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Abstract. Zero-knowledge proofs (ZKPs) are cryptographic protocols that enable
one party to prove the validity of a statement without revealing any information
beyond its truth. A central building block in many ZKPs are polynomial commitment
schemes (PCS) where constructions with linear-time provers are especially attractive.
Two such examples are Brakedown and its extension Orion which enable linear-time
and quantum-resistant proving by leveraging linear-time encodable Spielman codes.
However, these PCS operate over large datasets, creating significant computational
bottlenecks. For example, committing to and proving a degree 228 polynomial requires
around 1.1 GB of data while taking 463 seconds on a high-end server CPU.
This work addresses the performance bottleneck in Orion-like PCS by optimizing
their most critical operations: Spielman encoding and Merkle commitments. These
operations involve Gigabytes of data and suffer from random off-chip memory access
patterns that drastically reduce off-chip bandwidth. We resolve this issue and
introduce inverted expander graphs to eliminate random writes and reduce off-chip
memory accesses by over 50%. Additionally, we propose an on-the-fly graph sampling
method that avoids streaming large auxiliary data by generating expander graphs
dynamically on-chip. We also provide a formal security proof for our proposed graph
transformation. Beyond encoding, we accelerate Merkle Tree construction over large
data sets through a scalable multi-pass SHA3 pipeline. Finally, we reutilize existing
hardware components used in commitment to accelerate the so-called proximity and
consistency checks during proof generation.
Building upon these concepts, we present the first hardware architecture for PCS
– with linear prover time – on a Xilinx Alveo U280 FPGA. In addition, we discuss
the practical challenges of manually partitioning, placing, and routing our large-scale
architecture to efficiently map it to the multi-SLR and HBM-equipped FPGA. The
final implementation achieves a speedup of two orders of magnitude for full proof
generation, covering commitment and proving steps. When combined with Virgo as
an outer CP-SNARK protocol, our accelerator reduces end-to-end latency by up to
3.85× — close to the theoretical maximum of 3.9×.
Keywords: Zero-Knowledge Proof · Orion · Brakedown · Spielman Code · FPGA

1 Introduction
Zero-knowledge proofs (ZKP) enable one party, known as the prover, to demonstrate to
another party, known as the verifier, that a given statement is true without revealing any
information about why the statement is true or any private data that was used to prove it.
As an illustration, the prover can convince the verifier that it knows a private witness w for
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a public input x such that C(x, w) = 0 is satisfied for a circuit C, all without revealing any
information about w. The concept of ZKP systems was first introduced by Goldwasser,
Micali, and Rackoff in the 1980s in their seminal paper [GMR85].

ZKPs have seen growing use in recent years, with their real-life applications expected
to expand further. One notable application area is verifiable computation, where a
client delegates computation to a powerful but untrusted server. Subsequently, the client
can easily verify (without re-doing the computation) whether the server executed the
computation correctly or not. Concrete realizations of verifiable machine learning using
ZKP are presented in [LXZ21, WYX+21]. ZKPs are extensively used in blockchains
and cryptocurrencies to achieve anonymity and privacy [BSCG+14]. Cryptocurrency
transactions can be fully encrypted on the blockchain, yet their legitimacy can still be
verified using ZKP [Fou, Pro]. Other application areas include online auction [GY18],
verifiable database query [LWX+23], and classical authentication systems. Recently
proposed zero-knowledge proof of training framework (zkPoT) [APPK24] enables a prover
to prove the correct training of a deep neuronal network on a committed dataset without
disclosing any details about the model or dataset. The prover trains the model iteratively,
committing to the model parameters and providing a zkPoT at each step.

Driven by the rapid development of ZKP applications, many new schemes have been
recently proposed [XZS22, GLS+23, CBBZ23, DP23]. One very promising direction of
scheme development are polynomial commitment schemes (PCS) with linear prover time.
In such schemes, the prover can prove to the verifier that a committed polynomial was
genuinely evaluated. In addition, the prover benefits from an asymptotically linear runtime
concerning the huge polynomials at hand. Usually, the polynomials have between Millions
and Billions coefficients thus necessitating an efficient prover. Brakedown [GLS+23] and its
extension work Orion [XZS22] are highly interesting PCS with linear-time commitment and
proving. Their cryptographic security is based on the preimage resistance of a cryptographic
hash function making them post-quantum secure and avoiding trusted setups. The fast
prover and post-quantum security set Orion and Brakedown apart from commonly used
proof systems [KZG10, Gro16, WTS+18, BBB+18, Lee21] which are based on pairings or
discrete logarithm assumptions. The advantages of Orion and Brakedown attract broad
research, mostly focusing on their cryptographic and protocol-level properties. Recent
works [dHS24] improve the soundness guarantees of the Orion scheme and present the
closely related Scorpius scheme. Other efforts [CBBZ23] propose new schemes re-using the
linear-time encoding initially proposed in Brakedown. This underlines the relevance of
Orion and Brakedown-like schemes as a polynomial commitment scheme in contemporary
research. In our paper, we take Orion as a case study for post-quantum secure linear-
prover-time PCS due to Orion’s small proof size. However, our concepts and contributions
directly apply to Brakedown and other related works as well.

Motivation for hardware acceleration of Orion [XZS22]: Several works in the literature
have accelerated pairing and discrete logarithm-based proof systems. However, hardware
accelerating Orion (which was proposed in 2022) using FPGAs has not gained broad
attention. Although Orion’s commitment and proving mechanisms have linear asymptotic
complexity, reaching concrete efficiency and practicable performance is hard. This is due
to the Gigabytes of data involved in the prover’s complex computations which reflects in
low software performance [Su]. At the same time, Orion as a PCS is repeatedly used as a
building block in larger ZKP applications (e.g. zkPoT [APPK24]). Hence, the commitment
and proving steps of Orion are invoked multiple times within a single execution of the
ZKP application. These frequent invocations require performant polynomial commitment
and proving mechanisms.

A detailed timing analysis of Orion’s software implementation [Su] (presented in Sec-
tion 3.3) shows that the most demanding part of Orion is the polynomial commitment
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phase, involving linear error-correcting Spielman codes and large expander graphs. The
Spielman encoding operates over Gigabytes of data necessitating off-chip memory storage.
Even more critically, Spielman codes access the data in off-chip memory in a non-optimal
random pattern which degrades the memory bandwidth. This challenge was also identified
by prior work [SLDS24] but no solution has been presented so far. Furthermore, the
handling of large expander graphs within the encoding is challenging. In typical implemen-
tations, these graphs require considerable storage of several hundred Megabytes or even
Gigabytes. Hence, the high demand for off-chip memory is a critical aspect of Orion and
requires a memory-aware hardware design.

Another challenge in Orion’s commitment is the generation of Merkle Trees. Con-
structing these trees quickly demands massive hashing throughput. In addition to the
commitment step, also the proving mechanism in Orion’s software is slow. Proving contains
so-called proximity and consistency checks which compute random linear combinations
of the large Spielman codewords. Subsequently, Orion Merkle-commits to the linear
combinations causing a total latency of up to several seconds.

Given the performance bottlenecks in Orion, there is a strong need to explore op-
timization strategies that can accelerate the scheme. This paper addresses the three
key operations within commitment and proving for optimization: (1) improving the per-
formance of linear Spielman encoding by lowering the costly random off-chip memory
accesses and by on-the-fly expander graph sampling, (2) optimizing the generation of
Merkle Trees for faster commitment and proving in Orion, (3) accelerating the proximity
and consistency checks within proving. By focusing on these core aspects, we significantly
reduce the latency of the Orion PCS. Therefore, our methodology enhances the scalability
and practicality of linear-prover-time PCS – such as Orion or Brakedown – for real-world
applications.

1.1 Contributions
We present a series of novel memory-aware optimizations to enhance the performance of
Orion and Orion-like PCS. Our contributions are:

– Reduced off-chip memory accesses in Spielman encoding: We propose in-
verted expander graphs which relax the critical demand on off-chip memory bandwidth
during linear encoding. Compared to regular expander graphs, inverted expanders
save roughly 50% of off-chip memory accesses which allows a significant improvement
of computational performance. Moreover, problematic random writes are avoided
entirely and overheads due to read-write-turnarounds are reduced.

– On-the-fly graph sampling: The baseline version of both, regular and inverted
expander graphs requires storing the graph structure. In case of N = 228, the graph
structure consumes up to 1.1 Gigabytes in off-chip memory. The overall overhead is
even higher when storing the graph structure of multiple N , i.e. a range of N = 216

to 228. Loading this large data would degrade the effective off-chip bandwidth during
linear encoding. We hence present an on-the-fly graph sampling method and a
novel postprocessing technique that avoids off-chip storage of the graph structure.
In addition, we extend Brakedown’s proof [GLS+21] to show that our on-the-fly
sampled inverted expander graphs do not compromise code distance.

– Efficient Merkle Tree generation: We develop a pipelined method for data
rearrangement and constructing Merkle Trees, which schedules interleaved hashing
and Merkle Tree construction. This accelerates the computational overhead in the
commitment and proving phases.

– Accelerated proximity and consistency checks: We accelerate the proximity
and consistency checks within proving by reutilizing the linear encoding datapath.
In addition, proving requires dedicated Merkle commitments which we compute via
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re-using the Merkle Tree unit. Hence, the proving step in Orion leverages existing
hardware components to lower the latency of the overall scheme.

– FPGA implementation for Orion: We present the first FPGA architecture for
the Orion PCS. Our heterogeneous design relies on High-Bandwidth-Memory (HBM)
on an Alveo U280 datacenter FPGA [Xil19] and benefits from our memory-aware
design strategy. In addition, we detail our architecture partitioning to address the
physical placement challenges for the multi-SLR FPGA. Our large-scale FPGA design
accelerates Orion’s commitment and the proving phase by up to 264× and 65×
respectively.

1.2 Organization
The remainder of the paper is structured as follows: In Section 2, we provide an overview
of the necessary background, including expander graphs, Spielman codes, Merkle Tree
commitments, and off-chip memory details. Section 3 contains a comprehensive study
of proof systems, functional commitments, and the Orion scheme. In addition, we show
the similarities and differences between Orion and Brakedown. Section 4 delves into
the specific challenges and our proposed solutions for efficient Spielman encodings. In
Section 5, we discuss the challenges associated with Merkle Tree generation and our
optimized hardware-friendly approach. Section 7 presents our overall FPGA architecture
and compares our implementation results. Section 8 discusses the impact of this work and
how other PCS can benefit from our design. Finally, Section 9 concludes the paper.

2 Basic Background
This section offers the essential background required to understand the contributions of
this paper. To ensure the paper is self-contained, the background section is relatively
extensive. For a more detailed explanation of Orion, including proofs and protocols, refer
to the original Orion paper [XZS22].

2.1 Notation and Acronyms
Natural numbers and field elements are denoted using lowercase letters, e.g., d. Vectors
are represented by v⃗, while matrices are indicated by bold capital letters, such as M. The
element from the i-th row and j-th column is M[i, j], and the i-th column vector is M[:, i].
To denote the size of a set S, we use the notation |S|. The implementation of Orion uses an
extension field Fp2 , e.g., GF ((261 − 1)2) in the software developed by the authors [XZS22].
The elements of this extension field can be represented as a degree-1 polynomial a + bz
where a and b are from the base field Fp. It is not always necessary to use an extension
field if the base field is sufficiently large. We define the Hamming weight function HW (v⃗)
to be the number of non-zero elements in the vector v⃗, i.e. HW (v⃗) = ||v⃗||0. We use poly(x)
to refer to a function upper-bounded by a polynomial in variable x with a constant degree.
We use the base-2 logarithm unless otherwise specified.

2.2 Graphs and Expanders
Graphs in discrete mathematics are networks of points. Formally, a graph is a set of vertices
and edges, where each edge is an unordered pair of vertices representing a connection. We
denote this as G = (V, E) with V as the vertex set and E as the edge set. Both sets are
usually finite, though not necessarily always [Big02]. The degree of a vertex is the number
of edges connected to it [Hei03].
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Figure 1: Unbalanced bipartite expanders.

2.2.1 Expander Graphs

In an expander graph, any small subset of vertices has a large proportion of its vertices
connected to vertices outside the subset [SS94], i.e., the subset ‘expands’ to neighbors.
Formally, a graph G = (V, E) satisfies the expansion property if, for some constants δ > 0
and m > 0, we have:

∀S ⊂ V, |S| ≤ m⇒ |{y ∈ V \ S : ∃x ∈ S such that (x, y) ∈ E}| ≥ δ|S| (1)

This means that for any subset S of at most m vertices, the number of distinct vertices
outside S that are connected to at least one vertex in S is at least a δ-fraction of the size
of S [Spi96]. Thus, the number of neighboring vertices grows proportionally with the size
of the subset.

Bipartite Expanders: The Orion proof system uses expander graphs that are also bipartite.
In a bipartite graph, the set of vertices can be divided into two disjoint sets L and R such
that there are no connections within L nor R. Thus, a vertex in L can only be connected
to vertices in R and vice versa. We call L the left vertex set and R the right vertex set.
We call such a bipartite graph G = (L, R, E) as (c, d)-regular if all vertices in L have the
degree c and all vertices in R have the degree d. In addition, we define the compression
parameter α such that |R| = α|L|.

Given parameters ε, δ with 0 ≤ ε < 1 and δ > 0, a (c, d)-regular graph is a (c, d, ε, δ)-
expander if it upholds the expansion property mentioned in Equation 1 for an ε-fraction of
the larger vertex set L or R. In Orion, we have |L| > |R|, thus we substitute V by L in
Equation 1 and set m = ε|L|. The expansion property now tells us that for every subset of
left vertices, there must be outgoing connections to R depending on δ. Figure 1a illustrates
such an expander. It connects a left vertex set of L = {l1, . . . , lk} to a right-vertex set
R = {r1, . . . , rn} with dense connections. In Figure 1b, an example is given with the
expansion of vertices {l2, l3} highlighted with c = 2 and d = 3.

2.2.2 Random Expanders

Constructing expander graphs is typically challenging. However, using a random con-
struction, where edges are randomly placed between vertices, can yield good results with
relatively low complexity [Spi96]. Thus, using randomized edges is a convenient way to
construct a bipartite expander. Let L be the left vertex set and R be the right. Then,
we can construct the edge set as follows. Set Ei = {(li, rt) : rt random vertex ∈ R} with
|Ei| = c for each vertex li ∈ L. That is, for vertex li of L, find c distinct random vertices
in R to connect to. Then, the union E =

⋃
i Ei of all random edge sets allows to construct
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Figure 2: Illustration of the recursive Spielman encoding.

G = (L ∪R, E). The chosen edges result in c neighbors for all vertices in L [Spi96] while
the edges on R will follow a binomial distribution. Algorithm 2 shows the graph generation.

It is often desirable to prove that a particular graph G is a good expander. An efficient
test for a good expander is provided in [XZS22]. They prove that a random construction
as described above gives a good expander with probability 1−O

(
1

poly(k)

)
, where k = |L|.

They define the Very Small Set Expansion problem distinguishing two cases [XZS22]:

1. Non-expanding: ∃S ⊂ L with |S| ≤ log log k and Equation 1 does not hold for S.
2. Expanding: ∀S ⊂ L with |S| ≤ log log k, Equation 1 holds.

To test for the non-expanding case, the authors introduce an algorithm given in Algorithm 3.
If this algorithm outputs NotFound, then with overwhelming probability, the graph is a
good expander.

2.3 Spielman Codes: Linear-Time Encodable Error-Correcting Codes
The goal of an error-correcting code is to detect and correct errors, e.g., transmission
errors due to the unreliability of networks [HP10]. A code is defined over an alphabet,
commonly consisting of binary digits. A message with length k is encoded into a codeword,
which is represented using exactly n digits of the alphabet. Of the n digits, k digits are
associated with the information, while the remaining m = n− k digits are used for error
detection and correction. Such a code is referred to as an [n, k, d] code, with distance d.
Therein, the distance d of the code is the minimal Hamming distance between any two
valid codewords. The relative distance of a [n, k, d] code is defined as δ = d/n and the
rate is 1

r with r = n/k, which is the ratio of digits used by the code against the minimum
number of digits necessary to contain the same information.

Linear codes are the most studied form of error-correcting codes. Their characteristic
is that any linear combination of codewords is again a valid codeword [RL09]. The work
in [Spi96] proposes the Spielman code, a linear error-reduction code with a linear-time
encoding using expander graphs. Orion [XZS22], Brakedown [GLS+21], and related schemes
use this linear-time encoding to achieve a linear-time polynomial commitment scheme. We
hence explain the generalization of Spielman codes which works over finite fields.

The construction of a linear Spielman code, denoted as EC , for a message x uses a
recursive encoding, as shown in Figure 2. The recursion step or level is indicated using
superscript. At every level, two types of expander graphs G1 and G2 are used. In the first
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Figure 3: Merkle Tree example with l = 2. Hash values for opening m3 are marked in red.

step, the k-field-element-wide message x is encoded by the expander G
(1)
1 = (L(1)

1 , R
(1)
1 , E

(1)
1 )

with |L(1)
1 | = k and |R(1)

1 | = α1k. Therein, α1 = α where 0 < α < 1 is a Spielman code-
specific parameter. This encoding results in m1 with α1k elements. Then, this procedure is
applied recursively to encode m1, as shown in Figure 2. As soon as the recursion computes
the codeword for m1 and returns to level-1, a different expander G

(1)
2 = (L(1)

2 , R
(1)
2 , E

(1)
2 )

is applied to the codeword of m1 which results in the final z1 component of the codeword
of x. For G

(1)
2 we have |R(1)

2 | = α2|L(1)
2 | with α2 = r−1−αr

αr . The final Spielman codeword
of x is the concatenation of x, the codeword of m1, and z1, as shown at the top (recursion
0) of Figure 2.

All expanders G
(i)
1 and G

(i)
2 for recursion i use the constant parameter α1 and α2,

respectively. Since α1 < 1, the encodings mi shrink in their size during the recursions,
and at some point mi will have less than n0 elements left, where n0 is a scheme-specific
threshold for returning the recursion. Once this threshold is reached, no further recursion
occurs, and the codeword is formed by appending the input message with the result of
G

(1)
2 , as in Figure 2. The expanders used in Orion or Brakedown are public information

and can be randomly generated as discussed in Section 2.2.2.
The actual evaluation of an expander graph G = (L, R, E) with |L| = k and |R| = αjk

over a k-element wide message can be expressed as matrix-vector multiplication. For that,
the k × αjk adjacency matrix A of the graph G is used. This matrix has A[i][t] = 0 if
there is no edge connecting node li in L and node rt in R. Conversely, if A[i][t] = ωi,t ̸= 0,
there is such an edge, and a random weight ωi,t is assigned to the edge. Based on that,
the graph evaluation result m and the message x are interpreted as row vectors m⃗ and x⃗,
whereby m⃗ = x⃗A.

2.4 Merkle Trees
A Merkle Tree is a binary tree, used to commit to a vector of 2l messages [Gol01] efficiently
using a single hash value h at the root of the tree. The 2l leaf nodes store the cryptographic
hashes of the 2l messages. Each non-leaf node stores the hash of its two children nodes.
The root of the tree, h, serves as the final commitment, known as the Merkle commitment.

To prove the inclusion of any individual message mi in the committed message vector,
a Merkle proof πi is generated. This proof consists of l hash values in a path to the root:
starting from the leaf hash(mi) and the sibling node’s hash at each level of the tree, all
the way up to the root. A verifier combines these sibling hashes to re-compute the root
hash and accepts πi if and only if the re-computed root hash is h. The proof generation
does not reveal any other messages mj∀j ̸= i.

Figure 3 shows a representation of the Merkle Tree for a vector of four messages
[m1, . . . , m4]. To prove that m3 is part of the committed vector, the prover provides the
verifier with the siblings that appear in the path to the root, i.e., π3 = {h2,4, h1,1}. The
verifier re-computes h2,3 from m3, then h1,2 from h2,3 and h2,4, and finally the root-hash
from h1,1 and h1,2. If the prover tries to cheat by claiming that a different m′

3 is present
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in the committed vector, then the recomputed hash will not match with the commitment
h with very high cryptographic probability. This proof size is logarithmic in the number
of elements in the committed vector. Such logarithmic efficiency is particularly important
for cryptographic proof systems.

2.5 Impact of Memory Access Patterns on Off-Chip Bandwidth

In data-intensive applications, accelerators need to rely on off-chip memory like DDR4
or High Bandwidth Memory (HBM) as on-chip storage capacity is limited. The latest
generation DDR or HBM may offer a high peak bandwidth, e.g., HBM2 offering up to
460 GB/s; however, such peak performance is rarely achieved in practice, particularly when
memory access patterns are irregular or random. This subsection highlights how memory
access patterns critically impact the effective off-chip bandwidth in data-intensive hardware
accelerators, motivating the need for access-efficient designs. Communication with off-chip
memory typically follows the AXI4 (Advanced eXtensible Interface) protocol [FPG], which
supports two primary modes: burst and random accesses. Burst mode transfers multiple
contiguous memory words in a single transaction, reducing protocol overhead and enabling
memory controllers to exploit row buffering and bank-level parallelism. This allows burst
transactions to utilize up to 80–95% of the theoretical bandwidth. In contrast, random
accesses involve scattered, non-contiguous memory locations. These require frequent
row activations and pre-charges (in DDR4) or underutilized bank parallelism (in HBM),
significantly degrading performance. Random accesses are often limited to just 20–40% of
the peak bandwidth, even with AXI’s decoupled channel design that separates address
and data phases. Empirical results from Xilinx [Xil24] on the Alveo U280 FPGA provide
quantitative insights. Each HBM channel offers a theoretical 14.4GB/s bandwidth. For
read operations, burst accesses achieved 13.9GB/s (96.6% utilization), while random reads
dropped to 4.3GB/s (29.9%). Similarly, linear writes reached 12.9GB/s (89.7%), but
random writes fell to 4.6GB/s (32.0%). Across 32 HBM channels, the aggregate practical
bandwidth under random access reaches only 137.6 – 147.2GB/s, far below the 460 GB/s
theoretical peak. Hence, the design methodology needs to take care of memory access
patterns and optimize them to achieve a high compute acceleration.

Further Performance Implications: The AXI4 protocol is the de-facto standard for
memory communication in modern FPGA- and ASIC-based accelerators. It defines
independent read and write channels, each of which is further divided into address and
data phases. This decoupled design allows the memory controller to issue address requests
far in advance and pipeline multiple outstanding memory accesses. However, this flexibility
comes at a cost. Due to the deep pipelining of off-chip memory controllers, there is often a
significant initial latency between issuing an address and receiving the corresponding data.
This startup latency is especially pronounced when random accesses break the streaming
pattern and prevent effective prefetching or pipelining. For example, issuing a burst read
may still take tens of cycles before the first data word is returned, depending on memory
controller arbitration and row activation delays. Furthermore, read and write channels are
not truly independent at the memory controller level. When an accelerator interleaves
reads and writes, the memory controller must drain and flush internal buffers, reconfigure
internal paths, and stall ongoing transfers. This results in read/write turnaround penalties,
which introduce idle cycles even if the AXI interface is otherwise fully utilized. These
turnarounds are particularly harmful in scenarios like Orion’s expander graph evaluations,
which exhibit frequent switches between read and write phases due to multiply-accumulate
steps.
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3 Background on Proof Systems
Proof systems are protocols that allow a prover to convince a verifier of the correctness of
a statement. For example, the prover can demonstrate knowledge of a private witness w
for a public input x such that a circuit C(x, w) = 0 holds, without disclosing w. With this
hiding feature, the proof system is called ‘zero-knowledge’.

Proof systems are commonly used to ensure the correctness of computations outsourced
to untrusted entities. The verifier can verify the proof using a small amount of computation,
hence efficiently, without performing the outsourced computation themselves. There are
several important performance metrics for proof systems, such as proof generation time,
proof size, and proof verification time. Usually, proof systems are optimized for succinct
proofs and low verification costs. Having a low proof generation time is a plus and desired
in applications that require scalability.

Modern succinct non-interactive proof systems are built by combining an interactive
oracle proof (IOP) with a functional commitment scheme to form a succinct interactive
argument. To render the proof system non-interactive, the Fiat-Shamir transform [FS86]
can be used. In the following part, we describe functional commitment with a focus on the
specific type of ‘polynomial commitment’.

3.1 Functional Commitment (with a focus on polynomial commitment)
A functional commitment scheme is a commitment scheme that enables a party to commit
to a function (computation procedure) they intend to evaluate. A prover can prove
statements about the committed function, e.g., the evaluation of the function at a given
point is correct. Functional commitment schemes have binding and optionally hiding
properties. The binding property ensures that the committer cannot change the function or
the input to the function so that the commitment remains unaffected. The hiding property,
which is required for zero-knowledge succinct non-interactive argument of knowledge or
SNARK construction, ensures that no information about the function or the inputs to
the function is revealed. A functional commitment scheme is a cryptographic protocol
with an underlying cryptographic assumption, e.g., discrete logarithm assumption, pairing
assumption, cryptographic hash assumption, etc.

The Merkle Tree presented in the previous subsection is a vector commitment scheme
to prove membership in a committed vector. While vector commitments like Merkle Trees
are useful for committing to a static set of values and proving membership, they lack
the flexibility, efficiency, and built-in polynomial structure needed for polynomial-related
operations. Polynomial commitments [KZG10] are functional commitments, specifically
designed to address these limitations by enabling succinct proofs of evaluations, degree
checks, and functional properties of polynomials, making them essential in many cryp-
tographic applications. With a polynomial commitment scheme, a prover can commit
to a polynomial, for example, ϕ(x) ∈ F[x] of degree t with coefficients from the field
F. Simply committing to each coefficient (ϕ0∥ . . . ∥ϕt) of the polynomial is ineffective as
verifying the commitment would require revealing the entire polynomial. Furthermore,
many cryptographic applications require that only evaluations of ϕ(x) at specific x are
revealed without revealing the entire polynomial. Polynomial commitments play a crucial
role in modern proof systems e.g., SNARKs.

A polynomial commitment scheme [KZG10] consists of four main steps. First, the
‘Setup Phase’ involves the generation of public parameters using the Setup algorithm
for a given function family, say F . In the second step, the ‘Commitment Phase’, the
prover P uses the Commit algorithm and the public parameters to generate a commitment
comϕ for a polynomial ϕ ∈ F . Third, during the ‘Evaluation Phase’, the verifier V selects
an evaluation point x = a and requests the prover to evaluate ϕ at that point. The
prover computes the value b = ϕ(a) and generates an evaluation proof π that asserts the
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correctness of this evaluation. Finally, in the ‘Verification Phase’, the verifier checks the
validity of the proof π against the commitment comϕ, the evaluation point a, and the
claimed output b, accepting or rejecting the claim based on the result.

Example of Polynomial Commitment: To explain how a polynomial commitment scheme
works, we use the famous KZG scheme [KZG10] with some simplifications. Let ϕ(x) =
ϕ0 + ϕ1x + · · ·+ ϕtx

t be a polynomial over Zp of degree t. The scheme uses the discrete
logarithm and bilinear pairing cryptographic assumptions and requires a trusted setup.
The setup generates public parameters PP = (g, gs, gs2

, . . . , gst

, g2, gs
2) where g ∈ G1 and

g2 ∈ G2 are generators of two bilinear groups of prime order p, and s is a secret ‘toxic waste’
destroyed after the setup. The bilinear pairing e : G1 ×G2 → GT is used for verification.
To commit to ϕ(x), the prover computes comϕ = gϕ(s) =

∏t
i=0(gsi)ϕi which is an element

of G1. To prove that the evaluation ya = ϕ(xa) at x = xa is correct, the prover computes
the quotient polynomial q(x) = ϕ(x)−ya

x−xa
and then the proof π = gq(s) ∈ G1. The verifier

checks the evaluation proof π by using the bilinear pairing e(comϕ/gya , g2) ?= e(π, gs−xa
2 )

where gs−xa
2 is precomputed from the public parameters.

The prover in KZG polynomial commitment scheme is very slow and due to the use of
elliptic curve cryptography, the scheme is not quantum-resilient. Furthermore, the scheme
requires a trusted setup. In the following, we present the basics of Orion [XZS22] which
provides fast proving times, quantum resilience, and non-trusted setup.

3.2 Orion and Brakedown Proof Systems
Orion [XZS22] is a highly efficient zero-knowledge proof system that extends the Brake-
down proof system [GLS+23]. Both Orion and Brakedown utilize linear-time polynomial
commitments and Merkle Trees to achieve succinct proofs with fast proving. Unlike
most contemporary systems with superlinear prover times [KZG10, Gro16, CHM+20],
Orion’s and Brakedown’s provers run in linear time. Proving only relies on hash functions,
making it resistant to quantum attacks, which is not the case in schemes based on discrete
logarithm or pairing assumptions. Built on linear codes via expander graphs, Orion uses
code-switching to achieve poly-logarithmic proof sizes. In contrast, Brakedown has a
square-root proof size leading to larger proofs. Nevertheless, Brakedown’s encoding and
parts of the proving mechanism are very similar to Orion, which allows extending our
presented concepts to Brakedown as well. The following section explains the protocol with
a focus on Orion and highlights the similarities and differences to Brakedown.

Orion and Brakedown operate on multilinear polynomials ϕ in log N variables where
each variable has a degree 0 or 1. There are N monomials and coefficients in ϕ. The
coefficients of ϕ are in a field, say Fp2 , and any evaluation of ϕ is also performed in Fp2 .
Authors in [GLS+23] found that such a polynomial evaluation can be expressed as a tensor
product. The evaluation of ϕ at x⃗ = [x0, . . . , xlog N−1] can be written as

ϕ(x⃗) =
1∑

i0=0
. . .

1∑
ilog N−1=0

wi0,...,ilog N−1xi0
0 xi1

1 . . . x
ilog N−1
log N−1 (2)

In the above expression, i0, . . . , ilog N−1 represent the binary decomposition of monomial
index i ∈ {0, 1, . . . , N−1}, and the wi terms correspond to the coefficients of the monomials
Xi = xi0

0 xi1
1 . . . x

ilog N−1
log N−1. Let w⃗ denote the vector of monomial coefficients with the i-th

element w⃗[i] = wi0,...,ilog N−1 . Assuming N has an integer square root (e.g., N a power of
2), let k =

√
N . Also, let r⃗0 = (X0, X1, . . . , Xk−1) and r⃗1 = (X0·k, X1·k, . . . , X(k−1)·k) be

two vectors containing k distinct monomials. Then all the monomials in Equation 2 are
obtained using the tensor product r⃗0 ⊗ r⃗1. Finally, the evaluation of ϕ can be obtained
using the inner product [GLS+23] as ϕ(x0, . . . , xlog N−1) = ⟨w⃗, r⃗0 ⊗ r⃗1⟩. Protocol 1 gives
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Protocol 1 Overview of Orion [XZS22] with simplifications
Public input: Evaluation point x⃗ parsed as tensors r⃗0 and r⃗1;
Private input: Polynomial ϕ with coefficients w⃗; Let EC be the encoding function of
a [n, k, d] linear code and N = k2;

1: function Commit(ϕ) ▷ Similar to Brakedown
2: Parse the coefficient vector w⃗ of length N as a k × k-matrix W;
3: Using EC encode each row of W to obtain code C which is a k × n matrix;
4: for 0 ≤ i < n do
5: Compute Merkle root for each column Rooti ← Merkle.Commit(C[:, i]);
6: Compute the Merkle root R ← Merkle.Commit([Root0, . . . , Rootn−1]);
7: Output R as the commitment;

8: function Prove(ϕ, x⃗,R) ▷ Similar to Brakedown until line 13
9: Prover receives from the verifier a random vector γ⃗0 ∈ Fk

p2 ;
10: c⃗γ0 ←

∑k−1
i=0 γ⃗0[i]C[i, :], y⃗γ0 ←

∑k−1
i=0 γ⃗0[i]W[i, :]; ▷ Proximity check

11: c⃗1 ←
∑k−1

i=0 r⃗0[i]C[i, :], y⃗1 ←
∑k−1

i=0 r⃗0[i]W[i, :]; ▷ Consistency check
12: Prover sends the evaluation of ϕ at x⃗ as y ← ⟨y⃗1, r⃗1⟩ to verifier;

/* Starting here, Brakedown differs from Orion */
13: Compute Merkle root Rc⃗γ0

← Merkle.Commit(c⃗γ0);
14: Compute Merkle root Rc⃗1 ← Merkle.Commit(c⃗1);

/* The following message to the verifier forms Orion’s proof string πx⃗ */
15: Prover sends Rc⃗γ0

, Rc⃗1 to the verifier;
16: Verifier sends the set Î of t (0 < t < n) randomly sampled column indexes;
17: πi ← ZK.Prove(): The prover executes a CP-SNARK ZK to prove the genuine vali-

dation of the proximity and consistency checks. [Su] uses Virgo [ZXZS20] for this;
18: Send πi to the verifier.

19: function VerifyEval(R, x⃗, y = ϕ(x⃗), πx⃗, πi)
/* Verifier parses the proof string πx⃗ and πi and obtains the prover’s messages */

20: Verify the CP-SNARK ZK.Verify(πi);
21: Check consistency to Rc⃗γ0

, Rc⃗1 , and R;
22: Accept if all checks pass;

an overview of Orion’s polynomial commitment scheme [XZS22] with some simplifications
and shows the similarities and differences to Brakedown [GLS+23].

Commitment: In line 2 of Protocol 1, the coefficient-vector w⃗ of length N = k2 is parsed
as the matrix W of dimension k× k. Note that the evaluation y = ϕ(x⃗) = ⟨w⃗, r⃗0 ⊗ r⃗1⟩ can
also be represented as a vector-matrix-vector multiplication as follows: the row-vector r⃗0
is multiplied from the left with matrix W, and the resulting row-vector is multiplied with
the column-vector r⃗1 to produce y. Orion utilizes the tensor IOP protocol from [BCG20]
to construct a polynomial commitment based on Brakedown [GLS+23].

Let EC be the encoding procedure of an [n, k, d] linear code (Section 2.3). In line 3,
each row W[i, :] is encoded into a codeword of length n. After encoding all rows of W,
we obtain the code matrix C of dimension k × n. In lines 4 and 5, the columns of C are
Merkle-committed to leaf hashes Rooti. Finally, from the n leaf hashes, the Merkle Tree is
calculated in line 6 to produce the root hash R as the final commitment to the tree. Orion
and Brakedown use the linear-time Spielman code (described in the previous section) to
achieve linear time complexity for the polynomial commitment. Moreover, Orion’s and
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Brakedown’s commitment mechanisms are very similar with only minor differences such as
the underlying finite field. This allows to apply our acceleration techniques for linear-time
commitment to both schemes.

Proving Mechanism: The prover and verifier engage in an interactive protocol starting
from line 8 in Protocol 1. As a challenge, the verifier provides the prover with the random
vector γ⃗0 ∈ Fk

p2 . Using γ⃗0, in line 10 of the protocol, the prover computes random linear
combinations of the rows of C and W via inner products. As the code is linear, any linear
combination of codewords is also a codeword. Thus, if the calculations are performed
correctly (i.e., non-cheating prover), the resulting codeword c⃗γ0 should be the encoding
of y⃗γ0 . Next, in line 11, a similar linear combination is performed using r⃗0 of the tensor
query r⃗0 ⊗ r⃗1. If performed correctly, c⃗1 will be the encoding of y⃗1.

Up to line 12, Orion and Brakedown follow very similar steps. Yet, from line 13
on, the two schemes differ. Brakedown directly sends c⃗1, y⃗1, c⃗γ0 , and y⃗γ0 to the verifier
which locally performs the so-called proximity check and consistency check. During these
checks, the verifier encodes y⃗γ0 and y⃗1 and ensures EC(y⃗γ0) == c⃗γ0 (proximity check) and
EC(y⃗1) == c⃗1 (consistency check). In addition, the verifier randomly samples the set
Î containing t column indices of C. The prover sends the specified columns along with
their Merkle proofs under the commitment R. Finally, the verifier checks the obtained
columns against c⃗γ0 and c⃗1 and validates the Merkle proofs against R. The verifier accepts
if all checks succeed. The prover time complexity of Brakedown is O(N). However, the
proof size is O(

√
N), which is quite large compared to commonly used pairing-based proof

systems.
Orion significantly reduces the proof sizes to O(log2 N) by a so-called ‘proof composition’

technique [RZR24]. Orion’s proof composition technique does not perform the consistency
and proximity checks on the verifier side but on the prover side. Moreover, the prover
ensures a genuine execution of these checks via a CP-SNARK ZK. This technique requires
the prover to Merkle-commit to c⃗γ0 and c⃗1, as shown in lines 13 and 14 in Protocol 1.
After the commitment has been sent to the verifier, the prover and the verifier execute
the ZK protocol. The verifier finally checks the consistency of the Merkle commitments
(line 21) and accepts if the checks succeed. Orion treats the CP-SNARK ZK as a black box
thus any proper scheme can be used. The software implementation of Orion [Su] uses the
Virgo [ZXZS20] protocol. Note that Brakedown does not involve any CP-SNARK at the
cost of larger proof sizes.

Generalization to N = k1 · k2: For simplicity, the above-mentioned description of
encoding and Orion used N = k2, resulting in W of dimension k × k. Assuming N
is a power-of-two, it is easy to see that the same can be generalized to asymmetric
decomposition N = k1 · k2. The software implementation of Orion [Su] by the authors uses
the fixed k1 = 128 for all large N . Depending on the value of N , the number of columns
k2 in W is adjusted. This gives flexibility. Following the authors of Orion, we use fixed
k1 = 128 in our hardware implementation.

3.3 Latency of Operations in Orion
In this section, we present a detailed latency analysis of Orion’s core operations, particularly
how the system’s performance scales as N increases. Note that in contrast to other
cryptographic schemes, such as the one-time key generation process in digital signatures,
the commitment and proving phase in Orion is repeatedly invoked as part of a recursive
proving system. For example, when creating proofs of training for Deep Neural Networks as
in [APKP24], dedicated commitments are required for each layer. Each time the recursive
prover processes a new layer or polynomial, it calls Orion to commit to the new data and
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Table 1: Timing results in milliseconds (ms) of different operations in the reference
implementation of Orion [Su]. Results collected in software on AMD EPYC 9754 @2.25GHz.

Size Prover’s Operations in Orion Virgo Total Verifierlog(N) Commit Prove Commit+Prove
16 40 4 44 37 81 43
18 155 10 165 102 267 48
20 701 35 736 483 1,219 56
22 3,175 135 3,310 1,370 4,680 74
24 14,756 593 15,349 5,849 21,198 131
26 60,011 2,495 62,506 26,457 88,963 218
28 334,250 9,093 343,343 118,554 461,897 211

Table 2: Timing breakdown for Commit suboperations in milliseconds (ms). Results
collected in software [Su] on an AMD EPYC 9754 @2.25GHz.

Size Latencies of Sub-operations in Commit Total
log(N ) Initialize Encode(W) Hash(C) Merkle Tree(H) Commit

16 4 25 10 1 40
18 10 104 40 1 155
20 73 463 163 2 701
22 279 2,233 656 7 3,175
24 1,998 10,080 2,651 27 14,756
26 3,448 45,855 10,600 108 60,011
28 13,137 278,100 42,580 433 334,250

Table 3: Timing breakdown for Prove suboperations in milliseconds (ms). Results
collected in software [Su] on an AMD EPYC 9754 @2.25GHz.

Size Latencies of Sub-operations in Prove Total
log(N ) Inner Product Hash(c⃗) Merkle Tree(H) Other Prove

16 2 1 1 0 4
18 8 1 1 0 10
20 31 2 2 0 35
22 120 7 7 1 135
24 534 27 27 5 593
26 2,262 106 108 19 2,495
28 8,160 430 433 70 9,093

perform the prove steps. As a result, the commitment and proving phases must efficiently
handle repeated invocations, making it computationally intensive.

The computations in Orion can be broken down into three main phases: Commitment
(lines 1-7 in Protocol 1), proving (lines 8-15), and the Virgo CP-SNARK (lines 16-21).
Note that commitment and proving are executed solely by the prover whereas Virgo as
outer proof protocol involves the prover and verifier. Table 1 presents a timing breakdown
of the three phases collected using Orion’s software implementation [Su]. While all phases
contribute to overall latency, the commitment phase stands out due to its computational
complexity, particularly in managing the polynomial commitments across recursive calls.
Compared to commitment, the proving phase adds a smaller latency of up to 9 seconds for
N = 228. These two phases - commit and prove - define the latency of Orion excluding the
outer Virgo protocol and cause the major share of 74% of the overall runtime (N = 228).
The Virgo column in Table 1 contains the latency for executing Virgo’s prover protocol
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including circuit generation, circuit evaluation, sum-checks, etc. Hence, the Virgo prover
causes around 26% of the overall latency. Finally, Table 1 shows the end-to-end latency of a
full Orion execution including commit, prove, and the Virgo protocol, and the comparably
low verifier latency.

The commitment phase stands out as the most time-intensive operation in Orion. This
phase consists of several computationally demanding sub-operations, including initialization,
linear encoding, hashing, and Merkle Tree generation. Table 2 presents the software
latencies of these sub-operations. Therein, the initialization phase plays a crucial role in
constructing expander graphs, which are essential for establishing the system’s foundational
structure. The most prominent operation, however, is linear encoding, which takes the
input and encodes it using expander graphs. The encoding process as well as expander
graphs are described in detail in Section 2.3. Following the encoding, the hashing of the
columns of the encoded matrix C for Merkle Tree construction represents the second
largest time cost. Note that Orion’s software implementation supports SHA2 and SHA3
algorithms, where we choose the more recent SHA3 setting for all benchmarks.

Orion’s proving phase (lines 8-14 in Protocol 1) consists of the inner product com-
putation, hashing, and Merkle Tree generation. In addition, smaller operations such as
tensorization, evaluation computation, etc. are grouped into an ‘Other’ category. The
latencies of these sub-operations are reported in Table 3. We observe that the inner product
computation is the prevailing operation within proving whereas hashing and Merkle Tree
generation are more lightweight.

Operations we target for hardware acceleration: This work targets the most demanding
computations within the Orion scheme and presents FPGA acceleration techniques for
Orion and Brakedown-like PCS. Our design offers support for on-the-fly graph generation
thereby omitting the initialization sub-operation and avoiding storing the large graph in
memory. Moreover, we address the challenging linear encoding using Spielman codes and
present hardware-oriented optimizations. We also include units for hashing and Merkle
Tree computations needed in the commitment and proving steps. Finally, we reuse the
datapath for linear encoding to accelerate the inner product computation during proving.
These measures effectively improve the runtime of commitment and proving steps.

While our paper presents a deep design exploration and hardware optimization of
Orion- and Brakedown-like commitment and proof generation components, it excludes
the acceleration of the higher-level Virgo protocol from its scope. The Virgo protocol
integrates multiple complex mechanisms, including sum-check protocols [LFKN92], GKR
protocols [GKR15], and arithmetic circuit transformations. Each of these components
introduces distinct computational patterns and design challenges. Consequently, accelerat-
ing the full Virgo protocol requires substantial additional research beyond the scope of this
work. Nevertheless, extending hardware acceleration to encompass an entire CP-SNARK
system such as Virgo remains an exciting direction for future investigation.

4 Accelerating Expander Graph based Linear Encoding
The linear-time commitment and proof generation in Orion and Brakedown stems from
their expander-based linear encoding as covered in Sec. 2.2. These graphs are carefully
designed to be sparse, with a limited number of edges per node, while maintaining high
connectivity to preserve the security and succinctness required for cryptographic protocols.
This dual property is essential because the sparsity ensures efficient computations, while
high connectivity guarantees the soundness of encoding.

The straightforward process of constructing and using expander graphs involves Giga-
bytes of storage and random accesses to off-chip memory. Random accesses substantially
lower the off-chip memory bandwidth [Xil24], as discussed in Section 2.5. In addition,
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Figure 4: Our iterative approach for computing Spielman codes. The example has 3 levels.

frequent read and write interleavings during graph evaluations, as used in the reference
software implementation [Su], cause significant turnaround overheads in the DRAM-based
off-chip memory systems.

Our hardware accelerator tackles these off-chip data movement challenges through
a holistic design approach. The remainder of this section presents our suite of novel
optimizations for efficient and hardware-friendly linear encoding using expander graphs. We
begin by discussing the advantages of on-the-fly graph generation and our custom iterative
encoding procedure. Next, we introduce inverted expander graphs, which significantly
reduces the random off-chip memory accesses and read-write turnarounds. We also detail
the non-trivial integration of on-the-fly graph generation with the graph inversion technique.
Finally, we describe our memory-bandwidth-aware accelerator architecture tailored for
high-throughput linear encoding.

4.1 On-the-Fly Graph Sampling
In the baseline software implementation of Orion [Su], the entire expander graph is first
randomly sampled according to Algorithm 2 and then stored in memory before its usage.
Storing the sampled graph, however, causes a substantial memory consumption. For
example, a N = 228 polynomial, which needs 8 recursions and hence 16 different graphs,
consumes 1.1 GiB. Storing this data requires additional off-chip memory resources such
as DDR RAM. Also, although reading the graph from memory follows a linear pattern,
scarce off-chip bandwidth is consumed.

However, the used expander graphs are public and randomly sampled (see Section 2.2.2).
This allows for re-sampling the graphs on the fly during each encoding. Therefore, we
use a pseudo-random number generator (PRNG) to expand the needed graphs based on a
public seed. Note that using a PRNG with a sufficiently high period for graph sampling
does not compromise security; it is just used to deterministically sample public data. In
our implementation, we use the Trivium [Bou20] PRNG with a period > 290. This allows
dynamically constructing large parts of the expander graphs during the encoding process.

4.2 Iterative Linear Encoding
Orion encodes the coefficient matrix W of a polynomial into a code matrix C in a row-wise
manner. In essence, each row in W is encoded into one row of C as detailed in Section 3.2.
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Figure 5: The two different approaches of expander graph implementation. Only a few
weights ωi,t are explicitly shown, but every edge connecting li to rt has a weight ωi,t.

In the software implementation of Orion, the linear encoding algorithm for one row in W
is recursive, as discussed in Section 2.3. Yet, a recursive approach is not ideal for hardware
designs due to increased control overhead. Thus, we implement linear encoding iteratively,
as shown in Figure 4.

The iterative linear encoding procedure starts with applying an expander graph G
(1)
1

with compression parameter α1 < 1 to the input message, which is one row of W (Figure 4
top). The result of this operation is m1, which is smaller in size than the input message.
In the next step, another expander graph G

(2)
1 with α1 is applied on m1 yielding m2.

Thereby, m2 is again smaller than m1. This procedure is applied until the size of mi is
below a certain threshold n0.

Thereafter, different expander graphs G
(j)
2 with compression parameter α2 < 1 are

applied iteratively on the previous codewords, as shown in Figure 4. The results of the G
(j)
2

expanders are denoted with zj . The G
(j)
2 graph evaluations are repeated until all previous

intermediate codewords are consumed. According to Section 2.3, α1 and α2 are given by
the code parameter α which is α = 0.238 in Orion [Su]. We obey this configuration in
our work. The final expander graph evaluation G

(1)
2 yields z1, which completes the linear

encoding.

4.3 Optimizing Memory Bandwidth with Inverted Expander Graphs
Traversing expander graphs involves irregular and random memory access patterns, creating
performance bottlenecks when working with large datasets stored in external memory such
as DDR or HBM. These random accesses can degrade memory bandwidth by up to 3× (see
Section 2.5), and frequent read-write turnarounds further increase latency. The reference
implementation [Su] does not mitigate these overheads.

To overcome these limitations, we propose an inverted expander graph that reduces
random memory accesses and minimizes read-write turnarounds, thereby improving overall
performance. This section begins with a review of the baseline implementation [Su],
highlighting its inefficiencies for hardware. We then introduce our inverted approach,
analyze its impact on memory bandwidth, and discuss its security implications.

4.3.1 The Baseline Expander Graph Evaluation and their Disadvantages

The baseline expander graph evaluation, (e.g. as implemented in [Su]), is illustrated
in Figure 5a. The expander graph G = (L, R, E) is represented by two node arrays
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L = {l0, l1, . . .} and R = {r0, r1, . . .}, where the values of nodes li, rt ∈ Fp2 . Each left-side
node li has a fixed degree c (c = 3 in Figure 5a, c = 10 in [Su]), and a connecting edge
between li and rt carrying a random weight ωi,t ∈ Fp2 . The degree of right-side nodes
rt varies due to the randomized left-to-right node assignments, leading to a binomial
distribution of edge counts across R (Figures 6a–6c). All rt are initialized to zero. During
evaluation, each li is processed sequentially: it is multiplied by its c associated edge weights
and accumulated into the corresponding rt nodes. For example, as highlighted in red in
Figure 5a, l0 updates r0, r2, and r3 as follows:

r0 = r0 + l0 · ω0,0 r2 = r2 + l0 · ω0,2 r3 = r3 + l0 · ω0,3 (3)

Importantly, the left-side nodes are accessed in a linear order, while the right-side nodes
are accessed in a randomized order. This approach of graph evaluation requires random
read and write operations, which lowers the effective memory bandwidth. For each input
node li, c random right-nodes rt1 to rtc

must be read from off-chip memory, as storing the
large data structure on the chip is infeasible. Then, the c accumulations are performed (as
in Equation 3), and the c results are stored back in scattered memory locations. In this
way, per input node li, c random reads and c random writes are required. For a whole
graph evaluation of G = (L, R, E), |L| linear reads, |E| random reads, and |E| random
writes must be performed.

Table 4 reports the off-chip memory access count for the full encoding process with
multiple graph evaluations. For the baseline expander graphs, up to 104 Million read and
write operations are required to load and store the actual codeword data. Moreover, up to
50 Million additional read operations would be required to load the graph structure from
memory. This high number of non-uniform memory accesses is challenging even for HBM.
While HBM offers high theoretical peak bandwidth, the effective bandwidth is significantly
lower due to random access patterns as explained and detailed in Section 2.5.

In addition to random memory accesses, the graph evaluation approach introduces
read-after-write hazards in the multiplication and accumulation pipeline. Consider two
consecutive input nodes li and li+1 mapping to the same output node rt, which is likely to
occur in expanders with few right nodes |R|. In such cases, the write operation updating
rt from li must complete before the subsequent read by li+1 can proceed. While these
dependencies can be efficiently managed in fully on-chip designs using techniques like data
forwarding or buffering, they become significantly more problematic when using off-chip
memory, due to higher latency and the lack of immediate write visibility. As a result, the
pipeline must stall to ensure correctness, leading to increased control logic complexity
and reduced throughput. These stalls, combined with inefficient memory access patterns,
substantially degrade the performance of the baseline expander graph evaluation. The
next section presents our optimized solution to address these bottlenecks.

4.3.2 Inverted Expander Graph Evaluation for Minimizing Memory Accesses

We propose an inverted expander graph evaluation that reverses the baseline approach
from Section 4.3.1, which processes the left nodes sequentially to distribute values to
the right nodes. Instead, our inverted method iterates over the right nodes, aggregating
contributions from connected left nodes, as shown in Figure 5b. For example, to compute
r0, the evaluation loads the d = 3 connected left nodes l0, l2, and l3, then multiplies each
by its respective weight and accumulates the results. Once r0 is computed, the process
moves to r1, repeating the same steps.

Our inverted expander graphs remove the read-after-write hazards and reduce the
penalty of memory accesses in a G = (L, R, E) graph evaluation. In particular, just |R|
linear write operations are needed whereas baseline graphs require |E| random writes
(note that |E| ≫ |R|). In addition, |L| linear reads are saved and frequent read-write
turnarounds are avoided.
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Table 4: Off-chip read and write operations for linear encoding using baseline expander
graphs and our inverted expander graphs with approach 1 and approach 2. GRd refers to
off-chip reads to obtain the stored graph structure.

lo
g

(N
) Baseline Expander Graphs Inverted Expander Graphs

Left to Right Evaluation Right to Left Evaluation
Stored Graph Approach 1: Stored Graph Approach 2: Sampled Graph

#Rd #Wr #Total #GRd #Rd #Wr #Total #GRd #Rd #Wr #Total #GRd
16 12,773 11,850 24,623 11,850 12,048 368 12,416 11,850 13,151 1,196 14,347 0
18 52,253 48,490 100,743 48,490 48,484 1,474 49,958 48,490 53,251 5,070 58,321 0
20 210,267 195,140 405,407 195,140 194,212 5,898 200,110 195,140 213,754 20,752 234,506 0
22 842,154 781,580 1,623,734 781,580 777,024 23,592 800,616 781,580 855,308 83,028 938,336 0
24 3.37M 3.13M 6.50M 3.13M 3.11M 0.09M 3.20M 3.13M 3.42M 0.33M 3.75M 0
26 13.48M 12.51M 25.99M 12.51M 12.43M 0.38M 12.81M 12.51M 13.68M 1.33M 15.01M 0
28 53.93M 50.05M 103.98M 50.05M 49.74M 1.51M 51.25M 50.05M 54.74M 5.31M 60.05M 0

How to deploy inverted expander graphs: Although the described inverted expander
graphs significantly lower the random memory accesses, they cannot directly be combined
with on-the-fly graph sampling. This is because the binomially distributed right node
degree d and the corresponding edges to left nodes are not computable via a PRNG
such that each left node has a constant degree c (as it is the case in baseline graphs, see
Figures 6a to 6c). Instead, two different approaches can be applied:

1. Storing the graph structure in memory: In this approach, a baseline graph
is generated using Algorithm 2. This graph is then reordered from left-node major
order to right-node major order, where all connections of one right node are stored
consecutively. The resulting graph is kept in off-chip memory and streamed to the
hardware architecture which computes the inverted graph evaluation.

2. Relaxing the left-node degree c: This approach samples the inverted expander
graph structure on-the-fly using a PRNG and directly evaluates the inverted graph.
Specifically, we fix the right node degree d and iterate linearly over the right nodes.
For each right node, the PRNG randomly selects d left nodes accumulating the right
node. This leads to a constant degree of right nodes and a binomially distributed
degree of left nodes c. Figures 6d to 6f show examples of the according distributions.

The encoding in approach 1 yields the identical result as Orion’s or Brakedown’s
baseline implementations but also has the drawback of high off-chip memory consumption
as both the graph and data must be accessed. Table 4 shows the resulting off-chip memory
accesses. Compared to baseline graphs, our inverted graphs with approach 1 clearly
reduce the data reads and writes by about 50% (column #Total). Nevertheless, the data
movements still take place in the range of Gigabytes. In addition to the encoding data,
the graph structure must also be loaded from off-chip memory in approach 1. Loading the
graph structure causes almost as many reads as the actual data streaming (see column
#GRd in Table 4). Hence, storing the graph in HBM would degrade the effective memory
bandwidth during linear encoding since reading the graph structure blocks the data reads
and writes. Using supplementary DDR memory for storing the graph structure is also
problematic since FPGAs like Alveo U55C [Xil23] or [Xil21] do not have DDR memory.
Thus, it is desirable not to store the graph structure but to generate it on the fly.

On the other hand, approach 2 changes the structure of the Spielman code, yielding a
different encoding result compared to baseline implementation. This difference, however,
is transparent to the verifier due to Orion’s proof composition technique (see Section 3.2).
In particular, the verifier never performs the encoding themself but only verifies the outer
Virgo proof and Merkle commitments. Hence, the verifier remains unaffected by our
proposed approach 2. In addition, approach 2 combines the benefits of on-the-fly graph
sampling (i.e. avoiding graph storage in off-chip memory and not relying on DDR in linear
encoding) with inverted expander graph evaluation (reduced HBM accesses). This makes
approach 2 more interesting for high-performance hardware architectures and inspires us to
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Figure 6: Distributions of left and right node degree c and d for baseline graphs and
inverted expander graphs using on-the-fly graph sampling. Parameters for Orion’s G1
graph.

design our hardware using approach 2. Yet, changing our design to approach 1 is possible
given the target FPGA provides sufficient off-chip memory and bandwidth. The PRNG
queries must be replaced by off-chip memory reads which requires data routing across the
FPGA. This data routing requires engineering effort to place and route the additional
logic within the dense design. Hence, we will present estimated timing benchmarks for
approach 1 in the result section (Section 7.4) and actual latencies for our FPGA design
using approach 2. In the remainder of this section, we will solely focus on our inverted
expander graphs using approach 2.

How to mitigate low-degree left nodes in approach 2: The inverted expander graph
with on-the-fly sampling connects a right node with d left nodes randomly, as described in
RunExpander of Algorithm 1. While the right nodes have the fixed degree d, this random
sampling causes the left node degree c to follow a binomial distribution (Figure 6d), unlike
the baseline graph. Hence, there are left nodes with fewer connections (i.e. degree lower
than c) and this can compromise the minimal distance guarantees of the linear code. We
address this issue using a postprocessing step (function PostProcess in Algorithm 1).
Postprocessing is executed after the inverted expander graph evaluation and adds additional
connections from low-degree left nodes to right nodes of the public graph. These additional
connections leverage the left node’s degree to meet a certain lower bound. Satisfying this
lower bound on the left node degree leads to sufficient connectivity and code distance, as
will be shown in Section 4.3.3. Yet, introducing additional connections to left nodes causes
a small amount of additional computations. This is reflected in the number of data reads
and writes in Table 4. Compared to inverted graphs with approach 1, about 17% more
read and write operations are required but graph reads from off-chip memory are entirely
avoided.

We precompute and store the addresses of the low-degree left nodes for the selected
PRNG seed and store them in memory. Unlike storing the whole graph consuming
Gigabytes, this postprocessing information is small enough to fit into on-chip memory.
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Algorithm 1 Our on-the-fly inverted expander graph evaluation with postprocessing.
1: function RunExpander(L, k, αi, d, seed,W ) ▷ L = [l0, . . . , lk−1] left nodes

▷ d is degree of right-side nodes
2: PRNG.Init(seed)
3: q ← αik ▷ Number of right-side nodes
4: for t from 0 to q − 1 do ▷ Iterate over all right-side nodes rt

5: rt ← 0
6: for j from 0 to d− 1 do ▷ Find d many random left-side nodes li
7: i← PRNG.Random() mod k ▷ Random node index for L
8: ωi,t ← PRNG.FieldRandom() ▷ Random field element
9: rt ← rt + li · ωi,t ▷ Field multiplication with the value of left node

10: R← [r0, . . . , rq−1]
11: return PostProcess(L,R,W )

12: function PostProcess(L, R, W ) ▷ W : list of low-degree left nodes
13: for each (i, nrs) ∈W do ▷ Node li requires nrs additional connections
14: for j from 0 to nrs − 1 do ▷ Find nrs many random right-side nodes rt

15: t← PRNG.Random() mod αik
16: ωi,t ← PRNG.FieldRandom()
17: li ← L[i], rt ← R[t]
18: rt ← rt + li · ωi,t ▷ Add connection from li to rt

19: R[t]← rt

20: return R

This eliminates the need for external DDR memory and enables linear encoding on DDR-
less FPGAs. Overall, our inverted expander graphs effectively reduce the memory accesses
to HBM and allow for performant linear encoding. In our design, the inverted graph
evaluation causes about 82.5% of the linear encoding runtime whereas postprocessing
accounts for about 17.5% of the runtime, as discussed in Section 6.2. Importantly, our
on-the-fly graph sampling and postprocessing do not require off-chip memory to store the
large graph.

4.3.3 Security Analysis of Inverted Expander Graphs

The expander graph evaluation in Orion and Brakedown proof systems implements a linear
error-correcting encoding that detects malicious alterations in the coefficient matrix W
by a cheating prover. To ensure security, the underlying [n, k, d] linear code must have a
sufficiently high relative distance δ, which intuitively guarantees strong diffusion, meaning
small changes in the input significantly impact the encoded output. In this section, we
demonstrate that our proposed encoding strategy based on inverted expander graphs and
postprocessing maintains this crucial relative distance property. Specifically, by enforcing
a minimal left-node degree greater than or equal to the fixed degree of baseline Orion’s
codes, our encoding achieves, with overwhelming probability, at least the same relative
distance as the original Orion encoding [XZS22]. This result similarly applies to the
parameter sets used in the Brakedown proof system [GLS+23]. While a detailed formal
proof is provided later, this intuitive explanation highlights the rationale behind ensuring
a minimum left-node degree to preserve encoding security.

For this analysis, we recall the functionality of Spielman codes as explained in Section 2.3
and Figure 2. To compute the [n, k, d] Spielman code EC(x⃗) of message x⃗ ∈ Fk

q
1, the

expander graph G1 with compression factor α1 = α is applied to x⃗ yielding m⃗1 = G1(x⃗) ∈
1Orion uses an extension field, hence q = p2.
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Fαk
q . Then, a recursive [αn, αk, αd] Spielman encoding y⃗1 = Erec

C (m⃗1) with relative distance
δ is computed using the same strategy. The intermediate result y⃗1 is the input to the second
graph evaluation z⃗1 = G2(y⃗1), having compression factor of α2. The overall Spielman
codeword EC(x⃗) = (x⃗ ∥ y⃗1 ∥ z⃗1) is the concatenation of x⃗, y⃗1, and z⃗1.

Using this construction, Brakedown [GLS+21] shows that a [n, k, d] Spielman encoding
EC(x⃗) with parameter α and rate r = n/k reaches a relative distance δ = d/n with
overwhelming probability if all left nodes in G1 and G2 have a constant degree of c1,BD
and c2,BD as computed in Equation 4 and Equation 5, respectively. Therein, H(·) denotes
the binary entropy function, µ = r − 1− rα, and ν = δr + αδr + 0.03.

c1,BD =
⌈

min
(

max(1.28δn, δn + 4), 1
δr log α

1.28δr

(
110
k

+ H(δr) + αH(1.28δr

α
)
))⌉

(4)

c2,BD =
⌈

min
(

2δn + n− k + 110
log p2 , D

)⌉
(5)

D = max
(

rαH(δ) + µH(ν/µ) + 110/k

αδr log µ
ν

,
rαH(δ/α) + µH((2δr + 0.03)/µ) + 110/k

δr log µ
2δr+0.03

,

(2δr + 0.03)
(

1
(α− δ)r + 1

αδr
+ 1

µ− 2δr − 0.03

)
+ 1
)

(6)

In contrast to Brakedown where G1 and G2 graphs have constant left node degrees of
c1,BD and c2,BD, our inverted expander graphs are randomly generated on the fly which
causes variable left node degrees following a binomial distribution (see Figure 6d). After
this inverted graph evaluation, our postprocessing adds edges to the low-degree left nodes
such that every left node in the public graphs G1 and G2 has a degree of at least c1,BD and
c2,BD, respectively. Other central code parameters such as α or rate r remain the same as
in the baseline graphs. We show the security of our construction by proving Lemma 1,
which is a generalization of Brakedown’s [GLS+21] security proof.

Lemma 1. A [n, k, d] Spielman code using expander graphs G1 and G2 with parameter α,
rate r, and variable left-node degrees c1 and c2 has a relative distance of at least δ with
overwhelming probability if c1 ≥ c1,BD and c2 ≥ c2,BD.

Proof. This proof significantly overlaps with [GLS+21] with minor extensions. Due to the
linearity of [n, k, d] Spielman codes, their relative distance δ is given as

δ = 1
n

min
(
HW (x⃗ ∥ y⃗1 ∥ z⃗1) ∀x⃗ ∈ Fk

q\{0}
)

. (7)

Therein, HW (v⃗) denotes the Hamming weight of the vector v⃗ ∈ Fk
q , which is the number

of non-zero elements in v⃗. From Equation 7 follows that for all messages x⃗ with Hamming
weight HW (x⃗) ≥ δn, the codeword (x⃗ ∥ y⃗1 ∥ z⃗1) has a Hamming weight of at least δn since
x⃗ is part of the codeword. Contrarily, if x⃗ has low Hamming weight of 0 < HW (x⃗) < δn,
then y⃗1 might have HW (y⃗1) ≥ δn again leading to a codeword with Hamming weight of at
least δn. Finally, if 0 < HW (x⃗) < δn and HW (y⃗1) < δn, the Brakedown paper [GLS+21]
gives sufficient criteria (i) and (ii) such that z⃗1 has HW (z⃗1) ≥ δn. Thus, in any case of
x⃗ ̸= 0, HW (x⃗ ∥ y⃗1 ∥ z⃗1) ≥ δn and the code has relative distance of at least δ. The criteria
from Brakedown are:

(i) ∀x⃗ with 0 < HW (x⃗) < δn : m⃗1 ̸= 0
(ii) ∀m⃗1 ̸= 0 and HW (y⃗1) < δn : HW (z⃗1) ≥ δn

(Note that if m⃗1 ̸= 0 then HW (y⃗1) ≥ δαn since Erec
C has a relative distance of δ)2

2This is guaranteed by applying this proof recursively to the Spielman encoding Erec
C .
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Brakedown shows that if (i) and (ii) hold, the Spielman code EC has a relative distance of
at least δ. This is a sufficient but not necessary criterion since there might exist codewords
where HW (x⃗) < δn, HW (y⃗1) < δn, and HW (z⃗1) < δn but HW (x⃗ ∥ y⃗1 ∥ z⃗1) ≥ δn. Such
a case is not considered in Brakedowns proof leading to conservative code parameters with
higher security margins.

Brakedown presents four claims that show that (i) and (ii) hold with overwhelming
probability if the graphs G1 and G2 have constant left node degrees of c1,BD and c2,BD
as computed in Equations 4 and 5. We extend these four claims in the following for our
variable left node degrees c1 and c2 lower bound by c1,BD and c2,BD, respectively. By
extending the four claims and proving them individually, we prove Lemma 1.

Brakedown’s claim 1: Brakedown [GLS+21] defines E(1,BD) to be the event that the
graph G1 with constant left node degree of c1,BD contains a set of j left nodes that connect
to less than max(j + 4, 1.28j) right nodes. Given the constraint for c1,BD in Equation 4
and for δ < α/(1.28r) and 0 < j < δn, claim 1 of Brakedown bounds the probability
Pr(E(1,BD)) of event E(1,BD) by

Pr(E(1,BD)) ≤ max
(

2−110, 2kH( 15
k )+αkH( 19.2

αk )−15c1,BD log( αk
19.2 ),

max
c1,BD−3≤i≤min(14,δn)

(
k
i

)(
αk
i+3
)(

i+3
c1,BD

)i(
αk

c1,BD

)i

)
≪ 2−100. (8)

Extension of claim 1: Under the same assumptions as in Brakedown, we define E(1) as
the event that the graph G1 with variable left node degree c1 ≥ c1,BD contains a set of
j left nodes that connect to less than max(j + 4, 1.28j) right nodes. Using Brakedown’s
constraints of δ < α/(1.28r), 0 < j < δn, and c1,BD ≤ c1, the following holds:

Pr(E(1)) ≤ max
(

2−110, 2kH( 15
k )+αkH( 19.2

αk )−15c1 log( αk
19.2 ), max

c1−3≤i
i≤min(14,δn)

(
k
i

)(
αk
i+3
)(

i+3
c1

)i(
αk
c1

)i

)

≤ max
(

2−110, 2kH( 15
k )+αkH( 19.2

αk )−15c1,BD log( αk
19.2 ), max

c1,BD−3≤i
i≤min(14,δn)

(
k
i

)(
αk
i+3
)(

i+3
c1,BD

)i(
αk

c1,BD

)i

)
(9)

In particular, Equation 9 means that our G1 graphs with variable left node degree lower
bounded by c1,BD are not more likely to produce a low-connectivity graph than Brakedown’s
fixed left-node-degree graphs.

Proof of extended claim 1. First, log αk
19.2 > 0 for all k ≥ 5. Moreover, k is always

larger than 5 due to the base case n0 (see Section 2.3). This means that the term
2kH( 15

k )+αkH( 19.2
αk )−15c1 log( αk

19.2 ) decreases with increasing c1, which leads to a more restric-
tive probability bound for c1 ≥ c1,BD.

Second, in our graphs, c1 < αk always holds since no left node connects to all right
nodes of a graph. In addition, i is bound to c1 − 3 ≤ i ≤ min(14, δn) due to the max
operation, hence i ≤ αk − 3 for relevant parameter sets. Using this,

(
k
i

)(
αk
i+3
)(

i+3
c1

)i(
αk
c1

)i
≥
(

k
i

)(
αk
i+3
)(

i+3
c1+1

)i(
αk

c1+1
)i

(10)
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holds since(
i+3
c1

)(
αk
c1

) = (i + 3)!(αk − c1)!
(i + 3− c1)!(αk)! ≥

(i + 3)!(αk − c1)!
(i + 3− c1)!(αk)! ·

i + 3− c1

αk − c1︸ ︷︷ ︸
∈[0,1]

=
(

i+3
c1+1

)(
αk

c1+1
) . (11)

Thus, if c1 is increased, max
c1−3≤i≤min(14,δn)

(k
i)( αk

i+3)(i+3
c1 )i

(αk
c1 )i does not increase since the individual

terms do not increase (according to Equation 10) and no additional terms are added to
the max operation.

Given that the individual probabilities in Equation 10 do not increase with c1 ≥ c1,BD,
Equation 9 holds. This proves extended claim 1.

□

Brakedown’s claim 2: In the second claim in Brakedown, E(2,BD) is defined to be
the event that there exists a vector x⃗ with 0 < HW (x⃗) < δn such that a graph G1 not
fulfilling event E(1,BD) evaluates G1(x⃗) = 0 to zero. Brakedown shows that the probability
Pr(E(2,BD)) is overwhelmingly small. Brakedown’s claim 2 is not affected by our inverted
expander graphs with variable left node degrees and still holds as presented in Brakedown.

□

Brakedown’s claim 3: Brakedown [GLS+21] defines E(3,BD) to be the event that the
graph G2 with constant left node degree of c2,BD contains a set of j left nodes that connect
to less than (δn + j + 110+k(r−1)

log q ) right nodes, where δαn ≤ j < δn. Given the constraint
for c2,BD in Equation 5 , let γ = j/k, µ = r − 1 − rα, and let ν′ = δr + γ + 0.03. If
r−1+110/k

log q ≤ 0.03 and 2δr + 0.03 ≤ µ = r − 1− rα and δ ≤ α then claim 3 of [GLS+21]
bounds the probability Pr(E(3,BD)) of event E(3,BD) by

Pr(E(3,BD)) ≤ 2αrkH( γ
rα )+µkH( ν′

µ )−c2,BDγk log µ

ν′ ≪ 2−110 ∀k, γ : αδr ≤ γ < δr. (12)

Extension of claim 3: Under the same assumptions of Brakedown, we define E(3) to
be the event that the graph G2 with variable left node degree of c2 ≥ c2,BD contains a
set of j left nodes that connect to less than (δn + j + 110+k(r−1)

log q ) right nodes, where
δαn ≤ j < δn. Let γ = j/k, µ = r−1− rα, and let ν′ = δr + γ + 0.03. If r−1+110/k

log q ≤ 0.03
and 2δr + 0.03 ≤ r − 1− rα and δ ≤ α then

Pr(E(3)) ≤ 2αrkH( γ
rα )+µkH( ν′

µ )−c2γk log µ

ν′

≤ 2αrkH( γ
rα )+µkH( ν′

µ )−c2,BDγk log µ

ν′ ∀k, γ : αδr ≤ γ < δr. (13)

Similar to the extended claim 1, Equation 13 states that our graphs G2 with variable
but lower-bound left node degrees are not more likely to yield a low-connectivity graph
compared to Brakedown’s graphs.
Proof of extended claim 3. First, we recall j < δn = δkr hence γ = j/k < δr. With
Brakedown’s assumption 2δr + 0.03 ≤ µ, we get ν′ = δr + γ + 0.03 < 2δr + 0.03 ≤ µ. Thus,
the term γk log µ

ν′ ≥ 0. Using this and since c2 ≥ c2,BD, ∀k, γ : αδr ≤ γ < δr,

2αrkH( γ
rα )+µkH( ν′

µ )−c2γk log µ

ν′ ≤ 2αrkH( γ
rα )+µkH( ν′

µ )−c2,BDγk log µ

ν′ (14)

holds and Equation 13 is proven.

□
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Brakedown’s claim 4: In the fourth claim in Brakedown, E(4,BD) is defined to be the
event that there exists a vector y⃗ with δαn ≤ HW (y⃗) < δn such that a graph G2 not
fulfilling event E(3,BD) leads to HW (G2(y⃗)) < δn. Brakedown shows that the probability
Pr(E(4,BD)) is overwhelmingly small. Brakedown’s claim 4 is not affected by our inverted
expander graphs with variable left node degrees and still holds as presented in Brakedown.

□

At this stage, the four claims are extended to graphs with variable left node degrees,
and their validity is proven. Thus, Lemma 1 is proven and our inverted expander graphs
with variable, lower-bound left node degrees are secure.

□

4.4 Hardware Architecture of Linear Encoding Unit (LEU)
We implement our optimized linear encoding unit for a hardware platform with HBM as the
off-chip memory. The architecture is primarily designed for the Xilinx Alveo U280 FPGA,
but can also be deployed on similar FPGAs or ASICs. An overview of our Linear Encoding
Unit design is presented in Figure 7. The left side in Figure 7 shows the U280 FPGA with
one DDR and two HBM stacks, whereas each HBM stack provides 16 pseudo-channels.
The 32 pseudo-channels are connected via DMA controllers to a total of 32 linear encoding
units (LEU). It is important to note that our linear encoding only uses the HBM but does
not require the DDR memory. The DDR is solely used during the proving mechanism and
Merkle Tree commitments.

Inverted Graph Evaluation: The overall linear encoding takes the coefficient matrix W as
input and computes the code matrix C in a row-wise manner. Since 32 pseudo-channels are
available and W has k = 128 rows, we store four rows of W in one HBM pseudo-channel
(PC) and dedicate one linear encoding unit (LEU) to each PC. Each LEU operates on
one HBM pseudo-channel (PC) and performs the inverted expander graph evaluation (i.e.
function RunExpander in Algorithm 1) for the four rows. A detailed view of a single
LEU is provided on the right side of Figure 7. Each LEU features shift registers for input
and output buffering. The MAC unit is responsible for computing the right nodes rt

by multiplying the randomly read coefficients W[i, j] = wi,j (corresponding to the left
nodes of the graphs) with the random weights ωi,t. Our field multiplier for Fp2 uses three
sub-multipliers for Fp according to [Fam88]. The sub-multipliers map to DSP according
to standard tiling and benefit from the shift-add-based reduction due to p = 261 − 1. Note,
that only the first iteration of graph evaluation G

(1)
1 takes all the coefficients from a row of

W as input. Thereafter, the output of the previous graph evaluations is used iteratively as
input. The random weights and the random read addresses required in the computations
are generated by the Trivium PRNG [Can06] modules shown at the bottom of Figure 7.

In the inverted graph computation, data is read concurrently from the 32 HBM channels,
enabling parallel processing of independent rows. The HBM memory accesses are performed
on 256 bits or 512 bits, depending on the clock frequency of the FPGA. This size is larger
than the 128-bit size of our extension field elements, hence we pack e.g. 512/128 = 4
extension field elements into one memory word, as shown in Figure 7. When loading one
512-bit word, the input shift register serializes the four elements, which are then processed
sequentially. Finally, the four computation results are again packed into one memory word
which is stored to the HBM.

This approach effectively uses the available memory capabilities and balances the
resource consumption of the LEU units. The shift registers compensate for the latency
of random memory reads which typically take around 3 to 4 cycles. This means that a
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Figure 7: Architecture for parallel linear encoding and inner product computation for
HBM-based FPGAs.

512-bit input arrives every 4 cycles, whereas it contains 4 field elements. Hence, the LEU
is optimally utilized through our data scheduling approach.

Postprocessing: As discussed in Section 4.3, the straightforward inverted expander
graph evaluation (i.e. function RunExpander in Algorithm 1) may result in insufficient
left node degree. Hence, we perform a postprocessing step (function PostProcess in
Algorithm 1) which adds connections from low-degree left nodes to random right nodes.
This postprocessing uses the same LEU datapath as the inverted graph evaluation, shown in
Figure 7. Thereby, the address of each weak left node and its number of missing connections
are stored in on-chip-memory and fetched by the LEU Controller. After loading a weak
left node from HBM into the LEU, it is multiplied by random weights obtained from the
PRNG and added to random right nodes. Finally, the updated right nodes are stored to
HBM again. This computation pattern in postprocessing is susceptible to read-after-write
hazards. We avoid these hazards by carefully scheduling the postprocessing steps during
design time (i.e. while computing the on-chip-memory content for weak left nodes).

Unlike in the inverted graph evaluation, all read and write operations in postprocessing
follow a random pattern, which lowers the memory bandwidth (see Section 2.5). Yet, only
a few left nodes require postprocessing, which causes a latency share of 17.5% within linear
encoding. The benefit of our inverted graph evaluation and postprocessing technique is
the reduced memory consumption: We trade a small latency overhead for not storing the
whole graph consuming Gigabytes in off-chip memory. This allows deploying our linear
encoding accelerator on FPGAs without DDR memory [Xil23, Xil21] while not introducing
additional HBM memory accesses.

Inner Product (Proving): The proving mechanism in Orion-like schemes (discussed in
Section 3.2) involves inner product computations between the k × n matrix stored in
HBM and the verifier’s k = 128 element input vector. The similarity of the inner product
computation to the linear encoding allows reusing the MAC unit in the LEU. Thereby, the
verifier’s input vector gets split into 32 chunks with 4 field elements each. Every chunk
is stored in the correct HBM channel. In the next step, the LEU persistently loads the
verifier’s input chunk into the shift register for proving, shown in Figure 7. Then, the
4-element vector chunk is multiplied by the 4 rows of the matrix and accumulated, yielding
one output element for each column per LEU. These partial outputs per column of the
32 LEUs are fed to the Adder Tree module shown in red in Figure 7, which aggregates
the results. The Adder Tree performs field addition and lazy reduction to output the
n-element wide matrix-vector multiplication result. We store the result to DDR memory
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Figure 8: Computation flow of column hashing and Merkle Tree generation.

to ease routing in our design. Yet, storing the resulting vector to HBM would also be
possible. Unlike in linear encoding, the off-chip memory bandwidth in proving is not as
limiting since just linear reads and writes are performed and matrix-vector multiplication
has a data-compressing nature. Hence, storing the result to HBM instead of DDR would
be feasible without substantially compromising latency.

Note that during inner product computation, our DMA Controller synchronizes the
32 HBM read channels. This is required as read pressure from the HBM may delay the
execution of individual LEUs whereas the Adder Tree must consume all 32 inputs of one
column simultaneously. Therefore, by synchronizing the read channels, we omit expensive
compensation buffering between the LEUs and the Adder Tree.

5 Accelerating Merkle Tree Generation
The generation of the Merkle Tree is the second critical operation in Orion’s commitment
phase. This operation takes the encoded matrix C from linear encoding, as input and
requires two steps. In step 1, the columns C[: i] = [c0,i . . . ck−1,i]T are hashed to leaf
nodes hl,i, where l = 0 indicates the leaf level within the Merkle Tree. This step is shown
on the left side in Figure 8 and requires data rearrangement. Building upon these leaf
nodes, step 2 constructs a Merkle Tree (right in Figure 8). We describe our hardware design
for this dual-step computation in the remainder of this section by starting with the column
hashing and then advancing to the Merkle Tree computation. Although conceptually
simple, implementing a Merkle Tree becomes challenging when handling large datasets
stored in off-chip memory.

5.1 Column Hashing
The hashing of columns operates on the linear encoded matrix C with its k = 128 rows.
Since the matrix C is the result of the row-wise linear encoding, the data resides in HBM
memory according to the memory layout for linear encoding (explained in Section 4).
Specifically, four rows of C are stored in one HBM pseudo-channel (PC) which means
that the data of individual matrix columns is distributed over all 32 HBM PCs. This
memory layout is shown in Figure 9. In the i-th PC, the rows C[4i :] to C[4i + 3 :] are
stored. Moreover, address j in the i-th PC holds 4 field elements C[4i : j] to C[4i + 3 : j],
which are are packed in a 512-bit memory word. The linear encoding process efficiently
utilizes this memory layout as each LEU operates on just one PC. Yet, in column hashing,
the data of one column is scattered across all PCs. This requires special synchronized
handling during data fetches from HBM. Ensuring a high-throughput data rearrangement
for column hashing is challenging since the high HBM bandwidth must be optimally
exploited to boost performance. Next to the non-trivial synchronization of HBM PCs, the
hashing must be performant to serve the high HBM bandwidth. We hence instantiate
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multiple SHA3-256 permutation units (SHA3 Perm), which form our Hash Vector unit
shown in Figure 9. However, running multiple SHA3 Perm units in parallel introduces two
challenges: (1) efficiently synchronizing the HBM PCs and rearranging the columns to
allow for parallel hashing of the leaf nodes, and (2) parallelizing the hashing of multiple
columns simultaneously to optimally utilize the high throughput of HBM. We address
these two challenges in the next subsections.

5.1.1 Pipelined Feeding of Hash Unit

The matrix C is the result of the linear encoding. Since linear encoding operates row-wise on
the matrix, each row vector of C resides in one PC. Yet, unlike the linear encoding, column
hashing operates column-wise on the matrix C. This fact requires a data rearrangement
to emulate a transpose operation. A straightforward possibility to perform this step is to
explicitly transpose the matrix C after encoding and before hashing by reading the data
from HBM, performing the transpose operation on-chip, and storing the result back to
HBM. This would make each column reside in a single PC and simplify the memory layout
for pipelined hashing: Just a single linear read operation from one PC would be sufficient
to obtain a whole column. However, while this approach simplifies memory access, it
introduces an additional latency overhead caused by the explicit transposing operation.

We instead propose a more suitable approach, which involves synchronized reading
operations across the 32 PCs and a streamlined data rearrangement of the encoded matrix
C. We use an on-chip Scratchpad buffer that dynamically maps the 32 × 512-bit read
interface to a variable number of 1088-bit SHA3 inputs. In our design, each HBM PC
delivers parts of a column that are buffered and rearranged in the Scratchpad memory.
This buffering also compensates for asynchronous reads due to randomly occurring memory
pressure. As soon as a whole column is present in the Scratchpad, the hashing operation
of this column is issued. Figure 9 shows the integration of our Scratchpad buffer into
the hashing unit. Through the on-chip buffering, we establish a synchronized reading
operation over the 32 PCs. In addition, our method allows for linear and pipelined reading
from HBM to enhance throughput. Our design does not need an explicit transpose step
and compensates for random read pressure thereby providing pipelined input for a variable
number of parallel hashing units.

5.1.2 Scalable Multi-Pass Column Hashing

The scratchpad unit described in the previous section enables the parallelization of column
hashing by reshaping the 32 × 512-bit HBM output to a variable number of 1088-bit
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SHA3-256 inputs. Now that the data is in the right format and ready for absorption into
the SHA3-256 state, we can instantiate multiple fully unrolled and pipelined SHA3-256
permutation units, as shown in the bottom right corner of Figure 9. Each permutation
unit performs one SHA3 permutation operation together with the data absorption at a
rate of 1088 bits. For the column hashing, we need to hash k = 128 field elements ci,j each
having 128 bits. Therefore, we need to evaluate ⌈128 · 128/1088⌉ = 16 SHA3 permutations.

A simple approach for hashing the 16 absorption stages is to instantiate 16 unrolled
SHA3 permutation units. This allows the highest throughput but also introduces a
substantial area consumption. This high area consumption results from the large, fully
unrolled SHA3 Perm units. Moreover, the high area consumption does not justify the
performance gain since hashing in Orion accounts for clearly less runtime compared to
linear encoding. Alternatively, our hardware offers customized tradeoffs by instantiating a
power of two SHA3 Perm units. In essence, the hardware design supports 1, 2, 4, 8, or
16 SHA3 Perm units. For example, Figure 9 shows an architecture with just four SHA3
Perm units. To still hash a full column of C, multiple passes through the pipeline are
required. The according feedback datapath is also shown in Figure 9. In our experiments,
a Hash Vector with up to 8 SHA3 Perm units can be instantiated on the U280 FPGA.
Using this configuration, the Hash Vector unit consumes 429k LUTs which is significantly
larger than the linear encoding units with 125k LUTs. This configuration allows for the
best performance on the target FPGA.

5.2 Merkle Tree Generation
After hashing the columns into leaf nodes h0,i, the Merkle Tree is constructed. Building the
tree involves iteratively hashing pairs of nodes to form parent nodes, as shown in Figure 8.
In contrast to the leaf node hashing, the pairs of hashes only have 512 bits and hence can
be processed by a single SHA3 permutation unit with its 1088-bit absorption. In addition,
at most one leaf node per clock cycle is provided by our pipelined Hash Vector unit as
described above. Based on these observations, we propose a fully pipelined multi-pass
architecture called the Merkle Tree Unit (MTU). An overview of the MTU is shown on
the left side of Figure 10.

The MTU has one input for the leaf node hashes h0,i from the Hash Vector unit and
one output for the hashes of the Merkle Tree nodes hl,j , where l is the level of the hash
and j the index within the level. The unit operates as follows: it receives a stream of
leaf node hashes (256-bit hashes) from the Has Vector unit. Thereby, at most one hash
arrives in each clock cycle which requires a single-cycle buffering to aggregate the pair of
hashes. After both input hashes are available, they are passed to a single fully unrolled,
pipelined SHA3-256 permutation unit for hashing. Due to this, the SHA3 Perm pipeline is
utilized every second cycle for processing leaf node hashes. This is shown in the top row of
the timing diagram in Figure 10 right. To avoid the shown pipeline bubbles and ensure
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continuous operation, our architecture issues the level 1 hashing within the bubbles of the
leaf node hashing, as soon as level 1 nodes (h1,j) arrive in the feedback path shown in
Figure 10. Similar to the leaf node hashing, two hashes are combined in level 1. Therefore,
one level 1 hashing operation is issued every four cycles. This is shown in the second row of
the timing diagram in Figure 10. We adequately apply this strategy also for the remaining
Merkle Tree levels which allows us to fully fill the pipeline of the single SHA3 Perm unit.
The shown feedback FIFO consists of one 256-bit wide buffer for each Merkle Tree level
to properly arrange the data for hashing. Using our approach, the instantiated hardware
units are optimally utilized whereby just a negligible control and buffering overhead is
introduced.

5.3 Hashing and Merkle Tree for Proving Mechanism
Orion’s proving mechanism – discussed in Section 3.2 – performs a Merkle commit to the
n-element wide vectors c⃗γ0 and c⃗1. The Merkle commitment consists of two steps: First,
each of the n elements is hashed using SHA3 (we again refer to this step as leaf node
hashing). Second, the resulting hashes serve as leaf nodes for the Merkle Tree computation.
Our leaf node hashing re-uses the Merkle Tree Unit from Figure 10. The inputs of the
MTU are the 128-bit wide elements of c⃗γ0 and c⃗1, which are padded to the SHA3 absorb
rate of 1088 bits. The corresponding unit is shown in green in Figure 10. Thereafter, a
single pass through the SHA3 Perm pipeline yields the leaf node hash, which is stored
to DDR memory. After leaf node hashing is completed, the Merkle Tree is built upon
the leaf hashes. The Merkle Tree computation follows the same approach as explained in
Section 5.2 and re-utilizes the existing hardware components. This effectively accelerates
the overall proving mechanism in Orion. Note that the Brakedown scheme does not involve
Merkle commitments of c⃗γ0 or c⃗1 since Brakedown directly sends these vectors to the
verifier. Hence, our accelerator can skip the discussed steps when targeting Brakedown.

6 Overall Architecture and Results
Our architecture is designed to accelerate polynomial commitment and proof generation,
which cause the majority of latency in a proof system. As an implementation platform, we
use the Xilinx Alveo U280 card, which contains a large FPGA coupled with two HBM2
devices using 32 pseudo-channels. In addition, we used the Vivado 2022.2 toolchain with
the ‘performance explore’ strategy for implementation.

Physical implementation challenges: Large high-end FPGAs, such as the Xilinx Alveo
U280, utilize Stacked Silicon Interconnect (SSI) technology [Xil12], which integrates multi-
ple FPGA dies, referred to as Super Logic Regions (SLRs), onto a passive silicon interposer.
Each SLR operates as an independent FPGA die, and the SLRs are connected through
the silicon interposer. While this multi-SLR architecture enables high resource capacity,
it introduces significant physical design constraints, as analyzed in LEAPS [DTM+24].
For example, Inter-SLR routing is limited by a fixed number of Super long lines (SLLs)
that add extra latency between logic that is separated into different SLRs. Furthermore,
excessive cross-SLR connections can lead to routing congestion and timing violations. As
a result, an RTL design that appears resource-feasible when synthesized by an EDA tool
may still be unplaceable if it does not account for proper partitioning across SLRs. Hence,
achieving timing closure and implementation feasibility on such multi-SLR FPGAs requires
explicit partitioning on the RTL level and careful floorplanning across SLRs, particularly
in memory-intensive and highly parallel designs like ours since the full data of HBM can
not cross SLRs simultaneously.
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Figure 11: Overall architecture for polynomial commitment and proving on U280 FPGA
platform with 3 SLRs and HBM. The sub-units are identically colored in both figures to
illustrate the placement on real FPGA.

Our SLR- and HBM-aware design layout: As illustrated in Figure 11a, the design spans
all three SLRs and includes dedicated units for linear encoding, Merkle hashing, Merkle
Tree construction, memory controllers, and communication logic for interfacing with HBM
and DDR memory. The linear encoder is implemented entirely within SLR0, colocated with
the HBM memory controller to ensure minimal latency and localized routing. It consists
of 32 parallel Linear Encoding Units (LEUs), each mapped to one HBM pseudo-channel.
Each LEU processes four rows of the input coefficient matrix W and performs encoding
using our inverted expander graph technique. Encoded data is then stored in HBM and
later retrieved for the Merkle hashing phase.

For Merkle hashing and tree generation, encoded data is passed from HBM to a
Scratchpad buffer in SLR0. The Scratchpad reorders the data layout before feeding it to
SHA3 Perm hashing cores distributed across SLR1 and SLR2. This distribution alleviates
routing congestion that would arise from localizing hashing cores in a single SLR, while also
balancing logic usage across SLRs. Afterwards, the hash outputs are fed into a pipelined
Merkle Tree Unit (MTU) that performs the tree construction using its components placed
in SLR1. The MTU uses feedback-aware scheduling to construct the Merkle Tree in a
throughput-optimized manner while respecting interconnect constraints.

Our design achieves a 200 MHz clock frequency (after place-and-route) through carefully
distributing logic across SLRs. The physical floorplan of the implementation is shown
in Figure 11b with a color matching to illustrate the logic distribution. The carefully
planned distribution minimizes cross-region communication and therefore places co-locating
memory-intensive units with their associated controllers into specific region. Achieving
such a frequency for a heterogeneous design of this scale and complexity, especially given
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Table 5: Resource utilization on Alveo U280 FPGA.
Modules #Units LUTs REGs DSPs BRAMs #URAMs
Total Alveo U280 FPGA 1 1,303k 2,607k 9,024 2,160 960

Processor 1 775,378 824,278 1,162 607.5 256
- Platform 1 118,102 156,188 10 71.0 -
- Cryptoprocessor 1 657,276 668,090 1,152 536.5 256

Hierachy of Cryptoprocessor
DMA HBM Controller 1 22,728 26,078 - 514.0 -
- Read Interface 32 391 367 - 7.5 -
- Write Interface 32 222 232 - 7.5 -
DMA DDR Controller 1 848 922 - 18.5 -
- Read Interface 1 347 343 - 7.5 -
- Write Interface 1 240 253 - 7.5 -
Linear Encoding Wrapper 1 124,595 171,075 1,152 - -
- Linear Encoding Unit 32 3,721 4,580 36 - -
Scratchpad 1 21,523 19,293 - - 256
Hash Vector Unit 1 429,112 384,146 - - -
- SHA3 Perm Unit 8 52,456 42,896 - - -
Merkle Tree Unit 1 53,351 42,331 - - -
- SHA3 Perm Unit 1 49,908 37,572 - - -

the stringent placement and interconnect constraints imposed by multi-SLR architectures,
is quite impressive.

6.1 Resource Utilization Results
Table 5 provides a detailed breakdown of the resource utilization for the key hardware
components in our implementation. The overall processor design, described in the previous
section and illustrated in Figure 11, consumes 775k LUTs (60% of device capacity),
824k registers (32%), 1,162 DSPs (13%), 607.5 BRAMs (28%), and 256 URAMs (27%).
The processor consists of two main components: the Platform and the Cryptoprocessor.
The Platform includes the block design and all interfacing logic between the RTL-based
Cryptoprocessor and hardware components such as HBM, DDR, and other peripherals.

The majority of the area is consumed by our Cryptoprocessor, which includes DMAs for
HBM and DDR, Linear Encoding, Adder Tree, Scratchpad, Hashing, and Merkle Tree units.
One of the major challenges when working with HBM is that the DMA subsystem must
support extremely high data throughput. In the case of the U280, the DMA subsystem
has to handle up 32×512 bit per cycle for both the read and write channels. Due to this,
the subsystem has a noticeable BRAM footprint to buffer data, which is often overlooked
in theoretical ASIC-based hardware accelerator proposals. The HBM DMA controller
alone uses 514 BRAMs as each channel consumes about 2× 7.5 BRAMs. We opted for a
BRAM-based buffering strategy to minimize stalling during read and write turnarounds.

While the DMA subsystem consumes large on-chip memory, the Linear Encoding
Wrapper causes high logic consumption. It uses 1,152 DSPs, 125k LUTs, and 171k registers
– primarily for modular multiplication – making it the second-largest subsystem in our
design. Each of the 32 Linear Encoding Units (LEUs) is tightly coupled to one HBM PC.

The Scratchpad module instantiates 256 URAMs to buffer, reorder, and feed the SHA3
hashing cores. Using URAMs in the Scratchpad is ideal for this purpose as they reduce
LUTs and REGs consumption. On the other hand, using BRAMs for the Scratchpad is
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Table 6: Our latency in microseconds (µs) of commitment sub-operations. Linear encoding
includes inverted graph evaluation (IGE) and post-processing (PP). Column hashing
supports different numbers of SHA3 Perm units. MT refers to Merkle Tree generation.

Size Linear Encoding Column Hashing MT Total‡

lg(N) IGE PP Total 1† 2† 4† 8† 16†* Commit
16 241 54 295 110 55 28 14 7 9 318
18 969 207 1,176 358 179 90 45 22 24 1,245
20 3,884 808 4,692 1,341 671 335 168 84 86 4,946
22 15,540 3,263 18,803 5,274 2,637 1,318 659 330 332 19,794
24 62,171 13,065 75,236 21,002 10,501 5,251 2,625 1,313 1,315 79,176
26 248,692 51,908 300,600 83,917 41,958 20,979 10,490 5,245 5,247 316,337
28 994,777 208,311 1,203,088 335,575 167,788 83,894 41,947 20,973 20,975 1,266,010

† Number of SHA3 Perm units within the Hash Vector; *Results for 16 SHA3 Perm units are extrapolated
and not implemented on U280 due to the high resource utilization; ‡ using 8 SHA3 Perm;

less optimal: Many of the BRAMs in SLR0 are dedicated to the HBM DMA and further
increasing BRAM usage would lead to routing and congestion issues.

The hashing pipeline consists of eight fully unrolled SHA3 permutation cores used
for column-wise hashing. Note that only up to eight units fit on the Alveo U280 and 16
units would require a larger FPGA plattform, Additionally, the Merkle Tree Unit includes
another independent unrolled SHA3 core to allow parallel construction of the Merkle Tree.
The hashing components account for the majority of LUT and REG consumption in our
architecture. This is due to the fully unrolled and deeply pipelined SHA3 Perm units,
which allow high hashing capability. The Hash Vector and Merkle Tree units together
consume around 73% of the LUTs in the Cryptoprocessor, while the Linear Encoding
Wrapper causes 19% of LUT consumption. This shows that hashing is limited by logic
resources and benefits from parallelism, whereas linear encoding is memory-bound. In
particular, adding more computational units to the Linear Encoder Wrapper will not
improve performance due to the limited off-chip memory bandwidth. This highlights the
importance of our inverted expander graphs to reduce memory pressure thereby allowing
higher performance.

6.2 Timing Results for Commitment
Table 6 presents the latency results of our hardware-accelerated commitment phase of
Orion. The commitment consists of linear encoding (inverted expander graph evaluation +
post-processing), column hashing, and Merkle Tree construction. The timing is collected
for the Alveo U280 FPGA running on 200MHz and covers a range of N = 216 to N = 228

degree polynomials.
The latency of linear encoding consists of inverted expander graph evaluations and

post-processing steps. In our design, inverted graph evaluation lasts between 241µs and
995ms for the reported range of N . Post-processing is more lightweight and takes between
54µs and 208ms which is about 17% of the overall linear encoding runtime. The whole
linear encoding latency in our architecture for N = 216 is 295µs and reaches up to 1.2s for
N = 228. When N is doubled, the linear encoding latency also roughly doubles, which is
expected in the linear-prover-time Orion scheme.

Considering the column hashing latency, Table 6 provides benchmarks for different
numbers of SHA3 Perm units in the Hash Vector. The slowest and most lightweight
configuration with 1 SHA3 Perm has a latency between 110µs and 336ms while the largest
configuration with 16 SHA3 Perm units has a latency between 7µs and 21ms for N between
216 and 228. Note that at most 8 SHA3 Perm units fit on our targeted FPGA. In this
configuration, column hashing takes between 14µs and 42ms for the reported N . Increasing
the number of SHA3 Perm units leads to a linear decrease in column hashing latency
thereby improving performance through higher resource consumption. Furthermore, the
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Table 7: Our latency in microseconds (µs) of proving sub-operations: Inner product, vector
hashing, and Merkle Tree construction.

Size Proving Mechanism Total
log(N ) Inner Product Vector Hashing Merkle Tree Other† Prove

16 23 8 9 35 75
18 83 22 24 117 246
20 293 58 86 388 825
22 1,034 158 332 1,429 2,953
24 3,654 428 1,315 5,429 10,826
26 12,916 1,160 5,247 19,467 38,790
28 45,649 3,141 20,975 69,983 139,748

† Not accelerated on hardware.

hashing latency is linear in the polynomial size. The Merkle Tree computation takes up to
21ms for N = 228, as reported in Table 6.

Observing the timing in Table 6 reveals the two distinct characteristics of linear
encoding and hashing. While the latency of column hashing can be reduced by using
more SHA3 Perm units, the latency of linear encoding is memory-bound. This makes
further acceleration of linear encoding highly challenging given the limited off-chip memory
bandwidth. As a result, the latency of linear encoding is up to 19× higher than the latency
for column hashing (using 8 SHA3 Perm) and Merkle Tree generation.

6.3 Timing Results for Proof Generation
The proof generation phase in Orion follows the commitment phase and consists of Inner
Product, Vector Hashing, and Merkle Tree generation. The main challenge during proof
generation is that all LEU units must be synchronized to enable pipelining through the
Adder Tree that forms each component of the vector-vector product. Our DMA controller
orchestrates synchronized data access across all memory channels to ensure aligned and
efficient aggregation.

Table 7 shows that in our design the inner product computation lasts between 23µs and
46ms for the reported range of N . Vector hashing is more lightweight and takes between
8µs and 3ms while Merkle Tree generation takes between 9µs and 21ms. In addition to
these results, we also have Other operations that include the tensorization and evaluation
computation which we leave in software. The whole prove latency in our architecture for
N = 216 is 75µs and reaches up to 140ms for N = 228.

Overall, we do not introduce any new hardware modules for proving except for com-
parably small control logic and an adder tree. This implies that we reuse existing units
developed for commitment during the proof generation. The MAC units used for linear en-
coding are repurposed to perform the inner product operations in proof generation, enabling
the parallelization of matrix-vector multiplications across 32 HBM pseudo-channels. In
addition, the Merkle Tree generation is handled by the same unit used during commitment,
ensuring minimal resource overhead.

7 Comparison with Baseline Orion
We now compare the performance of our hardware implementation against the reference
software implementation of Orion [XZS22, Su]. All software benchmarks (as presented
in Tables 1 to 3) used for comparison are collected on an AMD EPYC 9754 @2.25GHz
server CPU, while hardware benchmarks are from a Xilinx Alveo U280 FPGA operating
at 200MHz. We used Vivado 2022.2 for synthesis, place, and route. Our architecture
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Table 8: Timing comparison in microseconds (µs) of commitment and proving between
this work and Orion’s software (SW) [Su].

Size Commit Prove
log(N ) SW Our Speedup SW Our Speedup

16 40,000 318 126× 4,000 75 53×
18 155,000 1,245 124× 10,000 246 41×
20 701,000 4,946 142× 35,000 825 42×
22 3,175,000 19,794 160× 135,000 2,953 46×
24 14,756,000 79,176 186× 593,000 10,826 55×
26 60,011,000 316,337 190× 2,495,000 38,790 64×
28 334,250,000 1,266,010 264× 9,093,000 139,748 65×

employs 32 Linear Encoder Units and 8 parallel SHA3 Perm units. We first consider
the commitment and proving procedures individually. Then, we compare an end-to-end
Orion execution including all steps. While all our concrete benchmarks stem from our
on-the-fly sampled inverted expander graphs (Approach 2 of Section 4.3.2), we also present
estimated benchmarks for our stored inverted expander graphs as presented in Approach 1
of Section 4.3.2.

7.1 Comparison of Commitment Phase

The commitment phase is the most performance-critical part of Orion. Commitment
includes the linear encoding of the coefficient matrix W in a row-wise manner. Subsequently,
the columns of the encoded matrix are hashed and a Merkle Tree is built upon the column
hashes. The sub-operations of commitment and their individual latencies on our hardware
are presented in Section 6.2.

Table 8 compares the commitment latency of our hardware accelerator with the Orion
software baseline. This shows that our accelerator reduces the commitment latency by
factors ranging from 124× to 264× for N = 216 to N = 228. The speedup grows with
increasing N . Considering a commitment for a N = 228 degree polynomial, Orion software
requires more than 5.5 minutes, whereas our FPGA accelerator only needs 1.3 seconds. This
significant performance improvement stems from efficient off-chip memory management
and memory-aware compute acceleration techniques.

7.2 Comparison of Proof Generation

After Orion’s commitment phase, the proof generation is done. Proving consists of a
matrix-vector multiplication (inner product) and a Merkle Tree generation over the output
vector. The detailed timing of the sub-operations in proving obtained from our hardware
design is presented in Table 7. Therein, the category ‘Other’ summarizes operations like
tensorization and evaluation computation which are not accelerated in our design.

The overall speedup achieved by our design for proving is presented in Table 8. For
smaller sizes, such as N = 216, we reduce the proof generation time from 4ms to just 75µs.
For the largest evaluated input size, N = 228, our architecture reduces the latency from
9.1s to 140ms. This results in a speedup between 41× and 65×, which is lower than the
speedup in commitment. The reason for the lower proving speedup at larger N is that the
tensorization and evaluation computation is still performed in software. Yet, the proving
mechanism in our hardware design only causes a small area overhead since it reuses the
Linear Encoder units and the hashing units from commitment.
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Table 9: Overall timing comparison in microseconds (µs) between this work and Orion’s
software (SW) [Su].

Size Our Orion Prover SW Orion Speedup Virgo-Prove Speedup
lg(N ) Commit Prove Total Prover Orion Prover Protocol† End-2-End

16 318 75 393 44,000 112× 37,000 2.17×
18 1,245 246 1,491 165,000 111× 102,000 2.58×
20 4,946 825 5,771 736,000 128× 483,000 2.49×
22 19,794 2,953 22,747 3,310,000 146× 1,370,000 3.36×
24 79,176 10,826 90,002 15,349,000 171× 5,849,000 3.57×
26 316,337 38,790 355,127 62,506,000 176× 26,457,000 3.32×
28 1,266,010 139,748 1,405,758 343,343,000 244× 118,554,000 3.85×

† Not accelerated on hardware.

7.3 Comparison of End-to-End Latency
We evaluate the overall performance impact of our hardware accelerator by measuring
the execution time of Orion, including both the commitment and proof generation phases.
Table 9 reports these latencies of our work and compares them to the software baseline.
For the largest evaluated size, N = 228, the execution time of commit+prove is reduced
from 343s to just 1.4s resulting in a 244× speedup. Throughout all reported polynomial
sizes N , we achieve speedups of two orders of magnitude for Orion’s core operations.

Table 9 also reports the end-to-end speedup, which includes hardware-accelerated
commitment and proving alongside the Virgo CP-SNARK composition protocol running
in software (excluding communication overhead). In the measured scenario, where each
component (commitment, proving, and Virgo composition) is executed once, the software
baseline shows that commitment and proving account for approximately 74% of the total
runtime, while Virgo accounts for the remaining 26%. After hardware acceleration, the
Virgo component becomes dominant, constituting 98.8% of the total end-to-end runtime.
Consequently, the overall system achieves an end-to-end speedup of up to 3.85× for
N = 216 to N = 228 when each component (commitment, proving, and Virgo composition)
is executed only once.

This measured speedup aligns closely with the theoretical upper bound of 3.9× given by
Amdahl’s law [Gus88], confirming the effectiveness of our optimization strategy. However,
it is important to note that this evaluation reflects a conservative, one-time commitment,
proving, and Virgo composition usage model. In applications where multiple commitment
and proving operations are performed (e.g., per layer of a neural network), the CP-SNARK
composition can be invoked only once to aggregate all proofs [APPK24]. In such a case the
performance benefits of our accelerator would be significantly amplified. Thus, while our
focus is on accelerating Orion’s most computationally intensive phases, further research is
needed to reduce the latency of the CP-SNARK protocol itself, which remains outside the
scope of this work.

7.4 Estimated Benchmarks for Stored Inverted Expander Graphs
As explained in Section 4.3.2, we designed our FPGA architecture based on on-the-fly
inverted expander graph sampling (approach 2). This section gives estimated results for
stored inverted expander graphs (approach 1). Our hardware architecture can be extended
for approach 1 by replacing PRNG queries with off-chip memory reads to obtain the
large graph structure. The graph structure consumes up to 1.1 Gigabytes. We assume to
store the graph in DDR memory of the Alveo U280 to not compromise HBM bandwidth.
Based on these differences, we estimate the results for approach 1. Our estimation cycle
accurately considers the low-level details of our linear encoding units such as pipeline
depth and HBM read latency and adds a 5% safety margin for non-idealities and control
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Table 10: Estimated timing results in microseconds (µs) using our stored inverted expander
graphs (Approach 1) and comparison to the software baseline.

Size Our Orion Prover (Approach 1) SW Orion Speedup Virgo-Prove Speedup
lg(N ) Commit Prove* Total Prover* Orion Prover Protocol†* End-2-End

16 268 75 343 44,000 128× 37,000 2.17×
18 1,097 246 1,343 165,000 123× 102,000 2.58×
20 4,416 825 5,241 736,000 140× 483,000 2.50×
22 17,685 2,953 20,638 3,310,000 160× 1,370,000 3.37×
24 70,776 10,826 81,602 15,349,000 188× 5,849,000 3.57×
26 283,137 38,790 321,927 62,506,000 194× 26,457,000 3.32×
28 1,132,584 139,748 1,272,332 343,343,000 270× 118,554,000 3.85×

† Not accelerated on hardware; *same as in Table 9

overhead. The estimation results are shown in Table 10.
Considering the commitment latency of approaches 1 and 2, the results in Table 9 and

Table 10 show that approach 1 reduces commitment latency by 10% to 12%. For small
N = 216, the latency reduction is even 16%. This is within the expected range detailed
throughout Section 4.3: The latency reduction is due to the absence of postprocessing
in approach 1. However, this comes at the cost of increased off-chip memory usage that
ranges from several hundred Megabytes to Gigabytes to store the graph structure. In
contrast, linear encoding with approach 2 avoids off-chip graph storage and is compatible
with DDR-less hardware platforms where only HBM is available [Xil23, Xil21]. Despite its
slightly higher latency, our linear encoding with approach 2 is more flexible as it does not
require DDR memory.

Table 10 also presents the estimated overall speedup of Orion commit+prove and the
end-to-end latency of approach 1. As expected, the speedup of the Orion prover using
approach 1 is higher than in approach 2 and reaches up to 270× (approach 2 reaches
244×). For the end-to-end latency, we estimate a speedup of up to 3.85× for approach
1, which is very similar to approach 2. In summary, approach 1 offers a modest latency
advantage due to avoiding postprocessing, while approach 2 provides a more portable and
off-chip memory-efficient solution with reduced bandwidth requirements. Both approaches
result in speedups of two orders of magnitude for Orion’s prover, compared to the reference
software.

8 Discussion on Applicability to Related Proof Systems
Orion has inspired further research in the field, resulting in several follow-up publications.
This section briefly introduces these works and discusses the applicability of our hardware
acceleration concepts.

Brakedown: As highlighted throughout this paper, Brakedown [GLS+23] is conceptually
very similar to Orion [XZS22] which allows to extend our implementation techniques to
Brakedown as well. For example, our optimizations to reduce off-chip memory accesses in
Spielman encoding or our Merkle Tree unit can also be applied. Using our methodology,
the end-to-end prover speedup in Brakedown will be significantly higher – likely around
two orders of magnitude – than in Orion. This is because Orion’s prover is limited by the
outer Virgo protocol. In Orion-based proof systems, proximity and consistency checks
are performed on the prover side due to the composition with CP-SNARKs. In contrast,
Brakedown requires the verifier to perform these checks, which means the verifier must
execute the same linear encoding procedure as the prover. Since the graph generation
process is deterministic and public, both the prover and verifier can independently generate
(or store) identical graphs. These graphs can either use inverted or baseline generation as
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long as the same graph is used on both sides. The Brakedown verifier will likely benefit from
our inverted expander graphs since the number of memory accesses is reduced compared
to baseline graph evaluation. This may lead to faster verifier runtimes on software and
hardware platforms. We consider concrete verifier-side implementations as an interesting
direction for future research.

Orion+: The authors of [CBBZ23] extend the baseline Orion scheme [XZS22] and
present Orion+. Orion+ replaces the Merkle Tree commitments in Orion with mul-
tilinear polynomial commitment schemes allowing batch openings. In particular, Orion+
uses KZG [KZG10] as PCS together with HyperPlonk [CBBZ23] as outer proof thereby
shrinking the proof size compared to baseline Orion. This modification, however, intro-
duces a reliance on bilinear pairings which breaks post-quantum security and requires a
trusted setup. Due to this matter, our focus is on the base version of Orion that maintains
post-quantum security without any trusted setup. Nevertheless, Orion+ uses the same
linear encoding approach as baseline Orion and thus also benefits from our presented
inverted expander graph techniques. Especially our linear encoder architecture, presented
in Section 4, applies to Orion+ as well. Combining our linear encoder architecture with
Orion+-specific PCS functionality on hardware is an interesting direction for future work.

Scorpius: The authors of [dHS24] analyze the soundness of the proof composition tech-
nique in Orion and present Scorpius. Scorpius is mostly similar to Orion and uses linear-time
Spielman codes and Merkle Tree commitments. The improvements proposed in Scorpius
target the outer proof, the opening indices, and the random challenges sent by the verifier.
Using these contributions, the proof size and verifier runtime are reduced. However, on
the prover side, the Spielman codes, Merkle Trees, and inner products remain similar to
Orion. Thus our hardware accelerator can also extend to the Scorpius PCS.

8.1 Comparison to [SLDS24]
The recent work [SLDS24] explores high-level co-design aspects for a complete proof
system, including R1CS, Spartan, Orion, and Virgo protocols. However, it abstracts away
from low-level hardware implementation challenges. In contrast, our work provides a
detailed, hardware-centric analysis of Orion and Orion-like PCS schemes, introducing
memory-aware architecture design and optimizations tailored for FPGA implementation.
The following discussion highlights the fundamental differences and orthogonal research
directions between [SLDS24] and our work while underscoring our complementary and
novel contributions.

Different Encoding Approach: The authors of [SLDS24] replace Spielman encoding with
Reed-Solomon (RS) encoding to reduce memory access overheads. The Reed-Solomon
encoding introduces non-linear-time complexity for the prover due to the required NTT-
based operations. Furthermore, the RS codes in [SLDS24] have a rate r = 4 resulting in
2.3× longer codewords than in our Spielman codes with rate r = 1.72. This prohibitively
increases memory requirements for the large codewords and necessitates additional hashing
effort to In contrast, we continue to utilize the linear-time Spielman encoding, albeit in an
optimized form, as proposed by Brakedown’s and Orion’s authors. Using Spielman codes
is particularly crucial for preserving the central property of linear-prover-time complexity.

Small Field Size: The authors of [SLDS24] choose the Goldilocks-64 prime field for
their work. This allows an efficient hardware implementation of the arithmetic units such
as finite-field multipliers. However, the Goldilocks-64 field only has less than 264 field
elements which compromises the soundness of Orion [GLS+21, Theorem 1]. To mitigate
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the soundness issues, [SLDS24] repeat several operations up to 4× which is a performance
drawback. In contrast, our baseline version of Orion reaches high soundness by using a
sufficiently large extension field |Fp2 | ≈ 2122 thereby avoiding repeated operations.

Off-Chip Memory Bandwidth: The ASIC architecture in [SLDS24] assumes idealized peak
HBM bandwidth, overlooking practical overheads in off-chip data movement. For example,
[SLDS24, Section IV.B] reports a per-cycle demand of 128 elements, translating to a total
bandwidth requirement of 953 GB/s to 1 TB/s at 1 GHz. To meet this, [SLDS24, Section
VI] assumes access to two HBM PHYs delivering 512 GB/s each. However, this exceeds the
peak bandwidths of HBM2E technologies from Micron [Mic25], Samsung [Sam25], and SK
Hynix [Hyn25] as they offer maximum bandwidths of 410–460 GB/s per stack under ideal
conditions. Under practical conditions, achieving the maximum theoretical bandwidth of
HBM is very challenging, as found in [Hub19]. Especially non-uniform or random access
patterns degrade the bandwidth by up to 3–4× [Hub19].

In contrast, our work presents a memory-aware design explicitly optimized for realistic
HBM behavior. By minimizing random memory accesses through techniques such as
on-the-fly expander graph sampling and bandwidth-efficient encoding, our architecture
significantly reduces off-chip pressure and improves sustained throughput. In addition,
data layout in off-chip memory is critical for performance, particularly as linear encoding
and Merkle Tree hashing access data row-wise and column-wise, respectively – necessitating
non-trivial data rearrangement or transposition. The paper [SLDS24] does not detail the
memory layout of the large coefficient matrix in HBM. In contrast, our work presents
a comprehensive treatment of memory access optimizations, including pipelined data
rearrangement via scratchpad memory, scalable multi-pass column hashing adaptable to
different bandwidth configurations, and a flexible Merkle Tree generation architecture.
These contributions, together with detailed implementation insights, are intended to enable
reproducibility and support future research in hardware-accelerated proof systems.

Physical Placement: The data-centric operations in a proof system require a careful
design strategy to distribute the data across the chip. Feeding the computational units
is not feasible without proper placement and routing, especially if high clock frequencies
must be met. Our work discusses these challenges with a focus on multi-SLR FPGAs
and presents a suitable partitioning strategy to utilize all three SLRs. Yet, the paper
in [SLDS24] does not give details on addressing the low-level physical properties of their
used ASIC architecture. Although low-level physical placement may be considered an
“engineering effort”, we give insights into the arising challenges and highlight the necessity
of a platform-aware architecture design.

Performance Comparison: Due to fundamental differences in design choices, such as the
use of Reed-Solomon codes and a smaller finite field in [SLDS24], a direct performance
comparison with our work is not meaningful. In addition, the idealized off-chip bandwidth
assumption for their ASIC architecture contrasts with our practical and resource-aware
FPGA implementation. Furthermore, [SLDS24] reports only end-to-end runtimes for
benchmarks involving multiple protocols (e.g., Spartan, Orion, Virgo) without isolating
the performance of the Orion commitment and proving steps. For these reasons, we do
not include a quantitative comparison between the two works.

Complementary Contributions: Both our work and [SLDS24] make significant contri-
butions to advancing hardware acceleration for proof systems, yet with distinct focuses.
The techniques developed in our work can complement those of [SLDS24], enhancing its
practicality and efficiency for hardware implementations by addressing real-world con-
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straints that theoretical models often overlook. Together, these contributions represent
steps forward in designing hardware accelerators for proof systems.

8.2 Comparison to Pairing-Based Proof Systems
Implementation aspects of pairing-based proof systems have gained broader attention,
for example, in hardware acceleration [ZWZ+21, ABC+22, HKR25]. Pairing-based proof
systems mainly rely on the Number-Theoretic Transformation (NTT) and Multi-Scalar
Multiplication (MSM). While NTT operates over large prime fields, MSM uses Elliptic
Curve arithmetic. In both cases, multiple hundred bit wide coefficients are involved. The
fundamental difference in field arithmetic and the distinct high-level NTT and MSM
algorithms make a comparison between hardware accelerators for pairing-based proof
systems and our design hard and unfair. In addition, MSM accelerators leverage a more
uniform off-chip memory access pattern than Spielman codes involved in our design, which
makes these works less memory-bound than ours.

To give an impression of the different implementation aspects of pairing-based proof
systems, we consider PipeZK [ZWZ+21]. PipeZK is an ASIC hardware accelerator for
MSM and NTT, required in pairing-based proof systems. The 28nm ASIC dedicates
15mm2 and 35mm2 chip area to NTT and MSM, respectively, for the BN128 curve.
Compared to software implementation with size 216 to 220, PipeZK reaches a speedup
of 8× to 12× for MSM and 29× to 107× for NTT. In comparison, our FPGA design
reaches speedups between 111× and 128× for Orion’s commit+prove operations with
respect to the Orion software. We note that this should not directly compare our work
with PipeZK [ZWZ+21]. Instead, it should give an impression of the difficult nature of
comparisons of implementations based on mathematically distinct proof systems.

9 Conclusion
This work introduced several algorithmic and architectural optimization techniques for
accelerating linear-prove-time PCS on hardware. We specifically targeted the challenging
random access patterns to off-chip memory during data-centric Spielman encoding and
proposed inverted expander graphs. Inverted expander graphs reduce the HBM memory
accesses by about 50% and reduce the pressure on critical off-chip bandwidth. Since
off-chip bandwidth is the limiting factor in linear encoding, our according improvements
lead to a speedup of up to 264× in linear encoding.

Next to linear encoding, Orion-like PCS involve hashing and Merkle Tree construction
during the commitment and proving phases. We present hardware-specific optimization
strategies to ensure high hashing throughput and a memory layout-aware data reordering.
Our pipelined reordering consumes the high data rate from HBM and serves a variable
number of unrolled SHA3 permutation units. This data distribution is challenging for
high-end FPGAs with multiple SLRs. Thus, we partition our overall design and compensate
for SLR-crossing bottlenecks in our Scratchpad memory. Finally, we accelerate the inner
product computation, which is the prevailing operation in Orion’s proving mechanism.
Inner product computation re-uses our linear encoder datapath and hence has a small
additional area footprint.

We combined all concepts into one hardware architecture and mapped it to an Alveo
U280 FPGA. This mapping involved floorplanning and manual placement to enable routing
of the complex and heterogeneous design. Overall, our results show a speedup of two
orders of magnitude for the commitment and proving in the Orion PCS. Considering
the end-to-end latency, including the outer Virgo protocol in software, we reach up to
3.85× performance improvement. The presented methodology, especially the concept
of inverted expander graphs and our hashing architecture can be applied to other PCS
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such as Brakedown, Orion+, or Scorpius as well. Therefore, our concepts and our FPGA
accelerator allow a broad range of applications in the field of linear-prover-time polynomial
commitment schemes.

9.1 Future Directions
There are several avenues for future research building on the findings of this work. For
example, adapting our optimizations for ASIC platforms could further enhance performance
and energy efficiency, particularly for large-scale ZKP deployments. Due to the higher clock
frequency in ASIC, the off-chip memory bandwidth becomes even more crucial to fully
utilize the computational units. Extending our memory-aware inverted expander graph
technique to an ASIC setting is an interesting field of future efforts. In addition to this,
software implementations may also benefit from our inverted expander graphs since the
reduction in memory accesses applies as well. This work focuses on hardware acceleration
of polynomial commitment and proof generation, which are the most compute-intensive
components of the system. Extending the scope to the full CP-SNARK construction,
including SNARK composition and recursion, would introduce significant additional
complexity beyond the focus of a single paper. Specifically for the Orion scheme, dedicated
research effort is required to accelerate the outer Virgo protocol functioning as CP-SNARK.
The Virgo protocol covers a 26% share within the base execution of Orion for N = 228.
Using our hardware accelerator, this share increases to 98.8% due to the significance of
our optimization in the commitment and proof generation making the Virgo protocol the
limiting factor in Orion.

Finally, our developed methodology can be applied to various PCS such as Brakedown,
Scorpius, or Orion+, which involve Spielman encodings or Merkle Trees. Implementing
dedicated hardware accelerators that benefit from the concepts introduced in this paper
would lead to broad support of linear-prover-time polynomial commitment schemes.
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A Algorithms and Protocols
A.1 Baseline Expander Graph Generation
The baseline expander graph G = (L, R, E) used in Orion [XZS22] or Brakedown [GLS+23]
is generated and stored in memory. The generation algorithm is shown in Algorithm 2.
It can be seen that the graph is stored as a set E of tuples of the form (li, rt, ωi,t). Each
tuple describes one edge in the graph staring at left node li ∈ L and connecting the right
node rt ∈ R with a weight ωi,t. The bit size of a single tuple is 2 log(n) + log(|Fp2 |) bits
with n denoting the codeword length. Unlike in our inverted expander graphs, the degree
of left nodes c is constant in Algorithm 2.

A.2 Searching Non-Expanding Set
The authors of Orion [XZS22] present the following Algorithm 3 to test randomly generated
expander graphs for sufficient connectivity. If Algorithm 3 outputs NotFound, then with
all but negligible probability, the randomly generated graph is a good expander.
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Algorithm 2 Baseline Expander Graph Generation Algorithm from [XZS22].
1: function GraphGen(L, R, c) ▷ L, R set of left & right nodes, c is left nodes degree
2: k ← |L|
3: q ← αk ▷ q = |R| = α|L|
4: E ← {}
5: for i from 0 to k − 1 do
6: for j from 0 to c− 1 do
7: t← rand() mod q ▷ A random vertex index in right subset
8: ωi,t ← field :: random() ▷ A random field element
9: Add edge (li, rt, ωi,t) from left node li to right node rt with weight ωi,t to E

10: return E

Algorithm 3 Searching Non-Expanding Set [XZS22].
1: Let G = (V, E) with L and R the left and right vertex sets of a random bipartite

graph.
2: If ∃v ∈ R with degree d ≥ c

α + 10 ln k, abort. ▷ α = |R|
|L|

3: for each v ∈ L do
4: find set D ⊆ L such that:

- ∀u ∈ D the minimum distance between u and v is ≤ 2 log log k
- ∀u ∈ L \D the minimum distance between u and v is > 2 log log k

5: for all S ⊆ D and |S| ≤ log log k do
6: if Equation 1 does not hold for S then
7: return Found
8: return NotFound
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