
IACR Transactions on Symmetric Cryptology
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–27. DOI:XXXXXXXX

Key Guidance Invocation: A White-box Mode
Enables Strong Space Hardness under Adaptively

Chosen-Space Attacks
Yipeng Shi, Xiaolin Zhang, Boshi Yuan, Chenghao Chen, Jintong Yu,

Yuxuan Wang, Chi Zhang and Dawu Gu

Shanghai Jiao Tong University, Shanghai, China,

Abstract. The notion of space hardness serves as a quantitative measure to char-
acterize the resilience of dedicated white-box schemes against code-lifting attacks,
making it a widely utilized metric in the field. However, achieving strong space
hardness (SSH) under the adaptively chosen-space attack model (ACSAM) remains
an unresolved challenge, as no existing white-box scheme has given SSH guarantees
under ACSAM.
To address the problem, we introduce a novel mode of operation tailored for white-
box cryptography, termed the Key Guidance Invocation (KGI) mode. Our security
analysis reveals that the KGI mode not only significantly strengthens the resistance
to adaptively chosen-space attacks, but also ensures SSH under ACSAM. Moreover,
we propose a dedicated white-box construction, RubikStone-(n,nin,R,s), which di-
rectly leverages the concept of the lookup table pool. RubikStone offers enhanced
flexibility in lookup table utilization compared to existing white-box constructions
and is particularly well-suited to the KGI mode.
Additionally, we instantiate RubikStone-(256,8,12,216) with the KGI mode, resulting
in RSKGI-256, which delivers (T/4, 127.99)-SSH security guarantees under ACSAM.
Remarkably, RSKGI-256 also shows superior performance, surpassing the efficiency
of white-box AES based on the CEJO framework by 27.1% in real-world settings.
Besides, we conduct a comprehensive statistical analysis of the operations in all
existing white-box ciphers. Our findings indicate that RSKGI-256 remains highly
competitive in computational efficiency despite offering unprecedented security.
Keywords: White-box cryptography · Space hardness · Lookup table pool · Key
guidance invocation · Mode of operation.

1 Introduction
1.1 White-box Cryptography
In untrusted environments, especially devices lacking sufficient hardware support, the se-
curity of the execution of cryptographic algorithms is a topic of widespread discussion. In
2002, Chow et al. [CEJvO02a, CEJvO02b] differentiated this scenario and traditional ones
by white- and black-box contexts and pioneered a solution known as white-box cryptogra-
phy. The main idea of white-box cryptography is pre-storing intermediate values that keys
may participate in within lookup tables. These table entries are then utilized to substi-
tute the keys during cryptographic operations, effectively ensuring that they do not appear
directly in the implementation of cryptographic algorithms. Additional internal and ex-
ternal encoding and masking methods are also widely employed to increase the security
of lookup table entries. Compared to computationally expensive fully homomorphic en-
cryption [MOO+14] and frequently vulnerable secure enclaves [BPS17, MIE17, BMW+18],
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white-box cryptography has been widely welcomed by industry and is even required for
use in some standards [Pay, BBF+20].

Black-box and White-box Contexts. According to Chow et al.’s initial perspective, in
the white-box context, the adversary is assumed to have “full access” to the implementa-
tion of cryptographic algorithms, enabling them to observe the dynamic execution process
of the algorithm and modify details at will. While in the traditional black-box context,
the adversary can only observe the input-output behavior of the algorithm as a whole and
conduct known-plaintext, chosen-plaintext, chosen-ciphertext, or even adaptively chosen-
ciphertext attacks based on that. In subsequent works, the notion of white-box context
has been further refined (see Section 2.2).

Key Extraction and Code Lifting [DLPR13]. Undoubtedly, the white-box adversary
possesses unprecedentedly powerful capabilities in the assumptions made by Chow et
al.. With such abilities, he can execute cryptographic algorithms and possess the same
privileges as a legitimate user. Sometimes, the white-box adversary is actually a legitimate
user, referred to as a malicious user. However, the “privileges” are often tied to a specific
device. The white-box adversary aims to transplant these privileges to other unauthorized
devices and profit from them. To achieve the goal, the white-box adversary typically has
two approaches:

◦ Key Extraction. The adversary analyses the information observed during the algo-
rithm execution process and recovers the key, which is the core secret for legitimate
users to obtain privileges. For an implementation that uses the key in plaintext
form, the white-box adversary can even directly obtain this key by observing the
intermediate processes of the algorithm execution without additional analysis.

◦ Code Lifting. In some algorithm implementations, such as the white-box imple-
mentation proposed by Chow et al., recovering keys remains a very difficult task for
the white-box adversary. In this case, the white-box adversary can simply isolate
the cryptographic code in the implementation and lift it as a whole to other devices.
In this process, the lifted cryptographic code can be considered as an inflated variant
of the original key.

How to effectively defend the two types of attacks in a white-box context has been the
focus of white-box cryptography research.

1.2 Related Works and Motivation
White-box Implementation of Existing Block Ciphers. In the early stages of white-
box cryptography research, the primary focus was on improving the implementation of
some existing block ciphers, especially AES [CEJvO02a, BCD06, Kar10, XL09, LLY14]
and DES [CEJvO02b, LN05, WP05]. However, most of them have been explicitly broken
[BGE04, GMQ07, JBF02, LRM+13, MGH08, MRP12, MWP10, WMGP07]. Due to the
significant challenge of designing a white-box implementation for an existing cipher, these
works and even some recent ones [RP20, RVP22] only aimed at preventing key extraction
attacks.

Dedicated White-box Ciphers. In order to better prevent both key extraction and code
lifting attacks, several dedicated white-box ciphers [BI15, BIT16, FKKM16, CCD+17,
KSHI20, KLLM20, KI21, YZDZ23] were proposed later, which are more suitable for white-
box application scenarios. By generating lookup tables based on a well-studied block
cipher, these ciphers reduce the security against key extraction in a white-box context
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to that against key recovery in a black-box context. At the same time, by using lookup
tables ranging from several hundred kilobytes to tens of gigabytes, they mitigate code
lifting attacks to some extent.

Space Hardness. Biryukov et al. proposed the notion of weak white-box security in
[BBK14], which was also called incompressibility by De Mulder [Mul14]. The property
uses the minimum size of code that the white-box adversary needs to extract from the
software for an equivalent key to evaluate the security of white-box ciphers. Based on the
property of weak white-box security, Bogdanov and Isobe proposed (M , Z )-space hardness
to evaluate the difficulty of code lifting attacks in a more quantitative way[BI15]. Which
was widely used in subsequent works [BIT16, FKKM16, CCD+17, KSHI20, KLLM20,
KI21, YZDZ23]. Subsequently, they introduced a more fine-grained method to capture
the resistance towards code lifting at ASIACRYPT 2016: weak and strong (M , Z )-space
hardness with respect to various abilities of the adversaries (see Section 2.2). The method
was widely used in those works [BIT16, FKKM16, CCD+17, KSHI20, KLLM20, KI21,
YZDZ23].

Motivation. To the best of our knowledge, although new white-box schemes continue to
be proposed, none of them has been able to provide strong space hardness (SSH) under
the strongest attack model, namely the adaptively chosen-space attack model (ACSAM)
(see Section 2.2). Additionally, there has been no discussion on the modes of operation
for white-box ciphers. Therefore, we propose a mode of operation specifically tailored for
white-box cryptography, aiming to achieve SSH under ACSAM. To effectively utilize the
mode, we introduce a dedicated white-box construction. Additionally, we emphasize the
importance of scenario-driven customization in the design of white-box schemes, advocat-
ing for solutions that are finely tuned to the unique requirements of specific application
contexts. The primary focus of this paper is on cloud-based Digital Rights Management
(DRM) systems, a critical scenario for white-box cryptography. To rigorously evaluate
the security of our scheme, we formalize the advantage of ACSAM adversaries within this
context through a two-stage game framework. This formal analysis serves to validate the
effectiveness and robustness of our proposals in resisting adaptively chosen-space attacks.

1.3 Our Contribution
(1) Novel Mode of Operation for White-box Schemes. We introduce a mode of op-
eration for white-box schemes, named the Key Guidance Invocation (KGI) mode. The
mode is built upon two novel concepts introduced in this work: the guidance key and the
lookup table pool. The guidance key is a randomized sequence designed to govern the
invocation process of lookup tables, ensuring that the manner in which lookup tables are
accessed during each execution of the algorithm is non-deterministic and unpredictable.
The lookup table pool consists of multiple lookup tables of identical specifications, and
the pool should be sufficiently large to provide a broad selection space for the guidance
key. Furthermore, we provide a detailed description of the generation algorithm for the
lookup table pool, the scheduling rules for the guidance key, and an application protocol
to facilitate the practical deployment of the KGI mode. These elements synergistically
augment the adaptability and security of the KGI mode in practical applications.

(2) Dedicated White-box Construction with Enhanced Flexibility in Lookup Table
Utilization. We propose a dedicated white-box construction, termed RubikStone-(n, nin,
R, s). it leverages a balanced Feistel network to guarantee the scheme’s reversibility
irrespective of the specifications of the lookup tables. Furthermore, the design introduces
an additional parameter that defines the size of the lookup table pool. This inclusion
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endows RubikStone with enhanced flexibility in the utilization of lookup tables, thereby
facilitating a more effective application of the KGI mode.

(3) Complete Application Case and Performance Evaluation. We present a complete
application case, denoted as RSKGI-256, by integrating the KGI mode with RubikStone,
and evaluate its performance. Real-world experimental results demonstrate that RSKGI-
256 achieves a 27.1% higher efficiency compared to the white-box AES implementation
under the CEJO framework. Furthermore, we conduct a comprehensive statistical analysis
of the operations in all existing white-box schemes, revealing that RSKGI-256 employs
significantly fewer operations, underscoring its strong potential for practical applications.

(4) Precise Adversary Models and Comprehensive Security Analysis. We employ a two-
stage game framework to precisely define the attack objectives and adversarial advantages
of an ACSAM adversary. Based on this framework, we rigorously prove that our proposal
effectively provides resistance against adaptively chosen space attacks. As a representative,
RSKGI-256 achieves (T/4, 127.99)-SSH security guarantees under ACSAM. Additionally,
we conduct a comprehensive security analysis of our scheme using multiple cryptanalysis
and derive explicit security bounds. The results indicate that our scheme exhibits strong
resilience against these attacks, further validating its robustness.

1.4 Organization
In Section 2, we introduce the models and security notions used in the paper. Then we
formally introduce the KGI mode along with its associated terminology and constructions
in Section 3. In Section 4, we present the construction of RubikStone and its specifications.
Subsequently, in Section 5, we provide a complete application case based on the KGI mode
and the RubikStone construction, accompanied by a corresponding performance analysis.
In Section 6, we conduct a comprehensive security analysis of our proposals and derive
explicit security bounds using RSKGI-256 as an example. Finally, we offer concluding
remarks on our research in Section 7.

2 Preliminaries
2.1 Application Scenarios of White-box Cryptography
2.1.1 Cloud-based DRM

Digital Rights Management (DRM) is extensively employed to regulate authorized access
to digital content, representing the primary and most critical application scenario for
white-box cryptography. To minimize development and operational expenses for DRM
developers and content service providers, while delivering more flexible and diversified
services to content consumers, contemporary DRM systems have evolved into cloud-based
content distribution frameworks [LPSS16, Inc14].

Figure 1 illustrates the architecture of a cloud-based DRM service. Digital content
stored on the cloud server is encoded and encrypted before being distributed to consumers’
devices. To decode the encrypted content, consumers must interact with the cloud server
for rights verification. During this process, the client sends a verification request along
with identifying information, such as an ID and a signature. Upon successful verification
of legitimate users, the cloud server transmits the corresponding authorization key to the
client via a secure channel. Legitimate consumers can then use this key to decode the
encrypted content. However, if authorization keys are stored and utilized using conven-
tional methods, a white-box adversary within the client device could easily extract and
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Figure 1: Overview of cloud-based DRM

distribute these keys to unauthorized users. Therefore, white-box cryptography plays a
crucial role in enhancing the security of cloud-based DRM systems.

2.1.2 White-box Cryptography Varies across Different Scenarios

In addition to cloud-based DRM, white-box cryptography is also regarded as an effective
software security solution in various scenarios, including Host Card Emulation (HCE) for
mobile payment services and memory-leakage resilient software [BIT16]. Previous research
has often sought to address these scenarios collectively, striving to design a universal
white-box cryptography algorithm capable of providing security guarantees across all these
contexts.

However, we argue that the resources and constraints in different white-box application
scenarios vary significantly, and the application methods of white-box cryptography can
differ substantially. For example, a critical distinction between cloud-based DRM and
mobile payments is the security context of the encryptor. In cloud-based DRM, the
encryptor typically operates in a secure environment shielded from white-box attacks,
often leveraging cloud servers with hardware-based protection mechanisms. Conversely, in
mobile payment scenarios, the encryptor is also exposed to a white-box environment. On
the other hand, in cloud-based DRM, the interests of adversaries and legitimate users may
occasionally align, leading to potential collaboration in compromising protected digital
content. However, in mobile payment scenarios, the interests of adversaries are typically
opposed to those of legitimate users, as no legitimate user would desire an adversary to
spend their funds. These differences result in distinct roles for white-box cryptography:
in cloud-based DRM, it primarily focuses on privacy preservation, whereas in mobile
payment scenarios, its role extends to providing authenticated encryption within a white-
box context.

As a result, white-box cryptography, as a software security mechanism that balances
security assurance with available resources, should be studied in a specialized and scenario-
specific manner. This paper primarily concentrates on application scenarios like cloud-
based DRM, operating under the assumption that the encryptor and decryptor are located
on distinct terminals, with the encryptor being immune to white-box attacks.
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2.2 Security Notions
2.2.1 Space Hardness and Adversary Models

Bogdanov and Isobe [BI15] have defined the following weak and strong (M, Z)-space
hardness based on different security objectives, which now serve as the most critical and
widely adopted security evaluation metrics for dedicated white-box ciphers.
Definition 1. (Weak (M, Z)-Space Hardness (WSH)[BI15].) An implementation
of a block cipher EK is weakly (M, Z)-space hard if it is computationally difficult to
encrypt (decrypt) any randomly drawn plaintext (ciphertext) with probability of more
than 2−Z given any code (table) of size less than M bits.
Definition 2. (Strong (M, Z)-space hardness (SSH)[BI15].) An implementation
of a block cipher EK is strongly (M, Z)-space hard if it is computationally difficult to
obtain a valid plaintext and ciphertext pair with probability of more than 2−Z given any
code (table) of size less than M bits.

Three models were proposed in [BIT16] to characterize the white-box adversary’s abil-
ity to access lookup tables in a more refined way. Each model constrains the adversary to
access only a subset of the input-output pairs of tables, differing in the selection method-
ology.
Definition 3. (Known-Space Attack Model (KSAM) [BIT16].) The adversary
obtains a certain number of input-output pairs of tables, where the inputs are randomly
chosen.
Definition 4. (Chosen-Space Attack Model (CSAM) [BIT16].) The adversary
obtains a certain number of input-output pairs of tables, where the inputs are preselected
according to the adversary’s will.
Definition 5. (Adaptively Chosen-Space Attack Model (ACSAM) [BIT16].)
The adversary obtains a certain number of input-output pairs of tables, where each input
is chosen according to the adversary’s will, and he can choose the next input after obtaining
the outputs corresponding to the previous inputs.

By combining the two security metrics with the three adversary models, we establish
six security notions for dedicated white-box ciphers: WSH-KSAM, WSH-CSAM, WSH-
ACSAM, SSH-KSAM, SSH-CSAM, and SSH-ACSAM.

2.2.2 ACSAM Games

In real-world settings, the white-box adversary gains control over the decryption device
and possesses the ability to lift code from it. The adversary’s goal is to leverage the lifted
code to replicate all the functionality of the legitimate decryptor. Building on this, we
utilize a two-stage game framework between the challenger C and the adversary A to more
precisely demonstrate the adversary’s advantage in compromising WSH and SSH within
the ACSAM context.

Formally, let Π = (E ,D) be a white-box scheme, and A = (A1,A2) be a white-box
adversary. The adversary A attacks the scheme ⋄ under ACSAM, running in two stages,
as follows:
• First stage: lifting the codes. As illustrated in the Figure 2, the first-stage
is run by the sub-adversary A1. We assume that for each entry ti in Π’s lookup
tables(LUTs), there exists an index indexi that allows precise access to it. A1 is
allowed to perform adaptively LUT queries on a per-entry basis using the indexes,
meaning that he can determine the index of the next query based on the response
from the previous query. After b accesses, A1 generates a lifter L and give it to A2.
L comprises all the LUT query results, serving as a substitute for the functionality
of the decryptor.
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• Second stage: challenge phase. Owing to the distinct adversarial objectives
inherent in the WSH-ACSAM and SSH-ACSAM security notions, the second phases
of Game GWSH−ACSAM

Π,A and GSSH−ACSAM
Π,A diverge accordingly, as illustrated in Figures

3a and Figure 3b, respectively.

◦ To compromise WSH, the adversary must possess the capability to decrypt a
randomly selected ciphertext. During the challenge phase of GWSH−ACSAM

Π,A , A2
is required to utilize the lifter L to decrypt a ciphertext c0 ← E(m0) provided
by CE , where m0 is a one-block ciphertext randomly drawn from the message
space M.

◦ To compromise SSH, the adversary merely requires a valid plaintext-ciphertext
pair, effectively enabling them to select a plaintext that the corresponding ci-
phertext they are most confident in decrypting. Consequently, in the challenge
phase of GSSH−ACSAM

Π,A , A2 initially selects the one-block plaintext m0 from M,
which is subsequently encrypted by CE to generate the corresponding ciphertext
c0. A2 then employ L to decrypt this ciphertext. We posit the existence of a
supervisor SV that ensures A2 does not directly output the result from the
selection phase to cheat, implying that if L produces an output L(c0) = m0, it
is derived through a formal decryption process.

The advantages of the adversary in breaking WSH or SSH under ACSAM are as
follows.

AdvWSH−ACSAM
Π (A) := Pr[L(c0) = m0]

AdvSSH−ACSAM
Π (A) := Pr[L(c0) = m0]

In accordance with Kerckhoffs’ Principle, the entirety of a cryptographic system’s spec-
ifications may be disclosed without compromising security. Conventional cryptographic
mechanisms derive their security from the confidentiality of the key, while white-box cryp-
tography’s resilience is contingent upon the constraints imposed on an adversary’s ability
for code lifting.

However, an ACSAM adversary possesses complete freedom to invoke lookup tables,
subject only to the number of table entries. Moreover, the number of lookup tables
required to encrypt a single plaintext block is typically far fewer than the number of entries
he is permitted. This means that, given a deterministic white-box scheme and a randomly
selected plaintext block, the ACSAM adversary is fully aware of all the details required to
encrypt that block. In GSSH−ACSAM

Π,A , A1 can pre-select a plaintext m∗ and, leveraging the
advantages of adaptive selection, acquire all the necessary LUT entries required to generate
the corresponding ciphertext c∗. Based on this, A1 constructs a lifter L∗ that ensures
encryption on m∗. Then, in the challenge phase, A2 once again selects m∗ and sends it
to CE , ultimately succeeding with probability 1 in obtaining L∗(c∗) = m∗. Consequently,
for a deterministic white-box scheme, the ACSAM adversary can always derive a valid
plaintext-ciphertext pair, thereby no strong space hardness can be guaranteed.

3 Mode of Operation for White-box Ciphers
3.1 Key Guidance Invocation Mode
As previously discussed, all deterministic white-box schemes have been demonstrated
to lack strong space hardness when subjected to adaptively chosen-space attacks. It is
necessary to introduce some randomness to ensure that how a message will be encrypted
is unpredictable to the white-box adversary. Therefore, in Figure 4a, we define the first
mode of operation tailored for white-box ciphers, i.e. the Key Guidance Invocation (KGI)
mode. It employs a random sequence, termed the guidance key, to direct each invocation
of the lookup tables.
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Figure 4: Mode of operation for white-box ciphers

Algorithm 1: LUT Pool Generation
Input: Input length of tables nin, output length of tables nout,

number of tables in the LUT pool s.
Output: A LUT pool P.

1 P = [ ];
2 for j ← 0 to s− 1 do
3 k ← Gen(1κ); // κ is the security parameter of E()
4 for i← 0 to 2nin − 1 do
5 Tj [i] = Truncate(Ek(i∥0∗), nout);
6 // T runcate(x, m) means truncating the highest m-bit of x

7 P.append(Tj);
8 returnP

Guidance Key and Lookup Table Pool. A novel concept-the lookup table pool (repre-
sented by LUT pool for brevity)-is introduced simultaneously, which is a collection com-
posed of multiple lookup tables with identical specifications. Each lookup table within the
LUT pool is assigned a unique index. Essentially, the guidance key represents an ordered
subset of these index numbers. We want as many lookup tables as possible within the
LUT pool, even significantly more than the number required to encrypt a single plaintext
block. It ensures a sufficiently large space for the guidance key. In fact, all existing white-
box ciphers can be regarded as special cases of the KGI mode when the LUT pool is very
small and the guidance keys are fixed.

Round Function. Then, in each round, we can obtain a particular round function by
inputting a specific guidance key into the LUT pool. The function sequentially invokes
some lookup tables in an order predefined by the guidance key, thereby performing a
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permutation on the input. A plaintext block undergoes multiple rounds of such operations
to be encrypted into the final ciphertext.

LUT Pool Generation. Let T : {0, 1}nin → {0, 1}nout be a lookup table that outputs
nout-bit T (x) based on an nin-bit input x. Lookup tables are the primary source of
confidentiality in white-box cryptography, therefore the adversary should not be able to
infer x from T (x). As given in Algorithm 1, Ek is a well-studied block cipher with a
randomly selected key. We can yield the desired lookup table with the specific input
and output lengths by padding the input with an all-zero binary value to achieve length
extension and truncating the output of Ek, which is also the method used in [BI15].

Guidance Key Schedule. We employ an efficient method to schedule the guidance key,
ensuring that the invocation of lookup tables in each round is unpredictable. The guidance
key gki for the i-th round is derived by performing an XOR operation between the guidance
key gki−1 from the (i − 1)-th round and the output Xi of the (i − 1)-th round function.
The hash function depicted in the figure is optional. Its role is to match the length of the
state block with that of the guidance key. Specifically, it takes the output of the previous
round function as input and outputs a sequence of the same length as the guidance key.
Assuming the encryption process requires t rounds, then t guidance keys from gk0 to gkt1
are needed. We refer to the first guidance key gk0 as the encryption guidance key gkenc

and the last guidance key gkt−1 as the decryption guidance key gkdec. When the message
length exceeds one block, the encryption guidance key for each block (except the first one)
is derived from the bit-wise XOR operation applied to the ciphertext and the decryption
guidance key of the previous block. Moreover, we use the decryption guidance key of the
last block as the decryption guidance key for the entire message.

Decryption Mode. When the round function is invertible, we trivially obtain the de-
cryption mode as shown in Figure 4b, where the guidance keys are scheduled and applied
in the opposite order to the encryption mode. Following the bottom-up order as shown
in the figure, the round functions from Ft−1 to F0 are sequentially generated and utilized,
transforming Xt back to X0 and thereby completing a decryption process.

3.2 Application Protocol based on the KGI Mode
Figure 5 presents an application protocol based on the KGI mode, tailored to the typ-
ical scenario of white-box cryptography. In this context, we assume the presence of an
encryptor E and a decryptor D, and the objective of E is to securely transmit a message
m to D. The protocol is divided into two phases as follows: initialization and message
transmission.

◦ Initialization. Prior to message transmission, an initialization phase is impera-
tive. During this phase, E and D need to engage in negotiation and deployment to
establish a shared LUT pool P.

◦ Message Transmission. During this phase, E and D utilize the KGI mode to
securely transmit the message m. The steps are as follows.

1. E randomly generates the encryption guidance key gkenc
$← {0, 1}|gkenc|, where

{0, 1}|gkenc| denotes the set of all binary strings of length |gkenc|, i.e. the value
space of the encryption guidance key.

2. E evaluates (gkdec, c) ← EncKGI(gkenc, m,P) to generate the ciphertext c and
the decryption guidance key gkdec and sends them to D. EncKGI represents a
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white-box encryption program utilizing the KGI mode. It takes an encryption
guidance key, a message, and a LUT pool as inputs.

3. Upon receiving (gkdec, c), D executes the corresponding white-box decryption
program m← DecKGI(gkdec, c,P) to retrieve the original message m.

E D

P P
LUT pool negotiation and deployment

gkenc
$← {0, 1}|gkenc|

(gkdec, c)← EncKGI(gkenc, m,P)

send over (gkdec, c)

m← DecKGI(gkdec, c,P)

Figure 5: Application protocol based on the KGI mode

4 A Novel White-box Construction: RubikStone
Theoretically, all existing white-box ciphers can be adapted to the KGI mode after ex-
panding the LUT pool. To better adapt to the KGI mode, we propose a novel white-box
scheme, named RubikStone, which exhibits superior flexibility in the expansion of the
LUT pool compared to existing white-box schemes.

4.1 Balanced Feistel Network
The Feistel [Fei73] network is a structure widely used in block ciphers [S+99, RRSY98,
SKW+98]. According to whether the size of the two parts split from each round’s input is
equal, it can be divided into two categories, i.e. balanced Feistel network and unbalanced
Feistel network. As shown in Figure 6, the n-bit state in r-th round Xr is split into
two equally sized parts Xr

a and Xr
b . Let Kr be a k-bit key of the r-th round, and

F : {0, 1}n/2×{0, 1}k → {0, 1}n/2 be an F function. A Kr-based F function is represented
as FKr . The round function of the balanced Feistel network can be formalized as the
following equation:

Xr+1
a ∥Xr+1

b = Xr
b ∥(FKr (Xr

b )⊕Xr
a)

4.2 Design of RubikStone
RubikStone just employs a balanced Feistel network where the key-based F function is
replaced by several table lookups. As shown in Figure 7, a n-bit plaintext X is encrypted
to a ciphertext C by applying R-round permutations.

Let Xr denote the r-th round state. Specifically, the most significant n/2 bits of
Xr is expressed as l(= (n/2)/nin) elements of nin bits, i.e. Xr

a = {xr
0, xr

1, . . . , xr
l−1},
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Figure 7: The RubikStone construction

xr
i ∈ {0, 1}nin for 0 ≤ r ≤ R−1, where R is the number of total rounds of RubikStone. All

the elements xr
i (1 ≤ r ≤ R, 0 ≤ i ≤ l−1) are then transformed into n/2-bit strings through

table lookups and ultimately XORed with Xr
b . The lookup table Tkr

i
corresponding to

each element xr
i is selected from the LUT pool based on the index kr

i , 0 ≤ kr
i ≤ s−1, where

s is the number of total tables in the LUT pool. Trivially, we utilize gkr = kr
0||kr

1|| · ||kr
l−1

as the guidance key for the r-th round.
Based on the construction of Rubikstone, we can obtain different white-box ciphers by

adjusting the four parameters n, nin, R and s. Thus, we use RubikStone-(n,nin,R,s) to
uniquely represent different variants of RubikStone.

On one hand, the balanced Feistel network guarantees the reversibility of RubikStone
irrespective of the specifications of the lookup tables utilized. On the other hand, the
design of RubikStone incorporates additional parameters, providing it with a significantly
expanded configuration space and enhanced flexibility in terms of LUT pool size. As
a result, RubikStone demonstrates superior suitability for the KGI mode compared to
existing dedicated white-box schemes.

5 Application Case and Performance
5.1 The Application Case
As a complete application case, we apply the KGI mode to a specific instantiation of
Rubikstone, with n = 256, nin = 8, R = 12, and s = 216. We refer to the case as
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Figure 8: Round process of RSKGI-256

RubikStone-(256,8,12,216)-KGI and denote it as RSKGI-256 for brevity. We generate the
LUT pool using AES-128 as the underlying cipher according to Algorithm 1 and its size
is 216×28×256/2(bits) = 256(MB). Figure 8 illustrates the computation process of each
round in RSKGI-256. Algorithm 2 describes the whole process of encrypting a random
message.

Algorithm 2: Encryption in RSKGI-256
Input: The message to be encrypted M .
Output: The ciphertext C and the decryption guidance key gkdec.

1 {M0, M1, . . . , Ms} ←M ; // M is divided into several 256-bit blocks.

2 gk
$← {0, 1}256;

3 {Ma, Mb} ←M0;
4 for i← 0 to s do
5 {Ma, Mb} ←Mi;
6 for j ← 0 to 11 do
7 {m0, m1, . . . , m15} ←Ma;
8 {g0, g1, . . . , g15} ← gk;
9 Mc ←Ma;

10 Ma ←Mb ⊕ Tg0 [m0]⊕ Tg1 [m1]⊕ · · · ⊕ Tg15 [m15];
11 Mb ←Mc;
12 gk ← gk ⊕ (Ma||Mb);
13 Ci ← (Ma||Mb);
14 C ← {C0, C1, . . . , Cs};
15 gkdec ← gk ⊕ (Ma||Mb);
16 return (gkdec, C)

5.2 Performance
To evaluate the performance of RSKGI-256 in a real-world setting, all experiments were
conducted on a system equipped with an Intel(R) Core(TM) i5-9500 CPU operating at
3.00 GHz and 16 GB of DDR4 RAM. The processor features a 384 KB L1 cache, a 1.5
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MB L2 cache, and a 9 MB L3 cache, respectively. The implementation was carried out
using the C programming language. To precisely measure the number of CPU clock cycles,
GCC’s inline assembly syntax was employed to invoke the “rdpmc” instruction as follows,
which directly accesses the Performance Monitoring Counters (PMCs).

1 __asm__ volatile ("rdpmc ; shlq $32 ,%% rdx; orq %%rdx ,%% rax"
2 : "=a" ( result ) : "c" (ecx) : "rdx");

Table 1: Evaluation of encryption efficiency which is given in cycle per byte

Algorithm Table Size Efficiency (cycle/byte)

AES-128(Black-box) - 539
AES-128(CEJO)[CEJvO02a] 752 KB 4027

RSKGI-256 256 MB 2935

The experimental results are presented in Table 1. For comparative analysis, the
efficiency of AES-128 and its white-box implementation based on the CEJO architecture
[CEJvO02a] is measured under identical conditions. The results demonstrate that RSKGI-
256 achieves superior efficiency compared to the white-box implementation of AES-128,
highlighting its significant potential in terms of performance.

It is important to note that our measured results appear substantially larger than those
reported in [KSHI20, KI21]. However, despite using the same efficiency evaluation metrics,
a direct comparison is not feasible. This discrepancy arises not only from differences
in the performance of the hardware platforms used but also because the aforementioned
studies prioritize implementation efficiency and incorporate numerous optimizations, such
as leveraging instruction sets like AES-NI and SSE. In contrast, this work focuses on
analyzing the algorithm itself and its security guarantees during operation, rather than
exploring the limits of implementation efficiency. Consequently, our measurements were
performed without optimization. However, by comparing the implementation efficiency of
RSKGI-256 with black-box and white-box AES implementations under the same conditions,
the potential for efficient implementation of RubikStone is clearly demonstrated.

Due to the lack of open-source implementations for other dedicated white-box ciphers,
a direct comparison with our implementation was not conducted. However, we have per-
formed a comprehensive statistical analysis of the operations used in all existing dedicated
white-box schemes, as shown in Table 2. In contrast, RSKGI-256 utilizes fewer opera-
tions, comprising exclusively table lookups and bitwise XORs - both are computationally
lightweight. This characteristic suggests that RSKGI-256 holds substantial potential for
optimization in both software and hardware implementations, which could be a future
work.

6 Security Analysis
In this section, we present a thorough security analysis of the KGI mode and the Ru-
bikStone scheme. In most cases, we provide explicit security bounds of RSKGI-256 as an
illustrative example. Should readers utilize distinct instances of RubikStone, they are
encouraged to consult our analytical methodology to determine the associated security
boundaries relevant to their particular instantiation.

Specifically, we examine the diverse threats that a white-box scheme may encounter
within black-box, gray-box, and white-box contexts, leading to the following conclusions.
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Table 2: Operations of all white-box ciphers

Ciphers
Calculations(per byte)

Li XORii M iii Aiv F v

SPACE-(8,300) [BI15] 18.75 2250 - - -
SPACE-(16,128) [BI15] 8 896 - - -
SPACE-(24,128) [BI15] 8 832 - - -
SPACE-(32,128) [BI15] 8 768 - - -

SPNbox-8 [BIT16] 10 80 0.63(M16×16) - -
SPNbox-16 [BIT16] 5 80 0.63(M8×8) - -
SPNbox-24 [BIT16] 3.33 80 0.67(M5×5) - -
SPNbox-32 [BIT16] 2.50 80 0.63(M4×4) - -

WhiteBlock 16[FKKM16] 4.50 288 - 1.13 -
WhiteBlock 20 [FKKM16] 4.31 276 - 1.44 -
WhiteBlock 24 [FKKM16] 4.25 272 - 2.13 -
WhiteBlock 28 [FKKM16] 4.25 272 - 2.13 -
WhiteBlock 32 [FKKM16] 4.25 272 - 2.13 -

WEM-128 [CCD+17] 7.5 - - 0.38 -
Galaxy-8 [KSHI20] 12.50 100 - - -
Galaxy-16 [KSHI20] 5 80 - - -
Galaxy-32 [KSHI20] 4 128 - - -

FPL-(128,12,20,17) [KLLM20] 21.25 1360 - - 1.06 (F64→240)
FPL-(128,12,20,33) [KLLM20] 41.25 2640 - - 2.06 (F64→240)
FPL-(128,16,16,17) [KLLM20] 17 1088 - - 1.06 (F64→256)
FPL-(128,16,16,33) [KLLM20] 33 2112 - - 2.06 (F64→256)
FPL-(128,20,12,17) [KLLM20] 12.75 816 - - 1.06 (F64→240)
FPL-(128,20,12,33) [KLLM20] 24.75 1584 - 2.06 (F64→240)

FPL-(64,8,16,9) [KLLM20] 18 576 - - 1.13 (F32→128)
FPL-(64,8,16,17) [KLLM20] 34 1088 - - 2.13 (F32→128)
FPL-(64,8,16,33) [KLLM20] 66 2112 - - 4.13 (F32→128)
FPL-(64,16,8,17) [KLLM20] 34 544 - - 2.13 (F32→128)
FPL-(64,16,8,33) [KLLM20] 66 1056 - - 4.13 (F32→128)
FPL-(64,16,16,17) [KLLM20] 34 1088 - - 2.13 (F32→256)

Yoroi-16 [KI21] 4 14 1(M8×8) 0.06 -
Yoroi-32 [KI21] 4 30 1(M4×4) 0.06 -
WAS [YZDZ23] 5 80 0.63(M8×8) - -

RSKGI-256 6 864 - - -
i L represents a table lookup.
ii XOR represents a bit XOR.
iii Mm×m represents a multiplication operation with a m×m MDS matrix.
iv A represents a 10-round AES.
v Fnin→nout

represents a probe function.
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1. RSKGI-256 is secure against differential and linear cryptanalysis in the black-box
context (see Section 6.1);

2. The underlying ciphers’ keys utilized for generating the lookup tables are secure
against key extraction (see Section 6.2);

3. The RubikStone construction is secure against advanced side-channel attacks, in-
cluding differential computation analysis, linear decoding analysis, and differential
fault attacks (see Section 6.3);

4. The RubikStone construction is capable of delivering robust security guarantees
across the notions of WSH-KSAM, WSH-CSAM, WSH-ACSAM, SSH-KSAM, and
SSH-CSAM. By integrating the KGI mode, the security guarantees for WSH-ACSAM
are further strengthened, while simultaneously achieving, for the first time, security
guarantees in SSH-ACSAM.(see Section 6.4).

6.1 Security in the Black-box Context
6.1.1 Differential Cryptanalysis

For a function f(x) : {0, 1}nin → {0, 1}nout , the cardinality of a differential pair (a, b) is
defined as the number of input pairs (x1, x2) that satisfy the input difference equation
x1 ⊕ x2 = a and the output difference equation f(x1)⊕ f(x2) = b, denoted by N(a, b). It
has been proven in the Theorem 1 of [BI15] that for all non-trivial values of a and b, the
probability qB that N(a, b) is at most B can be lower-bounded by the inequality:

qB > (1− 2 · (2nin−nout−1)B+1

(B + 1)!
)2nin+nout

Based on the LUT pool generation algorithm in 1, each table used in RSKGI-256 is essen-
tially a black-box instance of AES-128. All the lookup tables in RubikStone-(256,8,12,216)
can be treated as functions conforming to the specification F8→128 : {0, 1}8 → {0, 1}128.
Table 3 shows the lower bounds on several qBs for F8→128. Given that q2 is exceedingly
close to 1, it follows that the maximum repetition count of differential pairs for F8→128
can be reasonably assumed to be 2. Consequently, we posit that the maximum differential
probability of F8→128 is 2−7(= 2/2−8). Our experimental results demonstrate that the
12-round RSKGI-256 has at least 137 differentially active lookup tables, indicating an upper
bound for its maximum differential probability of 2−959.

Table 3: Lower-bound on qB for F8→128

qB Lower-bound on qB

q1 1− 2−106

q2 1− 2−228.58

q3 1− 2−351.58

q4 1− 2−474.9

6.1.2 Linear Cryptanalysis

For a function f(x) : {0, 1}nin → {0, 1}nout , the correlation of a linear approximation (α, β)
is defined by the equation 1, where α ∈ {0, 1}nin is an input mask and β ∈ {0, 1}nout is
an output mask.
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Cor = 2−nin ·(|{x ∈ {0, 1}nin |α·x⊕β ·f(x) = 0}|−|{x ∈ {0, 1}nin |α·x⊕β ·f(x) = 1}|) (1)

According to the Corollary 4.4 in [DR07], it can be assumed that the linear probability
LP of a non-trivial linear approximation over nin-bit to nout-bit functions has mean
µ(LP ) = 2−nin and variance σ2(LP ) ≈ 2 × 2−2nin when nin > 5. Therefore, the linear
probability LP of function f(x) is lower than 2−nin + 10σ(≈ (10

√
2 + 1) × 2−nin) with

probability 1−2−148. Then we assume the maximum linear probability of the tables used
in RubikStone-(256,8,12,216) to be 2−4.08. Our experimental results demonstrate that the
12-round RSKGI-256 has at least 119 linearly active lookup tables, indicating an upper
bound for its maximum linear probability of 2−485.52.

6.2 Security against Key Extraction
As mentioned earlier, lookup tables are the primary source of condentiality in white-box
cryptography. Since our algorithm for generating the LUT pool is public, if the adversary
can extract the keys from the lookup tables, then the adversary no longer needs to exert
effort to obtain the lookup tables. They can simply use the underlying ciphers to achieve
the functionality of a white-box implementation on any device. Therefore, it is necessary
to analyze the feasibility of the adversary successfully extracting these keys.

In the white-box context, the adversary can freely observe and intervene the execution
process in the computation unit. With such ability, the adversary can easily obtain a large
number of pairs of inputs and the corresponding outputs in lookup tables. This implies
that adversaries can conduct any form of black-box attack on the lookup tables. Therefore,
the adversary can extract the secret keys from lookup tables in white-box context as long
as he can recover the secret keys from the underlying ciphers for the tables in black-box
context. As a corollary, we reduce the security of lookup tables against the key extraction
attack in the white-box context to the key recovery problem for the underlying ciphers in
the black-box context, which is also the reduction method used in some existing dedicated
white-box ciphers [BI15, BIT16, FKKM16, CCD+17, KLLM20, KI21].

In the application case RSKGI-256, we utilize AES-128 as an instantiation of the un-
derlying cipher in our LUT pool generation algorithm, for which no efficient key recovery
attack has been proposed so far. Furthermore, in our design of the LUT pool genera-
tion algorithm, a different random key is used for each lookup table generation. This
means that the adversary needs to crack at least 223(= 216 × 128)-bit AES keys in the
black-box context if he attempts to gain an advantage in transplanting the functionality
of the decryption program by extracting keys from the lookup tables, which is not easier
than accumulating all lookup table entries through computation leakage in the white-box
context.

6.3 Security against Advanced Side Channel Attacks
6.3.1 Differential Computation Analysis

Differential Computation Analysis (DCA) attack was proposed by Bos et al. at CHES
2016 [BHMT16], serving as the software counterpart to differential power analysis (DPA)
[KJJ99] attacks employed by the cryptographic hardware community. The main idea
of DCA involves utilizing Dynamic Binary Instrumentation (DBI) frameworks such as
Pin [LCM+05] and Valgrind [NS07] to acquire software traces. These traces encompass
information like the physical addresses corresponding to memory read/write operations,
and stack or register values during program execution, aiding attackers in determining
the approximate location of the encryption algorithm within the software implementation
and in conducting statistical analyses to extract the secret key. Employing this method,
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Bos et al. successfully extracted keys from various public white-box AES and DES im-
plementations [CEJvO02a, CEJvO02b, LN05, Kar10, XL09] without knowledge of the
encodings applied to intermediate results or which cipher operations are implemented by
which lookup tables, and without resorting to reverse engineering of the binary files. This
establishes DCA as a significant threat to white-box cryptographic implementations.

However, DCA is fundamentally an attack aimed at recovering a specific key. It may
be highly effective against the white-box implementations of some existing block ciphers
[CEJvO02a, BCD06, Kar10, XL09, LLY14, CEJvO02b, LN05, WP05], but is still ineffec-
tive against many dedicated white-box ciphers [BI15, BIT16, FKKM16, CCD+17, KSHI20,
KLLM20, KI21, YZDZ23]. This is because these dedicated white-box ciphers are largely
based on lookup tables generated from the overall inputs and outputs of a well-studied
block cipher. Since the lookup tables are pre-generated, attackers cannot access any side-
channel information produced during their creation, limiting them to black-box analysis
of the tables. Therefore, when applying DCA to RubikStone, an attacker might recover
the guidance key, which could assist in determining the encryption method corresponding
to a particular ciphertext. However, without the ability to recover the underlying block
cipher keys on which the lookup tables rely, the attacker gains no additional advantage
over lifting the lookup tables for decrypting a specific ciphertext.

6.3.2 Algebraic Differential Computation Analysis

Linear decoding analysis (LDA) was first proposed by Goubin et al. in [GPRW20]. It was
also called algebraic DCA by Biryukov and Udovenko in [BU18], which gradually evolved
into an attack method that includes higher-order algebraic structures. This attack is
designed to breach masking protection schemes by identifying algebraic combinations of
some functions, thereby constructing a predictable sensitive function. With a sufficient
number of computational traces, it can effectively pinpoint the location of shares after
masking, thus circumventing the combinatorial explosion in complexity. In practical cases,
algebraic DCA achieved remarkable success in the WhibOx contest 2017/2019 [PCY+17,
GRW20]. On the basis of DCA, Algebraic DCA has improved its attack capability against
some mask protection schemes. But algebraic DCA is still an attack method aimed at
recovering a specific key, and therefore it cannot pose an effective threat to RubikStone.

6.3.3 Differential Fault Attack

Differential fault attack (DFA) targeting white-box ciphers was proposed by Sanfelix et
al. in [SMdH15]. It modifies some specific bits by injecting faults into the white-box
implementations and then conducts a differential analysis. This attack is also ineffective
against RubikStone. Attackers cannot inject faults into the pre-generated lookup tables,
and the internals of the underlying ciphers are inaccessible.

As mentioned in [YZDZ23], side-channel analysis exploits the fact that each lookup
table relies only on a small portion of the key, which allows it to exhaustively enumer-
ate all possibilities in segments, compute the correlation of traces, and thus guess the
key. However, in RubikStone, all the lookup tables contain the full 128-bit of the keys.
Therefore, even if an attacker can fully monitor the memory access patterns of the target
key-related lookup tables, the amount of information the attacker must guess is 2128.

Therefore, all forms of attacks targeting the lookup tables eventually reduce to black-
box attacks against the underlying block cipher AES-128. If the adversary wishes to
achieve the ultimate goal of decrypting a randomly drawn ciphertext on any device, the
best strategy would be to lift all the lookup tables. The security of RubikStone against
code lifting will be analyzed in Section 6.4.
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6.4 Security against Code Lifting
In the white-box context, the adversary has full observational and control abilities over
the computation unit. The only limitation hindering the adversary from transplanting the
decryption functionality is their lack of the entire LUT pool. In fact, under the condition
of applying a LUT pool, the number of lookup tables significantly exceeds the quantity
likely to be utilized in a single encryption (or decryption) operation. The adversary must
precisely determine the index of a lookup table where an input-output pair resides to
effectively apply a specific table entry for attack. This presents an additional difficulty for
the adversary in gathering lookup table entries compared to existing white-box schemes.

However, the adversary can still gather a significant number of lookup table entries
through multiple analyses of the computation unit’s execution process, which is just the
process known as code lifting. To quantify the resilience against code lifting attacks, we
evaluate the space hardness of the scheme under known-, chosen- and adaptively chosen-
space attacks, to delineate the feasibility for the adversary to transplant decryption func-
tionality under the condition of acquiring partial lookup table entries.

Furthermore, we separately evaluate the space hardness of RubikStone-(n,nin,R,s) in
both the deterministic mode1(see Section 6.4.1 and Section 6.4.2) and the KGI mode (see
Section 6.4.3 and Section 6.4.4).

6.4.1 WSH in the Deterministic Mode

According to the discussion in [BIT16], we can obtain the following two theorems.

Theorem 1. The probability that a randomly drawn plaintext (ciphertext) can be en-
crypted (decrypted) is upper bounded by ( M

s·2nin · n
2

)
n

2·nin
·R given known or chosen space of

size M from RubikStone-(n,nin,R,s).

Proof. For a randomly drawn plaintext, it can be encrypted to the final ciphertext through
n

2·nin
·R table lookups. Because the inputs of tables are unpredictable in advance in both

known- and chosen-space attacks, the probability for the adversary with a space of size
M successfully locating the corresponding lookup table entry during each table lookup is
given by M

s·2nin · n
2

, where s · 2nin · n
2 is the total size of all the lookup tables. To calculate

the correct ciphertext, the adversary needs to possess exactly all the n
2·nin

· R relevant
table entries, so the probability is upper bounded by ( M

s·2nin · n
2

)
n

2·nin
·R.

Theorem 2. Given adaptively chosen space of size M from RubikStone-(n,nin,R,s), the
probability that a randomly drawn plaintext (ciphertext) can be encrypted (decrypted) is
upper bounded by N

2n + (1 − N
2n ) · ( M

s·2nin · n
2

)
n

2·nin
·R, where N satisfies the equation N =

⌈(log( 2nin ·s−1
2nin ·s

)(1−
M

s·2nin · n
2

))/( n
2·nin

·R)⌉.

Proof. In the process of obtaining input-output pairs, the ACSAM adversary can choose
an input after obtaining the outputs corresponding to the previous inputs. Moreover, in
the deterministic mode, the manner in which lookup tables are invoked during the encryp-
tion process of a plaintext is also predictable. Exploiting the advantage, the adversary
can ensure that a number of plaintexts’ corresponding ciphertexts can be obtained with
a probability of 100%. In other words, each lookup table entry required in the process of
encrypting these plaintexts into the final ciphertexts is present in the part controlled by
the adversary. Assuming the number of these plaintexts is N , the following equation can

1As in all existing dedicated white-box schemes, each lookup table invocation is predetermined in the
deterministic mode. It can also be interpreted as the KGI mode with fixed guidance keys.
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be obtained, where 2nin · s is the number of all the entries in the LUT pool and n
2 is the

size of each entry.

(1− (2nin · s− 1
2nin · s

)N · n
2·nin

·R) · 2nin · n

2
· s = M

Namely, the adversary can confidently know the ciphertexts corresponding to N(=
⌈(log( 2nin ·s−1

2nin ·s
)(1−

M
s·2nin · n

2
))/( n

2·nin
·R)⌉) plaintexts with adaptively chosen space of size

M . For a randomly drawn plaintext and a randomly drawn guidance key, the probability
that it is included in these N plaintexts is N

2n , where 2n is the number of all the plaintexts.
Otherwise, the probability that the adversary can successfully calculate the corresponding
ciphertexts given space of size M is upper bounded by ( M

s·2nin · n
2

)
n

2·nin
·R from Theorem 1.

The result in Theorem 2 can be obtained by adding the probabilities of the two parts.

As a corollary, we finally obtain (M,−log2(( M
s·2nin · n

2
)

n
2·nin

·R))-WSH-KSAM/CSAM
and (M,−log2( N

2n +(1− N
2n )·( M

s·2nin · n
2

)
n

2·nin
·R))-WSH-ACSAM for Rubik-Stone-(n,nin,R,s)

in the deterministic mode from Theorem 1 and Theorem 2 respectively.

6.4.2 SSH in the Deterministic Mode

The notion of SSH requires that the adversary cannot obtain a valid plaintext-ciphertext
pair, which is obviously more strict than WSH where the adversary is not allowed to
encrypt(decrypt) a randomly drawn plaintext(ciphertext).

According to Theorem 1, a randomly-drawn plaintext or ciphertext can be computed
with the probability ( M

s·2nin · n
2

)
n

2·nin
·R or less given known or chosen space of size M . Then

for 2n plaintexts, the probability of at least one computable pair is upper bounded by
1− (1− ( M

s·2nin · n
2

)
n

2·nin
·R)2n ≈ 2n · ( M

s·2nin · n
2

)
n

2·nin
·R.

Based on the analytical findings presented in Section 2.2.2, an ACSAM attacker can
compromise SSH with a 100% success probability in the deterministic mode, as long as
the number of the table entries that the attacker is allowed to access is more than the
number required to encrypt a single block.

As a corollary, we obtain (M,−log2(2n · ( M
s·2nin · n

2
)

n
2·nin

·R))-SSH-KSAM/CSAM and
(M, 0)-SSH-ACSAM for RubikStone-(n,nin,R,s) in the deterministic mode.

6.4.3 WSH in the KGI Mode

In contrast to the deterministic mode, the KGI mode dynamically determines the invo-
cation pattern of lookup tables for encrypting a message. That is, the adversary gains
knowledge of the lookup table invocation sequence for decrypting a ciphertext only dur-
ing the challenge phase. Consequently, adversaries of the KSAM, CSAM, or ACSAM
models are effectively restricted to performing random accesses during the query phase.
Since KSAM/CSAM adversaries in the deterministic mode are also limited to performing
random lookup table queries, the advantages of KSAM/CSAM adversaries are identical
under both modes.

In the KGI mode, the ACSAM adversary cannot predict the guidance key value that
will be used during the challenge phase. Consequently, the adversary lacks the ability to
deterministically decrypt specific ciphertexts, as is possible for an ACSAM adversary in
the deterministic mode. To maximize its advantage, the ACSAM adversary may attempt
to guess potential guidance key values, thereby gaining the capability to deterministi-
cally decrypt certain ciphertexts under specific guidance key values. This leads us to the
following theorem.

Theorem 3. Given adaptively chosen space of size M from RubikStone-(n,nin,R,s) in
the KGI mode, the probability that a randomly drawn ciphertext can be decrypted is upper
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bounded by N
2n ·s− n

2·nin +(1− N
2n ·s− n

2·nin ) ·( M
s·2nin · n

2
)

n
2·nin

·R, where N satisfies the equation
N = ⌈(log( 2nin ·s−1

2nin ·s
)(1−

M
s·2nin · n

2
))/( n

2·nin
·R)⌉.

Proof. By guessing the decryption guidance key, the ACSAM adversary can determinis-
tically decrypt a specific subset of ciphertexts. The size of this subset is precisely equal
to N as defined in Theorem 2. During the challenge phase, if the ciphertext provided
by the challenger falls within the subset, the adversary has a 2−log2s· n

2·nin = s
− n

2·nin

probability of accurately guessing the corresponding decryption guidance key, thereby
achieving decryption success with absolute certainty. Here, log2s · n

2·nin
is just the length

of the guidance key. As for ciphertexts outside this subset, the adversary’s success prob-
ability in decryption is identical to that of a KSAM or CSAM adversary. Aggregat-
ing the probabilities from these two distinct cases yields the total success probability as
N
2n · s− n

2·nin + (1− N
2n · s− n

2·nin ) · ( M
s·2nin · n

2
)

n
2·nin

·R.

As a corollary, we finally obtain (M,−log2(( M
s·2nin · n

2
)

n
2·nin

·R))-WSH-KSAM/CSAM
and (M,−log2( N

2n ·s− n
2·nin +(1− N

2n ·s− n
2·nin ) ·( M

s·2nin · n
2

)
n

2·nin
·R))-WSH-ACSAM for Rubik-

Stone-(n,nin,R,s) in the KGI mode.

6.4.4 SSH in the KGI Mode

AS mentioned in Section 6.4.3, the advantages of KSAM/CSAM adversaries are identical
under both modes. Therefore, the analytical conclusions drawn in Section 6.4.2 can also
be applied to the KSAM/CSAM adversaries in the KGI model. Specifically, given a
known or chosen space of size M , the probability of an adversary obtaining a pair of
plaintext-ciphertext is upper bounded by 2n · ( M

s·2nin · n
2

)
n

2·nin
·R.

As delineated by Theorem 3, given adaptively chosen space of size M from RubikStone-
(n,nin,R,s) in the KGI mode, the probability that a randomly drawn ciphertext can be
decrypted is upper bounded by N

2n ·s− n
2·nin +(1− N

2n ·s− n
2·nin ) · ( M

s·2nin · n
2

)
n

2·nin
·R. Then for

2n plaintexts, the expected number of the decryptable ciphertexts is upper bounded by
2n ·( N

2n·s
n

2·nin

+(1− N

2n·s
n

2·nin

) ·( M
s·2nin · n

2
)

n
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·R) = N

s
n
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+(2n− N

s
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) ·( M
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2
)

n
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·R.

As a corollary, we obtain (M,−log2(2n · ( M
s·2nin · n

2
)

n
2·nin

·R))-SSH-KSAM/CSAM and
(M,−log2( N

s
n

2·nin

+(2n− N

s
n

2·nin

)·( M
s·2nin · n

2
)

n
2·nin

·R))-SSH-ACSAM for RubikStone-(n,nin,R,s)
in the KGI mode.

6.4.5 Explicit Bounds on Examples

Let T denote the total size of all the lookup tables, i.e. T = s · 2nin · n
2 . The space hard-

ness of M = T/4 has received considerable attention from previous works [BI15, BIT16,
CCD+17, KLLM20, KI21]. Based on the above evaluation of RubikStone-(n,nin,R,s), we
derive the results shown in Table 4.

Table 4: Space hardness of RubikStone instantiations

Instantiations
Weak Space Hardness Strong Space Hardness

KSAM/CSAM ACSAM KSAM/CSAM ACSAM

RS-256 * (T/4, 384) (T/4, 241.38) (T/4, 128) (T/4, 0)
RSKGI-256 (T/4, 384) (T/4, 383.99) (T/4, 128) (T/4, 127.99)

* RS-256 denotes the instantiation of RubikStone-(256,8,12,216) in the deter-
ministic mode.
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The data presented in the table demonstrate that the application of the KGI model
leads to significant enhancements in both the WSH-ACSAM and SSH-ACSAM notions,
rendering them nearly equivalent to WSH-KSAM/CSAM and SSH-KSAM/CSAM. No-
tably, RSKGI-256, for the first time, achieves security guarantees in SSH-ACSAM, surpass-
ing all existing dedicated white-box schemes. This highlights the significant contribution
of the KGI model to enhancing the security of white-box schemes. By incorporating guid-
ance keys, the KGI mode strengthens the randomness of lookup table invocations, thereby
substantially diminishing the advantages of ACSAM adversaries.

7 Conclusion
This paper proposes the KGI mode of operation, tailored for white-box cryptography, and
introduces RubikStone, a dedicated white-box construction optimized for the KGI mode.
A thorough security evaluation of the scheme was conducted, alongside a performance
analysis using a complete application case RSKGI-256. By employing the KGI mode, a
unique encryption algorithm is assigned to each message, significantly enhancing secu-
rity. The incorporation of a LUT pool further increases the adaptability of white-box
implementations, allowing for tailored customization across diverse platforms with vary-
ing resources. Experimental findings indicate that our scheme not only delivers enhanced
security but also maintains excellent performance, even outperforming white-box AES
implementation, highlighting its practicality.

Nonetheless, the scheme has some limitations. Like other existing solutions, it is con-
fined to privacy-only white-box applications, leaving the challenge of secure authenticated
encryption in white-box contexts unaddressed. Moreover, while our scheme is well-suited
for environments like cloud-based DRM, where encryption terminals are shielded from
white-box attacks, it falls short in scenarios requiring authenticated encryption, such as
mobile payments, necessitating further innovation. We look forward to future advance-
ments that will address these challenges and yield superior results.
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