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Abstract. This article generalizes the widely-used GLV decomposition
for (multi-)scalar multiplication to a much broader range of elliptic curves
with moderate CM discriminant D < 0. Previously, it was commonly be-
lieved that this technique can only be applied efficiently for small values
of D (e.g., up to 100). In practice, curves with j-invariant 0 are most fre-
quently employed, as they have the smallest possible D = −3. However,
j = 0 curves are either too suspicious for conservative government reg-
ulators (e.g., for Russian ones, which prefer D = −619) or unavailable
under imposed extra restrictions in a series of cryptographic settings.
The article thus participates in the decade-long development of numer-
ous curves with moderate D in the context of zk-SNARKs. Such curves
are typically derived from others, which limits the ability to generate
them while controlling the magnitude of D.

Keywords: binary quadratic forms · elliptic curve cryptography · ideal
class groups · isogeny loops · relation lattices · (multi-)scalar multiplica-
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1 Introduction

In 2025, ECC (elliptic curve cryptography) celebrates 40 glorious years of its
development, which is a sufficient term to be sure in its reliability and efficiency.
An excellent recent survey of ECC is given in the treatise [12] updating and
extending its older web version [11]. The most important operation in this kind
of cryptography is scalar multiplication. Sometimes, it can be sped up by the
GLV (Gallant–Lambert–Vanstone) technique [27]. Furthermore, it is inherently
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extended to MSM (multi-scalar multiplication) with N “basis” curve points in-
stead of a unique one. However, the GLV method remains useful whenever the
number N is moderate, that is, its benefit fades as N → ∞ as justified in [38,
Section 4.2].

Throughout the article, E will stand for an elliptic curve over a finite field
Fq of large characteristic (for simplicity). The (original) GLV technique applies
to curves having an efficient Fq-endomorphism ϕ ∈ End(E). The method is
especially advantageous for curves with j-invariant 0 or 1728, as it enables to
take on the role of ϕ a non-trivial automorphism with only a single modular
multiplication. Additionally, the GLV approach is easily extended to curves for
which the endomorphism requires somewhat more computational effort, that is,
the degree d := deg(ϕ) is slightly greater than 1. The most famous instance is
the Bandersnatch curve [38] admitting d = 2.

As is typical in DLP-based cryptography, the Fq-point group E(Fq) contains
a subgroup G of huge prime order r. For compactness, let’s put ℓ := ⌈log2(r)⌉
and ℓ′ := ⌈ℓ/2⌉. Assume that an entity of a cryptographic protocol wants to
compute the scalar multiplication Q := nP for P ∈ G and n ∈ Z/r. Evidently,
Q can be determined by means of one of the general exponentiation methods,
such as the schoolbook double-add method, requiring ℓ doublings and at worst
≈ ℓ additions on E.

In practice, the embedding degree of G is > 1, that is, G = E(Fq)[r]. Con-
sequently, any endomorphism ϕ acts on G as the multiplication by some scalar
λ ∈ Z/r. The eigenvalue λ is one of the two roots in Z/r of the characteristic

polynomial (x − ϕ)(x − ϕ̂) = x2 − ax + d considered over Z/r, where ϕ̂ is the
dual endomorphism and a ∈ Z is the trace of ϕ. The latter can be determined
via Schoof’s like algorithm [4, Appendix A] whenever the degree d is sufficiently
smooth (as in the setting of this article).

To explain the GLV method, we lack the rank-2 lattice L := s−1(0) ⊂ Z2,
where s(v, v′) := v + λv′ ∈ Z/r, generated by the (long) vectors (r, 0), (λ,−1).
It is suggested to introduce new numbers m, m′ ∈ Z/r (to be specified later)
such that Q = mP +m′P ′, where P ′ := ϕ(P ) = λP . The difference (v0, v

′
0) :=

(n, 0)− (m,m′) = (n−m,−m′) evidently lies in L. Note that (m,m′) = (n, 0)−
(v0, v

′
0) = (n − v0,−v′0). The aim is to obtain the vector (m,m′) shorter than

(n, 0) in the infinity norm || · ||∞, i.e., the vector (v0, v
′
0) closer to (n, 0) than

the origin (0, 0). This can be done, e.g., via one of quick Babai’s algorithms
[25, Sections 18.1 and 18.2]. As it turns out, one can expect the bit lengths
log2(|m|), log2(|m′|) ≈ ℓ′. For this, it is necessary to prepare in advance (e.g.,
via (Lagrange–)Gauss’ reduction [25, Section 17.1]) a short basis of the lattice L
whose two vectors are also of bit lengths ≈ ℓ′. To find Q, it remains to employ
any double-scalar multiplication algorithm. For instance, (Shamir–)Straus’ trick
[49] costs ℓ′ doublings and at most ≈ ℓ′ additions on E.

The endomorphism ϕ for the GLV decomposition has to be different from
scalar endomorphisms on E. The point is that it is impossible to evaluate almost
for free [λ] ∈ End(E) (of degree λ2) for a huge number λ ∈ Z/r. Meanwhile, for
the other λ, the numbers m, m′ simultaneously do not have (on average) half
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bit lengths. In turn, the eigenvalue λ of the non-scalar ϕ is most likely enormous
as needed. In fact, there is a folklore trick (see, e.g., [22]) when ϕ = [2ℓ

′
], i.e.,

λ = 2ℓ
′
and m, m′ are respectively the remainder and quotient for the division of

n by 2ℓ
′
. The overall running time of this non-authentic GLV method amounts to

ℓ doublings (ℓ′ ones if the point P , i.e., P ′ is fixed) and at worst ≈ ℓ′ additions.

It is also worth mentioning the fake GLV approach [23] resembling the idea
of [3] for faster verification of ECDSA signatures. The given GLV variation takes
place even if an elliptic curve does not enjoy an appropriate endomorphism. In
the scenario under consideration an entity simply desires to check the equality
Q = nP with the a priori known point Q. More precisely, the corresponding
testing has the form kQ+ k′P = O, where k, k′ ∈ Z/r are still some numbers of
half bit lengths and O := (0 : 1 : 0) is the infinity (i.e., zero) point on E.

In 99.9 . . .% of cases, the modern landscape of discrete logarithm problem
(DLP) elliptic curve cryptography (ECC) is founded on ordinary (i.e., non-
supersingular) elliptic curves. The only exceptions are supersingular curves in-
volved in 2-cycles of pairing-friendly abelian varieties [18,19]. Since the result of
the present article is irrelevant to supersingular curves, we can neglect them
to avoid confusion. The endomorphism ring of each ordinary curve E/Fq is
independent of the base field and isomorphic to a rank-2 order OD (of some
complex multiplication discriminant D < 0) in the imaginary quadratic field

F := Q(
√
t2 − 4q), where t is the Frobenius trace of E. For instance, D = −8

for the Bandersnatch curve.

For the sake of simplicity, we will deal solely with fundamental CM discrim-
inants, i.e., those for which OD is the integer ring of F . Recall that such D are
square free up to 4 in their structure. From the cryptographic point of view,
generality is not lost under the given assumption. Indeed, an elliptic Fq-curve
of non-fundamental CM discriminant is Fq-isogenous to that of fundamental
one. Clearly, Fq-isogenous curves are almost always equivalent concerning the
hardness of the DLP. The opposite theoretical, but impractical scenario (where
p2 | D for a large prime p) is discussed in [25, Section 25.6] and [26]. On the
other hand, curves with a predefined D are constructed exclusively via the CM
method (see, e.g., [50]). This method becomes infeasible for large CM discrim-
inants, specifically when −D > 1017, given current computational capabilities.
Consequently, there is no efficient way to generate an Fq-curve that admits an
ascending Fq-isogeny of a very large prime degree p.

Let us represent E in (weighted) projective coordinates to avoid the com-
putationally expensive inversion operation in F∗

q . As explained in Section 2.2,
classical Vélu’s formulas [25, Section 25.1.1] for evaluating ϕ ∈ End(E) require
at most ≈ cd multiplications in Fq with the constant c = 7.5. Meanwhile, one
doubling [2] on E (according to [10], [32, Annex A.10.4]) costs c′ ∈ {8, 9, 10} field
multiplications for the short Weierstrass form y2 = x3 + a4x+ a6. The concrete
choice for c′ depends on the magnitude of the coefficient a4 (inter alia, c′ = 8 if
a4 = −3). Looking ahead, we will not encounter in this paper any curves admit-
ting commonly used composite-order forms [25, Section 9.12] for which c′ would
need to be slightly smaller. As we see, c′ℓ′ multiplications are the total overhead
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of [2ℓ
′
]. Therefore, the GLV technique with respect to ϕ is a faster solution than

the aforementioned folklore trick only if d is quite small, or rather d is less than
≈ c′ℓ′/c.

It is known that the minimal degree dmin of a non-scalar endomorphism on
E is equal to −D/4 or (1 − D)/4, depending on whether D mod 4 is 0 or 1,
respectively. However, dmin is often not smooth enough to allow the successful
application of [25, Theorem 25.1.2], i.e., to decompose the associated endomor-
phism ϕmin into small-degree Fq-isogenies. Consequently, it was widely believed
in the past that scalar multiplication on the majority of curves is not subject to
extra acceleration.

1.1 New contribution

The idea of the current work is elementary, but powerful. To the authors’ knowl-
edge, it has not yet occurred in the public literature. Not looking at dmin, it
is suggested to take a loop (cycle) of m ∈ N non-backtracking Fq-isogenies
ϕi : Ei → Ei+1 (where E = E1 = Em+1) of little prime degrees di. “Non-

backtracking” means that ϕi+1 differs from the dual isogeny ϕ̂i : Ei+1 → Ei,
hence the loop cannot be shortened. Every isogeny ϕi itself is not an endomor-
phism (except for m = 1), but so is their entire composition ϕ = ϕm ◦ · · · ◦ ϕ1 of
degree d = d1 · · · dm. Thereby, the overall running time of evaluating ϕ ∈ End(E)
is obviously reduced to ≈ c(d1 + · · ·+ dm) multiplications in Fq instead of ≈ cd
ones. Of course, it is necessary to verify that the endomorphism ϕ is non-scalar.
In particular, this is the case whenever

√
d ̸∈ Z. Curiously, d may be much

greater than the lower bound dmin ≈ −D/4, despite the better performance of
ϕ rather than ϕmin.

Let’s bring into play the (ideal) class group Cl of the ring OD (i.e., of the
field F ). It will not hurt to briefly overview main concepts and results connected
with Cl. They (or at least most of them) can be encountered, e.g., in [20], [25,
Sections 25.3.1 and 25.4.1]. First, Cl is a finite abelian group. Its order h := #Cl
is called (ideal) class number and behaves approximately like

√
−D as D → −∞.

The group Cl acts regularly on the crater (surface), i.e., on the set of all elliptic
Fq-curves of the same trace t and with the endomorphism ring ≃ OD. In other
words, an ideal class [I] ∈ Cl maps such a curve E to some horizontally Fq-
isogenous one E′.

By definition, the cardinality, i.e., index n := #(OD/I) = (OD : I) is the (nu-
merical) norm of I. Do not confuse this concept with the norm map N : F → Q
for which N(OD) ⊂ Z. The ideal I, being the unique integral reduced one in
[I], coincides, as a lattice (up to homothety by

√
n), with the rank-2 lattice

Hom(E,E′) of all (Fq)-isogenies between E and E′. The corresponding integral
positive definite quadratic forms on I and Hom(E,E′) are the tweaked norm
N′ := N/n and the degree deg, respectively. The map [I] 7→ N′ defines an iso-
morphism of Cl onto the group (also denoted Cl) of all reduced binary quadratic
forms of discriminant D, endowed with Gauss’ (also known as Dirichlet’s or
Legendre’s) composition law.
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Denote by m the order of the ideal class [I] in the group Cl. Consequently,
the m successive actions of [I] (beginning with E) produce an isogeny loop
Ei → Ei+1 of length m | h. It is sufficient to choose at each step an isogeny
ϕi of the same degree w := di among the non-zero values of N′ = deg on
I ≃ Hom(Ei, Ei+1). The most reasonable choice for w is perhaps the minimal
(often prime) value, that is, the norm n. Oncem is odd, w is not a perfect square,
andm, w are both pretty small, we come to the desired non-scalar endomorphism
ϕ on E of degree d = wm. In the new notation, ϕ can be sequentially evaluated
at the price of ≈ cmw multiplications in Fq instead of ≈ cwm ones. We will
see on practical examples that the theory under consideration actually works.
Afterwards, in the second part of the paper, the described approach will be
logically extended to serve much greater magnitudes of D provided that the
group order r (equivalently, ℓ or ℓ′) also grows accordingly.

For instance, some 2-cycle [5] of pairing-friendly MNT curves [40] (with
−D ≈ 100,000,000, i.e., log2(−D) ≈ 26.5) is suitable for our contribution. The
given 2-cycle was generated at one time by Guillevic [29] to provide ≈ 128 se-
curity bits, hence it was close to application in the real world. Another more
performant MNT 2-cycle (with slightly smaller security level, but with much
larger D) was really employed in the protocol Coda [44] (now Mina [42]) until
zero-knowledge proof systems on significantly faster pairing-free (or half-pairing)
2-cycles were invented. It is also shown that many “lollipop” curves, recently pro-
posed by Costello and Korpal [19] to replace MNT ones, are now covered by the
GLV technique.

Additionally, the new result is relevant to one of the “classical” curves (with
D = −619) from the Russian ECC standard [2, Appendices B, E], [48]. This
curve was most likely found using the CM method, though this is not explicitly
stated in the standard. Its developers seemingly sought to avoid curves with too
small values of D, aiming to mitigate potential DLP attacks on such curves, and
hoped these attacks would not extend effectively to D = −619. One of the goals
of the present article is consequently to address the perceived disparity between
the D = −3 curves and the Russian curve. Specifically, this curve should either
be excluded from the standard for potential security reasons or local software
should begin leveraging the advantages of the GLV decomposition.

Isogeny loops are ubiquitous in isogeny-based cryptography. For instance,
they are related to collisions in seminal Charles–Lauter–Goren’s hash function
[17]. Moreover, “smoothing” isogenies of large prime degrees (by increasing the
dimension) has become a popular technique in the field of isogeny-based cryp-
tography (see, e.g., [46]). The action of the ideal class group of an imaginary
quadratic field also plays an important role [21] in the given post-quantum cryp-
tography, although supersingular curves in this context are more preferable [16]
than ordinary ones. Finally, the hard DLP in the group Cl gives rise to yet an-
other type of (pre-quantum) cryptography starting with [14]. It is appropriate for
developing more specific mechanisms such as verifiable delay functions (VDF)
[52], which cannot be achieved on elliptic curves due to Schoof’s point counting
algorithm. It is worth stressing that, in the cryptographic domains mentioned,
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CM discriminants are of exponential size, unlike moderate values ofD considered
in the present paper.

2 Preliminaries

2.1 Binary quadratic forms in connection with isogenies

For convenience of the reader, in this section we briefly remind basic notions
and properties related to binary quadratic forms and their relationship with
elliptic curve isogenies. For comprehensive details on the former, see, e.g., [20].
For detailed information on the latter, refer to [25, Sections 9, 25] for example.

An integral binary quadratic form is a homogeneous Z-polynomial of the
type f(x, y) = ax2 + bxy + cy2 traditionally denoted by (a, b, c) for laconicity.
As always, the discriminant of f is the number D := b2− 4ac ≡ 0, 1 (mod 4). It
is said to be fundamental if either D ≡ 1 (mod 4) and D is square-free, or so is
D/4 ∈ Z and D/4 ≡ 2, 3 (mod 4). If the form f is non-degenerate (i.e., D ̸= 0)
and returns exclusively positive values (except for x = y = 0), then f is referred
to as positive definite. This holds if and only if D < 0, but a > 0. We will assume
everywhere that our forms are integral, positive definite, and with fundamental
discriminant. Finally, such a form f is reduced whenever |b| ⩽ a ⩽ c and b ⩾ 0 if
a = c. It is easily proved that under these conditions, a = f(1, 0) is the minimal
non-zero value of f on Z2.

We say that two binary quadratic forms are (properly) equivalent if they differ
by a matrix from the special linear group SL2(Z). Suppose that gcd(a1, a2, (b1+
b2)/2) = 1 given two forms fi = (ai, bi, ci) of the same discriminant D (with

i ∈ {1, 2}). Their (Dirichlet) composition is f1 · f2 := (a1a2, B,
B2−D
4a1a2

), where

B is the unique integer modulo 2a1a2 such that B ≡ bi (mod 2ai) and B2 ≡
D (mod 4a1a2). It turns out that this operation is well-defined on equivalence
classes and it produces a finite abelian group Cl under the name class group. If
D ≡ 0 (mod 4), then the identity element of this group is (1, 0,−D/4). In turn,
if D ≡ 1 (mod 4), then it is (1, 1, (1 − D)/4). Furthermore, the form inverse
to fi is nothing but f−1i = (ai,−bi, ci). Even though there are quick reduction
algorithms, the forms f1 ·f2 and f−1i themselves are not necessarily reduced even
if f1, f2 are initially so.

Binary quadratic forms of discriminant D, ideals in the integer ring (i.e., the
maximal order) OD of the imaginary quadratic field F = Q(

√
D), and isogenies

between elliptic curves of CM discriminant D are intimately interwoven. More
precisely, a reduced form f = (a, b, c) corresponds to the integral reduced ideal
I := aZ+ b′Z, where b′ := (b+

√
D)/2. Moreover, this correspondence yields an

isomorphism of the group Cl to the group of (fractional) ideals of OD modulo
principal ideals. It is important to remember that there exists a unique reduced
form (or, alternatively, reduced ideal) in every equivalence class, hence in practice
all the work is carried out with the given representatives. It can be shown that
a is the numerical norm of I and N(ax + b′y) = af(x, y) regardless of x, y ∈ Z
for the norm map N: OD → Z.
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In addition, for any elliptic curve E admitting a ring isomorphism ι : OD ≃
End(E), the reduced ideal I defines the horizontal isogeny E → E/K (of degree
a) with the cyclic kernel K := E[a] ∩ ker(ι(b′)). To put it in another way, the
group Cl regularly (i.e., transitively and freely) acts on the crater of the isogeny
volcano.

2.2 Evaluating isogenies in projective coordinates

Let E, E′ be two short Weierstrass Fq-curves on the projective plane P2
(x:y:z). By

virtue of [25, Lemma 9.6.12 and Corollary 25.1.8], any Fq-isogeny ψ : E → E′ of
odd degree d > 1 relatively prime to q can be expressed as follows:

ψ(x : y : z) =
(
(ψ1ψ3)(x, z) : yψ2(x, z)z

d′−d2−1 : ψ3
3(x, z)z

)
,

where ψi are binary homogeneous Fq-polynomials of degrees di := deg(ψi),
namely

d1 = d, d2 ⩽ 3
d− 1

2
, d3 =

d− 1

2
, and d′ := d1 + d3 =

3d− 1

2
.

The last number d′ is nothing but the same degree of the resulting coordinates of
ψ. At worst, d2 = d′−1 = 3(d−1)/2. For our purposes, it will be sufficient to work
under this less favorable condition in order to eliminate d2 as an independent
variable.

By definition, ψi =
∑di

j=0 ci,jx
jzdi−j with coefficients ci,j ∈ Fq. The homoge-

neous version of Horner’s scheme has the form

ψi(x, z) = ci,0z
di + x(ci,1z

di−1 + x(ci,2z
di−2 + · · ·+ ci,di

) · · · ).

Separately, each polynomial ψi can be evaluated at a point P ∈ E(Fq) at the price
of ≈ 3di multiplications in Fq. Truly, ≈ di ones are needed for all the powers zj ,
for the multiplications by x, and finally the same amount when multiplying by
ci,j . However, it is enough to determine zj solely in the case of the largest degree
d2. Consequently, computing ψ(P ) requires ≈ 2d′ + 3d2 ≈ 7.5d multiplications
in total.

In the given quantity we do not take into account the fact that the coefficients
ci,j may be repeated or little (even zero) for the concrete isogeny ψ. Hence, its
real cost may be (drastically) less. One more further optimization (when d is
not small) consists in determining ψi(P ) through the algorithm described in
[33]. It has the better asymptotic complexity 2di+Θ(log(di)), which implies the
overall one 6d+Θ(log(d)). Lastly, it is worth saying about the cardinally different
evaluation strategy from [9] (so-called square-root Vélu’s formulas or just

√
élu),

which reduces the complexity to Õ(
√
d). Of course, the actual running time is

decreased only for the pretty big d. An attempt to find this borderline is done
in [1].
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3 CM discriminants up to a few thousands

This section is dedicated to a few practical elliptic curves of moderate (as earlier,
fundamental) CM discriminants D. For credibility, it is accompanied by the code
[34] written in the computer algebra systems Magma and Sage. In particular,
the reader can find there the parameters of the curves and the coefficients of
isogenies forming loops. We will keep the notation of the introduction. Table 1
contains the basic information on the curves and on the ideal class groups Cl for
the given D. In turn, Table 2 exhaustively lists the elements of Cl, namely the
reduced binary quadratic forms of discriminants D.

Curve Reference ℓ D dmin h = m n = w d = wm

Russian curve [2, Appendices B, E] 256 −619 5 · 31 5 5 3125

Lollipop curves [19, Section 5]
201 −547 137 3 11 1331

261 −3019 5 · 151 7 5 78125

Table 1. Certain curves (remarkable for ECC) of moderate fundamental CM discrim-
inants D and their derived parameters. In every case, Cl ≃ Z/h.

Russian curve (1, 1, 155), (5,±1, 31), (7,±5, 23)

Lollipop curves
(1, 1, 137), (11,±5, 13)

(1, 1, 755), (5,±1, 151), (13,±7, 59), (25,±9, 31)

Table 2. All the reduced binary quadratic forms of discriminants D. The first one in
each row is the neutral element in Cl.

All the curves E : y2 = x3+a4x+a6 under consideration are of prime order,
although not all of them have the Weierstrass form E′ : y2 = x3 − 3x + a′6
over Fq. Alternatively, the fraction −3/a4 may not have any quartic roots in
Fq, as can be easily checked. Recall that one doubling on E′ amounts to c′ = 8
multiplications in Fq rather than 9 or 10 ones in general. Nonetheless, let’s always
suppose for uniformity that the constant c′ = 8. One cannot rule out that the
curves E enjoy small-degree Fq-isogenies to (from) Fq-curves E′ of the desired
form, enabling to accomplish a scalar multiplication on E′ instead of E. Hence,
it is fairer to assume that [2] costs as few as possible and to demonstrate that
even in this hypothetical case, the doubling-free GLV approach is still better.

To justify the contribution of this article, it is sufficient to leverage the simple
evaluation method from Section 2.2, as we are primarily interested in loops of
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small-degree isogenies. As noted in that section, large-degree isogenies in the de-
composition of the “minimal” endomorphism ϕmin could benefit from additional
optimizations. Nevertheless, it is highly unlikely that ϕmin would (noticeably)
outperform the “looped” endomorphism ϕ. The authors chose not to derive the
absolutely fair cost for ϕmin, as doing so would significantly complicate the text.
The primary objective is to compare ϕ with the scalar endomorphism [2ℓ

′
]. It

is generally believed that ϕmin is unlikely to be (much) faster than [2ℓ
′
], except

when the degree dmin is extremely smooth, such as d = wm.
Generally speaking, dmin =

∏N
i=1 p

ki
i , where pi are pairwise distinct primes

and N, ki ∈ N. We lack a symbol for the sum σ :=
∑N

i=1 piki. According to
Table 3, the endomorphism ϕ outperforms the others in speed on the curves E
(or E′) listed below. For each curve, the columns [2ℓ

′
], ϕmin, and ϕ in this table

correspond to the values 8ℓ′, ⌈7.5σ⌉, and ⌈7.5mw⌉, respectively.

Curve [2ℓ
′
] ϕmin ϕ

Russian curve 1024 270 188

Lollipop curves
808 1028 248

1048 1170 263

Table 3. Approximate numbers of field multiplications for evaluating the endomor-
phisms [2ℓ

′
], ϕmin, and ϕ.

The executing time of inverting in F∗
q weakly correlates with that of multi-

plying in the field. Therefore, we abstract from the former, working entirely in
projective coordinates. As a downside, this greatly increases the number of mul-
tiplications compared to affine coordinates. As is customary, the given approach
is anyway worthwhile for evaluating [2ℓ

′
], otherwise ℓ′ non-batchable inversions

must be carried out. However, the loop for the endomorphism ϕ (not to mention
ϕmin) consists of the non-considerable number m of isogenies. Thus, evaluating
them in affine coordinates may be in reality a (much) more rapid solution. For
clarity of comparison, it is nevertheless suggested to operate in the idealized
computational model not admitting the inversion operation. The authentic cost
of ϕ (as opposed to [2ℓ

′
]) can only get better than reported in Table 3.

3.1 Russian curve

It is a prime-order Weierstrass curve E : y2 = x3−3x+a6 over the prime field Fq
of order q = 2255 + 3225. Its official name is id-GostR3410-2001-CryptoPro-B-
ParamSet [2, Appendices B, E] or just GC256C [48, Table 2]. As shown in Table
1, the degrees dmin = 5 ·31 and d = 55 for this curve. One 31-isogeny is not much
slower to evaluate than four 5-isogenies (cf. Table 3). Our contribution is thereby
not so interesting for the curve in question, although it is actually the state of
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the art. Moreover, it is unlikely that many Russian developers have heard about
the GLV technique before and used it at least with the endomorphism ϕmin. The
point is that Russian civilian cryptography is intuitively less matured than in the
West, so local private companies (almost) never utilize elliptic curves of small
CM discriminants (such as D = −3), produced by their own R&D departments.

The Russian ECC standard includes two more prime-order curves at the
128-bit security level, namely GC256A and GC256B. Interestingly, their values
of D are significantly large, meaning they could not be generated using the
CM method. This is one reason why GC256C appears to be less popular in
Russia compared to its counterparts, although all these curves are maintained
by Russian servers on an equal basis. However, the curves GC256A and GC256B
are also not entirely pseudo-random, as noted in [47, Section 4.1], due to the fact
that their coefficients a6 are relatively small (while a4 = −3).

3.2 Lollipop curves

In this section, we discuss the components of plain (i.e., non-pairing-friendly)
2-cycles that lie in the “sticks” of certain pairing-friendly lollipops, as described
in [19, Section 5]. This complex construction has recently emerged as a response
to the lack of known pairing-friendly cycles with suitable embedding degrees
⩾ 12. The existence of such cycles is one of the most important open problems in
modern DLP-based ECC. Fortunately, lollipops allow the majority of operations
to be performed in the optimized stick before irreversibly moving to the more
time-consuming 2-cycle of supersingular pairing-friendly curves.

As seen in the tables above, the authors considered only a few lollipops to
illustrate the main idea of the article. Perhaps, it is extended to several oth-
ers generated by Costello and Korpal. More precisely, the instances with bit
lengths ℓ = 201 (i.e., Lollipop-489-201) and ℓ = 261 (i.e., Lollipop-574-261) were
selected, as they offer satisfactory security levels ≈ 100. For reference, the com-
mon Barreto–Naehrig curve BN254 [51] has approximately the same resistance.
This curve was endorsed (e.g., for the Ethereum ecosystem) in the period when
its security was falsely estimated as ≈ 128 bits. Despite the discovered weakness,
BN254 is still actively employed in the real world for compatibility.

4 CM discriminants up to one hundred millions

The present long section contains a natural extension of the previous material.
In comparison with the latter, much greater magnitudes of CM discriminants
(in absolute value) are achieved below, although the base finite fields of elliptic
curves have to be pretty large. With the reader’s permission, we will stick to the
majority of notions and notation already encountered. The most basic of them
will be nonetheless repeated where appropriate. Our objective is to systemize
the anterior result. As it will be shown, the new insight enables to efficiently
implement the GLV approach on certain elliptic curves for which Section 3 in
its original form does not cope with.
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As usual, let E : y2 = x3 + a4x+ a6 be an ordinary (i.e., non-supersingular)
Weierstrass curve over a finite field Fq of large characteristic. Recall that the GLV
method needs a quick non-scalar Fq-endomorphism ϕ on E. In a nutshell, the
approach of Section 3 suggests for the role of ϕ the composition of m isogenies
ϕj : Ej → Ej+1 (where E = E1 = Em+1) also defined over Fq and of the same
(prime) degree w. Thereby, ϕ is evaluated at points of E via the sequential
application of ϕj . The obstacle is that for the huge m, the isogeny loop becomes
too long and hence ϕ is no longer a cheap endomorphism even if w is itself small.
As a generalization, the present section aims to establish shorter isogeny loops
admitting the variable degrees deg(ϕj) that still do not exceed some modest
bound.

As well as in the previous section, we will deal exclusively with elliptic curves
E of fundamental CM (complex multiplication) discriminants D < 0 to circum-
vent redundant complications. The set of all such curves constitutes the so-
called crater (or surface). The central instrument for us is the ideal (or form)
class group Cl of finite order h and its regular action on the crater. The ele-
ments of Cl can be either full ideal (form) equivalence classes or their canonical
representatives, namely reduced ideals (binary quadratic forms) of discriminant
D. To be definite, let’s operate with reduced forms. In Section 3, the isogenies
ϕj are derived with the help of the successive action by such an m-order form
f = (w,w′, w′′) = wx2 + w′xy + w′′y2, where D = (w′)2 − 4ww′′, starting with
E. In this language, w is nothing but the norm of (the ideal associated with) f .

Unfortunately, for the sufficiently big D, the group Cl may not have an
element such that its parameters m, w are both little and the resulting endo-
morphism ϕ is non-scalar. To mitigate this situation, it is logical to pick in Cl a
few distinct reduced forms of bounded norms, eliminating (severe) conditions on
their orders. We will find out how to choose the forms (and in what quantities)
more optimally given D. In a nutshell, it is proposed to resolve a specific in-
stance of the small-dimensional SVP (shortest vector problem) approximated in
a satisfactory manner. By the way, the GLV method is itself founded on solving
the approximated CVP (closest vector problem) in another 2-rank lattice.

4.1 Relation lattices and weighted norms

Fix n pairwise-different reduced forms fi ∈ Cl of norms wi ∈ N. To be definite,
suppose that the forms generate Cl, albeit they should be dependent as far as
possible. Otherwise, the material of this section becomes degenerated and hence
meaningless for our goals. Consider the group homomorphism

Zn → Cl v = (vi)
n
i=1 7→

n∏
i=1

fvii .

Its kernel L is known as relation (or period) lattice. Since Zn/L ≃ Cl, we deal
with a full-rank sublattice of index (Zn : L) = h. It is appropriate to say that
the identity of the group Cl is the form f0 = (1, w′

0, dmin) for which w
′
0 ∈ {0, 1}.
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Let’s introduce the weighted 1-norm

ℓ1w : Zn → N v 7→
n∑

i=1

wi|vi|,

where the weight vector w := (wi)
n
i=1. It is a logical generalization of the classical

1-norm ℓ1 when w is the unit vector, i.e., all wi = 1. The function ℓ1w is actually
a norm in the strict sense of [36, Section XII.2], but it is not a quadratic form
on Zn. The “closest” one to ℓ1w is the weighted form

Qw : Zn → N v 7→
n∑

i=1

wiv
2
i .

To complete the picture, we lack the weighted 2-norm ℓ2w(v) :=
√
Qw(v). Notice

that Qw is the standard quadratic form Q when all wi = 1 and thereby ℓ2(v) :=√
Q(v) is the usual 2-norm. The Gram matrix of the form Qw is the diagonal

matrix W with the vector w on the main diagonal. In particular, the Gram
matrix of Q is the unit matrix In. Besides, we see that ℓ1w(v) = ℓ1(Wv).

The norms ℓ1, ℓ2 are known to be equivalent. By virtue of [39, Theorem
2.14.2.1], the same statement holds for the general w. Even though we will not
leverage this statement directly, it will not hurt to formulate it as the next lemma
to better perceive the relationship between ℓ1w, ℓ

2
w (and so between ℓ1w, Qw).

Lemma 1. For every v ∈ Zn, we have the inequality sequence

ℓ1w(v)√
c

⩽ ℓ2w(v) ⩽ ℓ1w(v) ⩽
√
c · ℓ2w(v),

that is,
ℓ1w(v)

2

c
⩽ Qw(v) ⩽ ℓ1w(v)

2 ⩽ c ·Qw(v),

where c := ℓ1(w). Thus, the norms ℓ1w, ℓ
2
w are equivalent regardless of w ∈ Nn.

Let v = (vi)
n
i=1 ∈ Zn and j =

∑i−1
i′=1 |vi′ | + j′, where 1 ⩽ j′ ⩽ |vi|. Denote

by ϕj : Ej → Ej+1 the Fq-isogeny derived from the action of the form fi on the
elliptic curve Ej , starting with E1 = E. Note that m := ℓ1(v) is the length of the
isogeny chain. By definition of L, the vector v ∈ L if and only if

∏n
i=1 f

vi
i = f0.

In turn, this condition is necessary and sufficient for ϕ := ϕm ◦ . . . ◦ ϕ1 to be
an endomorphism on E or, equivalently, Em+1 = E as we want. In addition, it
is needed to guarantee that ϕ ∈ End(E) is non-scalar. In particular, this holds

whenever d := deg(ϕ) =
∏n

i=1 w
|vi|
i is not a square in Z, which is often met.

Hereafter, the norms wi are assumed to be little primes, although nothing
is required for the orders of fi. The shortest vectors (with respect to ℓ1w) of the
lattice L precisely correspond to the fastest isogeny loops of the curve E, at least
if solely the forms fi are at our disposal. Indeed, the number of multiplications in
Fq for evaluating (in projective coordinates) any isogeny obtained by fi amounts
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to ≈ 7.5wi as explained in Section 2.2. Consequently, the cost of ϕ is equal to
≈ 7.5 · ℓ1w(v) field multiplications. By the way, in a similar context the norm ℓ1w
is already encountered in [41].

We come to a famous lattice problem of computing a fairly short vector.
Nonetheless, it is not expected to be one of the shortest vectors in L, because
the latter may give rise to scalar endomorphisms on E. The rank n will be small
in the further examples, so we can benefit from widespread (but exponential-
time in n) lattice algorithms such as LLL (Lenstra–Lenstra–Lovász) [37, Section
1]. On the one hand, the computer algebra systems Magma and Sage, preferred
by the authors, apparently do not enable to return a short vector with respect
to a norm unlike a quadratic form. On the other hand, Magma provides the
functionality in selecting a more desirable form than the standard one Q. As an
approximation, it is thus reasonable for us to operate with the function Qw less
exact than ℓ1w, but more exact than Q.

4.2 Examples

It is time to illustrate the above idea in several elliptic curves E/Fq of moderate
fundamental CM discriminants D from the cryptographic literature. Table 4
(cf. Table 1) contains main parameters associated with E as well as with D
and interesting for us. Inter alia, e := ⌈log2(q)⌉ and ℓ := ⌈log2(r)⌉, where r is
the order of a cryptographically strong subgroup G ⊂ E(Fq). Each curve will be
separately discussed below. As a supplementary source, they (along with suitable
Fq-isogenous curves) are implemented in Sage on the web page [34]. Besides, it
stores Magma code allowing to instantly verify all the tables of this paper.

Curve Reference e ℓ D ⌈log2(−D)⌉ Cl

MNT curves [29]
753 −331787862733683 49 Z/2× Z/1335648

992 −95718723 27 Z/2× Z/784

Lollipop curve [19, Section 5] 956 451 −160807944 28 (Z/2)3 × Z/632

Table 4. Certain curves (remarkable for ECC) of moderate fundamental CM discrim-
inants D and their derived parameters.

Tables 5, 6 (cf. Table 2) demonstrate all (up to inversion in Cl) the reduced
binary quadratic forms fi of prime norms < 150 and < 50 (apart from the iden-
tity f0) for the curves MNT-753 and MNT-992, Lollipop-956-451, respectively.
The bounds 150 and 50 were chosen manually as round numbers. If desired, the
reader can play by choosing the other bounds. The authors tried 200 and 100
as an alternative, but this led to nothing new, that is, the next tables remained
unchanged.
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№ Form Order =

0 (1, 1, 82946965683421) 1 1

1 (3, 3, 27648988561141)
2

f667824
10

2 (131, 131, 633182944181) f2

3 (43, 13, 1928999201941) 83478 f185168
10

4 (109, 41, 760981336549) 222608 f349554
10

5 (149, 33, 556691044857) 333912 f2f
845740
10

6 (139, 117, 596740760337) 445216 f1189197
10

7 (7, 1, 11849566526203)

667824

f1027390
10

8 (47, 41, 1764829057103) f2f
656686
10

9 (137, 89, 605452304273) f2f
639566
10

10 (31, 3, 2675708570433)

1335648

f10

11 (41, 29, 2023096723991) f2f
1248073
10

12 (53, 11, 1565037088367) f2f
767525
10

13 (103, 3, 805310346441) f1102297
10

14 (107, 5, 775205286761) f2f
1070359
10

15 (113, 67, 734043944111) f2f
275059
10

16 (127, 65, 653125714051) f955363
10

Table 5. The reduced binary quadratic forms fi ∈ Cl (up to the sign) of prime norms
wi < 150 in the case of MNT-753.

Denote by {ui}ni=1 the standard basis of Zn. Tables 5, 6 help to construct the
relation lattice L, namely one {bi}ni=1 of its long bases. To be definite, let’s ex-
plain this in the case of MNT-753. For the others, there is no principal difference,
hence the details are omitted. As is seen in the table, the forms f2, f10 (of orders
2 and h10 := h/2, respectively) are picked as a basis of the group Cl. By defini-
tion, the remaining forms are uniquely expressed via them. If fi = fe22 fe1010 , where
e2 ∈ Z/2 and e10 ∈ Z/h10, then the corresponding vector bi := ui+e2u2−e10u10
for i ̸∈ {0, 2, 10}. In turn, b2 := 2u2 and b10 := h10u10. It is worth saying that
Magma automatically returns an LLL-reduced basis of L once {bi}ni=1 is in-
putted. Curiously, in [13, Section 3] the class group structure (for the CSIDH-
512 parameter set) is conversely found through establishing a lot of non-trivial
relations in the 74-rank relation lattice. Note that ⌈log2(h)⌉ = 256 in this situ-
ation, being the largest determined class group of fundamental discriminant to
the authors’ knowledge.



Faster Cryptography on Elliptic Curves of Moderate CM Discriminants 15

№ Form Order =

0 (1, 1, 23929681) 1 1

1 (3, 3, 7976561)
2

f1

2 (41, 41, 583661) f1f
392
6

3 (23, 3, 1040421) 112 f1f
91
6

4 (17, 7, 1407629)
392

f1f
486
6

5 (31, 15, 771927) f130
6

6 (13, 11, 1840747)
784

f6

7 (19, 3, 1259457) f333
6

The case of MNT-992

№ Form Order =

0 (1, 0, 40201986) 1 1

1 (2, 0, 20100993)

2

f1

2 (3, 0, 13400662) f2

3 (11, 0, 3654726) f3

4 (19, 0, 2115894) f1f2f3f
316
7

5 (41, 40, 980546)
158

f1f
344
7

6 (43, 4, 934930) f1f2f3f
24
7

7 (5, 4, 8040398)

632

f7

8 (7, 2, 5743141) f1f2f
179
7

9 (23, 12, 1747914) f365
7

10 (47, 26, 855365) f517
7

The case of Lollipop-956-451

Table 6. The reduced binary quadratic forms fi ∈ Cl (up to the sign) of prime norms
wi < 50.

Table 7 exhibits fairly short vectors s = (si)
n
i=1 ∈ L (and the related forms

in Cl) with respect to the weighted norm ℓ1w. For comparison, values of the
weighted quadratic form Qw are equally included in the given table. The vectors
s are obtained by brute force over the ball B := {v ∈ L | Qw(v) ⩽ R} for some
round radius R ∈ N. Once again, Magma (as well as Sage) does not possess an
intrinsic outputting a vector short in terms of ℓ1w rather than Qw. Meanwhile,
the inequalities from Lemma 1 do not seem to be tight enough to reasonably
reduce the search. And in general, it is probably difficult to deduce (much)
tighter inequalities between ℓ1w, Qw. Nevertheless, since we deal with lattices of
little ranks, the brute force promptly yields quite good results. Importantly, if
we made use of another quadratic form (for example Q) as a measure on L, the
ball B would be less adequate (or R should have be greater) and thereby the
resulting vectors (or their search time) might be longer. This is especially wise
if the reader (like the authors) does not dispose the paid Magma version, but
only the free online one.

Recall that dmin (the third coefficient of f0) coincides with the minimal possi-
ble degree of non-scalar endomorphisms on E, whereas ϕmin stands here for one of

them. Table 8 shows the prime factorizations dmin =
∏N

i=1 p
ki
i and d =

∏n
i=1 w

|si|
i

for the degrees of ϕmin, ϕ. Note that the sum σ :=
∑N

i=1 piki plays the same role
as ℓ1w(s). To better reflect a big gap between these quantities, they are simulta-
neously represented in the previous table. Finally, in Table 9 (cf. Table 3) one
can see the estimated numbers of multiplications in Fq for evaluating the endo-
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Curve Short vector Form ℓ1w(s) Qw(s) σ

MNT curves
(1, 0, 1, 1, 0, 0,−1, 0, 0,−6, 2, 0, 0, 0, 0, 0)

f1f3f4f
2
11

f7f6
10

430 1442 207280768

(1, 1,−1, 1, 0,−3, 0)
f1f2f4
f3f3

6

123 201 1095

Lollipop curve (0, 0, 0, 0, 0, 0, 7, 2,−1, 0)
f7
7 f

2
8

f9
72 296 32094

Table 7. Certain short vectors s ∈ L and their derived parameters (apart from σ).

morphisms [2ℓ
′
], ϕmin, and ϕ, where ℓ′ := ⌈ℓ/2⌉. In other words, the columns

mean the values 8ℓ′, ⌈7.5σ⌉, and ⌈7.5 · ℓ1w(s)⌉, respectively.

Curve dmin d

MNT curves
72 · 8167 · 207272587 3 · 7 · 316 · 412 · 43 · 109

103 · 379 · 613 3 · 133 · 17 · 23 · 41

Lollipop curve 2 · 3 · 11 · 19 · 32059 57 · 72 · 23

Table 8. The prime factorizations for the degrees of the endomorphisms ϕmin, ϕ.

Curve [2ℓ
′
] ϕmin ϕ

MNT curves
3016 1554605760 3225

3968 8213 923

Lollipop curve 1808 240705 540

Table 9. Approximate numbers of field multiplications for evaluating the endomor-
phisms [2ℓ

′
], ϕmin, and ϕ.

4.2.1 MNT curves

MNT (Miyaji–Nakabayashi–Takano) curves [40] are historically the first ordinary
pairing-friendly curves of prime orders r. Their embedding degrees k are 3, 4, or
6. Afterwards, other such curves appeared, namely Freeman and BN (Barreto–
Naehrig) ones enjoying the greater k equal to 10 and 12, respectively. So, MNT
curves lost their practical significance for a while. By the way, the requirement
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on r to be prime is redundant, since uselessly increases the Miller loop during
pairing computation. That is why the most optimal curves (at least for the 128-
bit security level) appropriate for pairings are widely recognized to be BLS12
(Barreto–Lynn–Scott) ones with k = 12 and value ρ ≈ 1.5. More information on
pairing-friendly families can be found, e.g., in [24, Section 4].

The situation is flipped on its head if we are talking about (2-)cycles of
pairing-friendly curves. At the moment, the humanity does not know examples
of such cycles (with bigger k) different from MNT ones. This is an open aca-
demic problem (see details in [5]). If it was resolved, one could fully benefit,
e.g., from Groth16 [28], a very famous zk-SNARK (succinct non-interactive ar-
gument of knowledge). Nowadays, the problem nevertheless has nothing to do
with real-world cryptography, since some time ago people managed to deploy zk-
SNARKs (e.g., Nova [35]) by means of (semi-)plain 2-cycles such as Pasta curves
[30] or Pluto/Eris [31]. In other words, the pairing-friendly property eventually
became superfluous for cycles. It is worth stressing that this concept is essen-
tially the unique known way in overall cryptography to bring to life succinct
zero-knowledge proofs of unrestricted recursion. And vice versa, this niche is in
essence the only pertinent cryptographic application of cycles.

The most prominent pairing-friendly 2-cycle is perhaps MNT-753 [29]. Ex-
perts in the area are equally aware of the 2-cycles MNT-298 [7, Section 3.2] and
MNT-992 [29]. Each mentioned 2-cycle consists of one curve with k = 4 and
of another with k = 6. Both curves possess the identical D, as their Frobenius
discriminants are described by the function s(q, r) := (q+ 1− r)2 − 4q symmet-
ric in q, r. 3 Furthermore, the number in every name means ℓ and obviously
coincides with e. In the past, the MNT-753 cycle was employed in Coda [44] (af-
ter rebranding, Mina [42]) protocol, although it now also gives the preference to
Pasta curves as follows from [43]. In accordance with Guillevic, the given MNT
cycle provides 113 security bits, while MNT-298, MNT-992 correspond to 77
and 126 bits, respectively. MNT-298 is a too weak cycle, hence it has never been
leveraged in practice to the authors’ knowledge. It was generated at one time
exclusively as a demonstration. In turn, MNT-992 is even slower than MNT-753.
Indeed, the fields Fq, Fr of the former (unlike the latter) are not highly 2-adic
(not to mention the larger bit length): q − 1 and r − 1 are not divided by suf-
ficient powers of 2. The point is that highly 2-adic fields are the most suitable

3 In fact, the CM discriminant D′ indicated in [29] for the MNT-753 curves E′ is not
fundamental for unexplained reasons, namely D′ = 272D for the fundamental one
D (from Table 4). Put another way, elliptic curves related to D′ are not located
on the crater, although the CM method is (usually) launched for fundamental CM
discriminants. Since D is large and the authors do not possess necessary computa-
tional resources, they did not manage to determine the true CM discriminant for
the MNT-753 curves to which Guillevic refers. Fortunately, it is easily verified that
D is the square-free part of the Frobenius discriminant s(q, r). Even if the curves E′

have the CM discriminant D′ rather than D, there are in this case uniquely defined
crater curves E and vertical Fq-isogenies E → E′ (as well as their duals E′ → E) of
the modest degree 27. So, we can actually work on the crater without any remorse.
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for implementing FFT (fast Fourier transform), which dramatically speeds up
execution of zk-SNARKs.

In 2019, the Coda–Dekrypt challenge [45] was held with the purpose to ex-
haustively accelerate the MNT-753 cycle (including MSM optimization). The
authors did not hear about fundamental advances in the challenge except for
the invention of lollipops [19]. According to Table 9, the technique of the present
article does not improve upon [2ℓ

′
] (so far) on the cycle in question. Nevertheless,

in the running-time estimation of the new endomorphism ϕ, we do not take in
account that the higher-degree isogenies ϕj defining ϕ (let’s say when wi > 40)
may be evaluated more rapidly than in Section 2.2, e.g., via square-root Vélu’s
formulas [9]. For conciseness, we leave this subtle work for the future in the hope
to attract attention of experienced developers to the given computational task.
Despite the fact that the Coda–Dekrypt challenge expired many years ago, any
noteworthy progress in solving its concerns should be fascinating and (poten-
tially) useful in diverse branches of ECC. On the other hand, there is apparently
no room for optimizing [2ℓ

′
].

4.2.2 Lollipop curve

This section is dedicated to an ordinary pairing-friendly curve E/Fq of embedding
degree k = 4 in the stick of Lollipop-956-451 from [19, Section 5]. The field Fq is
of the length e = 956, but the discrete logarithm problem is considered in the
prime subgroup G ⊂ E(Fq) of length ℓ = 451. Thereby, the value ρ > 2, that
is, G is more than two times smaller than the whole group E(Fq). Furthermore,
the bit security of G itself is equal to ℓ′ − 1 = 225 (much greater than 128),
while the true one (of the lollipop) is 142 bits because of the MOV (Menezes–
Okamoto–Vanstone) attack through the multiplicative group F∗

q4 . The example

under consideration has the largest value ℓ (and hence ℓ′) among all the ordinary
pairing-friendly lollipop curves generated by Costello and Korpal: ℓ ⩽ 262 ≪ 451
for the others. Meanwhile, their CM discriminants are not an order of magnitude
smaller than D. As a result, E seems to be the unique curve for which the
endomorphism ϕ (noticeably) outperforms the conventional scalar one [2ℓ

′
].

Recall that Section 3 analyzes a few curves constituting Lollipop-489-201 and
Lollipop-574-261, but those are plain (i.e., non-pairing-friendly) and located in
another part of the stick: more far than E from the corresponding supersingular
2-cycle. In particular, the CM discriminants of the plain lollipop curves are
much more modest than that of E. The authors decided to take the curve E for
diversity to tackle the cardinally new case. However, it is highly likely that the
relation-lattice method of this section is relevant to all the plain lollipop curves
from [19, Section 5].

Moreover, by using several prime-norm forms from Cl instead of the same
one, it is apparently possible to construct slightly faster non-scalar endomor-
phisms ϕ on the curves addressed earlier (including GC256C). In other words,
the numbers of multiplications in the last column of Table 3 may even be re-
duced. Nevertheless, these numbers are insignificant, since the values D from
Table 1 are not as large as those from Table 4. Therefore, the further optimiza-
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tion of the first curves was sacrificed for simplicity of exposition. Otherwise, one
would have to immediately involve the concepts of relation lattices and weighted
norms, which would complicate understanding of the text.

5 Conclusion

This paper offers a fresh perspective on the classical GLV method, extending
its applicability to a broader class of elliptic curves with moderate CM discrim-
inants. Specifically, the relevance of the GLV method is justified for a series of
curves arising in pairing-based recursive zk-SNARKs (apart from one Russian
standardized curve). These include certain 2-cycles of MNT curves and ordinary
curves participating in formation of lollipops. In theory, lollipops are intended to
supersede MNT 2-cycles. However, it is unlikely that the GLV technique (even in
view of the current work) is applicable to supersingular curves forming lollipop
2-cycles. Moreover, lollipops provide in a sense restricted recursion. Thus, MNT
2-cycles have some benefits over lollipops.

Advances in accelerating MSM on (pairing-friendly) 2-cycles/lollipops are
partially able to increase interest to zero-knowledge proof systems based on
ECC. It is not a secret that cryptographic hash functions (from [8,15]) are us-
able for implementing zk-STARKs (zero-knowledge scalable transparent argu-
ment of knowledge) [6]. Nevertheless, hash-based cryptography does not respect
the succinctness property, which is often crucial for blockchain technology. So,
the authors think that further investigations are necessary to better understand
the full cryptographic capabilities of elliptic curves. Of course, this point of view
is vital only if the probability of creating a multi-qubit quantum computer is
not higher than that of finding a novel attack on (or a backdoor in) a used hash
function.

To conclude, one more step is done in the given paper towards more rapid
cryptography on elliptic curves. While the curves discussed are quite exotic, it is
possible that other real-world curves affected by the paper result already exist
or may emerge in the near future. Although the authors do not consider their
contribution groundbreaking, it nonetheless opens a new chapter in accelerat-
ing elliptic curve cryptography. This definitely deserves attention of the scientific
community, since the speed is frequently one of the main advantages of ECC ver-
sus trendy (presumably) PQC. The more efficient the former, the more tempting
to keep it at least for the sake of niche time-critical scenarios (especially with
short-term data) than to make the entire transition to the latter.
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