
Universally Composable and Reliable
Password Hardening Services

Shaoqiang Wu1 and Ding Wang1

Nankai University {wushaoqiang@email.,wangding@}nankai.edu.cn

Abstract. The password-hardening service (PH) is a crypto service that
armors canonical password authentication with an external key against
offline password guessing in case the password file is somehow compro-
mised/leaked. The game-based formal treatment of PH was brought
by Everspaugh et al. at USENIX Security’15. Their work is followed
by efficiency-enhancing PO-COM (CCS’16), security-patching Phoenix
(USENIX Security’17), and functionality-refining PW-Hero (SRDS’22).
However, the issue of single points of failure (SPF) inherently impairs
the availability of these PH schemes. More specifically, the failure of a
single PH server responsible for crypto computation services will suspend
password authentication for all users.

We propose the notion of reliable PH, which improves the availability
of PH by eliminating SPF. We present a modular PH construction, TF-
PH, essentially a generic compiler that can transform any PH protocol
into a reliable one without SPF via introducing threshold failover. Partic-
ularly, we propose a concrete reliable PH protocol, called TF-RePhoenix,
a simple and efficient construction with RePhoenix (which improves over
Phoenix at USENIX Security’17) as the PH module. Security is proven
within the universally composable (UC) security framework and the ran-
dom oracle model (ROM), where we, for the first time, formalize the ideal
UC functionalities of PH and reliable PH. We comparatively evaluate the
efficiency of our TF-PH with the canonical threshold method (taken as
an example, the threshold solution introduced by Brost et al. at CCS’20
in a PH-derived domain – password-hardened encryption). Results show
that our threshold failover-based solution to SPF provides optimal per-
formance and achieves failover in a millisecond.

Keywords: Authentication, Password hardening, Single points of failure

1 Introduction

In recent years, unending password file breaches have made credential stuffing
attacks the most significant threat against identity security [31]. For instance,
the 2023 DBIR report [10] points out that 86% of the 1,287 web-based data
breaches are due to stolen credentials. Generally, passwords are stored on the
authentication server in salted-hash as recommended by NIST-800-63B [16] and
the NCSC guideline [37]. However, this practice has an inherent weakness: It

PRF(k1,pw)

➁Attack servers S1,S2

PH servers

k1
k3

k5

k2
k4

k6➀PH Protocols with S1

➃PH Protocols with S3PRF(k3,pw)

➂Failover: Threshold rotation

➁Attack S1’s network

pw

pw

☓ SPF

Password hardening
(PH) server

PH Protocols

key

Attack serverAttack network

☓

Authentication
server

User

Bob,pw

Accept/Reject
☓ SPF

pw
PRF(key,pw)

Various backups

Authentication
server

User

Bob,pw

Accept/Reject

Fig. 1: An overview of password hardening service (PH), with and without single
points of failure (SPF). Password authentication using PH hardens passwords
with a remote PH key against offline password guessing (upon the authentication
server compromise) and online password guessing (e.g., by rate-limiting and
lockout; hence, the PH server is also called rate-limiter [27,4]). As shown on
the left, all existing PH services are threatened by the SPF of the PH server
(e.g., upon PH server corruption and network failure). This paper transforms
the damaging threat into a remediable one on the right. In detail, it sets six PH
servers with various keys (i.e.,k1, k2, k3, · · · , k6) and failovers (i.e., 3○ via a secure
channel) when failure happens by using the (6,4)-threshold server rotation and
password file update. A secure channel helps avoid malicious threshold failover.

only increases the cost of offline password guessing attacks but does not elimi-
nate them. This weakness is fatal in reality, where the attackers constantly in-
crease their offline guessing success rates by using powerful hardware (see [31,10])
and advanced guessing algorithms (e.g., [38,30]). As a result, an overwhelming
fraction of passwords can be guessed/recovered (see [14,7]).

A promising solution to eliminate offline dictionary attacks (and credential
stuffing attacks) is the Password Hardening service (PH) [29,11,9]. As shown in
Fig. 1, the authentication server carries out an oblivious PH protocol with the
PH server to evaluate the user-selected password as a pseudo-random value that
is strengthened by the PH key and stores it as password verification information
(known as a password file record). When a password needs to be verified, the PH
server assists the authentication server in performing an oblivious PH protocol
to generate the verification result (accept or reject). Throughout these processes,
the PH server can learn nothing about user passwords. In particular, without
the PH key, even the authentication server cannot crack the password file offline
by independently verifying password guesses, let alone attackers who steal the
password file. Attackers can only resort to online attacks by requesting a run of
the PH verification protocol for every guess until they hit the target. The PH
server can thwart such online attacks by rate-limiting and lockout [12].

1.1 Motivations

While existing PH schemes [11,32,28,24] significantly improve password storage
security by developing secure and efficient PH protocols, they introduce a single
point of failure that makes PH services less reliable [4]. Suppose the PH server
is unreachable due to a network failure or malicious attack; that is a genuine
possibility [26]. In that case, without the assistance of the PH server, the au-
thentication server cannot independently verify its users’ login passwords since
its stored password records are encrypted with an external PH key. In short, the
PH failure will disrupt all user logins for every authentication server subscribing

2

to the PH service. To make matters worse, if the PH key is lost, all registered
passwords are invalidated [4], leaving users with only a tedious password reset
process to restart their accounts. Removing SPF for existing PHs can increase
the trust of users and encourage authentication servers to subscribe to their
services. Hence, the SPF issue should be resolved on an urgent basis.

Password-hardened encryption (PHE) [27] is a one-package solution that
combines a PH instance (i.e., Phoenix [28]) and data encryption. PHE has the
same SPF issue as PH. To eliminate its SPF, Brost et al. establish a threshold
version [4] (namely T-PHE here). T-PHE [4] divides the PHE server’s responsi-
bility (the key and protocols) among n servers and guarantees that t servers can
fully function. This way, as long as any t-of-n servers are correctly working on
the encryption/decryption protocols, T-PHE [4] will not be interrupted by the
failure of one or some servers. In many other works [4,1,40], the threshold method
is often used to overcome the SPF problem. Similarly, we can deduce that the
resolution could also work in existing PH schemes [11,32,28,24], although no such
revision has been proposed.

However, the threshold method complicates protocols and increases commu-
nication rounds. Taking T-PHE [4] as an example, expanding the encryption
protocol from one round to three rounds and the decryption protocol from two
rounds to six rounds, makes latency two to three times that of PHE [27] even at
the same setting of n = t = 1 [4]. Naturally, efficiency defects are also challenging
to avoid in PH. This trade-offed performance ripples through the two fundamen-
tal protocols (i.e., registration/evaluation and login/authentication protocols),
where users may perceive their increasing delay [2].

To our knowledge, there is no universally composable (UC) threshold PH
scheme. For a non-UC threshold scheme [4], the security of an original PH scheme
(with SPF) is not preserved in its threshold-improved scheme. The security needs
to be re-proved across the board even if the original scheme has been proven
secure. Second, a designed threshold solution cannot be directly migrated to
other PH schemes with SPF. When threshold splitting a PH key, for example,
protocol designers need first to gain insight into the original protocol and the
computational process in which the key participates, and then translate the
related computation into a splittable one, such as the complex matrix operation
in T-PHE [4]. Although each PHS [11,32,28,24] may have a suitable threshold
version, its protocol designers must individually rack their brains to design it
and re-prove its security.

To sum up, the canonical threshold method is foreseeably feasible to elimi-
nate the SPF of PH by carefully designing a sound version individually, just like
PHE’s [27] threshold version T-PHE [4]. However, its disadvantages are promi-
nent: it comes at the cost of complexity and efficiency; the threshold method
and its security are not universally composable.

1.2 Our work

We aim to build a reliable and efficient solution that eliminates the single points
of failure of the PH server in all PH schemes. We arm them with a series of

3

desirable properties such as a modular design with universally composable secu-
rity and high efficiency (i.e., without substantial efficiency downgrade of main
protocols for registration and login). In all, we make the following work.

We, for the first time, formalize the PH definition, FPH, in the universally
composable (UC) security framework [5]. According to the existing game-based
definitions [11,28,24], PH protocols can be divided into two types. The first
type [11] uses an oblivious pseudo-random function to evaluate the user password
and generates a deterministic password record. It is executed regardless of reg-
istration and login. The second type [28,24] generates random password records
that are non-deterministic and consistently different, even for the same password,
and verifies login passwords via a separate PH authentication protocol. Since the
second-type PH instantiations [28,24] are generally more efficient, we focus on
and formalize them in the UC framework. As an independent interest, we de-
fine the first-type PH as the verifiable and partially oblivious pseudo-random
function (VPOPRF) functionality in Appendix E. We prove that Pythia [11]
(at USENIX Security’15) is a UC-secure VPOPRF protocol, which answers the
question left in [11] on proving pseudo-randomness.

We demonstrate the practicality of our UC PH functionality (FPH) by propos-
ing the first UC PH scheme (named RePhoenix) that realizes FPH in the random
oracle model (ROM). RePhoenix solves the SPF problem of Phoenix [28] with-
out impairing efficiency. Moreover, RePhoenix eliminates the other defects of
Phoenix [28], especially regarding the verifiabilities of the evaluation protocol
and the “reject” branch of the authentication protocol, making fake password
records and unreliable verification results detectable.

We formalize reliable PH as FrPH that strengthens the PH security notion by
eliminating the single points of failure in the UC framework based on FPH. In
the reliable PH functionality, we set n servers holding their own independently
generated random keys and label them with the state of online or offline. We
designate an online server as the PH server defined in FPH at a time and call
it the on-duty server. It interacts with the authentication server for password
evaluation and authentication like in FPH. Upon the failure of the on-duty server,
we allow a (n, t)-threshold server rotation to activate an alternative online server
to take over the failed on-duty server, as shown in Fig. 1. Failover is frequently
used to ensure high availability in the field of cloud [39] and networks [35,3] from
system, architecture and management. To our knowledge, we, for the first time,
provide a cryptographical failover for a cryptographical protocol.

We present TF-PH, a specialized compiler for solving the SPF issue, which
can transform any UC-secure PH protocol into a UC-secure reliable PH protocol.
We take advantage of the modular security of the UC framework to make the
security proof clear and simple. To this end, we define the above SPF solution
in FrPH as the ideal threshold failover functionality FTF in the UC framework.
By splitting the update token using Shamir’s secret sharing algorithm [33] in the
initialization phase and reconstructing the update token upon failure happens, a
simple TF protocol UC-realizes FTF. Therefore, TF-PH can UC-realize FrPH just
by calling FPH and FTF. For practical efficiency considerations, failover requires

4

that the token be transmission efficient with compact and constant size and that
the password file update be computation efficient (e.g., batch updates locally).
For security, failover should satisfy forward security. For a user, failover should
be a transparent process that requires no additional input from the user.

Importantly, our TF-PH enjoys an essential property for use in practice, i.e.,
modularity. It allows for all existing and future PH schemes that UC-realize FPH

to replace the FPH sub-routine of TF-PH. In other words, TF-PH solves the
single points of failure problem once and for all. This goes beyond the threshold
method that works only on a case-by-case basis, as mentioned earlier.

Equipping our TF-PH with UC security is natural and meaningful. We re-
flect from the existing threshold work [4] that re-providing security is repetitive
and tedious after improving a proven secure original PH scheme. We offer the
UC security proof that shows that our TF-PH UC-realizes the reliable PH func-
tionality. Therefore, we can benefit from the UC theorem [5]. The UC security
of an improved reliable PH with TF-PH can be directly obtained from the UC
security of the original PH scheme.

As for efficiency, low latency and user transparency are fundamental proper-
ties of PH [24]. In this term, TF-PH maintains these properties if inherent in the
original PH scheme. The SPF solution should not suffer from the performance
of the protocols that users participate in (e.g., registration and login). Accord-
ingly, our TF-PH provides optimal performance, which means that the improved
reliable PH with TF-PH has the same efficiency as the original PH. That is, the
SPF problem is solved in TF-PH without sacrificing efficiency. Achieving this
demanding goal is challenging. For this, we find an acceptable balance between
performance and security. Our TF-PH does not enhance the protection of the
PH protocols to the threshold security, whereas the threshold method does.

Finally, we instantiate a concrete reliable PH TF-PHFPH→RePhoenix,FTF→TF,
called TF-RePhoenix. We analyze the performance of the main protocols and
find that TF-RePhoenix has no performance loss as expected compared with the
original RePhoenix. As a comparison, T-PHE [4] has a loss of 15%∼80%. Fur-
thermore, we implement TF-RePhoenix and measure the time cost of failover.
The experiment results show that it efficiently addresses single points of fail-
ure, with service failover in milliseconds. As (n, t) = (15, 4) an example, the
failover latency is 0.75 milliseconds, where 0.39 milliseconds for reconstructing
the update token and 0.36 milliseconds for updating a password record.

Contributions. In summary, we make the contributions:
– We, for the first time in the UC framework, define the password hardening

service (PH) functionality FPH in Section 2.1 and the reliable PH function-
ality FrPH without single points of failure (SPF) in Section 3.

– We present a reliable PH protocol named TF-PH in the (FPH,FTF)-hybrid
world in Section 4, where FTF is the threshold failover functionality. TF-PH
is a compiler that can transform any UC-secure PH protocol into a UC-secure
reliable PH protocol without SPF using threshold failover.

– We provide an efficient and UC-secure PH protocol in Section 2.2, improved
over the state-of-the-art Phoenix [28] mainly by refining verifiability under

5

the DDH assumption in ROM. Based on the UC theorem, we provide a
concrete reliable PH protocol named TF-RePhoenix in Section 5.

– Experiments in Section D demonstrate that the failover in TF-RePhoenix is
low-latency, taking only a millisecond to complete.

Notations. Let κ denote the security parameter. Zn denotes the set of integers
{1, 2, . . . , n}. For a, b ∈ Z and a≤b, [a, b] denotes the set {a, a+ 1, . . . , b− 1, b}.
Simplified [b] denotes the set [1, b]. If S is a set, then |S| denotes its cardinality,
which can be as subscript (i.e., S|S|); that is, {si}t, i ∈ [n] denotes a set of t si’s.
We use JsK as a shorthand for (s1, · · · , sn) which are a set of (n, t)-shares of s.
A concrete threshold scheme will specify how the shares will be generated with
t and n as threshold parameters, where n denotes the number of shares s is split
into and t denotes the number of shares required to reconstruct s.

2 The Password Hardening Service Functionality FPH

Password hardening services (PH) provide secure password storage in an au-
thentication server, where passwords are protected by an external key held by
a PH server. Any insider and outsider attackers of the authentication server,
who obtain the password file, cannot offline brute force crack passwords without
knowing the PH key. A password hardening service is described as a set of two-
party protocols executed between the authentication server (AS) and the PH
server (RL). It does not interact directly with users, so a password hardening
service cannot solve problems with the passwords themselves (e.g., weak pass-
words, reused passwords). Generally, a username and password pair (un, pw) is
assumed to be transmitted from a user to the authentication server via a secure
channel (i.e., “password over TLS”) [11,28,27]. The authentication server takes
the (un, pw) as inputs, and the PH server takes a PH key as input; specifically
in the multi-client scenario, the PH server holds a master key and resorts to a
key derivation function for individual PH keys for every authentication server.
The PH server can learn nothing about user passwords. Since the authentica-
tion server introduces external cryptographic protection for password-derived
values, an online authentication protocol with the PH server is necessary for
verifying each password candidate. In this way, the PH server can rate-limit
online password guessing attacks. Therefore, the PH server is also called a rate
limiter [27,4].

There are two main PH protocols: evaluation and authentication. In the
evaluation protocol, AS takes a username and a registration password as inputs
and generates a (pseudo) random value as the password record. After that,
AS discards the password and stores the password record in its password file.
In the authentication protocol, AS inputs a login password and the username-
indexed password record, with the output being the password verification result.
This protocol verifies whether the login password matches the registered one
underlying the password record. Obliviousness ensures that RL learns nothing
about the AS inputted registration/login password.

6

Existing research on PH [32,28,27] defines the security properties through
security games that cover partial obliviousness, hiding, soundness, and forward
security [32,28,27]. Partial obliviousness ensures RL learns nothing about AS in-
put user password from the PH protocol interactions. However, the username
input may not be oblivious, such as in Phoenix [28]. It is recommended [11,32] to
opt for a username tweak (i.e., a deterministic username-derived value) instead
of sending the username in plaintext. Hiding captures that passwords remain
hidden even when the password file records are available. Proving this property
directly is difficult. Generally, one can prove it by proving the indistinguishability
of the password record value and a random value [28], thereby proving random-
ness. Soundness ensures that AS will accept the correct password as valid for
one password record and reject any wrong password. This requires all protocols
to be verifiable. RL cannot trick AS into accepting incorrect outputs, including
ineffective password evaluation values or wrong password authentication results.
Forward security means the old PH key is ineffective in recovering password
information from updated password records.

Further, we define randomness to ensure the non-deterministic outputs of
the evaluation protocol, even with the same password input. This prevents at-
tackers from verifying passwords through the evaluation protocol. Moreover, the
authentication protocol requires unpredictability to ensure that AS cannot gen-
erate effective protocol outputs independently. This prevents online attackers
from using a limited number of online requests to verify a large number of pass-
word guesses (a counterexample is in [32], where a single verification query is
sufficient to brute-force the password afterward).

2.1 Defination of Password Hardening Functionality FPH

The Universal Composability (UC) framework for expressing security is stronger
than game-based security models. This is attributed to its ability to accommo-
date arbitrary interactions between protocol instances [5] and to encapsulate
security in scenarios involving arbitrary password correlations, password typos,
and arbitrary password information leakage [6]. Many (and increasingly more)
important works [6,22,18] are presented under UC.

We, for the first time, propose the UC password hardening definition, FPH

shown in Fig. 2-Fig. 3. Exploring PH protocols under the ideal functionality
of FPH in the UC security framework allows us to benefit from the UC theo-
rem1 [5]. As in Section 4, we can modularize the solution to the single points of
failure (SPF) and present an FPH-hybrid compiler for eliminating SPF for all PH
protocols which UC-realize FPH. In this way, later researchers can temporarily
ignore the SPF problem, focus on developing PHS itself, and then simply in-
troduce our modular SPF solution to obtain an enhanced version without SPF.
Furthermore, in a multi-client scenario where the PH server serves multiple au-
thentication servers in parallel, UC security remains.

1 Briefly put, protocols that run multiple UC-secure protocols simultaneously or in
combination are also UC-secure.

7

Public Parameter and Conventions
– Output-length ℓ and token-length τ , polynomial in security parameter κ.
– The lmt is the limit number of online authentications allowed within a window.
– If no prf(·) is defined until referenced, set prf(·)←$ {0, 1}2κ.
Initialization
– On input (Init, sid,∆k) from RL, send (Init, sid,RL) to A∗, mark RL as fresh, set

tx(RL) := 0, and record ⟨token,RL,∆k⟩.
Compromising Server (with permission from E)
– On (Compromise, sid,RL) from A∗, if RL is fresh, mark RL as compromised.
Online Evaluation
– On input (Eval, sid, esid,RL, un, pw) from AS, send (Eval, sid, esid,AS,RL, uid)

for uid←prf(un) to A∗, and record ⟨esid,AS,RL, un, pw⟩.
– On (EvalResp, sid, esid,RL, uid∗) from A∗ for honest RL, output (EvalResp, sid,

esid, uid∗) to RL, record ⟨count, uid∗, c := 0⟩ for rate-limiting online authentication.
– On (StorePwdFile, sid, esid,AS, flag) from A∗, ignore this message if there is no

session record ⟨esid,AS,RL, un, pw⟩.
• If flag = ⊤, record ⟨file,AS,RL, un, pw⟩, mark the file record as fresh, and

output (Eval, sid, esid, ρ) for ρ←${0, 1}ℓ to AS.
• If flag = ⊥, output (Eval, sid, esid,⊥) to AS.

Stealing Password Data and Offline Password Test
– On (StealPwdFile, sid,AS, uid) from A∗:
• If there is a file record ⟨file,AS,RL, un, pw⟩ s.t. uid = prf(un), re-mark the file

record compromised if it is fresh, and send “password file stolen” to A∗.
For each ⟨file, (AS,RL),RL′, un, pw⟩ s.t. uid = prf(un), re-mark the file record
compromised if it is fresh.
∗ If there is a record ⟨offlinetest, pw⟩, send pw to A∗.

• Otherwise, send “no password file” to A∗.
– On (OfflineTestPwd, sid, uid, pw∗) from A∗, ignore this message if there is no

file record ⟨file, ·,RL, un, pw⟩ s.t. uid = prf(un) or if RL is not compromised.
• If the file record is fresh, record ⟨offlinetest, pw⟩.
• Otherwise, check that pw∗ = pw.

∗ If pw∗ = pw, return “correct guess” to A∗.
∗ Else return “wrong guess” to A∗.

Online Authentication
– On input (Auth, sid, asid,RL, un, pw′) from AS, ignore this message if there is no

file record ⟨file,AS,RL, un, pw⟩. Otherwise, send (Auth, sid, asid,AS,RL, uid) for
uid←prf(un) to A∗, and record ⟨asid,AS,RL, un, pw′⟩.

– On (AuthResp, sid, asid,RL, uid∗) fromA∗ for honest RL, output (AuthResp, sid,
asid, uid∗) to RL, retrieve ⟨count, uid∗, c⟩, and if c < lmt, do: c ++, tx(RL) ++ and
return succ to A∗.

– On (AuthResult, sid, asid,AS, flag) from A∗, ignore this message if there is no
record ⟨asid,AS,RL, un, pw′⟩ or if tx(RL) = 0. Otherwise, set tx(RL) −−.
• If flag = ⊤, retrieve the file record ⟨file,AS,RL, un, pw⟩.

∗ If pw′ = pw, output (Auth, sid, asid, “accept”) to AS.
∗ Else output (Auth, sid, asid, “reject”) to AS.

• If flag = ⊥, send (Auth, sid, asid,⊥) to AS.
Online Password Test
– On (TestPwd, sid,AS,RL, uid, pw∗) from A∗ for honest RL, ignore this message if

there is no ⟨file,AS,RL, un, pw⟩ marked compromised s.t. uid = prf(un), or if there
is no ⟨count, uid, c⟩, or if c = lmt. Otherwise, set c ++ and check that pw∗ = pw.
• If pw∗ = pw, return “correct guess” to A∗.
• Else return “wrong guess” to A∗.

Fig. 2: Password Hardening service (PH) functionality FPH.
8

File Record Update
– On input (Update, sid, un, (RL,∆k), (RL′,∆k′)) from AS, ignore this message if

there are no token records ⟨token,RL,∆k⟩ and ⟨token,RL′,∆k′⟩. Otherwise, re-
trieve ⟨file,AS,RL, un, pw⟩, modify it into ⟨file,AS,RL′, un, pw⟩, and re-mark it
fresh if it is compromised.

– On input (Update, sid, uid, (RL,∆k), (RL′,∆k′)) from A∗, ignore this mes-
sage if there are no token records ⟨token,RL,∆k⟩ and ⟨token,RL′,∆k′⟩. Oth-
erwise, retrieve record ⟨file,AS,RL, un, pw⟩ s.t. uid = prf(un), add record
⟨file, (AS,RL),RL′, un, pw⟩ with the same mark compromised/fresh.

Fig. 3: Password file record update functionality of FPH.

Our PH functionality FPH includes four protocol phases: initialization, eval-
uation, authentication, and update, with two parties denoted by AS (i.e., the
authentication server) and RL (i.e., the PH server), and the ideal adversary A∗.
FPH grants A∗ adaptive capabilities, including compromising RL and stealing
password data from AS. Without loss of generality, initialization is via secure
channels [11,28,27,22]. However, A∗ can eavesdrop on and tamper with mes-
sages transmitted between AS and RL during the evaluation and authentication
phases. FPH defines the allowed information leakage by specifying the message
sent to A∗.

Initialization. The protocol session is initialized via an Init message and
is identified by a session identifier sid. Honest RL initializes by registering its
update token ∆k, which specifies the secret key held by RL. A simple way to
understand it is: sid is bound to a fixed key base (virtual), and the update token
∆k can rotate from the key base to the key of RL. We use RL to refer specifically
to the initialized PH server in the following.

Evaluation. FPH stipulates that online evaluation is a two-round interac-
tion protocol over a public channel. Considering that there may be multiple
evaluation sessions, we define FPH as a multiple-session one [13].
– On an Eval message (including username un and password pw) from AS,
FPH starts an evaluation session, identified by the sub-session identifier esid.
FPH defines a leakage of no more than the username tweak uid = prf(un) (prf
denotes a pseudo-random function) by sending (Eval, sid, esid,AS,RL, uid)
to A∗, which means that AS sends an evaluation request including uid over
the public channel eavesdropped on by A∗.

– When receiving a EvalResp message with the same identifier esid, FPH in-
terprets it as RL responding to the AS’s evaluation request. The message
parameter uid∗ is specified by A∗, due to A∗ can tamper with uid over
the public channel from AS to RL. A syntactically meaningful action, FPH

outputs (EvalResp, sid, esid, uid∗) to RL. This means RL learns the user-
name weak from the evaluation interaction. Additionally, a counter record
⟨count,RL, uid∗, c⟩ is initiated for rate-limiting the RL’s responses to authen-
tication requests corresponding to uid∗.

– When receiving StorePwdFile message, FPH outputs ρ←${0, 1}ℓ to AS if
flag = ⊤, where flag defines verifiability. Following [19], the flag value of ⊤

9

or ⊥ indicates whether the AS received value from RL is correctly calculated
following the protocol specification. Additionally, the ⟨file,AS,RL, un, pw⟩ is
recorded as the password file record and marked as fresh, which signifies it
has been kept away from A∗ until it is re-marked as compromise. In partic-
ular, the evaluated output ρ is a non-deterministic random value, different
from the pseudo-random output in FOPRF [19,22]. This satisfies randomness.
Therefore, we don’t restrain A∗ from predicting one more evaluation output.
Accordingly, FPH does not define the quantitative consistency between two
messages of EvalResp and StorePwdFile.

Authentication. FPH stipulates that online authentication is also a two-
round interaction protocol over a public channel:

– AS sends anAuthmessage with (un, pw′) to FPH to initiate an authentication
session identified by a sub-session identifier asid. It is ignored in two cases
where there is no evaluated password file record for the un.

– AuthResp denotes the RL’s response to the authentication request. Due
to RL rate-limiting authentication requests per user account, FPH ignores
this message if the uid-indexed counter c (recorded in count) reaches the
limit number lmt, else increase the c. Following [19], we introduce a ticketing
mechanism to define authentication unpredictability. Each RL is associated
with a ticket counter tx(RL) that counts the unused server responses to au-
thentication requests. Therefore, when the rate limit is not triggered, FPH

increments the tx(RL) by one to indicate RL newly responded a request.
– Upon receivingAuthResultmessage, FPH normally outputs accept or reject,

denoting the inputted password pw′ by AS in this Auth session is correct or
wrong. FPH saves the registered password pw in the file record, so it can eas-
ily determine the password correctness by checking pw′ = pw. Note that FPH

checks whether the response tickets is exhausted (i.e., tx(RL) = 0), and only
if not FPH outputs the authentication result as usual and decrease the ticket
counter. Therefore, verifying more password guesses than the number of on-
line authentications is impossible. Same as StorePwdFile, the verifiability
of the authentication protocol is defined by adding a flag as a parameter.
If flag = ⊥ (i.e., the AS received response is not calculated following the
protocol specification), FPH outputs ⊥.
File record update. The Update message is used to update the password

file record evaluated by RL into ones by RL′. The message parameter includes
the RL and RL′-registered update token: ∆k,∆k′. (This is necessary for our
modular token-based solution to single points of failure, which we will explain
in Section 4.) Upon receiving this message from AS, FPH modifies all (RL, ∆k)
in file records into the specified (RL′, ∆k′). The update has forward security. It
makes the old server (key) ineffective for authentication of the new password file
and vice versa by FPH.

Adversary capabilities. The ideal adversary A∗ controls the public chan-
nel between AS and RL. FPH defines the A∗’s capability to eavesdrop on the
public channel by some information leakage, e.g., sending uid to A∗ in Eval and
Auth. FPH defines the A∗’s capability to tamper with messages transmitted

10

on the public channel by receiving some messages forwarded by A∗ and allow-
ing A∗ specifying the messages’ parameter, e.g., EvalResp, StorePwdFile,
AuthResp and AuthResult. Moreover, FPH addresses the following queries
from A∗ to clarify other ideal adversary capabilities.

– With the permission of the environment, A∗ can compromise a specified
RL by sending the message of (Compromise, sid,RL), after RL is initialized.
Then, the RL is inserted into compromised, collecting all compromised servers.

– With the permission of the environment, A∗ can compromise a specified AS
and steal the password file record of a specified uid by sending the message
of (StealPwdFile, sid,AS, uid). After that, the corresponding file record
⟨file,AS,RL, un, pw⟩ is re-marked as compromised. In particular, if the RL
has already compromised (i.e., RL ∈ compromised) and the correct password
pw has been pre-computed offline via a OfflineTestPwd message (i.e.,
pw ∈ offlinetest), herein returns pw to A∗.

– After compromising RL and before stealing the password file record, A∗ can
mount pre-computation attacks. A∗ can use OfflineTestPwd to build its
rainbow table. All pre-computed password guesses are stored in offlinetest.
As described in StealPwdFile, while stealing the password record, A∗ can
determine which pre-computed password guess is correct.

– After compromising RL and stealing the password record, A∗ can test pass-
word guesses offline by sending the message of (OfflineTestPwd, sid, uid, pw∗),
where uid is the targeted username tweak and pw∗ is the guessed password
by A∗. FPH answers A∗ with “correct guess” or “wrong guess”.

– After stealing the password record, A∗ can verify password guesses online via
TestPwd. This capability is subject to RL rate-limiting online authentica-
tion. Therefore, only if the corresponding c does not reach the limit number,
FPH answers A∗ with “correct guess” or “wrong guess”.

– If A∗ learns the registered tokens of RL and RL′, it has the ability to update
the file record evaluated by RL to the corresponding file record evaluated by
RL′. FPH defines this ability by recording ⟨file, (AS,RL),RL′, un, pw⟩. The file
record has the same mark with ⟨file,AS,RL, un, pw⟩.

Logically speaking, A∗ can evaluate a new password record offline after
compromising RL via a message such as OfflineEval. As in the Eval, each
OfflineEval query will produce an uncorrelated random output ρ←${0, 1}ℓ.
Considering that this provides no benefit to A∗, we do not define it in FPH.

Security properties in the existing game-based definitions [32,28,27].
Existing works [32,28,27] define the security properties of a PH protocol in the
game-based security model. Specifically, they define a security game for each
security property and prove that the adversary wins with negligible probability.
We describe the same security games in Fig. 4 as [32,28,27]. By proving the
following game-based security theorem, we show that our ideal PH functionality
FPH covers all security properties proposed by existing work, including password
obliviousness, hiding, soundness, and forward security.

11

OblbFPH,A(1κ)

1 : st←A1.Init(sid, ·)

2 : (pw0, pw1, st)←A2
Eval,Auth(st)

3 : st←AS.Eval(sid, ·,A3(st), ·, pwb)

4 : b←A4
Eval,Auth(st)

5 : return b

SouFPH,A(1κ)

1 : st←A1.Init(sid, ·)

2 : (un, pw0, pw1, st)←A1
Eval,Auth(st)

3 : st←AS.Eval(sid, ·,A2(st), un, pw0)

4 : b0←AS.Auth(sid, ·,A3(st), un, pw0)

5 : b1←AS.Auth(sid, ·,A3(st), un, pw1)

6 : b←b0∧(pw0 ̸=pw1)∧b1
7 : return b

HidbFPH,A(1κ)

1 : RL.Init(sid, ·)

2 : (pw0, pw1, st)←A1
Init,Eval,Auth(st)

3 : st←A2(st).Eval(sid, ·,RL, ·, pwb)

4 : b←A3
Eval,Auth(st) /* A3.Auth

5 : with pw0 or pw1 as a parameter

6 : will be ignored */

7 : return b

ForFPH,A(1κ)

1 : RL.Init(sid,∆k)

2 : O←(Eval,Auth,Update)

3 : (∆k′, un, pw, st)←A1
O(sid)

4 : st←A2.Init(sid,∆k′)

5 : st←AS.Eval(sid, ·,A3(st), un, pw)

6 : AS.Update(sid,A,∆k′,RL,∆k)

7 : b←AS.Auth(sid, ·,A4(st), un, pw)

8 : return b

Fig. 4: Security games of obliviousness, hiding, soundness, and forward security.

Theorem 1. FPH defines password obliviousness. That is, for any adversary A,
there exists a negligible function negl(κ) such that

Pr[Obl0FPH,A(1
κ) = 1]− Pr[Obl1FPH,A(1

κ) = 1]≤negl(κ),

where each probability is taken over the random coins of the experiment.

Proof. On Eval(un, pw) and Auth(un, pw) messages, FPH leaks information no
more than uid←prf(un) to the adversary. The parameter pw is kept completely
secret from the adversary. In the obliviousness game, the adversary can only
randomly guess b. Thus, Pr[Obl0FPH,A(1

κ) = 1]− Pr[Obl1FPH,A(1
κ) = 1] = 0.

Theorem 2. FPH achieves hiding. That is, for any adversary A, there exists a
negligible function negl(κ) such that

Pr[Hid0FPH,A(1
κ) = 1]− Pr[Hid1FPH,A(1

κ) = 1]≤negl(κ),

where each probability is taken over the random coins of the experiment.

Proof. FPH outputs random ρ←${0, 1}ℓ for password evaluation. Even with knowl-
edge of the evaluation value ρ of pwb, the adversary can only randomly guess
b. Direct authentication queries are not allowed. Therefore, Pr[Hid0FPH,A(1

κ) =

1]− Pr[Hid1FPH,A(1
κ) = 1] = 0.

12

Theorem 3. FPH achieves soundness. That is, for any adversary A, there exists
a negligible function negl(κ) such that

Pr[SouFPH,A(1
κ) = 1]≤negl(κ).

Proof. FPH records ⟨file,AS,RL, un, pw0⟩ for the evaluation of pw0. Only for
the authentication of pw0, FPH outputs “accept”. In the soundness game, if
pw0 ̸=pw1, b1 must be 0. This means bmust be 0 Thus, Pr[SouFPH,A(1

κ) = 1] = 0.

Theorem 4. FPH achieves forward security. That is, for any adversary A, there
exists a negligible function negl(κ) such that

Pr[ForFPH,A(1
κ) = 1]≤negl(κ).

Proof. On the update message of Update(sid,A, ∆k′,RL, ∆k), FPH updates the
file record ⟨file,AS,A, un, pw⟩ to ⟨file,AS,RL, un, pw⟩. After that, FPH will ignore
the authentication queries containing (A, un) in the parameter. In the forward
security game, b must be 0. Therefore, Pr[ForFPH,A(1

κ) = 1] = 0.

– On input (Send, sid,P′,m) from P, send (Send, sid,P,P′,m) to A∗, save
⟨message, sid,P,P′,m⟩ and mark it pending.

– On (Sent, sid,P,P′) from A∗, ignore this message if there is no record
⟨message, sid,P,P′,m⟩ marked pending. Otherwise, remark the message record
completed, and output (Sent, sid,P,m) to P′.

Fig. 5: Authenticated channel functionality Fac.

– On input (Send, sid,P′,m) from P, send (Send, sid,P,P′, |m|) to A∗, save
⟨message, sid,P,P′,m⟩ and mark it pending.

– On (Sent, sid,P,P′) from A∗, ignore this message if there is no record
⟨message, sid,P,P′,m⟩ marked pending. Otherwise, remark the message record
completed, and output (Sent, sid,P,m) to P′.

Fig. 6: Authenticated and secure channel functionality Fsc.

2.2 RePhoenix: A PH Realization from Phoenix [28] with a Few
Straightforward yet Crucial Adjustments.

Fig. 7 shows an adaptive PH protocol named RePhoenix, an improved version
of Phoenix [28] with a few straightforward yet crucial adjustments. In detail,
we mainly make the following revisions, except for syntactical changes made to
acclimatize to the UC definition of PH in Fig. 2 and Fig. 3:

Verifiability of password evaluation. In the evaluation phase, Phoenix [28]
lacks the necessary verifiability, allowing AS to indiscriminately accept a response

13

Public Parameters and Components
– Group G of prime order q and generator g, on which the DDH problem is difficult.
– Hash functions H,HC , HS with range {0, 1}κ,G,G.
– NIZK schemes (PoK1,Vf1), (PoK2,Vf2) depicted in Fig. 19.
– Server group RL s.t. |RL| = n. RL(i) denotes the i-th RL server in RL.
– An authenticated channel Fac depicted in Fig. 5 and a secure channel Fsc depicted

in Fig. 6.
Initialization (via Fac and Fsc)
1. AS picks a salt s←$ {0, 1}κ.
2. RL(1) picks û, k̂S ←$ Zq, sends (û, k̂S) to all other RL(i) (i ∈ [2, n]) via Fsc, and

publishes p̂k←(gû, gk̂S) via Fac.
3. On input (Init, sid,∆k), RL generates its secret keys u←α·û + β, kS←α·k̂S + γ,

where (α, β, γ)← ∆k, deletes û, k̂S , and publishes pk←{gu, gkS} via Fac.
Online Evaluation
1. On input (Eval, sid, esid,RL, un, pw), AS sends uid←H(un, s) to RL and saves
⟨esid, un, pw, uid⟩.

2. On message uid′ from AS, RL samples nS←${0, 1}κ, computes hS←HS(uid
′, nS),

y←hS
kS , ζ←PoK1(kS : hS , y), sends (y, ζ, nS) to AS, records (count, uid′, c) for

c := 0, and outputs (EvalResp, sid, esid, uid′).
3. On message (y′, ζ′, n′

S) from RL, AS recovers ⟨esid, un, pw, uid⟩, computes
hS←HS(uid, n

′
S), and verifies this values via Vf1(pk2, ζ

′ : hS , y
′).

– If ζ′ is valid, AS picks nC ←$ {0, 1}κ and kC , v←$Zq, and computes
t←gv and ρ ← pk1

v·hC
kC ·y′ for hC←HC(un, pw, nC). Then AS stores

⟨file, uid,RL, kC , n′
S , nC , t, ρ⟩ in a password file, which is indexed by uid. Fi-

nally, AS outputs (Eval, sid, esid, ρ).
– Else AS outputs (Eval, sid, esid,⊥).

Online Authentication
1. On input (Auth, sid, asid,RL, un, pw′), AS uses uid←H(un, s) to retrieve the cor-

responding file record ⟨file, uid,RL, kC , nS , nC , t, ρ⟩ (ignoring this message if no
such record), computes hS←HS(uid, nS), x1←t·gz for z←$Zq, x2←ρ·pk1z/hC

kC

for hC←HC(un, pw
′, nC), saves ⟨asid, uid, hS , x1, x2⟩, sends (uid, nS , x2) to RL.

2. On message (uid′, n′
S , x

′
2) from AS, RL retrieves (count, uid′, c), if c < limit,

then computes hS←HS(uid
′, n′

S), y1←hS
−u+kS , y2←(x′

2/y1)
1/u, ζ1←PoK2(u, kS :

hS
−1, hS , y1) ζ2←PoK1(u : y2, x

′
2/y1), sends (y1, y2, ζ1, ζ2) to AS, and outputs

(AuthResp, sid, asid, uid′).
3. On message (y′

1, y
′
2, ζ

′
1, ζ

′
2) from RL, AS recovers ⟨asid, uid, hS , x1, x2⟩ and verifies

NIZK proofs (ζ′1, ζ
′
2) by Vf2(pk, ζ

′
1 : 1/hS , hS , y

′
1) and Vf1(pk1, ζ

′
2 : y′

2, x2/y
′
1).

– If ζ′1 and ζ′2 are valid, AS checks that y′
2 = x1·hS :

• If it holds, AS outputs (Auth, sid, asid, accept);
• Else AS outputs (Auth, sid, asid, reject);

– If ζ′1 or ζ′2 is invalid, AS outputs (Auth, sid, asid,⊥).
Password File Update
– On input (Update, sid, un, (RL,∆k), (RL′,∆k′)), where (α, β, γ)←∆k and

(α′, β′, γ′)←∆k′, for the file record ⟨file, uid,RL, kC , nS , nC , t, ρ⟩ s.t. uid←H(un, s),

AS picks r ←$ Zq, and computes new values by k′
C←kC

α′/α, t′←t·gr,
ρ′←((ρ/(tβ ·hS

γ))1/α· ˆpk1
r
)α

′
·t′β

′
·hS

γ′
. After that AS updates the file record to

⟨file, uid,RL′, k′
C , nS , nC , t

′, ρ′⟩.

Fig. 7: Adaptive PH protocol RePhoenix. For a brief format of the evaluation
and authentication protocols of RePhoenix and its differences from Phoenix [28],
see Fig. 16 and Fig. 17 in Section 5.

14

from RL to generate the password record. This may lead to dire consequences. If
the response is generated by corrupt RL without according to the protocol spec-
ification or falsified by the adversary during transmission, the password record
stored by AS will naturally be invalid; that is, the password record is useless to
verify login passwords. In this case, the lack of evaluation verifiability harms the
user because he registered a password but cannot use it to log in to his account.
Lai et al. [27] specially define the soundness property to avoid the same prob-
lem of their password-hardened encryption scheme. In RePhoenix, we introduce
non-interactive zero-knowledge (NIZK) proof for online evaluation. On response
(y, ζ, nS) from RL, AS can use the NIZK proof ζ and pk to verify that the cal-
culation of y follows the protocol specification, i.e., y = HS(uid, nS)

kS . If ζ is
invalid, AS outputs a null value, meaning user registration fails.

More precise authentication. In Phoenix [28], RL verifies that (x1, x2, x3)

satisfy the equality relations: x2 = x1
u·hS

kS and x3 = x1
s1 ·x2/hS

kS
s2
. RL re-

turns ⊥ as a response if any equation is not established. In this case, AS outputs
“reject” without verification, meaning that the login password is wrong. If both
equations hold, RL can conclude that the login password is correct. In this case,
RL provides a NIZK proof ζ for the first equation, and AS verifies ζ; only if ζ
is valid, AS outputs “accept”. The above response policy of Phoenix [28] has
two vulnerabilities: user privacy leakage regarding login behavior and unverifi-
able negative results. Specifically, RL can accurately know the correctness of the
login password. In other words, RL learns the privacy of user login behavior, as
a third party in the PH framework. Moreover, AS cannot verify server responses
(i.e., ⊥) for wrong passwords. That is, the adversary can tamper a positive re-
sult with a null value, which AS will accept. In our improved RePhoenix, RL
uses its keys (u, kS) to compute two new response values y1 = (1/hs)

u·hS
kS and

y2 = (x2/y1)
1/u, and provides the corresponding NIZK proofs ζ1, ζ2. On the re-

sponse from RL, AS checks whether ζ1, ζ2 are valid, and then judges whether the
login password is correct according to the equation y2 = x1·hS . RePhoenix has
an advantage in that RL learns nothing about password correctness and ensures
verifiability regardless of whether the password is correct.

Simplify computation. In Phoenix [28], the two equations x2 = x1
u·hS

kS

and x3 = x1
s1 ·x2/hS

kS
s2

essentially ascertain the same relation, the latter of
which does not equip with verifiability. Therefore, our RePhoenix deletes x3,
and only applies x2 = x1

u·hS
kS to verify login passwords.

Improve user anonymity. In Phoenix [28], un is inputted to RL in plain-
text; the username is inappropriately revealed to RL, a third party in the PH
framework. In RePhoenix, user names (registered on the same authentication
server) are tweaked [11] by the same salted hash value before being sent to
RL. All username tweaks with the same salt preserve RL’s ability to link re-
quests (critical for per-user rate limiting) without directly leaking plaintexts. In
a multi-client scenario, requests cannot be chained across clients by username
tweaks. However, Phoenix’s un in requests allows linkability across clients [28],
posing a significant threat to user privacy.

15

Adapt to multi-server scenarios. In Phoenix [28], kC held by AS is a ran-
dom value common to all passwords. However, this is not feasible for our multi-
server RePhoenix, because AS will recalculate k′C = α·kC during file record up-
dates so that inconsistent k′C will be derived with different update rhythms. For
example,Update((RL(i), αi), (RL, α)) andUpdate((RL(j), αj), (RL, α)) (αi ̸=αj)

lead to inconsistent k′C (kC
α/αi ̸=kC

α/αj). Therefore, RePhoenix stores a sepa-
rate kC in the password file for each password. Although kC storage is increased
here, the total storage does not increase because the previous simplified com-
putation saves one value of space. In addition, unless kC is specially protected,
such as being stored in secure hardware (no such assumption in Phoenix [28]),
it is generally considered that kC will be leaked along with the password file
leakage, so this change will not reduce security.

UC security of RePhoenix. We prove the UC security of RePhoenix by
proving the following theorem in Appendix B.

Theorem 5. RePhoenix presented in Fig. 7 UC-realizes the ideal PH function-
ality FPH defined in Fig. 2 and Fig. 3, assuming the existence of an authenticated
channel Fac used to publish public keys and a secure channel Fsc used to trans-
mit the key base (û, k̂S) in the initialization phase, and under the Decisional
Diffie-Hellman (DDH) assumption in the Random Oracle Model (ROM).

3 The Reliable PH Functionality FrPH Without Single
Points of Failure (SPF)

In password hardening services [11,32,28,24,27] defined in the single-server set-
ting, the authentication server delegates the cryptographically hardening pass-
words to an external PH server. However, there is a concern that if the single PH
server goes offline due to a network failure or server attack, these PHs cannot
continue supporting password authentication. This is known as Single Points
of Failure (SPF). Since the authentication server cannot verify login passwords
independently, any disruption in PH due to SPF can negatively impact all users’
login. Moreover, SPF has an even more significant impact in a multi-client sce-
nario where the PH server serves multiple authentication servers. An attacker
who targets one PH server can disrupt multiple authentication servers and all
their numerous users. Therefore, defining an uninterrupted and reliable PH with-
out SPF is crucial to ensure availability.

In this section, we present the reliable PH functionality FrPH in Fig. 8, based
on the PH functionality FPH proposed in Section 2. Recall that FPH involves
two parties, namely AS denoting the authentication server and RL denoting the
PH server. Following all existing PH definitions [11,32,28,24], RL is online by
default in FPH without accounting for the adversary’s capability to disconnect
RL. By the way, the authentication sessions are started from AS, which means
that AS is online in the current session. Any single-server PH is vulnerable to
SPF. To deal with disconnected RL, FrPH includes a group RL of n PH servers.
Only one RL ∈ RL is on duty to respond to AS’s authentication requests as in

16

Initialization
– On input (Init, sid,RL) from RL ∈ RL, send (Init, sid,RL) to A∗, mark RL as

fresh, and set tx(RL) := 0. After receiving all Initmessages forRL, the functionality
will deal with the following messages for sid.

Key compromise and Disconnection of rate-limiters (with permission from E)
– On (Compromise, sid,RL) from A∗ for RL∈RL, insert RL into compromised if

RL/∈compromised.
– On (Disconnect, sid,RL) from A∗ for RL∈RL, insert RL into offline if RL /∈ offline.
Online Evaluation
– On input (Eval, sid, esid,RL, un, pw) from AS s.t. RL ∈ (RL \ offline), send (Eval,

sid, esid,AS,RL, uid) for uid←prf(un) to A∗, and record ⟨esid,AS,RL, un, pw⟩.
– On (EvalResp, sid, esid,RL, uid∗) from A∗ for honest RL, output

(EvalResp, sid, esid, uid∗) to RL and record ⟨count, uid∗, c := 0⟩ for rate-
limiting online authentication.

– On (StorePwdFile, sid, esid,AS, flag) from A∗, ignore this message if there is no
session record ⟨esid,AS,RL, un, pw⟩.
• If flag = ⊤, record ⟨file,AS,RL, un, pw⟩, mark the file record as fresh, and

output (Eval, sid, esid, ρ) for ρ←${0, 1}ℓ to AS.
• If flag = ⊥, output (Eval, sid, esid,⊥) to AS.

Stealing Password Data and Offline Password Test
– On (StealPwdFile, sid,AS, uid) from A∗:
• If there is a file record ⟨file,AS,RL, un, pw⟩ s.t. uid = prf(un), re-mark the file

record compromised if it is fresh, and send “password file stolen” to A∗.
∗ If there is a record ⟨offlinetest, pw⟩, send pw to A∗.

• Otherwise, send “no password file” to A∗.
– On (OfflineTestPwd, sid, uid, pw∗) from A∗, ignore this message if there is

no file record ⟨file,AS,RL, un, pw⟩ s.t. uid = prf(un), or if RL/∈compromised and
|compromised| < t.
• If the file record is fresh, record ⟨offlinetest, pw⟩.
• Otherwise, check that pw∗ = pw.

∗ If pw∗ = pw, return “correct guess” to A∗.
∗ Else return “wrong guess” to A∗.

Online Authentication
– On input (Auth, sid, asid,RL, un, pw′) from AS s.t. RL⊂(RL \ offline), ignore this

message if there is no file record ⟨file,AS,RL, un, pw⟩, or if neither of the following
conditions is met.
• If RL /∈ offline ∧RL={RL}, record ⟨asid,AS,RL, un, pw′⟩.
• If RL ∈ offline ∧ |RL′| = t, modify the file record to ⟨file,AS,RL′, un, pw⟩ marked

fresh, where RL′ is the first server in RL, and record ⟨asid,AS,RL′, un, pw′⟩.
Then send (Auth, sid, asid,AS,RL, uid) for uid←prf(un) to A∗.

– On (AuthResp, sid, asid,RL, uid∗) from A∗ for honest RL, output (AuthResp, sid,
asid, uid∗) to RL, retrieve ⟨count, uid∗, c⟩, and if c < lmt, do: c ++, tx(RL) ++, and
return succ to A∗.

– On (AuthResult, sid, asid,AS, flag) from A∗, ignore this message if there is no
session record ⟨asid,AS,RL, un, pw′⟩ or if tx(RL) = 0. Otherwise, set tx(RL) −−.
• If flag = ⊤, retrieve the file record ⟨file,AS,RL, un, pw⟩.

∗ If pw′ = pw, output (Auth, sid, asid, “accept”) to AS.
∗ Else output (Auth, sid, asid, “reject”) to AS.

• If flag = ⊥, send (Auth, sid, asid,⊥) to AS.
Online Password Test
– On (TestPwd, sid,AS,RL, uid, pw∗) from A∗, ignore this message if there is no
⟨file,AS,RL, un, pw⟩ marked compromised s.t. uid = prf(un), or if there is no
⟨count, uid, c⟩, or if c = lmt. Otherwise, set c ++ and check that pw∗ = pw.
• If pw∗ = pw, return “correct guess” to A∗.
• Else return “wrong guess” to A∗.

Fig. 8: Reliable Password Hardening service functionality FrPH. Underlined text
indicates the revisions made by FrPH in comparison to FPH

17

FPH. In case the on-duty RL goes offline, FrPH allows an alternative RL′ ∈ RL
to take over. Below we show the revisions made by FrPH in comparison to FPH.

Multiple PH servers initialization. Every RL ∈ RL (|RL| = n) requests
initialization via a (Init, sid,RL) message. After receiving all Init messages,
FrPH completes the initialization phase.

Adaptively disconnect a PH server. FrPH defines an additional adversary
capability, which allows A∗, with permission of the environment, to adaptively
disconnect RL via a new Disconnect message. This captures a PH server going
offline unexpectedly due to network failure or attack. The offline set collects the
server identifier RL of servers disconnected via a Disconnect message.

Only one PH server is on duty for evaluation and authentication.
The evaluation phase is exactly the same as originally defined in FPH. AS can
request online evaluation for (un, pw) via a (Eval, sid, esid,RL, un, pw) message.
If the evaluation phase is successful, the file record of ⟨file,AS,RL, un, pw⟩ will be
saved by FrPH. After that, the recorded RL in file is duty-bound to participate
in the authentication sessions for (un, pw′). Specifically, for Auth messages, if
the on-duty RL is online, FrPH only processes those with the RL as parameter
in exactly the same way as FPH. In addition, FrPH ignores the Eval and Auth
messages, which include an offline PH server as a parameter.

Failover. The most important revision is that FrPH supports failover to
eliminate the single points of failure of FPH. When the on-duty RL is offline, AS
can still request online authentication from an online RL′, which will take over
as the new-stage on-duty server. Specifically, when the on-duty RL is offline, a
Auth message is required to include a sub-group of t online PH servers (i.e.,
RL) instead of RL as parameter. The first server RL′ in RL will be designated
as the new on-duty server. On receiving such a (Auth, sid, asid,RL, un, pw′)
message, FrPH requires do the following additional steps:

– Verify that the on-duty RL is actually offline.Importantly, FrPH disallows ro-
tating the on-duty server and updating the password records via the above
Auth message when the current on-duty server is indeed online. This avoids
unnecessary update operations caused by malicious requests for authentica-
tion that deliberately do not specify the on-duty server.

– Modify RL in the file record to RL′. After that, RL′ is regarded on-duty. There
is no difference between the file record modified to contain RL′ via a Auth
message and the file record evaluated with RL′ via a Eval message; both are
⟨file,AS,RL′, un, pw⟩. Like Update in FPH, failover satisfies forward security.

– Re-mark the updated file record as fresh, if it is compromised. This step
is necessary. Otherwise, an additional attack path will exist to compromise
a password file record: (1) A∗ compromises a password file record evaluated
by RL via a StealPwdFile message; (2) disconnects the on-duty RL via
Disconnect; and (3) actives a failover to rotate to RL′ via a Auth message.
Along this path, A∗ essentially compromises a file record evaluated by RL′

to activate an offline password test (if RL′ is compromised) or an online
password test (if RL′ is not compromised).

18

Both security and reliability rely on the threshold assumption. In
FPH, the ideal adversary A∗ can query OfflineTestPwd only after compro-
mising the evaluation server. FrPH allows A∗ to query OfflineTestPwd in two
cases: A∗ has compromised the evaluation (i.e., on-duty) server; A∗ has compro-
mised any t PH servers (i.e., |compromised|≥t). This means that A∗ compromis-
ing any t PH servers is equivalent to compromising the on-duty PH server. To
maintain the security defined in FPH, FrPH requires the threshold assumption to
block the second case in OfflineTestPwd. Without loss of generality, we as-
sume that the number of compromised servers does not reach t and the number
of honest and online servers is at least t [4,21,33], where (n, t) are the threshold
parameters. Additionally, the threshold assumption can avoid that FrPH fails
to deal with Auth messages, when the on-duty server is offline and all online
servers are less than t.

Based on the above revisions, FrPH works to eliminate the single points of
failure in FPH. AS sends an Auth message pointing to t online RL′ to FrPH for
online authentication as per the rule. After confirmation that the on-duty RL,
recorded in ⟨file,AS,RL, un, pw⟩, is offline, FrPH designates the first RL′ as the
new-stage on-duty server by updating the password file record evaluated by the
old on-duty RL to ⟨file,AS,RL′, un, pw⟩. Finally, FrPH responds precisely like FPH

would have. This results in an uninterruptible password hardening service.

4 TF-PH: A Compiler from PH to Reliable PH

We aim to eliminate single points of failure (SPF) without sacrificing efficiency
or security, resulting in reliable password hardening services. In a multi-server
setting, we ensure that only one PH server is on duty while the others remain
on standby. This maintains efficiency by allowing the authentication server to
perform authentication protocols with only the on-duty PH server, as in a single-
server setting. As for other servers, they are strictly necessary for functioning
except in case of failure in the on-duty server. The threshold solution [4,21,8,18],
as an example to the contrary, relies on t servers participating in (n, t)-threshold
protocols. Secondly, we aim to maintain password security by ensuring that PH
key leakage from other < t servers cannot compromise the on-duty PH key
security. This is in contrast to redundancy, where the static storage of the PH
key on multiple servers increases the attack surface of the key, thus resulting in
a linear increase in the risk of key leakage.

Independent keys. All PH servers hold various random and indistinguish-
able keys. For sure, any key compromise does not affect the others. However, an
off-duty server holding a PH key different from the on-duty key used to harden
the password file record cannot take over the on-duty server in case of failover.
Nonetheless, the authentication server can the update password file record to
match an off-duty key using a token-based update protocol (as the Update
functionality defined in FPH), making failover feasible.

Threshold failover (TF). PH allows the authentication server to batch
update password file records locally using a compact update token [24]. Recall

19

that we define this token-based update functionality in FPH by providing the
message interface of (Update, sid, un, (RL, ∆k), (RL′, ∆k′)). The adversary can
also access the update oracle. However, suppose the adversary gains access to
an off-duty key and the corresponding update tokens (i.e., ∆k and ∆k′). In that
case, it can crack passwords offline after stealing the password file. In a single-
server PH, the PH server can discard its registered token in the initialization
phase. While in a multiple-server reliable PH, the registered token is useful for
failover by rotating the on-duty server. To reduce the risk of token leakage, a
PH server can split its update token among all n PH servers and reconstruct it
when needed. In the event of the on-duty server failure, the authentication server
reconstructs the tokens (∆k,∆k′) with t online PH servers cooperatively and
updates the password file locally via a Update message. After that, an online
server takes over the PH service. A secure channel is necessary to distribute token
shares securely and prevent the adversary from impersonating the authentication
server to obtain token shares. The above approach is called the threshold failover.

– Threshold parameters (n, t) and update token-length τ , polynomial in security
parameter κ.

– On input (Init, sid,∆k,RL) from RL ∈ RL s.t. |RL| = n, send (Init, sid,RL)
to A∗, and record ⟨token,RL,∆k⟩. After receiving all Init messages for RL, the
functionality will deal with the following messages for sid.

– On (Compromise, sid,RL) from A∗ for RL ∈ RL (with permission from E), insert
RL into compromised if RL /∈ compromised. If |compromised| = t, send all token
records to A∗.

– On (Disconnect, sid,RL) from A∗ for RL ∈ RL (with permission from E), insert
RL into offline if RL /∈ offline.

– On input (Record, sid, un,RL) from AS, record ⟨onduty, sid, un,RL⟩.
– On input (Query, sid, un,RL) from AS s.t. RL⊂(RL \ offline), retrieve ⟨onduty,

sid, un,RL⟩. RL′ is the first server in RL.
• If RL /∈ offline and RL = {RL}, output (Onduty, sid, un,RL) to AS.
• If RL ∈ offline and |RL|=t, send (Rotate, sid,AS,RL) to A∗.

1. On (RotateResp, sid,RL′′) from A∗ for all RL′′ ∈ RL, retrieve ⟨token,RL,
∆k⟩ and ⟨token,RL′,∆k′⟩, and output (Update, sid, un,∆k,∆k′) to AS.

2. For every record ⟨onduty, sid, ·,RL⟩, modify it into ⟨onduty, sid, ·,RL′⟩.
3. Finally, output (Onduty, sid, un,RL′) to AS.

Fig. 9: Threshold failover functionality FTF.

4.1 The Threshold Failover Functionality FTF and a Realization

We define the threshold failover functionality FTF in Fig. 9 in the UC security
framework. FTF consists of three main phases: initialization, record, and query.
In the initialization phase, every RL in RL registers its token by sending a
(Init, sid,∆k,RL) message. FTF records the corresponding relationship between
RL and ∆k in ⟨token,RL, ∆k⟩. Via a Record message, AS specifies the on-duty

20

server of un. FTF records the corresponding relationship between RL and un in
⟨onduty, sid, un,RL⟩. In the query phase, AS can query the on-duty server for un.
If the recorded on-duty RL is online, on receiving a Query message with {RL}
as parameter, FTF returns RL. If the recorded on-duty RL is online, the Query
message needs to include RL as a parameter, where RL denotes t online servers
specified by AS to assist in threshold failover. By default, the first server RL′

in RL is the new on-duty server selected by AS. Only after receiving responses
from all RL′′∈RL (forwarded by A∗), FTF outputs the tokens of the old and new
on-duty servers to AS for supporting its token-based update. In addition, FTF

rotates the on-duty server of un from RL to RL′ by modifying the onduty record
in to ⟨onduty, sid, un,RL′⟩, and returns the new on-duty RL′ to AS. As for the
ideal adversary A∗, with permission from the environment E , it can obtain all
tokens by compromising t PH servers in RL. It also can disconnect a PH server
via a Disconnect message.

GenShare(n, t, s) ReSecret(n, t, {(j, JsKj)}j∈D), |D| = t

for i ∈ [N] : λj(x) =
∏

d∈D\{j}
(x− d)/(j − d)

m0←si,m1, · · ·,mt−1←$Zq (Js1Kj , · · · , JsN Kj)←JsKj , j ∈ D

fsi(x) = m0·x0 + · · ·+mt−1·xt−1 for i ∈ [N] :

JsiK←{fsi(1), · · · , fsi(n)} fsi(x)←
∑

j∈D
JsiKj ·λj(x)

JsK←{(Js1K1, · · · , JsN K1), si←fsi(0)

· · · , s←(s1, · · · , sN)

(Js1Kn, · · · , JsN Kn)} return s

return JsK

Fig. 10: Secret share algorithm [33] for s := (s1, · · · , sN), (s1, · · · , sN ∈ Zq).

Shamir’s secret sharing [33]. The Shamir’s secret sharing [33] (SSS) splits
and reconstructs a secret s based on the Lagrange interpolation polynomial over
finite fields. When sharing s, it first generates a polynomial f(x) of degree t− 1,
and f(i) is a secret share and stored by a server Si for i∈[n]. A colluding server
set D of less than t has no advantage over an outsider attacker in guessing the
secret s with their knowledge of secret shares si, i∈D. In other words, partial
(<t) secret shares can not infer the secret s. Therefore, secret sharing effec-
tively improves the confidentiality of statically stored secrets. In addition, SSS
enhances the availability of the secret storage since as long as any t-of-n servers
participate honestly in the secret reconstruction process, the secret s can be
reconstructed. Precisely, SSS consists of two algorithms, JsK←GenShare(n, t, s)
and s←ReSecret(n, t, {j, sj}j∈D), with details shown in Fig. 10.

A Shamir’s secret sharing-based realization of FTF. In Fig. 11, we
show a straightforward realization in the Fsc-hybrid world, named TF. In the

21

– On input (Init, sid,∆k,RL), RL splits its token by J∆kK←GenShare(n, t,∆k), and
for i ∈ [n], sends (Send, sid||RL||RL(i),RL(i), J∆kKi) to Fsc, where RL(i) denotes
the i-th server in RL.

– On (Sent, sid||RL||RL(i),RL, J∆kKi) from FSC, RL(i) stores (RL, J∆kKi).
– On input (Record, sid, un,RL), AS stores (un,RL), which denoting that the un-

corresponding password registration is evaluated by RL.
– On input (Query, sid, un,RL), AS retrieves (un,RL).
• If RL is online and RL = {RL}, AS outputs (Onduty, sid, un,RL) to AS.
• If RL is offline and |RL|=t, do:

1. AS reconstructs the tokens of RL and RL′, where RL′ is the first server in
RL, by the following steps:
(a) AS sends (Send, sid||AS||RL(i),RL(i), (RL,RL′)) to FSC for each RL(i) ∈
RL.

(b) On (Sent, sid||AS||RL(i),AS, (RL,RL′)) from FSC, RL(i) retrieves
records (RL, J∆kKi) and (RL′, J∆k′Ki), and sends (Send, sid||RL(i)||AS,
AS, (i, J∆kKi, J∆k′Ki)) to FSC.

(c) On t messages (Sent, sid||RL(i)||AS,RL(i), (i, J∆kKi, J∆k′Ki)) from Fsc

for all RL(i) ∈ RL, AS reconstructs the tokens of RL and RL′ by
∆k←ReSecret(n, t, {(i, J∆kKi)}), ∆k′←ReSecret(n, t, {(i, J∆k′Ki)}), and
outputs (Update, sid, un,∆k,∆k′) to AS.

2. For every record (un,RL), AS modifies it into (un,RL′).
3. Finally, AS outputs (Onduty, sid, un,RL′).

Fig. 11: Threshold failover protocol TF in the Fsc-hybrid world.

initialization phase, every PH server splits the registered token into n shares by
J∆kK←GenShare(n, t,∆k), and distributes them to n servers in RL via a secure
channel Fsc. During threshold failover from RL to RL′, AS collects the token
shares of RL and RL′ from t servers in RL via a secure channel Fsc, and recon-
structs the tokens by∆k←ReSecret(n, t, {j, J∆kj}), ∆k′←ReSecret(n, t, {j, J∆k′j}).

There is a simulator, a pass-through machine only forwards messages between
the adversary A and the functionality FTF. The environment cannot distinguish
the views provided by FTF and the simulator in the ideal world and the views
provided by the TF protocol and the adversary in the real world. Therefore, the
TF protocol shown in Fig. 11 UC-realizes the ideal threshold failover function-
ality defined in Fig. 9.

4.2 Definition of the compiler TF-PH

In Fig. 12, we propose a compiler called TF-PH that transforms any PH into
a reliable PH, which can resist SPF using threshold failover. In the previous
sub-section, we formalize threshold failover in FTF and provide a TF realization
by introducing Shamir’s secret sharing [33].

As shown in Fig. 12, we describe our TF-PH protocol based on the PH
functionality FPH and the threshold failover functionality FTF. In most cases,
TF-PH calls FPH to handle and respond to messages, including all evaluation
and the authentication that specifies the online on-duty server. In the case of

22

– Threshold parameters (n, t), output-length ℓ and update token-length τ , polyno-
mial in security parameter κ.

– On input (Init, sid,RL) to RL ∈ RL, RL samples ∆k←${0, 1}τ , and sends
(Init, sid,∆k) to FPH and (Init, sid,∆k,RL) to FTF.

– On input (Eval, sid, esid,RL, un, pw), AS sends (Eval, sid, esid,RL, un, pw) to
FPH. On FPH’s output (Eval, sid, esid, ρ/⊥), AS outputs it. If the output is the
former ρ ∈ {0, 1}ℓ, AS sends (Record, sid, un,RL) to FTF.

– On input (Auth, sid, asid,RL, un, pw′), AS sends (Query, sid, un,RL) to FTF.
1. On FTF’s output (Update, sid, un,∆k,∆k′), AS forwards it to FPH.
2. On FTF’s output (Onduty, sid, un,RL), AS sends (Auth, sid, asid,RL, un, pw′)

to FPH. On FPH’s output (Auth, sid, asid, accept/reject/⊥), AS outputs it.
– Additional adversarial behaviors:

1. On (Eval, sid, esid,AS,RL, uid) from FPH, A records ⟨onduty, uid,RL⟩.
2. On (Compromise, sid,RL) for RL ∈ RL, A inserts RL into compromised.
3. If |compromised| = t, A awaits ⟨token,RL,∆k⟩ from FTF for all RL ∈ RL, and

set broken := 1.
4. Before sending (OfflineTestPwd, sid, uid, pw∗) to FPH, if broken = 1, A re-

trieves ⟨onduty, uid,RL⟩, and sends (Update, sid, uid, (RL,∆k), (RL′,∆k′)) to
FPH, where RL′ ←$ compromised.

Fig. 12: Reliable PH protocol in the (FPH,FTF)-hybrid world.

– Threshold parameter (n, t) and update token-length τ , polynomial in security
parameter κ.

– On (Init, sid,RL) from F , pass it to A as FPH and FTF’s message to A.
– On (Compromise, sid,RL) from A aimed at FPH and FTF, pass it to F . Sim inserts

RL into compromised. If |compromised| = 1, Sim picks n ∆k ←$ {0, 1}τ and sends
them to A as FTF’s message to A.

– On (Disconnect, sid,RL) from A aimed at FTF, pass it to F .
– On (Eval, sid, esid,AS,RL, uid) from F , pass it to A as FPH’s message to A.
– On (EvalResp, sid, esid,RL, uid) from A aimed at FPH, pass it to F .
– On (StorePwdFile, sid, esid,AS, flag) from A aimed at FPH, pass it to F .
– On (StealPwdFile, sid,AS, uid) from A aimed at FPH, pass it to F . On F ’s

response, pass it to A as FPH’s response.
– On (OfflineTestPwd, sid,AS, uid, pw∗) from A aimed at FPH, pass it to F . On
F ’s response, pass it to A as FPH’s response.

– On (Auth, sid, asid,AS,RL, uid) from F :
• If |RL| = t, send (Rotate, sid,AS,RL) to A as FTF’s response, and await

(RotateResp, sid, RL′′) from A∗ aimed at FTF for all RL′′ ∈ RL.
Send (Auth, sid, asid,AS,RL′, uid) to A as FPH’s message to A, where RL′ is the
first server of RL.

– On (AuthResp, sid, asid,RL, uid) from F , pass it to A as FPH’s message to A.
– On (AuthResult, sid, asid,AS, flag) from A aimed at FPH, pass it to F as FPH’s

response.
– On (TestPwd, sid,AS,RL, uid, pw∗) from A aimed at FPH, pass it to F . On F ’s

response, pass it to A as FPH’s response.

Fig. 13: Simulator Sim for the TF-PHS protocol in Fig. 12. Sim is a pass-through
machine, except when processing Auth messages with |RL| = t (which means
a threshold rotation after the on-duty server is offline). (F denotes FrPH).

23

𝒜 SIM

Simulate the real-world interactions with 𝒜:

① 𝒜 → ℱPH is interpret as 𝒜 → ℱrPH

② 𝒜 ← ℱrPH is interpret as 𝒜 ← ℱPH

③ 𝒜 → ℱTF is interpret as 𝒜 → ℱrPH

④ 𝒜 ← ℱrPH is interpret as 𝒜 ← ℱTF

AS 𝑅𝐿

ℱrPH

① 𝒜 → ℱPH ⇒ 𝒜 → ℱrPH:
COMPROMISE (sid, RL)

EVALRESP (sid, esid, AS, RL, uid)

STOREPWDFILE (sid, esid, AS, flag)

STEALPWDFILE (sid, AS, uid)

OFFLINETESTPWD (sid, uid, pw∗)

AUTHRESP (sid, asid, AS, RL, uid)

AUTHRESULT (sid, asid, AS, flag)

TESTPWD (sid, AS, RL, uid, pw∗)

② 𝒜 ← ℱrPH ⇒ 𝒜 ← ℱPH :
INIT (sid, RL)

EVAL (sid, esid, AS, RL, uid)

AUTH (sid, asid, AS, ℛℒ, uid) (ℛℒ = 1)
No/Stolen pw file

Correct/Wrong guess

pw

- SIM simulates 𝒜 ← ℱTF’s ∆𝑘 by sampling ∆𝑘 randomly after receiving 𝑡 COMPROMISE (sid, RL).

- SIM simulates 𝒜 ← ℱTF’s ROTATE (sid, AS, ℛℒ) after receiving 𝒜 ← ℱrPH’s AUTH (sid, asid, AS, ℛℒ , uid) (ℛℒ = 𝑡). Then SIM simulates

 𝒜 ← ℱPH’s AUTH (sid, asid, AS, RL′, uid), where RL′ is the first RL in ℛℒ , after receiving 𝒜 → ℱTF’s ROTATERESP (sid, RL′′) for all RL′′ ∈ ℛℒ .

- SIM ignores 𝒜 → ℱPH’s UPDATE.

③ 𝒜 → ℱTF ⇒ 𝒜 → ℱrPH :
DISCONNECT (sid, RL)

④ 𝒜 ← ℱrPH ⇒ 𝒜 ← ℱTF ：
INIT (sid, RL)

(a) Ideal world.

I N
IT

COMPROMISE

𝒜

AS RL
E

V
A

L

A
U

T
H

EVALRESP

STOREPWDFILE

STEALPWDFILE

OFFLINETESTPWD

AUTHRESP

AUTHRESULT

TESTPWD

ROTATERESP AS 𝑅𝐿 AS 𝑅𝐿

ℱPH ℱTF

INIT

EVAL

AUTH

No/Stolen pw file

Correct/Wrong guess

E
V

A
LR

E
S
P

A
U

T
H

R
E

S
P

𝜌
/⊥

A
ccep

t/R
eject/⊥

pw

INIT

O
N

D
U

T
Y

ROTATE

U
P

D
A

T
E

DISCONNECT

∆𝑘

UPDATE

R
E

C
O

R
D

Q
U

E
R

Y

- AS sends RECORD to ℱTF after receiving 𝜌 from ℱPH.

- AS sends QUERY to ℱTF after receiving input AUTH (ℛℒ) from ℰ. If (ℛℒ = 𝑡), AS sends UPDATE to ℱPH after

 receiving UPDATE from ℱTF. And then AS sends AUTH (RL) to ℱPH after receiving ONDUTY (RL) from ℱTF.

U
P

D
A

T
E

(b) Real world.

Fig. 14: Interactions between components in the ideal and real worlds. In the
ideal world, the simulator Sim in Fig. 13 provides the same view to the adver-
sary as in the real world. Except for simulation content in the shaded text, Sim
operates as a pass-through machine. In the real world, AS/RL always processes
all inputs and sub-routine outputs by calling the message interfaces of FPH and
FTF. Except for the shaded text, AS/RL forwards the environment input directly
to the subroutine. An immediate conclusion is that the ideal world and the real
world are indistinguishable to the environment.

24

the on-duty server going offline, TF-PH calls FTF to rotate to an online server,
and then calls FPH to continue responding to the authentication messages.

Recall that, in FrPH, the adversary A∗ is allowed to carry out an offline
password test via OfflineTestPwd, after compromising the on-duty server
or any t server via Compromise (with the permission from E). However, in
FPH, only when the on-duty server is compromised, A∗ can test password offline
via OfflineTestPwd. The adversary to TF-PH fills the above gap through
the following attack behavior: (1) A∗ learns the on-duty server RL from the
(Eval, sid, esid,AS,RL, uid) message that is from FPH; (2) A∗ learns all to-
kens from FTF after compromising any t server except RL (with the permission
from E); and (3) A∗ sends (OfflineTestPwd, sid, uid, pw∗) to FPH, following
(Update, sid, uid, (RL, ∆k), (RL′, ∆k′)), where RL′ is one of the compromised
servers. After that FPH will process this OfflineTestPwd message as FrPH.

4.3 Security Proof of TF-PH

We show that TF-PH eliminates single points of failure (SPF) of FPH by proving
Theorem 6. Based on the UC theorem [5], TF-PH can be used as a compiler to
develop a reliable PH protocol without SPF from any PH protocol that realizes
FPH. See in Section 5 for a concrete TF-PH protocol with FPH → RePhoenix
and FTF → TF, named TF-RePhoenix.

Theorem 6. The TF-PH protocol presented in Fig. 12 UC-realizes the reliable
PH functionality FrPH defined in Fig. 8.

Proof. We construct a simulator Sim, as shown in Fig. 13. Without loss of gen-
erality, we assume that A is a dummy adversary (i.e., a pass-through machine
that outsources all messages and computations to the environment E).

Fig. 14 diagrams the interactions that occur in the real and simulated worlds.
We now show that, the environment E cannot distinguish between these two
worlds. The argument uses only a single game change from the real world G0 to
the simulated worldG1. By DistG0,G1

E , we denote distinguisher E ’s distinguishing
advantage between G0 and G1. Specifically,

DistG0,G1

E = |PrG0 [E output 1]− PrG1 [E output 1]|

.

Game G0: The real world. The distinguisher E interacts with TF-PH (Fig. 12)
in the role of the honest parties (AS and RL) and the role of the adversary.

Game G1: The simulated world. By inspection, Sim in interaction with FrPH

behaves identically to the real-world TF-PH protocol, except that ∆k sent to
the adversary are different and that ρ output to AS are different. However, due
to ∆k being sampled from {0, 1}τ and ρ being sampled from {0, 1}ℓ in the two
worlds, E cannot distinguish which world they are from.

Therefore, TF-PH UC-realize FrPH.

25

5 TF-RePhoenix: A Concrete Reliable PH

Fig. 15-Fig. 17 includes a concrete reliable PHS protocol called TF-RePhoenix,
which is an instantiation of the (FPH,FTF)-hybrid-world TF-PHS. TF-RePhoenix
instantiates the FPH functionality with our UC-secure RePhoenix and the FTF

functionality with our UC-secure TF.

Assumption on server compromise.We consider the adaptive corruption
of the authentication server (AS) and PH servers RL. At any time after initial-
ization, the adversary can compromise RL via a Compromise message, or steal
a password file record from AS via a StealPwdFile. For all PH protocols, the
resistance to offline password guessing attacks relies on a basic assumption [11]
that AS and RL will not be compromised simultaneously. Otherwise, any PH
will degrade into a trivial case that is vulnerable to offline password guessing
upon server compromise. For our reliable PH, we need to assume that AS and
the on-duty RL will not be compromised simultaneously.

For threshold assumption, we assume that at most t− 1 PH servers are com-
promised and at least t PH servers are functioning correctly. In this way, there
are always t PH servers ready for threshold failover, thus ensuring reliability.

Assumption on channels. TF-RePhoenix includes Fac (Fig. 5) and Fsc

(Fig. 6), which define the authenticated and secure channels, respectively. Public
keys go through an authenticated channel Fac, meaning that A∗ can obtain but
cannot tamper with them. This has the same meaning as public key publishing
in practice. The key base is transmitted on a secure channel Fsc. In addition, all
token shares are distributed and collected via a secure channel Fsc. Note that
the reliance on a secure channel for token transmission is called for all existing
PH works [11,32,28,27,4,24].

Security of the key base. At the beginning of initialization, the first RL
generates the key base ŝk and sends it to all other servers via a secure channel
Fsc. At the end step of initialization, every server deletes the key base. We know
that our functionality definitions receive (Compromise, sid,RL) message only
after initializing RL. All servers are honest in the initialization phase. Therefore,
the key is not accessible to the adversary until deleted.

Security of the update token. The update token is secret-shared among
n PH servers via a secure channel Fsc in the initialization phase. After that,
for compromising the update token the adversary needs to compromise t PH
servers. During failover, honest AS is allowed to collect token shares from PH
servers via a secure channel Fsc. For AS, the channel’s and protocol’s security
are independent. Even after sending a StealPwdFile message to steal a pass-
word file record successfully, the adversary cannot break the secure channel to
impersonate AS and obtain token shares from RL.

Correctness of threshold failover. Intuitively, the new password record
should be equivalent to the one evaluated by the new on-duty server RL(i′) from
scratch. As shown in Fig. 16, the old password record consists of (uid,RL(i), kC , nS ,
nC , t, ρ), where t = gv, ρ = (pk1)

v·hkC

C ·h
kS

S , hardened by the old on-duty server
RL(i). During threshold failover, AS (i.e., the authentication server) first re-

26

Initialization (Secure channel)

AS(κ, n, t)

s←${0, 1}κ

return s, p̂k, {(i, pk)}, i ∈ [n]

RL(i, κ, n, t,RL), i ∈ [n]

if i = 1 :

û, k̂S←$Zq

RL(i) û, k̂S
sc

RL(j) ∈ RL, j ∈ [2, n]

publish p̂k←(gû, gk̂S)

else :

RL(i) û, k̂S
sc

RL(1)

α, β, γ ←$ Zq,∆ki←(α, β, γ)

J∆kiK←GenShare(n, t,∆ki)

RL(i) J∆kiKj
sc

RL(j), j ∈ [n] \ {i}

RL(i) J∆kjKi
sc

RL(j), j ∈ [n] \ {i}

u←α·û+ β, kS := α·k̂S + γ

sk←(u, kS)

publish pk←(gu, gkS)

delete û, k̂S

return sk, {(j, J∆kjKi)}, j ∈ [n]

Threshold Rotation (Secure channel)

AS(n, t, i,RL), |RL| = t

RL(i) is offline

RL(i′) is the first server in RL

AS i, i′

sc
all RL(j) ∈ RL

AS J∆kiKj , J∆ki′Kj
sc

all RL(j) ∈ RL

J∆kiK←ReSecret(n, t, {j, J∆kiKj})
J∆k′

iK←ReSecret(n, t, {j, J∆k′
iKj})

for each (uid,RL(i), kC , nS , nC , t, ρ) :

hS←HS(uid, nS)

r←$Zq

t′←t·gr

ρ′←((ρ/(tβi ·hS
γi))1/αi · ˆpk1

r
)αi′ ·t′βi′ ·hS

γi′

k′
C←α′

i/αi·kC
update (uid,RL(i′), k′

C , nS , nC , t
′, ρ′)

Fig. 15: Concrete initialization protocol and threshold rotation protocol.

constructs the update tokens of RL(i) and RL(i′): ∆ki = (αi, βi, γi), ∆k′ =
(α′

i, β
′
i, γ

′
i). Then, AS uses ∆ki, ∆ki′ to update t, ρ to t′, ρ′ as follows:

t′ = t·gr = gv+r = gv
′
;

ρ′ = ((ρ/(tβi ·hS
γi))1/αi · ˆpk1

r
)αi′ ·t′βi′ ·hS

γi′

= (ρ̂·p̂k
v−v̂

1 ·p̂k
r

1)
αi′ ·t′βi′ ·hS

γi′

= (ρ̂·p̂k
v+r−v̂

1)αi′ ·t′βi′ ·hS
γi′

= g(αi′ ·û+βi′)·(v+r)·hαi′ ·k̂C

C ·hαi′ ·k̂S+γi′
S

= (pk′1)
v′
·hk′

C

C ·h
k′
S

S , k′C = αi′ ·k̂C .

The updated ρ′ are hardened by the keys of u′ = αi′ ·û + βi′ , k
′
S = αi′ ·k̂S + γi′ .

This demonstrates the correctness of the record update in threshold failover.

27

Evaluation

AS(s, pk, un, pw) RL(sk)

v, kC←$Zq, nC←${0, 1}κ nS←${0, 1}κ

uid←H(un, s) uid hS←HS(uid, nS)

hC←HC(un, pw, nC) un hS←HS(un, nS) /* Leak un */

t←gv

t3←pk2
v /* Redundant t3 */ y←hS

kS

if Vf1(pk2, ζ : HS(uid, nS), y) :
y, ζ, nS ζ←PoK1(kS : hS , y)

ρ←pk1
v·hC

kC ·y y, nS /* Unverifiable y */

delete v, y, un, pw

store (uid,RL, kC , nS , nC , t, t3, ρ)

Fig. 16: Concrete evaluation protocol. The commented text in gray indicates the
modified part of Phoenix [28] to solve the problem in /* parentheses */.

Improved failover. The new on-duty server RL′ performs a key rotation
before threshold failover. In detail, RL′ requests its token shares from t online
servers via a secure channel and reconstructs its token ∆k = (α, β, γ); RL′ picks
α′, β′, γ′ randomly and generates new keys u = α′·u + β, kS = α′·kS + γ; then
AS shares the new token ∆k′ = (α′·α, α′·β + β′, α′·γ + γ′) via a secure channel.
The key rotation prevents the failover from becoming a vulnerability that the
adversary can exploit by taking the current on-duty server offline and attempting
to make a compromised server be selected to take over password authentication.

Key rotation protocol. We provide a key rotation protocol by which we
can restore protocol security as appropriate (e.g., regularly or after a certain
number of server compromises). We do not define the key rotation functionality
because the old token is not saved by RL in FPH, but it is necessary for updating
the password file record. We will leave this issue to our future work.

It is worth noting that the key base also needs to be updated during the
key rotation process. Otherwise, the key rotation protocol cannot fully restore
security when t PH servers have been compromised. In this case, the adversary
can calculate the key base with a compromised PH key and its corresponding
token. Suppose the key base is not updated, even after rotating all compromised
PH keys. In that case, the adversary can compromise any server to calculate its
token, without having to compromise at least t PH servers.

Additionally, a key rotation should render an old on-duty PH key useless
to the adversary for learning password information from the updated password
record. Following Phoenix [28], we consider a forward security experiment with
a leakage function L and prove that the update in the key rotation is L-forward
secure (detailed in Section C), which states that the rotated keys and the updated
password records are indistinguishable from freshly generated ones.

28

Authentication

AS(s, pk, un, pw′) RL(sk)

uid←H(un, s)

retrieve (uid,RL, kC , nS , nC , t, t3, ρ)

h′
C←HC(un, pw

′, nC)

z←$Zq, x1←t·gz

x2←ρ·(pk1)
z/h′

C
kC uid, nS , x2 hS←HS(uid, nS)

x3←t3·pk2
z un, nS , x1, x2, x3 hS←HS(un, nS) /* Leak un */

y1←(1/hS)
u·hkS

S

y2←(x2/y1)
1/u

ζ1←PoK2(u, kS : h−1
S , hS , y1)

if Vf2(pk, ζ1 : h−1
S , hS , y1)

y1, y2, ζ1, ζ2 ζ2←PoK1(u : y2, x2/y1)

∧ Vf1(pk1, ζ2 : y2, x2/y1) :

if y2 = x1·hS :

return “accept”

else return “reject” if x2 = xu
1 ·hS∧x3 = x1

s1 ·(x2/hs)
s2 :

if ζ :
ζ

/* Leak pw′’s correctness */

if Vf2(pk, ζ : x1, hS , x2) ζ ← PoK2(u, kS : x1, hS , x2)

return “accept”

else return “reject”/* Unverifiable “reject” */

Fig. 17: Concrete authentication protocol. The commented text in gray indicates
the modified part of Phoenix [28] to solve the problem in /* parentheses */.

Discuss the trade-offs between availability, security, and efficiency.
To improve PH, we find a new balance between eliminating SPF and maintaining
efficiency, without prioritizing the incidental benefit of elevating protocol secu-
rity to the threshold standard. In traditional password authentication schemes
without PH, users get responses after one round of interaction with the authenti-
cation server (U⇌AS). However, in the PH-introduced password authentication
schemes, two rounds of three-party communication (U⇌AS⇌RL) are necessary,
which inevitably results in extended wait times for users, especially when PH
servers are deployed off-site [11,28,24]. If the SPF of PH is solved at the expense
of increased latency, too long waiting may cause user frustration. Therefore, ef-
ficiency is our priority criterion for solutions to SPF. Our TF-RePhoenix deals
with SPF via a fast failover. As analyzed above, it performs optimally without
any efficiency loss compared to RePhoenix. (See the performance evaluation and
comparison in Appendix D.)

In comparison, the threshold solution [4] guarantees its resistance to SPF if
any t-of-n servers are honest. It additionally enhances security by establishing a

29

Key Rotation (Secure channel)

AS(n, t, s, p̂k, {(i, pk)}i∈[n]) RL(i, sk, {J∆kjKi}j∈[n]), i ∈ [n]

v, α, β, γ←$Zq
α, β, γ

sc

p̂k
′
←(ˆpk1

α
·gβ , ˆpk2

α
·gγ) α′

i, β
′
i, γ

′
i←$Zq

AS j, J∆kiKj
sc

RL(j), j ∈ [n] (u, kS)←sk

for i ∈ [n] : α′
i, β

′
i, γ

′
i

sc
u′←(α·α′

i)·u+ (α′
i·β + β′

i)

∆ki←ReSecret(n, t, {(j, J∆kiKj)}) kS
′←(α·α′

i)·kS + (α′
i·γ + γ′

i)

(αi, βi, γi)←∆ki sk′←(u′, kS
′)

for each (uid,RL(i), kC , nS , nC , t, ρ) : publish pk′←(gu
′
, gkS

′
)

hS←HS(uid, nS) ∆ki
′←(α′

i, β
′
i, γ

′
i)

ρ̂←(ρ/(tβi ·hS
γi))α/αi ·tβ ·hS

γ J∆ki
′K← GenShare(n, t,∆ki

′)

t′←t·gv RL J∆ki
′Kj

sc
RL(j), j ∈ [n] \ {i}

ρ′←(ρ̂·pk1
v)α

′
i ·t′β

′
i ·hS

γ′
i RL J∆kj

′Ki
sc

RL(j), j ∈ [n] \ {i}

k′
C←α′

i·(α/αi)·kC return sk′, {(j, J∆kj
′Ki)}j∈[n]

update (uid,RL(i), kC , nS , nC , t
′, ρ′)

return p̂k
′
, {(i, pk′)}i∈[n]

Fig. 18: Key rotation protocol.

threshold security standard, which ensures that the adversary must corrupt, at a
minimum, t-of-n servers to compromise key/protocol security. Nevertheless, the
threshold solution poses certain drawbacks to efficiency. For example, T-PHE [4]
has a higher latency compared to the original PHE [27], i.e., 2x for encryption
and 3x for the decryption protocol (even in the same setting of t = n = 1). And
its latency linearly increases with t. As for the redundancy solution, it reduces
security since multiple static storage of the PH key may increase the risk of key
leakage.

5.1 Proof of Security

Theorem 7. The TF-RePhoenix protocol from Fig. 15-Fig. 17 UC-realizes the
reliable PH functionality FrPH defined by Fig. 8.

Proof. Given that TF-PHFPH,FTF (i.e. the (FPH,FTF)-hybrid-world TF-PH from
Fig. 12) UC-realizes the reliable PH functionality FrPH, RePhoenix presented in
Fig. 7 UC-realizes the PH functionality FPH, TF presented in Fig. 11 UC-realizes
the TF functionality FTF, we can conclude that our TF-PHSFPH→RePhoenix,FTF→TF

(i.e. TF-RePhoenix shown in Fig. 15 and Fig. 17) UC-realizes FrPH, according
to the UC theorem [5].

30

References

1. Agrawal, S., Miao, P., Mohassel, P., Mukherjee, P.: PASTA: password-based thresh-
old authentication. In: ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS). pp. 2042–2059 (2018)

2. Arapakis, I., Bai, X., Cambazoglu, B.B.: Impact of response latency on user be-
havior in web search. In: International ACM SIGIR Conference on Research &
Development in Information Retrieval (SIGIR). p. 103–112 (2014)

3. Borokhovich, M., Schiff, L., Schmid, S.: Provable data plane connectivity with local
fast failover: Introducing openflow graph algorithms. In: Hot topics in software
defined networking (HotSDN). pp. 121–126 (2014)

4. Brost, J., Egger, C., Lai, R.W., Schmid, F., Schröder, D., Zoppelt, M.: Threshold
password-hardened encryption services. In: ACM SIGSAC Conference on Com-
puter and Communications Security (CCS). pp. 409–424 (2020)

5. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: IEEE Symposium on Foundations of Computer Science (FOCS). pp.
136–145 (2001)

6. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally compos-
able password-based key exchange. In: Advances in Cryptology–EUROCRYPT.
pp. 404–421 (2005)

7. D. Goodin: Anatomy of a hack: How crackers ransack passwords like “qeadzcwrs-
fxv1331” (5 2013), http://arstechnica.com/security/2013/05/how-crackers-make-
minced-meat-out-of-your- passwords/

8. Das, P., Hesse, J., Lehmann, A.: DPaSE: Distributed password-authenticated
symmetric-key encryption, or how to get many keys from one password. In: Proc.
ACM AsiaCCS 2022. pp. 682–696

9. Diomedous, C., Athanasopoulos, E.: Practical password hardening based on tls.
In: Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA).
pp. 441–460 (2019)

10. Enterprise, V.: 2023 Data Breach Investigations Report,
https://www.verizon.com/business/resources/reports/2023-data- breach-
investigations-report-dbir.pdf

11. Everspaugh, A., Chaterjee, R., Scott, S., Juels, A., Ristenpart, T.: The Pythia
PRF service. In: USENIX Security Symposium (USENIX Security). pp. 547–562
(2015)

12. Freeman, D., Jain, S., Dürmuth, M., Biggio, B., Giacinto, G.: Who are you? a
statistical approach to measuring user authenticity. In: Symposium on Network
and Distributed System Security (NDSS). vol. 16, pp. 21–24 (2016)

13. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based key
exchange resilient to server compromise. In: Advances in Cryptology – CRYPTO.
pp. 142–159 (2006)

14. Goodin, D.: Once seen as bulletproof, 11 million+ Ashley Madison passwords al-
ready cracked (Sep 2015), http://arstechnica.com/security/2015/09/once-seen-as-
bulletproof-11-million-ashley-madison-passwords-already-cracked/

15. Goodin, D.: Once seen as bulletproof, 11 million+ Ashley Madison passwords al-
ready cracked (Sep 2015), http://arstechnica.com/security/2015/09/once-seen-as-
bulletproof-11-million-ashley-madison-passwords-already-cracked/

16. Grassi, P.A., Fenton, J.L., Newton, E.M., Perlner, R.A., Regenscheid, A.R., Burr,
W.E., Richer, J.P., et al.: NIST 800-63B digital identity guidelines: Authentica-
tion and lifecycle management. Tech. rep., National Institute of Standards and
Technology (2017)

31

17. Griffiths, K.: The falcon web framework (2022), https://falcon.readthedocs.io/en/
stable/

18. Gu, Y., Jarecki, S., Kedzior, P., Nazarian, P., Xu, J.: Threshold pake with security
against compromise of all servers. In: Advances in Cryptology – ASIACRYPT
(2024)

19. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret
sharing and t-pake in the password-only model. In: Advances in Cryptology –
ASIACRYPT. pp. 233–253 (2014)

20. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and composable
password-protected secret sharing (or: How to protect your bitcoin wallet online).
In: IEEE European Symposium on Security and Privacy (EuroS&P). pp. 276–291
(2016)

21. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: Cost-minimal password-
protected secret sharing based on threshold oprf. In: Applied Cryptography and
Network Security (ACNS). pp. 39–58 (2017)

22. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure
against pre-computation attacks. In: Advances in Cryptology – EUROCRYPT. pp.
456–486 (2018)

23. Jarecki, Stanislaw and Krawczyk, Hugo and Xu, Jiayu: On the (In) security of the
Diffie-Hellman oblivious PRF with multiplicative blinding. In: Public-Key Cryp-
tography – PKC. pp. 380–409 (2021)

24. Jia, C., Wu, S., Wang, D.: Reliable password hardening service with opt-out. In:
Symposium on Reliable Distributed Systems (SRDS). pp. 250–261 (2022)

25. Johns Hopkins University ISI: Charm-crypto docs (2022), https://jhuisi.github.io/
charm/index.html

26. Kiner, E., April, T.: Google mitigated the largest DDoS at-
tack to date, peaking above 398 million rps (Oct 2023),
https://cloud.google.com/blog/products/identity-security/google-cloud-
mitigated-largest-ddos-attack-peaking-above-398-million-rps

27. Lai, R.W., Egger, C., Reinert, M., Chow, S.S., Maffei, M., Schröder, D.: Sim-
ple password-hardened encryption services. In: USENIX Security Symposium
(USENIX Security). pp. 1405–1421 (2018)

28. Lai, R.W., Egger, C., Schröder, D., Chow, S.S.: Phoenix: Rebirth of a cryptographic
password-hardening service. In: USENIX Security Symposium (USENIX Security).
pp. 899–916 (2017)

29. Muffett, A.: Facebook password hashing and authentication., https://www.
youtube.com/watch?v=7dPRFoKteIU

30. Pal, B., Daniel, T., Chatterjee, R., Ristenpart, T.: Beyond credential stuffing: Pass-
word similarity models using neural networks. In: IEEE Symposium on Security
and Privacy (S&P). pp. 417–434 (2019)

31. Saeed, N.: Top Insights From Our 2022 State of Secure Identity Report
(Sep 2022), https://auth0.com/blog/top-insights-from-our-2022-state-of-secure-
identity-report/

32. Schneider, J., Fleischhacker, N., Schröder, D., Backes, M.: Efficient cryptographic
password hardening services from partially oblivious commitments. In: ACM
SIGSAC Conference on Computer and Communications Security (CCS). pp. 1192–
1203 (2016)

33. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

32

https://falcon.readthedocs.io/en/stable/
https://falcon.readthedocs.io/en/stable/
https://jhuisi.github.io/charm/index.html
https://jhuisi.github.io/charm/index.html
https://www.youtube.com/watch?v=7dPRFoKteIU
https://www.youtube.com/watch?v=7dPRFoKteIU

34. Shea, R., Wong, V., Rusnak, P., Halfmoon Labs: Secret Sharing: A library for
sharding and sharing secrets (like Bitcoin private keys), using shamir’s secret shar-
ing scheme (2016), https://github.com/shea256/secret-sharing.git

35. Stephens, B., Cox, A.L.: Deadlock-free local fast failover for arbitrary data cen-
ter networks. In: IEEE International Conference on Computer Communications
(INFOCOM). pp. 1–9 (2016)

36. Tyagi, N., Celi, S., Ristenpart, T., Sullivan, N., Tessaro, S., Wood, C.A.: A fast
and simple partially oblivious PRF, with applications. In: Advances in Cryptology
– EUROCRYPT. pp. 674–705 (2022)

37. UK National Cyber Security Centre: Password policy: Updating your ap-
proach (Nov 2018), https://www.ncsc.gov.uk/collection/passwords/updating-
your-approach

38. Wang, D., Zou, Y., Zhang, Z., Xiu, K.: Password guessing using random forest. In:
USENIX Security Symposium (USENIX Security) (2023)

39. Yang, R., Zhang, Y., Garraghan, P., Feng, Y., Ouyang, J., Xu, J., Zhang, Z., Li,
C.: Reliable computing service in massive-scale systems through rapid low-cost
failover. IEEE Transactions on Services Computing (TSC) 10(6), 969–983 (2016)

40. Zhang, Y., Xu, C., Li, H., Yang, K., Cheng, N., Shen, X.: PROTECT: efficient
password-based threshold single-sign-on authentication for mobile users against
perpetual leakage. IEEE Transactions on Mobile Computing 20(6), 2297–2312
(2020)

33

https://github.com/shea256/secret-sharing.git

Universally Composable Password Hardening
Service Against Single Points of Failure

(The Supplementary Material)

A Preliminaries

NIZK proof: y = xk [11]

PoK1(k : x, y) Vf1(g
k, ζ : x, y)

v←$Zq, a1←gv, a2←xv (h,w)←ζ

h←HNIZK1(g, g
k, x, v, a1, a2) a′

1←gw·(gk)h, a′
2←xw·yh

w←v − h·k h′←HNIZK1(g, g
k, x, v, a′

1, a
′
2)

return ζ←(h,w) return b←(h = h′)

NIZK proof: y = x1
k1 ·x2

k2 [28]

PoK2(k1, k2 : x1, x2, y) Vf2(g
k1 , gk2 , ζ : x1, x2, y)

r1, r2 ←$ Zq (x′
1, x

′
2, k

′
1, k

′
2)←ζ

g1←gr1 , g2←gr2 c←HNIZK2(g, g
k1 , gk2 , x1, x2, y, x

′
1, x

′
2)

x′
1←xr1

1 , x′
2←xr2

2 b1←(gk
′
1 = g1·(gk1)c)

c←HNIZK2(g, g
k1 , gk2 , x1, x2, y, x

′
1, x

′
2) b2←(gk

′
2 = g2·(gk2)c)

k′
1←r1 + c·k1, k′

2←r2 + c·k2 b3←(x1
k′
1 ·x2

k′
2 = x′

1·x′
2·yc)

return ζ←(x′
1, x

′
2, k

′
1, k

′
2) return b1∧b2∧b3

Fig. 19: Concrete Non-Interactive Zero-Knowledge (NIZK) algorithms for prov-
ing y = xk and y = x1

k1 ·x2
k2 .

B Proof of Theorem 5

We present a PHS protocol, RePhoenix, that improved over Phoenix [28] mainly
in terms of verifiability, efficiency, and user anonymity (preserving linkability), in
Section 2.2. We state the UC security of our RePhoenix in Theorem 5. In this sec-
tion, we prove it by proving that for any adversary against RePhoenix, there is a
simulated adversary that produces a view in the ideal world that no environment
E can distinguish with an advantage better than 2·(ne/q+na/q

2) where q is the
order of Zq and ne, na respectively are the request numbers to Eval and Auth,
under the DDH assumption in ROM with H(·), HS(·), HNIZK1

(·), HNIZK2
(·) mod-

eled as random oracles.

34

– Security parameter κ. Group G of prime order q and generator g.
– NIZK schemes (PoK1,Vf1) and (PoK2,Vf2).
– Collision-resistant hash functions H,HC with range {0, 1}2κ,G.
– Sim defines a random sequence by r1, · · · , rN ←$ Zq, g1 := gr1 , · · · , gN := grN ,

and initiates I = J = D = 1. Sim maintains a table for the random oracle
HS(·). For a new query (uid, nS) s.t. uid ∈ {0, 1}2κ and nS ∈ {0, 1}κ, Sim an-
swers with grI , records (uid, nS , rI) in table THS , and sets I ++. For an old query
((uid, nS , rÎ)∈THS), answer with the grÎ .

Initialization
– On (Init, sid,RL) from F , pick RL’s secret keys u, kS ←$ Zq, record ⟨RL, u, kS⟩.
Server Compromise
– On (Compromise, sid,RL) from A, forward it to F , and send (u, kS) to A.
Online Evaluation
– On (Eval, sid, esid,AS,RL, uid) from F , send (sid, esid, uid) to A as AS’s message

to RL, and record ⟨esid,AS,RL, uid⟩.
– On (sid, esid, uid′) from A, send (EvalResp, sid, esid, uid′) to F , sample nS ←$

{0, 1}κ, assign hS←HS(uid
′, nS), computes y←hS

kS , ζ←PoK1(kS : hS , y), and send
(sid, esid, y, ζ, nS) to A as RL’s message to AS.

– On (sid, esid, y′, ζ′, n′
S) from A, recover ⟨esid,AS,RL, uid⟩ and ⟨RL, u, kS⟩, verify

Vf1(g
kS , ζ′ : hS , y

′) for hS←HS(uid, n
′
S).

• If ζ′ is valid:
∗ If y′ = hS

kS , send (StorePwdFile, sid, esid,AS,⊤) to F , and record
⟨AS, uid, n′

S , rÎ⟩, where (uid, n′
S , rÎ)∈THS .

∗ Else, Sim aborts.
• If ζ′ is invalid, send (StorePwdFile, sid, esid,AS,⊥) to F .

Stealing Password Data and Offline Password Test
– On (StealPwdFile, sid,AS, uid) from A, forward it to F .
• On F ’s response of “password file stolen”, retrieve ⟨AS, uid, nS , rÎ⟩, pick

kC , nC , t, ρ←$ Zq, and reveal (uid, kC , nS , nC , t, ρ) to A.
• On F ’s response of “no password file” or pw, forward it to A.

– On (OfflineTestPwd, sid, uid, pw∗) from A, pass it to F , and on F ’s response,
forward it to A.

Online Authentication
– On (Auth, sid, asid,AS,RL, uid) from F , retrieve ⟨AS, uid, nS , rÎ⟩, compute

x1←grJ , x2←gu·rJ+kS ·r
Î , record ⟨asid,AS,RL, x1, x2, rÎ , rJ⟩, and set J ++. Then

send (sid, asid, uid, nS , x2) to A as AS’s message to RL.
– On message (sid, asid, uid′, n′

S , x
′
2) from A, send (AuthResp, sid, asid, uid′) to F .

On the response of succ from F (limit not reached), compute hS←Hs(uid
′, n′

S),
y1 ← hS

−u+kS , y2 ← (x′
2/y1)

1/u, ζ1←PoK2(u, kS : h−1
S , hS , y1), ζ2←PoK1(u :

y2, x
′
2/y1), send (sid, asid, y1, y2, ζ1, ζ2) to A as RL’s message to AS.

– On message (sid, asid, y′
1, y

′
2, ζ

′
1, ζ

′
2) from A, recover ⟨asid,AS,RL, x1, x2, rÎ , rĴ⟩

and ⟨RL, u, kS⟩, and check that Vf2(g
u, gkS , ζ′1 : 1/grÎ , grÎ , y′

1) and Vf1(g
u, ζ′2 :

y′
2, x2/y

′
1).

• If ζ′1, ζ
′
2 are valid:

∗ If y′
1 = grÎ ·(−u+kS)∧y′

2 = grĴ+r
Î , send (AuthResult, sid, asid,AS,⊤) to F .

∗ Else, Sim aborts.
• If ζ′1 or ζ′2 is invalid, send (AuthResult, sid, asid,AS,⊥) to F .

Online Password Test
– On (TestPwd, sid,AS,RL, uid, pw∗) from A, pass it to F , and on F ’s response,

forward it to A.

Fig. 20: Simulator Sim for the RePhoenix protocol (F denotes FPH).
35

Proof. As shown in Fig. 20, We construct a simulator Sim. Sim interacts with
adversary A and the ideal UC functionality of FPH (F in short). Without loss
of generality, we assume that A is a dummy adversary (i.e., it is merely a pass-
through machine that outsources all its computation to the environment E). We
now prove the Theorem 5 by arguing that Sim generates a view to E , indistin-
guishable from the real-world view interacting with RePhoenix.

We first compare the differences in the environment’s views in the real and
ideal worlds and then prove that the differences are indistinguishable.

We start with an analysis of the views of environment E through the parties
AS and RL, which is as follows:

– Send (Eval, sid, esid,AS, un, pw) from AS to F in the ideal world and to
RePhoenix in the real world.

– Receive (EvalResp, sid, esid, uid∗) from RL, where uid∗ comes from A in
both world. In the ideal world, the uid∗ is specified in message (EvalResp, sid,
esid,RL, uid∗) from A; And in the real world, the uid∗ is specified by A as it
is sent by AS to RL on a public channel.

– Receive (Eval, sid, esid, ρ) from AS if validation successes. In the ideal world,
F defines verifiability as flag, where flag = ⊤ indicates that the RL response
meets the protocol specification. In the real-world RePhoenix, it uses NIZK
schemes to realize the verifiability functionality of flag. As for the evaluation
value, F outputs a random value, i.e., ρ←${0, 1}ℓ. While in the real world,
RePhoenix computes ρ←pk1

v·HC(un, pw, nC)
kC ·hS

kS , where v, nC , kC are
randoms.

– Receive (Eval, sid, esid,⊥) from AS if validation fails in both worlds.
– Send (Update, sid, (RL, ∆k), (RL′, ∆k′)) from AS to F in the ideal world and

RePhoenix in the real world.
– Send (Auth, sid, asid,RL, un, pw′) from AS to F in the ideal world and to

RePhoenix in the real world;
– Receive (AuthResp, sid, asid, uid∗) from RL, where uid∗ comes from A in

both world.
– Receive (Auth, sid, asid, accept/reject/⊥) from AS, (accept if pw′ = pw, or

reject if pw′ ̸=pw, or ⊥ if validation fails). As the Eval message from AS,
F defines verifiability using the parameter flag, and RePhoenix realizes the
verifiability using NIZK proofs. If the verification fails, F and RePhoenix
outputs the same ⊥. If the validation successes, F verifies pw = pw′, and out-
puts accept (resp. reject) if it is true (resp. not true). While RePhoenix checks
that y′2 = x1·hS and returns accept or reject depending on the result. y′2 =

(x
1/u
2 /hS

kS/u)·hS = x1·(hC/h
′
C)

kC ·hS , where hC = HC(un, pw, nC), h
′
C =

HC(un, pw
′, nC). Therefore, y

′
2 = x1·hS equals to hC = h′

C ,HC(un, pw, nC) =
HC(un, pw

′, nC). Assuming that HC is a collision-resistant cryptographic
hash function, we have that y′2 = x1·hS can be used to verify that pw = pw′.

The only difference is evaluation output if Sim does not abort. F outputs
a random value, i.e. ρ ←$ {0, 1}ℓ; while in RePhoenix, the output is ρ ←
pk1

v·hkC

C ·hS
kS for hC = HC(un, pw, nC), hS = (uid, nS) and randoms v, kC , nC .

The hS
kS will be revealed to E via A in the evaluation process; E can learn hC

kC

36

upon the AS compromise; pk1 is the public information. Due to the blinding fac-
tor v, the environment can not distinguish the real-world ρ ← pk1

v·hkC

C ·hS
kS

from the ideal-world ρ←$ {0, 1}ℓ.
Next, we show that the probability that Sim aborts is negligible. The abort

event happens in the simulated world when the NIZK proof ζ is valid under
the intended public key. Still, the server response y is not calculated using the
function corresponding to the secret key. This means the NIZK scheme fails
because A successfully constructs a valid NIZK proof for a y′ that is generated
outside the protocol specification.

On responding message (sid, esid, y′, ζ ′) from A, Sim Will also verify that
pk′ = pk if the NIZK proof ζ ′ is valid under the intended public key pk (=
(gu, gkS)). pk′ denotes the actual public key for computing the y′. Suppose the
verification of pk′ = pk does not pass. In that case, Sim will abort, which means
that the NIZK scheme fails, because A successfully constructs a valid NIZK
proof for a y′ generated outside the protocol specification. In particular, since

Sim simulates hS with grI , we have y′ = hS
k′
S = grI ·k

′
S = (gk

′
S)rI . In this way,

Sim can extract pk′ by pk′←(y′)1/rI and compare it with pk.
On responding message (sid, ssid2, y

′
1, y

′
2, ζ1, ζ2), Sim verifies that y′1=pk−rI

1 ·pkrI2
and y′2=grJ+rI if the NIZK proofs ζ1 and ζ2 are valid, and outputs Fail if any
of the two equations does not hold. The two verification equations are used to
verify that the server responses y′1, y

′
2 are calculated under the intended keys cor-

responding to pk. In particular, Sim simulates hS with grI and simulates x2 with
gu·rJ+kS ·rI . Suppose that (u′, k′S) is the actual key used to calculate (y′1, y

′
2),

we have that y′1 = g−u′·rI+k′
S ·rI and y′2 = g((u·rJ+kS ·rI)−(−u′·rI+k′

S ·rI))/u′
=

g(u/u
′)·rJ+(kS−k′

S+1)·rI . Therefore, the two verification equations of Sim can be
used to constitute the solution equation set for (u′, k′S) as follows:{

y′1=pk−rI
1 ·pkrI2 ,

y′2=grJ+rI ,
⇒

{
g−u′·rI+k′

S ·rI=pk−rI
1 ·pkrI2 ,

g(u/u
′)·rJ+(kS−k′

S+1)·rI=grJ+rI .

It has a unique solution, i.e. (u′, k′S) = (u, kS).
We follow the spirit of [19] to estimate the upper limit of NIZK failure prob-

ability. Suppose that the appropriate input was never queried to HNIZK1
at the

time that the honest AS (played by Sim) performs the NIZK verification. Consid-
ering that HNIZK1 is modeled as a random oracle that randomly samples outputs
from Zq, the probability that the HNIZK1 output falls on precisely the verification
hash value is 1/q. Suppose that the adversary queried the appropriate input at
some point before delivery to Sim. Similarly, given that (g, pk, x, y) is not a DDH
tuple and the NIZK verification hash value is random over Zq, the probability
of the verification equation being successful is 1/q. Therefore, the failure prob-
ability of the (PoK1,Vf1) scheme is 1/q + 1/q. Similarly, the failure probability
of the (PoK2,Vf2) scheme is 1/q + 1/q.

We conclude that the abort events happen with a probability of at most
2/q + 2/q2.

We continue to analyze the views of environment E through adversary A.
For brevity, we omit session identifiers from all messages.

37

In the real world, RePhoenix provides the following views to E through A.
We assume that the transmission channel of evaluation and authentication is
public. When A acts as AS, it can obtain the messages from AS to RL.

– Receive uid from AS after E sends the Eval message to RePhoenix for
(un, pw), where uid = H(un, s).

– Receive (uid, nS , x2) from AS after E sends the Auth message to RePhoenix
for (un, pw′). In RePhoenix, uid = H(un, s), and nS is recovered from the
record of (un, nS). RePhoenix computes (x1, x2) by x1 = t·gz = gv·z for

random z and x2 = ρ·pk1
z/h′

C
kC = gu·(v+z)·(hC/h

′
C)

kC ·hS
kS for hC =

HC(un, pw, nC), h
′
C = HC(un, pw

′, nC).

When A acts as AS, it can learn the messages from RL to AS.

– Receive (y, ζ, nS) from RL after A forwards uid′ to RL. RePhoenix computes
hS = HS(uid

′, nS) for random nS sampled from {0, 1}κ, computes y = hS
kS

and its NIZK proof ζ = PoK1(kS : hS , y).
– Receive (y1, y2, ζ1, ζ2) from S after A forwards (uid′, n′

S , x
′
2) to S. RePhoenix

computes hS = HS(uid
′, n′

S), y1 = (1/hS)
u·hS

kS = hS
−u+kS , y2 = (x′

2/y1)
1/u

and their NIZK proofs ζ1 = PoK2(u, kS : 1/hS , hS , y1), ζ2 = PoK1(u :
y2, x

′
2/y1).

Moreover, A can learn the leakage of their static storage from RL and AS when
E permits it to compromise the parties.

– Receive (u, kS) from RL after A sends Compromise to RePhoenix under
environment permission, where RePhoenix initiates the server keys (u, kS)
with two random values from Zq.

– Receive (uid, kC , nS , nC , t, ρ) from AS after A sends StealPwdFile(uid)
to RePhoenix under environment permission. In RePhoenix, kC , nC , v are
random values. For the user name and password pair of (un, pw) and the
server keys of (u, kS), ρ = gu·v·hC

kC ·hS
kS , where hC is the password salted

hash, i.e. hC = HC(un, pw, nC) for random nC sampled by AS and hS is the
user name hash, i.e. hS = HS(H(un, s), nS) from random nS sampled by RL.

The simulator Sim simulates the above real-world views piece by piece to
provide an indistinguishable view of the environment in the simulated world.
When A acts as RL, Sim strives to act as AS as follows to send indistinguishable
responses to A.
– Receive uid from AS after E sends the Eval message to F for (un, pw). As the

definition of F , it sends the (Eval, · · · ,AS,RL, uid) message to Sim. Then
Sim forwards the uid to RL.

– Receive (uid, nS , x2) from AS after E sends the Auth message to F for
(un, pw′). As the definition of F , it sends the (Auth, · · · ,AS,RL, uid) mes-
sage to Sim. For the consistency of nS , Sim recovers nS from ⟨C, uid, nS , rI⟩.
Sim simulates x1 with grJ and simulates x2 with gu·rJ+kS ·rI .

WhenA acts as RL, Sim simulates RePhoenix’s calculation of (y, ζ) and (y1, y2, ζ1, ζ2)
in a copied manner as follows. Therefore, A cannot distinguish them from the
real-world messages in RePhoenix.

38

– Receive (y, ζ, nS) from RL after A forwards uid′ to RL, where y = hS
kS s.t.

hS = HS(uid
′, nS) for random nS , ζ = PoK1(kS : hS , y) for the server key kS

sampled by Sim randomly in the initiation phase;
– Receive (y1, y2, ζ1, ζ2) from RL after A forwards (uid′, n′

S , x
′
2) to RL. Sim com-

putes hS = HS(uid
′, n′

S), y1 = hS
kS−u, y2 = (x′

2/y1)
1/u, and their NIZK

proofs ζ1 = PoK2(u, kS : 1/h′
S , h

′
S , y1), ζ2 = PoK1(u : y2, x

′
2/y1) with the

server keys (u, kS).

Additionally, Sim simulates information leakage upon RL/AS compromise as fol-
lows. Note that all messages between A and F pass through the ideal adversary
(i.e., Sim).

– Receive (u, kS) after A sends Compromise to F under environment permis-
sion. The server keys (u, kS) in Sim are random values from Zq.

– Receive (uid, kC , nS , nC , t, ρ) after A sends StealPwdFile to F with en-
vironment permission. Sim retrieves nS from the record ⟨AS, uid, nS , rI⟩ in-
dexed by uid. For kC , nC , t, ρ, Sim simulates them with random values from
(Zq, {0, 1}κ,G,G).

As stated above, environment E cannot distinguish the real and simulated
worlds using messages sent by AS to RL that are eavesdropped by adversary A.
Next, We analyze the difference in messages from AS to RL.

– uid = H(un, s) in RePhoenix and uid = prf(un) in Sim. We assume that H(·)
is a random oracle. Therefore, E can not distinguish the two worlds via uid.

– x2 = gu·(v+z)·(hC/h
′
C)

kC ·hS
kS in RePhoenix and x2 = gu·rJ ·hS

kS in Sim,
where rJ is the next available element of the random sequence. A can learn
the value of hS

kS from the public channel from RL to AS in the process
of evaluation. The main task of A here is to distinguish the rest sub-term
of x2, i.e. distinguish the real-world gu·(v+z)·(hC/h

′
C)

kC and the simulated-
world gu·rJ . Due to v, z, rJ are random values from group Zq and always kept
secret from E , it cannot distinguish between the two rest sub-terms of x2 in
RePhoenix and Sim, even for A who compromises the server key u and the
file record.

By compromising RL and AS under environment permission, A learns their
keys and the password file. The keys (including (u, kS)) and the salt s are ran-
dom values both in the real-world RePhoenix and the simulated-world Sim and,
therefore, indistinguishable in the two worlds. As for the password file of (un, pw),
i.e. (uid, kC , nS , nC , t, ρ), kC , nC are random value that are indistinguishable in
RePhoenix and Sim. The t and ρ from Sim are also random values. In RePhoenix,
t = gv is also a random value. Therefore, A cannot distinguish the two worlds via
t. In the real world, RePhoenix computes ρ = gu·v·hC

kC ·hS
kS . A can query HC

for (un, pw) to obtain hC and compute hC
kC with the compromised kC . Addi-

tionally, A has learnt the hS
kS from the public evaluation message sent by RL to

AS. Based on the existing knowledge of hC
kC and hS

kS , A’s ability to distinguish
ρ between the two worlds is equivalent to distinguishing the sub-term gu·v from
a random value. Due to v being a random value from group Zq and always kept
secret from E , gu·v can be seen as a random value for A. Therefore, A cannot
distinguish the two worlds via ρ. We can conclude that the environment cannot

39

ExpbTF-RePhoenix,L,A

1 : p←(n, t, κ)

2 : (kC , u, kS , T, un, pw, sta)←$A1(p)

3 : b0 := (T = Eval{C(kC , un, pw), S(u, kS)})
4 : (u′, k′

S , pk
′, J∆kK)←$S′.Init(p)

5 : if b = 0 then update password record and key rotation.

6 : ∆k ←$ ReSecret{C(kC), S
′(∆k1), S2(∆k2), · · · , St(∆kt)}

7 : (T ′, k′
C)←$C.Update(∆k, T){

8 : (α, β, γ)←∆k, (h, t1, t2, nS , nC)←T

9 : v∗ ←$ Zq, t
′
1 = t1·gv

∗
, t′2 = (t2)

α·(t1)β ·(hS)
γ ·pkα·v∗

1 ·gβ·v
∗

10 : T ′←(h, t′1, t
′
2, nS , nC), k

′
C←kα

C }
11 : else generate password record by the evaluation protocol.

12 : aux←L(T)
13 : T ′ ←$ Eval{C(k′

C , un, pw, aux), S(u
′, k′

S , aux)}
14 : endif

15 : b′ ←$A2(sta, k
′
C , u

′, k′
S , T

′)

16 : b1 := (b = b′)

17 : return b0∧b1

Fig. 21: Game-based experiment for forward security.

distinguish between the real world and the simulated world through the view of
adversary A.

Based on the above analysis, we can conclude that environment E , from the
view of the party AS, can distinguish the real world from the ideal world due
to the abort event of Sim. The upper bound of the distinguishability probability
is negligible, i.e., 2/q + 2/q2. If there are ne evaluation requests via Eval and
na authentication requests via Auth, the total distinguishability probability
is 2·(ne/q + na/q

2). However, from the view came from RL and A, E cannot
distinguish whether it is interacting with the ideal-word functionality F and
simulated-word simulator Sim or the real-world RePhoenix protocol.

C Forward Security

We define a forward security experiment played between a challenger and a two-
stage adversary A, following the forward security experiment for Phoenix [28].
The challenger acts as the client C and t + 1 servers, including the on-duty
server S, and t off-duty servers. As shown in Fig. 21, the first-stage adversary
A1 outputs kC of C, (u, kS) of S, and a tuple (T = {uid, ns, nc, t, ρ}, un, pw),
which are verified in line 3. An off-duty server S′ is initiated and determined

40

as the next on-duty server. According to the selection bit b, the challenger C
either rotates keys by using ReSecret and updates the password record by using
Update (Update denotes the token-based update function of threshold rotation),
or generates a fresh password record for (un, pw) by using an evaluation protocol
with S′. In the evaluation protocol, both C and S′ additionally take some auxil-
iary information aux = L(T) as input, where L defines the leakage function that
outputs (uid, nS , nC). The second-stage adversary learns updated/fresh keys and
password records and outputs its guess b′ for b. Finally, the experiment returns
b0∧b1, which is true if and only if A1 provides a valid experiment tuple (T, un, pw)
and A2 guesses correctly.

Next, we prove that the probability of the true result is negligible. Since that
(uid, nS , nC) of the updated T ′ are exactly the same as that of the fresh T ′, we
only need to discuss t′ and ρ′. Due to the update correctness proved in Section 5,
we have the password record in the same form before and after the update. There-
fore, we have t′ = gv

′
, ρ′ = (pk′1)

v′ ·HC(un, pw, nC)
k′
C ·HS(h, s)

k′
S when b = 0. Due

to (uid, nC , nS) ← L(T) as auxiliary information inputting to the fresh evalua-
tion protocol when b = 1, so t′ = gv

′′
, ρ′ = (pk′′1)

v′ ·HC(un, pw, nC)
k′
C ·HS(h, s)

k′
S .

The only difference is the exponent of t′, which is v′ := v + v∗ in the updated
record and v′′ := v+ v∗∗. The v∗ and v∗∗ are indistinguishable because they are
independently selected random values. Thus, we can conclude that the adver-
sary cannot distinguish between the updated password record and the fresh one.
This means the forward security with the leakage function L, called L-forward
security, of TF-RePhoenix.

D Performance Evaluation

D.1 Implement and Experiment Setting

We implemented TF-RePhoenix’s cryptographic algorithms based on the Charm-
Crypto cryptographic framework [25] and using NIST P 256 as the group. The
Shamir’s secret sharing [33] was implemented based on an open-source code [34].
The PH server was built as a web application using the Falcon Python Web
framework [17]. The communication was implemented with the Python httplib2
library, where messages were passed to the server as GET request parameters
and returned to the client as JSON. All experiments run on a machine equipped
with Intel(R) Core(TM) i7-8850H/2.60GHz ×2 & 3.8 GiB RAM, installed with
64-bit Ubuntu 20.04.3 LTS.

D.2 Performance Comparison

The evaluation and authentication protocols are critical protocols of PH. After
a user submits the username and password, he will generally wait for the reg-
istration or log in to be completed. High-latency evaluation and authentication
protocols can reduce the user’s favorable impression of the PH. Therefore, it is
essential to ensure their low latency. Our TF-RePhoenix solution to the single

41

points of failure (SPF) does not change the original RePhoenix’s evaluation and
authentication protocols. As shown in Table 1, TF-RePhoenix has the same high
efficiency as RePhoenix in terms of computation overhead and round. In other
words, our threshold failover solution to SPF has optimal performance.

For comparison, Table 1 summarizes the performance of T-PHE [4], which
is an instantiated threshold solution to SPF, compared with the original PHE
with SPF. Both PHE [27] and T-PHE [4] are proposed in a PH-derived field for
hardened password-based encryption. We can see that while T-PHE eliminates
the SPF of PHE [27], it also results in a general decline in performance. Under
the setting of n = t = 1 (with the lowest cost in this setting), the evaluation
latency of T-PHE [4] is 1.2 times that of PHE, and the authentication latency
is 5.3 times. And they linearly increase with t [4].

D.3 Performance Evaluation of Failover

We evaluate the latency of failover in TF-RePhoenix when failure happens. We
test failover in two phases: C (i.e., the authentication server) reconstructs the
update token from t servers; and C uses the token to update all password records
to the new ones hardened by the new key. All results are based on the averages
of 1,000 independent executions.

First phase: Time to reconstruct an update token. This experiment
measures the time it takes for TF-RePhoenix to reconstruct an update token

Table 1: The comparison of computation overhead, rounds, and storage cost of
the client between the original and improved schemes.

Scheme
Computation overhead Rounds Storage

Eval Auth Eval Auth Client

PHE USENIX SEC’18 [27] 8H†+12E 8H+13E 1 2 2Lκ+2Lg

T-PHE CCS’20 [4] 6H+17E 6H+91E 3 6 3Lκ+2Lg

Performance ratio 1.2 5.3 3 3 1.7

Phoenix‡
USENIX SEC’17 [28] 2H+5E 2H+15E 2 2 3Lκ+3Lg

RePhoenix Sec. 2 2H+10E 2H+12E 2 2 3Lκ+3Lg

TF-RePhoenix Sec. 5 2H+10E 2H+12E 2 2 3Lκ+3Lg

Performance ratio 1 1 1 1 1
† H denotes the hash function mapped to group G, and E represents the exponential operation in
group G. Lκ denotes the length of the element in {0, 1}λ, and Lg denotes the length of the element
in G. In our experiments with NIST P 256 and SHA256, each H takes 24.26ms, and each E takes
39.84ms, which are used to estimate the latency ratio of the original and improved protocols.
‡ Note that Phoenix’s registration protocol does not have verifiability.

Table 2: Experiment results of time cost both of recovering the update token in
various threshold parameters and updating password records (in ms).

Threshold parameter n 5 7 9 11 13 15

Time to recover update token (t=n) 0.475 0.692 0.874 1.116 1.389 1.671

Time to recover update token (t=4) 0.387 0.385 0.384 0.385 0.389 0.387

Number of updated records 1 10 100 1,000 10,000 –

Time to update records 0.368 3.680 36.896 364.823 3,641.635 –

42

under different threshold parameters. In Table 2, results show that the time cost
is linear with the number of shares required to reconstruct the token (i.e., t).
Increasing the number of PH servers (i.e., n) affects the run time. For (n, t) =
(15, 4), the run time needed to reconstruct a token is very short, only 0.387
milliseconds.

Second phase: Time to update password records. As shown in Ta-
ble 2, the time to update password records is linear with the number of password
records. The amortized time to update a password record is 0.36 milliseconds.
It can be estimated that updating one million records takes around six minutes.
For more extensive password records, like Facebook’s approximately three bil-
lion users, updates can be easily parallelized on-demand, making it even more
efficient.

From the above experimental results, we can conclude that our TF-RePhoenix
provides a low-latency failover, taking a very short time to recover the password-
hardening service from its failure. Even if the password storage records are of
millions of levels, our protocol only needs a few minutes to failover. Restoring the
update token and updating a record takes less than milliseconds, so even user
requests submitted at the moment of the failure can continue to be processed
after only a millisecond latency.

E The Verifiable and Partially Oblivious Pseudo-Random
Function (VPOPRF)

In Everspaugh et al.’s PHS scheme [11], the PH protocol is equivalent to a ver-
ifiable and partially oblivious PRF (VPOPRF). Both the password evaluation
and authentication phases involve the server performing the same deterministic
computation task (i.e., (·)k). If the output value from the authentication phase
matches the corresponding password record output from the evaluation phase,
the login password is deemed correct. In this section, we propose the ideal func-
tionality of VPOPRF (FVPOPRF) in the UC security framework and prove that
Everspaugh et al.’s PH protocol (called Pythia) UC-realizes FVPOPRF, which an-
swers the question left over from [11] regarding the level of pseudo-randomness
security that their PH protocol is provably capable of. Other UC formalization
works include OPRF [20], VOPRF [19], TOPRF [21], adaptive VOPRF [22],
CorOPRF [23], and vedpOPRF [8]. Additionally, [36] introduces a non-UC def-
inition of VPOPRF.

In the main text, we focus on more commonly used PHs, whose authentication
protocols are separate from the evaluation protocols (examples include [32,28,24]).
One point of discussion is how these differ from VPOPRF-type PHs [11] de-
scribed above. Firstly, the evaluation protocols require randomness security, as
opposed to the deterministic outputs of VPOPRF. This means the evaluation
protocol will produce different outputs each time, even with the same password
input. This prevents attackers from verifying passwords through the evaluation
protocol. Secondly, only the authentication protocol requires unpredictability

43

Functionality FVPOPRF

Public Parameter: Evaluation output-length ℓ, polynomial in security parameter κ.
Conventions: For sid, pk, xpub, xpri, return Fsid,pk(xpub, xpri) if defined; else, assign and
return Fsid,pk(xpub, xpri)←$ {0, 1}ℓ.
Initialization
– On (Init, sid, S) from E , if this is the first Init message for sid, send it to A∗.
– On (Parameter, sid, S, pk) fromA∗, ignore this message if ⟨param, S, ·⟩ already ex-

ists. Otherwise, record ⟨param, S, pk⟩ and mark it fresh, initialize tx(S) := 0. If S is
honest send (Parameter, sid, pk) to S; else, mark S’s param record compromised,
and insert pk in CPK.

Server Compromise
– On (Compromise, sid, S, pk∗) from A∗, if there is a record ⟨param, S, pk⟩ s.t. pk∗ =

pk marked fresh, re-mark it compromised, and insert pk in CPK.
Offline Evaluation
– On (OfflineEval, sid, S, pk∗, xpub, xpri) from P ∈ {S,A∗}, send (OfflineEval,

sid, S, pk∗, Fsid,pk(xpub, xpri)) to P if any of following holds:
• For P = S, S is compromised or pk∗ = param(S).
• For P = A∗, S is compromised or pk∗ ̸= param(S).

Online Evaluation
– On (Eval, sid, ssid, S, xpub, xpri) from P ∈ {C,A∗}, send (Eval, sid, ssid, P, S,

xpub) to A∗. On prfx from A∗, ignore this message if prfx is used before; else
record ⟨ssid, P, prfx⟩ and send (Prfx, sid, ssid, prfx) to P . If there is no tuple
⟨count, sid, xpub, c⟩, record it for rate-limiting and initialize c := 0 (c is reset to
0 at the beginning of every time window). If this is the first Eval message for
ssid, record ⟨sid, ssid, C, S, pk, xpub, xpri⟩.

– On (SvrComplete, sid, ssid, S) from S, retrieve ⟨sid, ssid, C, S, pk, xpub, xpri⟩ and
⟨count, sid, xpub, c⟩, ignore this message if c = limit. Otherwise, set c++ and send
(SvrComplete, sid, ssid, S) to A∗ for some honest S. On prfx′ from A∗, send
(Prfx, sid, ssid, prfx′) to S. If there is ⟨ssid, C, prfx⟩ s.t. prfx = prfx′, change it to
⟨ssid, C,OK⟩. If prfx ̸= OK, tx(S) + +.

– On (CltComplete, sid, ssid, C, pk∗, flag) from A∗, ignore this message if no
⟨sid, ssid, C, S, pk, xpub, xpri⟩ or ⟨ssid, P, prfx⟩ exists.
• For (flag = ⊤∧pk∗ = pk), if prfx ̸= OK and tx(S) = 0, ignore this message.

Otherwise return (Eval, sid, ssid, Fsid,pk(xpub, xpri)). If prfx ̸= OK, tx(S) − −.
If there is no ⟨file, sid, ssid, C, S, pk, xpub, xpri⟩, record it and mark it fresh.

• In other cases, return (Eval, sid, ssid,⊥).
Stealing Password Data
– On (StealPwdFile, sid, ssid, S) from A∗, return “no password file” to A∗ if there

is no record ⟨file, sid, ssid, C, S, pk, xpub, xpri⟩. Otherwise, if it is marked fresh, mark
it compromised.
• If ⟨param, S, pk⟩ is marked compromised and there is ⟨offlinetest, pk, xpri⟩, re-

turn xpri to A∗.
• Else return “password file stolen” to A∗.

– On (OfflineTestPwd, sid, S, xpub, xpri
∗) from A∗, ignore this message if

⟨param, S, pk⟩ is not marked compromised. Otherwise, if there is no record
⟨file, sid, ·, C, S, pk, xpub, xpri⟩marked compromised, record ⟨offline, pk, xpri⟩; else do:
if xpri

∗ = xpri return “correct guess” to A∗, else return “wrong guess”.
Active Session Attacks
– On (TestPwd, sid, ssid, C, S, xpub, xpri

∗) from A∗, retrieve records ⟨file, sid, ·, C,
S, pk, xpub, xpri⟩ marked compromised and ⟨count, sid, xpub, c⟩, ignore this message
if no such records or c = limit. Otherwise, set c + + and if xpri

∗ = xpri return
“correct guess” to A∗, else return “wrong guess” to A∗.

Fig. 22: Verifiable and Partially Oblivious Pseudo-Random Function (VPOPRF)
functionality FVPOPRF with adaptive compromise.

44

Public Parameters and Components
– Security parameter κ. Finite field Zq over prime order q, groups G1,G2,GT over

order q, and bilinear pairing e : GT ← G1 × G2. Hash functions H,H1, H2 with
ranges {0, 1}κ,G1,G2.

– NIZK schemes: (PoK1,Vf1) for proving y = xk.
– C picks a salt s in initialization phase.
Initialization
– On (Init, sid, S), S picks k ←$ Zq (public key pk := gk), stores ⟨sid, k⟩, and returns

(Parameter, sid, S, pk).
Server Compromise
– On (Compromise, sid, S, pk∗) from A, reveal S’s key k to A if pk∗ = pk.
Online Evaluation
– On (Eval, sid, ssid, S, w←H(un, s), pw), C sends (w, x) to S, for x s.t. r ←$

Zq, x← H2(pw)
r, stores (sid, ssid, w, pw, r), and outputs (Prfx, sid, ssid, (w, x)).

– On (SvrComplete, sid, ssid, S) and message (w, x) from C, S computes x′ ←
e(H1(w), x), t ← (x′)k and a proper NIZK proof ζ ← PoK1(k : x′, y), sends (y, ζ)
to C and outputs (Prfx, sid, ssid, (w, x)).

– On message (y, ζ) and pk from S, C verifies ζ. If not, output (Eval, sid, ssid,⊥);
otherwise, recover (sid, ssid, w, pw, r) and output (Eval, sid, ssid, y1/r). If there is
no record ⟨file, sid, ·, w, pw, ρ⟩, C records it with ssid and ρ := y1/r; otherwise C
does: if ρ = y1/r, output “correct guess”, else output “wrong guess”.

Stealing Password Data
– On (StealPwdFile, sid, ssid, C) from A, if there is record ⟨file, sid, ssid, un, pw,

ρ⟩, send ρ to A.

Fig. 23: Adaptive Pythia [15].

security, which prevents online attackers from using a single online request to
verify multiple password guesses.

The verifiable and partially oblivious pseudo-random function (VPOPRF) [11]
is a two-party protocol, consisting of a client holding the inputs (i.e., (xpub, xpri))
and a server holding the key k, generating a PRF output Fk(xpub, xpri) to the
client, while the server knows nothing but xpri. It is first proposed by Everspaugh
et al. [11] for their PH protocol Pythia and first formally defined by Tyagi et
al. [36] based on security games. In this section, we introduce a new security
notion of VPOPRF in the UC security framework that covers input privacy,
output pseudo-randomness, obliviousness, and verifiability.

There are two VPOPRF constructions, Pythia [11] based on a bilinear pairing
and 3HashSDHI [36] based on the 2HashDH OPRF and the Dodis-Yampolskiy
PRF, both with game-based security proof. Tyagi et al. [36] proved that the
security (pseudorandomness) of 3HashSDHI in the random oracle model and
based on a one-more gap strong Diffie-Hellman inversion assumption that can
be from the q-DL assumption in the algebraic group model. Everspaugh et al. [11]
proved the one-more unpredictability security and the one-more PRF security
of their Pythia scheme. However, they believe Pythia cannot be proven secure
relative to the oblivious PRF security with the partially oblivious setting, and

45

they leave the question of what security level Pythia can be proven for. In this
section, we prove that Pythia UC-realizes our defined VPOPRF functionality.

Public Parameters and Components
– Security parameter κ. Finite field Zq over prime q, groups G1,G2,GT over prime

q, and bilinear pairing e : GT ← G1 × G2. Hash functions H,H1 with ranges
{0, 1}κ,G1.

– NIZK scheme: (PoK1,Vf1) for proving y = xk.
– Pick r1, · · · , rN ←$ Zq. Set g1 := gr1 , · · · , gN := grN , and I, J .
– On A’s fresh query xpri to H2, set H2(xpri)← gI , record ⟨H2, xpri, rI⟩, I ++.
Initialization
– On (Init, sid, S) from F , pick k ←$ Zq, pk := gk s.t. pk /∈ PK, record ⟨S, k, pk⟩,

insert pk in PK and return (Parameter, sid, S, pk). Add pk to CPK if S is cor-
rupted.

Server Compromise
– On (Compromise, sid, S, pk∗) from A, pass it to F . If pk∗ = pk (pk is S’s public

key), insert pk∗ into CPK.
Online Evaluation
– On (Eval, sid, ssid, C, S, xpub) from F , Sim sets x ← gJ , responds with prfx :=

(xpub, x) to F , sends (sid, ssid, xpub, x) to A as C’s message to S, records ⟨ssid, C,
xpub, rJ⟩ and sets J ++.

– On (SvrComplete, sid, ssid, S) from F and message (sid, ssid, xpub, x
∗) from A,

send prfx := (xpub, x
∗) to F , compute y := e(H1(xpub), x

∗)k and a proper NIZK
proof ζ, send (sid, ssid, y, ζ) to A as S’s response.

– On message (sid, ssid, y∗, ζ∗) and pk from A on behalf of S’s response to C,
recover ⟨ssid, C, xpub, rJ⟩.
• If pk ∈ PK and ζ is valid, check that e(H1(xpub), pk)

rJ = y∗ only if pk /∈ CPK.
If not, abort and output Fail. Send (CltComplete, sid, ssid, C, pk,⊤) to F .

• If pk ∈ PK, and ζ is invalid, send (CltComplete, sid, ssid, C, pk,⊥) to F .
• If pk /∈ PK, record ⟨S, ·, pk⟩, insert pk into PK, send (Parameter, sid, S, pk)

to F , and send (CltComplete, sid, ssid, C, pk, flag) to F where flag = ⊥/⊤
depending on where ζ is valid or invalid.

Stealing Password Data
– On (StealPwdFile, sid, ssid, C) from A, pass it to F . On F ’s response, forward

it to A. In addition, if F returns xpri, retrieve ⟨file, sid, ssid, C, S, xpub, ·⟩ (record
⟨file, sid, ssid, C, S, xpub,⊥⟩ if no such tuple). If the last item is ⊥, change it to pw.

– On (OfflineTestPwd, sid, ssid, S, xpub, x
∗
pri) from A, ignore this message if pk /∈

CPK, else pass this message to F . On F ’s response, forward it to A. In addition, if
F returns “correct guess”, retrieve ⟨file, sid, ssid, C, S, xpub, ·⟩, and if the last item
is ⊥, change it to x∗

pri.
Active Session Attacks
– On (TestPwd, sid, ssid, C, S, xpub, x

∗
pri) from A, ignore this message if

no record ⟨file, sid, ·, C, S, xpub, ·⟩ marked compromised. Otherwise, send
(TestPwd, sid, ssid, C, S, xpub, x

∗
pri) to F and pass F ’s response to A.

Fig. 24: The simulator Sim for Pythia [11] (FVPOPRF abbreviated F).

46

E.1 The VPOPRF functionality FVPOPRF

Following the ideal functionalities of VOPRF [19], OPRF [20], and adaptive
OPRF [22], we define the VPOPRF functionality with adaptive corruptions, as
shown in Fig. 22. The StealPwdFile message for stealing password files, the
OfflineTeatPwd message for offline password guessing, and the TestPwd
message for online password guessing, are not part of the VPOPRF functionality
but are components of the VPOPRF-type PH functionality.

E.2 Review of Pythia [11]

Fig. 23 shows the Pythia protocol [11], only syntactically modified to realize the
adaptive VPOPRF functionality.

E.3 Proof of security

We prove that Pythia UC-realizes our defined VPOPRF functionality FVPOPRF,
which answers the question left over from [11] on proving pseudo-randomness
(i.e., what level of security is their PH protocol provably).

Theorem 8. The protocol Pythia UC-realizes the functionality FVPOPRF with
H1(·), H2(·), HNIZK1

modeled as the random oracle.
Precisely, for any adversary against Pythia, there is a simulated adversary

that produces a view in the ideal world that no environment E can distinguish
with an advantage better than 2nq/q where nq is the request number affected by
adversary A and q is the order of the range Zq of HNIZK1(·).

Proof. We construct a simulator Sim, as shown in Fig. 24. Without loss of gen-
erality, we assume that A is a dummy adversary. Note that xpub = w such that
w←H(un, s) and xpri = pw in Pythia. We prove Theorem 8 by showing that
the probability of distinguishing between the real and ideal worlds from the
environment E ’s view is negligible.

There is a difference in the environment’s view through A between the real
and simulated worlds. In the simulated world, on A’s fresh query xpri to H2,
the simulator Sim returns the next available element gI of the random sequence,
i.e., H(xpri) := grI , and records ⟨H2, xpri, rI⟩. When A acts as an honest client
and sends the Eval message with the same xpri to F , Sim will send gJ to A,
the next available element gJ of the different random sequence (i.e., I and J are

independent of each other). The Sim prescribes different values (gI and g
1/r
J) for

the same hash queries in the two responses. However, since r is hidden from the
A’s view, E cannot rely on A to distinguish this inconsistency.

There is another difference in the environment’s view through C between the
real and ideal worlds. For the same Eval queries with (xpub, xpri), if the Fail
event not happen, F returns a evaluated Fsid,pk(xpub, xpri), a pseudo-random
value fromGT , and the real-world protocol Pythia returns ρ←e(H1(xpub), H2(xpri))

k.
Under the random oracle model, we program H1(·) as a PRF function: on a fresh

47

query xpub, samplem1 ←$ Zq and record ⟨xpub, g
m1
1 ⟩ where g1 is a generator ofG1;

on an old query xpub, retrieve ⟨xpub, g
m1
1 ⟩ and output gm1

1 . In the same way, H2(·)
is programmed as ⟨xpri, g

m2
2 ⟩ such that g2 is a generator of G2 andm2 is a random

value from Zq. Then we have e(H1(xpub), H2(xpri))
k = (e(g1, g2)

k)m1·m2 . Due to
the non-degeneracy of e, there must be e(g1, g2)

k ̸= 1GT
; that is, gT←e(g1, g2)

k

is a generator of GT . Therefore, the evaluation function of Pythia is equivalent
to the PRF function ⟨(xpub, xpri), g

m
T ⟩, where m = m1·m2 is a random value

from Zq. In the ideal world, Fsid,pk(·) is defined as a PRF function. Thus, from
environment E ’s view, the output difference is indistinguishable.

In addition, the Fail event only exists in the simulated world. If the Fail
event happens, environment E will know that it is interacting with F and Sim in
the ideal world. According to the definition of Sim, the Fail event means that
the NIZK proof ζ is valid but e(H1(xpub), pk)

rI ̸=y (i.e., e(H1(xpub), x)
k ̸=y). This

happens when the NIZK verification equation is falsely passed due to a collision
of values chosen by the random oracle HNIZK1 for different inputs, whose proba-
bility is 2/q. Therefore, we can conclude that environment E can distinguish its
views in two worlds with probability bound by 2/q. Assume that there are nq re-
quests for the Eval message affected by adversary A, the total distinguishability
probability is at most 2nq/q.

E.4 A compiler from VPOPRF with SPF to VPOPRF without SPF

Our threshold failover solution can be applied to VPOPRF-type PHS that has
the same update functionality as that of the PH defined in Fig. 3 to eliminate
single points of failure. The formal definition based on FVPOPRF can be combined
with TF defined in Fig. 9 through simple syntax modifications from reliable PH
protocol provided in Fig. 12.

For reliable Pythia, where each of n servers holds a server key k and a share
of the key token ∆k such that k′ = k∆k, the client can failover by a threshold
rotation protocol as follows after the on-duty server (that holds k) fails:
– Collect t token shares from other online servers through secure channels and

reconstruct the key token ∆k.
– Update all records evaluated by the on-duty server via ρ′←ρ∆k locally.
– Active the off-duty server that holds k′.

48

	Universally Composable and ReliablePassword Hardening Services

