
Universally Composable Server-Supported

Signatures for Smartphones

Nikita Snetkov1,2[0000−0002−1414−2080], Jelizaveta
Vakarjuk1,2[0000−0001−6398−3663], and Peeter Laud1[0000−0002−9030−8142]

{nikita.snetkov,jelizaveta.vakarjuk,peeter.laud}@cyber.ee

1 Cybernetica AS, Mäealuse 2/1, 12618 Tallinn, Estonia
2 Tallinn University of Technology, Akadeemia tee 15a, 12618 Tallinn

Abstract. Smart-ID is an application for signing and authentication
provided as a service to residents of Belgium, Estonia, Latvia and Lithua-
nia. Its security relies on multi-prime server-supported RSA, password-
authenticated key shares and clone detection mechanism. Unfortunately,
the security properties of the underlying protocol have been specified only
in “game-based” manner. There is no corresponding ideal functionality
that the actual protocol is shown to securely realize in the universal
composability (UC) framework. In this paper, we remedy that short-
coming, presenting the functionality (optionally parameterized with a
non-threshold signature scheme) and prove that the existing Smart-ID
protocol securely realizes it. Additionally, we present a server-supported
protocol for generating ECDSA signatures and show that it also securely
realizes the proposed ideal functionality in the Global Random Oracle
Model (UC+GROM).

Keywords: Smart-ID · SplitKey · universal composability · ECDSA
· RSA · server-supported signatures

1 Introduction

Since the proposal by Whitfield Diffie and Martin Hellman [1], digital signatures
have been widely incorporated in computer systems to achieve integrity, authen-
ticity and non-repudiation of the users’ data. Several technologies and protocols
are utilizing digital signatures, including TLS, SSH, PGP and distributed ledgers.
They became so widely implemented that the European Union (eIDAS), United
States (ESIGN), and Switzerland (ZertES) equated the legal status of digital
signatures with handwritten signatures.

With such widespread application of digital signatures, there is an inherent
need to store private keys securely. While there are solutions such as Trusted
Execution Environments (TEE), Hardware Secure Modules (HSMs) and smart
cards, they do not offer much flexibility or scalability. Meanwhile, software-based
solutions are easily and ubiquitously deployed, updated across various devices
and platforms, including desktop computers, laptops and smartphones. Still,

2 Authors Suppressed Due to Excessive Length

software-only solutions raise questions about secure storage and usage the private
keys.

Security issues of software-only solutions deployed on partially secure plat-
forms (e.g. smartphones) could be mitigated by applying dedicated servers for
remote signing. Nevertheless, corresponding service could reduce the control the
individuals have over their private keys. The issues of both security and control
can be mitigated by using threshold cryptography [2]. One of the examples
of such deployed solution which utilises threshold cryptography is Smart-ID3.
It provides an authentication and digital signature creation services for over
three million users in Baltic states and Belgium. Technology behind Smart-ID,
SplitKey 4, allows to distribute a private key of a user between their smartphone
and a central server. The public keys and signatures created via Smart-ID are
indistinguishable from standard RSA ones, which makes Smart-ID functionally
interchangeable [3, 4] with RSA and provides interoperability with existing pro-
tocols and applications. Additionally, it could be argued that Smart-ID is no less
secure solution than smartcards for private key storage [5]. Moreover, Smart-ID is
considered to be a Qualified Signature Creation Device (QSCD) 5, i.e. signatures
created with Smart-ID are legally equivalent to the handwritten signatures in
the European Union.

1.1 Motivation

The mechanism behind Smart-ID was proposed by Buldas et al. [6]. In their paper,
authors presented a protocol between a client (a phone) and a server, allowing to
produce multi-prime RSA digital signatures [7]. The protocol considers contrasting
capabilities of the client and the server, providing several mechanisms that handle
them against various levels of compromising the client. Their solution is effective
and practical, but its security analysis could be improved. The authors clearly
state the security games covering the main properties of the protocol, including
unforgeability by an adversary corrupting the server, and infeasibility of offline
attacks by an adversary that has obtained client’s (weakly) encrypted memory.
However, the more “peripheral” properties have not been addressed in the same
manner. Lack of analysis lead to an attack by Sarr [8] against the protection
mechanism which catches malicious copies of client’s memory (fortunately, that
attack has been mitigated in the deployed service6). Buldas et al. [6] also do
not offer a clear description on how the protocol’s guarantees degrade if several
attacks or unlikely-but-not-implausible events take place together. In order to
clarify such details, a security definition in terms of indistinguishability of the real
system from some ideal system is necessary. The security should be proved in the
universal composability (UC) framework [9], because such a signature-producing
protocol is normally used as a subsystem of some larger system.
3 www.smart-id.com
4 https://cyber.ee/products/splitkeyplus
5 https://www.smart-id.com/e-service-providers/smart-id-as-a-qscd/
6 https://www.tuvit.de/fileadmin/Content/TUV_IT/zertifikate/en/9263BE_s.pdf

www.smart-id.com
https://cyber.ee/products/splitkeyplus
https://www.smart-id.com/e-service-providers/smart-id-as-a-qscd/
https://www.tuvit.de/fileadmin/Content/TUV_IT/zertifikate/en/9263BE_s.pdf

Universally Composable Server-Supported Signatures for Smartphones 3

Also, it is worth to mention that usage of RSA in Smart-ID has some disad-
vantages compared to existing elliptic curve schemes:
1. Larger size of keys: Practical level of n-bit security [10] compels generating

RSA keys that are relatively larger than ECDSA or EdDSA keys of similar
security level. For example, 128 bit security requires generating 3072 bit
long keys for RSA and only 256 bit for ECDSA/EdDSA. At the same time,
multi-prime RSA schemes, including Smart-ID, require keys of 6144 bits
length to achieve plausible security [11] 7.

2. Hybrid signatures for quantum-safe solutions: To provide proper migration
from protocols affected by Shor’s algorithm [12] to quantum-secure schemes,
it is recommend to support hybrid modes [13–15]. Due to the larger sizes of
signatures standardised by National Institute of Standards and Technology
(NIST) [16, 17], it makes sense to employ post-quantum signatures together
with ECDSA/EdDSA rather than RSA signatures during a transition period.
For example, German Federal Office for Information Security (BSI) ceases
the issuance of RSA certificates starting from 2029 and will only use ECDSA
in hybrid solutions 8.

Therefore, there is a need to introduce ECDSA-based Smart-ID/SplitKey to
either substitute current RSA-based protocol or bring ECDSA-based protocol as
an alternative solution for special use cases.

1.2 Related Work

There are several works on distributed biprime RSA [18–22] and multiprime
RSA [23, 24]. Even though distributed biprime RSA protocols allow parties
to generate standard RSA signature, they are computationally complex and
require to rely on additional assumptions and/or cryptographic primitives. On
the contrary, even though distributed multiprime RSA protocols produce larger
size signatures and public key, they are much computationally elegant and
efficient. Moreover, the resulting signatures are still functionally interchangeable,
i.e. could be verified with standard software. Two representative RSA-based server-
supported protocols are Camenisch et al. [25] and Buldas et al. [6]. Scheme by
Camenisch et al. provides client’s privacy from the server and protection against
offline-guessing attacks, being proven secure in the universal composability (UC)
model. Buldas et al. work improves their approach by introducing distributed
key generation and clone-detection but, as mentioned above, does give a proof of
their scheme to be secure in UC.

A variety of studies were performed on distributed ECDSA signatures: both
in area of two-party [26–33] and t-out-of-n [34–42] solutions. Yet, to our best
knowledge, there is no ECDSA-based protocol which provides similar features as
Camenisch et al. [25] or Buldas et al. [6] works.
7 https://github.com/SK-EID/smart-id-documentation/wiki/Smart-ID-service-will-

start-to-use-6K-RSA-keys
8 https://docbox.etsi.org/Workshop/2023/02_QUANTUMSAFECRYPTOGRAPHY/

TECHNICALTRACK/WORLDTOUR/BSI_KOUSIDIS.pdf

https://github.com/SK-EID/smart-id-documentation/wiki/Smart-ID-service-will-start-to-use-6K-RSA-keys
https://github.com/SK-EID/smart-id-documentation/wiki/Smart-ID-service-will-start-to-use-6K-RSA-keys
https://docbox.etsi.org/Workshop/2023/02_QUANTUMSAFECRYPTOGRAPHY/TECHNICALTRACK/WORLDTOUR/BSI_KOUSIDIS.pdf
https://docbox.etsi.org/Workshop/2023/02_QUANTUMSAFECRYPTOGRAPHY/TECHNICALTRACK/WORLDTOUR/BSI_KOUSIDIS.pdf

4 Authors Suppressed Due to Excessive Length

1.3 Our contributions:

1. We introduce an ideal functionality FgSpl (Section 4), which describes the
properties of server-supported signature generation system with the features
matching with Smart-ID/SplitKey. We discuss the details of this system,
explaining the choices we have made, or justifying why a certain detail can
only be fixed in a specific manner.

2. We show that Smart-ID/SplitKey based on multiprime RSA securely realizes
FgSpl functionality in UC-model (Section 5).

3. We propose a new server-supported signing protocol based on ECDSA scheme
(Section 6) and show it to be secure in UC-model. This protocol could be
seen as an server-supported variant of Xue et al. [32] and Kocaman et al. [33]
works. To achieve UC security, we define another ideal functionality FSpl

Sig
parameterized by the signature scheme Sig (in this case, ECDSA). The
functionality models the generation of public keys and signatures of Sig,
distributed in Smart-ID/SplitKey like manner. We show that our distributed
ECDSA signing protocol securely realizes FSpl

ECDSA (Section 7).
4. We show that there exists a trivial protocol that securely realizes FgSpl in
FSpl

Sig -hybrid model for any UF-CMA secure signature scheme Sig (Sections 4.3
and A).

2 Preliminaries

2.1 Notation

The relation a← A denotes sampling an element a uniformly at random from
the set A. The symbol ⊥ is used to indicate a failure or abort. Z denotes the set
of integers, Zq – the set of integers modulo q, G – a group, F – a finite field. The
symbol F denotes ideal functionality. The symbol ∥ could mean depending on the
context: a) parallel execution of Turing machines or protocols b) concatenation
of two inputs.

2.2 Universal Composability

The Universal Composability (UC) framework, introduced by Canetti [9, 43],
explores the conditions under which a system composed of interactive Turing
machines can securely implement another system. Such a system, which may
represent either an actual implementation of a cryptographic protocol Π, or an
ideal functionality F capturing the security properties that are desired for the
protocol to have, offers two interfaces for the outside world. One interface is
meant for the environment Z, meant to model everything that the “legitimate”
system contains beside the protocol Π. The second interface is meant for the
adversary, modelling the weaknesses (actual for protocols, must-be-tolerated ones
for ideal functionalities) of analyzed systems.

Universally Composable Server-Supported Signatures for Smartphones 5

Definition 1 (UC-secure). Protocol Π securely implements F if for any (real)
adversary A, there exists an (ideal) adversary S, such that no environment Z
can distinguish whether it is interacting with Π∥A or with F∥S.

Note that Π and F must offer the same functionality for Z. An important
property of UC is composability: if a system Π securely implements F , and
a different system Π ′∥F securely implements F ′ (we say that “Π ′ securely
implements F ′ in F -hybrid model”), then Π ′∥Π also securely implements F ′.

2.3 Building Blocks

Definition 2 (Signature scheme). Sig consists of three algorithms: key gener-
ation algorithm KGen that on invocation generates a new keypair (pk, sk), signing
algorithm Sign that on inputs ⟨sk, M⟩ returns a signature σ on the message M ,
and the verification algorithm Ver that on inputs ⟨pk, M, σ⟩ either accepts or
rejects given signature.

Definition 3 (Signature correctness). A signature scheme is correct if
Ver(pk, M, Sign(sk, M)) always accepts, given that (pk, sk) have been output by
KGen().

Definition 4 (UF-CMA security). A signature scheme is universally un-
forgeable under adaptive chosen-message attacks (UF-CMA) if an adver-
sary with pk and with access to a signing oracle Sign(sk, ·) has only a negligible
chance of producing a message-signature pair (M, σ), such that Ver(pk, M, σ)
accepts, but M was not queried to the signing oracle.

Definition 5 ((ℓ, s)-safe prime). A prime number p is an (ℓ, s)-safe prime,
if p = 2ap′

1 . . . p′
k + 1, where p′

i > s are prime numbers, and 1 ≤ a ≤ ℓ.

Definition 6 (Multi-prime RSA [7, 11]). RSA signature scheme defined by
v ≥ 3 prime numbers is called multi-prime RSA. It consists of the following
three algorithms: 1–3.

The underlying scheme in Smart-ID/SplitKey takes as a parameter v = 4 (we
shall refer to it as 4RSASplit scheme). As the verification algorithm is independent
of the number of primes, this RSA variant is compatible with the usual, wide-
spread RSA instances.

Definition 7 (ECDSA [44]). ECDSA is defined over an elliptic curve group G
of order q with generator point G. The group G is defined by an elliptic curve over
the finite field Fp. Additionally, a hash function H is fixed as H : {0, 1}∗ → G.
ECDSA consists of the following three algorithms 4–6.

Random Oracle Model (ROM) is used to simulate the behavior of hash
functions in our protocol [46]. To represent the access of random oracle to several
parties properly, we use Restricted Programmable Observable Global Random
Oracle model introduced by Camenisch [47]. The corresponding functionality
F rpoRO is presented in Figure 2.3.

6 Authors Suppressed Due to Excessive Length

Algorithm 1: RSA KGen(v, λ)
1. Sample randomly picks v distinct prime numbers p1, . . . , pv of size determined by

the desired security level λ.
2. Calculate N = p1 · · · pv and ϕ(N), where ϕ(·) is Euler’s totient function.
3. Pick a (small) integer e such that gcd(ϕ(N), e) = 1 and compute d = e−1

(mod ϕ(N)),
4. Output sk = ⟨N, d⟩, pk = ⟨N, e⟩.

Algorithm 2: RSA Sign(sk, M)
1. Calculate σ = H(M)d mod N , where H : {0, 1}∗ → ZN is a suitable padding

scheme [45].
2. Output the signature σ

Algorithm 3: RSA Ver(pk, M, σ)
1. Check whether σe ≡ H(M) (mod N).
2. Output 1, if verification succeeds, otherwise output 0

Algorithm 4: ECDSA KGen(G, G, q)
1. Sample randomly a private key x← Zq.
2. Calculate Q = x ·G.
3. Output sk = ⟨G, q, x⟩, pk = ⟨Q, G, q⟩.

Algorithm 5: ECDSA Sign(sk, M)
1. Sample randomly an ephemeral key k ← Zq and compute a point R = k ·G.
2. Calculate r = rx mod q, where rx is the x-coordinate of the point R.
3. Calculate s = k−1(H(M) + r · x) mod q.
4. Output a signature σ = ⟨r, s⟩.

Algorithm 6: ECDSA Ver(pk, M, σ)
1. Calculate v = s−1 mod q.
2. Calculate u1 = H(M) · v mod q and u2 = r · v mod q.
3. Calculate a point R′ = u1 ·G + u2 ·Q.
4. Verify that r′

x mod q=r, where r′
x is a x-coordinate of the point R′.

5. Output 1, if verification succeeds, otherwise output 0.

Universally Composable Server-Supported Signatures for Smartphones 7

F rpoRO: Let HT be the hash table that is used to store queries to the oracle. Let prog
be a list of programmed values in the oracle. Both are initially empty. The size of the
oracle output is ℓ.
Hash: Upon receiving input (hash, sid, m), from a party P :

– If there is a record (m, h′) ∈ HT for some h′, set h← h′.
– Otherwise, sample random h′ ← {0, 1}ℓ and create a record (m, h′) ∈ HT, set

h← h′.
– If this query is made by the adversary S or if sid does not correspond to a session,

then add (sid, m, h) to the list of illegitimate queries Qsid of a session sid.
– Output (hash-response, sid, m, h) to party P .

Observe: Upon receiving input (observe, sid) from the adversary S:

– If Qsid does not exist, then set Qsid = ⊥.
– Output (observed-list,Qsid).

Program: Upon receiving (program-RO, m, h) s.t. h ∈ {0, 1}ℓ from the adversary S:

– If ∃h′ ∈ {0, 1}ℓ s.t. (m, h′) ∈ HT and h ̸= h′, ignore this query.
– Create a record (m, h) ∈ HT and set an entry of m in list prog.
– Output (program-confirmed).

IsProgrammed: Upon receiving (is-programmed, sid, m) from a party P :

– If sid does not correspond to current session, ignore this query.
– If m ∈ prog, set b = 1, else b = 0.
– Output (is-programmed, b)

Fig. 1: F rpoRO, ideal functionality for Restricted Programmable Observable Global
Random Oracle (rpGRO)

Zero-knowledge proof (ZKP) is a protocol defined between two parties:
prover and verifier. In this protocol prover aims to convince verifier that they
know some value w, such that the relation R(x, w) holds. We could instantiate
ZKP as a Σ-protocol which is a three message protocol for a binary relation
R (Definition 8). We need NIZKP of knowledge of discrete logarithm for our
ECDSA server-supported protocol so the parties could prove the possession
of their secret shares. The general approach to construct NIZKP is by using
Schnorr identification scheme [48] and applying Fiat-Shamir transform [49] to
make it non-interactive. However, Extract(·) algorithm cannot be straightforwardly
instantiated for Schnorr-based proofs in the UC. The main reason is the rewinding
requirement which cannot be done in UC-model security proof. Lysyanskaya and
Rosenbloom [50] have shown how to instantiate NIZKP in the UC model using
Fischlin transform [51] to obtain extractable and simulatable NIZKPs. We follow
their approach and present functionality FNIZKP (Figure 2.3). One could debate
the usage of Fischlin transform incurs additional costs to the protocol, but as

8 Authors Suppressed Due to Excessive Length

recently pointed out by Chen and Lindell [52] those costs are unnoticeable in
practical applications.

Definition 8. [Σ-protocol [50]] A Σ-protocol for a relation R and a protocol
template τ = (Glob-Setup, Commit, Challenge, Respond, Decision) is a tuple of
efficient procedures ΣR,τ = (Setup, Prove, Verify, Sim-Setup, Sim-Prove, Extract)
defined as:

– Glob-Setup(1λ) → ppm: Upon receiving a security parameter 1λ, invoke
Setup(1λ) to obtain the public parameters ppm.

– Commit(ppm, x, w)→ comm: Prover sends to a verifier message comm.
– Challenge(ppm, x, comm)→ chall: Verifier sends to prover random ℓ-bit string

chall.
– Response(ppm, x, w, comm, chall) → resp: Prover sends to a verifier a reply

message resp.
– Decision(ppm, x, comm, chall, resp) → {0, 1}: Verifier decides whether to ac-

cept (output a 1) or reject (output a 0) based on the input (ppm, x, comm, chall, resp).
– Setup(1λ)→ ppm: Upon receiving a security parameter, generate a set public

parameters ppm which includes the challenge length ℓ.
– Prove((ppm, x, w), (ppm, x)) → π: Upon receiving inputs from a prover

(ppm, x, w) and a verifier (ppm, x), run Commit, Challenge, Respond and out-
put π = (comm, chall, resp).

– Verify(ppm, x, π)→ {0, 1}: Upon receiving a proof π for a statement x, run
Decision to output {0, 1}.

– Sim-Setup(1λ) → (ppm, z): Generate parameters ppm and simulation trap-
door z.

– Sim-Prove(ppm, z, x, chall)→ π: Upon receiving public parameters ppm, trap-
door z, statement x, challenge chall, produce a proof π = (comm, chall, resp).

– Extract(ppm, x, π, π′) → w : Given two proofs π = (comm, chall, resp) and
π′ = (comm, chall′, resp′) for a statement x such that Decision(x, π) = Decision(x, π′) =
1 and chall ̸= chall′, output a witness w.

For simplicity and convenience, we shall omit ppm parameter as a part of the
input.

Multiplicative-to-Additive (MtA) functionality is a protocol/functionality
defined between two parties which allows to transform their multiplicative shares
into corresponding additive shares. FMtA functionality (Figure 3) is a main
building block to achieve secure redistribution of an (EC)DSA ephemeral key
k between server and client. Doerner et al. [29] have shown a protocol that
securely realises FMtA in UC using oblivious transfer [53, 54]. Theoretically, this
functionality could be realised in UC using Paillier encryption [55], Castagnos-
Laguillaumie encryption [56] and Joye-Libert encryption [57]. We leave secure
realization of FMtA in UC for other primitives out of the scope of this paper.

Universally Composable Server-Supported Signatures for Smartphones 9

FNIZKP: Setup: Upon receiving (setup, sid) from a party P :

– If sid does not correspond to a session, ignore this query.
– Send (setup, sid) to adversary S.
– Upon receiving from adversary S the tuple

(algorithms, sid, Prove, Verify, Sim-Setup, Sim-Prove, Extract) with algorithm
descriptions, store this tuple.

Prove: Upon receiving (prove, sid, x, w) from a party P :

– If R(x, w) ̸= 1 or sid does not correspond to a session, ignore this query.
– Compute π using Sim-Setup and Sim-Prove algorithms.
– Run Verify(x, π). If it returns 1, record and output the message (proof, sid, x, π).

Otherwise, output (fail).

Verify: Upon receiving (verify, sid, x, π) from a party P :

– If sid does not correspond to a session, ignore this query.
– If Verify(x, π) = 0, output (verification, sid, x, π, 0).
– Otherwise if (proof, sid, x, π) is already stored, output (verification, sid, x, π, 1).
– Otherwise, run Extract to compute w. If R(x, w) = 1, output (verification, sid, x, π, 1).

If R(x, w) = 0, output (fail).

Fig. 2: FNIZKP, ideal functionality for non-interactive zero-knowledge proof of
knowledge.

FMtA:
Init: On an input (init) from parties Pi and Pj :

– Send (request-init) to S.
– If respond from S is (init-success), store (init-complete) and output it to Pi and Pj .

Otherwise, return (init-fail) to Pi and Pj .

Multiply: Upon receiving (input, sid, a ∈ Zq) from Pi and (input, sid, b ∈ Zq) from Pj :

– Verify existence of init-complete in a memory and uniqueness of sid. If not, ignore
this query.

– Send (multiply-share, sid) to S.
– If respond from S is (multiply-fail), send ⊥ to Pi and to Pj . Otherwise, proceed.
– Sample random α← Zq

– Calculate β = a · b− α mod q
– Send (output, sid, α) to Pi and (output, sid, β) to Pj

Fig. 3: FMtA, ideal functionality for transforming multiplicative shares into
additive.

3 Server-Supported RSA Signatures

In this section, we describe a server-supported RSA signing protocol proposed
by Buldas et al. [6] with improved clone detection algorithm to mitigate Sarr’s

10 Authors Suppressed Due to Excessive Length

attack [8]. We define supporting genShare function (Alg. 7), distributed key
generation and signing protocols in Figures 4-5. We discuss security of this
protocol in Section 5.

The server-supported RSA protocol is run between two parties: client/phone
C and server S in the presence of adversary A. Buldas et al. [6] indicate that since
phone’s side of the protocol is executed on the smartphone, the cryptographic
material on the phone’s side may not be protected as strongly as on the server’s
side. Considering adversary may infect user’s phone with malware, there exists
a possibility of phone’s memory leakage. If it is done while the key generation
or signing process are running, adversary could learn unencrypted memory that
corresponds to the phone’s private key share. If the attack is executed when no
aforementioned protocols are running, adversary gets encrypted memory, that
corresponds to learning seed u. Clone detection mechanism aims to prevent
impersonation attacks when the phone’s memory gets leaked to the adversary.
In case of abort message ⊥ sent by the server during signing, the counter is
increased T = T + 1. After one successful signature generation, server resets the
counter to be T = 0. In any case, if T = T0, server will not participate in any
future communication with the phone.

3.1 Key Generation

For key generation, phone C [resp. server S] generates an RSA modulus n1 [resp.
n2] (of two primes), such that gcd(ϕ(n1), e) = gcd(ϕ(n2), e) = 1 for a previously
fixed public exponent e. They compute their private exponents as di = e−1

(mod ϕ(ni)). C also generates a random string u and uses it to compute a value
d′

1 ∈ Zn1 from PIN. S generates a bitstring w for clone detection purposes. Then
phone C sends n1 and d′′

1 ← (d1 − d′
1) mod ϕ(n1) to server S; the latter sends

back w and n. C verifies whether n1 | n. The public key is pk = (n1 · n2, e).
C stores n1, u, w, pk, deleting d1, d′

1, d′′
1 and the prime factors of n1. S stores

n1, n2, d′′
1 , d2, w and initializes the wrong PIN counter T ← 0 with the errors’

threshold T0.
The value d′

1 is generated using the genShare algorithm (Alg. 7) [6]. It expands
PIN into a longer value, using the randomness u that will be leaked if A obtains
phone’s encrypted memory. The algorithm calls a pseudorandom function Φ that
could be instantiated from a block cipher.

3.2 Signing

In order to sign a message M using a given PIN′, phone C computes d̂1 ←
genShare(u, PIN′, n1), σ′

1 ← H(M)d̂1 mod n1, and sends (σ1, w) to S. The latter
accepts such signing requests either from C or A. Server S checks that received
w is equal to stored bitstring w, halting if it is not the case. S generates a
bitstring w′ and sets it to be the new clone detection string w = w′. S computes
σ1 ← σ′

1 ·H(M)d′′
1 mod n1, σ2 ← H(M)d2 mod n2. Then it combines σ1 and σ2

to the signature σ using the Chinese Remainder Theorem, and checks that σ is a

Universally Composable Server-Supported Signatures for Smartphones 11

valid signature for M (using Algorithm 3). If σ is not a valid signature, then S
increments T and stops if it becomes larger than T0. Otherwise, S sets T := 0,
and sends (M, σ) back to the phone C (or adversary A).

Algorithm 7: genShare(u, PIN, size)

Inputs: The maximum size of the output size, password PIN and access to
pseudo-random function (PRF) Φ:

for j ∈ {0, 1, 2, . . . , 255} do
x← ΦPIN(u || j) ; // x has ⌈log2 size⌉ bits
if x < size then

return x;
end

end
return ⊥;

4 Ideal Functionalities for Server-Supported Signing

In this section, we define two ideal functionalities for server-supported signing:
FgSpl and FSpl

Sig . The first functionality FgSpl is generic functionality for server-
supported signing, which is instantiated for 2 parties for key generation/signing
and n parties for verification. The second functionality FSpl

Sig takes as a parameter
any UF-CMA secure signature scheme Sig. The functionality FSpl

Sig could be
instantiated only for 2 parties. We show relation between both functionalities in
Section 4.3

4.1 Ideal Functionality FgSpl

FgSpl is an ideal functionality for server-supported signatures with personal
identification number (PIN) handling and clone detection (Fig. 6). It is built
upon the ideal threshold signature functionality of Canetti et al. [39], running
with the ideal adversary S. Towards an environment Z, it offers a functionality
supporting an arbitrary number of parties, where two of them have been identified
as the phone and the server, capable of cooperatively producing signatures, while
all parties can verify the signatures.

The internal state of FgSpl contains a set of tuples (M, σ, b), recording all the
fixings that FgSpl has done with regards of some σ being (b = 1) or not being
(b = 0) a signature of M . This part of FgSpl is identical to ideal functionalities
modelling signatures.

Corruption level: The functionality has a non-trivial internal state, keeping
track of the corruption levels of parties, and the source of the last signing query
(which is necessary for modelling clone detection). The corruption level cS of the

12 Authors Suppressed Due to Excessive Length

KeyGen(λ):
Initialisation:

• Based on security level λ suitable values of ℓ and s are selected.
• Threshold of attempts T0 and RSA public exponent e values are defined as well.
• The length of H(·) output is defined to be 2λ.

Phone’s 1st message:

a. Phone C randomly samples two (ℓ, s)-safe primes p1, q1.
b. Phone C calculates modulus n1 = p1 · q1. If gcd(ϕ(n1), e) ̸= 1, C goes to step a.
c. Phone C calculates private exponent d1 = e−1 mod ϕ(n1).
d. C generates random bitstring u and get PIN from phone’s user. Then, C computes

phone’s share d′
1 = genShare(u, PIN, n1).

e. Phone C calculates server’s share d′′
1 = d1 − d′

1 mod ϕ(n1) and sends ⟨d′′
1 , n1⟩ to

server S.

Server’s 1st message:

a. Upon receiving ⟨d′′
1 , n1⟩, server S randomly samples two (ℓ, s)-safe primes p2, q2.

b. Server S calculates modulus n2 = p2 · q2. If gcd(ϕ(n2), e) ̸= 1, S goes to step a.
c. Server S calculates total modulus n = n1 · n2 and private exponent d2 = e−1

mod ϕ(n1).
d. S generates a random clone detection bitstring w and sends ⟨n, w⟩ to phone C.

Output:

• Phone C verifies that n1 | n. If failed, restart the protocol.
• Phone C stores n1, u, w, pk = ⟨n, e⟩ and securely deletes all other values. Server S

stores n1, n2, d′′
1 , d2, w, T0, pk = ⟨n, e⟩.

Corruptions during KeyGen:

• If adversary A corrupts C, it possesses values, d1, d′
1, d′′

1 , PIN, u, w, n1, n2.
• If adversary A corrupts S, it possesses values, d2, d′′

2 , w, n1, n2.

Fig. 4: Distributed key generation RSA server-supported protocol

server can be either “0” (uncorrupted) or “1” (corrupted) – in the latter case
we think of the adversary as being in full control of the server. The corruption
level cP of the phone is more fine-grained: here “0” stands for an uncorrupted
phone and “3” means that the adversary has full control over it. There are also
intermediate levels: cP = 1 means that the adversary has managed to learn
phone’s memory sometime between signing sessions, and cP = 2 means that
phone’s memory has leaked during a signing session. In the former case, the
memory has been “encrypted” with a (presumably low-entropy) PIN. In the latter
case, the adversary has learned the key material that the phone uses for signing.
In neither “1” or “2” cases, the adversary has full control over the phone that
would allow adversary to control the messages the phone sends out.

Universally Composable Server-Supported Signatures for Smartphones 13

Sign(M, sid):
Phone’s 1st message:

a. Phone C computes partial private exponent d′
1 = genShare(u, PIN′, n1) and partial

signature σ′
1 = H(M)d̂1 mod n1.

b. C sends to ⟨σ′
1, w⟩ to S.

Server’s 1st message:

a. If T = T0, then server S ignores any further communication with C.
b. Upon receiving ⟨σ′

1, w⟩, S checks if w sent in the current session by C coincides with
their stored copy of w. If not, it halts any further communication with C.

c. S calculates signatures σ1 = σ′
1 ·H(M)d′′

1 mod n1 and σ2 = H(M)d2 mod n2
d. S combines signatures via Chinese Remainder theorem as σ = CRT (σ1, σ2) and

verifies resulting signature σ. If Ver(σ, M, pk), S sends ⊥ and increase T = T + 1.
e. Server samples new cloning detection bitstring w′, updates it w = w′ and sends
⟨σ, w′⟩ to phone C.

Output:

• Phone C updates cloning detection bitstring w = w′ and verifies σ.
• Both parties output a signature with corresponding message ⟨σ, M⟩.

Corruptions during Sign:

• If adversary A corrupts S, it possesses values d2, d′′
2 , w, n1, n2.

• If adversary A get access to client’s encrypted memory, it possesses values u, w, n1.
• If adversary A get access to client’s unencrypted memory, it possesses values u, d′

1,
w, n1.

Fig. 5: Server-supported RSA signing protocol

Tracking origin of queries: The internal state of functionality contains the
bit blq for indicating whether the phone or the adversary made the last signing
query. Whenever the phone is corrupted, this bit is set to ⊥, allowing the next
signing query to come from either of them. Generally, corrupting the phone
means reading its memory, and this presumably includes the current value of the
bitstring used for clone detection.

Simulating PIN: The internal state of FgSpl contains the value of the correct
PIN and the counter T for wrong guesses by the adversary. It also contains the
range of the possible PINs, L and the allowed amount of guesses T0. We have to
explicitly model the PIN, because it is available to the environment (as opposed
to the bitstring used for clone detection). Guessing the PIN is an issue for phone
corruption level cP = 1, therefore it has to be modelled since the PIN may have
low entropy. If the adversary manages to guess the PIN, then it can decrypt the
memory. Hence, upon successful guess, we set corruption level as cP := 2.

Clone detection and offline-guessing attacks protection: Additionally,
the internal state of FgSpl contains the bits bOK and bsk. The first of them being

14 Authors Suppressed Due to Excessive Length

Functionality FgSpl:
On startup, set Ver ..= ⊥; cS ..= cP ..= T ..= 0; blq ..= bOK ..= bsk ..= 1.
Key Generation: On input (keygen, L, T0, PIN) from phone and (keygen, T0) from server:

– If Ver is already recorded or T0 values differ or PIN /∈ L, ignore this query.
– Send (keygen-init) to adversary S.
– Upon receiving (key, Ver) from adversary S, where Ver is verification algorithm,

store (Ver, L, PIN, T0) and send (key, Ver) to both phone and server.

Corrupt server: On input (corrupt-server) from S: set cS ..= 1 and send (corrupt-server)
to server.
Corrupt phone: On input (corrupt-phone, ℓ) from S, where ℓ ∈ {1, 2, 3}:

– If cP > ℓ, ignore this query.
– Set blq ..= ⊥. If pk ̸= ⊥ or ℓ = 3 then set cP ..= ℓ.
– Send (corrupt-phone, ℓ) to phone.

The following commands are ignored, if key generation has not taken place
Signing by phone and server: On input (sign, sid, M, PIN′) from the phone and (sign, sid)
from the server:

– If bOK = 0 or sid does not correspond to a session, ignore this query.
– Call process-pin(PIN′) and clone-check(1). If successful, compute σ using

request-sig(sid, M).
– If σ ̸= ⊥, output (sign-success, sid, M, σ) to phone, and (signature, sid, M, σ) to

server. Otherwise, return (sign-fail) to phone and server.

Signing by phone and adversary: On input (sign, sid, M, PIN′) from the phone and
(sign-server, sid) from S:

– If cS = 0 or sid does not correspond to a session, ignore this query.
– Call process-pin(PIN′) and then compute σ by querying request-sig(sid, M).
– If σ ̸= ⊥, output (sign-success, sid, M, σ) to phone. Otherwise, return (sign-fail) to

both phone and S.

Signing by adversary and server: On input (sign-phone, sid, M, PIN′) from S and (sign, sid)
from the server: if cP = 0 or bOK = 0 or sid does not correspond to a session, ignore
this query. Otherwise go to step cP ∈ {1, 2, 3}:

1. Check that PIN = PIN′. If true, then set T ..= 0, cP ..= 2 and go to step 2. Otherwise,
call clone-check(0) and return (sign-fail) to S and server.

2. Call clone-check(0). If successful, go to step 3.
3. Compute σ using request-sig(sid, M). If σ ̸= ⊥, output (signature, sid, M, σ) to

server. Otherwise, return (sign-fail) to both S and server.

Verification: On input (verify, sid, M, σ) from a party P :

– Define the bit b as follows:
• If (M, σ, b′) is recorded, then set b = b′.
• If (M, σ′, b′) record does not exist for any σ′ and bsk = 1, then set b = 0.
• Else, set b = Ver(M, σ).

– Record (M, σ, b) and output (is-verified, sid, M, σ, b) to party P .

Triggers:

– If cS = 1, cP ≥ 1, and Ver ̸= ⊥: Send (corrupt-pin, PIN) to S and set bsk ..= 0.
– If cP ≥ 2 and Ver ̸= ⊥: Send (corrupt-pin, PIN) to S.

Fig. 6: Ideal functionality for server-supported signing FgSpl

Universally Composable Server-Supported Signatures for Smartphones 15

Supporting Routines for functionality FgSpl:
process-pin(PIN′):

– If PIN = PIN′, set T ..= 0 and return T to the invoker. Otherwise, increment T .
– If T ≥ T0 then set bOK ..= 0.
– Return (sign-fail) to the two parties (out of phone, server, and S) that initiated the

signing.

clone-check(d):

– If blq = 1− d, set bOK ..= 0 and return (sign-fail) to the two parties that initiated
the signing.

– Otherwise, set blq ..= d and return it to the invoker.

request-sig(sid, M):

– Send (sign-init, sid, M) to S.
– Upon receiving (signature, sid, σ, M) from S, check whether (M, σ, 0) is already

stored. If true, restart request-sig(sid, M).
– Check if Ver(M, σ) = 1. If true, store (M, σ, 1) and return σ; otherwise output ⊥.

Fig. 7: Supporting routines/algorithms for ideal functionality FgSpl

Machine MPP:
MPP forwards any message from FgSpl unchanged to the phone.

Init: On input (init, L, T0, PIN) from the phone:

– Generate and store a random permutation π of the set {1, . . . , L}
– Submit (keygen, L, T0, π(PIN)) to FgSpl.

Sign: On input (sign, sid, M, PIN′) from the phone: submit the command
(sign, sid, M, π(PIN′)) to FgSpl

Fig. 8: Description of supporting PIN interception machine MPP

cleared indicates that clone-checking done by the server has found several copies
of phone’s memory, or the number of PIN guesses has been exceeded. The second
of them being set to 0 indicates that the adversary has corrupted the phone and
the server in way that adversary may assumed to know the private key. It could
be observed that cS = cP = 1 is sufficient for learning the private key: in this
case the adversary can try out all possible PINs and check its guess against the
public key pk and server’s share of the private key. Moreover, leaking phone’s
unencrypted memory tells adversary the PIN: in this case, the leak is assumed
to also include encrypted memory, thus all possible PINs can again be tried out.

In order to support the validity of the construction of FgSpl, we show that it
satisfies a number of properties analogous to those presented by Buldas et al. [6],
and that its clone detection system works:

16 Authors Suppressed Due to Excessive Length

Theorem 1. An adversary S and an environment Z running in parallel with
FgSpl, corrupting at most one of phone and server, are not able to create a
pair (M, σ), such that a query (verify, sid, M, σ) by some party would return
(is-verified, sid, M, σ, 1), but M was never submitted to FgSpl either by the phone
or by S.

Proof. Let us assume an adversary S produced a pair (M, σ), such that a query
(verify, sid, M, σ) by some party returns (is-verified, sid, M, σ, 1). According to
the definition FgSpl, verification command returns b = 1 in two cases:

1. If a pair (M, σ) was produced and recorded as a response to signing command
by ideal functionality FgSpl.

2. If bsk = 0 and adversary recorded a pair (M, σ) such that Ver(σ, M) = 1.

The first case implies that pair was not produced by adversary S alone. Second
case implies that both parties are corrupted by adversary which contradicts given
assumption. Therefore, under given conditions adversary S cannot produce such
pair (M, σ).

Theorem 2. An adversary S and an environment Z, running in parallel with
MPP∥FgSpl, not corrupting the server, and corrupting the phone to at most level
1, have at most T0/L probability (where T0 and L are fixed during the initialization
of FgSpl) of creating a pair (M, σ), such that a query (verify, sid, M, σ) by some
party would return (is-verified, sid, M, σ, 1), but M was never submitted to FgSpl

by the phone.

Our second theorem defines security of the mechanisms limiting adversary’s
guesses of the PIN. Note that these mechanisms involve both the counter T
in Fig. 6, as well as the clone detection mechanism that is careful to reset
that counter. In order to state that theorem, we have to make sure that the
environment cannot communicate the PIN to the adversary through some direct
channel between them. Hence we are going to introduce the machineMPP whose
task is to permute the possible PINs that the phone submits to FgSpl. In this
way, the “real” PIN is not known by Z.

We let MPP be a machine that has an interface which allows it to be placed
between the phone (as part of Z) and the functionality FgSpl (or any protocol
implementing FgSpl). The machine MPP is defined in Figure 8.

Proof. Let us assume an adversary S produced a pair (M, σ), such that a query
(verify, sid, M, σ) by some party returns (verified, sid, M, σ, 1). According to the
definition FgSpl, verification command returns b = 1 in two cases:

1. If a pair (M, σ) was produced and recorded as a response to signing command
by ideal functionality FgSpl. In this case, S should have guessed PIN. S can
make PIN guessing attempts, when cP = 1 with each command, S can test
only one value of the PIN. When S submits wrong guess, FgSpl increments
counter T until it reaches T0 and FgSpl stops. The mechanisms for reducing
T without guessing the PIN are the following:

Universally Composable Server-Supported Signatures for Smartphones 17

– Increase cP, after which PIN is revealed to S and wrong guesses of PIN
are no longer tracked. We have presumed that this does not happen.

– Let the phone make a signing query. In this case, the clone detection
mechanism prevents any further guesses.

2. If bsk = 0 and adversary recorded a pair (M, σ) such that Ver(σ, M) = 1
during verification command.

First case implies that M was submitted to FgSpl by either phone or S, where
S could have submitted M to FgSpl with probability at most L/T0. Second
case implies that both parties are corrupted by adversary. Both of these cases
contradict with the given assumptions.

Theorem 3. Suppose that an adversary S and an environment Z are running
in parallel with FgSpl, not corrupting the server and corrupting the phone to at
most level 2. Suppose that S and Z cause FgSpl to be initialized, after which (not
necessarily immediately) they issue commands for Signing by phone and server,
and for Signing by phone and adversary (in either order, with any number of other
commands in between), such that between these two sets of commands there is
no command to corrupt the phone to level 3. Then, it is impossible for S and
Z to produce a pair (M, σ), such that a query (verify, sid, M, σ) by some party
would return (is-verified, sid, M, σ, 1), but M was not submitted for signing to
FgSpl before the second of the above command sets was issued.

Before providing a proof for Theorem 3, we also want to clarify on how clone
detection mechanism works. Buldas et al. [6] specified for their protocol that
the random string chosen for clone detection is generated by the phone. Sarr [8]
showed how this could give the adversary many attempts at guessing the PIN,
by resetting this string after (L − 1) tries to an old value. They proposed an
improvement, changing protocol to make server generate the clone detection
string. However, Sarr [8] did not provide adequate security property under any
model.

Our theorems state such property; in fact, a part of it appears in Thm. 2,
stating that the adversary only gets L tries. We also want to state that clone
detection is practical security measure even when phone’s unencrypted memory
has leaked, which is formalized by Theorem 3.

Proof. Let us assume an adversary S produced a pair (M, σ), such that a query
(verify, sid, M, σ) by some party returns (is-verified, sid, M, σ, 1). According to
the definition FgSpl, verification command returns b = 1 in two cases:

1. If a pair (M, σ) was produced and recorded as a response to signing command
by ideal functionality FgSpl.

2. If bsk = 0 and adversary recorded a pair (M, σ) such that Ver(σ, M) = 1
during the verification command.

First case implies that M was submitted to FgSpl by either phone or S. This
suggests that S could have submitted M to FgSpl only if phone has not issued
signing commands after S. It would mean that clone detection mechanism is

18 Authors Suppressed Due to Excessive Length

activated and S cannot issue signing commands anymore. Second case implies
that both parties are corrupted by adversary. Both of these cases contradict with
the given assumptions.

4.2 Ideal Functionality FSpl
Sig

Next, we define functionality FSpl
Sig (Figure 9) which is less general and more

similar to the ideal functionalities defined for threshold ECDSA protocols in the
literature [39, 42]. It is parameterized by a signature scheme Sig, and models
the distributed key and signature generations of that scheme. There are lot of
similarities between FgSpl and FSpl

Sig , including the corruption levels of the phone
and the server, the PIN checking and the clone detection mechanisms. Noteworthy
differences are in the generation of keys and signatures, where FSpl

Sig uses the
methods of Sig, instead of invoking the adversary S. We also merge the bit bOK
together with bsk into bOK. At the point where S has corrupted the phone and
the server so much that it should learn sk, it does actually learn sk.

The analogues of Theorems 1–3 can be stated for FSpl
Sig . With theorems 4–6,

we show that our ideal functionality FSpl
Sig has properties similar to FgSpl, correctly

capturing the security requirements that we set for server-supported signature
schemes:

Theorem 4. Let Sig be a signature scheme. If Sig is UF-CMA secure, then an
adversary S and an environment Z running in parallel with FSpl

Sig , corrupting at
most one of phone and server, have a negligible chance of creating a pair (M, σ)
such that Ver(pk, M, σ) accepts, but M was never submitted to FSpl

Sig either by the
phone of by S.

Proof. Assume the opposite. We construct a machine BSign(sk,·)(pk) that will
break the UF-CMA security of Sig. The machine B internally executes FSpl

Sig ∥Z∥S
except that

– Upon initialization, B does not make FSpl
Sig generate a keypair for signing and

verification. Instead, it uses its argument pk as the public key. There is no
private key sk available to B.

– Upon signature queries, instead of computing σ via Sign(sk, M), the machine
B submits M to its oracle and receives back σ.

As long as both the phone and the server have not been corrupted, the view
of Z∥S in an actual execution with FSpl

Sig is equal to their view when executing
inside BSign(sk,·)(pk). Hence there is non-negligible chance that Z∥S construct a
pair (M, σ), such that Ver(pk, M, σ) accepts, but M was never an argument to a
sign or sign-phone queries. But in this case, the definition of FSpl

Sig shows that M

was also not submitted to B’s signing oracle. Hence (M, σ) is a valid forgery.

Universally Composable Server-Supported Signatures for Smartphones 19

Functionality FSpl
Sig :

On startup, set pk = sk = ⊥, cS = cP = T = 0, blq = bOK = 1. All commands are
ignored if bOK = 0.
Key Generation: On input (keygen, L, T0, PIN) from the phone and command (keygen, T0)
from the server:

– if (pk, sk) are already defined, or the values T0 differ, or PIN ̸∈ {1, . . . , L}, then
ignore this query.

– Generate (pk, sk) by querying KGen() and send (keygen-start, pk) to S.
– If S returns (keygen-stop), then set bOK := 0 and send ⊥ to both phone and server.
– If S returns (keygen-ok), then store L, PIN, and T0, and send pk to both phone and

server.

Corrupt server: On input (corrupt-server) from S: set cS := 1. Send (corrupt-server) to
server.
Corrupting the phone: On input (corrupt-phone, ℓ) from S, where ℓ ∈ {1, 2, 3}:

– If cP > ℓ, ignore this query.
– Set blq := ⊥. If pk ̸= ⊥ or ℓ = 3 then set cP := ℓ.
– Send (corrupt-phone, ℓ) to phone.

The following commands are ignored, if initialization has not taken place
Signing by phone and server: On input (sign, sid, M, PIN′) from the phone and (sign, sid)
from the server:

– If sid does not correspond to a session, ignore this query.
– Call process-pin(PIN′) and clone-check(1). If successful, compute σ by calling

Sign(sk, M),
– Send (sign-success, sid, M, σ) to phone and (signature, sid, M, σ) to server.

Signing by phone and adversary: On input (sign, sid, M, PIN′) from the phone and
(sign-server, sid) from S:

– If cS = 0 or sid does not correspond to a session, ignore this query.
– Call process-pin(PIN′) and then compute σ by calling Sign(sk, M).
– Send (signature, sid, M, σ) to S and (sign-success, sid, M, σ) to phone.

Signing by adversary and server: On input (sign-phone, sid, M, PIN′) from S and (sign, sid)
from the server: if cP = 0 then ignore. Otherwise go to step cP ∈ {1, 2, 3}:

1. Check that PIN = PIN′. If this is the case then set T := 0, cP := 2 and go to step 2.
Otherwise, call clone-check(0) and return (sign-fail) to S and server.

2. Call clone-check(0). If successful, go to step 3.
3. Compute σ by calling Sign(sk, M). Send (sign-success, sid, M, σ) to S and

(signature, sid, M, σ) to server.

Subroutines:
process-pin(PIN′):

– If PIN = PIN′, set T ..= 0 and return T to the invoker. Otherwise, increment T .
– If T ≥ T0 then set bOK ..= 0.
– Return (sign-fail) to the two parties (out of phone, server, and S) that initiated the

signing.

clone-check(d):

– If blq = 1− d, set bOK ..= 0 and return (sign-fail) to the two parties that initiated
the signing.

– Otherwise, set blq ..= d and it return to the invoker.

Triggers:

– If cS = 1, cP ≥ 1, and Ver ̸= ⊥: Send (corrupt-all, PIN, sk) to S and put bOK := 0.
– If cP ≥ 2, and Ver ̸= ⊥: Send (corrupt-pin, PIN) to S.

Fig. 9: FSpl
Sig , ideal functionality for server-supported signing with scheme Sig

20 Authors Suppressed Due to Excessive Length

Theorem 5. Suppose that an adversary S and an environment Z running in
parallel with MPP∥FSpl

Sig , not corrupting the server and corrupting the phone
to at most level 1, have the probability p of producing a pair (M, σ) such that
Ver(pk, M, σ) accepts, but M was never submitted to FSpl

Sig by the phone. If p is
significantly greater than T0/L (where the values T0 and L are fixed during the
initialization of FSpl

Sig), then Sig is not UF-CMA secure.

Proof. We construct a machine BSign(sk,·)(pk) that will break the UF-CMA security
of Sig. The machine B executes MPP||FSpl

Sig ||Z||S internally, except:

– Upon initialisation, instead of generating keypair as defined in FSpl
Sig , use key

pk that was supplied as input to B. No sk gets generated by FSpl
Sig . Instead of

receiving phone-supplied PIN, FSpl
Sig receives and stores π(PIN) from MPP.

– Upon receiving signing command, instead of computing signature σ via
Sign(sk, M), it makes query to the signing oracle that B has access to and
use the obtained σ as the response to the signing command.

Suppose B produces a verifiable pair (M, σ), such that M was never submitted
to FSpl

Sig by the phone. In order to produce such pair via submitting M to FSpl
Sig by

S, it must guess the PIN. The guessing is enabled if cP = 1 and at each guess,
the adversary can test one possible value of the PIN. At each wrong guess, FSpl

Sig
increments the counter T of wrong guesses, and stops when it reaches T0. The
mechanisms for reducing T without guessing the PIN are the following:

– Increase cP, after which PIN is revealed to S and wrong guesses of PIN are
no longer tracked. We have presumed that this does not happen.

– Let the phone make a signing query. In this case, the clone detection mecha-
nism prevents any further guesses.

Hence the probability of B producing a verifiable pair (M, σ), where M was
submitted to FSpl

Sig by the adversary, is at most T0/L. The probability of M

being never submitted to the signing oracle is thus at least (p− T0/L), which is
non-negligible.

Theorem 6. Suppose that an adversary S and an environment Z are running
in parallel with FSpl

Sig , not corrupting the server and corrupting the phone to
at most level 2. Suppose that S and Z cause FSpl

Sig to be initialized (returning
public key pk), after which (not necessarily immediately) they issue commands
for Signing by phone and server, and for Signing by phone and adversary (in either
order, with any number of other commands in between), such that between these
two sets of commands there is no command to corrupt the phone. If S and Z
have non-negligible probability of producing a pair (M, σ), such that Ver(pk, M, σ)
accepts, but M was not submitted for signing to FSpl

Sig before the second of the
above command sets was issued, then Sig is not UF-CMA secure.

Universally Composable Server-Supported Signatures for Smartphones 21

Proof. We construct a machine BSign(sk,·)(pk) that will break the UF-CMA security
of Sig. The machine B executes FSpl

Sig ||Z||S internally, except:

– Upon initialisation, instead of generating keypair as defined in FSpl
Sig , use key

pk that was supplied as input to B. No sk gets generated by FSpl
Sig . Instead of

receiving phone-supplied PIN, FSpl
Sig receives ans stores π(PIN) from MPP.

– Upon receiving signing command, instead of computing signature as σ =
Sign(sk, M), make query tho the signing oracle that B has access to and use
provided σ to respond signing command.

Suppose that B outputs a verifiable pair (M, σ). The message M may have
been submitted to the signing oracle, meaning that according to the construction
of B and FSpl

Sig it had to be submitted to FSpl
Sig by either the phone or by S. By

our assumption, there was non-negligible probability that M was either not
submitted to FSpl

Sig at all, or it was submitted after the command sets for “Signing
by phone and server” and “Signing by adversary and server” were issued by Z
and S (without intervening commands to increase the corruption level of the
phone). In the former case, B has broken the UF-CMA security of Sig. In the
latter case, clone detection mechanism was activated in FSpl

Sig and bOK was set to 0
which means that the adversary was unable to issue signing commands anymore.

4.3 Relation between FgSpl and FSpl
Sig

The functionalities FgSpl and FSpl
Sig are obviously related to each other. In fact,

the latter can be used to securely implement the former, using protocol ΠSpl,
given in Fig. 10. The protocol consists of straightforward forwarding of messages
between Z and FSpl

Sig . We argue that the specified handling of corruption requests
is reasonable. The adversary could express, how much it wants to corrupt the
phone and the server. And the processing is reasonable, considering that the
protocol itself is “semi-ideal”, i.e. uses a complex ideal functionality.

Theorem 7. If the signature scheme Sig is UF-CMA secure, then protocol ΠSpl

securely implements FgSpl in FSpl
Sig -hybrid model.

This theorem is proven in App. A.

5 Security of Buldas et al. [6] protocol in UC

In this section, we prove that improved server-supported RSA protocol securely
realises FgSpl in UC model. To achieve it, we model phone’s corruptions levels by
allowing the adversary to issue commands “Leak encrypted memory” and “Leak
unencrypted memory”. When issuing the first command, A receives the value u.
In the case of the second command, A receives the value d′

1, as well as u, if this
was not sent earlier, which also determines PIN.

22 Authors Suppressed Due to Excessive Length

Protocol ΠSpl:
ΠSpl offers an interface towards Z for n users: phone, server, and (n− 2) entities that
only verify signatures.
ΠSpl consists of the machine Mph, the machine Msrv, and (n− 2) machines Mgen. All
machines have connections between each other. Additionally, there is the machine FSpl

Sig
that is connected to Mph and Msrv.
Key generation:

– Machine Mph gets the input (keygen, sid, L, T0, PIN).
– Machine Msrv gets the input (keygen, sid, T0).
– Machine Mph and machine Msrv both call FSpl

Sig with the respective inputs. They
both get back pk. They both send Ver(pk, ·, ·) to all machines Mgen, where Ver is
the verification algorithm of Sig.

Signing: Note that it may happen that only one of Mph or Msrv gets the command
from the environment. The other party’s command may come from the adversary, and
it would go directly to FSpl

Sig . In this case, FSpl
Sig sends the signature back to A, too.

– Machine Mph gets the input (sign, sid, M, PIN) and Msrv gets the input (sign, sid)
from the environment.

– They get back (sign_ok, sid) or (sign_fail, sid) or (signature, sid, σ) and pass this
back to the environment.

Signature verification: On input (verify, sid, M, σ), run b← Ver(pk, M, σ) and return b.
Corruptions:

– The real adversary A sends the corruption requests (for either the phone or the
server) to FSpl

Sig .
– The latter forwards them either to Mph or Msrv, which forwards them to the

environment.
– The machines Mph and Msrv do not do anything further with these corruptions.

Fig. 10: Protocol ΠSpl securely implementing FgSpl in FSpl
Sig -hybrid model

Theorem 8. If RSA with padding function H is UF-CMA secure, then server-
supported RSA signing presented in Figures 4 and 5 is a secure implementation
of FgSpl.

Proof. Let us denote protocols from Figures 4 and 5 as subprotocols of a protocol
Π4RSASplit. We construct a simulator Sim, such that for any adversary A, no
environment cannot distinguish an execution with Π4RSASplit∥A from an execution
with FgSpl∥Sim∥A. Simulator state consists of ⟨cS, cP, n, n1, n2, d1, d′

1, d′′
1 , d2, u, w⟩.

Next we describe how simulator handles and responds to the commands from
FgSpl:

– On command “Corrupt server” from A before the key generation has started:
send (corrupt-server) to FgSpl.

– On command “Corrupt phone” from A before the key generation has started:
send (corrupt-phone, 3) to FgSpl.

Universally Composable Server-Supported Signatures for Smartphones 23

– On command (keygen-init) from FgSpl:
- If nobody is corrupted: simulate both phone and server. Perform an honest

run of the key generation protocol and initialise all the values n, n1, n2, d1, d′
1, d′′

1 , d2, u, w.
The real protocol execution is identical in this case to the simulated one,
since all values are generated in the same way as in the real protocol.

- If the phone is corrupted: simulate the server protocol execution. Generate
RSA modulus n2, compute private exponent d2 = e−1 mod ϕ(n2). Upon
receiving ⟨n1, d′′

1⟩ from A, compute n = n1 · n2, sample clone detection
bitstring w ← {0, 1}∗ and send ⟨n, w⟩ to A. Set Ver = VerRSA(pk, ·, ·)
and send (key, Ver) to FgSpl. Since corrupting phone during key generation
corresponds to full corruption cP = 3, receive also (corrupt-pin, PIN) from
FgSpl. The values d1, d′

1, u remain undefined.
The real protocol execution is identical to the simulated one, since all values
are generated in the same way as in the real protocol.

- If server is corrupted: simulate the phone protocol execution. Generate RSA
modulus n1, compute private d1 = e−1 mod ϕ(n1) and sample randomly
d′′

1 ← Zϕ(n1). Send ⟨d′′
1 , n1⟩ to A. Upon receiving ⟨n, w⟩ from A, check

whether n1 | n, set Ver = VerRSA(pk, ·, ·) and send (key, Ver) to FgSpl.
The values d′

1, d2, u, n2 remain undefined. The real protocol execution is
different from the simulated one in the way how d′′

1 is generated. In the
real protocol, d′′

1 = d1 − d′
1 (mod ϕ(n1)), where d1 = e−1 (mod ϕ(n1))

and d′
1 = genShare(PIN, u). In the simulated, d′′

1 ← Zϕ(n1). Since genShare
algorithm relies on a PRF which is a bijection, the distribution of the value
d′′

1 in both cases is identical.
- If both phone and server are corrupted, then the adversary A knows full

private key ⟨d, n⟩ and can create valid signatures to the messages of its
choice. Thus, our scheme does not provide any security guarantees under
this setup.

– On command “Corrupt server” from A: send (corrupt-server) to FgSpl and
proceed as follows:
- If keys have been generated and phone has not yet been corrupted, then

values d2, d′′
1 , w, n1, n2 have been initialised during key generation. Send

d2, d′′
1 , w, n1, n2 to A.

- If keys have been generated and phone has been corrupted, then d2 has
already been defined. Send d2 to the A.

– On command “Leak encrypted memory” from A: ignore this query if keys
have not yet been generated. Otherwise, send (corrupt-phone, 1) to FgSpl and
⟨w, n1⟩ to the A and proceed as:
- If server has not been corrupted: pick a random bitstring u← {0, 1}∗ and

send it to A.
- If server has been corrupted: receive PIN from FgSpl. Using previously ini-

tialised value d′
1 and PIN, compute u by inverting genShare. Send u to the

A.
– On command “Leak unencrypted memory” from A: ignore this query if keys

have not yet been generated. Otherwise, send (corrupt-phone, 2) to FgSpl and
⟨w, n1⟩ to the A. Receive PIN from FgSpl and proceed as:

24 Authors Suppressed Due to Excessive Length

- If server has not been corrupted: pick a random bitstring u, unless it was
already initialised during “Leak encrypted memory”. Compute d′

1 from PIN
and u using genShare and send ⟨d′

1, u⟩ to A.
- If server has been corrupted: using previously initialised d′

1 and PIN com-
pute u by inverting genShare. Send ⟨d′

1, u⟩ to the A.
– On command “Corrupt phone” from A: send (corrupt-phone, 3) to FgSpl. If

keys have been generated, proceed in the same way as when responding to
“Leak unencrypted memory” command.

– On command “Signing by phone and server”: simulate both phone and server,
since nobody is corrupted. Perform an honest run of the signing protocol.
When signature σ gets initialised, send command (signature, sid, M, σ) to
FgSpl.
The real protocol execution is identical to the simulated one, since all values
are generated in the same way as in the real protocol.

– On command “Signing by phone and adversary”: simulate phone’s protocol ex-
ecution. Send (sign-server, sid) to FgSpl and get (sign-init, sid, M) as response.
Calculate signature σ′ = H(M)d1−d′′

1 mod n1 and send ⟨σ′, w⟩ to A. Upon
receiving (σ, w) from A, send command (signature, sid, M, σ) to FgSpl.
The real protocol execution is only different from the simulated one in the way
how σ′ is calculated. In real protocol signature is calculated as σ′ = (M)d′

1

mod n1, where d′
1 = genShare(PIN, u). In simulated protocol – σ′ = (M)d−d′′

1

mod n1. As discussed above, since genShare is a bijection, distribution of
d′

1 in the real protocol is identical to d − d′′
1 in the simulated. Therefore,

distribution of σ′ is identical in both cases as well.
– On command “Signing by adversary and server”: simulate server’s protocol

execution:
- If encrypted memory is leaked (cP = 1), simulator has already initialised

bitstring’s u value. With the first message from A, receive (σ′
1, w) where

σ′
1 = H(M)d′

1 mod n1. Having u, test through all possible PIN ∈ L to find
PIN′ that produces σ′

1 from d′
1 = genShare(u, PIN). Set PIN′ = PIN and

send command (sign, sid, M, PIN′) to FgSpl.
- If unencrypted memory is leaked cP = 2, simulator has already ini-

tialised value u and knows PIN. Set PIN′ = PIN and send command
(sign, sid, M, PIN′) to FgSpl.

- If phone is fully corrupted cP = 3, simulator already knows PIN. Set
PIN′ = PIN and send command (sign, sid, M, PIN′) to FgSpl.

Upon command (sign-init, sid, M) from FgSpl, receive (σ′
1, w) from A. Com-

pute σ1 = σ′
1 · H(M)d′′

1 mod n1 and σ2 = H(M)d2 mod n2. Combine σ1
and σ2 to the final signature σ using Chinese Remainder Theorem. Verify σ,
if it is correct, send command (signature, sid, M, σ) to FgSpl.
The real protocol execution is identical to the simulated one, since all values
are generated in the same way as in the real protocol.

– On command “Verification”: signature verification is run which does not
involve the simulator.
However, we have to argue that the real protocol (that always executes
Ver(pk, M, σ) at this point) returns the same verification outcomes as the

Universally Composable Server-Supported Signatures for Smartphones 25

ideal functionality (that also uses a table of verification results). We see that
due to internal logic of FgSpl, the only possible deviation is the real protocol
returning 1 for some (M, σ), while the ideal functionality returns 0 because
no (M, σ′, b) has been recorded for any σ′, b and, moreover, bsk = 1. This
corresponds to the construction of (M, σ) without M being an argument to
some signing query, and without leaking the private key.

This defines the simulator. We see that the composition of the ideal function-
ality FgSpl and the simulator Sim runs identically to the real protocol Π4RSASplit

from the point of view of the composition of the environment Z and the adversary
A, except for the “Verification” commands, where the first may return 0 to Z
while the second returns 1.

We now show that there exist no Z and A that can distinguish FgSpl∥Sim
from Π4RSASplit. Indeed, if there were such Z and A, then we can build another
adversary B that receives as an input a bi-prime RSA public key pk and a signing
oracle Sign(sk, ·), and breaks the UF-CMA security of RSA. The adversary B
first guesses whether A is going to leave the phone or the server uncorrupted;
this guess is correct with probability at least 1

2 . It then executes the composition
FgSpl∥Z∥Sim∥A with the following modifications:

– During the key generation, B uses pk as the public key share of the to-be-
left-uncorrupted party, generating the values of the public key share of the
other party.

– When a signature to a message M is requested by FgSpl from Sim, B uses
both the signing oracle, and the public key share of the to-be-corrupted party
to construct that signature, following the construction in the proof of either
Theorem 2 or Theorem 3 from Buldas et al [6].

– If Z makes a verification query (M, σ) to FgSpl, then check whether it
constitutes a forgery in the 4RSASplit scheme. In this case, σ mod n′, where
n′ is the RSA modulus in the public key pk, also constitutes a forged signature
of M in RSA scheme, with respect to the key pk. If the forgeries for 4RSASplit
occur with non-negligible probability, then B successfully breaks the security
of RSA.

We have seen that the real protocol execution is identical to the simulated
one (or, for verification results, at most indistinguishably different), since all
values are generated in the same way as in the real protocol. As a result, we see
that the views of corrupted phone and server respectively are indistinguishable
in the simulation from the real execution.

26 Authors Suppressed Due to Excessive Length

6 Server-supported ECDSA

In this section, we present a server-supported ECDSA-based protocol between
phone and server. We present more illustrative version of key generation and
signing protocols in Appendix B.

6.1 Setup

The group G parameters, generator G and and group order q are predefined to
provide security level λ. Hash functions H0, H1, H2 are secure implementations
of F rpoRO with output length 2λ. Parameters for FMtA and FNIZKP for both phone
and server are initialised.

6.2 Key Generation

The phone (client) C starts with generating their share of the secret key x1,
computing corresponding public key share Q1 and producing πx1 , a proof of
knowledge of x1. Phone’s next step consists of re-sharing x1 into x′

1 (that is
derived from PIN) and x′′

1 = x1 − x′
1 (that will be stored on the server side),

which is needed to ensure that the adversary cannot perform offline guessing
attacks on user’s PIN code. Phone receives user-chosen code PIN and derives
key share x′

1 using Algorithm 7 with PIN and a randomly generated bitstring
u as input. Phone proceeds by computing corresponding public key share Q′

1
and producing πx′

1
, a proof of knowledge of x′

1. With the first message, phone
commits to values cKG = ⟨H1(Q1, Q′

1, x′′, πx1 , πx′
1
)⟩.

The server S generates its share of the secret key x2, public key Q2 and
produces πx2 , a proof of knowledge of x2. The server proceeds with generating
clone detection string w. The phone is supposed to send w later during the
signing protocol to show to the server that their device memory has not been
copied by the adversary. Server sends Q2, w, πx2 to the phone.

Phone verifies proof πx2 and sends opening to the commitment cKG. Upon
receiving opening, server verifies commitment, proofs and that the relation
between public key shares holds. Server creates counter T that is needed to track
number of incorrect PIN guesses made by the phone.

Finally, both phone and server calculate final public key Q. phone stores
only Q, u, w values and must securely delete all the remaining values received
or generated during the key generation protocol. This is needed to hide values
that adversary can compare their PIN guess against and prevent offline guessing
attacks. The formal description of distributed key generation is presented in the
Figure 11.

Universally Composable Server-Supported Signatures for Smartphones 27

KeyGen(λ):
Initialisation:

a. Based on the given security level λ, generator G and order q is chosen to form a
group G.

b. Threshold of attempts T0 is defined.
c. Based on the given security level λ, the parameters for FMtA and FNIZKP are initialised

for both phone C and server S.
d. The length of H0(·),H1(·),H2(·) output is defined to be 2λ.

Phone’s 1st message:

a. The phone C generates a random key share x1 ← Zq, calculates a public key share
Q1 = x1 ·G and a proof πx1 = FNIZKP(prove, Q1, x1).

b. C takes PIN chosen by the user, generates a random bitstring u← {0, 1}128, calculates
x′

1 = genShare(u, PIN, q) and x′′
1 = x1 − x′

1 mod q.
c. C calculates Q′

1 = x′
1 ·G and a proof πx′

1
= FNIZKP(prove, Q′

1, x′
1).

d. C sends cKG = H1(Q1, Q′
1, x′′

1 , πx1 , πx′
1
) to server S.

Server’s 1st message:

a. The server S generates a random key share x2 ← Zq, calculates a public key share
Q2 = x2 ·G and a proof πx2 = FNIZKP(prove, Q2, x2).

b. S generates a random bitstring w ← {0, 1}∗ for the clone detection mechanism.
c. S sends ⟨Q2, πx2 , w⟩ to C.

Phones’s 2nd message:

a. Upon receiving ⟨Q2, πx2 , w⟩, if FNIZKP(verify, Q2, πx2) = 0, C sends ⊥.
b. Otherwise, C sends ⟨Q1, Q′

1, x′′
1 , πx1 , πx′

1
⟩.

Server’s 2nd message:

a. S verifies whether cKG
?= H1(Q1, Q′

1, x′′
1 , πx1 , πx′

1
), whether FNIZKP(verify, Q1, πx1) ?=

0 and FNIZKP(verify, Q′
1, πx′

1
) ?= 0, and also verifies that Q′

1 + x′′
1 ·G = Q1 holds. If

any check failed, then S sends ⊥.
b. Otherwise, S sets counter T = T0.

Output:

a. C calculates resulting public key Q = Q1 + Q2, stores ⟨Q, u, w⟩ and securely deletes
all remaining values received or generated during the key generation protocol.

b. S calculates Q = Q1 + Q2 and stores ⟨Q, Q1, Q2, Q′
1, x′′

1 , x2, w, T ⟩.

Corruptions during KeyGen:

• If adversary A corrupts C, it possesses values x1, x′
1, x′′

1 , Q1, Q2, u, w.
• If adversary A corrupts S, it possesses values x2, x′′

1 , Q1, Q2, w.

Fig. 11: Distributed key generation ECDSA server-supported protocol

28 Authors Suppressed Due to Excessive Length

Sign(M, sid)
Phone’s 1st message:

1. The phone C generates a random nonce k1 ← Zq, calculates R1 = k1 · G and a
proof πk1 = FNIZKP(prove, R1, k1).

2. Upon receiving PIN from a user, C restores secret key share x′
1 = genShare(u, PIN, q).

3. C calculates public key share Q′
1 = x′

1 ·G and a proof πx′
1

= FNIZKP(prove, Q′
1, x′

1).
4. C sends ⟨csig = H2(R1, w, M, πx′

1
, πk1), πx′

1
, w⟩ to S, where M is a message to be

signed.

Authenticating phone:

1. The server S authenticates the phone C based on response from FNIZKP:
– If FNIZKP(verify, Q′

1, πx′
1
) = 1, C is authenticated.

– Otherwise, S sends ⟨Wrong password,⊥⟩ and sets T = T − 1.
2. Simultaneously, S checks if w sent in the current session by C coincides with their

stored copy of w. If not, they halt any further communication with C.

Invoking FMtA:

1. S generates x∗
2 ← Zq and calculates Q∗

2 = x∗
2 ·G.

2. S and C invoke FMtA functionality with inputs x∗
2 and k1. They receive corresponding

output shares tc and ts.

Server’s 1st message:

1. S generates a masking value y ← Zq and calculates hid = ts + x∗
2 · y − (x2 + x′′

1)
mod q.

2. S generates a random nonce k2 ← Zq, calculates R2 = k2 · G and a proof πk2 =
FNIZKP(prove, R2, k2).

3. S sends ⟨R2, Q∗
2, y, hid, πk2⟩ to C.

Phone’s 2nd message:

1. C verifies that (tc + hid) ·G = (y + k1) ·Q∗
2 − (Q−Q′

1) and, if relation does not
hold, C sends ⊥.

2. If FNIZKP(verify, Rk2 , πk2) = 0, then C sends ⊥.
3. Otherwise, C calculates R = (y + k1) · R2 and sets r = rx mod q such that

R = (rx, ry).
4. C calculates x∗

1 = x′
1 − (tc + hid) mod q.

5. C calculates partial signature s1 = (k1 + y)−1(H0(M) + rx∗
1) mod q and proof

πk1 = FNIZKP(prove, R1, k1).
6. C sends ⟨R1, s1, M, πk1⟩ to S.

Output:

1. S verifies that csig = H2(R1, w, M, πx′
1
, πk1) and if relation does not hold S sends

⊥.
2. If FNIZKP(verify, R1, πk1) = 0, S sends ⊥.
3. Otherwise, S calculates R = k2 ·R1 + k2 · y ·G and assigns r = rx mod q such that

R = (rx, ry).
4. S calculates signature value s = k−1

2 (s1 + r ·x∗
2) mod q and verifies signature ⟨r, s⟩.

If verification failed, S sends ⊥.
5. S generates new clone detection bitstring w′ ← {0, 1}∗

6. S sends resulting signature ⟨r, s⟩ and w′ to C.
7. C verifies ⟨r, s⟩ and sets w = w′.

Corruptions during Sign:

• If adversary A corrupts S, it possesses values x2, x′′
1 , Q1, Q2, w.

• If adversary A get access to client’s encrypted memory, it possesses values u, w
• If adversary A get access to client’s unencrypted memory, it possesses values x′

1, u, w

Fig. 12: Server-supported ECDSA signing protocol

Universally Composable Server-Supported Signatures for Smartphones 29

6.3 Signing

With the first message of the signing protocol phone authenticates to the server by
sending proof of knowledge of x′

1, secret key share derived from the user-supplied
PIN. Additionally, with the first message, phone sends w that was stored from the
previous signing query. In case of abort message ⊥ sent by the server, the counter
is increased T = T + 1. After one successful signature generation, server resets
T = 0. In any case, if T = T0 or w sent by phone does not correspond to the
value on server’s side, server does not participate in any future communication
with the phone.

Next, the phone and server run FMtA with inputs k1 and x∗
2 to receive

correlated values tc on the phone side and ts on the server side such that
tc + ts = k1 · x∗

2. Server proceeds with calculating values for consistency check
by generating y, computing hid and sending both values to the phone. Phone
checks consistency by verifying that (tc + hid) ·G = (y + k1) ·Q∗

2 − (Q−Q′
1). If

consistency check passes and proof of knowledge of k2 verifies, phone calculates
partial signature and sends it to the server with πk1 proof of knowledge of k1.

If commitment opening and proof πk1 verify, server computes final signature s
using partial signature s1 supplied by the phone. After verifying signature ⟨r, s⟩,
server generates new clone detection bitstring w′ and sends in to the phone. The
formal description of our signing protocol is presented in Figure 12.

6.4 Correctness

First, let us show correctness of the check done by the phone during signing in
step 5(a). By definition, Q = Q1 + Q2 = Q′

1 + x′′
1 · G + Q2, x1 = x′

1 + x′′
1 and

x∗
1 = x′

1 − (tc + hid). Additionally, by definition, hid = ts + x∗
2 · y− (x2 + x′′

1) and
tc + ts = k1 · x∗

2. Therefore:

(tc + hid) ·G = (y + k1) ·Q∗
2 − (Q−Q′

1)
(tc + ts + x∗

2 · y − (x2 + x′′
1) ·G = (y + k1) ·Q∗

2 − (Q2 + x′′
1 ·G)

(k1 · x∗
2 + x∗

2 · y − (x2 + x′′
1) ·G = (y + k1) · x∗

2 ·G− (x2 ·G + x′′
1 ·G)

((y + k1) · x∗
2 − x2 − x′′

1) ·G = (y + k1) · x∗
2 ·G− (x2 + x′′

1) ·G over Zq.

Now, let us show correctness of the key generation and signing parts of the
protocol:

x∗
1 = x′

1 − (tc + ts + x∗
2 · y − (x2 + x′′

1)).
x∗

1 = x′
1 − (k1 · x∗

2 + x∗
2 · y − (x2 + x′′

1)).
x = x′

1 + x′′
1 + x2 = x1 + x2 = x∗

1 + (k1 + y) · x∗
2 over Zq.

Let us define k = k2 · (k1 + y) and R = k ·G, then:

By the definition, s = k−1
2 (s1 + r · x∗

2).
Also, since s1 = (k1 + y)−1(H0(M) + rx∗

1), we have:
s = k−1

2 [(k1 + y)−1(H0(M) + rx∗
1) + rx∗

2] =
k−1

2 (k1 + y)−1[H0(M) + rx∗
1 + r(k1 + y) · x∗

2] =

30 Authors Suppressed Due to Excessive Length

k−1[H0(M) + r(x∗
1 + (k1 + y) · x∗

2)] =
k−1[H0(M) + r(x′

1 + x′′
1 + x2)] =

k−1(H0(M) + rx) over Zq

Therefore, we have a valid ECDSA signature that can be verified using
standard verification algorithm presented in Algorithm 6.

7 Security of server-supported ECDSA

In order to show universally composable security of our protocol, we define
a simulator Sim, such that for each adversary A attacking the protocol, the
environment Z cannot distinguish whether it is interacting with the real protocol
and the adversary A, or the ideal functionality F and the “ideal” adversary which
is the composition of A and Sim. The simulator works by translating messages
between the ideal functionality and the real adversary. We show that for all
sequences of inputs from Z and A, the real protocol proceeds in lock-step with the
composition of F and Sim, with the outputs at each step being indistinguishable.

Theorem 9. Server-supported ECDSA signing presented in Figures 11 and 12 se-
curely implements the functionality FSpl

ECDSA in the (FNIZKP,F rpoRO,FMtA)-hybrid
model with the presence of a malicious adaptive adversary.

Proof. Let Sig be ECDSA i.e. ECDSA algorithms (Alg. 4-6) are given as parameter
to FSpl

Sig . The internal state of the simulator contains the following values, all
with the same meaning as in the ideal functionality or in the real protocol. In
general, these values are initialized as ⊥, and most of them will only get a value
when a party has been corrupted. The state of the simulator consists of cP, cS,
pk, (Q1, Q′

1, Q′′
1 , Q2, x1, x′

1, x′′
1 , x2), u, w, bOK, inputs and outputs (or: internal

states) of FNIZKP,F rpoRO,FMtA.
Next we describe how simulator handles and responds to the commands from

FSpl
ECDSA:

– On command “Corrupt server” from A before the key generation has started:
send (corrupt-server) to FSpl

ECDSA.
– On command “Corrupt phone” from A before the key generation has started:

send (corrupt-phone, 3) to FSpl
ECDSA.

– On command (keygen-start, pk) from FSpl
ECDSA:

- If nobody is corrupted: let A know that the key generation is happening.
Simulate key generation protocol (only the presence of messages between
the phone and the server), allowing A to stop it. If A stops communication,
send (keygen-stop) to FSpl

ECDSA. If not stopped, then send message (keygen-ok)
to FSpl

ECDSA and pk to A.
- If the phone is corrupted: simulate the server protocol execution. Upon re-

ceiving (keygen-start, pk) from FSpl
Sig and cKG from A. Query (observe,A) to

F rpoRO and receive set of all queries QA by A. Find ⟨Q1, Q′
1, x′′

1 , πx1 , πx′
1
⟩,

Universally Composable Server-Supported Signatures for Smartphones 31

a preimage of cKG. Extract values x1, x′′
1 from proofs πx1 , πx′

1
by run-

ning Extract(Q1, πx1 ,QA) and Extract(Q′
1, πx′

1
,QA). From pk = ⟨Q, G, q⟩

and Q1, compute Q2 = Q − Q1 and simulate a proof πx2 by running
SimProve(Q2). Sample random bitstring w ← {0, 1}∗ and send ⟨Q2, πx2 , w⟩
to A. Upon receiving ⟨Q1, Q′

1, x′′
1 , πx1 , πx′

1
⟩ from A, send (keygen-ok) to

FSpl
ECDSA.

One of the differences between the real protocol and the simulation is in the
way how values Q2 and corresponding proof πx2 is generated. In the real
protocol, server calculates Q2 = x2 ·G where x2 ← Zq and corresponding
πx2 by querying FNIZKP. In the simulation, simulator computes Q2 = Q−Q1,
where Q is provided by FSpl

ECDSA and Q1 = x1 ·G using x1 received through
simulator running extraction algorithm. By the way of FSpl

ECDSA computing
the key Q, we see that the distribution of Q2 in both cases is identical —
it is uniform over G. Since simulator perfectly simulates the NIZKP, the
distribution of πx2 in both cases is also identical.
The other difference, the simulation could fail due to collision or if A has
never queried ⟨Q1, Q′

1, x′′
1 , πx1 , πx′

1
⟩ to F rpoRO.

- If the server is corrupted: simulate the phone protocol execution. Upon
receiving (keygen-start, pk) from FSpl

ECDSA, generate a random value cKG and
send it to A. Upon receipt of ⟨Q2, πx2 , w⟩, query (observe,A) to F rpoRO to
receive set of all queriesQA byA. Learn x2 by running Extract(Q2, πx2 ,QA).
Set Q1 = Q − Q2, pick random x′′ and define Q′

1 = Q1 − x′′ · G. Simu-
late proofs πx1 , πx′

1
by running SimProve(Q1) and SimProve(Q′

1). Query
(program-RO, ⟨Q1, Q′

1, x′′
1 , πx1 , πx′

1
⟩, cKG) to F rpoRO. Send ⟨Q1, Q′

1, x′′
1 , πx1 , πx′

1
⟩

to A and (keygen-ok) to FSpl
Sig .

The difference between the real protocol and the simulation is in the way
how values Q1, Q′

1 and corresponding proofs πx1 and πx′
1

are generated.
In the real protocol, Q1 = x1 · G where x1 ← Zq and in the simulation
Q1 = Q − Q2, where Q is provided by FSpl

ECDSA and Q2 = x2 · G using
x2 received through FNIZKP. By the way, how FSpl

ECDSA computes key Q,
we see that the distribution of Q1 in both cases is identical. In the real
protocol Q′

1 = x′
1 ·G, where x′

1 = genShare(u, PIN) and in the simulation
Q′

1 = Q1 − x′′
1 ·G with x′′

1 ← Zq. Since genShare relies on PRF which is a
bijection function, distribution of value Q′

1 in both cases is identical.
Since simulator perfectly simulates the NIZKP, the distribution of πx1

and πx′
1

in both cases is also identical. Additionally, there is a negligible
probability that programming random oracle fails, due to the collision or
the fact that the value (Q1, Q′

1, x′′
1 , πx1 , πx′

1
) has been queried to the FrpoRO

before.
- If both phone and the server are fully corrupted: the adversary A knows

full private key sk and can create valid signatures to the messages of its
choice. Thus, our scheme does not provide any security guarantees under
this setup.

– On command “Corrupt server” from A: send (corrupt-server) to FSpl
ECDSA and

proceed as follows:

32 Authors Suppressed Due to Excessive Length

- If the keys have not yet been generated, then do nothing more.
- If the keys have been generated, and the phone has not yet been corrupted,

then select random x′′
1 , x2, compute Q2 = x2 · G and Q′′

1 = x′′
1 · G. Set

Q1 = Q−Q2 and Q′
1 = Q1 −Q′′

1 . Send ⟨x′′
1 , x2, Q1, Q2, Q′

1⟩ to A.
- If the keys have been generated and the phone has been corrupted, then

the simulator just receives sk from FSpl
ECDSA. Since phone has been corrupted,

the values x1, x′
1, x′′

1 have already been selected. Define x2 = x− x1. Send
x2 to the A. Now the adversary knows the full private key sk and can create
valid signatures to the messages of its choice.

– On command “Leak encrypted memory” from A: ignore this query if keys
have not yet been generated. Send (corrupt-phone, 1) to FSpl

ECDSA, w to A and
proceed as follows:
- If the server has not been corrupted, then pick a random u and it to the
A.

- If the server has been corrupted, then the simulator just received sk and
PIN from FSpl

ECDSA. The corruption of the server means that the values x′′
1

and x2 have already been selected. Define x′
1 = x2 − x′′

1 and x1 = x− x2.
Compute u by inverting genShare() with given PIN and x′

1. Send u to the
A.

– On command “Leak unencrypted memory” from A: ignore this query if keys
have not yet been generated. Send (corrupt-phone, 2) to FSpl

ECDSA and get back
PIN. Send w to A and proceed as follows:
- If the server has not been corrupted, then pick u randomly, unless it has

already been picked during a “leak encrypted memory” command. Then
compute x′

1 from u and PIN, using genShare(). Send x′
1 and u to A.

- If the server has been corrupted, then there has been no “leak encrypted
memory” commands coming to the phone. We have already fixed the values
x′′

1 and x2; together with sk, we can compute x′
1. We use genShare in the

backward direction to find u from x′
1 and PIN. Send x′

1 and u to A. Now
the adversary knows the full private key sk = x2 + x′

1 + x′′
1 and can create

valid signatures to the messages of its choice. Thus, our scheme does not
provide any security guarantees under this setup.

– On command “Corrupt phone” from A: send (corrupt-phone, 3) to FSpl
ECDSA.

Proceed as follows:
- If the keys have not yet been generated, then do nothing more.
- If the keys have been generated, then proceed in the same way as when

responding to “leak encrypted memory” command.
– On command “Signing by phone and server”: simulate both phone and server,

since nobody is corrupted. Perform an honest run of the signing protocol.
When signature σ gets initialised, send command (signature, sid, M, σ) to
FSpl

ECDSA.
It is worth to mention the commands (sign-fail) or (sign-success) from FSpl

ECDSA
that indicate an unsuccessful or successful signing of a message. If both parties
are uncorrupted, then simulator plays the existence of messages between the
phone and the server to A. If one of the parties is corrupted, then simulator
has already been informed beforehand that signing is happening.

Universally Composable Server-Supported Signatures for Smartphones 33

– On command “Signing by phone and adversary”: simulate phone’s protocol
execution. Proceed as follows:
- Run SimProve(Q′

1) to simulate a proof πx′ .
- Sample random csig and send ⟨csig, w, πx′

1
⟩ to A.

- Interact with A on behalf of FMtA: receive x∗
2 as input share and output

randomly sampled value ts.
- Upon receiving ⟨R2, Q∗

2, y, hid, πk2⟩ from A, verify that hid = ts + x∗
2 − y ·

(x2 + x′′
1) mod q, where x2, x′′

1 are known to the simulator from the key
generation process.

- Send (sign-server, sid) to FSpl
ECDSA and get (signature, sid, M, σ) as response,

where σ = ⟨r, s⟩.
- Calculate a point R from values σ = ⟨r, s⟩. Query (observe,A) to F rpoRO and

receive set of all queries QA by A. Obtain k2 by Extract(R2, πk2 ,QA). Then
compute R1 = k−1

2 ·R−y ·G. Query (program-RO, ⟨R1, w, M, πx′
1
, πk1⟩, csig)

to F rpoRO.
- Compute s1 = k2 · s− x∗

2 · r and run SimProve(k1) to profuce a proof πk.
Send ⟨R1, s1, M, πx′

1
, πk1⟩ to A. Receive ⟨σ, w′ from A and set w = w′.

The difference between the real protocol execution and the simulation is in the
way how R1, s1 are generated. In the real protocol, R1 = k1 ·G, where k1 ← Zq

is sampled by phone. In simulated protocol, R1 = k−1
2 ·R− y ·G, where R is

received from FSpl
ECDSA as part of signature and ⟨y, k2⟩ are received from A. In

both cases, R1 follows uniform distribution over G. In the real protocol, phone
computes s1 = (k1 + y)−1(H0(M) + r · x∗

1) mod q. In simulated protocol,
s1 = k2 · s − x∗

2 · r. Since, we computed R1 = k−1
2 · R − y · G in simulated

protocol, it implies k1 = k−1
2 ·k−y → k1 +y = k−1

2 ·k → (k1 +y)−1 = k2 ·k−1.
Therefore, s1 = k2 ·s−x∗

2 ·r = k2 ·k−1(H(m)+rx)−x∗
2 ·r = (k1+y)−1 ·(H(m)+

rx)− x∗
2 · r. From correctness proof, we know x = x∗

1 + (k1 + y) · x∗
2, meaning

(x−x∗
1) ·(k1 +y)−1 = x∗

2. This gives us s1 = (k1 +y)−1 ·(H(m)+rx)−x∗
2 ·r =

(k1 + y)−1 · (H(m) + rx− r(x− x∗
1) = (k1 + y)−1(H0(M) + r · x∗

1) mod q,
which is the same value as generated in the real protocol. Additionally, there
is negligible probability that programming random oracle fails since the value
csig has been queried to the FrpoRO already or due to collision. Since simulator
perfectly simulates the NIZKPs, the distribution of produced proofs in both
cases is also identical.

– On command “Signing by adversary and server”: simulate server’s protocol
execution. Proceed as follows:
- Receive csig from A, query (observe,A) to F rpoRO to receive set of all queries
QA byA. Search to find pre-image of csig to obtain values ⟨R1, w, M, πx′

1
, πk1⟩.

- Obtain k1 by Extract(R1, πk1 ,QA).
- Interact with A on behalf of FMtA: receive k1 as input share and output

randomly sampled value tc.
- If only encrypted memory is leaked (cP = 1), simulator knows bitstring

u. Run Extract(Q′
1πx′

1
,QA) to get x′

1, then test through all possible PINs
∈ {1, . . . , L} to find PIN′ that produces x′

1 from u using genShare(). Pro-
ceed with making query (sign-phone, sid, M, PIN′) to the FSpl

ECDSA. If PIN′ is
correct, get back (sign-success, sid, M, σ), where σ = ⟨r, s⟩.

34 Authors Suppressed Due to Excessive Length

- If unencrypted memory is leaked (cP = 2), simulator knows additionally u
and PIN. Set PIN = PIN′ and proceed with making query (sign-phone, sid, M, PIN′)
to FSpl

ECDSA. Get back (sign-success, sid, M, σ), where σ = ⟨r, s⟩.
- If phone is fully corrupted, (cP = 2), simulator knows x′

1 and PIN. Set
PIN = PIN′ and proceed with making query (sign-success, sid, M, σ) to
FSpl

ECDSA. Get back (sign-success, sid, M, σ), where σ = ⟨r, s⟩.
- Sample random y ← Zq. From σ = ⟨r, s⟩ compute R2 = R · (y + k1)−1

and simulate proof πk2 corresponding to R2. Sample random hid← Zq and
compute Q∗

2 := (y + k1)−1 · [(tc + hid) ·G + Q + Q′
1]. Send R2, Q∗

2, y, hid, πk2

to A.
- Upon receiving ⟨R1, s1, M, πx′

1
, πk1⟩ from A, verify that s1 · (y ·G + R1) =

H(m) ·G + r · (x′
1 − tc − hid) ·G.

- Generate random w′ ←$ {0, 1}∗, set w = w′ and send ⟨r, s, w′⟩ to A.
The difference between the real protocol execution and simulator is in the
way how values R2, hid, Q∗

2 are generated. In the real protocol, R2 = k2 ·G
with k2 ← Zq and in the simulated version, R2 = R · (y + k1)−1 with R being
σ received from FSpl

ECDSA and y ← Zq. Therefore, in both cases, R2 follows
uniform distribution over G. In the real protocol, hid = ts + x∗

2 · y− (x2 + x′′
1)

mod q with y, x∗
2 ← Zq and ts is received from FMtA. In the simulated version,

hid← Zq. In both cases, hid should be consistent with check (tc + hid) ·G =
(y +k1) ·Q∗

2− (Q−Q′
1). If we put in Q∗

2 = (y +k1)−1 · ((tc +hid) ·G+Q+Q′
1),

we will get (y+k1)·(y+k1)−1 ·((tc+hid)·G+Q+Q′
1)−(Q−Q′

1) = (tc+hid)·G,
which means that the consistency check successfully passes for simulated
hid, Q∗

2. Since simulator perfectly simulates the NIZKP, the distribution
of produced proofs in both cases is also identical. Additionally, there is a
negligible probability that programming random oracle fails, due to the
collision or the fact that the value (R1, w, M, πx′

1
, πk1) has been queried to

the FrpoRO before.

We see that the simulator is able to simulate the replies to all the queries made
by the adversary, or by the environment. Hence our server-supported ECDSA
protocol securely UC-realizes the ideal functionality FSpl

ECDSA.

8 Conclusion

In this paper, we introduced the ideal functionalities FgSpl and FSpl
Sig , which

capture the security and functional properties of Smart-ID/SplitKey in general,
and for a chosen signature scheme Sig in particular; we have shown that FSpl

Sig
can be used to securely implement FgSpl, if Sig is a secure signature scheme. We
have shown that Buldas et al. [6] protocol and our proposed ECDSA protocol
securely realise FgSpl and FSpl

ECDSA correspondingly. The future work could be
showing other existing server-supported protocols or modified two-party protocols
for other signature schemes (i.e. EdDSA, BLS, ML-DSA) securely realize ideal
functionalities FgSpl and/or FSpl

Sig .

Universally Composable Server-Supported Signatures for Smartphones 35

Acknowledgments This paper is the result of the research project funded by
Estonian Research Council under the grant number PRG1780.

References

1. W. Diffie, M. Hellman, New directions in cryptography, IEEE Transactions on
Information Theory 22 (6) (1976) 644–654. doi:10.1109/TIT.1976.1055638.

2. Y. Desmedt, Society and group oriented cryptography: a new concept, in: C. Pomerance
(Ed.), Advances in Cryptology — CRYPTO ’87, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1988, pp. 120–127.

3. L. Brandão, R. Peralta, Nist first call for multi-party threshold schemes (2023).
4. L. Brandão, M. Davidson, A. Vassilev, Nist roadmap toward criteria for threshold

schemes for cryptographic primitives (2020).
5. P. Laud, J. Vakarjuk, A comparison-based methodology for the security assurance

of novel systems, in: S. K. Katsikas, F. Cuppens, C. Kalloniatis, J. Mylopoulos,
F. Pallas, J. Pohle, M. A. Sasse, H. Abie, S. Ranise, L. Verderame, E. Cambiaso,
J. M. Vidal, M. A. S. Monge, M. Albanese, B. Katt, S. Pirbhulal, A. Shukla (Eds.),
Computer Security. ESORICS 2022 International Workshops - CyberICPS 2022,
SECPRE 2022, SPOSE 2022, CPS4CIP 2022, CDT&SECOMANE 2022, EIS
2022, and SecAssure 2022, Copenhagen, Denmark, September 26-30, 2022, Revised
Selected Papers, Vol. 13785 of Lecture Notes in Computer Science, Springer, 2022, pp.
625–644. doi:10.1007/978-3-031-25460-4_36.

6. A. Buldas, A. Kalu, P. Laud, M. Oruaas, Server-supported rsa signatures for mobile
devices, in: Computer Security–ESORICS 2017: 22nd European Symposium on
Research in Computer Security, Oslo, Norway, September 11-15, 2017, Proceedings,
Part I, Springer, 2017, pp. 315–333.

7. J. Jonsson, B. Kaliski, Rfc3447: Public-key cryptography standards (pkcs) №1: Rsa
cryptography specifications version 2.1, Tech. rep., RFC Editor, USA (2003).

8. A. P. Sarr, Cryptanalysis and improvement of smart-id’s clone detection mechanism,
Cryptology ePrint Archive, Paper 2019/1412 (2019).
URL https://eprint.iacr.org/2019/1412

9. R. Canetti, Universally composable security: A new paradigm for cryptographic
protocols, in: Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, IEEE, 2001, pp. 136–145.

10. A. K. Lenstra, Key length. contribution to the handbook of information security
(2004).

11. M. J. Hinek, On the security of multi-prime rsa, Journal of Mathematical Cryptology
2 (2) (2008) 117–147.

12. P. Shor, Algorithms for quantum computation: discrete logarithms and factoring, in:
Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp.
124–134. doi:10.1109/SFCS.1994.365700.

13. D. Stebila, S. Fluhrer, S. Gueron, Hybrid key exchange in TLS 1.3, Internet-draft,
Internet Engineering Task Force (Sep. 2023).
URL https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/09/

14. N. Bindel, U. Herath, M. McKague, D. Stebila, Transitioning to a quantum-resistant
public key infrastructure, in: Post-Quantum Cryptography: 8th International Workshop,
PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings 8, Springer,
2017, pp. 384–405.

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1007/978-3-031-25460-4_36
https://eprint.iacr.org/2019/1412
https://eprint.iacr.org/2019/1412
https://doi.org/10.1109/SFCS.1994.365700
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/09/
https://datatracker.ietf.org/doc/draft-ietf-tls-hybrid-design/09/

36 Authors Suppressed Due to Excessive Length

15. A. A. Giron, R. Custódio, F. Rodríguez-Henríquez, Post-quantum hybrid key exchange:
a systematic mapping study, Journal of Cryptographic Engineering 13 (1) (2023)
71–88. doi:10.1007/s13389-022-00288-9.

16. D. Moody, Module-lattice-based digital signature standard, Tech. rep., National
Institute of Standards and Technology (2023). doi:10.6028/nist.fips.204.ipd.

17. D. Moody, Stateless hash-based digital signature standard, Tech. rep., National
Institute of Standards and Technology (2023). doi:10.6028/nist.fips.205.ipd.

18. T. Rabin, A simplified approach to threshold and proactive rsa, in: H. Krawczyk
(Ed.), Advances in Cryptology — CRYPTO ’98, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1998, pp. 89–104.

19. V. Shoup, Practical threshold signatures, in: B. Preneel (Ed.), Advances in Cryptology
— EUROCRYPT 2000, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000, pp.
207–220.

20. D. Boneh, M. Franklin, Efficient generation of shared rsa keys, J. ACM 48 (4) (2001)
702–722. doi:10.1145/502090.502094.
URL https://doi.org/10.1145/502090.502094

21. C. Hazay, G. L. Mikkelsen, T. Rabin, T. Toft, Efficient rsa key generation and
threshold paillier in the two-party setting, in: O. Dunkelman (Ed.), Topics in
Cryptology – CT-RSA 2012, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp.
313–331.

22. M. Chen, J. Doerner, Y. Kondi, E. Lee, S. Rosefield, A. Shelat, R. Cohen, Multiparty
generation of an rsa modulus, Journal of Cryptology 35 (2) (2022) 12. doi:
10.1007/s00145-021-09395-y.
URL https://doi.org/10.1007/s00145-021-09395-y

23. D. Boneh, J. Horwitz, Generating a product of three primes with an unknown
factorization, in: J. P. Buhler (Ed.), Algorithmic Number Theory, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1998, pp. 237–251.

24. I. Damgård, G. L. Mikkelsen, T. Skeltved, On the security of distributed multiprime
rsa, in: J. Lee, J. Kim (Eds.), Information Security and Cryptology - ICISC 2014,
Springer International Publishing, Cham, 2015, pp. 18–33.

25. J. Camenisch, A. Lehmann, G. Neven, K. Samelin, Virtual smart cards: How to
sign with a password and a server, in: V. Zikas, R. De Prisco (Eds.), Security and
Cryptography for Networks, Springer International Publishing, Cham, 2016, pp.
353–371.

26. P. MacKenzie, M. K. Reiter, Two-party generation of dsa signatures, in: J. Kilian
(Ed.), Advances in Cryptology — CRYPTO 2001, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2001, pp. 137–154.

27. Y. Lindell, Fast secure two-party ecdsa signing, in: Advances in Cryptology–CRYPTO
2017: 37th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 20–24, 2017, Proceedings, Part II 37, Springer, 2017, pp. 613–644.

28. Y. Lindell, Fast secure two-party ecdsa signing, Journal of Cryptology 34 (2021) 1–38.
29. J. Doerner, Y. Kondi, E. Lee, A. Shelat, Secure two-party threshold ecdsa from ecdsa

assumptions, in: 2018 IEEE Symposium on Security and Privacy (SP), IEEE, 2018,
pp. 980–997.

30. G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, I. Tucker, Two-party ecdsa
from hash proof systems and efficient instantiations, in: A. Boldyreva, D. Micciancio
(Eds.), Advances in Cryptology – CRYPTO 2019, Springer International Publishing,
Cham, 2019, pp. 191–221.

31. A. Dalskov, C. Orlandi, M. Keller, K. Shrishak, H. Shulman, Securing dnssec keys via
threshold ecdsa from generic mpc, in: L. Chen, N. Li, K. Liang, S. Schneider (Eds.),

https://doi.org/10.1007/s13389-022-00288-9
https://doi.org/10.6028/nist.fips.204.ipd
https://doi.org/10.6028/nist.fips.205.ipd
https://doi.org/10.1145/502090.502094
https://doi.org/10.1145/502090.502094
https://doi.org/10.1145/502090.502094
https://doi.org/10.1007/s00145-021-09395-y
https://doi.org/10.1007/s00145-021-09395-y
https://doi.org/10.1007/s00145-021-09395-y
https://doi.org/10.1007/s00145-021-09395-y
https://doi.org/10.1007/s00145-021-09395-y

Universally Composable Server-Supported Signatures for Smartphones 37

Computer Security – ESORICS 2020, Springer International Publishing, Cham, 2020,
pp. 654–673.

32. H. Xue, M. H. Au, X. Xie, T. H. Yuen, H. Cui, Efficient online-friendly two-party
ecdsa signature, in: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’21, Association for Computing Machinery, New
York, NY, USA, 2021, p. 558–573. doi:10.1145/3460120.3484803.

33. S. Kocaman, Y. Talibi Alaoui, Efficient secure two party ecdsa, in: E. A. Quaglia
(Ed.), Cryptography and Coding, Springer Nature Switzerland, Cham, 2024, pp.
161–180.

34. R. Gennaro, S. Goldfeder, A. Narayanan, Threshold-optimal dsa/ecdsa signatures and
an application to bitcoin wallet security, in: M. Manulis, A.-R. Sadeghi, S. Schneider
(Eds.), Applied Cryptography and Network Security, Springer International Publishing,
Cham, 2016, pp. 156–174.

35. Y. Lindell, A. Nof, Fast secure multiparty ecdsa with practical distributed key
generation and applications to cryptocurrency custody, in: In the 2018 ACM SIGSAC
Conference, 2018, pp. 1837–1854. doi:10.1145/3243734.3243788.

36. R. Gennaro, S. Goldfeder, Fast multiparty threshold ecdsa with fast trustless setup, in:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, Association for Computing Machinery, New York, NY, USA, 2018,
p. 1179–1194. doi:10.1145/3243734.3243859.

37. J. Doerner, Y. Kondi, E. Lee, A. Shelat, Threshold ecdsa from ecdsa assumptions:
The multiparty case, in: 2019 IEEE Symposium on Security and Privacy (SP), 2019,
pp. 1051–1066. doi:10.1109/SP.2019.00024.

38. G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, I. Tucker, Bandwidth-efficient
threshold ec-dsa, in: A. Kiayias, M. Kohlweiss, P. Wallden, V. Zikas (Eds.), Public-Key
Cryptography – PKC 2020, Springer International Publishing, Cham, 2020, pp.
266–296.

39. R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, U. Peled, Uc non-interactive,
proactive, threshold ecdsa with identifiable aborts, in: Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, CCS ’20,
Association for Computing Machinery, New York, NY, USA, 2020, p. 1769–1787.
doi:10.1145/3372297.3423367.
URL https://doi.org/10.1145/3372297.3423367

40. Y. Deng, S. Ma, X. Zhang, H. Wang, X. Song, X. Xie, Promise sigma-protocol: How
to construct efficient threshold ecdsa from encryptions based on class groups, in:
M. Tibouchi, H. Wang (Eds.), Advances in Cryptology – ASIACRYPT 2021, Springer
International Publishing, Cham, 2021, pp. 557–586.

41. M. Pettit, Efficient threshold-optimal ecdsa, in: M. Conti, M. Stevens, S. Krenn
(Eds.), Cryptology and Network Security, Springer International Publishing, Cham,
2021, pp. 116–135.

42. J. Doerner, Y. Kondi, E. Lee, A. Shelat, Threshold ecdsa in three rounds, in:
2024 IEEE Symposium on Security and Privacy (SP), 2024, pp. 3053–3071.
doi:10.1109/SP54263.2024.00178.

43. R. Canetti, Universally composable security, J. ACM 67 (5) (Sep. 2020). doi:
10.1145/3402457.
URL https://doi.org/10.1145/3402457

44. D. Johnson, A. Menezes, S. Vanstone, The elliptic curve digital signature algorithm
(ecdsa), International journal of information security 1 (2001) 36–63.

45. M. Bellare, P. Rogaway, The exact security of digital signatures - how to sign with
RSA and rabin, in: U. M. Maurer (Ed.), Advances in Cryptology - EUROCRYPT

https://doi.org/10.1145/3460120.3484803
https://doi.org/10.1145/3243734.3243788
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1109/SP.2019.00024
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1145/3372297.3423367
https://doi.org/10.1109/SP54263.2024.00178
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457

38 Authors Suppressed Due to Excessive Length

’96, International Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, Vol. 1070 of Lecture Notes
in Computer Science, Springer, 1996, pp. 399–416. doi:10.1007/3-540-68339-9_34.

46. M. Bellare, P. Rogaway, Random oracles are practical: A paradigm for designing
efficient protocols, in: Proceedings of the 1st ACM Conference on Computer and
Communications Security, 1993, pp. 62–73.

47. J. Camenisch, M. Drijvers, T. Gagliardoni, A. Lehmann, G. Neven, The wonderful
world of global random oracles, in: J. B. Nielsen, V. Rijmen (Eds.), Advances in
Cryptology – EUROCRYPT 2018, Springer International Publishing, Cham, 2018, pp.
280–312.

48. C. P. Schnorr, Efficient identification and signatures for smart cards, in: G. Brassard
(Ed.), Advances in Cryptology — CRYPTO’ 89 Proceedings, Springer New York, New
York, NY, 1990, pp. 239–252.

49. A. Fiat, A. Shamir, How to prove yourself: Practical solutions to identification and
signature problems, in: A. M. Odlyzko (Ed.), Advances in Cryptology — CRYPTO’
86, Springer Berlin Heidelberg, Berlin, Heidelberg, 1987, pp. 186–194.

50. A. Lysyanskaya, L. N. Rosenbloom, Universally composable σ-protocols in the global
random-oracle model, in: E. Kiltz, V. Vaikuntanathan (Eds.), Theory of Cryptography,
Springer Nature Switzerland, Cham, 2022, pp. 203–233.

51. M. Fischlin, Communication-efficient non-interactive proofs of knowledge with online
extractors, in: V. Shoup (Ed.), Advances in Cryptology – CRYPTO 2005, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 152–168.

52. Y.-H. Chen, Y. Lindell, Optimizing and implementing fischlin’s transform for
UC-secure zero knowledge, IACR Communications in Cryptology 1 (2) (2024).
doi:10.62056/a66chey6b.

53. M. Keller, E. Orsini, P. Scholl, Actively secure ot extension with optimal overhead, in:
R. Gennaro, M. Robshaw (Eds.), Advances in Cryptology – CRYPTO 2015, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 724–741.

54. L. Roy, Softspokenot: Quieter ot extension from small-field silent vole in the minicrypt
model, in: Annual International Cryptology Conference, Springer, 2022, pp. 657–687.

55. P. Paillier, Public-key cryptosystems based on composite degree residuosity classes,
in: J. Stern (Ed.), Advances in Cryptology — EUROCRYPT ’99, Springer Berlin
Heidelberg, Berlin, Heidelberg, 1999, pp. 223–238.

56. G. Castagnos, F. Laguillaumie, Linearly homomorphic encryption from ddh, in:
K. Nyberg (Ed.), Topics in Cryptology — CT-RSA 2015, Springer International
Publishing, Cham, 2015, pp. 487–505.

57. H. Xue, M. H. Au, M. Liu, K. Y. Chan, H. Cui, X. Xie, T. H. Yuen, C. Zhang, Efficient
multiplicative-to-additive function from joye-libert cryptosystem and its application to
threshold ecdsa, in: Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’23, Association for Computing Machinery, New
York, NY, USA, 2023, p. 2974–2988. doi:10.1145/3576915.3616595.
URL https://doi.org/10.1145/3576915.3616595

All links were last followed on November 29, 2024.

https://doi.org/10.1007/3-540-68339-9_34
https://doi.org/10.62056/a66chey6b
https://doi.org/10.1145/3576915.3616595
https://doi.org/10.1145/3576915.3616595
https://doi.org/10.1145/3576915.3616595
https://doi.org/10.1145/3576915.3616595
https://doi.org/10.1145/3576915.3616595

Universally Composable Server-Supported Signatures for Smartphones 39

A Implementing FgSpl using FSpl
Sig

In this section, we prove Theorem 7. We construct a simulator Sim that translates
between the messages from FgSpl and the messages from A. Internally, Sim
simulates FSpl

Sig . Next, we describe the way how the simulator Sim responds to
the commands:

Key generation: receive (keygen) from FgSpl. Simulate FSpl
Sig , including the

communications with A. During this, Sim gets (pk, sk) generated (even if either
phone or server is corrupt). Sends (key, Ver(pk, ·, ·)) to FgSpl.

Signing:

– Request from phone and server: in this case, the clone detection checks and
the PIN correctness checks are done by FgSpl. While FgSpl is processing the
signing query, it makes a signature request for message M to Sim. Compute
σ ←$ Sign(sk, M) and returns it to FgSpl.

– Request from phone and adversary: in this case, the environment expects to
make the (sign, sid, M, PIN′) request to Mph, while adversary expects to
make (sign, sid) request to FSpl

Sig . The former request is actually received by
FgSpl, while the latter request is received by Sim. Pass that request to FgSpl,
too. Now, FgSpl again does the checks and requests a signature for message
M . Computes σ ←$ Sign(sk, M) and returns σ to FgSpl. He also sends σ to
A, because it is expecting it, too.

– Request from adversary and phone: in this case, the environment expects to
make the (sign, sid) query toMsrv whileA expects to make the (sign, sid, M, PIN′)
query to FSig. Again, the former request is actually received by FgSpl, while
the latter request is received by Sim. Pass this request to FgSpl, too. The
computations and message exchanges continue as above. If FgSpl requests for
a signature for the message M , then construct σ and give it to both FgSpl

and to A. If the signature request actually takes place, then corruption level
cP is set to be ≥ 2. The first time it happens, FgSpl sends PIN to the ideal
adversary, i.e. to Sim. Forward it to A, because A expects to receive PIN
from FSig.

Corruptions

The adversary A makes corruption requests to FSpl
Sig , i.e. they reach Sim. The

simulator forwards them to FgSpl. If FgSpl sends back PIN, then Sim forwards it
to A. If, according to the internal logic of FSpl

Sig , the private key sk should be sent
to the adversary, then Sim does it.

Verification
A user makes a verification request for (M, σ) that is received by FgSpl. The

functionality FgSpl may decide on the result by itself, or it may forward the veri-
fication request to the simulator. The simulator then answers with Ver(pk, M, σ).

Security of verification follows from the UF-CMA security of Sig. As long
as one of phone and server is uncorrupted, the adversary does not have access
to sk. Hence if Mgen would return that a signature verifies, but there is no

40 Authors Suppressed Due to Excessive Length

(M, σ, b) recorded in the database of FgSpl, we have a forgery. In this case we
could turn the simulator, A, and Z to a challenger that breaks the UF-CMA
security of Sig. The challenger would work exactly like Z∥Sim∥A together, but
instead of generating (pk, sk) it would use pk and the signing oracle given by the
environment of the UF-CMA experiment. There will be no need of producing sk,
as long as one of the parties is uncorrupted.

B Server-supported ECDSA protocols diagrams

In this section, we provide more illustrative presentation of two-party key gener-
ation and signing protocols.

Key generation
Phone Server
x1 ←$ Zq, Q1 = x1 ·G x2 ←$ Zq, Q2 = x2 ·G

πx1 = FNIZKP(prove, Q1, x1) πx2 = FNIZKP(prove, Q2, x2)
Get PIN from user; u← {0, 1} w ← {0, 1}∗

x′
1 = genShare(u, PIN, q)

x′′
1 = x1 − x′

1 mod q, Q′
1 = x′

1 ·G

πx′
1

= FNIZKP(prove, Q′
1, x′

1)

⟨cKG = H1(Q1, Q′
1, x′′

1 , πx1 , πx′
1
)⟩

⟨Q2, πx2 , w⟩

If FNIZKP(verify, Q2, πx2) = 0, return ⊥

open = ⟨Q1, Q′
1, x′′

1 , πx1 , πx′
1
⟩

If cKG ̸= H1(open), return ⊥
If Q′

1 + x′′
1 ·G ̸= Q1, return ⊥

If FNIZKP(verify, Q1, πx1) = 0, return ⊥

If FNIZKP(verify, Q′
1, πx′

1
) = 0, return ⊥

Initiate the PIN attempt counter T

Q = Q1 + Q2 Q = Q1 + Q2

Store ⟨Q, u, w⟩ Store ⟨Q, Q1, Q2, Q′
1, x′′

1 , x2, w, T ⟩

Universally Composable Server-Supported Signatures for Smartphones 41

Signing
Phone Server
k1 ←$ Zq, R1 = k1 ·G
Get PIN from user
x′

1 = genShare(u, PIN, q)
Q′

1 = x′
1 ·G

πx′
1

= FNIZKP(prove, Q′
1, x′

1)

πk1 = FNIZKP(prove, R1, k1)

csig = H2(R1, w, M, πx′
1
, πk1) ⟨csig, w, πx′

1
⟩

Verify w. If failed, cease communication.

If FNIZKP(verify, Q′
1, πx′

1
) = 0, T = T + 1

. MtA .

x∗
2 ←$ Zq, Q∗

2 = x∗
2 ·G

Input:k1 Input:x∗
2

Output:tc Output:ts

. (tc + ts = k1 · x∗
2 mod q) .

y ←$ Zq, hid = ts + x∗
2 · y − (x2 + x′′

1) mod q

k2 ←$ Zq, R2 = k2 ·G

⟨R2, Q∗
2, y, hid, πk2⟩ πk2 = FNIZKP(prove, R2, k2)

If (tc + hid) ·G ̸= (y + k1) ·Q∗
2 − (Q−Q′

1),
return ⊥

FNIZKP(verify, Rk2 , πk2) = 0, return ⊥
R = (rx, ry) = (y + k1) ·R2

r = rx mod q

x∗
1 = x′

1 − (tc + hid) mod q

s1 = (k1 + y)−1(H0(M) + rx∗
1) mod q

πk1 = FNIZKP(prove, R1, k1) ⟨R1, s1, M, πx′
1
, πk1⟩

open = (R1, w, M, πx′
1
, πk1)

If csig ̸= H2(open), return ⊥

If FNIZKP(verify, R1, πk1) = 0, return ⊥
R = (rx, ry) = k2 ·R1 + k2 · y ·G

r = rx mod q

s = k−1
2 (s1 + r · x∗

2) mod q

If Ver(M, ⟨r, s⟩, pk) = 0, return ⊥

⟨r, s, w′⟩ w′ ←$ {0, 1}∗

If Ver(M, ⟨r, s⟩, pk) = 0, return ⊥
Set w := w′ Store w′

	Universally Composable Server-Supported Signatures for Smartphones

