarithmic random-access space for both the Commit and Open algorithms of VMV PC schemes. In
particular, given access to the matrix M in row-major order, the Commit algorithm can be implemented
in a read-only streaming manner with only logarithmic random-access memory. On the other hand, Open
computes the vector-matrix product ℓ⊤M, and streaming computation of the latter requires a column-major-
order stream of M. Since the surrounding application (in this case the SNARK) only provides row-major
access to M, Open would need to compute the transpose of M to obtain column-major access to M, and
even the best in-place (i.e. non-streaming) algorithms for this task require O(N) time and space.

17The ⊗ operation denotes the Kronecker product. Given vectors x ∈ FN and y ∈ FM , x⊗ y := [x1 · y, x2 · y, . . . , xN · y].

19

Achieving RW streaming in cryptographic linear-time. We now outline how to construct a RW streaming
algorithm for Open that achieves linear-time and logarithmic random-access space by leveraging just two
intermediate write-streams of size

√
N . Our algorithm avoids the need for matrix transposition entirely.

Given streaming access to ℓ and to the rows of the matrix M (denoted by M0, . . . ,M√
N−1), the

algorithm starts by reading ℓ0, streaming through M0, and computing and writing out ℓ0 ·M0 to an
intermediate read-write stream W. In the next iteration, it reads ℓ1 and streams through both the next row
M1 and W, and updates W to contain ℓ0 ·M0 + ℓ1 ·M1 by adding in the product ℓ1 ·M1.18 This process
continues until W contains the desired output ℓ0 ·M0 + . . .+ ℓ√N−1 ·M√

N−1. Clearly, throughout this
process, the algorithm only consumes O(logN) random access space and O(

√
N) streaming space (for W).

We describe the full construction of Hyrax in Appendix C.3.

2.9 Implementation

We implemented SCRIBE in Rust atop the arkworks framework [con22] by adapting and extending the
HyperPlonk implementation.19 Our implementation is modular and allows for switching out almost all
components, from the PC scheme to the underlying elliptic curve. We also adapt the jellyfish circuit
construction framework20 to output witness streams for the circuits it constructs. We provide next details about
the infrastructure we developed to enable efficient and ergonomic implementation of read-write streaming
algorithms.

2.9.1 Tools for read-write streams

To implement the read-write streaming algorithms outlined in Sections 2.6 and 2.8, we developed a slew of
tools that allow for efficient streaming operations on vectors stored on disk. We believe that these tools will
be of independent interest for future work on read-write streaming algorithms.

Low-overhead serialization and deserialization. To ensure that data can be efficiently streamed to and from
disk, we implement custom serialization and deserialization routines for common types (e.g., integers, fields,
and group elements). Unlike the standard serialization routines in arkworks, our routines are optimized for
temporary storage and avoid expensive canonicalization steps (e.g., converting elliptic curve points between
projective and affine coordinates).

File-backed vectors. We provide a new FileVec type whose API resembles that of Rust’s standard Vec type,
but which uses temporary files on disk as backing storage for the vector. We carefully engineer FileVec to
ensure that its data can be accessed only in a streaming manner, and furthermore augment it to automatically
switch to memory-backed storage when the vector becomes small enough. To ensure that accesses to FileVec
do not populate the operating system’s file-system cache, FileVec opens files with the O_DIRECT flag on
Linux and the F_NOCACHE flag on MacOS.

File-backed multilinear polynomials. We leverage FileVec to obtain a multilinear polynomial type whose
evaluations are stored on disk. We augment this type to avoid disk storage entirely whenever the polynomial

18To be more precise, because our model does not allow simultaneous read-write access to the same stream, the algorithm would
need to use two intermediate read-write streams W1 and W2, and alternate between them in each iteration to obtain the desired
sum: once the algorithm has written out ℓ0 ·M0 onto W1, it must stream through both the running sum in W1 as well as M1 and
compute and write out the new running sum ℓ0 ·M0 + ℓ1 ·M1 onto W2. It would then read this new running sum from W2 as well
as ℓ2 and M2 to write out ℓ0 ·M0 + ℓ1 ·M1 + ℓ2 ·M2 onto W1, and so on.

19https://github.com/EspressoSystems/hyperplonk
20https://github.com/EspressoSystems/jellyfish

20

https://github.com/EspressoSystems/hyperplonk
https://github.com/EspressoSystems/jellyfish

can be streamed in a read-only manner (e.g., as is the case for the multilinear Lagrange polynomial eq.); this
optimization greatly improved performance in our implementation.
Batched iterators. We implement the various stream operations required by our read-write streaming
algorithms via a new batched iterator interface. We specify this interface as a Rust trait, BatchedIterator,
whose API resembles Rust’s standard Iterator trait, but which processes (in parallel via the rayon library21)
a batch of elements on each iteration. BatchedIterator supports common operations such as map, filter,
enumerate, and zip, and different BatchedIterator instances can be composed into complex pipelines
that minimize disk I/O. We also implement BatchedIterator for FileVec.

2.10 Evaluation

We conduct a thorough evaluation of SCRIBE’s performance in a variety of settings. Our evaluation aims to
answer the following questions:

• Q1: Can SCRIBE scale to prove large circuits, and what overhead does it incur compared to state-of-the-art
baselines (both low-memory and memory-intensive ones)?

• Q2: When does I/O bandwidth become a bottleneck?

• Q3: What is the memory cost of witness synthesis?

Baselines. We compare SCRIBE against two main baselines: the memory-intensive HyperPlonk [CBBZ23]
and the low-memory Gemini [BCHO22].
Parameters. We configure all proof systems to use the BLS12-381 elliptic curve. SCRIBE’s FileVecs
switch over to memory-backed storage when they contain at most 216 elements.
Main experimental setup. We perform our benchmarks on an AWS EC2 im4gn.4xlarge instance with an
Intel Xeon Platinum 8175 CPU with 12 cores at 3.1GHz, 7.5TiB of storage, and 96GiB of memory. The
on-demand price of this instance is $1.356 per hour at the time of writing. To enforce memory and bandwidth
limits, we rely on the cgroups functionality of Linux (via the systemd-run command). Both SCRIBE and
Gemini are configured to use at most 2GiB of memory, while HyperPlonk is allowed to use all available
memory.

2.10.1 Scalability

We evaluate the performance of SCRIBE, Gemini, and HyperPlonk on our main experimental setup. All
provers use 8 threads. Our results are shown in Fig. 3.
Running time. SCRIBE’s latency scales linearly with instance size, and is 9.2× smaller than Gemini’s
latency while being just 1.1×-1.3× larger than HyperPlonk’s latency.
Scaling to large instances. Both Gemini and SCRIBE can scale to large instances, while HyperPlonk cannot
prove circuits larger than 224 gates due to memory constraints. We note that SCRIBE’s superior running time
allowed us to benchmark it on larger instances (up to 228 gates) than Gemini (up to 226 gates). While not
shown in Fig. 3, we also evaluated industrial-quality SNARK libraries Plonky2 and Halo2 in the same setup,
and found that they too could not scale to large instances in a limited-memory setting.
Performance on mobile devices. We also ran the same benchmarks on an iPhone 13 Pro Max to evaluate the
performance of SCRIBE on a mobile device. Our experiments show that the overhead of SCRIBE compared

21https://github.com/rayon-rs/rayon

21

https://github.com/rayon-rs/rayon

to HyperPlonk is similar to the main setup; however, SCRIBE can scale to 32× larger instances. We note
though that the advantage of SCRIBE over Gemini is reduced to just 6.5×.

15 16 17 18 19 20 21 22 23 24 25 26 27 28
Instance size (log N)

0

101

102

103

104

Ti
m

e
(s

)

HyperPlonk
Scribe
Gemini

Figure 3: Proving time of SCRIBE, HyperPlonk, and Gemini.

2.10.2 Overhead of read-write-streaming

We investigate the overhead incurred by SCRIBE due to read-write streaming via two experiments, both of
which simulate different compute-to-I/O ratios. The first varies the number of threads used by both SCRIBE

and HyperPlonk and is reported in Fig. 4. Our results show that SCRIBE’s overhead does not vary significantly
with the number of threads, which indicates that for typical SSDs and for a reasonable number of threads,
SCRIBE is not I/O bound.

12 13 14 15 16 17 18 19 20 21 22 23 24
Instance size (log N)

1.0

1.1

1.2

1.3

Ov
er

he
ad

 (T S
cr

ib
e

T H
P

)

Threads
1 Threads
4 Threads
8 Threads

Figure 4: Overhead of SCRIBE over HyperPlonk as the number of threads varies.

Our second experiment fixes the number of threads to 8 and instead varies disk bandwidth. We report our
results in Fig. 5, which shows that when bandwidth is significantly throttled, SCRIBE’s latency degrades,
indicating an I/O bottleneck. However, even this degraded latency is at worst 3× that of HyperPlonk.

22

12 13 14 15 16 17 18 19 20 21 22 23 24
Instance size (log N)

1.0

1.5

2.0

2.5

Ov
er

he
ad

 (T S
cr

ib
e

T H
P

)

Bandwidth
200 MB/s
400 MB/s
800 MB/s
1600 MB/s

Figure 5: Overhead of SCRIBE over HyperPlonk when bandwidth is limited.

2.10.3 Cost of witness synthesis

To evaluate the time and memory costs of witness synthesis in our circuit programming framework, we
sample randomly-generated circuits and try to synthesize witnesses for these. Our circuit-sampling process
takes as input a number of gates, a size for a “working set” S that specifies the number of variables that
are “in use” at any given moment during circuit generation, and a replacement probability that specifies the
probability that a variable in the working set is replaced by a new variable. It produces a circuit C whose
every gate is randomly sampled to be either an addition or a multiplication gate, and each gate’s inputs are
randomly sampled from the working set.

We evaluated the space and time costs of witness synthesis for circuits with sizes ranging from 215 to 228

with a variety of working set sizes. Our results are summarized in Table 3, which shows that these costs are a
miniscule fraction of the corresponding proof generation costs even for all circuit sizes we evaluated.

working set size memory % of proving time

215 < 68MB < 1%
217 < 72MB < 1%
220 < 110MB < 1%

Table 3: Cost of witness synthesis for randomly-generated circuits C with |C| ∈ {max(|S|, 215), . . . , 228}.

23

3 Related work

3.1 Similar memory models

Read-write streaming. Prior work [GKS05; GS05; GHS06; BJR07; DFR09; FJM14] has considered a
model of read-write streaming algorithms similar to ours, but focused on primitives such as sorting, graph
algorithms, and database algorithms. The focus of these works is primarily theoretical, and they do not try to
optimize for the running time of the algorithms, but rather only for the random-access space complexity and
the number of passes over the external memory. Papakonstantinou and Yang [PY14] consider the possibility
of implementing simple cryptographic primitives (like encryption) in a limited version of the read-write
streaming model, and demonstrate some theoretical feasibility results.

External memory model. The external memory model [AV88] has been widely studied in the context of
algorithms for large datasets that do not fit in RAM. The key parameter that is optimized in this model is the
number of I/Os, which is the number of times the algorithm accesses the external memory (such as disk). Our
RW streaming model is more restrictive than the external memory model because in the former, algorithms
only have streaming access to external disk, and are also optimize for total work done instead of just the
number of I/Os. Therefore, lower bounds in the external memory model also apply in our RW streaming
model.

3.2 Read-only streaming SNARKs

A recent line of work attempts to tackle the prover space bottleneck by constructing ‘streaming’ SNARKs
whose prover requires only a small amount of random-access space, and can only access the circuit wire
values in a read-only streaming manner. This model differs from ours in that the prover does not have access
to intermediate read-write streams. A number of prior works [BHRRS20; BHRRS21; BCHO22; ZCLKZ24]
construct streaming SNARKs in this restricted model, but do so by sacrificing on prover time efficiency: the
prover’s algorithm in all these works incurs at least an Ω(logN) factor overhead compared to non-streaming
equivalents, and concrete efficiency is at least 10× worse than state-of-the-art non-streaming SNARKs [Set20;
CBBZ23]. We begin with a general comparison against the entire class.

Comparison of frameworks. The ability to use intermediate read-write streams enables more efficient
algorithm composition than in the read-only streaming model, which in turn means that our generic construc-
tion of read-write streaming SNARKs in Corollary 2.4 achieve better concrete efficiency compared to the
corresponding read-only streaming SNARKs. In more detail, the SNARK prover must feed the polynomials
output by the PIOP prover to both the PC commitment algorithm and the PC opening algorithm. In the
read-write setting, the SNARK prover can write the polynomials to intermediate read-write streams and use
these as the input stream for both PC algorithms, but in the read-only setting the SNARK prover can neither
store these polynomials in random-access memory nor write them out to disk, and so must compute them
from scratch for each PC algorithm.
Block et al. [BHRRS20; BHRRS21] construct read-only streaming SNARKs by designing a streaming
PIOP and combining it with streaming PC schemes from inner-product arguments [BHRRS20] or groups of
unknown order [BHRRS21]. Both works achieve logarithmic random-access space complexity for the prover,
but incur quasi-linear time complexity. They do not implement their SNARK constructions, which prevents
us from comparing their concrete efficiency with ours. Our read-write streaming inner-product argument
takes inspiration from the read-only streaming one in [BHRRS20], but, unlike the latter, is able to achieve
cryptographic linear time complexity.

24

Gemini [BCHO22] generalizes the notion of streaming SNARKs and introduces elastic SNARKs that have
prover algorithms optimized for two different memory regimes. The first regime is a memory-intensive one
where the focus is on minimizing prover time, while the second regime is the read-only streaming setting
where the focus is on minimizing prover memory. The latter regime is the relevant point of comparison
for SCRIBE. We provide a quantitative comparison with Gemini’s streaming prover in Section 2.10, and
so focus here on a qualitative comparison. On an instance of size N , Gemini’s streaming prover achieves
O(N log2N) prover time with logarithmic prover memory, and does so by applying their analogue of the
‘PIOP + PC → SNARK’ transformation [CHMMVW20; BFS20] to streaming PIOPs and streaming PC
schemes that they construct. Attempting to use read-write streams to improve the efficiency of their SNARK
does not seem to work, as their PIOP requires multiplying a random vector by a sparse matrix, and this seems
to inherently require quasi-linear time in a low-memory setting.
Epistle [ZCLKZ24] designs a new SNARK that improves upon Gemini: its streaming prover requires only
O(N logN) time without increasing prover memory. Like SCRIBE, Epistle’s starting point is the (memory-
intensive) HyperPlonk SNARK [CBBZ23], but it switches out HyperPlonk’s prodcheck PIOP in favor of a
novel construction that is more amenable to read-only streaming. Like HyperPlonk’s prodcheck, their new
prodcheck PIOP also reduces to a sumcheck, but the key difference is that this reduction requires only O(N)
time even when restricted to O(logN) space. The key time complexity bottleneck of Epistle’s PIOP is the
sumcheck protocol, since it requires O(N logN) time in the read-only streaming model. Since Epistle’s
code is not publicly available at the time of writing, we are unable to provide a quantitative comparison of
Epistle with SCRIBE. However, the numbers in their paper indicate that they incur an order-of-magnitude
overhead over HyperPlonk, while our overhead is just 10-35%.
Blendy [CFFZ24] introduces a read-only streaming sumcheck protocol for multilinear polynomials which
requires O(N1/k) space and O(kN) time, where k is a tunable parameter. Using k = logN/ log logN this
gives us a O(logN) space and O(N logN/ log logN) time sumcheck protocol. Unfortunately, this work is
limited to multilinear polynomials, which is insufficient for constructing SNARKs (which require sumcheck
over products of multilinear polynomials).
Sparrow [PP24] is a read-only streaming SNARK whose prover requires O(

√
N) random-access space and

O(N log logN) time. Sparrow only supports data-parallel circuits. On a technical level, Sparrow introduces
a new sumcheck protocol for products of multilinear polynomials (different from the standard one), and
designs a read-only streaming PIOP for it that achieves the above efficiency.

3.3 Complexity-preserving SNARKs

Complexity-preserving SNARKs [BC12] impose at most a poly-logarithmic overhead in prover time and
space compared to the corresponding costs for the computation being proven. We recap some relevant recent
works in this space.

Low-memory SNARKs via IVC. Incrementally-verifiable computation (IVC) is the most popular means
of constructing a complexity-preserving SNARK [BCCT12]. Unfortunately, IVC-based approaches have a
number of drawbacks, including support for only uniform computations, non-black-box use of cryptography, a
dependence on complex primitives like proof-carrying data [CT10] to achieve provable security, and, for many
efficient constructions, a reliance on heuristics due to the need to instantiate random oracles. Nevertheless,
IVC-based complexity-preserving SNARKs achieve good concrete efficiency. We discuss a few recent works.
Mangrove [NDCTB24] builds a complexity-preserving SNARK by reducing circuit-satisfiability to a uniform
computation, and applying efficient accumulation/folding-based IVC schemes [BCLMS21; KST22] to this
uniform computation. Mangrove’s prover can be seen as a read-only streaming prover that makes two passes

25

over the witness, and requires O(logN) random-access space. Mangrove does not provide an implementation
to compare against, and moreover suffers from many of the aforementioned limitations of IVC-based
SNARKs.
Ligetron [WHV24] Ligetron builds an argument of knowledge with prover time O(N logN) and O(

√
N)

random-access space. Unlike SCRIBE, Ligetron does not have a succinct verifier. Ligetron improves on the
prior theoretical work of Bangalore et al. [BBHV22]. Unlike SCRIBE, both these works achieve provable
security by relying on only the random oracle model (and no other cryptographic assumptions). We were
unable to provide a quantitative comparison with Ligetron since their code is not publicly available at the
time of writing.

26

4 Read-write streaming algorithms

In this section we define read-write (RW) streams in detail in Definition 4.1, and then describe the behavior
of RW streaming algorithms in Definition 4.2. Subsequently, we describe common RW streaming algorithms
in Section 4.1 that will be useful subroutines when designing RW streaming PIOPs and PC schemes in later
sections.

Definition 4.1 (read-write streams). A read-write stream S is a tuple (a, p,m, ℓ) where a is an underlying
ordered set, p is a pointer to the ordered set, and m ∈ {r,w} specifies whether S is in read mode (i.e. when
m = r) or write mode (i.e. when m = w), and ℓ is the length of the underlying ordered set. Read-write
streams support the following operations:
• S.read(): if S.m = r, read() returns the element at the current position of S.p, and moves S.p to the next

element of S.a.
• S.write(w): if S.m = w, write(w) writes w at the current position of S.p (overwriting any existing value),

and moves S.p to the next element of S.a.
• S.init(N) initializes S = (a, p,w, N) in write mode by allocating a contiguous space for an array of N

elements a, and initializes S.p at the beginning of the allocated space. Note that the space allocated does
not need to be initialized with any default values.

• S.restart() resets S.p to the beginning of S.a.
• S.swapmode() resets S.p to the beginning of S.a and toggles S.m between r and w.
• S.len() returns the length of the underlying set S.ℓ.

Elements of underlying set. In the RW streaming algorithms described in subsequent sections, the
underlying ordered set a of a RW stream S always contains elements from a field F or group G, or constant-
sized tuples thereof.

RW stream notation. We will typically denote a RW stream that only uses read mode as R, a RW stream
that only uses the write mode as W, and a RW stream that uses both modes as S. Additionally, we use R(a)
to denote a RW stream in read mode where the underlying ordered set is a and the underlying pointer S.p is
initialized to the beginning of a.

Definition 4.2. A read-write (RW) streaming algorithm A(I) 7→ O is an algorithm that
• takes as input an input stream I and an output stream O to which A writes its output.
• can allocate a polylogarithmic number of intermediate streams using init and read/write intermediate

states to them in a streaming manner using read(), restart(), and write(·).
• can allocate at most polylogarithmic amount of random-access space that it can read and write to.

Allocation of output streams. While the model dictates that A(I) 7→ O does not allocate memory for O,
our pseudocode in subsequent sections will occasionally let A initialize O for clarity.

Input streams are immutable. Given RW streaming algorithmA(I) 7→ O, the memory that I points to can
be considered immutable without loss of generality: given an input stream I, A can allocate an RW stream S
and then copy over the contents of I to S with one pass. Then A changes S to read mode with swapmode()
and proceeds as if mutating the ‘input read stream’ I is allowed. In the following sections, input streams are
occasionally treated as mutable to simplify pseudocode.

Single input and output streams. Restricting the number of input streams to 1 does not result in any loss of
generality or asymptotic efficiency of the model; multiple input streams can be combined into a single stream

27

by concatenation, and the algorithm can then separate them out into different intermediate RW streams. In
our pseudocode, we do allow multiple input streams as this improves concrete efficiency and makes the
exposition simpler.

Space complexity. Consider a RW streaming algorithm A. We define the random-access space complexity
of A as the amount of random-access space allocated by A. We define the streaming space complexity of A
as

∑k
i=1 ℓi where ℓi is the length of the i-th intermediate stream allocated by A. Both these complexities

specifically count the amount of space allocated byA, and not the total amount of space used. The distinction
between the two is important because the former does not count the space required to store the input or output
of A to avoid over-counting the space used when composing algorithms.

Definition 4.3 (composition of RW streaming algorithms). Consider 2 read-write streaming algorithms
C(I1) 7→ O1 and B(I2) 7→ O2. We say that A(I1) 7→ O1 is the composition of C and B if it: (a) com-
putes I2 inline using I1, (b) allocates space for O2, (c) calls B(I2) 7→ O2, (d) once B terminates, calls
O2.swapmode(), (e) reads from O2 to compute its output, (f) writes output to O1.

That is, A prepares the streaming input for B, and then A uses the streaming output created by B to
continue its computation. Informally, A calls B as a subroutine.

Lemma 4.4 (complexity of RW streaming algorithm composition). Let A,B be read-write streaming
algorithms. For algorithm X ∈ {A,B} let the time complexity be tX , random-access space complexity be
mX , and streaming space complexity be mX . Let L be the number of distinct inputs that A passes to B over
all its passes. Then A composed with B has
• time complexity tA + L · tB,
• random-access space complexity mA +mB, and
• streaming space complexity sA + sB.

Proof. Let the i-th unique call to B be B(Ri) 7→ Wi. A prepares each Ri and allocates space for each
Wi. The time and space required for these operations is already included in tA, mA, and sA. Each call to
B takes tB time, which implies a total additional time of L · tB. However, each call to B also requires mB
random-access space and sB streaming space, but this space can be reclaimed after each call to B. Therefore
the additional random-access space and streaming space required are only mB and sB respectively.

Remark 4.5 (multiple subroutines). Our notion of composition only allows an RW streaming algorithm to
call at most one RW streaming algorithm as a subroutine. This is without loss of generality, as this ability
is sufficient to simulate calls to multiple subroutines without much time or space overhead. For example,
suppose A(R) 7→ W calls two subroutines B1(R1) 7→ W1 and B2(R2) 7→ W2. We can rewrite A to
instead call a single subroutine B′((flag,R′)) 7→ W′ defined as follows. The code for B′ consists of a
conditional statement that either executes B1’s code (which has been inlined into B′), or makes a subroutine
call to B2. In the input stream of B′, flag indicates whether B1 should be executed or if a call to B2 should be
made, and R′ is the input to these algorithms (i.e., R′ = Rflag). It writes its output to W′ = Wflag, which is
then read byA. A can be rewritten to call B′ with input (1,R1) or (2,R2) depending on whether B′ needs to
invoke B1 or B2. Clearly, this alternative uses the same amount of time and space as the original composition.

Remark 4.6 (Skipping allocation of intermediate streams). Say RW streaming algorithm A(I) 7→ O invokes
B(I) 7→ S, and then invokes C(S) 7→ O. The model requires A to allocate S, but without losing any
asymptotic efficiency, A can skip this allocation and directly use the output of B as the input to C, similar to
the composition of read-only streaming algorithms. In fact, this leads to better concrete efficiency since it

28

avoids the overhead of allocating and initializing S. We use the following notation to denote this optimization:
if B outputs a stream S such that A does not need to allocate a RW stream for S, then we write

S ⇝B(I) .

Furthermore, we extend this notation to compose multiple read-only streaming operations. If A can be
implemented in a read-only manner using read-only implementations of B and C, then we write A as

A := O ⇝C ⇝B ⇝I .

4.1 Common read-write streaming subroutines

We define below some helper functions that we use in our streaming algorithms in the rest of the paper.

Zip, map, and reduce. We introduce the Zip, Map, and Reduce subroutines that will be used in the RW
streaming algorithms in the rest of the paper. Zip takes as input k streams R1, . . . ,Rk of length N containing
k ordered sets, and outputs a stream W containing the zipped ordered set. That is, each element of the
output stream is a tuple containing the elements of the input streams in the corresponding position. Map
takes as input a stream R of length N and a function f , and outputs a stream W which contains the result of
applying f to each element of R. Reduce takes as input a stream R of length N , an identity element e, and
an associative binary function f such that f(e, b) = f(b, e) = b for any element of b in R. The subroutine
outputs a single element s that is the result of reducing the elements of R using f .

Zip(R1, . . . ,Rk) 7→W:
1. For i in [1, . . . ,R1.len()]:
2. W.write((R1.read(),
3. . . . ,Rk.read())).

Map(R, f) 7→W:
1. For i in [1, . . . ,R.len()]:
2. W.write(f(R.read())).

Reduce(R, f, e) 7→ s:
1. s← e.
2. For i in [1, . . . ,R.len()]:
3. s← f(s,R.read()).

Splitting read-write streams. Given a RW stream R of length N = 2n, the indices of the underlying
ordered set can be represented as n-bit binary strings. That is, the i-th element of the ordered set is represented
by binn(i). Given an additional parameter k, we can define two methods for splitting R into 2k streams, each
with N/2k elements. SplitMSB splits R on the k most significant bits of the indices, while SplitLSB splits
R on the k least significant bits of the indices.

SplitMSB(R, k) 7→ (W1, . . . ,W2k):
1. For j in [1, . . . , 2k]:
2. For i in [1, . . . ,R.len()/2k]: Wj .write(R.read()).

SplitLSB(R, k) 7→ (W1, . . . ,W2k):
1. For i in [1, . . . ,R.len()/2k]:
2. For j in [1, . . . , 2k]: Wj .write(R.read()).

We additionally define SplitLR(R) 7→ (WL,WR) and SplitEO(R) 7→ (WE ,WO) that are specific cases
of SplitMSB and SplitLSB respectively, where the output consists of exactly two streams. That is, SplitLR
splits R into a stream of the first half of the elements of R and a stream of the second half of the elements,
while SplitEO splits R into a stream of the elements with even indices and a stream of the elements with odd
indices. We omit the pseudocode for these.

Joining read-write streams. We also define the “inverse” algorithms JoinLR and JoinEO that take as input
two RW streams and respectively concatenate them or interleave them; we omit the pseudocode for these.

kSum and kFoldInPlace. kSum takes as input a parameter d, and k RW streams which represent the
evaluations of k many n-variate multilinear polynomials p1(X), . . . , pk(X) on {0, 1}n. Consider the

29

univariate k-degree polynomial f(Xn) =
∑

b∈{0,1}n−1

∏k
i=1 pi(b, Xn). kSum outputs d + 1 evaluations

f(0), f(1), . . . , f(d) of f .
kFoldInPlace also takes as input k RW streams which represent the evaluations of k many n-variate

multilinear polynomials p1(X), . . . , pk(X) on {0, 1}n. The method folds each polynomial pi into a (n− 1)-
variate multilinear polynomial qi into a new stream of half the length based on the folding coefficients α
and β. That is, qi(X) = pi(X, 0) · α + pi(X, 1) · β. Note that the space needed to store input streams
of kFoldInPlace is freed at the end of the subroutine since the folded streams are moved into the input
RW streams. This subroutine is used repeatedly in sumcheck-like protocols (such as in the polynomial
commitment schemes described in Appendix C.3), where the output streams are the input streams for the
next call to kFoldInPlace, and there is no need to store the intermediate folded streams.

kSum(d,R1, . . . ,Rk) 7→ S:
1. Set S ← [0]ds=0.
2. For i in [1, . . . ,R.len()/2]:
3. For j in [1, . . . , k]:
4. aL,j ← Rj .read(); aR,j ← Ri.read().
5. For s in [0, . . . , d]:
6. S[s]← S[s] +

∏k
j=1 ((1− s) · aL,j + s · aR,j).

kFoldInPlace(α, β,R1, . . . ,Rk):
1. Define the folding function: f(a, b) := a · α+ b · β.
2. For i in [1, . . . , k]:
3. Set Wi ← Map(f) ⇝Zip ⇝SplitEO ⇝Ri.
4. Set Ri ←Wi.swapmode().

Inner products and linear combinations of streams. Given RW streams R1 and R2, we describe RW
streaming algorithms to compute the inner product of the underlying vectors, and to compute a linear
combination with respect to coefficients α and β:

InnerProd(R1,R2) 7→ s:
1. s ⇝Reduce(0,+) ⇝Map(×) ⇝Zip ⇝(R1,R2).

LinComb(α, β,R1,R2) 7→W:
1. Define the function f(a, b) := α · a+ β · b.
2. Output W ⇝Map(f) ⇝Zip ⇝(R1,R2).

30

5 Read-write streaming PIOP for HyperPlonk

In this section we construct a read-write streaming PIOP for the HyperPlonk relation. We will follow the
following roadmap to achieve this goal: (a) formally define indexed relations and PIOPs in Section 5.1,
(b) develop read-write streaming PIOPs for different instances of the sumcheck relation in Section 5.2,
(c) develop read-write streaming PIOPs for the zerocheck relation (Section 5.3.1) and the permcheck realtion
(Section 5.3.4), which in turn leads to the construction of a read-write streaming PIOP for the HyperPlonk
relation in Section 5.3.5.

5.1 Preliminaries

5.1.1 Indexed relations

An indexed relation R is a set of tuples (i,x,w) where i is the index, x is the instance, and w is the
witness. We use Ri to denote the NP relation {(x,w) : (i,x,w) ∈ R} and Li to denote the NP language
corresponding to it. An indexed oracle relation is an indexed relation where the index i and the instance x
contain ‘implicit’ inputs that are specified as oracles, i.e., the membership-checking algorithm for such a
relation has only query access to these oracles. We adopt notation from Chen et al. [CBBZ23] and use JzK to
denote when the input z is provided as an oracle.

5.1.2 Polynomial IOPs

A Polynomial Interactive Oracle Proof (PIOP) over a field family F for an indexed relation R is a tuple
PIOP = (k, s, I,P,V) where k, s : {0, 1}∗ → N are polynomial-time functions and I,P,V are three algorithms
known as the indexer, prover, and verifier. The parameter k specifies the number of rounds of interaction
between the prover and the verifier, and s specifies the number of polynomials in each round.

In the offline phase, before the instance and witness are specified, the indexer I receives as input a field
F ∈ F and an index i for R, and outputs s(0) polynomials p0,1, . . . , p0,s(0).

In the online phase, given an instance x and witness w such that (i,x,w) ∈ R, the prover P receives
(F, i,x,w) and the verifier V receives (F,x) and oracle access to the polynomials output by I(F, i). The
prover P and the verifier V interact over k = k(|i|) rounds.

For i ∈ [k], in the i-th round of interaction, the verifier V sends a message µi ∈ F∗ to the prover P;
then the prover P replies with s(i) oracle polynomials pi,1, . . . , pi,s(i). The verifier may query any of the
polynomials it has received any number of times. A query consists of a location z ∈ F for an oracle pi,j , and
its corresponding answer is pi,j(z) ∈ F. After the interaction, the verifier accepts or rejects. Every PIOP
must satisfy the following properties.

Completeness. For every field F ∈ F and index-instance-witness tuple (i,x,w) ∈ R, the probability that
P(F, i,x,w) convinces VI(F,i)(F,x) to accept in the interactive oracle protocol is 1.

Knowledge soundness. We say that PIOP has knowledge error ϵ if there exists a probabilistic polynomial-
time extractor E such that for every field F ∈ F , index i, instance x, and malicious prover P̃,

Pr

 (i,x,w) ̸∈ R
∧

⟨P̃,VI(F,i)(F,x)⟩ = 1

∣∣∣∣∣∣ w← EP̃(F, i,x)

 = ϵ

The query complexity q is the total number of queries made by the verifier to the indexer and prover
polynomials.

31

Additional notation and assumptions. In this paper, we only consider public-coin PIOPs where the verifier
makes non-adaptive queries. We consider n-variate polynomials over a finite field F and assume that N = 2n,
and that N is much smaller than |F|. RW streaming provers have access to an input polynomial p as a RW
stream of evaluations on {0, 1}n in a lexicographic order [p(bin(0)), p(bin(1)), . . . , p(bin(N − 1))], and
we denote this stream as R(p). We omit the verifier’s code for brevity, since they are unmodified from the
non-streaming versions.

5.2 RW streaming prover for sumcheck

Extending the techniques discussed for multilinear polynomials in Section 2.5, we build a RW streaming
sumcheck prover for a class of multivariate polynomials that we call sumprod polynomials (see Definition 5.1)
in Section 5.2.1. In Section 5.2.2, we then present the Lagrange sumcheck: a special case of the sumprod
sumcheck where one of the constituent polynomials is the Lagrange polynomial. Then, in Section 5.2.3, we
build a RW streaming prover for batch sumcheck, which allows proving sumcheck claims about multiple
sumprod polynomials simultaneously. These are key building blocks for the RW streaming algorithms that
follow in Section 5.3.

5.2.1 Sumcheck for sumprod polynomials

We now describe our read-write streaming prover for the sumcheck relation for sumprod polynomials, which
are multivariate polynomials that can be expressed as sums of products of multilinear polynomials. We define
this class next, and show how to generalize the sumcheck prover for multilinear polynomials (Section 2.5.1)
to this class.

Definition 5.1. The class P≤d
n ⊂ F≤d[X1, . . . , Xn] consists of n-variate polynomials of individual degree

at most d that can be represented as a sum of products of d multilinear polynomials, for some d ∈ N. That
is, a polynomial p(X) is in P≤d

n if there exist d multilinear polynomials p1(X), p2(X), . . . , pd(X) and a
multilinear polynomial h such that p(X) = h(p1(X), p2(X), . . . , pd(X)).

Remark 5.2. The assumption that h is multilinear in Definition 5.1 is without loss of generality. We can
“linearize” a k-variate polynomial h′ where each variable has degree at most d into a (kd)-variate multilinear
polynomial h where each d-degree variable of h′ is replaced by d linear variables in h.

Definition 5.3. The relation RSSC contains tuples of the form

(iSSC,xSSC,wSSC) = ((F, n, d, h), (Jp1K, . . . , JpdK, σ), (p1, . . . , pd))

where σ ∈ F is the target sum, each pi is an n-variate multilinear polynomial, and h is a multilinear
polynomial with ℓ monomials such that

∑
x∈{0,1}n h(p1(x), . . . , pd(x)) = σ.

We obtain a RW streaming prover for this relation by modifying the algorithm in Section 2.5.1 as follows.
We first consider a single product of d multilinear polynomials. Recall that in the multilinear case, the
round polynomials ai sent by P in each round are linear, and therefore 2 evaluations are sufficient to specify
them. Therefore, P computes 2 evaluations of the ai’s and sends them to V. For a product of d multilinear
polynomials, each polynomial ai is a univariate polynomial of degree d, and P specifies this via d + 1
evaluations, which it sends to V.

To generalize to the sumprod polynomial h(p1, . . . , pd), P still computes d + 1 evaluations of each
round polynomial, but now it does so by iterating through all monomials in h, and computing and summing

32

evaluations for each of these. That is, for each monomial, P computes d+ 1 evaluations of the respective
round polynomial (regardless of the degree of the monomial), and adds them to a running sum. At the end of
the round, P is left with d+ 1 running sums corresponding to d+ 1 round polynomial evaluations, which it
sends to V.

Read-write Streaming Algorithm 1: SUMCHECK for sumprod polynomials
P(iSSC,xSSC, (R1(p1), . . . ,Rd(pd))):
1. For each i in [n, . . . , 1]:
2. Initialize running sums: S ← [0]dj=0.
3. For each monomial (c ·Xj1 ·Xj2 · . . . ·Xjk) in h:
4. Obtain d+ 1 evaluations for the round polynomial of the monomial: set E ← kSum(d,Rj1 , . . . ,Rjk).
5. Add each evaluation to the corresponding running sum: for s in [0, . . . , d]: set S[s]← S[s] + c · E[s].
6. Restart the streams that were used for this monomial: Rj1 .restart(), . . . ,Rjk .restart().
7. Send [ai(s) := S[s]]ds=0 to V.
8. If i ̸= 1:
9. Receive verifier challenge ri

$← F from V.
10. Fold each stream individually: kFoldInPlace(1− ri, ri,R1, . . . ,Rd).

We prove the following lemma which helps us show that the prover sends the correct values to the verifier
in Step 7 for any iteration of the loop in Step 1.

Lemma 5.4. Let q be an input polynomial of Algorithm 1 such that S contains its evaluations over {0, 1}n.
Also, let qi be the i-variate polynomial such that S contains its evaluations over {0, 1}i at the beginning of
iteration i of Step 1. Then qi(bin(j)) = q(bin(j), ri+1, . . . , rn) for all j ∈ {0, . . . , Ni − 1}.

Proof. We proceed by induction and consider the first iteration of Step 1 when i = n. At the beginning of the
iteration, qn(bin(j)) = q(bin(j)) for all j ∈ {0, . . . , N − 1} as desired.

Now consider i < n. By the induction hypothesis, we have qi+1(bin(j)) = q(bin(j), ri+2, . . . , rn) for
all j ∈ {0, . . . , Ni+1 − 1} at the beginning of iteration i+ 1. At the end of the iteration i+ 1 (and before the
start of iteration i), Step 10 creates a stream of Ni/2 elements such that

qi(bin(j)) = (1− ri+1) · qi+1(bin(2j), ri+2, . . . , rn) + ri+1 · qi+1(bin(2j + 1), ri+2, . . . , rn)

= (1− ri+1) · q(bin(2j), ri+2, . . . , rn) + ri+1 · q(bin(2j + 1), ri+2, . . . , rn)

= (1− ri+1) · q(bin(j), 0, ri+2, . . . , rn) + ri+1 · q(bin(j), 1, ri+2, . . . , rn)

= q(bin(j), ri+1, . . . , rn)

for all j ∈ {0, . . . , Ni−1 − 1} as desired.

Lemma 5.5. PIOP 1 and Algorithm 1 together comprise a read-write streaming PIOP for RSSC for n-variate
(d, ℓ)-sumprod polynomials with the following efficiency properties:

prover time prover space PIOP properties

random-access streaming # streams soundness error communication # queries

O(dℓN) O(d+ ℓ) O(dN) O(d) O(d logN/|F|) O(d logN) O(d)

Proof. We will prove the statement for the product of 2 polynomials p and q that received in two input
streams Rp and Rq. The proof extends to (d, ℓ)-sumprod polynomials straightforwardly. Completeness and
soundness proofs follow from [Tha22] if we can show that the messages sent by P in Step 7 are correct. That
is, we need to show that S[α] = ai(α) for any α ∈ F.

33

If pi is the i-variate polynomial that Rp contains at the beginning of iteration i of Step 1 in Algo-
rithm 1, then pi(bin(j)) = p(bin(j), ri+1, . . . , rn) for all j ∈ {0, . . . , Ni − 1} due to Lemma 5.4 (similarly
qi(bin(j)) = q(bin(j), ri+1, . . . , rn)). We have

ai(α) =
∑

b∈{0,1}i−1

p(b, α, ri+1, . . . , rn) · q(b, α, ri+1, . . . , rn)

=

Ni/2−1∑
j=0

((1− α)pi(bin(2j)) + αpi(bin(2j + 1))) · ((1− α)qi(bin(2j)) + αqi(bin(2j + 1))) = S[α]

as desired.
P requires O(dℓNi) time in the ith round of the protocol, and therefore requires O(dℓN) time in total.

Moreover, P only requires O(d) random-access space to store the round polynomial evaluations, and O(ℓ)
random-access space to store h. Finally, P requires O(dN) streaming space across d distinct streams to store
the folded multilinear polynomials. V makes one query for each multilinear polynomial and therefore makes
d queries in total, and the communication is O(d logN) since P sends d + 1 evaluations of logN round
polynomials.

5.2.2 Lagrange sumcheck for sumprod polynomials

We additionally propose a RW streaming prover for the sumprod sumcheck relation where one of the
constituent polynomials is the (partially-evaluated) multilinear Lagrange polynomial (i.e., eq(t,X) for some
t).

Definition 5.6. The relation RLSC contains tuples of the form

(iLSC,xLSC,wLSC) = ((F, n, d, h), (Jp1K, . . . , JpdK, t, σ), (p1, . . . , pd))

where σ ∈ F is the target sum, each pi is an n-variate multilinear polynomial, t ∈ Fn, and h is a multilinear
polynomial with ℓ monomials such that

∑
x∈{0,1}n h(p1(x), . . . , pd(x)) · eq(t,x) = σ.

Since this relation is a special case of the sumprod sumcheck relation Definition 5.3, we use the same
PIOP as in PIOP 1, and describe an efficient RW streaming prover specifically for this relation. We define a
helper method kSumEq, which is similar to the kSum method defined in Section 4.1, but additionally takes
as input a vector t ∈ Fn, which describes the Lagrange polynomial.

34

Read-write Streaming Algorithm 2: LAGRANGE SUMCHECK for sumprod polynomials
P(iLSC,xLSC, (R1(p1), . . . ,Rd(pd))):
1. Initialize folding coefficient for eq(t,X): γ ← 1.
2. For each i in [n, . . . , 1]:
3. Initialize running sums: S ← [0]d+1

j=0 .
4. For each monomial (c ·Xj1 ·Xj2 · . . . ·Xjk) in h:
5. Get d+2 evaluations for the monomial’s round polynomial: set E ← kSumEq(d+1, i, t,Rj1 , . . . ,Rjk).
6. Add each evaluation to the corresponding running sum: for s in [0, . . . , d]: set S[s]← S[s] + c · E[s].
7. Restart the streams that were used for this monomial: Rj1 .restart(), . . . ,Rjk .restart().
8. Send [ai(s) := γ · S[s]]d+1

s=0 to V.
9. If i ̸= 1:

10. Receive verifier challenge ri
$← F from V.

11. Fold each stream individually: kFoldInPlace(1− ri, ri,R1, . . . ,Rd).
12. Obtain folded Lagrange polynomial by updating folding coefficient: γ ← γ · (ti · ri + (1− ti) · (1− ri)).

kSumEq(d, i, t,R1, . . . ,Rk) 7→ S:
1. Eq.Init(t1, t2, . . . , ti).
2. Set S ← [0]ds=0.
3. For i in [1, . . . ,R.len()/2]:
4. For j in [1, . . . , k]:
5. aL,j ← Rj .read(); aR,j ← Ri.read().
6. aL,k+1 ← Eq.Next; aR,k+1 ← Eq.Next.
7. For s in [0, . . . , d]:
8. S[s]← S[s] +

∏k+1
j=1 ((1− s) · aL,j + s · aR,j)

Lemma 5.7. PIOP 1 and Algorithm 2 together comprise a read-write streaming PIOP for RLSC for n-variate
(d, ℓ)-sumprod polynomials with the following properties:

prover time prover space PIOP properties

random-access streaming # streams soundness error communication # queries

O(dℓN) O(d+ ℓ+ logN) O(dN) O(d) O(d logN/|F|) O(d logN) O(d)

Proof. All properties follow from Lemma 5.5 except for the random-access space complexity, which increases
to O(d+ ℓ+ logN) due to the additional space required to store t. The time complexity does not increase
because each call to kSumEq in iteration i of Step 2 still requires O(d · 2i) time for each monomial in h,
since the Lagrange polynomial evaluations can be streamed in O(2i) time.

We additionally need to prove that the messages sent by P in each iteration of Step 2 are correct. That is,
we need to show that for all α ∈ {0, . . . , d+ 1},

γi · S[α] =
∑

x∈{0,1}i−1

h(p1(x, α, ri+1, . . . , rn), . . . , pd(x, α, ri+1, . . . , rn)) · eq((x, α, ri+1, . . . , rn), t) ,

where γi is the folding coefficient at the beginning of the iteration i of Step 2. We prove the above
statement for a single multilinear polynomial q for brevity, the proof extends to (d, ℓ)-sumprod polynomials
straightforwardly, using the same arguments as in Lemma 5.5. Let qi be the polynomial stored in the input
stream R in iteration i of Step 2. We have∑

x∈{0,1}i−1

q(x, α, ri+1, . . . , rn) · eq(t, (x, α, ri+1, . . . , rn))

35

=
∑

x∈{0,1}i−1

qi(x, α) · eq(t, (x, α, ri+1, . . . , rn)) [Lemma 5.4]

=

n∏
j=i+1

((1− rj)(1− tj) + rjtj) ·
∑

x∈{0,1}i−1

qi(x, α) · eq((t1, . . . , ti), (x, α))

= γi ·
∑

x∈{0,1}i−1

qi(x, α) · eq((t1, . . . , ti), (x, α)) = γi · S[α]

as desired.

5.2.3 Batch sumcheck for sumprod polynomials

We finally present the batch RW streaming sumcheck for multiple (d, ℓ)-sumprod polynomials. Let p1, . . . , pν
be n-variate (d, ℓ)-sumprod polynomials, and let σ1, . . . , σν be their claimed sums on {0, 1}n respectively.
We can check all these claims simultaneously via the standard random linear combination technique.

In more detail, P obtains a random challenge α from V, and runs a RW streaming sumcheck PIOP
for the (d, ℓ)-sumprod polynomial p(X) =

∑ν
i=1 α

i−1pi(X), and target sum σ =
∑ν

i=1 α
i−1σi. This

transformation incurs a negligible soundness error.
We now define the batch sumcheck relation. Let p(i,j) be the jth constituent multilinear polynomial of pi.

That is, pi = hi(p(i,1), . . . , p(i,d)). V has oracle access to each p(i,j) individually, and P has streaming access
to all dν of them individually.

RBSC = (iBSC,xBSC,wBSC)

=
(
(F, n, d, ν, h1, . . . , hν) ,

(
Jp(1,1)K, . . . , Jp(ν,d)K, σ1, . . . , σν

)
, (p(1,1), . . . , p(ν,d))

)
We present a RW streaming prover for RBSC whose efficiency is determined by the efficiency of the underlying
sumcheck protocol for sumprod polynomials.

Read-write Streaming Algorithm 3: BATCH SUMCHECK for multiple (d, ℓ)-sumprod polynomials
P(iBSC,xBSC, (R(1,1)(p(1,1)), . . . ,R(ν,d)(p(ν,d)))):
1. P receives α $← F from V.
2. Initialize batch target sum σ ←

∑ν
i=1 α

i−1σi.
3. Define batch polynomial h(X1,1, . . . , X1,d, . . . , Xν,1, . . . , Xν,d) :=

∑ν
i=1 α

i−1hi(Xi,1, . . . , Xi,d)
4. Define i := (F, n, dν, h) and x := (Jp(1,1)K, . . . , Jp(ν,d)K, σ) and w := (R(1,1), . . . ,R(ν,d))
5. P and V invoke the RW streaming sumcheck PIOP for a (dν, ℓν)-sumprod polynomial for (i,x,w) defined

above.

5.3 Read-write streaming prover for HyperPlonk’s PIOP

In this section we present RW streaming PIOPs for several relations including zerocheck (Section 5.3.1),
prodcheck (Section 5.3.2), multiset-equality-check (Section 5.3.3), and permcheck (Section 5.3.4).

Then, in Section 5.3.5 we show how to use these PIOPs to create a RW streaming PIOP for the HyperPlonk
relation [CBBZ23], which in turn directly gives us a RW streaming PIOP for circuit satisfiability as described
in Section 2.2. For each PIOP, we first recall the standard non-streaming implementation of the prover, and
then present a RW streaming version for the same.

36

5.3.1 Zerocheck PIOP

Given an n-variate polynomial p, the zerocheck PIOP checks if p is zero at all points of an n-dimensional
boolean hypercube {0, 1}n. This is formalized via the following relation for (d, ℓ)- sumprod polynomials:

Definition 5.8. The zerocheck relation RZC for (d, ℓ)-sumprod polynomials is an indexed relation consisting
of the following tuples:

(iZC,xZC,wZC) = ((F, n, d, h), (Jp1K, . . . , JpdK) , (p1, . . . , pd))

where each pi is an n-variate multilinear polynomial, and h is a multilinear polynomial with ℓ terms such
that h(p1(x), . . . , pd(x)) = 0 for all x ∈ {0, 1}n.

The PIOP below illustrates a standard way of proving this relation.
PIOP 3: ZEROCHECK

⟨P(iZC,xZC,wZC),V(iZC,xZC)⟩:
1. P receives r $← Fn from V.
2. P computes the multilinear polynomial q(X) := eq(X, r).
3. P and V invoke the sumcheck PIOP for the claim “

∑
x∈{0,1}n h(p1(x), . . . , pd(x)) · q(x) = 0”.

Prior work (for example, [CBBZ23]) provides completeness and soundness proof for this PIOP. We
show how to construct a streaming prover for (d, ℓ)-sumprod polynomials using Algorithm 1. Let h be the
multilinear polynomial such that p(X) = h(p1(X), . . . , pd(X)). P and V have streaming and oracle access
to pi respectively.

Read-write Streaming Algorithm 4: ZEROCHECK for (d, ℓ)-sumprod polynomials
P(iZC, (Jp1K, . . . , JpdK) ,wZC):
1. Receive r

$← Fn from V.
2. Define Lagrange sumcheck instance: x := (Jp1K, . . . , JpdK, JqK, r, 0)
3. Invoke the RW streaming Lagrange sumcheck PIOP for sumprod polynomials for (iZC,x,wZC).

Lemma 5.9. PIOP 3 and Algorithm 4 together comprise a read-write streaming PIOP for RZC for n-variate
(d, ℓ)-sumprod polynomials with the following properties:

prover time prover space PIOP properties

random-access streaming # streams soundness error communication # queries

O(dℓN) O(d+ ℓ+ logN) O(dN) O(d) O(d logN/|F|) O(d logN) O(d)

Proof. The PIOP properties follow from the analysis of Chen et al. [CBBZ23] because the prover in
Algorithm 4 sends the same values to V as in PIOP 3, which follows from Lemma 5.5.

An additional logN random-access space is required to store r while computing eq(X, r). The total
prover time required to compute eq(X, r) is O(N) due to the amortized efficiency of Eq.Next as discussed
in Section 2.6.1. Other efficiency parameters follow from Lemma 5.5.

Remark 5.10. Algorithm 4 can be viewed as an interactive reduction from zerocheck to sumcheck. This
protocol will be used alongside other PIOPs that will also reduce to sumcheck, therefore it will be helpful
to perform a single batch sumcheck for all the sumcheck claims. To do so, we extract a method ZToS that
performs Step 1 to Step 2 of Algorithm 4, and emits the resulting sumcheck claim.

37

5.3.2 Prodcheck PIOP

Given n-variate polynomials p and q and a target product σ, the prodcheck PIOP tests if the product of
p(x)/q(x) is σ over all x ∈ {0, 1}n. This is formalized via the following relation:

Definition 5.11 (Prodcheck relation). The prodcheck relation RPDC is an indexed relation consisting of
tuples (iPDC,xPDC,wPDC) = ((F, n), (JpK, JqK, σ), (p, q)), where p, q are n-variate multilinear polynomials
such that

∏
x∈{0,1}n p(x)/q(x) = σ.

The following PIOP (due to Setty and Lee [SL20]) illustrates a standard way of proving this relation.
PIOP 4: PRODCHECK

⟨P(iPDC,xPDC,wPDC),V(iPDC,xPDC)⟩:
1. P sends (n+ 1)-variate polynomial ν such that ν(0,X) := p(X)/q(X) and ν(1,X) := ν(X, 0) · ν(X, 1).
2. Define f(X) := ν(0,X) · q(X)− p(X) and g(X) := ν(1,X)− ν(X, 0) · ν(X, 1).
3. P and V invoke the zerocheck PIOP for f(X) and g(X).
4. V checks that ν(1, 1, . . . , 1, 0) = σ.

Prior work [SL20; CBBZ23] provides completeness and soundness proof for this PIOP. We now describe
our read-write streaming prover for this PIOP. As discussed in Section 2.6.2, the computation of the polyno-
mial ν induces a binary-tree structure. We define the (n− i)-variate polynomial νi(X) = ν(1, . . . , 1, 0,X)
where the first i variables of ν are fixed to 1, and the (i + 1)-th variable is fixed to 0. P computes νi for
i = 0, . . . , n in that order, since an evaluation of νi+1 is the product of two evaluations of νi. Finally, it
concatenates the n+ 1 streams to get one stream for ν.

Read-write Streaming Algorithm 5: PRODCHECK
P(iPDC,xPDC, (Rp(p),Rq(q))):

Initialize RW streams for νj as defined above:
1. Allocate space for each νj : for j in [0, . . . , n]: Sν,j .init(N/2j).
2. Compute stream for polynomial ν0(X) := ν(0,X): Sν,0 ← Map(/) ⇝Zip ⇝(Rp,Rq).

Compute each νi using the binary tree structure:
3. For j in [1, . . . , n]:
4. Sν,j−1.swapmode().
5. Sν,j ← Map(×) ⇝Zip ⇝SplitEO ⇝Sν,j−1.
6. Sν ← Concat(Sν,0,Sν,1, . . . ,Sν,n, [0]) (append 0 at the end to make the stream length a power of 2).
7. Create JνK from Sν and send to V.

Split stream of ν into halves for the zerocheck instances:
8. Define νL(X) := ν(0,X) and νR(X) := ν(1,X) and νE(X) := ν(X, 0) and νO(X) := ν(X, 1).
9. Split ν to obtain streams for ν(X, 0) and ν(X, 1): (Rν,E ,Rν,O)← SplitEO(Sν).

10. Split ν to obtain streams for ν(0,X) and ν(1,X): (Rν,L,Rν,R)← SplitLR(Sν).

Initialize sumcheck instances using ZToS:
11. Define t0(x1, x2, x3) := x1 · x2 − x3.
12. Obtain sumcheck claim for the zerocheck claim “νL(X) · q(X)− p(X) = 0”:

(if = (, , , t1),xf ,wf)← ZToS((F, n, 2, t0), (JνLK, JqK, JpK), (Rν,L,Rq,Rp)).
13. Obtain sumcheck claim for the zerocheck claim “νE(X) · νO(X)− νR(X) = 0”:

(ig = (, , , t2),xg,wg)← ZToS((F, n, 2, t0), (JνEK, JνOK, JνRK), (Rν,E ,Rν,O,Rν,R)).
14. Define i := (F, n, 3, 2, t1, t2) and x := (xf ,xg) and w := (wf ,wg).
15. Invoke the RW streaming batch sumcheck PIOP for sumprod polynomials for (i,x,w) defined above, which

batches the two sumcheck claims into one.

38

Remark 5.12. In the above algorithm V implicitly has polynomial oracle access to νL, νR, νE , νO due to
having polynomial oracle access to ν.

Lemma 5.13. PIOP 4 and Algorithm 5 together comprise a read-write streaming PIOP for RPDC with the
following properties:

prover time prover space PIOP properties

random-access streaming # streams soundness error communication # queries

O(N) O(logN) O(N) O(1) O(N/|F|) O(logN) O(1)

Proof. The PIOP properties follow from the analysis of Chen et al. [CBBZ23] because P in Algorithm 5
produces the same values as PIOP 4. The time and space efficiency parameters follow from Lemma 5.9
where d = O(1).

5.3.3 Multiset-equality-check PIOP

We use the read-write streaming PIOP for prodcheck to build a read-write streaming PIOP for proving claims
about equality of multisets encoded as multilinear polynomials.

Definition 5.14 (multiset-equality). The indexed relation RMEC consists of tuples (iMEC,xMEC,wMEC) =
((F, n), (JpK, JqK), (p, q)) where p and q are n-variate multilinear polynomials such that the multisets
{{p(x)}}x∈{0,1}n and {{q(x)}}x∈{0,1}n are equal.

The PIOP below illustrates a way of proving this as described by Chen et al. [CBBZ23]:
PIOP 5: MULTISET-EQUALITY-CHECK

⟨P(iMEC,xMEC,wMEC),V(iMEC,xMEC)⟩:
1. P receives a random challenge α ∈ F from V.
2. P computes polynomials p′(X) := α+ p(X) and q′(X) := α+ q(X).
3. P and V invoke the prodcheck PIOP for the claim “

∏
x∈{0,1}n p′(x)/q′(x) = 1”.

Below we demonstrate a streaming prover for this that avoids intermediate read-write streams.
Read-write Streaming Algorithm 6: MULTISET-EQUALITY-CHECK

P(iMEC,xMEC, (Rp(p),Rq(q))):
1. Receive a random challenge α ∈ F from V.

Initialize read-only streams for p′(X) := α+ p(X) and q′(X) := α+ q(X):
2. Sp′ ⇝Map(x 7→ α+ x) ⇝Rp.
3. Sq′ ⇝Map(x 7→ α+ x) ⇝Rq .

Reduce to prodcheck:
4. Define i := (F, n);x := (Jp′K, Jq′K, 1);w := (Sp′ ,Sq′)
5. Invoke the RW streaming prodcheck PIOP for (i,x,w).

Lemma 5.15. PIOP 5 and Algorithm 6 together comprise a read-write streaming PIOP for RMEC with the
following properties:

prover time prover space PIOP properties

random-access streaming # streams soundness error communication # queries

O(N) O(logN) O(N) O(1) O(N/|F|) O(logN) O(1)

39

Proof. PIOP properties follow from the analysis of Chen et al. [CBBZ23] because P in Algorithm 6 sends
the same values to V as in PIOP 5. Moreover, Algorithm 6 has the same time and space complexity as the
RW streaming prodcheck PIOP.

5.3.4 Permcheck PIOP

We use the foregoing read-write streaming PIOP for multiset-equality to design a read-write streaming PIOP
for proving that two lists are permutations.

Definition 5.16 (permcheck). The index relation RPC consists of tuples (iPC,xPC,wPC) = ((F, n, π), (JpK,
JqK, Jπ̂K), (p, q, π̂)) where p, q are multilinear polynomials and π̂ is the multilinear extension of a permutation
π : [N]→ [N] such that such that p(x) = q(bin(π(int(x)))) for all x ∈ {0, 1}n.

The PIOP below illustrates a way of proving this as described by Chen et al. [CBBZ23]:
PIOP 6: PERMCHECK

⟨P(iPC,xPC,wPC),V(iPC,xPC)⟩:
1. P receives a random challenge β ∈ F from V.
2. P computes polynomials p′(X) := p(X) + π̂(X) · β and q′(X) := q(X) + int(X) · β.
3. P and V invoke the multiset-equality PIOP for the claim “{{p′(x) : x ∈ {0, 1}n}} = {{q′(x) : x ∈ {0, 1}n}}”.

Below we demonstrate a streaming prover for this PIOP that avoids intermediate read-write streams.
Read-write Streaming Algorithm 7: PERMCHECK

P(iPC,xPC, (Rp(p),Rq(q),Rπ̂(π̂))):
1. Receive a random challenge β ∈ F from V.

Initialize read-only streams for p′(X) := p(X) + π̂(X) · β and q′(X) := q(X) + int(X) · β:
2. Sp′ ⇝Map((x, y) 7→ x+ β · y) ⇝Zip ⇝(Rp,Rπ̂).
3. Sq′ ⇝Map((x, y) 7→ x+ β · y) ⇝Zip ⇝

(
Rq, [i]

N
i=1

)
.

Reduce to multiset-equality-check:
4. Define i := (F, n) and x := (JpK, JqK) and w := (Sp′ ,Sq′)
5. Invoke the RW streaming multiset-equality-check PIOP for (i,x,w).

Lemma 5.17. PIOP 6 and Algorithm 7 together comprise a read-write streaming PIOP for for RPC for
n-variate multilinear polynomials with the following properties:

prover time prover space PIOP properties

random-access streaming # streams soundness error communication # queries

O(N) O(logN) O(N) O(1) O(N/|F|) O(logN) O(1)

Proof. PIOP properties follow from the analysis of Chen et al. [CBBZ23] because P in Algorithm 7 sends
the same values to V as in PIOP 6. Moreover, Algorithm 7 has the same time and space complexity as the
RW streaming multiset-equality-check PIOP.

Remark 5.18. Similar to the RW streaming prover for the zerocheck PIOP, Algorithm 7 can be viewed as
an interactive reduction from permcheck to sumcheck. Similar to ZToS, we extract a method PToS that
performs Step 1 to Step 4 of Algorithm 7, and emits the resulting sumcheck claim.

40

5.3.5 HyperPlonk PIOP

We now discuss HyperPlonk’s circuit representation, and then define the HyperPlonk relation RHPC.

Definition 5.19. For an arithmetic circuit C : Fk → F, the HyperPlonk circuit representation is a tuple
A(C) =

(
F, d,N,Np, Nw, Nq, q, π, f0, . . . , fNq−1

)
where

• F is a finite field,
• N is the number of gates in C,
• Np is the number of public inputs to C,
• Nw − 1 is the arity of C,
• Nq is the number of different types of gates in C,
• q : {0, . . . , N − 1} → {0, . . . , Nq − 1} is a selector function such that q(i) is the “type” of the i-th gate,
• π : {0, . . . , Nw−1}×{0, . . . , N −1} → {0, . . . , Nw−1}×{0, . . . , N −1} describes the wiring identity

constraints, and
• fj : FNw−1 → F is a degree-d map that describes the behavior of the j-th type of gate.
We assume that N,Np, Nw, Nq are powers of 2, i.e., that there exist n, np, nw, nq ∈ N such that N = 2n,
Np = 2np , Nw = 2nw , and Nq = 2nq .

Definition 5.20. The HyperPlonk relation RHPC is an indexed relation consisting of the following tuples:

(iHPC,xHPC,wHPC) = (A, (JwK,p) , (w))

where A =
(
F, d,N,Np, Nw, Nq, q, π, f0, . . . , fNq−1

)
is the arithmetic representation of C according to

Definition 5.19, p ∈ FNp is the public input vector, and w ∈ FNw×N is the witness vector where wi,j is the
i-th input of gate j if i < Nw − 1 and the output of gate j if i = Nw − 1.
These satisfy the following constraints:
• wiring identity: wi,j = wπ(i,j) for all i ∈ {0, . . . , Nw − 1}, j ∈ {0, . . . , N − 1}.
• gate identity: fq(i) (w0,i, . . . , wNw−2,i) = wNw−1,i for all i ∈ {0, . . . , N − 1}.
• public input consistency: check if the initial part of w is consistent with the public input. That is, for all
j ∈ [0, . . . , Np − 1],

wi,j =

{
pj : i = Nw − 1

0 : i < Nw − 1
.

Remark 5.21. In Definition 5.20, Nw, Nq, d are all small constants and only depend on the arity of the circuit,
number of different types of gates in the circuit, and maximum degree of a gate. For example, for simple
binary circuits with only addition and multiplication gates, Nw = 3, Nq = 2, d = 1. Therefore f0, . . . , fNq−1

have constant-sized descriptions that can be stored in memory by both P and V.

Multilinear polynomial representation. Since RHPC is defined in the context of vectors instead of
polynomials, we need a few more definitions to describe the PIOP for RHPC so that we can reduce it to the
aforementioned zerocheck and permcheck PIOPs:
• p̃ : {0, 1}np → F where p̃(binnp(i)) = pi.
• w̃ : {0, 1}nw+n → F where w̃(binnw(i), binn(j)) = wi,j .
• q̃ : {0, 1}nq+n → F where

q̃(binnq(i), binn(j)) =

{
1 : q(j) = i

0 : otherwise
.

41

• π̃ : {0, 1}nw+n → F where π̃(binnw(i), binn(j)) = a+Nw · b. such that (a, b) = π(i, j).
• Define the “combining gate function” as follows:

f̃(X, Y0, Y1, . . . , YNw−1) = ft(X)(Y0, Y1, . . . , YNw−2)− YNw−1

where X ∈ {0, 1}Nq and t(X) is the smallest index such that Xt = 1.
We additionally define p̂, ŵ, q̂, π̂ as the multilinear extensions of p̃, w̃, q̃, π̃ respectively. We also define
f̂ : Fn → F as follows:

f̂(X) = f̃
(
q̂(binnq(0),X), . . . , q̂(binnq(Nq − 1),X), ŵ(binnw(0),X), . . . , ŵ(binnw(Nw − 1),X)

)
By definition of f̂ , only one of the first Nq inputs to f̃ is equal to 1, and the rest are 0; if the t(X)-th input is
1, then clearly the X-th gate of the circuit has type t(X). Therefore, if the gate constraint is satisfied, then
we must have f̂(X) = ft(X)(ŵ(bin(0),X), . . . , ŵ(bin(Nw − 2),X)) − ŵ(bin(Nw − 1),X) = 0 for all
X ∈ {0, 1}n.

Indexer and Preprocessing. Both P and V can compute p̂ independently in the preprocessing phase since
they have access to p. Moreover, given the circuit C, the PIOP Indexer can initialize q̂ and π̂ and send them
to P, and similarly send Jq̂K and Jπ̂K to V.

HyperPlonk PIOP. Chen et al. [CBBZ23] propose the following PIOP for Definition 5.20:
PIOP 7: HYPERPLONK

Indexer: Initialize q̂ and π̂ and send them to P. Also send Jq̂K and Jπ̂K to V.
Protocol: ⟨P(iHPC,xHPC,wHPC),V(iHPC,xHPC, Jq̂K, Jπ̂K)⟩:
1. P initializes JŵK and sends it to V.
2. Gate identity check: P and V invoke the zerocheck PIOP for the claim “f̂(x) = 0 for all x ∈ {0, 1}n”.
3. Wiring identity check: P and V invoke the permcheck PIOP for the claim “ŵ(x) = ŵ(π(x)) for all x ∈
{0, 1}n+nw”.

4. Public input consistency check: V samples r $← Fnp and checks p̂(r) = ŵ(0n+nw−np , r) by making an oracle
query to p̂ and ŵ.

We construct a read-write streaming prover for the above PIOP:

42

Read-write Streaming Algorithm 8: HYPERPLONK RELATION
P(iHPC,xHPC,Rq(q̂),Rw(ŵ),Rπ(π̂)):
1. Create JŵK and send it to V.

Split selector polynomial into Nq streams: a stream for each type of gate:
2. For i in [0, . . . , Nq − 1]: Sq,i.init(N).
3. (Sq,0, . . . ,Sq,Nq−1)← SplitLSB(q̂, nq).

Split witness polynomial into Nw streams so that the i-th stream stores the i-th input of all gates and the
(Nw − 1)-th stream stores the output of all gates:

4. For i in [0, . . . , Nw − 1]: Sw,i.init(N).
5. (Sw,0, . . . ,Sw,Nw−1)← SplitLSB(ŵ, nw).

Using PToS, initialize sumcheck instance of the permcheck for the wiring identity:
6. (i1 = (, , k1, h1),x1,w1)← PToS((F, n+ nw, π), (JŵK, JŵK, Jπ̂K), (Rw,Rw)).

Using ZToS initialize sumcheck instance of the zerocheck for the gate identity:
7. Using the combining gate function f̃ , define iZC := (F, n,Nw +Nq, f̃)
8. Define xZC := (Jq0K, . . . , JqNq−1K, Jw0K, . . . , JwNw−1K).
9. Define wZC := (Sq,0, . . . ,Sq,Nq−1,Sw,0, . . . ,Sw,Nw−1).

10. (i2 = (, , k2, h2),x2,w2)← ZToS(iZC,xZC,wZC).

Batch the two sumcheck instances together:
11. Define i := (F, n, k1 + k2, 2, h1, h2) and x := (x1,x2) and w = (w1,w2)
12. P and V invoke a RW streaming batch sumcheck PIOP for sumprod polynomials for (i,x,w) as defined above.

Lemma 5.22. PIOP 7 and Algorithm 8 together comprise a read-write streaming PIOP for RHPC with the
following properties:

prover time prover space PIOP properties

random-access streaming # streams soundness error communication # queries

O(k · ℓ ·N) O(k + ℓ+ logN) O(kN) O(k) O(kN/|F|) O(k logN) O(k)

where k = d · (Nq +Nw) and ℓ is the number of monomials required to represent the combining gate function f̃ .

Proof. The efficiency parameters of Algorithm 8 follow from the efficiency parameters of the permcheck and
zerocheck PIOPs (Lemma 5.17 and Lemma 5.9).

Algorithm 8 assumes without loss of generality that f̃ is a multilinear polynomial (d = 1), which enables
the invocation of the RW streaming zerocheck PIOP on it. This assumption is equivalent to the assumption
that all types of gates are multilinear polynomials. If a gate has degree d > 1 with arity Nw − 1, then it can
be represented as a multilinear polynomial in d · (Nw− 1) variables whose inputs can be obtained by creating
d copies of each input stream defined in Step 2 and Step 4.

Given the aforementioned generalization to higher degree gates, there are d · (Nq + Nw) number of
input RW streams for the zerocheck PIOP call, each of length N . Therefore, the time, random-access space,
and streaming space required to invoke the RW streaming zerocheck PIOP are O(k · ℓ · N), O(k + ℓ +
logN), O(k ·N) respectively, where k, ℓ are defined in the lemma statement.

Moreover, ŵ has size d ·Nw ·N . Therefore, the time, random-access space, and streaming space required
to invoke the RW streaming permcheck PIOP are O(d·Nw ·N), O(d·Nw+logN), O(d·Nw ·N) respectively.

The remaining PIOP properties follow from analysis of Chen et al. [CBBZ23].

43

6 Streaming polynomial commitment schemes

In this section we recall the definition of polynomial commitment (PC) schemes and present our read-
write streaming algorithms for the PC scheme of Papamanthou, Shi, and Tamassia [PST13]. We defer to
Appendices B and C our RW streaming algorithms for other PC schemes based on inner product arguments.

6.1 Multilinear polynomial commitment schemes

A multilinear polynomial commitment scheme is a tuple of algorithms PC = (Setup,Commit,Open,Check)
with the following syntax.
• PC.Setup(1λ, n) → (ck, vk). On input a security parameter λ (in unary), and a maximum number of

variables n ∈ N, PC.Setup samples committer and verifier keys ck and vk.
• PC.Commit(ck, p)→ C. On input ck and a multilinear polynomial p over the field F, PC.Commit outputs

a commitment C to p.
• PC.Open(ck, (C, z, y), p)→ π. On input ck, a polynomial p, a commitment to it C, an evaluation point z,

and a claimed evaluation y, PC.Open outputs an evaluation proof π asserting that y is indeed the evaluation
of p at z.

• PC.Check(vk, (C, z, y), π)→ b ∈ {0, 1}. On input vk, a commitment C, an evaluation point z, a claimed
evaluation y, and an evaluation proof π, PC.Check outputs 1 if π attests that the polynomial p committed
in C evaluates to y at z.

A polynomial commitment scheme PC must satisfy standard completeness and extractability properties,
but we do not recall these definitions here, as we only construct read-write streaming versions for the
Commit and Open algorithms of existing schemes. We thus cannot affect extractability, and we show
that completeness is preserved by demonstrating that our algorithms produce the same output as their
non-streaming counterparts.

6.2 The PST13 PC scheme

We now recall the polynomial commitment scheme of Papamanthou, Shi, and Tamassia [PST13] as presented
in [XZZPS19].

PST.Setup(1λ, n)→ (ck, vk):
1. Obtain ⟨group⟩ = (F,G1,G2,GT , e,G,H)← SampleGrp(1λ).
2. Sample random α = (α1, . . . , αn)

$← Fn.
3. For each j in [0, 1, . . . , n]:
4. Set ckj := [eqj(α[n−j+1:n], i) ·G]i∈{0,1}j .
5. Set ck := ([ckj]

n
j=0, ⟨group⟩).

6. Set vk := ([αi ·H]i∈[n], ⟨group⟩).
7. Output (ck, vk).

PST.Commit(ck,p)→ Cp:
1. Parse ck as ([ckj]nj=0, ⟨group⟩).
2. Parse ckn as [eqn(α, i) ·G]i∈{0,1}n .
3. Output Cp :=

∑
i∈{0,1}n pi · eqn(α, i) ·G = ⟨p, ckn⟩.

44

PST.Open(ck, (Cp, z, y),p)→ π:
Parse: ck = ([ckj]

n
j=0, ⟨group⟩).

1. For each j in [1, . . . , n]:
2. Compute qj corresponding to qj(X) such that p(X)− y =

∑n
i=1 qi(X) · (Xi − zi).

3. Compute πj := qj(α) ·G = ⟨qj , ckn−j⟩.
4. Output evaluation proof π := (π1, . . . , πn).

PST.Check(vk, (Cp, z, y), π)→ {0, 1}:
Parse: vk = ([αi ·H]i∈[n], ⟨group⟩) and π = (π1, . . . , πn).
1. Accept if e(Cp − y ·G,H) =

∑n
i=1 e(πi, (αi − zi) ·H).

6.2.1 Read-write streaming algorithms for PST13

Our read-write streaming algorithms for PST.Commit and PST.Open are described below:
Read-write Streaming Algorithm 9: PST.Commit

PST.Commit(ck,Rp(p)):
Parse: ck = ([Rckj (ckj)]

n
j=0, ⟨group⟩).

1. Output Cp ← InnerProd(Rp,Rckn).

Read-write Streaming Algorithm 10: PST.Open
PST.Open(ck, (Cp, z, y),Rp(p)):
Parse: ck = ([Rckj (ckj)]

n
j=0, ⟨group⟩).

1. For each i in [1, . . . , n]:
2. Obtain (Rg,Rh)← SplitLR(Rp).
3. Rh ← LinComb(1,−1,Rh,Rg).
4. Compute the commitment πi ← InnerProd(Rh,Rckn−i).
5. Rg ← LinComb(1, zi,Rg,Rh).
6. Set Rp ← Rg .
7. Output π := (π1, . . . , πn).

Lemma 6.1. Algorithm 9 and Algorithm 10 are read-write streaming algorithms for PST.Commit and
PST.Open respectively with the following efficiency when committing to n-variate multilinear polynomials
(where N = 2n):
• Algorithm 9 requires O(N) running time, O(logN) random-access space and O(1) streaming space.
• Algorithm 10 requires O(N) running time, O(logN) random-access space and O(N) streaming space.

Proof. It is easy to inspect that Algorithm 9 realizes PST.Commit and requires O(N) group operations and
O(logN) random-access space.

We now verify that Algorithm 10 implements the same function as PST.Open by writing out what
Algorithm 10 is computing in its streams. Setting r0(X1, . . . , Xn) := p(X1, . . . , Xn), PST.Open recursively
defines rj(Xj+1, . . . , Xn) and qj(Xj+1, . . . , Xn) for each j ∈ [n] as follows:

rj−1(Xj , . . . , Xn) = gj(Xj+1, . . . , Xn) +Xj · hj(Xj+1, . . . , Xn)

= (gj(Xj+1, . . . , Xn) + zj · hj(Xj+1, . . . , Xn)) + (Xj − zj) · hj(Xj+1, . . . , Xn)

:= rj(Xj+1, . . . , Xn) + (Xj − zj) · qj(Xj+1, . . . , Xn)

It then commits to each qi(X) as πi := qi(α) ·G = ⟨qj , ckn−j⟩.
Algorithm 10 identically obtains evaluations of these polynomials over their respective boolean hyper-

cubes as follows: for every point i ∈ {0, 1}n−j+1, if i1 = 0, we have gj(i2, . . . , in−j+1) = rj−1(0, i2, . . . , in−j+1).

45

If i1 = 1, then rj−1(1, i2, . . . , in−j+1) = gj(i2, . . . , in−j+1) + hj(i2, . . . , in−j+1). Thus, the algorithm sets
hj(i2, . . . , in−j+1) = rj−1(1, i2, . . . , in−j+1)−rj−1(0, i2, . . . , in−j+1). It then defines rj(i2, . . . , in−j+1) :=
gj(i2, . . . , in−j+1) + zj · hj(i2, . . . , in−j+1) and qj(i2, . . . , in−j+1) := hj(i2, . . . , in−j+1).

Algorithm 10 will now need to commit to the witness polynomials q1(X), . . . , qn(X). The commitment
to the polynomial qj(Xj+1, . . . , Xn) can be computed as

qj(αj+1, . . . , αn) ·G =
∑

i∈{0,1}n−j

q(i) · eqn−j(α[j+1,n], i) ·G

This is realised by computing πj := InnerProd(Rqj ,Rckn−j
).

Efficiency analysis. We now inspect the efficiency of Algorithm 10. In the j-th round of the for loop,
the algorithm computes hj(Xj+1, . . . , Xn) and hj(Xj+1, . . . , Xn) given rj−1(Xj , . . . , Xn). It then sets
qj(Xj+1, . . . , Xn) := hj(Xj+1, . . . , Xn) and rj(Xj+1, . . . , Xn) := gj(Xj+1, . . . , Xn)+zj ·hj(Xj+1, . . . , Xn).

To do this, the RW streaming algorithm starts by setting R := p, which is a vector of length 2n. In the
j-th step of the recursion, the length of R is 2n−j+1. It sets g := RL and h := RR −RL, which takes
O(2n−j+1) time. It then proceeds to set R ← g + zj · h, which takes O(2n−j) time, and commits to h,
which requires O(2n−j) group operations. In total, the j-th round takes O(2n−j+1) time.

Thus the entire protocol thus takes O(2n) = O(N) time. Since all the inputs are provided as streams, the
algorithm only requires O(n) = O(logN) space to keep track of its position in the stream.

46

A An alternative PIOP for permcheck

Recall that the HyperPlonk PIOP invokes a permcheck PIOP (Section 5.3.4) to check the wiring constraints
of the circuit. In this section we present a concrete optimization for the permcheck PIOP, which we call the
split permcheck PIOP. In the split permcheck PIOP, the witness polynomials p and q are not available as
single multilinear polynomials, but are split into ν multilinear polynomials each. Additionally, there are ν
permutations π(1), . . . , π(ν), and the prover wants to prove to the verifier that for all i ∈ [ν] and x ∈ {0, 1}n,
p(i)(x) = q(i)(π(i)(x)). We discuss how this PIOP is useful in proving the wiring constraint in Appendix A.4.

To build the split permcheck PIOP, we first build a PIOP for sumcheck for rational functions in Ap-
pendix A.1, use it to obtain the split multiset-equality-check PIOP in Appendix A.2 using techniques similar
to [Hab22], and then use the split multiset-equality-check PIOP to build the split permcheck PIOP in
Appendix A.3.

A.1 Sumcheck for rational functions

We begin by defining rational functions:

Definition A.1 (Rational function). An n-variate (d, ℓ)-rational function is a function f such that

f(X) =
p(X)

q(X)
=

hp
(
p(1)(X), . . . , p(d)(X)

)
hq

(
q(1)(X), . . . , q(d)(X)

) ,

where p, q are (d, ℓ)-sumprod polynomials, p(i), q(i) are multilinear polynomials for all i ∈ [d], and hp, hq
are multilinear polynomials.

We can now define the relation for sumcheck for rational functions:

Definition A.2 (Sumcheck for rational functions). This relation RMRSC contains tuples of the form

(iMRSC,xMRSC,wMRSC) =((F, n, d, hp, hq), (Jp1K, . . . , JpdK, Jq1K, . . . , JqdK, σ) ,
(p1, . . . , pd, q1, . . . , qd))

such that
∑

x∈{0,1}n ĥp(x)/ĥq(x) = σ where ĥp, ĥq are (d, ℓ)-sumprod polynomials. In particular, ĥp(X) =

hp
(
p(1)(X), . . . , p(d)(X)

)
and ĥq(X) = hq

(
q(1)(X), . . . , q(d)(X)

)
.

The following is a PIOP for RMRSC:

PIOP 8: SUMCHECK for (d, ℓ)-rational functions
⟨P(iMRSC,xMRSC,wMRSC),V(iMRSC,xMRSC)⟩:
1. P computes f : {0, 1}n → F such that f(X) = ĥp(X) · ĥq(X)−1.
2. P sends Jf̂K to V where f̂ is the multilinear extension of f .
3. P and V invoke a zerocheck PIOP for the polynomial (ĥq · f̂ − ĥp) = 0.
4. P and V invoke a sumcheck PIOP for multilinear polynomials for the claim “

∑
x∈{0,1}n f̂(x) = σ”.

The key idea of the above protocol is as follows:
1. Obtain the multilinear polynomial f̂(X) which is equal to ĥp(X) · ĥq(X)−1 on the boolean hypercube.
2. P commits to f̂ and sends Jf̂K to V.
3. In order to prove to V that f̂(x) = p(x)/q(x) for all x ∈ {0, 1}n, P proves that f̂(x) · q(X)−p(X) = 0

for all x ∈ {0, 1}n, which is achieved by engaging in a zerocheck PIOP.

47

4. Finally, since f̂ is multilinear, P and V can engage in a sumcheck protocol on f̂ .
We now present a RW streaming prover for RMRSC:

Read-write Streaming Algorithm 11: SUMCHECK for (d, ℓ)-rational functions
P(iMRSC,xMRSC, (R

(1)
p (p(1)), . . . ,R

(d)
p (p(d)),R

(1)
q (q(1)), . . . ,R

(d)
q (q(d)))):

Obtain read-only stream of evaluations of f̂ over {0, 1}n:
1. Sp ⇝Map(hp) ⇝Zip ⇝(R(1)

p , . . . ,R
(d)
p).

2. Sq ⇝Map(hq) ⇝Zip ⇝(R(1)
q , . . . ,R

(d)
q).

3. Sf ⇝Map(/) ⇝Zip ⇝(Sp,Sq).
4. Create the oracle Jf̂K using Sf and send it to V.

Obtain sumcheck claim for the zerocheck using ZToS:
5. Define t0(X1, . . . , Xk, Y1, . . . , Yk, Z) := hq(Y1, . . . , Yk) · Z − hp(X1, . . . , Xk).
6. iz := (F, n, d+ 1, t0)

7. xz := (Jp(1)K, . . . , Jp(d)K, Jq(1)K, . . . , Jq(d)K, Jf̂K)
8. wz := (R

(1)
p , . . . ,R

(d)
p ,R

(1)
q , . . . ,R

(d)
q ,Sf)

9. (iz = (, , , t1),xz,wz)← ZToS(iz,xz,wz).

Batch the sumcheck instance above with the sumcheck over f̂ :
10. Define identity function id(X) := X .
11. Define i := (F, n, d+ 1, 2, id, t1) and x := ((Jf̂K, σ),xz) and w := ((Sf),wz)
12. P and V invoke a RW streaming PIOP for a batch of sumprod polynomials for (i,x,w) as defined above.

Lemma A.3. PIOP 8 and Algorithm 11 together comprise a read-write streaming PIOP for RMRSC for
n-variate (d, ℓ)-rational functions with the following properties:

prover time prover space PIOP properties

random-access streaming # streams soundness error communication # queries

O(dℓN) O(d+ ℓ+ logN) O(dN) O(d) O(dN/|F|) O(d logN) O(d)

Proof. Time and space efficiency properties follow from the analysis of RW streaming zerocheck for (d, ℓ)-
sumprod polynomials. The prover is complete by construction, and the soundness error is O(dN/|F|) because
the degree of f is O(dN).

A.2 Split multiset-equality-check

The following PIOP is inspired from the multiset-equality-check of [Hab22]. Given a split size ν, multilinear
polynomials p(1), . . . , p(ν) and multilinear polynomials q(1), . . . , q(ν), P wants to prove to V that

ν⋃
j=1

⋃
x∈{0,1}n

{{
p(j)(x)

}}
=

ν⋃
j=1

⋃
x∈{0,1}n

{{
q(j)(x)

}}
. (1)

This is identical to the multiset-equality-check in Section 5.3.3, except that polynomials p and q have been
split into ν parts. In the RW streaming setting this represents the fact they arrive in separate RW streams.
Also, note that this is not the same as a batch multiset-equality-check where one would have ν separate
equalities, and can be reduced to a sumcheck PIOP for a batch of sumprod polynomials Section 5.2.3.

This is formalized by the relation RSMC, which contains tuples of the form

(iSMC,xSMC,wSMC) = ((F, n, ν), (Jp(1)K, . . . , Jp(ν)K, Jq(1)K, . . . , Jq(ν)K), (p(1), . . . , p(ν), q(1), . . . , q(ν)))

48

such that Eq. (1) is satisfied. The following is a PIOP for RSMC:
PIOP 9: SPLIT MULTISET-EQUALITY-CHECK

⟨P(iSMC,xSMC,wSMC),V(iSMC,xSMC)⟩:
1. V sends a random challenge α ∈ F to P.
2. P and V engage in a sumcheck PIOP for rational functions for the claim “

∑
x∈{0,1}n

∑ν
i=1(α+ p(i)(x))−1 −

(α+ q(i)(x))−1 = 0”.

We describe a RW streaming prover that uses O(νN) time and O(ν + logN) random-access space to
execute this PIOP:

Read-write Streaming Algorithm 12: SPLIT MULTISET-EQUALITY-CHECK

P(iSMC,xSMC, (R
(1)
p (p(1)), . . . ,R

(ν)
p (p(ν)),R

(1)
q (q(1)), . . . ,R

(ν)
q (q(ν)))):

1. Receive a random challenge α ∈ F from V.
2. Define function add: add(x) := x+ α.
3. For i in [1, . . . , ν]:
4. S

(i)
p ⇝Map(add) ⇝R(i)

p .
5. S

(i)
q ⇝Map(add) ⇝R(i)

q .
6. Define f1(x1, . . . , xν , y1, . . . , yν) :=

∑ν
i=1(−1)ν−1

∏ν
j=1 xj ·

∏
j ̸=i yj +

∑ν
i=1(−1)ν

∏ν
j=1 yj ·

∏
j ̸=i xj .

7. Define f2(x1, . . . , xν , y1, . . . , yν) :=
∏ν

j=1 xj · yj .

8. Define i := (F, n, 2ν, f1, f2) and x := (xSMC, 0) and w := (S
(1)
p , . . . ,S

(ν)
p ,S

(1)
q , . . . ,S

(ν)
q).

9. P and V invoke a RW streaming sumcheck PIOP for rational functions on (i,x,w) as defined above.

The foregoing RW streaming prover is executing a sumcheck PIOP for the following rational function:

ν∑
j=1

N−1∑
i=0

1

p
(j)
i + α

=

ν∑
j=1

N−1∑
i=0

1

q
(j)
i + α

⇐⇒
N−1∑
i=0

∑ν
k=1

∏
j ̸=k(p

(j)
i + α)∏ν

j=1(p
(j)
i + α)

=
N−1∑
i=0

∑ν
k=1

∏
j ̸=k(q

(j)
i + α)∏ν

j=1(q
(j)
i + α)

At first glance, it looks like the numerator has ν terms, where each term has degree ν − 1, and would
therefore require O(ν2) time to compute. However, in the sumcheck for rational functions, these terms can
be computed in O(ν) time by dividing the product

∏ν
j=1(p

(j)
i + α) by (p

(k)
i + α) to get the kth term of the

numerator.

Lemma A.4. PIOP 9 and Algorithm 12 together comprise a read-write streaming PIOP for RSMC with the
following properties:

prover time prover space PIOP properties

random-access streaming # streams soundness error communication # queries

O(νN) O(ν + logN) O(νN) O(ν) O(νN/|F|) O(ν logN) O(ν)

Proof. All properties follow from the analysis of RW streaming sumcheck for (d, ℓ)-rational functions.

A.3 Split permcheck

Given a split size ν, multilinear polynomials p(1), . . . , p(ν), q(1), . . . , q(ν), and permutations π1, . . . , π(ν), a
prover P of the split permcheck PIOP wants to prove to V that

p(i)(x) = q(i)(π(i)(x)) (2)

49

for all i ∈ [ν] and x ∈ {0, 1}n. This is formalized by the relation RSPC, which contains tuples of the form

(iSPC,xSPC,wSPC) = ((F, n, ν, π(1), . . . , π(ν)), (Jp(1)K, . . . , Jp(ν)K, Jq(1)K, . . . , Jq(ν)K),

(p(1), . . . , p(ν), q(1), . . . , q(ν), π̂(1), . . . , π̂(ν)))

such that Eq. (2) is satisfied where π̂(i)(x) = int(π(i)(x)) for all i ∈ [ν] and x ∈ {0, 1}n. The PIOP for
RSPC is nearly identical to the one described for the permcheck relation in Section 5.3.4, except that the
polynomials p and q are split into ν parts. We therefore omit this PIOP for brevity, and present the RW
streaming prover for it:

Read-write Streaming Algorithm 13: SPLIT PERMCHECK

P(iSPC,xSPC, (R
(1)
p (p(1)), . . . ,R

(ν)
p (p(ν)),R

(1)
q (q(1)), . . . ,R

(ν)
q (q(ν)),R

(1)
π (ˆ̂π(1)), . . . ,R

(ν)
π (ˆ̂π(ν)))):

1. Receive a random challenge β ∈ F from V.
2. Define function add: add(x, y) := x+ β · y.
3. For j in [1, . . . , ν]:
4. S

(j)
p ⇝Map(add) ⇝Zip ⇝(R(j)

p ,R
(j)
π).

5. S
(j)
q ⇝Map(add) ⇝Zip ⇝(R(j)

q , [i]ni=1).
6. Define i := (F, n, ν)
7. Define x := (Jp(1)K, . . . , Jp(ν)K, Jq(1)K, . . . , Jq(ν)K).
8. Define w := (R

(1)
p (p(1)), . . . ,R

(ν)
p (p(ν)),R

(1)
q (q(1)), . . . ,R

(ν)
q (q(ν))).

9. P and V invoke a RW streaming split multiset-equality-check PIOP on (i,x,w) as defined above.

Lemma A.5. PIOP 6 and Algorithm 13 together comprise a read-write streaming PIOP for RSPC with the
following properties:

prover time prover space PIOP properties

random-access streaming # streams soundness error communication # queries

O(νN) O(ν + logN) O(νN) O(ν) O(νN/|F|) O(ν logN) O(ν)

Proof. All properties follow from the analysis of RW streaming PIOP for split multiset-equality-check.

Remark A.6 (oracles of smaller polynomials for concrete efficiency). The key concrete advantage of the
split multiset-equality-check and split permcheck over the vanilla ones (Algorithm 6 and Algorithm 7) is that
the multilinear polynomial f̂ sent by P at Step 4 in Algorithm 11, has O(N) terms instead of O(νN) terms,
which is a dominating factor in the concrete efficiency of the protocol. This is at the cost of slightly higher
communication (O(ν logN) instead of O(log(νN))) and more polynomial queries (O(ν) instead of O(1)).

A.4 Using split permcheck for the wiring constraint

Recall the HyperPlonk wiring constraint for binary circuits from Section 2.2. The circuit C is represented by
three vectors ℓ, r,o ∈ FN where ℓ, r are the left and right inputs to the gates, and o are the outputs of the
gates. Furthermore, the wiring constraints of the circuit are represented by 2 permutation vectors π,σ ∈ FN

as follows: if the left input of gate i is the output of gate j, then πi = j, and similarly, if the right input of
gate i is the output of gate j then σi = j.

Let the multilinear extensions of these 5 vectors be ℓ̂, r̂, ô, π̂, σ̂ respectively, and assume that P receives the
stream of evaluations of these polynomials over the boolean hypercube in 5 separate RW streams. In order to
prove that the wiring constraint is satisfied, P needs to do to prove that ℓ̂(x) = ô(π̂(x)) and r̂(x) = ô(σ̂(x))

50

for all x ∈ {0, 1}n. Therefore the HyperPlonk PIOP calls the split permcheck PIOP with the following
arguments:

((F, n, 2, π̂, σ̂), (Jℓ̂K, Jr̂K, JôK, JôK), (R1(ℓ̂),R2(r̂),R3(ô),R4(ô),R5(π̂),R6(σ̂))) ,

which improves the concrete efficiency of the wiring constraint check by approximately a factor of 2.

51

B Generalized inner product arguments

A core building block for many polynomial commitment schemes [BCCGP16; WTSTW18; Lee21; BMMTV21;
BGH19; BCMS20] is an inner product argument (IPA) [BCCGP16; BBBPWM18] or its generalization
[LMR19; BMMTV21].

As a stepping stone to constructing read-write streaming variants of these polynomial commitments, in
this section we construct a read-write streaming prover that requires only logarithmic random access space
for the generalized inner product argument (GIPA) of [BMMTV21]. At a high level, the latter is an argument
that allows a prover to convince a verifier that ⟨x,w⟩ = v, where x,w are committed vectors, and v is the
claimed result of a suitable inner-product between x and w.

B.1 Commitment schemes

We recall the definition of doubly-homomorphic and inner-product commitment schemes [BMMTV21],
along with several constructions of these that will appear in our instantiations of GIPA.

Definition B.1 (commitment scheme). A commitment scheme CM = (Setup,Commit) over a universe
of key spaces {Ki}i∈N message spaces {Mi}i∈N enables a party to generate a (perfectly) hiding and
(computationally) binding commitment to a given message m ∈M.
• Setup: on input a security parameter and a description of the message spaceMi, CM.Setup samples a

commitment key ck ∈ Ki.
• Commit: on input public parameters ck, message m ∈ Mi, and randomness r, CM.Commit outputs a

commitment Cm to m.

Definition B.2 (Doubly homomorphic commitment). Let (K,+), (M,+) and (Image(CM.Commit),+)
define abelian groups. A commitment scheme CM = (Setup,Commit) is doubly homomorphic if for all
ck1, ck2 ∈ K and m1,m2 ∈M we have

1. Commit(ck1,m1) + Commit(ck2,m1) = Commit(ck1 + ck2,m1)

2. Commit(ck1,m1) + Commit(ck1,m2) = Commit(ck1,m1 +m2)

In particular the above also implies Commit(α·ck1,m1) = α·Commit(ck1,m1) and Commit(ck1, α·m1) =
α · Commit(ck1,m1).

Definition B.3 (Inner product map). A map⃝∗ :M1 ×M2 →M3 from two groups of prime order p to a
third group of order p is an inner product map if for all a, b ∈M1 and c, d ∈M2 we have that

(a+ b)⃝∗ (c+ d) = a⃝∗ c+ a⃝∗ d+ b⃝∗ c+ b⃝∗ d

Given an inner product ⃝∗ between groups we define the inner product between vector spaces ⟨·, ·⟩⃝∗ :

MN
1 ×MN

2 →M3 to be ⟨a, b⟩⃝∗ :=
∑N

i=1 ai⃝∗ bi.

Definition B.4 (Inner product commitment). Let CM be a doubly homomorphic commitment scheme with
message spaceM =Mm

1 ×Mm
2 ×M3 and key space K = Km

1 ×Km
2 ×K3 defined for all m ∈ [2j]j∈N,

where |Mi| = |Ki| = p is prime for i ∈ [3]. Let⃝∗ :M1 ×M2 →M3 be an inner product map. We call

52

(CM,⃝∗) an inner product commitment if there exist efficient deterministic functions Split and Collapse such
that for all m ∈ [2j]j∈N, M ∈M, and ck ∈ K, if Split(cki) = (ckLi , ck

R
i) for i ∈ [2] it holds that:

Collapse

CM

 ck1 M1 || M1

ck2 M2 || M2

ck3 M3

 = CM

 ckL1 + ckR1 M1

ckL2 + ckR2 M2

ck3 M3


The above requirement is referred to as the collapsing property.

Constructions of inner-product commitment schemes. We recall the Pedersen commitment scheme
CMP which has message space {FN}N∈N, and the AFGHO commitment schemes [AFGHO16] CM1 and
CM2, which have message spaces {GN

1 }N∈N and {GN
2 }N∈N respectively. For notational convenience, in this

section we write 1̄ to denote the subscript 2, and write 2̄ to denote the subscript 1.

CMP .Setup(1
λ, N)→ ckP :

1. Output ckP := Γ1
$← GN

1 .
CMP .Commit(ckP ,x)→ Cx:
1. Parse ckP as Γ1.
2. Output ⟨x,Γ1⟩G.

CMi.Setup(1
λ, N)→ (Γi):

1. Output cki := Γī
$← GN

ī
.

CMi.Commit(cki,X)→ CX :
1. Parse cki as Γī.
2. If i = 1: output ⟨X,Γ2⟩e.
3. If i = 2: output ⟨Γ1,X⟩e.

Both the Pedersen and AFGHO commitments are doubly homomorphic. Additionally, the Pedersen com-
mitment scheme and the AFGHO commitment scheme are secure under the SXDH assumption ([AFGHO16]).

B.2 Generalized inner product arguments

We now recall the definition of generalized inner product arguments (GIPA) [BMMTV21], beginning with
the relation RGIP proven by these arguments.

Definition B.5. The indexed relation RGIP is the set of triples i

x

w

 =

(N,CM,⃝∗ ,Γ)
D

(V ,X)


where N ∈ N is a power-of-two, (CM,⃝∗) is an inner product commitment with key space K, message space
M, and Γ ∈ K, (V ,X, ⟨V ,X⟩⃝∗) ∈M such that D = CM.Commit(Γ, (V ,X, ⟨V ,X⟩⃝∗)).

B.2.1 GIPA.Reduce

In this section we present an interactive reduction of knowledge [KP23] GIPA.Reduce that reduces an instance
of RGIP into a related instance of half the length using a random verifier challenge. That is, given an index i =
(2n,CM,⃝∗ ,Γ = (Γ1,Γ2,Γ3)), GIPA.Reduce reduces the problem of checking if a tuple (i,x,w) ∈ RGIP

to the problem of checking if a tuple (i′,x′,w′) ∈ RGIP, where i′ = (2n−1,CM,⃝∗ ,Γ′ = (Γ′
1,Γ

′
2,Γ3))

with Γ′ ∈ K2n−1

1 ×K2n−1

2 ×K3.

53

We define two useful helper functions. The first, ExpandEven, takes as input a vector A of length N and
outputs a vector B of length 2N whose 2i-th entry contains the i-th entry of A; the rest of B’s entries are
zero. The second, ExpandOdd, is similar, but sets the 2i− 1-th entry of B to contain the i-th entry of A.

The full GIPA.Reduce construction is presented below.
GIPA.Reduce

⟨P(i,x,w),V(i,x)⟩:
Parse: i = (2n,CM,⃝∗ ,Γ = (Γ1,Γ2,Γ3)), x = D and w = (V ,X).
1. P computes the cross-inner-products E+ := ⟨VO,XE⟩⃝∗ and E− := ⟨VE ,XO⟩⃝∗ .
2. P computes the cross-commitments

(a) D+ ← CM.Commit(Γ, (ExpandOdd(VO),ExpandEven(XE), E+)),
(b) D− ← CM.Commit(Γ, (ExpandOdd(VE),ExpandEven(XO), E−)).

3. P sends D+, D− to V .
4. V samples α $← F and sends it to P .
5. P and V fold commitment keys and commitment:

Γ′
1 := αΓ2E + Γ2O,

Γ′
2 := α−1Γ2E + Γ2O,

D′ := D + αD+ + α−1D−.

6. P folds the witness vectors:
V ′ := α−1vE + vO,

X ′ := αXE +XO.

7. Define i′ := (2n−1,CM.Commit,⃝∗ ,Γ′ := (Γ′
1,Γ

′
2,Γ3)), x′ := D′ and w′ := (V ′,X ′).

8. P receives output (i′,x′,w′) and V receives output (i′,x′).

Lemma B.6 ([BMMTV21, Theorem 1]). Let i = (2n,CM,⃝∗ ,Γ = (Γ1,Γ2,Γ3)) be an index for RGIP.
Then the following is an interactive argument of knowledge for proving that (i,x,w) ∈ RGIP:
1. Prover and verifier invoke GIPA.Reduce: (i′,x′,w′)← GIPA.Reduce(⟨P(i,x,w),V(i,x)⟩).
2. Prover sends w′ to verifier.
3. Verifier accepts if and only if (i′,x′,w′) ∈ RGIP.

MSB folding security implies LSB folding security. The foregoing reduction deviates from the one in
[BMMTV21] as it folds the even and odd parts of vectors together as A′ := αAE + AO (LSB folding),
instead of the left and right parts (A′ := αAL +AR (MSB folding)). We use LSB folding because it leads
to more efficient read-write streaming prover algorithms that avoid intermediate streams, and because it
simplifies exposition. This choice does not affect completeness or knowledge-soundness; completeness
follows from inspection, while knowledge-soundness follows from the following lemma implicit in the work
of Block et al. [BHRRS20]:

Lemma B.7. Given a polynomial-time extractor that extracts a witness X for statements of the form
((2n,Γ), D, (V ,X)), we can construct a polynomial-time extractor that extracts a witness for statements of
the form ((2n, π(Γ)), D, (π(V), π(X))), where π is an efficiently computable and invertible permutation.

Knowledge-soundness follows by fixing π to be the following permutation:

π(Xi) :=

{
X2(i−1)+1 if i ≤ N/2,

X2(i−(N/2)) if i > N/2.

54

B.2.2 Read-write streaming prover for GIPA.Reduce

In this section we present a streaming prover for GIPA.Reduce. We rely on the fact that the algorithms
CM.Commit, ExpandOdd, and ExpandEven have efficient read-write streaming versions; this is true for all
relevant instantiations of CM.Commit, since the latter is usually an inner product between the commitment
key and the message. This in turn implies that Steps 2a and 2b of GIPA.Reduce can be performed in a
read-write streaming manner; we call the resulting algorithm CrossCommit. We generalize the read-write
streaming algorithm InnerProd to InnerProd⃝∗ that computes an arbitrary inner product ⟨·, ·⟩⃝∗ instead of
the standard scalar inner product.

We are now ready to present our read-write streaming prover for GIPA.Reduce.
Read-write Streaming Algorithm 14: Prover for GIPA.REDUCE

P(i,x,w):
Parse: i = (2n,CM,⃝∗ , (RΓ1(Γ1),RΓ2(Γ2),Γ3)), x = D and w = (RV (V),RX(X)).
1. Split commitment keys and witness vectors:

• (RΓ1E ,RΓ1O)← SplitEO(RΓ1),
• (RΓ2E ,RΓ2O)← SplitEO(RΓ2),
• (RV E ,RV O)← SplitEO(RV), and
• (RXE ,RXO)← SplitEO(RX).

2. Compute E+ ← InnerProd⃝∗ (RV O,RXE) and E− ← InnerProd⃝∗ (RV E ,RXO).
3. Compute cross commitments:

• D+ ← CrossCommit((RΓ1,RΓ2,Γ3),RV O,RXE , E+), and
• D− ← CrossCommit((RΓ1,RΓ2,Γ3),RV E ,RXO, E−).

4. Send D+, D− to V .
5. Receive α

$← F from V .
6. Fold the commitment keys: kFoldInPlace(α, 1,RΓ1) and kFoldInPlace(α−1, 1,RΓ2).
7. Fold the vectors: kFoldInPlace(α−1, 1,RV) and kFoldInPlace(α, 1,RX).
8. Set D′ := D + αD+ + α−1D−.
9. Define i′ := (2n−1,CM,⃝∗ , (RΓ1,RΓ2,Γ3)), x′ := D′ and w′ := (RV ,RX).

10. Store (i′,x′,w′) for future invocations.

Lemma B.8. GIPA.Reduce and Algorithm 14 together define a read-write streaming reduction of knowledge
with the following properties:

SRS size prover time prover space check time proof size
random-access streaming

O(N) O(N) O(logN) O(N) O(N) O(1)

Proof. The proof is similar to that of Lemma 6.1.

B.2.3 The full GIPA protocol

We now present the full argument for RGIP that applies GIPA.Reduce iteratively to shrink the size of the
instance to 1, and then directly checks this instance.

55

GIPA
⟨P(i,x,w),V(i,x)⟩:

Parse: i = (2n,CM,⃝∗ ,Γ = (Γ1,Γ2,Γ3)), x = D and w = (V ,X).
1. Define i1 := i, x1 := x and w1 := w.
2. For i in [1, . . . , n]:
3. (ii+1,xi+1,wi+1)← GIPA.Reduce(⟨P(ii,xi,wi),V(ii,xi)⟩).
4. Parse in+1 = (1,CM.Commit,⃝∗ ,Γ′ = (Γ′

1,Γ
′
2,Γ

′
3)), xn+1 = D′ and wn+1 = (V ′, X ′).

5. P sends (V ′, X ′) to V .
6. V accepts if D′ = CM.Commit((Γ′

1,Γ
′
2,Γ

′
3), (V

′, X ′, ⟨V ′, X ′⟩⃝∗)).

Theorem B.9. GIPA is a read-write streaming interactive argument of knowledge for RGIP with the following
properties:

SRS size prover time prover space check time proof size
random-access streaming

O(N) O(N) O(logN) O(N) O(N) O(logN)

Proof. Completeness and knowledge soundness follow from [BMMTV21, Theorem 1]. The existence and
efficiency of a read-write streaming prover for GIPA follows from Lemma B.8.

B.3 The MIPP Protocol

A key building block of the polynomial commitment schemes from [BMMTV21] and [Lee21] is an interactive
argument for the MIPP relation from [BMMTV21], which allows a prover to convince a verifier that the
multiscalar multiplication ⟨v,X⟩G = E, where X ∈ GN is a private group vector committed to in the
AFGHO commitment D and v ∈ FN is a public field vector shared by both the prover and verifier.

Formally, the Multi-exponentiation Inner Product (MIPP) relation RMIPP is defined as follows:

Definition B.10 (MIPP relation). The indexed relation RMIPP is the set of triples i,
x,
w

 =

 (N,Γ2),
(D,v, E),

X


where N is an integer, Γ2 ∈ GN

2 , D ∈ GT , v ∈ FN , E ∈ G1 and X ∈ GN
1 such that

D = CM1(Γ2,X), E = ⟨v,X⟩G

Notice that RMIPP is a specific instantiation of RGIP, with⃝∗ : F×G1 → G1 defined to be a⃝∗ B = a ·B
and the inner product commitment CMMIPP.Commit, given commitment key Γ2 ∈ GN

2 , defined to be:

CMMIPP.Commit((⊥,Γ2,⊥), (a,B, E)) = (CM1.Commit(Γ2,a,B), E).

The following lemma thus follows naturally from Theorem B.9.

Lemma B.11 (Corollary of Theorem B.9). MIPP is a read-write streaming interactive argument of knowledge
for RMIPP with the following properties:

56

SRS size prover time prover space check time proof size
random-access streaming

O(N) O(N) O(logN) O(N) O(N) O(logN)

Sublinear verification. Bunz et al. [BMMTV21] describe an optimization that reduces the GIPA verifier’s
time from O(N) to O(logN) by relying on a structured commitment key. Roughly, in the GIPA protocol,
the verifier’s work can be rewritten so that at each round, instead of folding the commitment keys, the verifier
only needs to do a small amount of work to check consistency of the folded commitments; then, at the
end of the protocol, the verifier needs to check the opening of a single N -sized commitment derived form
its challenges. Bunz et al. show that this commitment can be viewed as a polynomial commitment to a
structured polynomial, and leverage the KZG polynomial commitment scheme to allow the prover to prove
correct commitment opening. The prover’s work here consists of generating, committing to, and opening this
polynomial commitment, and all steps can be done in a read-write streaming manner (and some even in a
read-only streaming manner [BCHO22]).

For the overall MIPP verifier to run in O(logN) time, in addition to the foregoing GIPA optimization, the
verifier also needs to be able to succinctly operate over the vector v. This is indeed the case in the applications
we consider, namely polynomial evaluation, where v is derived from an evaluation point for a multilinear
polynomial.

B.4 The FIP protocol

In this section, we present another important building block of the polynomial commitment schemes from
[BMMTV21] and [Lee21], the FIP protocol, which at a high level allows a prover to convince a verifier of the
multiscalar multiplication ⟨v,y⟩G = e, where y ∈ FN is a private field vector committed to in the Pedersen
commitment D and v ∈ FN is a public field vector shared by both the prover and verifier.

Formally, the Field Inner Product (FIP) relation RFIP is defined analogously to RMIPP as follows:

Definition B.12 (FIP relation). The indexed relation RFIP is the set of triples i,
x,
w

 =

 (N,Γ1),
(D,v, e),

y


where N is an integer, Γ1 ∈ GN

1 , D ∈ G1, v ∈ FN , e ∈ F and y ∈ FN such that

D = CMP (Γ1,y), e = ⟨v,y⟩F

Notice that RFIP is a specific instantiation of RGIP, with⃝∗ : F× F→ F defined to be a⃝∗ b = a · b and
the inner product commitment CMFIP.Commit, given commitment key Γ1 ∈ GN

1 , defined to be:

CMFIP.Commit((Γ1,⊥,⊥), (a, b, e)) = (CMP .Commit(Γ1, b),a, E).

The following lemma thus follows naturally from Theorem B.9.

Theorem B.13 (Corollary of Theorem B.9). FIP is a read-write streaming interactive argument of knowledge
for RFIP with the following properties:

57

SRS size prover time prover space check time proof size
random-access streaming

O(N) O(N) O(logN) O(N) O(N) O(logN)

A similar verifier efficiency optimization as in the MIPP protocol can be applied to the FIP protocol; we
refer the reader to Bünz et al. [BMMTV21] for details.

58

C Constructing polynomial commitment schemes with square-root SRS

Wahby et al. [WTSTW18] proposed a novel recipe for constructing polynomial commitment schemes using
inner product arguments, where the size of the commitment key is sublinear in the size of the polynomial
being committed to. This blueprint is also used in the PC scheme of Bünz et al. [BMMTV21] and Dory
[Lee21]. The blueprint proceeds by viewing an n-variate multilinear polynomial p(X), represented by its
evaluation over the boolean hypercube p, as a matrix M ∈ F

√
N×

√
N defined as follows:

Mij := pk for k = i · 2m + j.

where N := 2n and m := n/2. Without loss of generality, we can assume that for the n-variate multilinear
polynomials we consider, n is even. This is because if n is odd, we can just add a ‘dummy’ variable that is
not included in the polynomial, incurring a cost overhead of at most a multiplicative factor of 2.22

Their key observation is that evaluating p(X1, . . . , Xn) at a point z = (z1, z2, . . . , zn) is equivalent to
computing the vector-matrix-vector (VMV) product ℓ⊤Mr, where ℓ := [eq(zL, binn(i))]

√
N−1

i=0 = ⊗m
i=1(1−

zi, zi) and r := [eq(zR, binn(i))]
√
N−1

i=0 = ⊗n
i=m+1(1− zi, zi). This can be done via ‘vector-matrix-vector

product’ arguments.

VMV arguments. A vector-matrix-vector product argument is a tuple of algorithms VMV = (Setup,Commit,Eval)
with the following syntax.
• VMV.Setup(1λ, N)→ (ck, vk). On input a security parameter λ (in unary), and a maximum dimension

bound N ∈ N, VMV.Setup samples committer and verifier keys ck and vk.
• VMV.Commit(ck,M) → CM. On input ck and a matrix M ∈ F

√
N×

√
N , VMV.Commit outputs a

commitment CM to M.
• VMV.Eval(⟨P(ck, (CM, ℓ, r, y),M),V(vk, (CM, ℓ, r, y))⟩). P and V engage in an interactive protocol

that convinces V that CM commits to a matrix M satisfying the claim “ℓ⊤ ·M · r = y”.
A vector-matrix-vector product argument VMV must satisfy completeness and extractability properties
analogous to those of a polynomial commitment scheme. We show how to use a VMV argument to obtain a
PC scheme in the next section, but first we make a comment about our presentation for the rest of the paper.

Presentation. For the subsequent polynomial commitment schemes, for ease of exposition we present
the evaluation protocol as an interactive protocol PC.Eval. The standard non-interactive notions PC.Open
and PC.Check correspond to the prover and verifier respectively of the non-interactive version of PC.Eval
obtained via the Fiat-Shamir transform [FS86].

C.1 Constructing VMV arguments

As a prerequisite, we define the following instantiations of RGIP and their associated arguments:
• Rin is RGIP specialized to a commitment scheme CMin with message space F

√
N and commitment space

G1, and inner product map⃝∗ : F× F→ F defined to be a⃝∗ b = a · b. Argin is an interactive argument
for Rin.

• Rout is RGIP specialized to a commitment scheme CMout with message space G
√
N

1 , and an inner product
map ⋆ : F×G→ G defined to be a ⋆ B = a ·B. Argout is an interactive argument for Rout.

22We can in fact handle an odd-number of variables without incurring this overhead by using a non-square matrix, but we omit
that discussion for ease of exposition.

59

The blueprint is as follows: commit to a matrix M ∈ F
√
N×

√
N by first commiting to the rows using

CMin to obtain Ci ← CMin.Commit(ckin,Mi) for each i ∈ [0, 1, . . . ,
√
N − 1], and then committing to

C := [Ci]
√
N−1

i=0 using CMout to obtain CM ← CMout.Commit(ckout,C).
To show that the VMV product ℓ⊤Mr = y for the matrix M committed to in CM, the prover and verifier

engage in an interactive argument Argout(⟨P(ckout, (CM, ℓ, C ′),C),V(vkout, (CM, ℓ, C ′))⟩) to show that∑√
N−1

i=0 ℓi · Ci = C ′. This implies that C ′ must be a commitment to a := ℓ⊤M under the commitment
scheme CMin. The prover is left to convince the verifier that ⟨a, r⟩F = y, which is done using Argin. The
full construction is as follows:

VMV.Setup(1λ, N)→ (ck, vk):
1. Sample (ckin, vkin)← CMin.Setup(1

λ,
√
N).

2. Sample (ckout, vkout)← CMout.Setup(1
λ,
√
N).

3. Output (ck := (ckin, ckout), vk := (vkin, vkout))

VMV.Commit(ck,M)→ CM:
1. Parse ck as (ckin, ckout).
2. For all i ∈ [0, 1, . . . ,

√
N − 1]: Commit to the i-th row as Ci ← CMin.Commit(ckin,Mi).

3. Output CM ← CMout.Commit(ckout,C).

VMV.Eval(⟨P(ck,x,M),V(vk,x)⟩):
Parse: ck = (ckin, ckout), vk = (vkin, vkout) and x = (CM, ℓ, r, y).
1. For all i ∈ [0, 1, . . . ,

√
N − 1]: P computes Ci ← CMin.Commit(ckin,Mi).

2. P sets
X := C, a := ℓ⊤M,
D1 := CM, D2 := CMin.Commit(ckin,a),
E1 := ⟨ℓ,X⟩G, e2 := ⟨r,a⟩F.

3. P sends E1 to V .
4. V sets D1 := CM, D2 := E1 and e2 := y.
5. Set i1 := (

√
N, ckout), x1 := (D1, ℓ, E1), i2 := (

√
N, ckin) and x2 := (D2, r, e2).

6. V accepts if: ⟨Pout(i1,x1,X),Vout(i1,x1)⟩ = 1 and ⟨Pin(i2,x2,a),Vin(i2,x2)⟩ = 1.

Clearly VMV.Commit has a read-write streaming algorithm if CMin.Commit and CMout.Commit have read-
write streaming algorithms; this is true for all known instantiations (see Appendices C.3 and C.4). We are
hence left to show that VMV.Eval has a read-write streaming prover. Our algorithm for the latter relies on the
following helper functions, all of which require O(logN) random access space:
• ExtractRow, given as input a read-stream for a matrix specified in row-major order, outputs the rows of a

matrix one at a time;
• CommitMatrix computes commitments to these rows;
• VMProd computes vector matrix products of the form ℓ⊤M; and
• TensorProd, which compute tensor products of the form c := ⊗n

i=1(ai, bi).

ExtractRow(N,RM)→ SR:
1. For i in [1, . . . ,

√
N], emit mi ←

RM .read().

CommitMatrix(N,Rck,RM)→ SC :
1. For i in [1, . . . ,

√
N], emit

D ⇝CMin.Commit(Rck) ⇝ExtractRow(N,RM).

60

VMProd(N,Rℓ,RM)→WS :
1. Initialize the read stream RS([0]

√
N−1

i=0).
2. For i in [0, . . . ,

√
N − 1]:

3. ℓ← Rℓ.read().
4. RR ← ExtractRow(N,RM).
5. RS ← LinComb(1, ℓ,RS ,RR).
6. Output WS ← RS .swapmode().

TensorProd(n,Ra,Rb)→Wc:
1. Initialize the read stream Rc(1).
2. For i in [1, . . . , n]:
3. a← Ra.read(), b← Rb.read().
4. Ria ⇝Map(x 7→ a · x) ⇝Rc.
5. Rib ⇝Map(x 7→ b · x) ⇝Rc.
6. Set Rc ← Concat(Ria,Rib).
7. Output Wc ← Rc.swapmode().

Read-write streaming prover for VMV.Eval. We now present the full construction of a read-write
streaming prover for VMV.Eval. We assume Argin and Argout all have read-write streaming provers, which
is the case for all our instantiations (see Appendices C.3 and C.4).

Read-write Streaming Algorithm 15: prover for VMV.EVAL
P(ck,x,RM .init(M)):
Parse: ck = (RckIn.init(ckin),RckOut.init(ckout)) and x = (CM,Rℓ.init(ℓ),Rr.init(r), y).
1. Compute commitments to the rows of M: RX ← CommitMatrix(N,RckIn,RM).
2. Compute ℓ⊤M: Ra ← VMProd(N,Rℓ,RM).
3. Compute D2 ← CMin.Commit(RckIn,Ra).
4. Compute E1 ← InnerProd(Rℓ,RX).
5. Compute e2 ← InnerProd(Rr,Ra).
6. Send E1 to V .
7. Set i1 := (

√
N,RckOut), x1 := (CM,Rℓ, E1), i2 := (

√
N,RckIn), x2 := (D2,Rℓ, e2).

8. Run: Argout(⟨P(i1,x1,RX),V(i1,x1)⟩) and Argin(⟨P(i2,x2,Ra),V(i2,x2)⟩).

C.2 Constructing PC schemes from VMV arguments

Given a vector-matrix-vector product argument VMV, the blueprint to construct a polynomial commitment
scheme PC for n-variate multilinear polynomials is as follows.

PC.Setup(1λ, n)→ (ck, vk):
1. Define N := 2n.
2. Output (ck, vk)← VMV.Setup(1λ, N).

PC.Commit(ck,p)→ CM:
1. Define M ∈ F

√
N×

√
N with Mij := pi·

√
N+j .

2. Output CM ← VMV.Commit(ck,M).

PC.Eval(⟨P(ck,x,p),V(vk,x)⟩):
Parse: x = (CM, z, y).
1. P defines M with Mij := pi·

√
N+j .

2. P and V set ℓ := ⊗n/2
i=1(1− zi, zi) and r := ⊗n

i=n/2+1(1− zi, zi).
3. Define xVMV := (CM, ℓ, r, y) and wVMV := M.
4. Output ⟨PVMV(ck,xVMV,wVMV),VVMV(vk,xVMV)⟩.

Since all the helper functions run in O(N) time, the foregoing PC scheme inherits the efficiency and RW
streaming prover of the underlying VMV argument.

61

C.3 The Hyrax PC scheme

The Hyrax PC scheme from [WTSTW18] is obtained via the aforementioned blueprint, with CMin and
Argin corresponding to FIP, and CMout.Commit(⊥,X) := X being the identity commitment, and Argout
being the naive argument, where the verifier directly checks that

∑N−1
i=0 ℓi ·Xi = X ′ in O(

√
N) time. The

following lemma follows from [WTSTW18, Lemma 5] and the fact that all of the aforementioned schemes
have read-write streaming provers.

Lemma C.1. Hyrax is a read-write streaming polynomial commitment scheme for n-variate multilinear
polynomials with the following efficiency:

SRS size prover time prover space check time proof size
random-access streaming

O(
√
N) O(N) O(logN) O(N) O(

√
N) O(logN)

C.4 The PC scheme implicit in BMMTV21

Bünz et al. [BMMTV21] construct a univariate PC scheme that achieves square-root SRS size, linear
prover time, and logarithmic verifier time. Their scheme can be adapted to the multilinear setting without
affecting performance by adapting the VMV argument implicit in their scheme. Their VMV scheme is
obtained via the aforementioned blueprint, with CMin and Argin corresponding to FIP, and CMout and Argout
corresponding to MIPP. As an optimization, the scheme uses a structured commitment key to obtain a
sublinear verifier as explained in Appendices B.3 and B.4. The following lemma follows from the fact that all
of the aforementioned components have read-write streaming provers.

Lemma C.2. The PC scheme implicit in [BMMTV21] is a read-write streaming polynomial commitment
scheme for n-variate multilinear polynomials with the following efficiency:

SRS size prover time prover space check time proof size
random-access streaming

O(
√
N) O(N) O(logN) O(N) O(logN) O(logN)

62

D Vector-matrix-vector product arguments from Dory

In this section we describe the VMV argument from Dory [Lee21], which departs slightly from the blueprint
presented in Appendix C.1, by essentially running a MIPP and FIP in parallel with modified versions
MIPP.Reduce and FIP.Reduce to allow the commitment keys for each round to be fixed a priori (and not
obtained by folding the commitment key from the prior round).

This allows the verifier to know the commitment key for the final round without having to fold it itself,
thus avoiding the need to have either an O(N) verification time overhead or the need to have the prover
provide a proof of correct folding like in [BMMTV21], which would require a trusted setup. At a high level,
Dory’s VMV argument works as follows:23

Setup. As part of its commitment key, Setup samples the the unstructured commitment keys for round 1 of
the FIP and MIPP protocols, Γ1,1

$← GN
1 and Γ2,1

$← GN
2 . For each round i ∈ [2, 3, . . . , n], Setup sets the

commitment keys for round i to be Γ1,i := (Γ1,i−1)L and Γ2,i := (Γ2,i−1)L. In addition, the commitment
key contains certain preprocessed information required for the modified reductions for FIP and MIPP.

Commit. Dory commits to a matrix M ∈ FN×N in the standard way: by first Pedersen commiting to the
rows to obtain Ci ← CMP .Commit(Γ1,1,Mi) for each i ∈ [0, 1, . . . , N − 1], and then AFGHO committing
to C to obtain CM ← CM1.Commit(Γ2,1,C).

Eval. To show that the VMV product ℓTMr = y, for the matrix M committed to in CM, prior schemes
have first used an MIPP argument to show that

∑N−1
i=0 ℓi · Ci = C ′, where C ′ must be the commitment to

a := ℓTM. Then, to convince the verifier that ⟨a, r⟩F = y, the prover would then use an FIP argument.
Dory essentially runs the MIPP and FIP in parallel but runs the FIP ‘in G2’ by lifting the vector a ∈ FN

to A := a · Γ2,fin ∈ GN
2 using a generator Γ2,fin

$← G2. This is done because by dealing with the group
vectors C ∈ GN

1 and A ∈ GN
2 , one can fold the commitment keys Γ1 and Γ2 into C and A respectively,

enabling Dory to switch to a completely new set of commitment keys Γ′
1 ∈ GN/2

1 and Γ′
2 ∈ GN/2

2 (that do
not need to depend on Γ1 and Γ2) in the every round.

Scalar pairing product. We first define the scalar pairing product relation RSPP, as defined in [Lee21] and
present their interactive argument Dory.InnerProd for RSPP. Then in Appendix D.4 we show how to use
Dory.InnerProd to construct a VMV argument.

Definition D.1 (scalar pairing product relation). The indexed relation RSPP is the set of triples i,
x,
w

 =

 (N,Γ1,Γ2),
(C,D1, D2, E1, E2, ℓ, r),

(X,Y)


where N is an integer, Γ1 ∈ GN

1 , Γ2 ∈ GN
2 , C,D1, D2 ∈ GT , E1 ∈ G1, E2 ∈ G2, ℓ, r ∈ FN , X ∈ GN

1

and Y ∈ GN
2 such that

C = ⟨X,Y ⟩e,
D1 = CM1.Commit(Γ2,X), D2 = CM2.Commit(Γ1,Y),
E1 = ⟨ℓ,X⟩G, E2 = ⟨r,Y ⟩G.

23For ease of exposition, we consider committing to and evaluating VMV products over matrices of dimension N ×N .

63

D.1 Dory.Reduce

In this section we present an interactive reduction of knowledge Dory.Reduce 24 that reduces an instance
of RSPP into a related instance of half the length using a random verifier challenge. That is, given an
index i = (2n,Γ1,Γ2), and commitment keys Γ′

1
$← G2n−1

1 and Γ′
2

$← G2n−1

2 that are fixed a priori but
randomly sampled, Dory.Reduce reduces the problem of checking if a tuple (i,x,w) ∈ RIPP to the problem
of checking if (i′,x′,w′) ∈ RGIP, where i′ = (2n−1,Γ′

1,Γ
′
2).

Dory.Reduce
⟨P((Γ′

1,Γ
′
2), i,x,w),V(i,x)⟩:

Parse: i = (2n,Γ1,Γ2), x = (C,D1, D2, E1, E2, ℓ, r) and w = (X,Y).
Precompute: ∆1E := ⟨Γ1E ,Γ

′
2⟩e, ∆1O := ⟨Γ1O,Γ

′
2⟩e, ∆2E := ⟨Γ′

1,Γ2E⟩e, ∆2O := ⟨Γ′
1,Γ2O⟩e and

χ := ⟨Γ1,Γ2⟩e.

The prover computes and sends the necessary cross-products to the verifier:
1. P computes D1E := ⟨XE ,Γ

′
2⟩e, D1O := ⟨XO,Γ

′
2⟩e, D2E := ⟨Γ′

1,YE⟩e and D2O := ⟨Γ′
1,YO⟩e.

2. P also computes E1β := ⟨ℓ,Γ1⟩G, E2β := ⟨r,Γ2⟩G.
3. P sends D1E , D1O, D2E , D2O, E1β , E2β to V .

4. V samples β $← F and sends it to P .

The prover folds the commitment key into its witness with respect to the challenge β:
5. P sets X = X + βΓ1 and Y = Y + β−1Γ2.
6. P computes C+ := ⟨XE ,YO⟩e and C− := ⟨XO,YE⟩e.
7. P sets E1+ := ⟨ℓO,XE⟩G, E1− := ⟨ℓE ,XO⟩G, E2+ := ⟨rE ,YO⟩G, E2− := ⟨rO,YE⟩G.
8. P sends C+, C−, E1+, E1−, E2+, E2− to V .

9. V samples α $← F and sends it to P .

The prover and verifier fold their instance and witness in half with respect to the challenge α:
10. P sets X ′ := αXE +XO and Y ′ := α−1YE + YO.
11. P and V set

C ′ := C + χ+ βD2 + β−1D1 + αC+ + α−1C−,

D′
1 := αD1E +D1O + αβ∆1E + β∆1O,

D′
2 := α−1D2E +D2O + α−1β−1∆2E + β−1∆2O,

E′
1 := E1 + βE1β + αE1+ + α−1E1−,

E′
2 := E2 + β−1E2β + αE2+ + α−1E2−,

ℓ′ := α−1ℓE + ℓO,

r′ := αrE + rO

12. Define i′ := (2n−1,Γ′
1,Γ

′
2), x

′ := (C ′, D′
1, D

′
2, E

′
1, E

′
2, ℓ

′, r′) and w′ := (X ′,Y ′).
13. P receives output (i′,x′,w′) and V receives output (i′,x′).

Lemma D.2 ([Lee21, Theorem 6]). Let Γ′
1

$← G2n−1

1 , Γ′
2

$← G2n−1

2 and i = (2n,Γ1,Γ2) be an index for
RSPP. Then the following is an interactive argument of knowledge for proving that (i,x,w) ∈ RSPP:
1. Prover and verifier run: (i′,x′,w′)← Dory.Reduce(⟨P((Γ′

1,Γ
′
2), i,x,w),V((Γ′

1,Γ
′
2), i,x)⟩).

2. Prover sends w′ to verifier.

24We note that in [Lee21], this protocol is actually called Dory.ReduceExt, but we will denote it Dory.Reduce for brevity.

64

3. Verifier accepts if and only if (i′,x′,w′) ∈ RSPP.

D.2 Read-write streaming prover for Dory.Reduce

We now present a read-write streaming prover for Dory.Reduce.
Read-write Streaming Algorithm 16: prover for Dory.Reduce

P((RΓ1′ .init(Γ
′
1),RΓ2′ .init(Γ

′
2)), i,x,w):

Parse: i = (2n,RΓ1.init(Γ1),RΓ2.init(Γ2)), x = (C,D1, D2, E1, E2,Rℓ.init(ℓ),Rr.init(r)) and w =
(RX .init(X),RY .init(Y)).
Precompute: ∆1E := ⟨Γ1E ,Γ

′
2⟩e, ∆1O := ⟨Γ1O,Γ

′
2⟩e, ∆2E := ⟨Γ′

1,Γ2E⟩e, ∆2O := ⟨Γ′
1,Γ2O⟩e and

χ := ⟨Γ1,Γ2⟩e.

Compute and send the necessary cross-products to the verifier:
1. Obtain (RXE ,RXO)← SplitEO(RX) and (RY E ,RY O)← SplitEO(RY).
2. Obtain (RℓE ,RℓO)← SplitEO(2n,Rℓ) and (RrE ,RrO)← SplitEO(2n,Rr).
3. Compute D1E := InnerProd(RXE ,RΓ2′), D1O := InnerProd(RXO,RΓ2′), D2E :=

InnerProd(RΓ1′ ,RY E) and D2O := InnerProd(RΓ1′ ,RY O).
4. Compute E1β := InnerProd(Rℓ,RΓ1), E2β := InnerProd(Rr,RΓ2).
5. Send D1E , D1O, D2E , D2O, E1β , E2β to V .

6. Receive β
$← F from V .

Fold the commitment key into the witness with respect to the challenge β:
7. LinComb(1, β,RX ,RΓ1) and LinComb(1, β−1,RY ,RΓ2).
8. Compute C+ := InnerProd(RXE ,RY O) and C− := InnerProd(RXO,RY E).
9. Compute E1+ := InnerProd(RℓO,RXE), E1− := InnerProd(RℓE ,RXO).

10. Compute E2+ := InnerProd(RrE ,RY O), E2− := InnerProd(RrO,RY E).
11. Send C+, C−, E1+, E1−, E2+, E2− to V .

12. Receive α
$← F from V .

Fold the instance and witness in half with respect to the challenge α:
13. kFoldInPlace(2n, α, 1, 1,RX) and kFoldInPlace(2n, α−1, 1, 1,RY).
14. kFoldInPlace(2n, α−1, 1, 1,Rℓ) and kFoldInPlace(2n, α, 1, 1,Rr).
15. Set

C ′ := C + χ+ βD2 + β−1D1 + αC+ + α−1C−

D′
1 := αD1E +D1O + αβ∆1E + β∆1O

D′
2 := α−1D2E +D2O + α−1β−1∆2E + β−1∆2O,

E′
1 := E1 + βE1β + αE1+ + α−1E1−,

E′
2 := E2 + β−1E2β + αE2+ + α−1E2−,

16. Define i′ := (2n−1,RΓ1′ ,RΓ2′), x′ := (C ′, D′
1, D

′
2, E

′
1, E

′
2,Rℓ,Rr) and w′ := (RX ,RY).

17. Retain output (i′,x′,w′).

Lemma D.3. Dory.Reduce and Algorithm 16 together define a read-write streaming reduction of knowledge
with the following properties:

65

SRS size prover time prover space check time proof size
random-access streaming

O(
√
N) O(N) O(logN) O(N) O(logN) O(logN)

The proof of this lemma is similar to that of Lemma 6.1.

D.3 Dory-InnerProduct

Just like the GIPA protocol from Appendix B.2.3, the full argument for RSPP, Dory.InnerProd, applies
Dory.Reduce iteratively to shrink the size of the scalar pairing product instance to length 1, and then checks
the instance directly.

Lemma D.4. Dory.InnerProd is a read-write streaming interactive argument of knowledge for RSPP with
the following properties:

SRS size prover time prover space check time proof size
random-access streaming

O(N) O(N) O(logN) O(N) O(N) O(logN)

Proof. Completeness and knowledge soundness follow from [Lee21, Theorem 7]. The existence and
efficiency of a read-write streaming prover for Dory.InnerProd follows from Lemma D.3.

D.4 VMV from Dory-Innerproduct

In this section we describe how to build a VMV protocol from Dory.InnerProd. Notice that VMV.Setup
precomputes all the necessary terms for Dory.InnerProd, and that VMV.Open lifts a := ℓTM into a vector
in G2 using Γ2,fin (this is highlighted in blue).

VMV.Setup(1λ, N2 = 22n)→ (ck, vk):
1. Sample Γ1,1

$← GN
1 and (Γ2,1,Γ2,fin)

$← GN
2 ×G2.

2. For i in [1, . . . , n] set:
3. Γ1,i+1 := (Γ1,i)L and Γ2,i+1 := (Γ2,i)L.
4. χi := ⟨Γ1,i,Γ2,i⟩e.
5. ∆1E,i := ⟨(Γ1,i)E ,Γ2,i+1⟩e, ∆1O,i := ⟨(Γ1,i)O,Γ2,i+1⟩e, ∆2E,i := ⟨Γ1,i+1, (Γ2,i)E⟩e and

∆2O,i := ⟨Γ1,i+1, (Γ2,i)O⟩e.
6. Compute χn+1 := e(Γ1,n+1,Γ2,n+1).
7. Set precomp := ([χi]

n+1
i=1 , [∆1E,i]

n
i=1, [∆1O,i]

n
i=1, [∆2E,i]

n
i=1, [∆2O,i]

n
i=1,Γ2,fin).

8. Set ck := ([Γ1,i]
n+1
i=1 , [Γ2,i]

n+1
i=1 , precomp).

9. Set vk := (Γ1,n+1,Γ2,n+1, precomp).
10. Output (ck, vk).

VMV.Commit(ck,M)→ CM:
1. Parse ck as ([Γ1,i]

n+1
i=1 , [Γ2,i]

n+1
i=1 , precomp).

2. For all i ∈ [0, 1, . . . , N − 1]: Commit to the i-th row as Ci ← CMP .Commit(Γ1,1,Mi).
3. Output CM ← CM1.Commit(Γ2,1,C).

66

VMV.Open(⟨P(ck,x,M),V(vk,x)⟩):
Parse: ck = ([Γ1,i]

n+1
i=1 , [Γ2,i]

n+1
i=1 , precomp), vk = (Γ1,n+1,Γ2,n+1, precomp) and x = (CM, ℓ, r, y).

1. For all i ∈ [0, 1, . . . , N − 1]: P computes Ci := CMP .Commit(Γ1,1,Mi).
2. P sets X := C, D1 := CM.
3. P computes a := ℓTM, and Y := a · Γ2,fin.
4. P sets

C := ⟨X,Y ⟩e,
D1 := CM, D2 := CM2(Γ1,1,Y),
E1 := ⟨ℓ,X⟩G, E2 := ⟨r,Y ⟩G.

5. P sends C,D2, E1, E2 to V .
6. V checks that E2 = y · Γ2,fin.
7. V checks that e(E1,Γ2,fin) = D2.
8. Set iSPP := (N,Γ1,1,Γ2,1), xSPP := (C,D1, D2, E1, E2, ℓ, r) and wSPP := (X,Y).
9. P and V run Dory.InnerProd(⟨P(iSPP,xSPP,wSPP),V(iSPP,xSPP)⟩).

Lemma D.5. VMV is a read-write streaming VMV argument for ‘random evaluation vectors’25 with the
following efficiency:

SRS size prover time prover space check time proof size
random-access streaming

O(
√
N) O(N) O(logN) O(N) O(logN) O(logN)

Proof. The completeness and soundness claims follows from [Lee21, Theorem 9], while the efficiency claims
follow from the efficiency of our read-write streaming algorithm for Dory.InnerProd.

Using VMV to construct a PC scheme as described in Appendix C.2 yields the following lemma.

Lemma D.6. The Dory PC scheme [Lee21] is a read-write streaming polynomial commitment scheme for
n-variate multilinear polynomials with the following efficiency:

SRS size prover time prover space check time proof size
random-access streaming

O(
√
N) O(N) O(logN) O(N) O(logN) O(logN)

25The current scheme is only sound for ℓ := ⊗n/2
i=1(1 − zi, zi) and r := ⊗n

i=n/2+1(1 − zi, zi) constructed using a random

z
$← Fn. [Lee21] shows how to remedy this by repeating the VMV argument twice, once with random evaluation vectors and once

with the required evaluation vectors.

67

References
[AFGHO16] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, and M. Ohkubo. “Structure-Preserving Signatures

and Commitments to Group Elements”. In: Journal of Cryptology 29.2 (2016), pp. 363–421.

[AST24] A. Arun, S. T. V. Setty, and J. Thaler. “Jolt: SNARKs for Virtual Machines via Lookups”. In:
Proceedings of the 43rd Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’24. 2024, pp. 3–33.

[AV88] A. Aggarwal and J. S. Vitter. “The Input/Output Complexity of Sorting and Related Problems”. In:
Communications of the ACM 31.9 (1988), pp. 1116–1127.

[BBBPWM18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bulletproofs: Short Proofs
for Confidential Transactions and More”. In: Proceedings of the 39th IEEE Symposium on Security
and Privacy. S&P ’18. 2018, pp. 315–334.

[BBHV22] L. Bangalore, R. Bhadauria, C. Hazay, and M. Venkitasubramaniam. “On Black-Box Constructions
of Time and Space Efficient Sublinear Arguments from Symmetric-Key Primitives”. In: Proceedings
of the 20th Theory of Cryptography Conference. TCC ’22. 2022, pp. 417–446.

[BC12] N. Bitansky and A. Chiesa. “Succinct Arguments from Multi-Prover Interactive Proofs and their
Efficiency Benefits”. In: Proceedings of the 32nd Annual International Cryptology Conference.
CRYPTO ’12. 2012, pp. 255–272.

[BCCGP16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-Knowledge Arguments for
Arithmetic Circuits in the Discrete Log Setting”. In: Proceedings of the 35th Annual International
Conference on Theory and Application of Cryptographic Techniques. EUROCRYPT ’16. 2016,
pp. 327–357.

[BCCT12] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “From Extractable Collision Resistance to
Succinct Non-Interactive Arguments of Knowledge, and Back Again”. In: Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference. ITCS ’12. 2012, pp. 326–349.

[BCCT13] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. “Recursive Composition and Bootstrapping for
SNARKs and Proof-Carrying Data”. In: Proceedings of the 45th ACM Symposium on the Theory of
Computing. STOC ’13. 2013, pp. 111–120.

[BCGJM18] J. Bootle, A. Cerulli, J. Groth, S. K. Jakobsen, and M. Maller. “Arya: Nearly Linear-Time Zero-
Knowledge Proofs for Correct Program Execution”. In: Proceedings of the 24th International
Conference on the Theory and Application of Cryptology and Information Security. ASIACRYPT ’18.
2018, pp. 595–626.

[BCHO22] J. Bootle, A. Chiesa, Y. Hu, and M. Orrù. “Gemini: Elastic SNARKs for Diverse Environments”.
In: Proceedings of the 41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques. EUROCRYPT ’22. 2022.

[BCLMS21] B. Bünz, A. Chiesa, W. Lin, P. Mishra, and N. Spooner. “Proof-Carrying Data Without Succinct
Arguments”. In: Proceedings of the 41st Annual International Cryptology Conference. CRYPTO ’21.
2021, pp. 681–710.

[BCMS20] B. Bünz, A. Chiesa, P. Mishra, and N. Spooner. “Proof-Carrying Data from Accumulation Schemes”.
In: Proceedings of the 18th Theory of Cryptography Conference. TCC ’20. 2020.

[BCS21] J. Bootle, A. Chiesa, and K. Sotiraki. “Sumcheck Arguments and Their Applications”. In: Pro-
ceedings of the 41st Annual International Cryptology Conference. CRYPTO ’21. 2021, pp. 742–
773.

[BCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge via Cycles of Elliptic
Curves”. In: Proceedings of the 34th Annual International Cryptology Conference. CRYPTO ’14.
2014, pp. 276–294.

68

https://link.springer.com/article/10.1007/s00145-014-9196-7
https://link.springer.com/article/10.1007/s00145-014-9196-7
https://eprint.iacr.org/2023/1217
https://dl.acm.org/doi/abs/10.1145/48529.48535
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2017/1066
https://eprint.iacr.org/2022/1612
https://eprint.iacr.org/2022/1612
https://eprint.iacr.org/2012/461
https://eprint.iacr.org/2012/461
https://eprint.iacr.org/2016/263
https://eprint.iacr.org/2016/263
https://eprint.iacr.org/2011/443
https://eprint.iacr.org/2011/443
https://eprint.iacr.org/2012/095
https://eprint.iacr.org/2012/095
https://eprint.iacr.org/2018/380
https://eprint.iacr.org/2018/380
https://eprint.iacr.org/2022/420
https://eprint.iacr.org/2020/1618
https://eprint.iacr.org/2020/1618
https://eprint.iacr.org/2020/499
https://eprint.iacr.org/2021/333
https://eprint.iacr.org/2014/595
https://eprint.iacr.org/2014/595

[BDFG21] D. Boneh, J. Drake, B. Fisch, and A. Gabizon. “Halo Infinite: Proof-Carrying Data from Additive
Polynomial Commitments”. In: Proceedings of the 41st Annual International Cryptology Conference.
CRYPTO ’21. 2021, pp. 649–680.

[BFS20] B. Bünz, B. Fisch, and A. Szepieniec. “Transparent SNARKs from DARK Compilers”. In: Proceed-
ings of the 39th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’20. 2020, pp. 677–706.

[BGH19] S. Bowe, J. Grigg, and D. Hopwood. “Halo: Recursive Proof Composition without a Trusted Setup”.
IACR ePrint Report 2019/1021. 2019.

[BHRRS20] A. R. Block, J. Holmgren, A. Rosen, R. D. Rothblum, and P. Soni. “Public-Coin Zero-Knowledge
Arguments with (almost) Minimal Time and Space Overheads”. In: Proceedings of the 18th Theory
of Cryptography Conference. TCC ’20. 2020.

[BHRRS21] A. R. Block, J. Holmgren, A. Rosen, R. D. Rothblum, and P. Soni. “Time- and Space-Efficient
Arguments from Groups of Unknown Order”. In: Proceedings of the 41st Annual International
Cryptology Conference. CRYPTO ’21. 2021, pp. 123–152.

[BJR07] P. Beame, T. S. Jayram, and A. Rudra. “Lower Bounds for Randomized Read/Write Stream Algo-
rithms”. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing. STOC ’07.
2007.

[BMMTV21] B. Bünz, M. Maller, P. Mishra, N. Tyagi, and P. Vesely. “Proofs for Inner Pairing Products and
Applications”. In: Proceedings of the 27th International Conference on the Theory and Application
of Cryptology and Information Security. ASIACRYPT ’21. 2021, pp. 65–97.

[CBBZ23] B. Chen, B. Bünz, D. Boneh, and Z. Zhang. “HyperPlonk: Plonk with Linear-Time Prover and
High-Degree Custom Gates”. In: Proceedings of the 42nd Annual International Conference on the
Theory and Applications of Cryptographic Techniques. EUROCRYPT ’23. 2023, pp. 499–530.

[CFFZ24] A. Chiesa, E. Fedele, G. Fenzi, and A. Zitek-Estrada. “A Time-Space Tradeoff for the Sumcheck
Prover”. IACR ePrint Report 2024/524. 2024.

[CHMMVW20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward. “Marlin: Preprocessing zkSNARKs
with Universal and Updatable SRS”. In: Proceedings of the 39th Annual International Conference
on the Theory and Applications of Cryptographic Techniques. EUROCRYPT ’20. 2020.

[CM24] J. Cook and D. Moshkovitz. “Explicit Time and Space Efficient Encoders Exist Only with Random
Access”. In: Proceedings of the 39th Computational Complexity Conference. CCC ’24. 2024, 5:1–
5:54.

[con22] arkworks contributors. arkworks zkSNARK ecosystem. 2022.

[CT10] A. Chiesa and E. Tromer. “Proof-Carrying Data and Hearsay Arguments from Signature Cards”. In:
Proceedings of the 1st Symposium on Innovations in Computer Science. ICS ’10. 2010, pp. 310–331.

[DFR09] C. Demetrescu, I. Finocchi, and A. Ribichini. “Trading off space for passes in graph streaming
problems”. In: ACM Trans. Algorithms 6.1 (2009), 6:1–6:17.

[FJM14] N. François, R. Jain, and F. Magniez. “Unidirectional Input/Output Streaming Complexity of
Reversal and Sorting”. In: Proceedings of the 17th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems and the 18th International Workshop on
Randomization and Computation. APPROX/RANDOM ’14. 2014, pp. 654–668.

[FS86] A. Fiat and A. Shamir. “How to prove yourself: practical solutions to identification and signature
problems”. In: Proceedings of the 6th Annual International Cryptology Conference. CRYPTO ’86.
1986, pp. 186–194.

[GHS06] M. Grohe, A. Hernich, and N. Schweikardt. “Randomized computations on large data sets: tight
lower bounds”. In: Proceedings of the 25th Symposium on Principles of Database Systems. PODS ’06.
2006, pp. 243–252.

69

https://eprint.iacr.org/2020/1536
https://eprint.iacr.org/2020/1536
https://eprint.iacr.org/2019/1229
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2020/1425
https://eprint.iacr.org/2020/1425
https://eprint.iacr.org/2021/358
https://eprint.iacr.org/2021/358
https://dl.acm.org/doi/10.1145/1250790.1250891
https://dl.acm.org/doi/10.1145/1250790.1250891
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2022/1355
https://eprint.iacr.org/2024/524
https://eprint.iacr.org/2024/524
https://eprint.iacr.org/2019/1047
https://eprint.iacr.org/2019/1047
https://eccc.weizmann.ac.il/report/2024/032/
https://eccc.weizmann.ac.il/report/2024/032/
https://arkworks.rs
https://ic-people.epfl.ch/~achiesa/docs/CT10.pdf
https://dl.acm.org/doi/10.1145/1644015.1644021
https://dl.acm.org/doi/10.1145/1644015.1644021
https://arxiv.org/abs/1309.0647
https://arxiv.org/abs/1309.0647
https://link.springer.com/chapter/10.1007/3-540-47721-7_12
https://link.springer.com/chapter/10.1007/3-540-47721-7_12
https://doi.org/10.1145/1142351.1142387
https://doi.org/10.1145/1142351.1142387

[GKS05] M. Grohe, C. Koch, and N. Schweikardt. “Tight Lower Bounds for Query Processing on Streaming
and External Memory Data”. In: Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming. ICALP ’05. 2005, pp. 1076–1088.

[GLSTW23] A. Golovnev, J. Lee, S. T. V. Setty, J. Thaler, and R. S. Wahby. “Brakedown: Linear-Time and
Field-Agnostic SNARKs for R1CS”. In: Proceedings of the 43rd Annual International Cryptology
Conference. CRYPTO ’23. 2023, pp. 193–226.

[GS05] M. Grohe and N. Schweikardt. “Lower Bounds for Sorting with Few Random Accesses to Exter-
nal Memory”. In: Proceedings of the 24th ACM Symposium on Principles of Database Systems.
PODS ’05. 2005.

[GW19] A. Gabizon and Z. J. Williamson. “The turbo-plonk program syntax for specifying snark programs”.
Preprint. 2019.

[Hab22] U. Haböck. “Multivariate lookups based on logarithmic derivatives”. IACR ePrint Report 2022/1530.
2022.

[HLP24] U. Haböck, D. Levit, and S. Papini. “Circle STARKs”. IACR ePrint Report 2024/278. 2024.

[KP23] A. Kothapalli and B. Parno. “Algebraic Reductions of Knowledge”. In: Proceedings of the 43rd
Annual International Cryptology Conference. CRYPTO ’23. 2023, pp. 669–701.

[KST22] A. Kothapalli, S. T. V. Setty, and I. Tzialla. “Nova: Recursive Zero-Knowledge Arguments from
Folding Schemes”. In: Proceedings of the 42nd Annual International Cryptology Conference.
CRYPTO ’22. 2022, pp. 359–388.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. “Constant-Size Commitments to Polynomials and Their
Applications”. In: Proceedings of the 16th International Conference on the Theory and Application
of Cryptology and Information Security. ASIACRYPT ’10. 2010, pp. 177–194.

[Lee21] J. Lee. “Dory: Efficient, Transparent Arguments for Generalised Inner Products and Polynomial
Commitments”. In: Proceedings of the 19th Theory of Cryptography Conference. TCC ’21. 2021,
pp. 1–34.

[LFKN92] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. “Algebraic Methods for Interactive Proof Systems”.
In: Journal of the ACM 39.4 (1992), pp. 859–868.

[LMR19] R. W. F. Lai, G. Malavolta, and V. Ronge. “Succinct Arguments for Bilinear Group Arithmetic:
Practical Structure-Preserving Cryptography”. In: Proceedings of the 26th ACM Conference on
Computer and Communications Security. CCS ’19. 2019, pp. 2057–2074.

[NDCTB24] W. Nguyen, T. Datta, B. Chen, N. Tyagi, and D. Boneh. “Mangrove: A Scalable Framework for
Folding-based SNARKs”. In: Proceedings of the 44th Annual International Cryptology Conference.
CRYPTO ’24. 2024.

[Pip80] N. Pippenger. “On the Evaluation of Powers and Monomials”. In: SIAM Journal on Computing 9.2
(1980), pp. 230–250.

[Pol] Polygon. Plonky3. URL: https://github.com/plonky3/plonky3.

[PP24] C. Pappas and D. Papadopoulos. “Sparrow: Space-Efficient zkSNARK for Data-Parallel Circuits
and Applications to Zero-Knowledge Decision Trees”. IACR ePrint Report 2024/1631. 2024.

[PST13] C. Papamanthou, E. Shi, and R. Tamassia. “Signatures of Correct Computation”. In: Proceedings of
the 10th Theory of Cryptography Conference. TCC ’13. 2013, pp. 222–242.

[PY14] P. A. Papakonstantinou and G. Yang. “Cryptography with Streaming Algorithms”. In: Proceedings
of the 34th Annual Cryptology Conference. CRYPTO ’14. 2014, pp. 55–70.

[Rot24] R. D. Rothblum. “A Note on Efficient Computation of the Multilinear Extension”. IACR ePrint
Report 2024/1103. 2024.

70

https://arxiv.org/abs/cs/0505002
https://arxiv.org/abs/cs/0505002
https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2021/1043
https://dl.acm.org/doi/abs/10.1145/1065167.1065197
https://dl.acm.org/doi/abs/10.1145/1065167.1065197
https://docs.zkproof.org/pages/standards/accepted-workshop3/proposal-turbo_plonk.pdf
https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2024/278
https://eprint.iacr.org/2022/009
https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2021/370
https://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
https://cacr.uwaterloo.ca/techreports/2010/cacr2010-10.pdf
https://eprint.iacr.org/2020/1274
https://eprint.iacr.org/2020/1274
https://dl.acm.org/doi/10.1145/146585.146605
https://eprint.iacr.org/2019/969
https://eprint.iacr.org/2019/969
https://eprint.iacr.org/2024/416
https://eprint.iacr.org/2024/416
https://epubs.siam.org/doi/pdf/10.1137/0209022
https://github.com/plonky3/plonky3
https://github.com/plonky3/plonky3
https://eprint.iacr.org/2024/1631
https://eprint.iacr.org/2024/1631
https://eprint.iacr.org/2011/587
https://link.springer.com/chapter/10.1007/978-3-662-44381-1_4
https://eprint.iacr.org/2024/1103

[Set20] S. Setty. “Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup”. In: Pro-
ceedings of the 40th Annual International Cryptology Conference. CRYPTO ’20. 2020, pp. 704–
737.

[SL20] S. T. V. Setty and J. Lee. “Quarks: Quadruple-efficient transparent zkSNARKs”. IACR ePrint Report
2020/1275. 2020.

[Tha13] J. Thaler. “Time-Optimal Interactive Proofs for Circuit Evaluation”. In: Proceedings of the 33rd
Annual International Cryptology Conference. CRYPTO ’13. 2013, pp. 71–89.

[Tha22] J. Thaler. “Proofs, Arguments, and Zero-Knowledge”. In: Found. Trends Priv. Secur. 4.2-4 (2022),
pp. 117–660.

[Whi18] B. WhiteHat. “roll up: A Scalable Zero Knowledge Roll Up”. Accessed: 2024-02-10. 2018.

[WHV24] R. Wang, C. Hazay, and M. Venkitasubramaniam. “Ligetron: Lightweight Scalable End-to-End
Zero-Knowledge Proofs. Post-Quantum ZK-SNARKs on a Browser”. In: Proceedings of the 45th
IEEE Symposium on Security and Privacy. IEEE S&P ’24. 2024.

[WTSTW18] R. S. Wahby, I. Tzialla, A. Shelat, J. Thaler, and M. Walfish. “Doubly-Efficient zkSNARKs Without
Trusted Setup”. In: Proceedings of the 39th IEEE Symposium on Security and Privacy. S&P ’18.
2018, pp. 926–943.

[Xie+22] T. Xie, J. Zhang, Z. Cheng, F. Zhang, Y. Zhang, Y. Jia, D. Boneh, and D. Song. “zkBridge: Trustless
Cross-chain Bridges Made Practical”. In: Proceedings of the 29th ACM Conference on Computer
and Communications Security. CCS ’22. 2022, pp. 3003–3017.

[XZZPS19] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. “Libra: Succinct Zero-Knowledge Proofs
with Optimal Prover Computation”. In: Proceedings of the 39th Annual International Cryptology
Conference. CRYPTO ’19. 2019, pp. 733–764.

[ZCLKZ24] S. Zhang, D. Cai, Y. Li, H. Kan, and L. Zhang. “Epistle: Elastic Succinct Arguments for Plonk
Constraint System”. IACR ePrint Report 2024/872. 2024.

[ZGKPP18] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papamanthou. “vRAM: Faster Verifiable
RAM with Program-Independent Preprocessing”. In: Proceedings of the 39th IEEE Symposium on
Security and Privacy. IEEE S&P ’18. 2018, pp. 908–925.

71

https://eprint.iacr.org/2019/550
https://eprint.iacr.org/2020/1275
https://eprint.iacr.org/2013/351
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://github.com/barryWhiteHat/roll_up
https://ieeexplore.ieee.org/abstract/document/10646776
https://ieeexplore.ieee.org/abstract/document/10646776
https://eprint.iacr.org/2017/1132
https://eprint.iacr.org/2017/1132
https://dl.acm.org/doi/abs/10.1145/3548606.3560652
https://dl.acm.org/doi/abs/10.1145/3548606.3560652
https://eprint.iacr.org/2019/317
https://eprint.iacr.org/2019/317
https://eprint.iacr.org/2024/872
https://eprint.iacr.org/2024/872
https://ieeexplore.ieee.org/abstract/document/8418645
https://ieeexplore.ieee.org/abstract/document/8418645

	Abstract
	Contents
	1 Introduction
	1.1 Our results

	2 Techniques
	2.1 Notation
	2.2 Starting point: HyperPlonk
	2.3 Read-write streams
	2.4 SNARKs from RW streaming PIOPs and PC schemes
	2.5 Read-write streaming sumcheck
	2.6 Read-write streaming PIOPs
	2.7 PIOP for HyperPlonk
	2.8 Read-write streaming polynomial commitments
	2.9 Implementation
	2.10 Evaluation

	3 Related work
	3.1 Similar memory models
	3.2 Read-only streaming SNARKs
	3.3 Complexity-preserving SNARKs

	4 Read-write streaming algorithms
	4.1 Common read-write streaming subroutines

	5 Read-write streaming PIOP for HyperPlonk
	5.1 Preliminaries
	5.2 RW streaming prover for sumcheck
	5.3 Read-write streaming prover for HyperPlonk's PIOP

	6 Streaming polynomial commitment schemes
	6.1 Multilinear polynomial commitment schemes
	6.2 The PST13 PC scheme

	A An alternative PIOP for permcheck
	A.1 Sumcheck for rational functions
	A.2 Split multiset-equality-check
	A.3 Split permcheck
	A.4 Using split permcheck for the wiring constraint

	B Generalized inner product arguments
	B.1 Commitment schemes
	B.2 Generalized inner product arguments
	B.3 The MIPP Protocol
	B.4 The FIP protocol

	C Constructing polynomial commitment schemes with square-root SRS
	C.1 Constructing VMV arguments
	C.2 Constructing PC schemes from VMV arguments
	C.3 The Hyrax PC scheme
	C.4 The PC scheme implicit in BMMTV21

	D Vector-matrix-vector product arguments from Dory
	D.1 Dory.Reduce
	D.2 Read-write streaming prover for Dory.Reduce
	D.3 Dory-InnerProduct
	D.4 VMV from Dory-Innerproduct

	References

