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Abstract. This paper focuses on the issue of reducing the bandwidth
requirement for FHE ciphertext transmission. While this issue has been
extensively studied from the uplink viewpoint (transmission of encrypted
inputs towards a FHE calculation) where several approaches exist to es-
sentially cancel FHE ciphertext expansion, the downlink case (transmis-
sion of encrypted results towards an end-user) has been the object of
much less attention. In this paper, we address this latter issue with a
particular focus on the TFHE scheme for which we investigate a number
of methods including several approaches for switching to more compact
linearly homomorphic schemes, reducing the precision of T(R)LWE coef-
ficients (while maintaining acceptable probabilities of decryption errors)
and others. We also investigate how to use these methods in combina-
tion, depending on the number of FHE results to transmit. We further
perform extensive experiments demonstrating that the downlink FHE
ciphertext expansion factor can be practically reduced to values below
10, depending on the setup, with little additional computational burden.

1 Introduction

Since its inception more than ten years ago, Fully Homomorphic Encryption
has been the subject of a lot of research toward more efficiency and better
practicality with two main issues to be dealt with: the high computational cost
of homomorphic operators and the large ciphertext expansion induced by FHE
schemes. This paper focuses on the latter of these two issues which leads to the
two following problems, which are very different in nature depending on whether
(Fig. 1):

– Encrypted inputs, i.e. freshly encrypted ciphertexts, are transmitted towards
a FHE calculation (which we refer to as the uplink case).

– Encrypted results, i.e. evaluated ciphertexts, obtained following some FHE
calculation are transmitted towards an end-user for decryption (which we
refer to as the downlink case).

⋆ This work was supported by the France 2030 ANR Projects ANR-22-PECY-003
SecureCompute.
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Reducing the expansion factor for the uplink case has received a lot of attention
over the last ten years or so. Indeed, FHE ciphertext expansion can be almost
cancelled in this case by a technique usually referred to as transciphering which
simply consist in transmitting data encrypted by means of a symmetric scheme
(say AES) and to homorphically turn them into FHE-encrypted data by running
the symmetric scheme decryption algorithm over the FHE scheme (Fig. 2). To do
so, one has to pay the FHE expansion factor only to transmit a FHE encryption
of the symmetric scheme key, at setup time. As a result, many works focused on
the issue of designing symmetric schemes amenable to practical homomorphic
execution [2, 3, 14, 23, 28–30] or on optimizing the homomorphic execution of
more standard ones [5, 6, 39]. Other approaches can also be applied to reduce
that expansion factor. For instance, as all practical FHE schemes are based on
(R)LWE, in the symmetric setting (where both encryption and decryption use
the secret vector or polynomial sk), it is well known [1, 36] that one can simply
synchronize the sender and the receiver on a PRF to avoid sending the a term
in the (R)LWE pairs. This results in an expansion factor of log2 q/ log2 t where q
and t respectively denote the ciphertext and plaintext moduli of the scheme. For
typical TFHE parameters, this approach leads to an expansion factor of “only”
8, almost for free.

Unfortunately, techniques such as the above are not applicable to the down-
link case. Indeed, the dream of being able to convert FHE encrypted results back
to AES form is an ill-posed problem for several reasons, the first of which be-
ing that, as transciphering requires to homomorphically execute the decryption
function of the source scheme under the target scheme, the technique applies
only towards an homomorphic scheme, which is of course not the case of AES.
Likewise, the above synchronization technique does not apply to the downlink
case as the a term in evaluated (R)LWE pairs cannot be a priori chosen. As
such, compressing FHE calculation results for downlink transmission requires
completly different approaches. To the best of our knowledge, the study of this
issue has been initiated in [9] which was the first paper to suggest switching
from an FHE scheme to a more compact linearly homomorphic scheme. For ex-
ample, considering a LWE ciphertext (a, b) ∈ Zn

q × Zq, the idea simply consist
in executing the dot product b− ⟨a, sk⟩ under the LHE (given some form of en-
cryption of sk under the latter). Then one LHE ciphertext is transferred rather
than n+1 elements in Zq, achieving some compression as soon as the size of an
LHE ciphertext is smaller than (n + 1) log2 q. Depending on the LHE at hand,
several such dot products may be packed in a single LHE ciphertext in order to
further enhance compression. Using this technique, they [9] further show that
for GSW (with a binary plaintext domain and very specific parameters) and
the Dåmgard-Jurik scheme as the LHE, it is possible to asymptotically achieve
“rate 1” FHE (although this result is of theoretical interest at it relies on the
fact that, for that scheme, the ratio between the plaintext modulus, Nk, and the
ciphertext modulus, Nk+1, tends to 1 as k goes to infinity). In essence, our paper
build on this idea in a more practically minded fashion, by focusing mainly on
the non-asymptotic regime and considering several possible candidates for the
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LHE: depending on their plaintext/ciphertext size ratios, the amount of “par-
tially decrypted” messages that can packed in their plaintexts and the conditions
under which they admit an efficient decryption (as some LHE require solving a
discrete log during decryption). Because of all these degrees of freedom, some
LHE are more appropriate than others depending on the number of FHE cipher-
texts that need to be transmitted. We also investigate how this approach can be
combined with other (lossy) compression techniques based on truncation of the
LWE coefficients, a simple method for which we carefully analyze the induced
noise in order to determine its practical usefulness.

Fig. 1: Uplink and downlink transmission settings

Fig. 2: Transciphering

1.1 Summary of Contributions

The contributions of this paper can be summarized as follows:
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– We address the issue of compressing evaluated (T)FHE ciphertexts to reduce
the communication burden of transferring results from FHE computations
prior to their decryption. Contrary to prior works, we do so in the non-
asymptotic regime.

– We introduce a new simple (lossy) compression technique for TLWE and
TRLWE ciphertexts which consists in reducing the precision of their coef-
ficients. We carefully analyze the resulting noise increase and show how to
choose the precision loss in order to comply with a preset probability of
incorrect decryption.

– We propose a new “compressed” variant of the linearly homomorphic BCP03
cryptosystem with ciphertext size reduced to logµ+|m|, where µ is the mod-
ulus of the scheme and |m| denotes the bitlength of the encrypted message
m. This variant, which we refer to as compressed Paillier-ElGamal (CPG for
short) in the sequel, may also be of independent interest.

– Building on the (known) idea of executing the linear part of the decryp-
tion function for a TLWE ciphertext over a more compact LHE scheme, we
investigate several candidates for the LHE (including the above) in combi-
nation with other techniques from the state-of-the-art or the present paper
to achieve high compression rate of evaluated TFHE ciphertexts.

– We report extensive experimental results revealing the most appropriate
regime for each technique (depending on parameters for TFHE as well as
the number of FHE computation results that have to be transmitted).

– To the best of our knowledge, this paper is the first to demonstrate that ex-
pansion factors below 10 are practically achievable when transmitting results
of FHE calculations, with limited additionnal computational burden.

1.2 Paper organization

This paper is organized as follows: Section 2 reviews the basics of TFHE (needed
for understanding the paper) and gives the necessary details on the LHE that
we use in this paper. Section 3 subsequently introduces known techniques that
can be applied to achieve some degree of downlink compression for TLWE ci-
phertexts. Then, in Section 4, we present the new compression building blocks
that we also propose in the paper. In, Sect. 5 we study several combinations of
techniques in order to achieve high compression rates of TFHE evaluated cipher-
texts. We then report our experimental results in Sect. 6 and conclude the paper
in Sect. 7.

2 Preliminaries

2.1 General notation

In the upcoming sections, we denote vectors by bold letters, so a vector x of
n elements is x = (x0, . . . , xn−1). The inner product of two vectors x and y

is ⟨x,y⟩. x $←− D denotes sampling uniformly x from D. x
N (0,σ2)←−−−−− D denotes

sampling x from D following a Gaussian distribution of mean 0 and variance σ2.
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2.2 TFHE

The TFHE encryption scheme was proposed by Chillotti et al., in 2016 [19]
and is notably implemented in the TFHE library [18]. TFHE is intrinsically a
LWE scheme working over the [0, 1) torus which we denote by T. TFHE relies on
three types of ciphertexts: TLWE, TRLWE and TRGSW. In this paper, we focus
only on the issue of compressing TLWE and TRLWE ciphertexts as only those
have to be transmitted when performing homomorphic calculations. TRGSW
ciphertexts are only used temporarily within the bootstrapping procedure and
never transmitted (except, offline, for transfering the bootstrapping key).

– TLWE ciphertext: a pair (ã, b̃) is a valid TLWE encryption of m ∈ Zt (for
plaintext modulus t), with ã

$←− Tn and b̃ ∈ T if it verifies b̃ = ⟨ã, s⟩+ m
t + ẽ,

where s
$←− Bn is a TLWE secret key, and ẽ

N (0,σ2)←−−−−− T is a noise term.

– TRLWE ciphertext: a pair (ã, b̃) is a valid TRLWE encryption of m ∈
Zt[X]/(XN+1), with ã

$←− TN [X] and b̃ ∈ TN [X] if it verifies b̃ = ã·s+m
t +ẽ,

where s
$←− BN [X] is a TRLWE secret key, and ẽ

N (0,σ2)←−−−−− TN [X] is a noise
polynomial. Here polynomials are represented by vectors of its coefficients.

Please note that, as this paper focuses on the input/output of FHE calcula-
tions, only a high-level understanding of the inner working of the TFHE scheme
and in particular its bootstrapping procedure is required to understand this
work. We refer the reader to [19] for further details.

It should further be emphasized that TFHE is fully homomorphic only over
TLWE ciphertexts. Up to N TLWE ciphertexts can be packed to/unpacked
from a single TRLWE ciphertext using standard techniques introduced in [10,
19, 35]. This may be useful for improving transmission efficiency (as we shall
later discuss) or to perform batched homomorphic additions.

As an LWE-based scheme, TFHE decryption function is decomposed into a
first linear part

⟨(b̃;−ã), (1; s)⟩ = φ̃ =
m

t
+ ẽ (1)

followed by a scale (up) and round operation

⌈tφ̃⌋ = m. (2)

In TFHE terminology, φ̃ is called the phase or the partial decryption of the
ciphertext (ã; b̃). One key observation [9] is that, given some encryption of s (with
the appropriate form) over another LHE, (1) can be executed over the latter to
get an encryption of φ under that LHE. How and when this is practically useful
is investigated in the sequel.

Equivalently, the scheme is always defined relatively to a discretization of
the torus by steps of 1

q where q is a power of two (typically either 232 or 264).
As such, TLWE or TRLWE ciphertexts are equivalently represented as LWE or
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RLWE ciphertexts over Zq or Zq[X]/(XN+1). When this representation is used,
we will use the notations (a, b) and (a,b) instead of (ã, b̃) and (ã, b̃) (with e.g.
a = ⌈qã⌋ and similarly for the others). Note also, that the phase computation
(1) over (a, b) returns φ = ∆m + e with ∆ = q

t and decryption is finalized by
outputting ⌈ φ

∆

⌋
(3)

instead of Eq. (2).
We will use the illustrative parameters in Table 1 as a running example

throughout the paper. This will allow us to provide illustrative numbers before
the reader reaches Sect. 6 on experimental results where several sets of TFHE
parameters are investigated.

λ n q t N σ0 σBS

128 550 232 2 1024 q · 2.82× 10−4 q · 1.69× 10−2

Table 1: Illustrative TFHE parameters used as a running example throughout
the paper. More exhaustive parameter sets are investigated in Sect. 6.

2.3 Linear Homomorphic Encryption schemes

In this section, we provide the necessary background on the candidate LHE
schemes we consider in this paper. As hinted in the previous Sect. we will consider
using these schemes to evaluate the linear part of the TFHE decryption function
therefore converting one (or possibly more) ciphertexts of size (n+1) log2 q into
a single ciphertext of the LHE scheme. Here we briefly recall the Paillier [34],
Dåmgard-Jurik [24], Elliptic Curve ElGamal [31] and BCP03 [13] cryptosystems
which are used in the sequel.

Paillier. The Paillier cryptosystem [34] is a public key encryption scheme in-
vented by Pascal Paillier in 1999. It is a partial homomorphic scheme that no-
tably allows to perform additions and multiplications-by-a-constant directly over
its ciphertexts

– KeyGen: Choose two large prime numbers p and q randomly and indepen-
dently such that gcd (pq, (p− 1)(q − 1)) = 1. Compute µ = pq, λ = φ(µ)
and set g = µ + 1, where g ∈ Z∗

µ2 , η = φ(µ)−1 mod µ. Return a public key
pk = (µ, g) and a secret key sk = (λ, η).

– Enc: Let m, 0 ≤ m < µ, be a message to encrypt. Select a random r : 0 <
r < µ and gcd(r, µ) = 1. Return a ciphertext c ∈ Z∗

µ2 as c = gm · rµ mod µ2.

– Dec: Return m = L(cλ mod µ2) · η mod µ, where L(x) = x−1
µ .

In summary, for the Paillier scheme, plaintext domain is Zµ and ciphertext
domain is Zµ2 . A typical parameter choice to achieve 128-bit security or slightly
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above consists in taking a modulus µ on 2048 bits. A Paillier ciphertext is there-
fore of size 4096 bits with a 2048 bits payload (leading to an expansion factor of
2).

Dåmgard-Jurik. Dåmgard-Jurik cryptosystem [24] is a generalization of the
Paillier cryptosystem. It uses a plaintext modulus µy and a ciphertext modulus
µy+1, where µ is an RSA modulus and y ∈ Z+. Paillier cryptosystem is the
special case with y = 1.

– KeyGen: Choose an admissible RSA modulus µ = pq and compute λ =
lcm ((p− 1)(q − 1)). Return a public key pk = (µ) and a secret key sk = (λ).

– Enc: Let an integer m > 0 be a message to encrypt. Choose y : m < µy and
select a random r ∈ Z∗

µ. Return a ciphertext c = rµ
y

(1 + µ)m mod µy+1.

– Dec: Compute cλ mod µy+1 = (1+µ)mλ mod µy+1. Compute v = mλ mod ny

(apply an algorithm from Theorem 1 [24]). Return m = vλ−1 mod ny.

In summary, for the Dåmgard-Jurik scheme, plaintext domain is Zµy and ci-
phertext domain is Zµy+1 . A typical parameter choice to achieve 128-bit security
or slightly above consists in taking a modulus µ on 2048 bits. A Dåmgard-Jurik
ciphertext is therefore of size 2048(y + 1) bits with a 2048y bits payload. Note
that, the choice of y has no impact on security. Interestingly, the expansion factor
for the Dåmgard-Jurik scheme is asymptotically such that

lim
y→∞

2048(y + 1)

2048y
= 1.

Elliptic Curve ElGamal. Elliptic Curve ElGamal [31] is a public key additive
homomorphic encryption scheme. It is a generalization of ElGamal public key
cryptosystem over elliptic curve.

– KeyGen: Choose a large prime ω and an elliptic curve E(Fω). Choose a point
P ∈ E, an integer a < ord(P ) and compute Q = aP . Return a public key
pk = (E,P,Q) and a secret key is sk = (a).

– Enc: Let m, 0 ≤ m < ω be a message to encrypt. Express m as a point
X ∈ E: X = mP . Choose random r and return the ciphertext c = (c0, c1)
as c0 = rP, c1 = X + rQ.

– Dec: Compute X = c1 − ac0. Solve X = mP and return m.

In summary, to setup the scheme, we choose an ellictic curve y2 = x3 +
ax + b mod ω then a plaintext domain is Fω and a ciphertext domain is F2

ω. A
typical parameter choice to achieve 128-bit security or slightly above consists in
taking an elliptic curve Curve25519. An EC-ElGamal ciphertext is therefore of
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size 510 bits with a 255 bits payload. However, let us also emphasize that the
decryption function requires solving an elliptic curve discrete logarithm problem
over Curve25519 which is practical only when a small upper bound is known for
the decrypted message. This means that only p ≤ 50 bits are truly usable from
the plaintext domain.

BCP03. BCP03 [13] is a another public key additive homomorphic cryptosys-
tem, that is an ElGamal-style variant of the Paillier scheme. The scheme com-
poses of three algorithms defined below.

– KeyGen: Let µ = pq be an RSA modulus. Choose a random α ∈ Z∗
µ2 , a ran-

dom value d ∈ [1, ord(G)]. Set g = α2 mod µ2 and h = gd mod µ2. Return
a public key pk = (µ, g, h) and a secret key sk = (d).

– Enc: For a given message m ∈ Zµ, a random pad r
$←− Zµ2 return a ciphertext

c = (c0, c1) such that c0 = gr mod µ2, c1 = hr(1 + µ)m mod µ2.

– Dec: Compute c = c1(c0)
−d mod µ2 and return m = c−1

µ .

In summary, for the vanilla variant of this scheme, a plaintext domain is Zµ

and a ciphertext domain is Z2
µ2 . A typical parameter choice to achieve 128-bit

security or slightly above consists in taking a modulus µ on around 2048 bits. A
BCP03 ciphertext is therefore of size 8192 bits with a 2048 bits payload (leading
to an expansion factor of 4). As such this scheme might not appear competitive
with the other LHE presented in this section, we will however propose in Sect. 5.4
a more advanced variant, which we will refer to as compressed Paillier-ElGamal
(CPG), in which c0 is compressed onto 2048 bits and c1 onto log2 U bits (where
U is an upper bound on the encrypted message). As such, this new variant will
be much competitive.

Cryptosystem Plaintext
domain

Ciphertext
domain

Plaintext
size (bits)

Ciphertext
size (bits)

Expansion
factor

Paillier Zµ Zµ2 log2 µ 2 log2 µ 2

Dåmgard-Jurik Zµy Zµy+1 y log2 µ (y + 1) log2 µ 1 + 1
y

EC ElGamal Fω F2
ω p 2 log2 ω

2 log2 ω

p

BCP03 Zµ Z2
µ2 log2 µ 4 log2 µ 4

CPG (Sect. 5.4) Zµ Z2
µ2 log2 µ log2 µ+ log2 U 1 + log2 U

log2 µ

Table 2: Summary of the main characteristics of the LHE schemes presented in
Sect. 2.3.
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3 Existing downlink compression techniques for FHE

3.1 Positionning with respect to [9]

The idea to switch from FHE scheme with linear decryption to LHE scheme with
a smaller expansion factor to compress FHE data is introduced in [9]. Also, as the
present paper, that paper is focused on techniques to compress post-evaluation
FHE ciphertexts (i.e., in the downlink case) and does not discuss compression
techniques for the uplink case. In that setting, it introduces a general approach
to build a rate-1 FHE by switching from GSW-style schemes [4, 12, 26, 32] to
the Dåmgard-Jurik cryptosystem or to a linearly homomorphic scheme with a
packed Regev encryption that supports ciphertext shrinking.

To switch n ciphertexts from GSW style FHE to Dåmgard-Jurik, the authors
[9] define a “compression key” ck, which is an encryption of the FHE secret key s
under the LHE scheme, and a packed linear decrypt-and-multiply function L∗ (in
a matrix form) for packed n GSW style ciphertexts. The idea then is to evaluate
L∗ using ck and get an encryption of

∑n
i=1 2

t+1 ·mi+ ei (2t > nB, where B is a
noise bound), i.e. the packed n messages under the Dåmgard-Jurik scheme. The
authors claim that a rate-1 expansion factor is achievable asymptotically (for
very specific GSW parameters), as for the Dåmgard-Jurik cryptosystem the rate
log(µy)

log(µy+1) = 1− 1
y+1 approaches 1 as y grows. In this case, however the asymptotic

growth of y also increases the computational cost for running the scheme.
As in our work we are focused on TFHE ciphertexts compression, we can-

not use the proposed switching algorithm from [9] for GSW style schemes. We
introduce a TFHEtoLHE algorithm (Alg. 2) to pack several TLWE ciphertexts
in a LHE one (Section 5). In Alg. 2 we use an encryption of the TFHE secret
key under the target LHE and define, how to evaluate a linear part of TFHE
decryption to get a resulting ciphertext encrypted under the packed target LHE.
In our approach, we use a slot-by-slot packing approach i.e., Alg. 2 returns an
LHE encryption of m0 + e0|| . . . ||mn−1 + en−1. In Sect. 5 we carefully define a
slot size for TFHE ciphertexts packing. Additionally, we show that it is possible
to reduce the slot size by applying a lossy compression technique (Sect. 4.1) to
TFHE ciphertexts before switching to the target LHE. In our work we do not
limit ourselves to only Dåmgard-Jurik cryptosystem as a candidate LHE, but use
several other LHE schemes such as Paillier, EC ElGamal and a new compressed
variant BCP03. We provide clear dimensioning details about the maximum num-
ber of TFHE ciphertexts it is possible to switch and resulting expansion factors
for all the listed LHE schemes. We fix standard ciphertext space modulus for
each LHE. If we need to switch more TFHE ciphertexts than can be switched
into a single LHE ciphertext with a given ciphertext space modulus, we assume
switching to several LHE ciphertexts (i.e. we do not increase the ciphertext space
modulus to switch all TFHE ciphertexts into a single LHE ciphertext).

3.2 TLWE packing to one TRLWE

In this Section we discuss the well-known idea of packing (up to) N > n TLWE
samples into a single TRLWE sample in order to amortize the a vectors of
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TLWE samples. Doing that we would need to transmit just one a vector for
N TLWE samples rather then one a vector for each of N TLWE samples.
This TLWE samples packing technique is called TFHE Public Functional Key
Switching, which was introduced in [19]. We use the TFHE Public Functional
Key Switching with a function being an identity function (Alg. 1), which al-
lows to pack N TLWE samples by means of the Z−module isomorphism into
a single TRLWE sample whereby N TLWE messages m0, . . . ,mN−1 ∈ T 7→
m(X) =

∑N−1
i=0 miX

i ∈ TN [X].

Algorithm 1 TLWEtoTRLWE [19]

Input: p TLWE ciphertexts c(z) = (a(z), b(z)) ∈ TLWEs(mz), for z = 0, . . . , p − 1
and KSi,j ∈ TRLWES

(
si/B

j
KS

)
.

Output: a TRLWE sample C ∈ TRLWES(m0, . . . ,mp−1).
1: for i ∈ [0, n− 1] do
2: Let ai = a

(0)
i + a

(1)
i X + · · ·+ a

(p−1)
i Xp−1

3: Let âi be the closest multiple of 1/Btd
KS to ai, thus ∥âi − ai∥∞ < B

−(td+1)
KS

4: Let âi =
∑td

j=1 âi,j ·B−j
KS , where âi,j ∈ BN [X]

5: end for
6: return (0, . . . , b(0) + b(1)X + · · ·+ b(p−1)Xp−1)−

∑n−1
i=0

∑td
j=1 âi,j · KSi,j

Noise Analysis: Because additional noise increases the probability of er-
roneous decryption, it is important to characterize the noise variance σ2

pack in
a TRLWE sample obtained from TLWEtoTRLWE packing of N TLWE samples
with independant noises of variance bounded by σ2

BS. From [19], the error vari-
ance σ2

pack satisfies:

σ2
pack ≤ R2σ2

BS + ntdNσ2
TRLWE +

n

12
B−2td

KS , (4)

where R = 13 and σ2
TRLWE

4 is the variance of the error in the Key-switching key
(KS).

If K < N TLWE samples have to be transmitted, it is possible to pack
just K < N TLWE samples into a single TRLWE sample assuming a not-full
packing to avoid transmiting a part of resulting TRLWE sample coefficients. It
means that we “fill” the first K slots of TRLWE with TLWEs and keep N −K
slots empty. To transmit a not-fully packed TRLWE sample on the downlink,
we transmit a and the first K coefficients of b: b0, . . . , bK−1. To decrypt this
TRLWE sample, we perform a decryption of the first K slots of TRLWE:

3 We use the identity function f as a public R-Lipschitz morphism, thus R = 1.
4 Note that the keyswitch key KS is a fresh TRLWE sample hence, the variance of the

error in KS is σ2
TRLWE.



Downlink (T)FHE ciphertexts compression 11


b0
b1
...

bK−1

−


a0 −aN−1 . . . −a1
a1 a0 . . . −a2
...

...
. . .

...
aK−1 aK−2 . . . −aK




s0
s1
...

sN−1

 =


m0 + e0
m1 + e1

...
mK−1 + eK−1


Now, let’s compute the expansion factor for TLWEtoTRLWE packing in the

downlink case. Let a value r2 = ⌊K/N⌋ defines how many fully packed TRLWE
samples we get after packing K TLWE samples, and a value r1 = K mod N
defines how many TLWE samples are left to pack in a last not-fully packed
TRLWE sample. It means that we need to transmit r2 fully packed TRLWE
samples and one not-fully packed TRLWE sample with r1 (> 0) packed coeffi-
cients, then the size of the resulting ciphertexts is 2r2N log2 q + (N + r1) log2 q.
At the same time, the resulting ciphertexts encrypt r2N + r1 plaintext messages
of size log2 t; thus, for r1 > 0 the expansion factor is

(2r2N +N + r1) log2 q

(r2N + r1) log2 t
. (5)

and for r1 = 0

2 log2 q

log2 t
. (6)

Then, for example, for t = 2 and K = N = 1024 the expansion factor is 64.

3.3 Shrinking

The, so-called shrinking technique, first proposed in [9], allows for compressing
ciphertexts from a FHE scheme that supports linear decrypt-and-multiply, like
the GSW scheme [27]. It can also be applied directly to compress BFV-style ci-
phertexts as well as TRLWE ones. In a nutshell, given a TRLWE sample (a,b),
shrinking consists of computing two values, a ‘helper’ r ∈ Zq and a value w ∈ Zt

such that the decryption of the original ciphertext (which is not necessarily cor-
rect) can be recovered exactly5 from r and w (as well as, of course, the knowledge
of the secret key). Shrinking is interesting because a single helper value ‘r’ can
be used to cover the N LWE samples assembled in a RLWE ciphertext.

In a nutshell, shrinking works as follows. Let c = (a,b) be a TRLWE sample
we need to compress and let s be a TRLWE secret key. To shrink the TRLWE
sample we parse b = (b0, . . . , bN−1) ∈ ZN

q and compute the union of intervals
U ⊆ Zq, where B = σTLWE is a TLWE noise bound.

U =

N−1⋃
i=0

([
∆

2
− bi −B,

∆

2
− bi +B

]
∪
[
−∆

2
− bi −B,−∆

2
− bi +B

])
5 This is important for BFV-style schemes which tend to induce large noise variances

in evaluated ciphertexts.
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where ∆ = q/t. Then we pick any r ∈ Zq \ U and for i = [0, N − 1] compute
wi = ⌈bi+r⌋t, where ⌈x⌋t =

⌈
x · tq

⌋
mod t is a rounding function. The resulting

shrunk sample is c̃ = (r,a, w0, . . . , wN−1). This therefore leads to an overhead
of

(N + 1) log2 q +N log2 t

N log2 t
(7)

i.e., for N = 1024 (t = 2) it is ≈ 33 or for N = 2048 (t = 16) ≈ 9. If only K < N
LWE samples are to be transmitted (we assume not-full packing for TRLWE),
then, trivially from (7), the expansion factor is

(N + 1) log2 q +K log2 t

K log2 t
.

To decrypt the shrunk TRLWE sample on the downlink, we do the following:
we compute v = s · a and parse v = (v0, . . . , vN−1). For i ∈ [0, N − 1] we
then compute m′

i = (wi − ⌈vi⌋t) mod t and output m′ = (m′
0, . . . ,m

′
N−1). The

equivalence between this decryption function and the original one then follows
from Lemma 1 of [9]. For more details, we refer the reader to Appendix A.1.

Let us emphasize however that when used for compressing several TLWE
ciphertexts, Shrinking affects the probability of erroneous decryption as we can
apply Shrinking only to TRLWE ciphertexts. As discussed in the previous Sect.
packing several TLWE increases the noise deviation.

4 New compression building-blocks for evaluated TFHE
ciphertexts

4.1 ℓ-truncation

Now we turn our attention to a basic (lossy) compression technique which con-
sists in dropping least significant bits in LWE or RLWE pairs coefficients. The
main question is whether the additional noise that it finally induces may be
small enough to allow significant compression without prohibitively increasing
the probability for decryption errors to occur. The goal is then to carefully
choose the number of discarded bits in order to comply with a preset probability
of incorrect decryption, e.g., ϵ = 2−k for k = 40, 64 or 128.

On one hand, TLWE ℓ-truncation can be combined with the LHE switching
technique of Sect. 5 to increase the number of TLWE partial decryptions that
can be packed into a single LHE ciphertext. On the other hand, TRLWE ℓ-
truncation is useful as a stand-alone method: we can apply it after performing
TLWEtoTRLWE packing (Sect. 3.2) to reduce the size of the coefficient of a
TRLWE sample before transmission6.
6 It is worth mention that RLWE ℓ-truncation technique can be applied to BGV [11],

BFV [7, 25] and CKKS [17] RLWE ciphertexts. As these FHE cryptosystems use
composite ciphertext modulus, it is natural to think of reducing it via rescaling
before applying ℓ-truncation and sending the final result to the client. We leave this
idea as a perspective for future explorations.
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We first study how ℓ-truncation may be applied to a TLWE ciphertext.

4.2 TLWE ℓ-truncation

Let c = (a0, . . . , an−1, b = an) denotes a TLWE encryption of m. Given ℓ <
⌈log2(q)⌉, we define the following three operations:

– PartialDec(c, s): return an − ⟨a, s⟩ = ∆m+ e, with ∆ = q
t .

– Trunc(c, ℓ): compute a′i =
⌊
ai

2ℓ

⌋
for i ∈ {0, ..., n} and return c′ = (a′0, . . . , a

′
n).

– Rescale(c′, ℓ): compute a′′i = 2ℓa′i, for i ∈ {0, ..., n} and return c′′ = (a′′0 , . . . , a
′′
n).

From these definitions, it follows that when c is a TLWE encryption of m with
noise e (i.e. PartialDec(c, s) = ∆m+ e), then c′′ is an encryption of m with noise

e′′ = e−
n−1∑
i=0

e′′i si + e′′n (8)

where e′′i = −(ai mod 2ℓ).
Now, given a preset probability of decryption error ϵ = 2−k and a noise

variance σ for e, we would like to be able to choose ℓ such that an ℓ-truncated
ciphertext decrypts correctly with probability at least 1 − ϵ, i.e. following Eq.
(8)

Pr

(
|e′′| < ∆

2

)
≥ 1− ϵ.

We then have the following proposition which provides us with a first lower
bound for the choice of ℓ.

Proposition 1. Let c denote a TLWE encryption of m subject to a centered
Gaussian noise e with variance σ2 and let

c′ = Trunc(c, ℓ0)

with

ℓ0 ≤
⌊
log2

(
1

n+ 1

(
∆

2
− σ

√
2k log 2

)
+ 1

)⌋
. (9)

Then,
⌈

1
∆PartialDec(Rescale(c′, ℓ0), s))

⌋
= m with probability at least 1− 2−k.

Proof. Let us start by bounding the probability that c′′ = Rescale(c′, ℓ) incor-
rectly decrypts, i.e., following (8), that

Pr

(
|e′′| ≥ ∆

2

)
= Pr

(∣∣∣∣∣e−
n−1∑
i=0

e′′i si + e′′n

∣∣∣∣∣ ≥ ∆

2

)
,

≤ Pr

(
|e| ≥ ∆

2
− (n+ 1)(2ℓ − 1)

)
,



14 A. Bondarchuk et al.

as, by definition, |e′′i | ≤ 2ℓ − 1. Assuming e follows a (centered) Gaussian distri-
bution of variance σ2, the Chernoff bound7 tells us that

Pr

(
|e′′| ≥ ∆

2

)
≤ e−

(∆
2

−(n+1)(2ℓ−1))
2

2σ2 .

Which, letting

e−
(∆

2
−(n+1)(2ℓ−1))

2

2σ2 = 2−k,

leads to,

2ℓ =
1

n+ 1

(
∆

2
− σ

√
2k log 2

)
+ 1,

hence the claim. ⊓⊔

In general, we use this proposition for evaluated ciphertext taking σ2 as the
post-bootstrapping variance σ2

BS. To give an intuition, with our running TFHE
parameter example (Table 1), for ϵ = 2−40, Prop. 1 leads to ℓ0 = 19 meaning a
ciphertext size reduction of around 60%.

Although it does not gives us a closed-form formula for ℓ, the following propo-
sition is a bit more precise than Prop. 1.

Proposition 2. Let c denote a TLWE encryption of m subject to a centered
Gaussian noise e with variance σ2 and let

c′ = Trunc(c, ℓ)

then
⌈

1
∆PartialDec(Rescale(c′, ℓ0), s))

⌋
= m with probability at least

1− exp

(
−
(
∆
2 −

1
2 (n− 1)(2ℓ − 1)

)2
2
(
σ2 + 1

12 (n+ 1)(22ℓ − 1)
)) .

Proof. Recall Eq. (8), we have

e′′ = e+

n−1∑
i=0

(ai mod 2ℓ)︸ ︷︷ ︸
−e′′i

si − (an mod 2ℓ)︸ ︷︷ ︸
−e′′n

.

Under the assumption than q is a power of 2, ai mod 2ℓ (i ∈ {0, ..., n − 1}) is
uniformly distributed over {0, ..., 2ℓ − 1} as the associated ai’s are uniformly
distributed in Zq. Additionally, an mod 2ℓ is also uniformly distributed over
{0, ..., 2ℓ − 1} as, following the LWE assumption, b = an is indistinguishable
from a uniform deviate over Zq. Let n′ =

∑
i si, from the CLT, we can thus

assume that e′′ follows a Gaussian distribution with expectation

E[e′′] =
1

2
(n′ − 1)(2ℓ − 1) ≤ 1

2
(n− 1)(2ℓ − 1),

7 Recall that for a (centered) Gaussian deviates, the Chernoff bound is such that

P (|X| ≥ α) ≤ e
− α2

2σ2 .
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and variance8

V [e′′] = σ2 +
1

12
(n′ + 1)(22ℓ − 1) ≤ σ2 +

1

12
(n+ 1)(22ℓ − 1).

The claim follows from applying the Chernoff bound9 to Pr
(
|e′′| ≥ ∆

2

)
. ⊓⊔

Using the latter Proposition in conjunction with Prop. 1 usually allows to slightly
increase the number of bits that may be dropped off. For example, as discussed
just above, with our running TFHE parameter set example, Prop. 1 tells that
for ϵ = 2−40, l0 = 19. Prop. 2 however tells us that the probability of decryption
error is bounded by 22

−117.50

for that value (part of that gap is explained by the
ceiling that occur in (9), as we can only drop a integer number of bits). Then,
if we choose ℓ = 20, the bound drops to 2−83.21, still above our 2−40 target. As
this is the cutoff value, we can finally settle on ℓ = 20 meaning a ciphertext size
reduction of 62.5%. Overall, the expansion factor goes from 8816 down to 3306,
i.e. is reduced by a factor of 2.66.

As we shall later see, ℓ-truncation can be further combined with other meth-
ods to improve their compression rate. This is so because the phase computation
(1) can be performed over c′ rather than c′′ and as such, less bit is required to
represent the phase of c′ than that of c (still with some control kept on the
probability of erroneous decryption).

4.3 TRLWE ℓ-truncation

ℓ-truncation can equally be applied to TRLWE ciphertext, by dropping ℓ least
bits on all the coefficients of the b polynomial. Because, this is very similar to
the TLWE case, we do not provide further details. For TRLWE, we also have
the analogous of Proposition 1 with Eq. (9) replaced by (recall from Sect. 3.2
that, by default, we pack N n-dimensional TLWE samples in a single degree-N
TRLWE)

ℓ0 ≤
⌊
log2

(
1

n+ 1

(
∆

2
−
√
−2σ2 log(1− N

√
1− 2−k)

)
+ 1

)⌋
. (10)

which provides the guarantees that

Pr

(
||e′′||∞ ≥

∆

2

)
≤ 2−k.

However, let us emphasize that the above equation bounds the probability that
an ℓ0-truncated TRLWE ciphertext decrypts incorrectly meaning that a decryp-
tion error occurs in at least one slot of the message polynomial. Since the present
8 Recall that the variance of the discrete uniform distribution over {a, ..., b} is 1

12
((b−

a+ 1)2 − 1), leading to 1
12
(22l − 1) when a = 0 and b = 2ℓ − 1.

9 For a Gaussian deviate of expectation µ ≥ 0 and variance σ2, it holds that P (|X| ≥

α) ≤ e
− (α−µ)2

2σ2 . Furthermore, for µ′ ≥ µ and σ′ ≥ σ, e−
(α−µ)2

2σ2 ≤ e
− (α−µ′)2

2σ′2 .
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work is focusing on TFHE and is therefore TLWE-centric, we are only using
TRLWE ciphertexts as a mean to more efficiently transmit TLWE ciphertexts
and, in fine, it is the decryption error probability of these TLWE ciphertexts
which is important to us. So despite of the fact that we may use TRLWE cipher-
texts for transmission, we stick to the tools provided in the previous section in
the sequel.

However, in using Prop. 1 and 2 to choose the number of bits that can be
dropped from coefficients of a TLWE pair embedded in a TRLWE ciphertext,
we have to take into account the extra variance induced by packing following
Eq. (4). Then with our running TFHE parameter set example, Prop. 1 tells that
for ϵ = 2−40, l0 = 19. Prop. 2 however tells us that the probability of decryption
error is bounded by 2−101.98 for that value. Then, if we choose ℓ = 20, the bound
drops to 2−72.29, still above our 2−40 target. As this is the cutoff value, we can
finally settle on ℓ = 20 (as in the previous Sect. meaning that TRLWE packing
does not affect how much we can truncate in the present setting). Assuming one
fully packed TRLWE, we get a ciphertext size reduction of 56.25%. Overall, the
expansion factor goes from 64 (Sect. 3.2) down to 24, i.e. is reduced by a factor
of 2.66.

4.4 Compressed Paillier-ElGamal (CPG)

In this section, we recall a standard variant of the BCP encryption scheme,
which is commonly called Paillier-ElGamal [33, 37] and features smaller cipher-
text compared to the traditional BCP encryption scheme (3 logµ bits versus
4 logµ). Then, we show that this variants additionally supports an efficient com-
pression procedure, that allows to further reduce its ciphertext size down to
logµ + |m|, where |m| denotes the bitlength of the encrypted message m. This
compression procedure is incompatible with the homomorphic features of the
scheme, but can be used once all homomorphic operations have been computed,
before sending the final ciphertext to the owner of the secret key.

A variant of BCP with shorter ciphertexts. The following variant of BCP
is well-known and has roots in [21,22]. It builds upon the fact that

– KeyGen: Let µ = pq be an RSA modulus. Choose a random α ∈ Z∗
µ2 , a ran-

dom value d ∈ [1, ord(G)]. Set g = α2 mod µ and h = gµ·d mod µ2. Return
a public key pk = (µ, g, h) and a secret key sk = d.

– Enc: For a given message m ∈ Zµ, a random pad r
$←− Zµ2 return a ciphertext

c = (c0, c1) such that c0 = gr mod µ, c1 = hr(1 + µ)m mod µ2.

– Dec: Compute c = c1(c0)
−µ·d mod µ2 and return m = c−1

µ .

We make a few remarks on the above scheme. Compared with BCP, h is now
computed as a µ-th power. This implies that c1 = hr(1 + µ)m = (grd)µ(1 +
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µ)m mod µ2 (without the component c0) is actually a valid Paillier encryption
of m. Second, the component c0 is now given modulo µ, reducing the ciphertext
size by 25%. This is without loss of security, as one can easily check that [gr mod
µ]µ = gµr mod µ2.

Eventually, security-wise, the scheme can be proven IND-CPA secure under
the DCR assumption, hence it achieves identical security guarantees compared to
Paillier. This follows from a sequence of straightforward game hops. We believe
this proof to be essentially folklore. However, to our knowledge it has not been
explicitely described anywhere, and we include it for convenience:

– Hybrid 1: replace h = gµd mod µ2 with a uniformly random h
$←− Z∗

µ2 .
Under the DCR assumption, this hybrid is indistinguishable from the real
key generation algorithm.

– Hybrid 2: replace α with a random µ-th power α ← βµ mod µ2 for β
$←−

Zµ2 , and g ← α2 mod µ2. Under the DCR assumption, this hybrid is indis-
tinguishable from the previous one.

Then, observe that in Hybrid 2, the message m is statistically hidden given
a ciphertext (c0, c1). Indeed, the uniform distribution over Zµ2 is statistically
close to the uniform distribution over Zµ·ϕ(µ), because µ − ϕ(µ) = p + q − 1 is
of the order of √µ. By the chinese remainder theorem, as µ is coprime to ϕ(µ),
Zµ·ϕ(µ) is isomorphic to Zµ×Zϕ(µ). Write h = (1+n)agb mod µ2 for some (a, b)
(all elements admit such a decomposition), where a ̸= 0 and is coprime to µ
with overwhelming probability. Then, observe that since g generates a subgroup
of order ϕ(µ)/4, the ciphertext c0 leaks only the value r0 = [r mod ϕ(µ)/4]. In
contrast, c1 = hr(1+µ)m = (1+µ)ar1+m mod µgbr0 mod ϕ(µ)/4 mod µ2, where r1 =
[r mod µ] is statistically indistinguishable from random given r0 (by coprimality
of µ and ϕ(µ)). Hence, the value ar1 + m mod µ statistically hides m. This
concludes the proof.

In the following, in line with previous works, we call the above scheme Paillier-
ElGamal.

Distributed discrete logarithm. The scheme above enjoys shorter cipher-
texts than BCP, but still larger than Paillier (3 logµ versus 2 logµ). In this sec-
tion, we recall the distributed discrete logarithm procedure introduced in [33,37].
At a high level, this procedure allows two parties, given divisive shares of (1 +
µ)m mod µ2 over Z∗

µ2 , to non-interactively derive substractive shares of m over
Zµ. We outline the procedure DDLogµ below.

Input. An element u ∈ Z∗
µ2 .

Output. A value v ∈ Zµ.
Procedure. Write u = u0+µ ·u1, where u0, u1 ∈ Zµ denote the base-µ decom-

position of u. Return v = u1/u0 mod µ.

We now explain why this procedure has the intented behavior. Let u, u′

denote two divisive shares over Z∗
µ2 of (1+µ)m mod µ2; that is, u′/u = (1+µ)m =
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1 + µm mod µ2. Writing u = u0 + µ · u1 and u′ = u′
0 + µ · u′

1, we obtain

u′
0 + µ · u′

1 = (u0 + µ · u1) · (1 + µ ·m) mod µ2.

The above equation yields u0 = u′
0 mod µ and u′

1 = u1+u0m mod µ. Therefore,
m = u′

1/u
′
0− u1/u0 mod µ: u′

1/u
′
0 and u1/u0 form substractive shares of m over

Zµ, as intended.

Compressing ciphertexts via DDLogµ. The distributed discrete logarithm
procedure implies a simple and efficient compression mechanisms for Paillier-
ElGamal. The key observation is that given c0 = gr mod µ, the holder of the
secret key d can locally compute u = cµ·d0 = hr mod µ2. Then, u and c1 form
divisive shares of c1/u = (1+µm) mod µ2. This immediatly yields the following
compression mechanism:

– Compress(c0, c1): run v′ ← DDLogµ(c1). Output (c0, v
′).

– Dec′(c0, v
′): compute u ← cµ·d0 mod µ2 and v ← DDLogµ(u). Output m =

v′ − v mod µ.

The resulting compressed ciphertext size is 2 logµ, down from 3 logµ, matching
the size of a standard Paillier ciphertext. However, if m is known to be smaller
than a bound B < µ/2λ (where λ denotes a statistical security parameter), we
can do better. The main observation (which is not new, the same observation was
used in [33, 37]) is that with overwhelming probability, v′, v form substractive
shares of m over the integers. This stems from the following facts:

– Over the randomness of r, the value v′ = DDLogµ(c1) = DDLog(hr · (1 +
µm) mod µ2) is uniformly distributed over Zµ.

– Then, if m ≤ B, the probability that v′ −m causes a wrapperound modulo
µ is at at most B/µ ≤ 1/2λ, hence v′ − v = m over the integers.

This observation allows to further reduce the compressed ciphertext size by
reducing v′ modulo B:

– Compress(c0, c1): run v′ ← DDLogµ(c1) and set v′′ ← [v′ mod B]. Output
(c0, v

′′).
– Dec′(c0, v

′): compute u ← cµ·d0 mod µ2 and v ← DDLogµ(u). Output m =
v′′ − v mod B.

With this last optimization, the ciphertext size went down to logµ + logB
bits. When B is small (e.g. B ≈ 240 as in our application), this yields an almost
twofold size improvement over a standard Paillier encryption.

We note that a similar procedure has been previously described in the context
of ElGamal encryption [8]. The Paillier-ElGamal variant which we outline here
has the advantage of being extremely efficient, as compression amounts only to
an inversion and a product modulo µ followed by a modular reduction.
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5 Switching to LHE

In this section, we investigate several approaches to switch from TLWE homo-
morphic ciphertexts to (more compact) linearly homomorphic ones by executing
the linear part of the (T)LWE decryption function, b − ⟨a, s⟩ (recall Eq. (1)),
under the target linearly homomorphic scheme. As a result of this operation,
we obtain encryptions of partial decryptions of TFHE ciphertexts, under the
target LHE. We consider several candidate LHE cryptosystems such as Paillier,
Dåmgard-Jurik, EC ElGamal and our compressed variant of BCP03 (Sect. 4.4).
When the properties of the LHE allows it, we also consider packing the partial
decryptions of several TFHE ciphertexts in a single LHE ciphertext, in order to
achieve better transmission efficiency when several evaluated TFHE ciphertexts
have to be transmitted. To reduce the number of bits needed to encode a par-
tial decryption (and hence be able to pack more partial decryptions per LHE
ciphertext) we also investigate the use of this technique in conjunction to the
ℓ-truncation technique which we introduced in Sect. 4.1.

Overall, the most appropriate choice for the LHE depends on several factors
such as its plaintext/ciphertext ratio size, how many partial decryptions can be
packed in its plaintexts and the conditions under which it can decrypt efficiently
(as some LHE require solving a discrete log in their decryption function). Because
of all these degrees of freedom, some LHE are more appropriate than others for
the purpose of transmitting a given number of evaluated TFHE ciphertexts.

5.1 A generic switching algorithm

Let EH denote an instance of TFHE, and EL a target LHE. Let µ denote the
plaintext modulus of EL and v denote the number of bits necessary to represent
a partial decryption (because µ is generally much greater than q, the partial
decryptions are not computed modulo q and we have to cope for the carries
occurring in their computation). Then up to

M =

⌊
⌊log2 µ⌋

v

⌋
(11)

partial decryptions can be packed into a single LHE ciphertext. Switching then
works as follows. Let s ∈ Bn denote EH ’s secret key and let

c(i)s = EL.Enc(si),

for i ∈ {0, ..., n− 1} denote encryptions of its coefficients under EL. We further
denotes by (a(j), b(j)), j ∈ {0, ...,M − 1}, the M TLWE pairs that we wish to
convert. The conversion algorithm then start with ciphertext

c = EL.Enc(0).

For i = 0 to n− 1, we then perform,

c := c⊕

−M−1∑
j=0

2jva
(j)
i

⊙ c(i)s
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where ⊕ and ⊙ respectively denote the addition and the multiplication-by-a-
constant operator of EL (remark that −

∑M−1
j=0 2jva

(j)
i lives in the clear domain

of EL). Lastly, switching is finalized by doing10

c := c⊕ EL.Enc

M−1∑
j=0

2jvb(j)

 . (12)

Algorithm 2 summarizes the above. As such, the algorithm terminates with
an encryption of

∑M−1
j=0 2jv

(
b(j) − ⟨a(j), s⟩

)
but without the modulo q which is

implicit in Eq. (1). After LHE decryption, one may recover the j-th partial
decryption by doing

φ(j) =

(⌊
EL.Dec(c)

2jv

⌋
mod 2v

)
mod q, (13)

and decryption is finalized using Eq. (3). Lastly, (13) has to be slightly modified
as follows when ℓ-truncation is applied,

φ(j) = 2ℓ
(⌊
EL.Dec(c)

2jv′

⌋
mod 2v

′
)

mod q,

where v′ < v is used instead of v in Algorithm 2.

Algorithm 2 TLWEtoLHE

Input: Encryptions of EH ’s secret key coefficients under EL, c
(i)
s = EL.Enc(si), M

TLWE pairs (a(j), b(j)).
Output: c ∈ EL.C such that c is an encryption of

∑M−1
j=0 2jv

(
bj − ⟨aj , s⟩

)
.

1: c = EL.Enc(0)
2: for i = 0, i < n, i++ do,
3: c := c⊕

(
−
∑M−1

j=0 2jva
(j)
i

)
⊙ c

(i)
s ,

4: end for
5: return c := c⊕ EL.Enc

(∑M−1
j=0 2jvb(j)

)
.

Considering our running TFHE parameters example of Table 1, with q = 232

we need v = 42 bits11 to be able represent a partial decryption prior to its
reduction modulo q. This number goes down to 22 bits, if we apply ℓ-truncation
as proposed in Sect. 4.2 and drop 20 least significant bits in the coefficients of
the LWE pairs prior to switching them (leading to a probability of erroneous
decryption of 2−40). We will use these numbers for illustration purpose in the
next subsections.
10 When the target LHE provides an addition-by-a-constant operator, the latter can

be used in Eq. (12) instead of invoking the encryption function of the scheme.
11 As we have to sum n+1 numbers (uniformly distributed) in {0, ..., q}, in the worst-

case, we get (n + 1)q which is requires ⌈log2(n + 1) + log2 q⌉ bits. With n between
512 and 1024 and q = 232, 42 bits are conservatively required.
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5.2 Switching to Paillier

Recall Sect. 2.3. As the Paillier scheme has respective plaintext and ciphertext
domains Zµ and Zµ2 where µ is a RSA modulus. Following the previous Sect. we
can pack up to M =

⌊
⌊log2 µ⌋

v

⌋
partial decryption in a single Paillier ciphertext.

Let K denote a number of partial decryptions that need to be transmitted and let
r1 = K mod M and r2 = ⌊K/M⌋, then we have to pack these partial decryptions
M -by-M (using Algorithm 2) using r2 Paillier ciphertexts when r1 = 0 or r2+1
such ciphertexts otherwise. When r1 = 0 the expansion factor is then

⌈2 log2 µ⌉
M log2 t

(14)

(this is also the asymptotic expansion factor when K →∞) and, otherwise, the
expansion factor is given by

(r2 + 1)⌈2 log2 µ⌉
K log2 t

.

Considering an RSA modulus on 2048 bits (the usual recommendation to achieve
128 bits security) and our running example of TFHE parameters (Table 1), we
can pack around 2048/42 ≈ 48 TLWE partial decryptions per Paillier cipher-
text. For K ≤ 48 we then get an expansion factor of 4096/K, i.e. 4096 for K = 1
and around 85 for K = 48 (which is also the asymptotic expension factor). If we
apply, ℓ-truncation then we can now pack around 2048/22 ≈ 93 partial decryp-
tions in a single Paillier ciphertext. For K ≤ 93 we obtain an expansion factor
between 4096 (K = 1) and 44 (K = 93), this later also being the asymptotic
expansion factor. Keep in mind that these latter numbers must be compared with
the raw expansion factor of 32800 induced by TLWE ciphertexts: for K = 93
(with ℓ-truncation) the expansion thus becomes 745 times smaller. We explore
more TFHE parameters in Sect. 6.

5.3 Switching to Dåmgard-Jurik

As an alternative to Paillier (and as initially considered in [9]), we may consider
using the Damgård-Jurik scheme (recall definition in Sect. 2.3) which generalizes
the former scheme with Zµy and Zµy+1 (y > 1) respectively as plaintext and
ciphertext domains. Because the plaintext modulus is larger than for Paillier, it
is possible to pack more TLWE partial decryptions into a single Dåmgard-Jurik
ciphertext. Indeed, following Sect. 5.1 we can now pack up to M =

⌊
⌊y log2 µ⌋

v

⌋
partial decryption in a single Dåmgard-Jurik ciphertext. As in the previous Sect.,
let K denote the number of partial decryptions that need to be transmitted and
let r1 = K mod M as well as r2 = ⌊K/M⌋, then we have to pack these partial
decryptions M -by-M (using Algorithm 2) using r2 Dåmgard-Jurik ciphertexts
when r1 = 0 or r2 + 1 such ciphertexts otherwise. When r1 = 0 the expansion
factor is then

⌈(y + 1) log2 µ⌉
M log2 t

(15)
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(for a fixed y, this is also the asymptotic expansion factor when K → ∞) and,
otherwise, the expansion factor is given by

(r2 + 1)⌈(y + 1) log2 µ⌉
K log2 t

.

Interestingly, Dåmgard-Jurik asymptotically achieves the lowest expansion fac-
tor when both K and y increase to ∞. Indeed, (15) can be approximated by
v(y+1) log2 µ
y log2 µ log2 t = v(y+1)

y log2 t leading to

lim
y→∞

v(y + 1)

y log2 t
=

v

log2 t
,

which is the optimal rate achievable with the LHE switching technique.
Returning to our favorite running TFHE parameter example and considering,

as for Paillier, a 2048 bit RSA modulus with y = 2, we can pack up to M =
4096/42 ≈ 97 TLWE partial decryptions in a single Dåmgard-Jurik ciphertext.
Then for K = 97 we illustratively obtain an expansion factor of around 63, this
is also the asymptotic expansion factor (for fixed y = 2) which can then be
compared with the value 85 obtained for Paillier. Lastly, putting ℓ-truncation
into the picture, leads to M = 4096/22 ≈ 186 and an asymptotic expansion
factor (again for fixed y = 2) of around 33. We compare the different methods
and explore more TFHE parameters in Sect. 6.

5.4 Switching to compressed Paillier-ElGamal

We now consider packing TLWE partial decryptions within ciphertexts of the
compressed Paillier-ElGamal (CPG) scheme that we introduced in Sect. 4.4.
As for Paillier (and Dåmgard-Jurik), this scheme has a plaintext modulus µ.
However, the size of a ciphertext with an l-bits payload (l ≤ log2(µ)) is only
l + ⌈log2 µ⌉. As a consequence, this scheme is best used when small numbers of
TLWE partial decryptions have to be transmitted. As in the Paillier case, we
can pack up to M =

⌊
⌊log2 µ⌋

v

⌋
partial decryption in a single CPG ciphertext

and the two schemes achieve the same asymptotic expansion factor. However,
when we wish to pack only K ≤M partial decryptions in a CPG ciphertext, the
resulting expansion factor is

Kv + ⌈log2 µ⌉
K log2 t

compared to the Paillier case which, recall Eq. (14), gives 2 log2 µ
K log2 t .

Returning again to our running TFHE parameters example of Table 1 (and
reusing the numbers from the end of Sect. 5.2) we can pack up to 48 (w/o
ℓ-truncation) or 93 (with ℓ-truncation) partial decryptions in a a single CPG
ciphertext. Without ℓ-truncation, for K = 5, 10, 40 we then obtain respective
expansion factors of 451, 246 and 93 (versus 819, 409 and 102 for Paillier). With
ℓ-truncation into the picture, again for K = 5, 10, 40, we respectively end up
with 431, 226 and 73 (also versus 819, 409 and 102 for Paillier). More comparison
are provided in Sect. 6 on various parameter sets.
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5.5 Switching to EC ElGamal

For completeness, we also briefly consider packing partial decryptions in EC El-
Gamal ciphertexts (recall the definition. in Sect. 2.3). This scheme is the most
compact that we consider in this work but this compacity comes with the price of
having to solve a discrete logarithm in the scheme decryption function. As such,
we can only use it to encrypt small payloads (say, with a length of around or
slightly above 40 bits). As a consequence, it is not possible to pack many TLWE
partial decryptions in an EC ElGamal ciphertext and this reduces its applicabil-
ity to settings when no more than one or two evaluated TLWE ciphertexts have
to be transmitted (using ℓ-truncation to decrease the number of bits needed to
represent their partial decryptions). Still, in such cases, it is competitive with
other approaches (transferring only one TLWE ciphertext always leads the worst
expansion factor as the size of the LHE ciphertext is not amortized).

Indeed, when a single TLWE ciphertext (a, b) has to be transmitted, switch-
ing to EC (exponential) ElGamal by executing b−⟨a, s⟩ over that cryptosystem
will lead to a ciphertext of size around log2 ω bits. Thus leading an expansion
factor of

⌈log2 ω⌉
K log2(t)

(16)

For our favorite running TFHE parameters example, with t = 2 and K = 1 we
thus get 512 (which is the smallest expansion factor we obtain when transferring
a single TLWE partial decryption, all the others LHE being in the thousands
in that case). If we apply ℓ-truncation we can either accelerate the decryption
function (only a discrete log with an upper bound of 22 bits then needs to be
solved) or attempts to pack two partial decryptions (needing 44 bits in total) in
a single ciphertext. In that latter case, the expansion factor gets down to 256.

6 Experimental results and comparisons

6.1 TFHE parameters

In our experimental analysis, we consider the two TFHE parameter sets given
in Table 3. The first set is identical to the running example we have used so far
for illustrative purpose. This first parameter set is consistent with the “standard
TFHE gate bootstrapping” approach where TFHE is configured for performing
operations over binary plaintexts (i.e. t = 2). This first parameter set achieves
an error probability for bootstrapping of 2−154. Our second parameter set is for
t = 16 meaning that TFHE ciphertexts now have a 4-bits payload. This set
is the most interesting because, as we shall see, the increased payload length
will consistently lead to the smallest expansion factors in our experiments. Fur-
thermore, several recent works, notably [38, 39], hint that t = 16 may achieve
an optimal tradeoff between the bootstrapping time (which increases with t)
and the number of operations (which decreases with t) required when executing
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(useful) algorithms over TFHE. However, for t = 16, the bootstrapping error
probability is increased to 2−46 and cannot be significantly lowered unless one is
willing to increase q to 264 (and also mechanically increase n). We do not con-
sider this latter option as it would result in a large performance hit for the FHE
calculation themselves. Our two parameter sets achieve 128-bits security accord-
ing to the lattice-estimator and have been obtained following the methodology
in [20].

Note that, since we have used our parameter set for the case where t = 2 has
a running example throughout the paper, the present section focuses essentially
on the case where t = 16.

t q n N l td Bg BKS σTLWE σTRLWE

2 232 550 1024 2 1 256 1024 q · 2.82× 10−4 q · 5.6× 10−8

16 232 750 2048 2 2 1024 1024 q · 7.7× 10−6 q · 9.6× 10−11

t σBR σKS σBS σpack

2 q · 1.12× 10−2 q · 1.27× 10−2 q · 1.69× 10−2 q · 1.81× 10−2

16 q · 3.62× 10−4 q · 4.92× 10−4 q · 6.1082× 10−4 q · 6.1087× 10−4

Table 3: Our TFHE parameter sets for t = 2 (binary ciphertext payload) and
16 (4-bits payloads). The full set of parameters is provided for completion and
reproductibility of our results but we do not detail the meaning of them all. As of
the second of the above tables, it provides the post-bootstrapping noise standard
deviation σBS (which characterize the noise present in evaluated ciphertexts) and
the post-packing standard deviation (obtained after packing N , n-dimensionnal
evaluated TLWE ciphertexts, hence with a noise deviation of σBS, in a single
degree-N TRLWE ciphertext). The other two deviation are post Blind Rotation
(BR) and post KeySwitch (KS) but we did not need to detail these operations
in this paper.

6.2 Relationship between ℓ and k

Recall Eq. (9) on page 13 which tells the number of bits ℓ that we can drop in
the coefficients of a TLWE pair in function of a target probability of decryption
error 2−k. Since ℓ is influenced by log2 k and because a flooring occurs in the
formula (as only an integer number of bits can be dropped) we can expect that
a given choice for ℓ covers a wide range of decryption error probabilities.

We illustrate this in Tables 4 (for TLWE ℓ-truncation) and 5 (for TRLWE
ℓ-truncation). These tables also show that in both cases, ℓ-truncation does not
prevent to achieve a negl(λ) probability of erroneous decryption although of
course less bits have to be dropped than for larger probabilities of error. Fol-
lowing the discussion in Sect. 6.1 the probability of bootstrapping error has to
be set consistently with the probability of erroneous decryption induced by ℓ-
truncation. For example, since our parameter set for t = 2 induces a probability
of bootstrapping error of 2−154, Table 4 tells us that we can drop up to 18 bits



Downlink (T)FHE ciphertexts compression 25

per coefficients and still achieve an overall probability of erroneous decryption
less than 2−128, i.e. FHE correctness with overwhelming probability12.

ϵ 2−40 2−64 2−128

t 2

log2

(
1

n+1

(
∆
2
− σ

√
2k log 2

)
+ 1

)
19.881411 19.428192 17.539266

ℓ (from Prop. 2) 20 20 18

t 16

log2

(
1

n+1

(
∆
2
− σ

√
2k log 2

)
+ 1

)
17.220401 17.153781 17.012206

ℓ (from Prop. 2) 18 18 17

Table 4: Maximum value for ℓ when ℓ-truncating an evaluated (i.e bootstrapped)
TLWE ciphertext, for t = 2, 16 and several values for the probability of erroneous
decryption ϵ.

ϵ 2−40 2−64 2−128

t 2

log2

(
1

n+1

(
∆
2
− σ

√
2k log 2

)
+ 1

)
19.769217 19.227989 15.901458

ℓ (from Prop. 2) 20 20 16

t 16

log2

(
1

n+1

(
∆
2
− σ

√
2k log 2

)
+ 1

)
17.220382 17.153756 17.012168

ℓ (from Prop. 2) 18 18 17

Table 5: Maximum value for ℓ when ℓ-truncating a degree-N TRLWE ciphertext
in which N n-dimensional evaluated TLWE ciphertexts have been packed, for
t = 2, 16 and several values for the probability of erroneous decryption ϵ.

6.3 Expansion factors

We now turn our attention to the expansion factor metric. First, Tables 6 and 7
summarize the expansion factor formulas respectively for the TLWE/TRLWE-
based compression techniques and the LHE-based ones. All there formulas can
be found in the respective sections describing these methods.

Figure 3 provide a comparison between the expansion factor obtained by the
different methods for t = 16 in function of K, the number of evaluated TLWE
ciphertexts that have to be transmitted. Additionally, Figure 4 provides a more
focused view of the same for the smaller values K ≤ 300. Complementarily,
Table 8 provides a some of the numbers behind these two Figures.
12 This remark is important has ensuring correctness is a natural countermeasures

against the recent CPAD attacks against TFHE and other schemes [15,16].
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Fig. 3: Comparison of expansion factors for the downlink ciphertext compression
methods studied in this paper (t = 16).

Fig. 4: Comparison of expansion factors for the downlink ciphertext compression
methods studied in this paper for K ≤ 300 (t = 16).
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Method Exp. factor

TLWE (n+1) log2 q

log2 t

TLWE ℓ-truncation (n+1)(log2 q−ℓ)

log2 t

Shrinking (N+1) log2 q+K log2 t

K log2 t

TLWEtoTRLWE (2r2N+N+r1) log2 q

K log2 t

TLWEtoTRLWE + ℓ-truncation (2r2N+N+r1)(log2 q−ℓ)

K log2 t

Table 6: Expansion factor formula for the different methods based on
TLWE/TRLWE when K evaluated TLWE ciphertexts have to be transmitted
on the downlink. For RLWE-based methods, r1 = K mod N and r2 = ⌊K/N⌋
when the K n-dimensionnal TLWE are packed N -by-N in degree-N TRLWE
ciphertexts.

Overall, again for t = 16, when K = 1 or 2, EC ElGamal achieves the smallest
expansion factors (128 and 64 respectively). In the range 2 ≤ K ≤ 80, the lowest
expansion factor is achieved by performing ℓ-truncation and then switching to
CPG (achieving for example an expansion factor of around 16 for K = 50). Up
to K ≤ 1000, Dåmgard-Jurik (with y = 2) leads the lowest factors, achieving
for example an expansion factor of around 12 and 9 respectively for K = 250
and 500. For K ≥ 1000, TRLWE packing followed by ℓ-truncation becomes the
best option and leads to an expansion factor of around 7. This is summarized
in Table 9. As discussed in Sect. 5.3, if we forget practicality for a moment
and let the y parameter of Dåmgard-Jurik increase and apply ℓ-truncation with
ℓ = 18 (Table 4), we will eventually achieve the smallest possible expansion
factor of 32−18

4 = 3.5. As already emphasized, all these expansion factors must
be compared to the raw expansion factor of 32800 induced by TLWE ciphertexts.

6.4 Remarks on timings

From a timing perspective we give only a few illustrative numbers. For exam-
ple, packing 1024 550-TLWE ciphertexts (t = 2) into a single TRLWE ciphertext
takes 0.4 secs when implemented by means of TFHELib. For comparison, switch-
ing 93 20-truncated partial decryptions (t = 2) to a Paillier ciphertext with a
20248 bits RSA modulus takes 2.46 secs with a custom C++ Paillier implemen-
tation on a single core. Although we do not report timings for all the LHE we
have considered in this paper, these numbers hint that our downlink compres-
sion techniques are competitive to the transciphering techniques that are used
(and applicable only) on the uplink. As a matter of example, the most optimized
implementation of AES over TFHE still run in around 1 minute.



28 A. Bondarchuk et al.

Compression method M Exp. factor

Paillier (w. packing)
⌊

⌊log2 µ⌋
v

⌋
(r2+1)⌈2 log2 µ⌉

K log2 t

ℓ-truncation + Paillier (w. packing)
⌊

⌊log2 µ⌋
v−ℓ

⌋
Dåmgard-Jurik (w. packing)

⌊
⌊y log2 µ⌋

v

⌋
(r2+1)⌈(y+1) log2 µ⌉

K log2 t

ℓ-truncation + D.-J. (w. packing)
⌊

⌊y log2 µ⌋
v−ℓ

⌋
CPG (w. packing)

⌊
⌊log2 µ⌋

v

⌋
Kv+(r2+1)⌈log2 µ⌉

K log2 t

ℓ-truncation + CPG (w. packing)
⌊

⌊log2 µ⌋
v−ℓ

⌋
K(v−ℓ)+(r2+1)⌈log2 µ⌉

K log2 t

EC ElGamal 2 ⌈log2 ω⌉
K log2 t

Table 7: Expansion factor formula for the different LHE-based methods when K eval-
uated TLWE ciphertexts have to be transmitted on the downlink. Above, M is the
number of TLWE partial decryptions which can be packed in a single LHE cipher-
text (and v the number of bits required to represent one such partial decryption). Let
r1 = K mod N and r2 = ⌊K/N⌋ when the K TLWE partial decryptions are packed
M -by-M in LHE ciphertexts.

K 1 50 150 250 500 ∞
TLWE 6008 6008 6008 6008 6008 6008

TLWE ℓ-truncation 2628.5 2628.5 2628.5 2628.5 2628.5 2628.5

Shrinking 16393 328.8 110.2 66.5 33.7 9

TLWEtoTRLWE 16392 335.6 117.2 73.5 40.7 16

TLWEtoTRLWE + ℓ-truncation 7171.5 146.8 51.2 32.1 17.8 7

Paillier (w. packing) 1024 40.9 27.3 24.5 22.5 21.3

ℓ-truncation + Paillier (w. packing) 1024 20.4 13.6 12.2 12.2 12

Dåmgard-Jurik (w. packing) 1536 30.7 20.4 18.4 18.4 15.8

ℓ-truncation + D.-J. (w. packing) 1536 30.7 10.2 12.2 9.2 9

CPG (w. packing) 522.5 30.9 24.1 22.7 21.7 21.1

ℓ-truncation + CPG (w. packing) 518.0 16.2 12.8 12.1 12.1 12

EC ElGamal 128 − − − − −

Table 8: Example expansion factors for each of the methods considered in this paper
(t = 16).
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K Most compressive method
1 ≤ K ≤ 2 Switching to EC ElGamal
2 < K ≤ 85 ℓ-truncation + switching to CPG (w. packing)

85 < K ≤ 170 ℓ-truncation + switching to Dåmgard-Jurik (w. packing)
170 < K ≤ 255 ℓ-truncation + switching to CPG (w. packing)
255 < K ≤ 1190 ℓ-truncation + switching to Dåmgard-Jurik (w. packing)

K > 1190 TLWEtoTRLWE + ℓ-truncation

Table 9: Most appropriate compression methods in function of K, the number of
evaluated TLWE ciphertexts that have to be transmitted.

7 Conclusion

In this paper, we have proposed and experimentally studied a versatile and prac-
tical toolbox to address the issue of compressing evaluated (T)FHE ciphertexts,
i.e. encrypted results obtained following the FHE evaluation of some useful func-
tion, to minimize their downlink transmission footprint towards decryption. To
the best of knowledge, while this issue is very important to FHE practice, it
has so far been largely overshadowed in the literature by the issue of compress-
ing input FHE ciphertexts, i.e. encrypted inputs towards the FHE evaluation
of some useful function, to minimize their uplink transmission footprint from
encryption. Still, the two issues are very different in nature and their solutions
require different corpus of techniques and tools.

As key takeaways, we have revealed the regimes in which the techniques we
have studied are best applicable, leading to the following concrete recommenda-
tions:

– Switching to EC ElGamal is the most compact options for transmitting a
single evaluated TFHE ciphertext.

– Switching to our new compressed variant of BCP03 (with several partial
decryptions packed in each ciphertext) is the most communication efficient
option for transmitting up to around 100 evaluated TFHE ciphertexts.

– Above this value, we recommend switching to Damgard-Jurik (also with
several partial decryptions packed in each ciphertext) for compressing larger
number of evaluated TFHE ciphertexts although this approach may eventu-
ally become too computationally costly and, in that case, TRLWE packing
will provide relatively similar compression factors with a much lower com-
putational cost.

Additionnally, all these approaches can be combined with a simple precision
reduction technique which, we have shown, still allows to keep a manageable
probability of erroneous decryption. This technique allows to pack more partial
decryptions in each LHE ciphertext and thus further enhance compression.

Compared to the previous works which have essentially focused on asymptotic
rates from a more theoretical viewpoint, all these approaches are practically
applicable.
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As a concluding remark, let us emphasize that the techniques developed in
this paper are applicable and beneficial only to LWE-based schemes such as
TFHE. This is so for several reasons: first the LHE that we are considering
in this paper have a plaintext domain which is too small to absorb the large
N typically used for RLWE schemes such as BFV or BGV (which then achieve
relatively low expansion factors of 2 log2 q/ log2 t for both uplink and downlink13)
and by default fall in the large K regime in the terminology of Sect. 6). This is
also true for the ℓ-truncation technique we introduced. Indeed, as it significantly
increases the ciphertext noise, it can be applied only to schemes with an efficient
bootstrapping procedure (as TFHE) which then allows to apply it on evaluated
ciphertexts with a sufficient noise margin. Trying to apply this technique in
the SHE setting for BFV or BGV would then require larger parameters and
would most likely cancel the benefits of using ℓ-truncation in the first place.
As a perspective, developing compression techniques practically applicable to
partially-filled evaluated RLWE ciphertexts is an interesting follow up research
question.
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A Appendix

A.1 Proof of Correctness of Shrinking for TRLWE

Following [9], we provide further details on the Shrinking approach (Sect. 3.3) for
TRLWE ciphertexts compression. We know that b−s·a = m+e, where m+e =(
q
tm0 + e0, . . . ,

q
tmN−1 + eN−1

)
and, as ei ∼ N

(
0, σ2

TLWE

)
for i ∈ [0, N −1], the

e can be bounded e ≤ NσTLWE. Then since the TRLWE decryption is performed
slot-by-slot, we get bi − vi =

q
tmi + ei. This implies that bi = vi +

q
tmi + ei and

given that bi + r /∈
[
∆
2 −B, ∆

2 +B
]
∪
[
−∆

2 −B,−∆
2 +B

]
and ei ∈ [−B,B], it

holds that

⌈bi + r⌋t = ⌈bi + r − ei⌋t

=
⌈
vi +

q

t
mi + r

⌋
t

= (⌈vi + r⌋t +mi) mod t.

Then it holds that (⌈bi + r⌋t − ⌈vi + r⌋t) mod t = mi. For i ∈ [0, N − 1] the
decryption of mi is correct if bi+r /∈

[
∆
2 −B, ∆

2 +B
]
∪
[
−∆

2 −B,−∆
2 +B

]
and

r /∈
[
∆
2 − bi −B, ∆

2 − bi +B
]
∪
[
−∆

2 − bi −B,−∆
2 − bi +B

]
. Given that the set

U of all forbidden choices of r has less than q elements, we can find an r ∈ Zq

which satisfies all constraints as |U | ≤ N · 2tB and since q > 2tNB, holds that
Zq \U ̸= ∅. For example, it is true for q = 232 as for N = 1024, B = 217 (t = 2):
log2(2tNB) = 29 and for N = 2048, B = 215 (t = 16): log2(2tNB) = 31.


