
𝜇𝐿𝐴𝑀 : A LLM-Powered Assistant for Real-Time
Micro-architectural Attack Detection and Mitigation
Upasana Mandal

mandal.up98@kgpian.iitkgp.ac.in

Indian Institute Of Technology,

Kharagpur

Kharagpur, India

Shubhi Shukla

shubhishukla@kgpian.iitkgp.ac.in

Indian Institute Of Technology,

Kharagpur

Kharagpur, India

Ayushi Rastogi

rayushi835@gmail.com

Indian Institute Of Technology,

Kharagpur

Kharagpur, India

Sarani Bhattacharya

sarani@cse.iitkgp.ac.in

Indian Institute Of Technology,

Kharagpur

Kharagpur, India

Debdeep Mukhopadhyay

debdeep@cse.iitkgp.ac.in

Indian Institute Of Technology,

Kharagpur

Kharagpur, India

ABSTRACT
The rise of microarchitectural attacks has necessitated robust detec-

tion and mitigation strategies to secure computing systems. Tradi-

tional tools, such as static and dynamic code analyzers and attack de-

tectors, often fall short due to their reliance on predefined patterns

and heuristics that lack the flexibility to adapt to new or evolving

attack vectors. In this paper, we introduce for the first time a mi-

croarchitecture security assistant, built on OpenAI’s GPT-3.5, which
we refer to as 𝜇𝐿𝐴𝑀 . This assistant surpasses conventional tools by

not only identifying vulnerable code segments but also providing

context-aware mitigations, tailored to specific system specifications

and existing security measures. Additionally, 𝜇𝐿𝐴𝑀 leverages real-

time data from dynamic Hardware Performance Counters (HPCs)

and system specifications to detect ongoing attacks, offering a level

of adaptability and responsiveness that static and dynamic analyz-

ers cannot match.

For fine-tuning 𝜇𝐿𝐴𝑀 , we utilize a comprehensive dataset that

includes system configurations, mitigations already in place for dif-

ferent generations of systems, dynamic HPC values, and both vul-

nerable and non-vulnerable source codes. This rich dataset enables

𝜇𝐿𝐴𝑀 to harness its advanced LLM natural language processing

capabilities to understand and interpret complex code patterns and

system behaviors, learning continuously from new data to improve

its predictive accuracy and respond effectively in real time to both

known and novel threats, making it an indispensable tool against

microarchitectural threats. In this paper, we demonstrate the ca-

pabilities of 𝜇𝐿𝐴𝑀 by fine-tuning and testing it on code utilizing

well-known cryptographic libraries such as OpenSSL, Libgcrypt,

and NaCl, thereby illustrating its effectiveness in securing critical

and complex software environments.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1077-3/24/10

https://doi.org/10.1145/3676536.3676838

CCS CONCEPTS
• Security and privacy→ Systems security.

KEYWORDS
Microarchitecture Attacks, Attack Detection System, LLMs

ACM Reference Format:
Upasana Mandal, Shubhi Shukla, Ayushi Rastogi, Sarani Bhattacharya,

and Debdeep Mukhopadhyay. 2024. 𝜇𝐿𝐴𝑀 : A LLM-Powered Assistant

for Real-Time Micro-architectural Attack Detection and Mitigation. In

IEEE/ACM International Conference on Computer-Aided Design (ICCAD ’24),
October 27–31, 2024, New York, NY, USA. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3676536.3676838

1 INTRODUCTION
In the past decade, numerous new vulnerabilities in microarchitec-

tures have come to light, some causing significant financial impacts

on leading CPU manufacturers like Intel. With the emergence of

such vulnerabilities, corresponding countermeasures and mitiga-

tions have also been developed. Additionally, companies have begun

incorporating patches in subsequent processor releases. This field

of research is rapidly expanding, though it is complex and typically

understood by a small percentage of professionals in the field. How-

ever, not all enterprises that depend on these systems have access to

experts in microarchitecture security. Given the ongoing handling

of sensitive data and transactions, the need for a microarchitecture

security assistant has become crucial. Such a tool can assist anyone

operating these systems by providing guidance on writing secure

code, identifying potential security risks in their software, and de-

tecting live attacks on their system, and in this work we try to build

just that by leveraging the power of LLMs.

In a typical microarchitecture attack scenario, an attacker runs

a program called spy to compete with victim program for shared

hardware resources such as common cache memory [14][4], branch

prediction unit [1], a translation look-aside buffer [8], a DRAM [13]

[24]. The conflict to use common resources influences spy’s execu-

tion time in proportion to victim’s execution. The correlation can

therefore be utilized to recover victim’s secret data if its execution

depends on it. The majority of defenses against micro-architectural

attacks are either hardware or software integrated.

https://doi.org/10.1145/3676536.3676838
https://doi.org/10.1145/3676536.3676838

ICCAD ’24, October 27–31, 2024, New York, NY, USA Upasana Mandal, Shubhi Shukla, Ayushi Rastogi, Sarani Bhattacharya, and Debdeep Mukhopadhyay

Current attack mitigation strategies include software patching [3],

[12], allowing least possible privileges for user that are necessary

for running the application [17], adoption of ASLR and KPTI tech-

niques that fortifies the system at application, operating system

and hardware level. Hardware options include dividing the shared

resources [20] [5], [18]. Redesigning secure chips with less per-

formance overhead and replacing all the prevalent designs is an

expensive and impractical solution. At the same time, software

patching and other security enforcing adoptions may defend cer-

tain vulnerabilities but could not suffice to combat leakages due

to speculative execution, out-of-order executions and other subtle

optimizations. Hence combating attacks and building necessary

defenses remains ardent.

Recent advancements in security research have seen a variety

of tools developed for identifying vulnerabilities and detecting at-

tacks, including static and dynamic code analyzers and systems

that monitor Hardware Performance Counters (HPCs) for unusual

activity. Static code analyzers [11] assess source code at rest without

execution, while dynamic analyzers evaluate code during runtime,

capturing more dynamic events for discrepancies. However, both

types often rely on predefined patterns and lack the adaptability to

effectively address newly emerging or complex attack vectors. Sim-

ilarly, while HPC-based monitoring [2, 6, 16] has proven useful for

detecting certain types of attacks, it traditionally struggles with the

subtlety and variability of advanced threats, such as camouflaged

microarchitectural attacks that deliberately minimize detectable

footprints.

In response to the limitations of traditional security tools, in this

work we introduce a more dynamic approach using Large Language

Models (LLMs) [7]. We present 𝜇𝐿𝐴𝑀 , a sophisticated microarchi-

tecture attack assistant developed with OpenAI’s GPT-3.5 [23]. The

motivation for using LLMs comes from their exceptional ability to

analyze and interpret large volumes of unstructured data, making

them ideal for identifying complex, evolving patterns that conven-

tional tools might miss. This ability is essential in microarchitec-

tural security, where attack methods continually change and new

vulnerabilities emerge.

𝜇𝐿𝐴𝑀 not only identifies vulnerable code segments but also

generates custom mitigations tailored to specific system setups

and existing security measures. Additionally, it utilizes dynamic

HPCs to detect ongoing attacks, enhancing its responsiveness to

immediate threats. To fine-tune 𝜇𝐿𝐴𝑀 , we created a comprehen-

sive training dataset that includes diverse system configurations,

mitigation strategies for different system generations, dynamic

HPC values, and a range of code samples marked as vulnerable

or safe. This dataset enables 𝜇𝐿𝐴𝑀 to learn the intricacies of mi-

croarchitectural attacks. The fine-tuning process boosts the model’s

capability to process and respond to real-time data, allowing it to

detect ongoing and even stealthy attacks effectively. Thus, by lever-

aging the advanced capabilities of LLMs, 𝜇𝐿𝐴𝑀 offers a robust,

context-aware security solution that far surpasses traditional secu-

rity analysis tools. To demonstrate the effectiveness of 𝜇𝐿𝐴𝑀 , we

performed extensive testing on code from prominent cryptographic

libraries, including OpenSSL, Libgcrypt, and NaCl. We specifically

chose cryptographic libraries for our use-case due to their vital func-

tion in protecting sensitive data across various applications, which

also makes them frequent targets for microarchitectural attacks. In

summary, 𝜇𝐿𝐴𝑀 demonstrates the following capabilities:

• Attack Detection: It utilizes real-time HPC data to detect on-

going attacks, adeptly identifying even camouflaged attacks

that are designed to evade traditional detection systems.

• Vulnerability Identification: It can further analyze given code

alongside system and processor configurations, pinpointing

sections vulnerable to specific microarchitectural attacks.

This analysis includes consideration of existing mitigations

and patches within the system configurations.

• Attack Mitigation: Upon detecting vulnerabilities, 𝜇𝐿𝐴𝑀 sug-

gests mitigations for secure code alternatives, thereby ac-

tively contributing to system hardening against potential

attacks.

This paper is organized as follows: First, we provide a brief back-

ground on microarchitecture attacks and LLMs in Section 2. Then,

we delve into the design and training details of 𝜇𝐿𝐴𝑀 in Section 3,

outlining the methodology and techniques employed in develop-

ing the microarchitecture assistant. In Section 4, we demonstrate

the capabilities of 𝜇𝐿𝐴𝑀 and also compare its performance with

other traditional methods, showcasing its effectiveness in detecting

vulnerabilities and mitigating microarchitecture attacks. Lastly, we

conclude our paper in Section 5 with brief discussion on potential

future research directions.

2 BACKGROUND
2.1 Microarchitecture Attacks
Microarchitectural attacks exploit the intricate design of modern

computer processors to stealthily extract sensitive information

from applications in execution. These sophisticated attacks focus

on the subtle workings and shared components of CPUs—including

caches, branch predictors, and speculative execution paths—to sur-

reptitiously infer or steal protected data. By manipulating these

components, attackers can observe discrepancies in computational

timing or data residues left in shared resources, which reveal de-

tails about the operations and data handled by other processes on

the same machine. As CPUs evolve to deliver higher performance

and efficiency, their growing complexity inadvertently expands the

attack surface, making them more susceptible to such exploits. This

escalation in potential vulnerabilities requires continual advance-

ments in security strategies to mitigate these risks effectively. There

are three broad Categories of Microarchitectural Attacks:

• Cache Attacks [26]: These exploit the CPU’s cache system
to deduce data access patterns of other processes. Techniques

like Flush+Reload [29] involve flushing data from the cache

and timing how long it takes to reload it, revealing if an-

other process has accessed it. The Prime+Probe [21] method

fills the cache with the attacker’s data, then monitors for

displacements caused by other processes, effectively spying

on their activities.

• Speculative attacks [28]: These utilize the speculative ex-
ecution feature of CPUs to force premature execution of

instructions, allowing attackers to access temporary data in

caches or registers. Notable examples, Spectre [15] and Melt-

down [19], manipulate this mechanism to extract sensitive

information, such as passwords and encryption keys, from

protected memory areas.

𝜇𝐿𝐴𝑀 : A LLM-Powered Assistant for Real-Time Micro-architectural Attack Detection and Mitigation ICCAD ’24, October 27–31, 2024, New York, NY, USA

• Timing Attacks [30]: These attacks involve measuring the

duration of certain operations to deduce sensitive informa-

tion, such as encryption keys. The variation in execution

times typically arises from code that does not execute in

constant time, often due to conditional branches or other

operations that vary with input. By scrutinizing these timing

discrepancies, attackers can identify patterns that expose

hidden secrets within cryptographic and other sensitive al-

gorithms.

Specialized microarchitectural attacks like Flush + Reload, Flush

+ Flush [9], Prime+Probe, and their advanced versions, use CPU

cache mechanisms to secretly monitor and gather data. These com-

plex techniques require a deep understanding of microarchitecture,

a specialized skill that few experts possess. Due to the limited

number of such experts and the widespread deployment of these

systems, there is a significant challenge in adequately defending

against these threats. To address this, we have developed a special-

ized Language Model (LLM) assistant. This LLM acts as a stand-in

expert, offering real-time analysis and guidance for mitigating as

well as in real-time detecting such attacks, based on the most cur-

rent security research and deep insights into CPU architecture.

2.2 Large Language Models
Large Language Models (LLMs) such as GPT, LLaMa and Gemini

are built on the foundation of the transformer architecture [27],

which fundamentally relies on attention mechanism. The attention

mechanism allows themodel to dynamically focus on different parts

of the input text, determining which aspects are most relevant for

generating a response or making a prediction at any given moment.

This is achieved through a series of calculations that assign weights

to different input tokens, effectively allowing the model to "attend"

to more important tokens more than others.

One of the core components of the attention mechanism is the

self-attention module. This module enables the model to consider

the entire input sequence simultaneously, contrasting with older

models like RNNs [25] or LSTMs [10] that process inputs sequen-

tially. This simultaneous processing allows for a better understand-

ing of the context, as the output at each position can directly depend

on the entire input sequence. The transformer also utilizes posi-

tional encodings to inject information about the order of tokens

in the sequence, which is crucial since the model itself does not

inherently process data in order.

2.2.1 Evaluating LLM’s capability on System Security Analysis:
Current ChatGPT models are trained on vast amounts of data, en-

abling them to provide a wealth of information and guidance on

various topics. However, it’s important to note that these models

are not equipped for dynamic analysis of codes or real-time system

monitoring for vulnerability and attack detection. As demonstrated

inChatBox 1 andChatBox 2, ChatGPT lacks the capability to actively

detect ongoing attacks or assess the vulnerabilities in a code pro-

vided by the user. Nevertheless, ChatGPT can still provide valuable

mitigations for known attacks based on established best practices.

To build on its current capabilities and also improve the areas

where it is lacking, we have developed a customized LLM using

GPT-3.5, referred to as 𝜇𝐿𝐴𝑀 . This model leverages the extensive

training data of ChatGPT to provide not only information and guid-

ance on various topics but also enhanced capabilities for detecting

vulnerabilities and ongoing attacks in systems. While ChatGPT

may not possess real-time monitoring abilities or dynamic code

analysis, 𝜇𝐿𝐴𝑀 fills this gap by employing fine-tuning techniques

to analyze time-sampled HPCs, system configurations, and code

snippets. By utilizing the attention-based structure of LLMs, 𝜇𝐿𝐴𝑀

can detect subtle patterns and contextual anomalies in HPC data,

enabling it to provide insights into system security that traditional

models might overlook.

User: Hi! Can you tell me whether my system is currently undergo-

ing any attacks?

The HPC values for all the processes currently executing parallel on

my system are: [720, 6079, 6498, 640· · ·]
System configuration: 8th Generation Intel(R) Core(TM) 17-8700

CPU @ 3.20GHz

Code = [libgcrypt’s RSA decryption code]

ChatGPT: It seems like you’re asking about potential attacks on

your system based on HPC values and the code being executed.

However, without more context, it’s challenging to determine if

your system is undergoing any attacks solely based on the informa-

tion provided.

ChatBox 1: Attack detection

User: I’m currently executing libgcrypt’s RSA decryption code on

my Intel 8th Generation system. Could you please check my code

for vulnerabilities?

ChatGPT: I can’t directly review or analyze specific code, but I

can provide guidance on common vulnerabilities to watch out for

when working with cryptographic libraries like libgcrypt’s RSA

decryption code.

User: Could you please provide some mitigations?

ChatGPT: Mitigate RSA decryption vulnerabilities by employ-

ing proper padding schemes, constant-time algorithms, rigorous

input validation, secure key management, and protection against

side-channel attacks. Regular security audits, protocol design con-

siderations, and staying updated on cryptographic best practices are

essential for robust RSA decryption code.

ChatBox 2: Vulnerable Code detection and mitigation

3 LLM-BASED APPROACH TO ENHANCE
MICRO-ARCHITECTURAL SECURITY

In this section, we present our LLM-based microarchitectural as-

sistant, which is built on the GPT-3.5 platform. We’ll begin by

outlining its extensive capabilities before diving into the intricacies

of its design and the fine-tuning process. Key features of our model

include:

1 Attack detection: The user provides our 𝜇𝐿𝐴𝑀 assistant

with the system configuration on which they are currently

working, the HPC values of every process running on their

system measured in sampling rate, and the sensitive code

they are trying to run on their system. Depending on theHPC

values given as input by the user, 𝜇𝐿𝐴𝑀 decides whether any

attack is currently getting mounted on the user’s system.

2 Vulnerable code detection: The user submits the code

they intend to execute on their system to 𝜇𝐿𝐴𝑀 . 𝜇𝐿𝐴𝑀 has

the power to analyze the code, give a response to the user

about whether the input code is vulnerable to any attack, and

also identify the specific section of the code that might leak

ICCAD ’24, October 27–31, 2024, New York, NY, USA Upasana Mandal, Shubhi Shukla, Ayushi Rastogi, Sarani Bhattacharya, and Debdeep Mukhopadhyay

Figure 1: Build and Deploy Phases of 𝜇𝐿𝐴𝑀

sensitive data when an attack is currently getting mounted

on the user’s system.

3 Attack mitigation: On the basis of whether the code

provided by the user is vulnerable or not, 𝜇𝐿𝐴𝑀 gives an

output. If part of the code is vulnerable, then the assistant

provides a mitigation.

3.1 𝜇𝐿𝐴𝑀 Design
𝜇𝐿𝐴𝑀 is a microarchitecture security assistant developed on top

of OpenAI’s GPT-3.5, designed to help in enhancing system se-

curity. This advanced tool is equipped to detect the presence of

micro-architectural side-channel attacks, which are known to leak

sensitive information from computer systems inadvertently. Beyond

mere detection, 𝜇𝐿𝐴𝑀 offers a detailed analysis by identifying spe-

cific vulnerabilities within the system’s code base. It also provides

comprehensive mitigation strategies, tailored to each identified

vulnerability, which enable users to implement effective counter-

measures. The novel micro-architectural assistant is developed in

two stages: 1 build and 2 deploy phase, shown in Figure 1 .

3.1.1 Build phase: We have leveraged the OpenAI developer plat-

form to construct and implement our virtual assistant. During the

build phase, we fine-tuned the gpt-3.5-turbo-0125 model, enabling it

to point out the vulnerabilities in the user’s code that could result

in data breaches, suggest appropriate countermeasures, and also

identify potential security attacks. To fine-tune the base model, it

is necessary to generate a dataset comprising the necessary infor-

mation. The dataset assembly will involve the following steps:

1 Collection of HPCValues: This involves gathering data
for various system processes under two distinct scenarios:

Scenario a. System under attack

Scenario b. No ongoing attacks on the system

2 System Configuration Details: Documentation of the

system configuration.

3 Sensitive Execution Code: Acquisition of the code for

the victim process that requires safeguarding.

Generation Model Name Code Name
13th Generation Intel(R) Core(M) 17-13700 Raptor Lake

12th Generation Intel(R) Core(M) 15-12500 Alder Lake

11th Generation Intel (R) Core(TM) i5-11320H @ 3.20GHz Tiger Lake

9th Generation Intel(R) Core(M) 15-9500 CPU @ 3.00GHz Coffee Lake

8th Generation Intel(R) Core(TM) 17-8700 CPU @ 3.20GHz Coffee Lake

Table 1: Processor details for systems used for HPC collection

In our study, we targeted cryptographic libraries, as they are

crucial components in the realm of software development and se-

curity, serving as the backbone for implementing cryptographic

algorithms that secure data. We executed the cryptographic rou-

tines found in libraries such as OpenSSL, NaCl, and libgcrypt, etc

and we gathered the HPC metrics for all system processes that were

running concurrently with these cryptographic operations. Data

collection occurred under two distinct scenarios: one where the

system was under attack, shown in Figures 2b-2f , and another

where the system was operating normally without any attacks as

shown in Figure 2a . We have gathered the HPC values from dif-

ferent Intel systems, as shown in Table 1 . The dataset utilized

for fine-tuning the model is a jsonl file that adheres to predefined

patterns as provided below.

1 { " messages " :

2 [{ " r o l e " : " system " , " c on t en t " : " You a r e a s o p h i s t i c a t e d

and h i gh l y s k i l l e d ch a t b o t de s i gned to d e t e c t any

s i de − channe l a t t a c k s on a system , i d e n t i f y

v u l n e r a b i l i t i e s in user − p rov ided code , and sugge s t

a p p r o p r i a t e m i t i g a t i o n s . " } ,

3 { " r o l e " : " u s e r " , " c on t en t " : " I have an I n t e l 12 th Gen

Alder Lake p r o c e s s o r and I want to f i n d out i f any

s i de − channe l a t t a c k i s be ing c a r r i e d out on my

system and a l s o check the v u l n e r a b i l i t i e s ? " } ,

𝜇𝐿𝐴𝑀 : A LLM-Powered Assistant for Real-Time Micro-architectural Attack Detection and Mitigation ICCAD ’24, October 27–31, 2024, New York, NY, USA

0 20 40 60 80 100 120 140
Sampling count

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ca
ch

e
M

is
se

s

1e7

Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7
Process 8
Process 9

0 20 40 60 80 100 120 140
Sampling count

0.0

0.5

1.0

1.5

2.0

2.5

Ca
ch

e
M

is
se

s

1e9

Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7
Process 8
Process 9

0 20 40 60 80 100 120 140
Sampling count

0

1

2

3

4

Ca
ch

e
M

is
se

s

1e7

Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7
Process 8
Process 9
Process 10

(a) No ongoing attack (b) Flush+Reload attack (c) Flush+Flush attack

0 20 40 60 80 100 120 140
Sampling count

0.0

0.2

0.4

0.6

0.8

1.0

Ca
ch

e
M

is
se

s

1e7

Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7
Process 8
Process 9
Process 10

0 20 40 60 80 100 120 140
Sampling count

0.0

0.5

1.0

1.5

2.0

Ca
ch

e
M

is
se

s

1e7

Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7
Process 8
Process 9
Process 10

0 20 40 60 80 100 120 140
Sampling count

0.0

0.5

1.0

1.5

2.0

Ca
ch

e
M

is
se

s

1e7

Process 1
Process 2
Process 3
Process 4
Process 5
Process 6
Process 7
Process 8
Process 9
Process 10

(d) Prime+Probe (e) Umprime+Umprobe attack on

12th Gen

(f) Umprime+Umprobe attack on

13th Gen

Figure 2: Graphs illustrating deviations in HPC values when an attacker process is not executing (a) vs when it is executing (b-f).

4 { " r o l e " : " a s s i s t a n t " , " c on t en t " : " Sure ! I t seems you ' r e

i n t e r e s t e d in de t e rm in ing whether any s i de − channe l

a t t a c k i s o c cu r r i ng , and to a c c u r a t e l y a s s e s s tha t ,

i t ' s n e c e s s a r y to have a d d i t i o n a l d e t a i l s such as

HPC va l u e s and the r e l e v a n t code P l e a s e p rov i d e the

HPC va l u e s and the code t h a t you a re c u r r e n t l y

running ; on ly then I can t e l l you . " } ,

5 { " r o l e " : " u s e r " , " c on t en t " : "HPC va l u e s = [] , Code = [] ,

I s a t t a c k going on? " } ,

6 { " r o l e " : " a s s i s t a n t " , " c on t en t " : " Yes ! Uprime + Umprobe

a t t a c k i s t a k i n g p l a c e c u r r e n t l y in our system " } ,

7 { " r o l e " : " u s e r " , " c on t en t " : "Why i s the a t t a c k t a k i ng

p l a c e ? " } ,

8 { " r o l e " : " a s s i s t a n t " , " c on t en t " : " The pr imary cause o f

t h i s a t t a c k i s the Umonitor and Umwait i n s t r u c t i o n s

found in the newer I n t e l g e n e r a t i o n s f o l l ow i n g

Tremont and you a re us ing I n t e l 12 th Genera t i on

system " , " weight " : 1 }] }

The aforementioned message serves as a single training in-

stance designed to inform the GPT model about diverse micro-

architectural attacks and corresponding countermeasures on dif-

ferent generations of systems. Likewise, we generate 250 different

training instances.

Once we have our dataset, we then fine-tune the GPT-3.5. Fine-
tuning a model like GPT-3.5 involves adjusting its internal param-

eters based on the provided data. After the initial training, fine-

tuning is done to tailor the model more closely to specific tasks

or datasets. This involves continuing the training process but typ-

ically on a smaller, more specialized subset of data. Fine-tuning

allows the model to perform better on tasks that may not have been

well-represented in the original training data. After the fine-tuning

phase of the model is complete, the next critical step involves con-

structing the micro-architectural assistant. This requires specifying

key elements:

1 Name : 𝜇LAM
2 Instructions:
– Purpose: To detect potential side-channel attacks and iden-

tify vulnerabilities in user-submitted code, using HPC data

and system configuration details.

– Input Requirements: System Configuration, HPCs, Source

Code.

– Tasks: Analyze Performance Data, Scrutinize Code, Rec-

ommend Mitigations

– Output: Detailed report outlining detected vulnerabilities,

potential impacts, and recommended mitigation strategies.

3 Model: ft:gpt-3.5-turbo-0125:personal::9FEvcYz
4 Functions

1 " name " : " a n a l y z e _ v u l n e r a b i l i t i e s " ,

2 " d e s c r i p t i o n " : " Analyze sou r c e code , hardware

per formance coun t e r data , and system

c o n f i g u r a t i o n to d e t e c t s i d e − channe l micro −

a r c h i t e c t u r a l a t t a c k s and sugge s t m i t i g a t i o n s .

" , " p a r ame te r s " : { " type " : " o b j e c t " , " p r o p e r t i e s

" : { " s ou r ce_code " : { " type " : " s t r i n g " , "

d e s c r i p t i o n " : " The sou r c e code in a suppor t ed

programming language . " } , " p e r f o rmance_coun t e r s

" : { " type " : " o b j e c t " , " d e s c r i p t i o n " : "

D i c t i o n a r y c on t a i n i n g key per formance coun t e r

me t r i c s such as coach misses , branch mi s s e s " ,

" a d d i t i o n a l p r o p e r t i e s " : { " type " : " a r r ay " } } , "

s y s t em_con f i g " : { " type " : " o b j e c t " , " d e s c r i p t i o n

" : " D i c t i o n a r y d e t a i l i n g the system

con f i g u r a t i o n , i n c l u d i n g CPU model . " , "

p r o p e r t i e s " : { "CPU" : { " type " : " s t r i n g " ,

3 " d e s c r i p t i o n " : " Model o f the CPU . " } , "OS " : { " type "

: " s t r i n g " , " d e s c r i p t i o n " : " Opera t ing system

i n s t a l l e d on the system . " } , " r e q u i r e d " : ["

sou r ce_code " , " p e r f o rmance_coun t e r s " , "

s y s t em_con f i g "]

ICCAD ’24, October 27–31, 2024, New York, NY, USA Upasana Mandal, Shubhi Shukla, Ayushi Rastogi, Sarani Bhattacharya, and Debdeep Mukhopadhyay

After configuring the assistant parameters, ourmicro-architectural

assistant is operational. Next, we move to the deployment phase,

where users can pose questions to the assistant and receive answers.

3.1.2 Deploy Phase: In the deployment phase, there are three

distinct steps: 1) Detecting the attack, 2) Identifying the vulnerable

section of code, and 3) Providing the appropriate mitigation.

1 Attack detection: The fine-tuning of our micro-architectural

assistant leverages HPCs, system configurations, and user-provided

code to identify potential micro-architectural side-channel attacks.

The detection of potential attacks on the system primarily relies on

analyzing the values from the HPCs and the system configuration.

The determination of whether an attack is underway can be

influenced by the system configuration. Modern generations of

Intel systems are equipped with countermeasures against Flush

+ Reload, Prime + Probe, and Flush + Flush attacks. Additionally,

the Umprime + Umprobe attack is specifically applicable to these

newer Intel generations, as the requisite umonitor and umwait

instructions are absent in older models.

To detect side-channel micro-architectural attacks using HPCs the

model analyzes the patterns and anomalies in HPC data that deviate

from established baselines of normal operation. By fine-tuning

on datasets comprising detailed logs of HPC values during both

typical execution and simulated attacks, the model learns to identify

specific signatures indicative of side-channel vulnerabilities, such

as unusual cache miss rates, timing discrepancies, or abnormal

execution paths. This helps the model to learn and detect whether

any attack is getting mounted on the system.

Hyperparameter Values
Base Model gpt-3.5-turbo-0125
Batch size 1

Learning rate multiplier 0.001

Number of epochs 30

Table 2: Hyperparameters for fine-tuning GPT-3.5
2 Vulnerable code detection:

For the detection of the part of the code that is vulnerable to micro-

architectural side-channel attacks, we have fine-tuned the GPT-3.5
model. This model has been specifically fine-tuned to identify vul-

nerable sections within a codebase, utilizing both pre-trained data

and intrinsic model knowledge. In the realm of side-channel at-

tacks, the control flow of code, particularly branching operations,

is crucial as it can inadvertently leak sensitive information through

physical channels. Such attacks exploit variations in execution time,

power consumption, electromagnetic emissions, and other mea-

surable side effects that differ based on the executed code path.

The micro-architectural assistant, assists by pinpointing areas of

the code that incorporate such control flows, potentially predispos-

ing them to prevalent attacks like Flush+Reload, Flush+Flush, and

Prime+Probe and extract sensitive data running on a user’s system.

3 Attack Mitigation: Our 𝜇𝐿𝐴𝑀 assistant provides a miti-

gation against that attack if it predicts that an attack is getting

mounted on the user’s system depending on the input given by the

user. It leverages a pre-defined set of mitigation strategies, comple-

mented by its inherent large language model (LLM) knowledge base,

to offer real-time protective measures. This proactive approach al-

lows the assistant to not only detect threats but also suggest tailored

countermeasures to safeguard the user’s system effectively. Our

model assistant uses a combination of trained knowledge and it’s

own generative capabilities to provide mitigations.

4 EXPERIMENTAL RESULTS
In this section, we present an evaluation of 𝜇𝐿𝐴𝑀 focusing on

its performance in detecting various cache-based attacks such as

Flush+Reload, Flush+Flush, Prime+Probe, and the newly intro-

duced Umprime+Umprobe. Notably, 𝜇𝐿𝐴𝑀 has been specifically

fine-tuned to recognize these attacks, along with vulnerabilities

stemming from speculative execution and branch prediction. Fur-

thermore, we have fine-tuned 𝜇𝐿𝐴𝑀 using HPC data from five

generations of Intel processors (cf. 1), including the latest Alderlake

and Raptorlake processors. This comprehensive evaluation assesses

𝜇𝐿𝐴𝑀 ’s effectiveness across systems with different configurations

and processor architectures. Furthermore, we delve into how 𝜇𝐿𝐴𝑀

surpasses traditional analysis and detection tools, showcasing its

advanced capabilities and efficacy in identifying and mitigating

security threats.

As outlined in Section 3 , our 𝜇𝐿𝐴𝑀 provides: (a) attack detec-

tion code, (b) vulnerability detection and (c) mitigation strategies.

This section presents the experimental results, offering proof of

concept for 𝜇𝐿𝐴𝑀 .𝜇𝐿𝐴𝑀 starts by checking if the user’s system is

currently under attack by using the HPC values provided in the

user’s query. If an attack is detected, it alerts the user. Following

this, the model examines the code and system configuration for

vulnerabilities. If vulnerabilities are found, the model proceeds to

mitigate them. Otherwise, it awaits further queries. This approach

ensures immediate action in the event of an attack and proactive

vulnerability assessment.

We illustrate the comprehensive functionality of our micro-

architectural assistant, 𝜇𝐿𝐴𝑀 , through user interactions. These

interactions showcase its capability to detect ongoing attacks, find

vulnerabilities in source codes, and provide necessary mitigation.

User Interaction 1: Evaluation on Well-known Attacks
The first user interaction example (ChatBox 3 and ChatBox 4) is a
conversation between the user and our micro-architectural assis-

tant, 𝜇𝐿𝐴𝑀 . These are the same queries which we had earlier made

to ChatGPT (ChatBox 1 and ChatBox 2) which proved unsuccessful

in both detecting attacks and identifying vulnerabilities in the pro-

vided code.. In this interaction once again the user supplies 𝜇𝐿𝐴𝑀

with HPCs at the sampling rate for all processes currently running

on their system, along with the sensitive code and system configu-

ration. After analyzing the HPC values and system configurations

provided by the user, our model successfully determines that the

user’s system is currently under a Flush+Reload attack as shown

in Chatbox 3.
Further, Chatbox 4 delineates the comprehensive interaction

process between the user and 𝜇𝐿𝐴𝑀 , wherein the user inputs the

code currently executing on their system along with the system

specifications. Subsequently, the assistant identifies any vulnerabil-

ities within the code. In this particular interaction, the user shares

libgcrypt’s RSA decryption code and the system configuration with

𝜇𝐿𝐴𝑀 , then asks it to evaluate if the code is vulnerable. 𝜇𝐿𝐴𝑀

responds that the code is vulnerable as Libgcrypt’s RSA implemen-

tation relies on branches to manage the Montgomery ladder scalar

multiplication. This makes it susceptible to side-channel attacks. In

𝜇𝐿𝐴𝑀 : A LLM-Powered Assistant for Real-Time Micro-architectural Attack Detection and Mitigation ICCAD ’24, October 27–31, 2024, New York, NY, USA

this kind of attack, an adversary leverages CPU cache-based timing

to monitor memory accesses that reveal the execution path taken,

specifically which branches were executed during scalar multiplica-

tion. By inspecting these accessed cache lines, the attacker can infer

the values of bits in the scalar (private key), which ultimately leads

to the compromise of the entire cryptographic system. The user

then asked for the necessarymitigations, to which 𝜇𝐿𝐴𝑀 responded

with recommendations such as cache flushing, constant-time imple-

mentations, introducing noise, and other countermeasures. Other

than Libgcrypt’s RSA we also successfully tested 𝜇𝐿𝐴𝑀 on both

OpenSSL’s and NaCl’s RSA and ECC as well.

User: Hi! Can you tell me whether my system is currently undergo-

ing any attacks?

The hardware performance counter values for all the processes

currently executing parallel on my system are: [720, 6079, 6498,

640· · ·]. System configuration: 8th Generation Intel(R) Core(TM)

17-8700 CPU @ 3.20GHz

Code = [libgcrypt’s RSA decryption code]

𝜇LAM: Yes, currently the Flush+Reload attack is getting mounted

on your system.

ChatBox 3: Attack detection

User: I’m currently executing libgcrypt’s RSA decryption code on

my Intel 8th Generation system. Could you please check my code

for vulnerabilities?

𝜇LAM: Libgcrypt’s RSA implementation uses branches to con-

trol the Montgomery ladder scalar multiplication. The many side-

channel attacks can distinguish which branch is taken by moni-

toring memory accesses. By probing the accessed memory lines,

the attack can deduce the value of the bits in the scalar, thereby

finally compromising the cryptosystem. Also vulnerable to other

side-channel attacks.

User: Could you please provide some mitigations?

𝜇LAM: Sure!! Cache flushing, addition of noise, random delays, and

constant-time RSA implementations.

ChatBox 4: Vulnerable code detection and Mitigation

In this example, we demonstrate how 𝜇𝐿𝐴𝑀 effectively detects

a Flush+Reload attack. Similarly, 𝜇𝐿𝐴𝑀 is also capable of detect-

ing other side-channel attacks like Prime+Probe and Flush+Flush.

These side-channel attacks exploit vulnerabilities in speculative ex-

ecution, inadvertently exposing sensitive data through unintended

channels. Speculative execution attacks, like Spectre and Meltdown,

leverage transient execution paths to access sensitive data, with

cache timing techniques serving as instrumental tools for data

extraction during the attack process. As such, the utilization of

cache timing in both Flush+Reload attacks and speculative exe-

cution attacks results in visibility of similar patterns in HPCs. By

successfully identifying Flush+Reload attacks, 𝜇𝐿𝐴𝑀 demonstrates

its proficiency in recognizing these characteristic patterns asso-

ciated with cache-timing attacks, thus also capable of discerning

speculative attacks which use cache-timing attacks as tools.

User Interaction 2: Evaluation on Recent Advanced Version of
Known Attacks
In this user interaction example, we demonstrate 𝜇𝐿𝐴𝑀 ’s capability

to detect an newly introduced version of Prime+Probe attack called

the Umprime + Umprobe attack. The following user interaction ex-

ample provides a concise, end-to-end representation of how 𝜇𝐿𝐴𝑀

operates and detects the Umprime + Umorobe attack.
As demonstrated in Chatbox 5 The user asks 𝜇𝐿𝐴𝑀 if any at-

tack is currently active on their system, providing the necessary

system configuration and HPC values for all processes running

concurrently on their system. After examining the HPC values and

system configurations, 𝜇𝐿𝐴𝑀 concludes that the user’s system is

undergoing a Umprime+Umprobe attack.

User: Hi! Can you tell me whether my system is currently undergo-

ing any attacks?

System configuration: 12th Gen Intel(R) Core(TM) i512500

The hardware performance counter values for all the processes

currently executing parallel on my system are: [9218, 66955, 8118,

9927, 17034 · · ·]
𝜇LAM: Yes, currently Umprime + Umprobe attack is getting

mounted on your system.

ChatBox 5: Attack detection

As represented in Chatbox 6, the user provides 𝜇𝐿𝐴𝑀 with a

code. The code scenario is: that two processes are running on two

sibling cores, both sharing a common variable. Process 1 reads the

shared variable, waits for a while, and then process 2 modifies the

variable. Subsequently, process 1 re-accesses the shared variable.

By providing the code, the user inquires if 𝜇𝐿𝐴𝑀 identifies any vul-

nerabilities. 𝜇𝐿𝐴𝑀 detects that the code is vulnerable to Umprime

+ Umprobe attack, as according to the Umprime + Umprobe attack

if process 1 accesses the shared variable after process 2’s update,

it triggers the cache coherency protocol, updating the variable. If

there is a spy process executing in Core 1 that sets the monitor

to the address of the shared variable the spy can set up a covert

channel. The write by process 2 followed by process 1’s access

to the shared variable, wakes the processor from its sleep state,

signaling a transmission of ’0’ from the sender to the receiver. If

Core 1 does not access the shared variable after Core 2’s update,

the processor wakes up due to an operating system timeout. This

event signals a transmission of ’1’ from the sender to the receiver.

The user then queries for the mitigation. The user outputs that the

primary cause of the Umprime+Umprobe attack is the presence of

user-level instructions in newer Intel systems, thus specific miti-

gations do not currently exist. Umprime + Umprobe attack could

only be mounted on Intel’s new generation after Tremont. 𝜇𝐿𝐴𝑀

model is also capable of providing this granular information to the

user, represented in Chatbox 7.
𝜇𝐿𝐴𝑀 vs Traditional Security Analysis Tools:

In Table 3 we compare 𝜇𝐿𝐴𝑀 with the well-known detection tool

Medusa, the advanced language model ChatGPT, Machine Learning
models, and our micro-architectural assistant, 𝜇𝐿𝐴𝑀 . ChatGPT
can assist the user by analyzing the problem and providing miti-

gations when the user’s code is found to be vulnerable, but it does

not have capabilities for direct vulnerability detection and attack

detection. Medusa [22] and T-test can detect vulnerabilities by

analyzing HPCs, simulating attacks, and providing insights into

architectural vulnerabilities, but they cannot detect code vulnera-

bilities and provide necessary mitigations.ML models [2] can be

effective in real-time attack detection, recognizing attack patterns,

but it cannot detect code vulnerabilities and provide necessary

ICCAD ’24, October 27–31, 2024, New York, NY, USA Upasana Mandal, Shubhi Shukla, Ayushi Rastogi, Sarani Bhattacharya, and Debdeep Mukhopadhyay

User: Please let me know if my code is vulnerable or not.

pthread_t t1, t2;

cpu_set_t cpu1, cpu2;

CPU_ZERO(&cpu1);

CPU_ZERO(&cpu2);

CPU_SET(coreid1, &cpu1);

CPU_SET(coreid2, &cpu2);

pthread_create(&t1, NULL, &proc1_func, NULL);

pthread_setaffinity_np(t1, sizeof(cpu_set_t), &cpu1);

sleep(1); pthread_create(&t2, NULL, &proc2_func, NULL);

pthread_setaffinity_np(t2, sizeof(cpu_set_t), &cpu2);

void *proc1_func()

pthread_mutex_lock(&mutex);

while (thread_to_execute != 1)

pthread_cond_wait(&condition, &mutex);

shared_variable[0] = shared_variable[0] + 1;

thread_to_execute = 2;

pthread_cond_signal(&condition);

pthread_mutex_unlock(&mutex);

pthread_mutex_lock(&mutex);

while (thread_to_execute != 4)

pthread_cond_wait(&condition, &mutex);

y = shared_variable[0];

thread_to_execute = 5;

pthread_cond_signal(&condition);

pthread_mutex_unlock(&mutex);

void *proc2_func()

pthread_mutex_lock(&mutex);

while (thread_to_execute != 2)

pthread_cond_wait(&condition, &mutex);

shared_variable[0] = shared_variable[0] + 1;

shared_variable[0] = shared_variable[0] + 100;

thread_to_execute = 3;

pthread_cond_signal(&condition);

pthread_mutex_unlock(&mutex);

and my system configuration is 12th Gen Intel(R) Core(TM) i512500.

𝜇LAM: Yes!! The provided code is vulnerable.

The code provided involves two processes running on separate

cores, sharing a variable, and accessing it sequentially. This part is

potentially vulnerable to Umprime and Umprobe attacks.

User: Please suggest mitigation.

𝜇LAM: Currently, there’s no mitigation for the Umprime and

Umprobe attacks; it relies on the umonitor and umwait instruc-

tions found in Intel’s newer generation processors.

ChatBox 6: Vulnerable code detection and Mitigation

User: Hi! Can you tell me whether my system is currently undergo-

ing Umprime+Umprobe attack?

System configuration: 8th Intel(R) Core(TM) 17-8700 CPU @

3.20GHz. The hardware performance counter values for all the

processes currently executing parallel on my system are: [10291,

11234, 9289, 11928, 10829 · · ·]
𝜇LAM: The Umprime+Umprobe attack relies on user-level instruc-

tions found only in the newer generations of Intel processors.

Therefore, this attack could not be executed on your system.

ChatBox 7: Attack detection

mitigations. On the other hand, 𝜇𝐿𝐴𝑀 is empowered with the ca-

pabilities to detect code vulnerabilities, provide proper mitigations,

and attack detection.

ChatGPT Medusa ML models T-test 𝜇𝐿𝐴𝑀

Code Vulnerability Detection ✗ ✗ ✗ ✗ ✓
Mitigation ✓ ✗ ✗ ✗ ✓

Attack Detection ✗ ✓ ✓ ✓ ✓
Table 3: Comparing the performance features of ChatGPT,
Medusa,ML models and T-test with 𝜇𝐿𝐴𝑀

We evaluated 𝜇𝐿𝐴𝑀 with nearly 1000 distinct queries, some of

which are demonstrated within this paper. Similar to other language

models, 𝜇𝐿𝐴𝑀 exhibits sensitivity to the phrasing and context of

queries but still provides correct responses in approximately 96% of

cases. Moreover, we found that by imposing additional constraints

on the language used in queries, we can achieve accuracy levels ap-

proaching 100%. Our micro-architectural assistant 𝜇𝐿𝐴𝑀 stands out

as a comprehensive solution, equipped to address the limitations

found in existing approaches. It excels at detecting code vulnerabil-

ities, providing necessary mitigations, and detecting attacks, thus

delivering a versatile framework for enhancing system security.

5 DISCUSSION AND CONCLUSION
In this work, we make a significant contribution to the field of mi-

croarchitectural security by introducing a dynamic microarchitec-

ture assistant using Large Language Models (LLMs). The introduced

tool, named 𝜇𝐿𝐴𝑀 , leverages OpenAI’s GPT 3.5 to not only iden-

tify vulnerable code segments but also generate custom mitigations

tailored to specific system setups and existing security measures.

Furthermore, it utilizes dynamic HPCs to detect ongoing attacks,

enhancing its responsiveness to immediate threats. The fine-tuning

process, facilitated by a comprehensive training dataset collected

from multiple systems of different architectural configurations, en-

ables 𝜇𝐿𝐴𝑀 to learn the intricacies of microarchitectural attacks,

making it capable of processing and responding to real-time data

effectively. This robust, context-aware LLM assistant far surpasses

traditional security analysis tools in its ability to detect and mitigate

microarchitectural attacks. Importantly, 𝜇𝐿𝐴𝑀 stands out as the

first tool to combine all these capabilities into a single, comprehen-

sive solution that can be even used by people who are not experts

in microarchitecture security.

While our current research demonstrates the effectiveness of

fine-tuning a GPT3.5 model for microarchitectural security, there

are still many things we don’t completely understand about the

process. We are particularly interested in how fine-tuning impacts

the internal workings of the model, such as which specific parts

of the LLM architecture are modified and characteristics of our

training data, such as its diversity and complexity, shape these

changes. Unfortunately, GPTmodels are often considered black-box

systems, making it difficult to directly explore these questions with

GPT3.5. However, gaining insights into these aspects is crucial for

further optimizing our model’s fine-tuning process and improving

its performance. Therefore, in future, we are eager to delve deeper

into these questions using open-source Large Language Models

(LLMs) like LLama, which offer more transparency. By doing so,

we hope to uncover valuable insights that will not only enhance

our own model but also contribute to a better understanding of

fine-tuning mechanisms in LLMs for microarchitecture security

more broadly.

𝜇𝐿𝐴𝑀 : A LLM-Powered Assistant for Real-Time Micro-architectural Attack Detection and Mitigation ICCAD ’24, October 27–31, 2024, New York, NY, USA

ACKNOWLEDGMENT
The authors would like to thank the reviewers for their suggestions

for improving the paper. They would also like to thank the Infor-

mation Security Education and Awareness (ISEA) organization for

partially funding this research.

REFERENCES
[1] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2006. Predicting secret

keys via branch prediction. In Topics in Cryptology–CT-RSA 2007: The Cryptog-
raphers’ Track at the RSA Conference 2007, San Francisco, CA, USA, February
5-9, 2007. Proceedings. Springer, 225–242.

[2] Manaar Alam, Sarani Bhattacharya, and Debdeep Mukhopadhyay. 2021. Vic-

tims can be saviors: a machine learning–based detection for micro-architectural

side-channel attacks. ACM Journal on Emerging Technologies in Computing
Systems (JETC), 17, 2, 1–31.

[3] Ruxandra Bălucea and Paul Irofti. 2023. Software mitigation of risc-v spectre

attacks. In International Conference on Information Technology and Communi-
cations Security. Springer, 51–64.

[4] Joseph Bonneau and Ilya Mironov. 2006. Cache-collision timing attacks against

aes. In Cryptographic Hardware and Embedded Systems-CHES 2006: 8th Interna-
tional Workshop, Yokohama, Japan, October 10-13, 2006. Proceedings 8. Springer,
201–215.

[5] Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuf-

frida. 2021. Constantine: automatic side-channel resistance using efficient

control and data flow linearization. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 715–733.

[6] Samira Briongos, Gorka Irazoqui, PedroMalagón, and Thomas Eisenbarth. 2018.

Cacheshield: detecting cache attacks through self-observation. In Proceedings
of the Eighth ACM Conference on Data and Application Security and Privacy,
224–235.

[7] Yupeng Chang et al. 2024. A survey on evaluation of large language models.

ACM Transactions on Intelligent Systems and Technology, 15, 3, 1–45.
[8] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation

leak-aside buffer: defeating cache side-channel protections with {tlb} attacks.
In 27th USENIX Security Symposium (USENIX Security 18), 955–972.

[9] Daniel Gruss, Clémentine Maurice, and Klaus Wagner. 2015. Flush+flush: A

stealthier last-level cache attack. CoRR, abs/1511.04594. http://arxiv.org/abs/15
11.04594 arXiv: 1511.04594.

[10] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory

(lstm). Neural Computation, 9, 8, 1735–1780.
[11] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2018. MASCAT: prevent-

ing microarchitectural attacks before distribution. In Proceedings of the Eighth
ACM Conference on Data and Application Security and Privacy, CODASPY 2018,
Tempe, AZ, USA, March 19-21, 2018. Ziming Zhao, Gail-Joon Ahn, RamKrishnan,

and Gabriel Ghinita, (Eds.) ACM, 377–388. doi: 10.1145/3176258.3176316.

[12] Marc Joye andMichael Tunstall. 2007. Securing openssl againstmicro-architectural

attacks. In SECRYPT, 189–196.
[13] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,

Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory

without accessing them: an experimental study of dram disturbance errors.

ACM SIGARCH Computer Architecture News, 42, 3, 361–372.
[14] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis.

In Advances in Cryptology—CRYPTO’99: 19th Annual International Cryptology
Conference Santa Barbara, California, USA, August 15–19, 1999 Proceedings 19.
Springer, 388–397.

[15] Paul Kocher et al. 2019. Spectre attacks: exploiting speculative execution. In

2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019. IEEE, 1–19. doi: 10.1109/SP.2019.00002.

[16] William Kosasih, Yusi Feng, Chitchanok Chuengsatiansup, Yuval Yarom, and

Ziyuan Zhu. [n. d.] Sok: can we really detect cache side-channel attacks by

monitoring performance counters?

[17] Doowon Lee, Opeoluwa Matthews, and Valeria Bertacco. 2018. Low-overhead

microarchitectural patching for multicore memory subsystems. In 2018 IEEE
36th International Conference on Computer Design (ICCD). IEEE, 17–25.

[18] Tamara Silbergleit Lehman, Andrew D Hilton, and Benjamin C Lee. 2016.

Poisonivy: safe speculation for secure memory. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 1–13.

[19] Moritz Lipp et al. 2018. Meltdown: reading kernel memory from user space. In

27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018. William Enck and Adrienne Porter Felt, (Eds.) USENIX

Association, 973–990. https://www.usenix.org/conference/usenixsecurity18/pr

esentation/lipp.

[20] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,

and Ruby B Lee. 2016. Catalyst: defeating last-level cache side channel attacks

in cloud computing. In 2016 IEEE international symposium on high performance
computer architecture (HPCA). IEEE, 406–418.

[21] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. 2015.

Last-level cache side-channel attacks are practical. In 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. IEEE
Computer Society, 605–622. doi: 10.1109/SP.2015.43.

[22] Daniel Moghimi, Moritz Lipp, Berk Sunar, and Michael Schwarz. 2020. Medusa:

microarchitectural data leakage via automated attack synthesis. In 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14, 2020. Srdjan Capkun

and Franziska Roesner, (Eds.) USENIX Association, 1427–1444. https://www.u

senix.org/conference/usenixsecurity20/presentation/moghimi-medusa.

[23] OpenAI. 2022. ChatGPT. https://openai.com/chatgpt. Version 3.5. (2022).

[24] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Ste-

fan Mangard. 2016. {Drama}: exploiting {dram} addressing for {cross-cpu}
attacks. In 25th USENIX security symposium (USENIX security 16), 565–581.

[25] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.Williams. 1986. Recurrent

neural network (rnn). Nature, 323, 533–536.
[26] Chao Su and Qingkai Zeng. 2021. Survey of CPU cache-based side-channel

attacks: systematic analysis, security models, and countermeasures. Secur.
Commun. Networks, 2021, 5559552:1–5559552:15. doi: 10.1155/2021/5559552.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA. Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna

M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, (Eds.),

5998–6008. https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee9

1fbd053c1c4a845aa-Abstract.html.

[28] Wenjie Xiong and Jakub Szefer. 2022. Survey of transient execution attacks and

their mitigations. ACM Comput. Surv., 54, 3, 54:1–54:36. doi: 10.1145/3442479.
[29] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A high resolution,

low noise, L3 cache side-channel attack. In Proceedings of the 23rd USENIX
Security Symposium, San Diego, CA, USA, August 20-22, 2014. Kevin Fu and

Jaeyeon Jung, (Eds.) USENIX Association, 719–732. https://www.usenix.org/co

nference/usenixsecurity14/technical-sessions/presentation/yarom.

[30] Jiliang Zhang, Congcong Chen, Jinhua Cui, and Keqin Li. 2024. Timing side-

channel attacks and countermeasures in cpu microarchitectures. ACM Com-
puting Surveys.

http://arxiv.org/abs/1511.04594
http://arxiv.org/abs/1511.04594
https://arxiv.org/abs/1511.04594
https://doi.org/10.1145/3176258.3176316
https://doi.org/10.1109/SP.2019.00002
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/SP.2015.43
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-medusa
https://www.usenix.org/conference/usenixsecurity20/presentation/moghimi-medusa
https://openai.com/chatgpt
https://doi.org/10.1155/2021/5559552
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1145/3442479
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

	Abstract
	1 Introduction
	2 Background
	2.1 Microarchitecture Attacks
	2.2 Large Language Models

	3 LLM-Based Approach to Enhance Micro-Architectural Security
	3.1 LAM Design

	4 Experimental Results
	5 Discussion and Conclusion

