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Abstract

Proxy re-encryption (PRE) allows a semi-honest party (called a proxy) to convert ciphertexts
under a public key into ciphertexts under another public key. Due to this functionality, there are
various applications such as encrypted email forwarding, key escrow, and secure distributed file
systems. On the other hand, post-quantum cryptography (PQC) is one of the most important
research areas. However, there is no post-quantum PRE scheme with security against adaptive
chosen ciphertext attacks (denoted by CCA2 security) while many PRE schemes have been
proposed so far.

In this paper, we propose a bounded CCA2 secure PRE scheme based on CRYSTALS-Kyber
(Kyber, for short) which is a selected algorithm in the NIST PQC competition. To this end, we
present generic constructions of bounded CCA2 secure PRE. Our generic constructions start from
PRE with (a variant of) security against chosen plaintext attacks (denoted by CPA security) and
a new PRE’s property introduced in this paper. In order to instantiate our generic constructions,
we present a Kyber-based PRE scheme with the required property. As a result, we can construct
a bounded CCA2 secure PRE scheme from Kyber.

1 Introduction

1.1 Background and Related Work

The notion of proxy re-encryption (PRE) was introduced in [BBS98], and PRE is public key encryp-
tion (PKE) which allows a semi-honest party (called a proxy) to convert an encryption of a message
under a public key into another encryption of the same message under another public key. That is,
a user Alice with a public key pkA can generate a re-encryption key rkA→B converting ciphertexts
under pkA into ciphertexts under a public key pkB of another user Bob and give rkA→B to a proxy.
Then, this proxy can transform ciphertexts under pkA into ciphertexts under pkB, without knowl-
edge of underlying messages. Security of PRE ensures confidentiality of messages even though the
adversary has several re-encryption keys.

Due to PRE’s functionality, there are various applications such as encrypted email forward-
ing [BBS98], key escrow [ID03], secure distributed file systems [AFGH05], and secure publish-
subscribe system [PRSV17]. Hence, there are many PRE schemes such as schemes based on the
(computational or decisional) Diffi-Hellman assumption (e.g., [BBS98,CWYD10,CDL11,MPW23]),
pairing-based schemes (e.g., [AFGH05,CH07,LV08,ABH09]), and obfuscation-based schemes [CCV12,
CCL+14].

In particular, we focus on post-quantum PRE because post-quantum cryptography (PQC) is
one of the most important research areas, and there are also many researches on selected algorithms
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and candidates in the NIST (National Institute of Standards and Technology) PQC standardiza-
tion process (e.g., [DHK+21, GMP22, Xag22, MX23, AOB+24]), due to advancement of quantum
computers. As post-quantum PRE, several lattice-based PRE schemes have been proposed so far
(e.g., [CCL+14,PRSV17,FL19,ZLHZ23,ZLH24]). However, there is no post-quantum PRE scheme
with security against adaptive chosen ciphertext attacks (denoted by CCA2 security) which was
formalized in [CH07]. To the best of our knowledge, all the existing lattice-based schemes sat-
isfy security against chosen plaintext attacks, non-adaptive chosen ciphertext attacks, or honest
re-encryption attacks (denoted by CPA, CCA1, or HRA security, respectively). CPA and CCA1 se-
curity are strictly weaker than CCA2 security and may be insufficient in PRE’s applications, as
discussed in [Coh19]. Additionally, the relation between CCA2 and HRA security is not known.
Achieving CCA2 security is important because CCA2 security of PRE is one of the most desirable
security notions and provides a wide range of applications.
Related Work. Blaze, Bleumer, and Strauss introduced the notion of PRE and proposed a PRE
scheme based on the DDH assumption [BBS98]. This scheme is bidirectional, multi-hop, and CPA
secure. Ateniese, Fu, Green, and Hohenberger presented the first (single-hop) unidirectional PRE
scheme with CPA security by using bilinear maps [AFGH06]. Since Canetti and Hohenberger [CH07]
formalized CCA2 security for PRE, CCA2 secure PRE schemes have been proposed in [CH07,LV08,
CWYD10,CDL11].

As post-quantum PRE, there are only lattice-based PRE schemes. Lattice-based PRE schemes
with CPA security have been proposed in [CCL+14,PRSV17,FKKP19,LWY+21,ZLHZ23]. Fan and
Liu [FL19] gave tag-based PRE schemes based on the learning with errors (LWE) assumption and
these achieve CCA1 security. On the other hand, Cohen [Coh19] introduced the notion of HRA
security and showed that one of practical lattice-based (CPA secure) PRE schemes of [PRSV17] was
insecure in the HRA security model. Furthermore, Fuchsbauer et al. [FKKP19] formalized adaptive
CPA and HRA security notions and proposed adaptive HRA secure schemes based on the PRE
schemes of [Gen09,CCL+14]. Zhou, Liu, and Han [ZLH24] presented a LWE-based construction of
HRA secure fine-grained PRE whose notion was introduced in [ZLHZ23].

From the above, all the existing post-quantum PRE schemes do not satisfy CCA2 security.

1.2 Our Contribution

Our goal is to propose a bounded CCA2 secure post-quantum PRE scheme with compact ciphertexts.
In the game of bounded CCA2 security of PRE, the numbers of queries which the adversary can issue
to the decryption and re-encryption oracles are at most a-priori parameters td and tr, respectively.
Although bounded CCA2 security is a weak variant of CCA2 security, there are practical applications
where PKE’s bounded CCA2 security introduced in [CHH+07] is sufficient (e.g., see [CHH+07,Yon15,
HV22, ZJZ24]). Compact ciphertexts for bounded CCA2 secure PRE mean that ciphertext size is
independent of the parameters td, tr.

To achieve our goal, we propose a generic construction of bounded CCA2 secure PRE. This
construction is based on the generic construction of bounded CCA2 secure PKE [CHH+07], and its
building blocks are PRE with a variant of CPA security and one-time signatures (OTSs). To achieve
compact ciphertexts, we require the underlying PRE to satisfy an additional property. Moreover,
we present a lattice-based PRE scheme with this additional property, so that we can instantiate our
generic construction. Details on our contribution are as follows:

• We formalize a notion of bounded CCA2 security for single-hop unidirectional PRE. This
formalization is based on the definition of bounded CCA2 security for PKE [CHH+07]. As
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mentioned before, the maximum numbers of queries which the adversary can issue to the de-
cryption and re-encryption oracles are bounded by a-priori parameters td and tr, respectively.

• As a new property of PRE, we introduce re-encrytption key homomorphism in order to construct
the objective bounded CCA2 secure PRE scheme. Due to this property, we also formalize a
new security notion: RKH-CPA security, which is a variant of CPA security.

• We propose a generic construction of bounded CCA2 secure (single-hop unidirectional) PRE
with compact ciphertexts. This is based on the bounded CCA2 secure PKE scheme [CHH+07].
The building blocks of our scheme are re-encryption key homomorphic PRE with RKH-CPA
security and strongly unforgeable OTS. An overview of this construction appears in Section 1.3.

• In order to instantiate our generic construction, we present a RKH-CPA secure PRE scheme
with re-encryption key homomorphism, from CRYSTALS-Kyber (Kyber, for short) [BDK+18]
which is a selected PKE algorithm in the NIST PQC competition. This Kyber-based scheme
can convert original Kyber ciphertexts under a public key into Kyber ciphertexts under another
public key. We have chosen Kyber since this is intended to be used widely as one of standard
PQC algorithms.

As a result, we can obtain a bounded CCA2 secure post-quantum PRE scheme with compact ci-
phertexts by applying our generic construction to the Kyber-based PRE scheme. Furthermore, our
Kyber-based PRE is simple and practical because this scheme is constructed just by adding the
re-encryption key generation and re-encryption algorithms to the original Kyber algorithms (i.e.,
Kyber’s key generation, encryption, and decryption algorithms). Hence, the resulting bounded
CCA2 secure PRE scheme is also constructed simply.

1.3 Technical Overview

We explain an overview of technical aspects of constructing a bounded CCA2 secure PRE with
compact ciphertexts.
Bounded CCA2 secure PRE from CPA secure PRE. To construct bounded CCA2 secure PRE
with compact ciphertexts, we first consider a basic generic construction of bounded CCA2 secure
PRE B-PRE. This construction is based on the generic construction of bounded CCA2 secure
PKE [CHH+07], so that B-PRE achieves bounded CCA2 security. Furthermore, B-PRE is constructed
from CPA secure PRE and OTS in order to achieve the re-encryption functionality, while the generic
construction [CHH+07] starts from CPA secure PKE and OTS.

More concretely, a public key pk and a secret key sk of B-PRE consist of u public keys pk′1, . . . , pk
′
u

and u secret keys sk′1, . . . , sk
′
u of the underlying PRE, respectively, where a positive integer u is a

parameter of a cover-free famiy 1. Then, for a user i ∈ {A,B}, let pki = (pk′i,1, . . . , pk
′
i,u) and

ski = (sk′i,1, . . . , sk
′
i,u) denote the user i’s public key and secret key, respectively. A ciphertext

ctA under pkA consists of (vkA, ct′vkA , σA), where vkA is a verification key of the underlying OTS,
ct′vkA = (ct′1, . . . , ct

′
v) is a tuple of v ciphertexts of the underlying PRE, and σA is an OTS signature

on ct′vkA . Here, ct′vkA = (ct′1, . . . , ct
′
v) is a ciphertext associated with vkA, as follows: Let α1, . . . , αv ∈

{1, . . . , u} be indices determined by vkA and a cover-free family, and ct′i is a PRE ciphertext under
pk′αi

for each i ∈ {1, . . . , v}. Then the correctness of the ciphertext ctA is ensured in the same way
as the PKE scheme of [CHH+07].

1For simplicity, we employ disjunct matrices in our PRE, instead of cover-free families. Notice that the notion of
such matrices is identical to that of cover-free families.
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We consider converting ctA into a ciphertext ctB = (vkB, ct
′
vkB

, σB) under pkB. A re-encryption
key of B-PRE consists of u2 re-encryption keys rk′(A,1)→(B,1), . . . , rk

′
(A,u)→(B,u) of the underlying PRE.

Notice that each re-encryption rk(A,i)→(B,j) transforms a ciphertext under pk(A,i) into a ciphertext
under pk(B,j) (where i ∈ [u] and j ∈ [u]). When re-encrypting a ciphertext ctA, it is possible to
generate a tuple of PRE ciphertexts ct′vkB = (ct′B,1, . . . , ct

′
B,v) on another OTS verification key vkB

since it is possible to convert ct′A,i into a ciphertext ct′B,i under pk′B,βi
by using a re-encryption key

rk(A,αi)→(B,βi), where the indices β1, . . . , βv ∈ {1, . . . , u} are determined by vkB in the same way as
the indices α1, . . . , αv. Because a new verification/signing key-pair (vkB, sigkB) of OTS is generated
in the re-encryption procedure, we can generate a signature σB on ct′vkB = (ct′B,1, . . . , ct

′
B,v) by

using sigkB. Since each ctB,i is a valid ciphertext of the underlying PRE, the correctness of the
transformed ciphertext ctB = (vkB, ct

′
vkB

, σB) is also ensured.
Hence, this basic scheme B-PRE achieves the re-encryption functionality. In Appendix A, this

concrete construction and its security proof are given.
Bounded CCA2 secure PRE with Compact Ciphertexts. We explain an overview of our bounded
CCA2 secure PRE C-PRE with compact ciphertexts, and this construction is based on the basic
scheme B-PRE. The main difference between these schemes is how to create ct′vkA when generating
a ciphertext ctA = (vkA, ct

′
vkA

, σA) under pkA. More concretely, ct′vkA is an encryption of a message
under a compressed public key pk′vkA =

∑
i∈{1,...,v} pk

′
αi

. In order to ensure the correctness of this
encryption, we require the underlying PRE to satisfy an additional property: secret-key to public-key
homomorphism, which was formalized in [TW14].
Problem of Re-encryption of Our Scheme. One may think that the secret-key to public-key
homomorphism is sufficient to construct the objective PRE scheme; however, we cannot ensure the
correctness of re-encrypted ciphertexts just by requiring secret-key to public-key homomorphism. A
re-encryption key of B-PRE consists of rk′(A,1)→(B,1), . . . , rk

′
(A,u)→(B,u). When re-encrypting ctA =

(vkA, ct
′
vkA

, σA) by using re-encryption keys rk′(A,α1)→(B,β1)
, . . . , rk′(A,αv)→(B,βv)

in the same way as
B-PRE, there are no ciphertexts ctA,α1 , . . . , ctA,αv since ct′vkA is a single ciphertext under the public
key pk′vkA .

In order to resolve this, we introduce a new property of PRE called re-encryption key homomor-
phism. This property guarantees the homomorphic evaluation of rk′(A,α1)→(B,β1)

, . . . , rk′(A,αv)→(B,βv)
.

Intuitively, we can convert ct′vkA under pk′vkA into a single ciphertext ct′vkB under pk′vkB =
∑

i∈{1,...,v} pk
′
βi

by using a re-encryption key rk′vkA→vkB
=

∑
i∈{1,...,v} rk

′
(A,αi)→(B,βi)

. Due to the introduced property,
it is possible to ensure the correctness of the transformed ciphertext ctB = (vkB, ct

′
vkB

, σB). Fur-
thermore, we need to consider a new security notion due to re-encryption key homomorphism, as the
remaining problem. We formalize RKH-CPA security for PRE with this homomorphic property. This
security is defined in the same as CPA security except that the adversary can access homomorphic
re-encryption key generation oracle which returns re-encryption keys {rk′(A,i)→(B,j)}i∈{1,...,u},j∈{1,...,u}
such that the homomorphic computation such as

∑
i∈{1,...,v} rk

′
(A,αi)→(B,βi)

is possible. Finally, we
give a security proof for C-PRE by assuming the RKH-CPA security of the underlying PRE.

2 Preliminaries

Throughout this paper, we use the following notation: For a positive integer n, let [n] := {1, . . . , n}.
For n values x1, . . . , xn and a subset I ⊆ [n], let (xi)i∈I be a sequence and {xi}i∈I be a set of values
whose indices are included in I. For a value v, let |v| be the bit-length of v. If a function f : N→ R
satisfies f(λ) = o(λ−c) for any constant c > 0 and sufficiently large λ ∈ N, then f is said to be
negligible in λ and denoted by f(λ) ≤ negl(λ). A probability is an overwhelming probability if it is
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at least 1 − negl(λ). “Probabilistic polynomial-time” is abbreviated as PPT. For a positive integer
λ, let poly(λ) be a universal polynomial of λ.
Matrices and vectors. For consistency, we use capital bold letters for matrices, non-capital letters
for scalars, and bold letters for (column) vectors. For a (binary) matrix M ∈ {0, 1}u×n, we use
the standard notation M = (mi,j). For a n-dimensional vector v, vi is the i-th entry, namely
v = (v1, . . . , vn)

⊤. For a binary matrix x ∈ {0, 1}n, let supp(x) := {i ∈ [n] | xi = 1}. For
a binary matrix M = (mi,j) ∈ {0, 1}u×n and a binary vector x ∈ {0, 1}n, the binary vector
y = M ⊙x ∈ {0, 1}u is defined as ∀i ∈ [u], yi =

∨
j∈[n] s.t. mi,j=1 xj , where

∨
is the bitwise-OR. For

a binary matrix M = (mi,j) ∈ {0, 1}u×n and c ∈ [n], let ϕM (c) := {i ∈ [u] | mi,c = 1}.
Rings and distributions. Let R := Z[X]/(XN + 1) and Rq := Zq[X]/(XN + 1), where N = 2N

′

such that XN + 1 is the 2N
′−1-th cyclotomic polynomial. For a set S, s $← S means that an

element s ∈ S is chosen uniformly at random. For a probability distribution D, d ← D denotes
that d is drawn from the distribution D. Following [BDK+18], we describe the definition of the
central binomial distribution Bη for a positive integer η, as follows: Bη chooses {(ai, bi)}i∈[η]

$←
({0, 1} × {0, 1})η and outputs

∑η
i=1(ai − bi). Here v ← βη denotes that v ∈ R is drawn from a

distribution βη where each of its coefficients is chosen according to Bη. In the same way as this,
v ← βkη means that a k-dimensional vector v ∈ Rk is chosen from βkη .

Furthermore, we describe definitions of cryptographic primitives and computational assumptions
used in our schemes.

2.1 Proxy Re-encryption

Following [ABH09], we describe the syntax of (single-hop) unidirectional proxy re-encryption (PRE),
as follows:

Definition 1 (Unidirectional PRE). For a security parameter λ, letM =M(λ) be a message space.
A (single-hop) unidirectional PRE scheme consists of six polynomial-time algorithms (Setup,KeyGen,
Enc,Dec,ReKeyGen,ReEnc):

• Setup(1λ)→ pp: The randomized algorithm Setup takes as input a security parameter 1λ and
outputs a public parameter pp.

• KeyGen(pp) → (pk, sk): The randomized algorithm KeyGen takes as input a public parameter
pp and outputs a public key pk and a secret key sk. Here, both pk and sk implicitly include the
public parameter pp.

• Enc(pk,m)→ ct: The randomized algorithm Enc takes as input a pubic key pk and a message
m ∈M, and outputs a ciphertext ct.

• Dec(sk, ct) → m/⊥: The deterministic algorithm Dec takes as input a secret key sk and a
ciphertext ct, and outputs a message m or the rejection symbol ⊥.

• ReKeyGen(ski, pkj) → rki→j: The randomized or deterministic algorithm takes as input a
secrete key ski and a public key pkj, and outputs a re-encryption key rki→j.

• ReEnc(rki→j , cti) → ctj: The randomized or deterministic algorithm ReEnc takes as input a
re-encryption key rki→j and a ciphertext cti, and outputs a new ciphertext ctj.

For simplicity, we suppose that a public parameter pp is implicitly contained in the inputs of the
algorithms Enc,Dec,ReKeyGen,ReEnc.
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Definition 2 (Correctness). A single-hop unidirectional PRE scheme (Setup,KeyGen,Enc,Dec,
ReKeyGen,ReEnc) is said to be correct if, for every pp← Setup(1λ), the following holds:

Encryption Correctness. For every (pk, sk) ← KeyGen(pp) and every m ∈ M, it holds that
Dec(sk, ct) = m with overwhelming probability, where ct← Enc(pk,m).

Re-encryption Correctness. For every (pki, ski) ← KeyGen(pp), (pkj , skj) ← KeyGen(pp), ev-
ery m ∈ M, and every rki→j ← ReKeyGen(ski, pkj), it holds that Dec(skj , ctj) = m with
overwhelming probability, where ctj ← ReEnc(rki→j , cti) and cti ← Enc(pki,m).

Following [CH07,ABH09], we describe definitions of oracles in security games of PRE.

Definition 3. An adversary against a PRE scheme (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc)
may be given access to the following oracles in a security game of PRE:

• Key Generation Oracle O.KeyGen(n,UCorrupt): Given a key generation query (n,UCorrupt) such
that n is a positive integer and UCorrupt is a subset of [n], the oracle O.KeyGen computes
(pki, ski)← KeyGen(pp) for every i ∈ [n] and returns ({pki}i∈[n], {ski}i∈UCorrupt).

• Re-Encryption Key Generation Oracle O.ReKeyGen(i, j): Given a re-encryption key query
(i, j) ∈ [n] × [n], the oracle O.ReKeyGen returns ⊥ if i ∈ UHonest ∧ j ∈ UCorrupt or i = j
holds; otherwise, this oracle does the following:

– If Trk[i, j] = rki→j, O.ReKeyGen returns rki→j, where Trk is the list of re-encryption key
query-response pairs.

– If Trk[i, j] = ∅, it returns rki→j ← ReKeyGen(ski, pkj) and sets Trk[i, j]← rki→j.

• Challenge Oracle O.Challengeb(i
∗,m∗

0,m
∗
1): Given a challenge query (i∗,m∗

0,m
∗
1) (where i∗ ∈

[n] and (m0,m1) ∈M×M), the oracle O.Challengeb with b ∈ {0, 1} returns ⊥ if i∗ ∈ UCorrupt
or |m∗

0| ≠ |m∗
1| holds, and returns ct∗ ← Enc(pki,m

∗
b) otherwise.

• Decryption Oracle O.Dec(i, cti): Given a decryption query (i, cti), the oracle O.Dec returns ⊥
if (i, cti) is a derivative of (i∗, ct∗) (Definition 4), and returns Dec(ski, cti) otherwise.

• Re-Encryption Oracle O.ReEnc(i, j, cti): Given a re-encryption query (i, j, cti), the oracle
O.ReEnc returns ⊥ if j ∈ UCorrupt and (i, cti) is a derivative of (i∗, ct∗) (Definition 4); other-
wise, this oracle does the following:

– If Trk[i, j] = rki→j, O.ReEnc returns ctj ← ReEnc(rki→j , cti).

– If Trk[i, j] = ∅, it computes rki→j ← ReKeyGen(ski, pkj), returns ctj ← ReEnc(rki→j , cti),
and sets Trk[i, j]← rki→j.

Additionally, we describe the definition of derivatives of single-hop unidirectional PRE cipher-
texts in a CCA2 game, by following [CH07]:

Definition 4 (Derivatives in CCA2 security [CH07]). Let PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,
ReEnc) be a single-hop unidirectional PRE scheme. Suppose that the challenge ciphertext ct∗ under
a public key pki∗ is defined in a security game of PRE. Derivatives of (i∗, ct∗) are defined as follows:

• (i∗, ct∗) is a derivative of itself.

• If the adversary against PRE has queried the re-encryption oracle O.ReEnc on input (i, i′, cti)
and obtained the response cti′, then (i′, cti′) is a derivative of (i, cti).
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• If the adversary against PRE has queried the re-encryption key generation oracle O.ReKeyGen
on input (i, i′), and Dec(pki′ , cti′) ∈ {m∗

0,m
∗
1}, then (i′, cti′) is a derivative of (i, cti).

As a new security notion of PRE, we formalize a bounded variant of security against adaptive
chosen ciphertext attacks (denoted by bounded CCA2 security) by following [CH07,CHH+07].

Definition 5 (Bounded CCA2 security). Let td, tr be positive integers. A single-hop unidirectional
PRE scheme PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) is (td, tr)-CCA2 secure if for any
PPT adversary A = (A0,A1,A2) against PRE, its advantage Adv(td, tr)-cca2

PRE,A (λ) :=
∣∣∣Pr[Expt(td, tr)cca2

PRE,A (λ) = 1]− 1/2
∣∣∣

is negligible in λ, where the experiment Expt(td, tr)cca2
PRE,A (λ) is defined as follows:

Expt
(td, tr)-cca2
PRE,A (λ) :

Generate pp← Setup(1λ);
Set Trk ← ∅;
(n,UCorrupt, state0)← A0(λ, pp);
Run ({pki}i∈[n], {ski}i∈UCorrupt)← O.KeyGen(n,UCorrupt);
(i∗,m∗

0,m
∗
1, state1)← A

O.ReKeyGen,O.DecO.ReEnc
1 (state0, {pki}i∈[n], {ski}i∈UCorrupt);

Sample b $← {0.1};
Run ct∗ ← O.Challengeb(i

∗,m∗
0,m

∗
1);

b′ ← AO.ReKeyGen,O.Dec,O.ReEnc
2 (state1, ct

∗);
Return 1 if b = b′; otherwise, return 0,

where A is allowed to qury at most td queries to O.Dec and at most tr queries to O.ReEnc, and
(state0, state1) is internal state information.

2.2 One-Time Signatures

We describe the syntax of one-time signatures (OTSs), as follows.

Definition 6 (OTS). For a security parameter λ, let M = M(λ) be a message space. An OTS
scheme consists of three polynomial-time algorithms (KeyGen, Sign,Vrfy):

• KeyGen(1λ)→ (vk, sigk): The randomized algorithm KeyGen takes as input a security param-
eter 1λ and outputs a verification key vk and a signing key sigk.

• Sign(sigk,m) → σ: The randomized or deterministic algorithm Sign takes as input a signing
key sigk and a message m ∈M, and outputs a signature σ.

• Vrfy(vk,m, σ) → ⊤/⊥: The deterministic algorithm Vrfy takes as input a verification key vk,
a message m ∈M, and a signature σ, and it outputs ⊤ (accept) or ⊥ (reject).

Definition 7 (Correctness). An OTS scheme (KeyGen,Sign,Vrfy) is said to be correct if for every
(vk, sigk) ← KeyGen(1λ) and every m ∈ M, it holds that Vrfy(vk,m, σ) = ⊤ with overwhelming
probability, where σ ← Sign(sigk,m).

As a security notion of OTSs, we describe the definition of strong unforgeability, as follows:

Definition 8 (Strong unforgeability). An OTS scheme OTS = (KeyGen,Sign,Vrfy) is strongly
unforgeable if for any PPT adversary against OTS, its advantage Advsuf-ot

OTS,A(λ) = Pr[A wins] is
negligible in λ, where [A wins] is the event that A wins in the following security game between a
challenger and A:

7



Setup. The challenger generates (vk, sigk)← KeyGen(1λ), sets L ← ∅, and gives vk to A.

Queries. A is allowed to access the signing oracle O.Sign, where O.Sign on input a signing query
m ∈M returns ⊥ if L ≠ ∅; otherwise it returns σ ← Sign(sigk,m) and sets L ← L∪{(m, σ)}.

Forgery. A outputs a forgery (m∗, σ∗). A wins if it holds that (m∗, σ∗) /∈ L and Vrfy(vk,m∗, σ∗) =
⊤.

2.3 Module-Learning with Errors

Following [BDK+18], we describe the definition of the Hermite normal form (HNF) variant of the
module-learning with errors (MLWE) assumption, as follows:

Definition 9 (MLWE assumption). For a security parameter λ, let n = n(λ), k = k(λ), η = η(λ)
denote positive integers. The module-LWE problem is to distinguish between uniform samples
(ai, bi) ∈ Rk

q × Rq from m samples (ai, bi) ∈ Rk
q × Rq for i ∈ [m], where ai

$← Rk
q , s

$← βkη ,

and ei
$← βη are samples (uniformly) at random, and bi = aT

i s+ ei.
The module-LWE assumption MLWEm,k,η holds if for any PPT algorithm A solving the module-

LWE problem, its advantage

Advmlwe
m,k,η(A) :=

∣∣∣∣∣Pr
[
b′ = 1

∣∣∣∣∣ A
$← Rm×k

q ; (s, e)← βkη × βmη ;

b = As+ e; b′ ← A(A, b)

]
−Pr

[
b′ = 1

∣∣∣ A
$← Rm×k

q ; b
$← Rm

q ; b′ ← A(A, b)
]∣∣∣

is negligible in λ.

2.4 Disjunct Matrices

Following [DH00], we describe the definition of disjunct matrices. Notice that the notion of disjunct
matrices is identical to that of cover-free families.

Definition 10 (t-disjunct matrices). Let n̄, u be positive integers. A binary matrix M = (mi,j) ∈
{0, 1}u×n̄ is t-disjunct if for every distinct s1, . . . , st ∈ [n̄] and every j ∈ [n̄]\{s1, . . . , st}, there exists
a row q ∈ [u] such that mq,j = 1 and ∀j′ ∈ {s1, . . . , st}, mq,j′ = 0.

Without loss of generality, we suppose that the hamming weight of all column vectors of a
t-disjunct matrix M is some positive integer v.

For t-disjunct matrices, u and v are bounded by u = Ω(t2 log n) and concrete constructions with
order-optimal values of u and v = O(t log n) were proposed (e.g., see [DH00]).

3 Bounded CCA2 secure PRE with Compact Ciphertexts

In this section, we propose a generic construction of bounded CCA2 secure PRE with compact
ciphertexts. To achieve this, we formalize re-encryption key homomorphism and a security notion
associated with this property. Then, we propose a generic construction starting from re-encryption
key homomorphic PRE with our formalized security and strongly unforgeable OTS, and give a security
proof for this construction.
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3.1 Re-encryption Key Homomorphism of PRE

In order to construct a bounded CCA2 secure PRE with compact ciphertexts, we introduce re-
encryption key homomorphism as a new property of PRE. This property is inspired by the secret-
to-public key homomorphism defined in [TW14].

Definition 11 (Re-encryption key homomorphism). Let PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,
ReEnc) be a PRE scheme with the secret key space Ksk = Ksk(λ) and the public key space Kpk =
Kpk(λ) for a security parameter λ and a public parameter pp← Setup(1λ). The PRE scheme PRE
is said to be re-encryption key homomorphic if there exist the following map µ : Ksk → Kpk and
polynomial-time algorithms (HReKeyGen,ReKeyEval):

• Every (pk, sk) generated by KeyGen satisfies pk = µ(sk);

• µ is a homomorphism: i.e., for all sk, sk′ ∈ Ksk, it holds that µ(sk+ sk′) = µ(sk) · µ(sk′);

• HReKeyGen((skAi)i∈[u], (pkBj
)j∈[u])→ (rkAi→Bj )i∈[u],j∈[u]: The randomized algorithm HReKeyGen

takes as input u secret keys (skAi)i∈[u] and u public keys (pkBj
)j∈[u] (where ∀i ∈ [u],∀j ∈ [u] :

Ai ̸= Bj), and outputs u re-encryption keys (rkAi→Bj )i∈[u],j∈[u].

• ReKeyEval((rkAi→Bi)i∈[u]) → rkA→B: The deterministic or randomized algorithm ReKeyEval
takes as input u re-encryption keys (rkAi→Bi)i∈[u] and outputs a new re-encryption key rkA→B.

• For every n = poly(λ), u = poly(λ), every pp← Setup(λ), every {(pki, ski)← KeyGen(pp)}i∈[n],
every (rkAi→Bj )i∈[u],j∈[u] ← HReKeyGen((skAi)i∈[u], (pkBj

)j∈[u]) (where ∀i ∈ [u],∀j ∈ [u] :
Ai ̸= Bj∧Ai ∈ [n]∧Bj ∈ [n]), every rkA→B ← ReKeyEval((rkAi→Bi)i∈[u]), and every m ∈M, it
holds that Dec(skB, ctB) = m with overwhelming probability, where ctB ← ReEnc(rkA→B, ctA),
ctA ← Enc(pkA,m), pkA = µ(pkA1

, . . . , pkAu
), and skB = µ(skB1 , . . . , skBu).

Due to the property above, we need to introduce security against chosen plaintext attacks with
re-encryption key homomorphism (denoted by RKH-CPA security) as a new security notion, since
the two algorithms ReKeyGen and HReKeyGen are not compatible. This security is defined in the
same way as the definition of CPA security (Definition 13) except that the adversary is given access
to the homomorphic re-encryption key generation oracle O.HReKeyGen, instead of O.ReKeyGen. We
formalize RKH-CPA security, as follows:

Definition 12 (RKH-CPA security). A PRE scheme PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,
ReEnc,HReKeyGen,ReKeyEval) with key homomorphism is RKH-CPA secure if for any PPT adver-
sary A = (A0,A1,A2) against PRE, its advantage Advrkh-cpa

PRE,A (λ) :=
∣∣∣Pr[Exptrkh-cpa

PRE,A (λ) = 1]− 1/2
∣∣∣ is

negligible in λ, where the experiment Exptrkh-cpa
PRE,A (λ) is defined as follows:

Exptrkh-cpa
PRE,A (λ) :

Generate pp← Setup(1λ);
(n,UCorrupt, state0)← A0(λ, pp);
Run ({pki}i∈[n], {ski}i∈UCorrupt)← O.KeyGen(n,UCorrupt);
(i∗,m∗

0,m
∗
1, state1)← A

O.HReKeyGen
1 (state0, {pki}i∈[n], {ski}i∈UCorrupt);

Sample b $← {0.1} and run ct∗ ← O.Challengeb(i
∗,m∗

0,m
∗
1);

b′ ← AO.HReKeyGen
2 (state1, ct

∗);
Return 1 if b = b′; otherwise, return 0,

where (state0, state1) is internal state information, and the oracle O.HReKeyGen is defined as follows:
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• Homomorphic re-encryption key generation oracle O.HReKeyGen given a homomorphic re-
encryption key query ((Ai)i∈[u], (Bj)j∈[u]) such that ∀i ∈ [u] : Ai ∈ [n] ∧ Bi ∈ [n] returns
⊥ if Ai ∈ UHonest ∧ Bj ∈ UCorrupt or Ai = Bj holds for some (i, j) ∈ [u] × [u] (where
UHonest = [n]\UCorrupt), and returns (rkAi→Bj )i∈[u],j∈[u] ← HReKeyGen((skAi)i∈[u], (pkBj

)j∈[u])
otherwise.

Regarding the relation between CPA security and RKH-CPA security, it is clear that RKH-CPA
security implies CPA security. However, it seems that CPA security does not necessarily imply
RKH-CPA security. This is because O.HReKeyGen in the RKH-CPA game needs to return re-encryption
keys such that homomorphic evaluation is possible, while O.ReKeyGen in the CPA game does not
necessarily return such re-encryption keys.

3.2 Construction from Re-encryption Key Homomorphic PRE

We give a generic construction of bounded CCA2 secure PRE scheme C-PRE with compact cipher-
texts. As described before, this is constructed from RKH-CPA secure PRE and strongly unforgeable
OTS. To achieve compact ciphertexts, we require the underlying PRE scheme to be re-encryption
key homomorphic (Definition 11).

In the proposed scheme C-PRE, we employ the following cryptographic primitives:

• a re-encryption key homomorphic PRE scheme PRE′ = (PRE′.Setup,PRE′.KeyGen,PRE′.Enc,PRE′.Dec,
PRE′.ReKeyGen,PRE′.ReEnc) with two PPT algorithms PRE′.HReKeyGen,PRE′.ReKeyEval;
and

• a strongly unforgeable OTS scheme OTS = (OTS.KeyGen,OTS.Sign,OTS.Vrfy).

The proposed PRE scheme C-PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) is constructed as
follows:

• Setup(1λ)→ pp:

– Generate pp′ ← PRE′.Setup(pp).
– LetM =M(λ) be the message space, which is the same as that space of PRE′.
– Let n̄ = n̄(λ), u = u(λ) be positive integers, and let [n̄] be the verification key space of

OTS 2.
– Let M = (mi,j) ∈ {0, 1}u×n̄ be a t-disjunct matrix.

Output pp = (pp′, n̄, u,M).

• KeyGen(pp)→ (pk, sk): Parse pp = (pp′, n̄, u,M) and generate (pk′i, sk
′
i)← PRE′.KeyGen(pp′)

for i ∈ [u]. Output pk = (pk′i)i∈[u] and sk = (sk′i)i∈[u].

• Enc(pk,m)→ ct:

1. Parse pk = (pk′i)i∈[n].

2. Generate (vk, sigk)← OTS.KeyGen(1λ).
3. Compute {τ1, . . . , τv} ← ϕM (vk), where all τ1, . . . , τv ∈ [u] are distinct.
4. Compute pk′vk ←

∏
i∈[v] pk

′
τi .

2By using a collision resistant hash function, we can compress the verification key size of OTS into the space [n̄]
in order to reduce the public key size of C-PRE.
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5. Compute ct′vk ← PRE′.Enc(pk′vk,m).
6. Compute σ ← OTS.Sign(sigk, ct′vk).
7. Output ct = (vk, ct′vk, σ).

• Dec(sk, ct)→ m/⊥:

1. Parse sk = (sk′i)i∈[n] and ct = (vk, ct′vk, σ).
2. Output ⊥ if OTS.Vrfy(vk, ct′vk, σ) = ⊥ holds.
3. Compute sk′vk ←

∏
i∈[v] sk

′
τi , where {τ1, . . . , τv} ← ϕM (vk).

4. Output m′ ← PRE′.Dec(sk′vk, ct
′
vk).

• ReKeyGen(skA, pkB)→ rkA→B:

1. Parse skA = (sk′A,i)i∈[u] and pkB = (pk′B,i)i∈[u].
2. Compute (rk(A,i)→(B,j))i∈[u],j∈[u] ← PRE′.HReKeyGen((sk′A,i)i∈[u], (pk

′
B,j)j∈[u]).

3. Output rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u].

• ReEnc(rkA→B, ctA)→ ctB:

1. Parse rk = (rk(A,i)→(B,j))i∈[u],j∈[u] and ctA = (vkA, ct
′
vkA

, σA).
2. Output ⊥ if OTS.Vrfy(vkA, ct′vkA , σA) = ⊥ holds.

3. Generate (vkB, sigkB)← OTS.KeyGen(1λ).
4. Compute {α1, . . . , αv} ← ϕM (vkA) and {β1, . . . , βv} ← ϕM (vkB).
5. Compute rkvkA→vkB ← ReKeyEval((rk(A,αi)→(B,βi))i∈[v]).
6. Compute ct′vkB ← PRE′.ReEnc(rkvkA→vkB , ct

′
vkA

).
7. Compute σB ← OTS.Sign(sigkB, ct

′
vkB

).
8. Output ctB = (vkB, ct

′
vkB

, σB).

Due to the correctness of PRE′,OTS and the re-encryption key homomorphism of PRE′, the correct-
ness of C-PRE holds. Proposition 1 shows this correctness, and we omit the proof of this proposition
becuae this is proved clearly.

Proposition 1 (Correctness of C-PRE). If the PRE scheme PRE′ is correct and re-encryption
key-homomorphic, and the OTS scheme OTS is correct, then the resulting PRE scheme C-PRE
is correct.

3.3 Security Proof

The following theorem shows the bounded CCA security of C-PRE:

Theorem 1 (Security of C-PRE). Suppose that the matrix M ∈ {0, 1}u×n is a t-disjunct matrix
and nh is a number of honest users in (t, t)-CCA2 game. If the PRE scheme PRE′ is RKH-CPA
secure, and the OTS scheme OTS is strongly unforgeable, then the resulting PRE scheme C-PRE is
(t, t)-CCA2 secure.

Particularly, if there exists a PPT algorithm A against a (t, t)-CCA2 secure PRE scheme C-PRE,
then there exists a PPT algorithm B against a RKH-CPA secure PRE scheme PRE′ and a PPT
algorithm F against strongly unforgeable OTS scheme OTS, such that

Adv
(t, t)-cca2
C-PRE,A (λ) ≤ nhu2 · Advkh-cpa

PRE′,B(λ) + Advsuf
OTS,F (λ).
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Proof. Let A be a PPT adversary against the PRE scheme C-PRE. Let ct∗ = (vk∗, ct′∗vk∗ , σ
∗) denote

the challenge ciphertext. In order to prove Theorem 1, we consider security games Game0,Game1.
For i ∈ {0, 1}, let Wi be the event that the experiment in Gamei outputs 1.
Game0: This game is the same as (t, t)-CCA2 game. Then, we have Adv(t, t)-cca2

PRE,A (λ) = |Pr[W0]− 1/2|.
Game1: This game is the same as Game0 except for the following procedures of the decryption
oracle O.Dec and the re-encryption oracle O.ReEnc: At the beginning of the game, the experiment
generates (vk∗, sigk∗) ← OTS.KeyGen(1λ). For a decryption query (i, cti) (resp. a re-encryption
query (i, j, cti)) (where cti = (vki, ct

′
vki
, σi)), the experiment checks whether it holds that vki = vk∗,

cti ̸= ct∗, and OTS.Vrfy(vki, ct
′
vki
, σi) = ⊤. If so, this experiment aborts; otherwise, it returns the

result of O.Dec(i, cti) (resp., O.ReEnc(i, j, cti)).
Let Bad be the event that A issues a decryption or re-encryption query on cti = (vki, ct

′
vki
, σi)

such that vki = vk∗, cti ̸= ct∗, and OTS.Vrfy(vki, ct
′
vki
, σi) = ⊤. Then, Game0 and Game1 are

identical unless Bad occurs. Hence, we construct a PPT algorithm F breaking the strongly un-
forgeable OTS scheme OTS so that we bound the probability Pr[Bad]. On input a verification key
vk∗ of OTS, F generates pp ← Setup(1λ) and gives pp to A. Given (n,UCorrupt), F generates
(pki, ski)← KeyGen(pp) for every i ∈ [n], and returns ({pki}i∈[n], {ski}i∈UCorrupt). By using the gen-
erated key-pairs, this algorithm simulates the oracles O.ReKeyGen, O.Dec, and O.ReEnc except for the
following: For a decryption query (i.e., a re-encryption query) on cti = (vki, ct

′
vki
, σi), F aborts and

outputs (ct′vki , σi) as a forgery in the strong unforgeability game, if it holds that vki = vk∗, cti ̸= ct∗,
and OTS.Vrfy(vki, ct

′
vki
, σi) = ⊤ (i.e., Bad occurs); otherwise, this algorithm checks whether (i, cti)

is a derivative of the challenge ciphertext (i∗, ct∗) if (i∗, ct∗) is defined. If so, it returns ⊥. Otherwise
it returns m′ ← Dec(ski, cti) (resp., ctj ← ReEnc(rki→j , cti)).

Additionally, when A submits (i∗,m∗
0,m

∗
1), F chooses b $← {0, 1} and computes ct′∗vk∗ by following

the procedure of Enc(pki∗ ,m∗
b). Then, this algorithm issues ct′∗vk∗ to the signing oracle O.Sign in the

strong unforgeability game and obtains σ∗. F returns the challenge ciphertext ct∗ = (vk∗, ct′∗vk∗ , σ
∗).

Finally, when A outputs b′ ∈ {0, 1} and Bad has not occurred, F halts and aborts.
It is clear that the output of F is a valid forgery in the strong unforgeability game if Bad oc-

curs. Additionally, F completely simulates the oracles in the (t, t)-CCA game since it has all key-
pairs. Hence, the probability Pr[Bad] is at most the advantage Advsuf

OTS,F (λ) of F , and we have
|Pr[W0]− Pr[W1]| ≤ Advsuf

OTS,F (λ).
In order to bound the winning probability of A in Game1, we construct a PPT algorithm B

against the RKH-CPA security of PRE′, as follows: On input pp′ in the RKH-CPA game, B generates
(vk∗, sigk∗) ← KeyGen(1λ), sets pp = (pp′, n̄, u,M), and gives pp to A. When A submits the key
generation query (n,UCorrupt), B chooses i∗ $← [nh], j

∗ $← ϕM (vk∗), and obtains ({pk′i,j}i∈[n],j∈[u],
{sk′i,j}(i,j)∈[n]×[u]\{(i∗,j∗)}) by querying the key generation oracle in the RKH-CPA game. Here, for
simplicity, we suppose that (i, j) ∈ [n] × [u] represents a user-index in the RKH-CPA game and
let UHonest := [n]\UCorrupt. Then B sets pk′i∗,j∗ := pk′i∗,j∗ ·

(∑
j∈ϕM (vk∗)\{j∗}(pk

′
i∗,j)

−1
)

and returns
({pki}i∈[n], {ski}i∈UCorrupt), where let pki := (pki,j)j∈[u] for every i ∈ [n], let ski := (ski,j)i∈[u] for every
i ∈ [n]\{i∗}, and let ski∗ := (ski∗,j)j∈[u]\{j∗}. Additionally, B simulates the oracles O.ReKeyGen,
O.Dec, O.ReEnc, O.Challengeb, as follows:

• O.ReKeyGen(A,B): B checks whether A ∈ UHonest ∧B ∈ UCorrupt holds. If so, this algorithms
returns ⊥; otherwise, it obtains (rk(A,i)→(B,j))i∈[u],j∈[u] by issuing ((A, i)i∈[u], (B, j)j∈[u]) to the
oracle O.HReKeyGen in the RKH-CPA game, returns rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u], and sets
Trk[A,B]← rkA→B.

• O.Dec(A, ctA): For ctA = (vkA, ct
′
A, σA), B returns ⊥ if the challenge ciphertext is defined and
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ctA is its derivative. Otherwise, this algorithm does the following:

1. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.
2. Return ⊥ if it holds that vkA = vk∗, ctA = ct∗, and OTS.Vrfy(vkA, ct

′
vkA

, σA) = ⊤.
3. Return ⊥ if OTS.Vrfy(vkA, ct′vkA , σA) = ⊥ holds.
4. Compute skvkA ←

∑
i∈[v] sk

′
αi

, where {α1, . . . , αv} = ϕMA
(vkA).

5. Return m′ ← PRE′.Dec(skvkA , ct
′
vkA

).

• O.ReEnc(A,B, ctA): For ctA = (vkA, ct
′
vkA

, σA), B returns ⊥ if B ∈ UCorrupt holds and ctA is a
derivative of the challenge ciphertext. Otherwise, this algorithm does the following:

1. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.
2. Return ⊥ if it holds that vkA = vk∗, ctA = ct∗, and OTS.Vrfy(vkA, ct

′
A, σA) = ⊤.

3. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkB).
4. Return ⊥ if OTS.Vrfy(vkA, ct′vkA , σA) = ⊥ holds.

5. Generate (vkB, sigkB)← OTS.KeyGen(1λ).
6. Compute {α1, . . . , αv} ← ϕM (vkA), {β1, . . . , βv} ← ϕM (vkB).
7. If Trk[A,B] = ∅, compute (rk(A,i)→(B,j))i∈[u],j∈[u] ← HReKeyGen((skA,i)i∈[u], (pkB,j)j∈[u]).

If Trk[A,B] = rkA→B, parse rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u].
8. Compute rkvkA→vkB ←

∑
i∈[v] rk(A,αi)→(B,βi).

9. Compute ct′vkB ← ReEnc(rkvkA→vkB , ct
′
vkA

).
10. Compute σB ← OTS.Sign(sigkB, ct

′
vkB

).
11. Return ctB = (vkB, ct

′
vkB

, σB).

• O.Challengeb(i
′,m∗

0,m
∗
1): B does the following:

1. Abort and output a random bit if i∗ ̸= i′ holds.
2. Obtain the ciphertext ct′∗vk∗ by issuing ((i∗, j∗),m∗

0,m
∗
1) to the challenge oracle in the

RKH-CPA game.
3. Compute σ∗ ← OTS.Sign(sigk∗, ct′∗vk∗).
4. Return ct∗ = (vk∗, ct′∗vk∗ , σ

∗).

Finally, when A outputs b′ ∈ {0, 1}, B also outputs b′.
We analyze the algorithm B. B simulates the environment of A unless B aborts in the simu-

lation of the oracles O.ReEnc, O.Dec, O.Challengeb. To estimate the winning probability of B, we
define Abort as the event that this algorithm aborts in the simulation above (namely, A = i∗ ∧ j∗ ∈
ϕM (vkA) holds in the oracle O.Dec or O.ReEnc, or i∗ ̸= i′ holds in the oracle O.Challenge). Ad-
ditionally, let WB denote the event that B outputs a bit b′ ∈ {0, 1} such that b = b′. Then,
Pr[WB | Abort] = 1/2 and Pr[¬Abort] ≥ 1/(nhu

2) hold since Abort can occur in the simulation of
the oracles O.Dec, O.ReEnc, O.Challengeb. Hence, we have

Pr[WB] = Pr[Abort] · Pr[WB | Abort] + Pr[¬Abort] · Pr[WB | ¬Abort]

≥ 1

2

(
1− 1

nhu2

)
+

1

nhu2
· Pr[WB | ¬Abort]

=
1

2
+

1

nhu2

(
Pr[WB | ¬Abort]−

1

2

)
.
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Since the A’s advantage εA in Game1 is equivalent to |Pr[WB | ¬Abort]− 1/2|, the B’s advantage
εB = |Pr[WB]− 1/2| is at least εA/(nhu2).

From the above discussion, we obtain

Adv
(t, t)-cca2
C-PRE,A (λ) ≤ nhu2 · Advkh-cpa

PRE′,B(λ) + Advsuf
OTS,F (λ),

and complete the proof.

4 Re-Encryption Key Homomorphic PRE from Kyber

In order to instantiate our generic construction with compact ciphertexts, we give a Kyber-based
PRE scheme K-PRE with re-encryption key homomorphism and prove that K-PRE is RKH-CPA se-
cure. Concretely, the algorithms Setup,KeyGen,Enc,Dec of K-PRE are the same as those of Ky-
ber [BDK+18], and then we add the algorithms ReKeyGen,ReEnc,HReKeyGen,ReKeyEval in order
to guarantee the re-encryption functionality and re-encryption key homomorphic property of PRE.

To construct the PRE scheme K-PRE, we employ the following functions:

• The compression functions used in Kyber [BDK+18]:

– Compressq: For x ∈ Zq and d ∈ Z, the compression function Compressq with a parameter
q ∈ Z is defined as Compressq(x, d) := ⌈(2d/q) · x⌋ mod 2d.

– Decompressq: For x ∈ Zq and d ∈ Z, the compression function Decompressq with a
parameter q ∈ Z is defined as Decompressq(x, d) := ⌈(q/2d) · x⌋.

• The bit-decomposition algorithm BitDecomp given a vector x ∈ ZN
q decomposes x into its bit

representation.

• The powers-of-two algorithm Powersof2 with ℓ = ⌈log q⌉, on input a (column) vector s ∈ ZN
q ,

outputs (1, 2, . . . , 2ℓ)⊤⊗s = (s, 2s, . . . , 2ℓ−1s) ∈ ZNℓ
q , where ⊗ is the standard tensor product.

We describe the PRE scheme K-PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) with (HReKeyGen,
ReKeyEval), as follows:

• Setup(1λ)→ pp:

– LetM = {0, 1}µ be the message space, where µ = µ(λ) is a positive integer.

– For positive integers N = N(λ), N ′ = N ′(λ) and a prime q, R and Rq are defined as
R := Z[X]/(XN + 1) and Rq := Zq[X]/(XN + 1), respectively, where N = 2N

′−1 such
that XN + 1 is the 2N

′-th cyclotomic polynomial (e.g., N = 256, N ′ = 9).

– Let ℓ := ⌈log q⌉.
– For some positive integer η, βη is a distribution where each coefficient of a sample is

generated from Bη.

– Let k, dt, du, dv be positive integers.

– Sample A
$← Rk×k

q .

Output pp = (λ, µ,N,N ′, q, ℓ, η, k, dt, du, dv,A).

• KeyGen(pp)→ (pk, sk):
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1. Parse pp = (λ, µ,N,N ′, q, ℓ, η, k, dt, du, dv,A).

2. Sample (s, ŝ)← βkη × βkη and (e, ê)← βkη × βkη .

3. Compute t← Compressq(As+ e, dt) and t̂← Compressq(Aŝ+ ê, dt).

4. Output pk = (t, t̂) and sk = (s, ŝ).

• Enc(pk,m)→ ct:

1. Parse pk = (t, t̂).

2. Compute t← Decompressq(t, dt).

3. Sample (r, e1, e2)← βkη × βkη × βη.
4. Compute u← Compressq(A

⊤r + e⊤1 , du).

5. Compute v ← Compressq(t
⊤r + e2 + ⌈ q2⌋ ·m, dv).

6. Output ct = (u, v).

• Dec(sk, ct)→ m:

1. Parse sk = (s, ŝ) and ct = (u, v).

2. Compute u← Decompressq(u, du) and v ← Decompressq(v, dv).

3. Output m ← Compressq(v − s⊤u, 1) if ct is generated by the algorithm Enc. Output
m← Compressq(v − ŝ⊤u, 1) if ct is generated by the algorithm ReEnc.

• ReKeyGen(skA, pkB)→ rkA→B:

1. Parse skA = (sA, ŝA) and pkB = (tB, t̂B).

2. Compute t̂B ← Decompressq(t̂B, dt).

3. Choose RA→B,1,RA→B,2 ← βk×kℓ
η and rA→B,3 ← βkℓη .

4. Compute UA→B ← A⊤RA→B,1 +RA→B,2 ∈ Rk×kℓ
q .

5. Compute vA→B ← t̂⊤BRA→B,1 + r⊤A→B,3 − Powersof2(s⊤A) ∈ Rkℓ
q .

6. Output rkA→B = (UA→B,vA→B).

• ReEnc(rkA→B, ctA)→ ctB:

1. Parse rkA→B = (UA→B,vA→B) and ctA = (uA, vA).

2. Compute uA ← Decompressq(uA, du) and vA ← Decompressq(vA, dv).

3. Compute uB ← UA→B · BitDecomp(uA).

4. Compute vB ← vA + v⊤
A→B · BitDecomp(uA).

5. Compute uB ← Compressq(uB, du) and vB ← Compressq(vB, dv).

6. Output ctB = (uB, vB).

• HReKeyGen((skAi)i∈[u], (pkBj
)j∈[u])→ (rkAi→Bj )i∈[u],j∈[u]:

1. Parse skAi = (sAi , ŝAi) and pkBj
= (tBj , t̂Bj ) for every i ∈ [u] and j ∈ [u].

2. Compute t̂Bj ← Decompressq(t̂Bj , dt) for every j ∈ [u].

3. Choose RA→B,1,RA→B,2 ← βk×kℓ
η .
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4. Choose rAi→Bj ← βk×1
η for every i ∈ [u] and j ∈ [u].

5. Compute UA→B ← A⊤RA→B,1 +RA→B,2.

6. Compute vAi→Bj ← t̂⊤Bj
RA→B,1 + rAi→Bj ,3 − Powersof2(s⊤Ai

) for every i ∈ [u] and every
j ∈ [u].

7. Output (rkAi→Bj )i∈[u],j∈[u], where rkAi→Bj = (UA→B,vAi→Bj ).

• ReKeyEval((rkAi→Bi)i∈[u])→rkA→B
:

1. Parse rkAi→Bi = (UA→B,vAi→Bi) for every i ∈ [u].

2. Compute vA→B ←
∑

i∈[u] vAi→Bi ∈ Rkℓ
q .

3. Output rkA→B = (UA→B,vA→B).

The scheme is correct and re-encryption key homomorphic with overwhelming probability. The
formal propositions and the proofs of these properties appear in Appendix B. We give informal
propositions, as follows:

Proposition 2 (Correctness of K-PRE (informal)). The proposed PRE scheme K-PRE is correct
with overwhelming probability, under a suitable parameter setting by the algorithm Setup.

Proposition 3 (Re-encryption key homomorphism of K-PRE (informal)). The proposed PRE scheme
K-PRE is re-encrytpion key homomorphic with overwhelming probability, under a suitable parameter
setting by the algorithm Setup.

Furthermore, the following theorem shows the security of K-PRE:

Theorem 2 (RKH-CPA security of K-PRE). If the MLWEk+1,kℓ,η assumption holds, the proposed
PRE scheme K-PRE is RKH-CPA secure.

In particular, if there exists a PPT adversary A against the RKH-CPA security of K-PRE, then
there exists a PPT algorithm B against the MLWEk+1,kℓ,η problem, such that

Advrkh-cpa
K-PRE,A(λ) ≤ nh(qrkk + 3) · Advmlwe

k+1,kℓ,η(B),

where nh is the number of honest users, and qrk is the maximum number of queries issued to the
re-encryption key generation oracle.

Proof. Let A denote a PPT adversary against the RKH-CPA security of the PRE scheme K-PRE.
Let n (= nh+nc) be the total number of users whose key-pairs are generated in the RKH-CPA game,
where nh and nc are the numbers of honest users and corrupted users, respectively. Let qrk be the
maximum number of queries issued to the O.HReKeyGen oracle. The challenge ciphertext under the
public key of the user i∗ ∈ [n] is denoted by ct∗ = (u∗, v∗). In order to prove Theorem 2, we
consider security games Game0, (Game

(κ)
1 )κ∈[nh], (Game

(κ)
2 )κ∈[nh], (Game

(κ)
3 )κ∈[nh],Game4. For i ∈ [3]

and κ ∈ [nh], let W (κ)
i be the events that the experiment in Game

(κ)
i outputs 1 (i.e., b = b′ holds for

the output b′ ∈ {0, 1} of A). Let W0 and W4 denote the events that the experiments in Game0 and
Game4 output 1, respectively.
Game0: This game is the original RKH-CPA game. Then, we have Advrkh-cpa

PRE,A (λ) = |Pr[W0]− 1/2|.

Let Game
(0)
1 be the same game as Game0. Here, without loss of generality, the index τκ ∈ UHonest

of an honest user is denoted by κ = τκ for every κ ∈ [nh]. For every κ ∈ [nh], we consider a security
game Game

(κ)
1 .
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Game
(κ)
1 : This game is the same as Game

(κ−1)
1 except that t̂κ = Compressq(Aŝκ+ êκ, dt) is replaced

by a uniformly random t̂κ = Compressq(b̂κ, dt) (where b̂κ ∈ Rk
q is chosen uniformly at random),

when generating the public key pkκ = (tκ, t̂κ) of the honest user κ.
Assuming the existence of A, there exists a PPT algorithm B(κ)1 against the MLWEk,k,η problem,

because the secret value ŝκ is not necessary to simulate the environments ofA in both Game
(κ−1)
1 and

Game
(κ)
1 . By using A’s output, B(κ)1 can distinguish between a MLWEk,k,η sample and a uniformly

random one, in the straightforward way. Hence, we have
∣∣∣Pr[W (κ−1)

1 ]− Pr[W
(κ)
1 ]

∣∣∣ ≤ Advmlwe
k,k,η (B

(κ)
1 )

for every κ ∈ [nh].
Here, we define Game

(0)
2 as the same game as Game

(nh)
1 , and consider the security game Game

(κ)
2

for every κ ∈ UHonest.
Game

(κ)
2 : This game is the same as Game

(κ−1)
2 except that, on input a homomorphic re-encryption

key query ((Ai)i∈[u], (Bj)j∈[u]) such that κ = Ai for some i ∈ [u], the oracle O.HReKeyGen generates
a uniformly random UA→B ∈ Rk×kℓ

q and a uniformly random vAi→Bj ∈ Rkℓ
q for every i ∈ [u] and j ∈

[u], instead of UA→B ← A⊤RA→B,1+RA→B,2 and vAi→Bj ← t̂⊤Bj
RA→B,1+rAi→Bj−Powersof2(s⊤Ai

).

For each m ∈ [k], there exists a PPT algorithm B(m,κ)
2 distinguishing whether the m-th row

of [UA→B∥vA1→B1∥ · · · ∥vAu→Bu ] is an MLWE1,kℓ,η sample or uniformly random sample. Namely,
there exists a PPT algorithm B(m,κ)

2 solving the MLWE1,kℓ,η problem, by using A. In addition,
the total number of queries issued to the O.HReKeyGen oracle is at most qrk. Hence, we have∣∣∣Pr[W (κ−1)

2 ]− Pr[W
(κ)
2 ]

∣∣∣ ≤ qrkk · Advmlwe
k,kℓ,η(B

(κ)
2 ) by letting B(κ)2 be the PPT algorithm against the

MLWE1,kℓ,η assumption, such that Advmlwe
1,kℓ,η(B

(m,κ)
2 ) ≤ Advmlwe

k,kℓ,η(B
(κ)
2 ) for all m ∈ [k].

Here, let Game
(0)
3 be the same game as Game

(nh)
2 , and we define the security game Game

(κ)
3 for

every κ ∈ UHonest.
Game

(κ)
3 : This game is the same as Game

(κ−1)
3 except that tκ = Compressq(A

⊤sκ+eκ, dt) is replaced
by a uniformly random tκ = Compressq(bκ, dt) (where bκ ∈ Rk

q is chosen uniformly at random), when
generating the public key pkκ = (tκ, t̂κ) of the honest user κ ∈ UHonest.

There exists a PPT algorithm B(κ)3 against the MLWEk,k,η problem. Since sκ is not used in both
Game

(κ−1)
3 and Game

(κ)
3 , it is possible to simulate the views of A in the two games and construct

B(κ)3 . Hence, we have
∣∣∣Pr[W (κ−1)

3 ]− Pr[W
(κ)
3 ]

∣∣∣ ≤ Advmlwe
k,k,η (B

(κ)
3 ).

Game4: This game is the same as Game
(nh)
3 except that the challenge ciphertext ct∗ = (u∗, v∗) ←

Enc(pki∗ ,m
∗
b) is replaced by a uniformly random (u∗, v∗)

$← Rk
q ×Rq.

The secret key (sκ, ŝκ) for every κ ∈ [nh] is not used in both Game
(nh)
3 and Game4. Thus, in these

games, it is possible to simulate the environments of A without using that secret key, and construct
a PPT algorithm B(i

∗)
4 against the MLWEk,k,η problem. Hence, we have

∣∣∣Pr[W (nh)
3 ]− Pr[W4]

∣∣∣ ≤ nh ·
Advmlwe

k+1,k,η(B
(i∗)
4 ). Furthermore, Pr[W4] = 1/2 holds since the challenge ciphertext ct∗ is independent

of b ∈ {0, 1} in Game4.
Let B be a PPT algorithm against the MLWEk+1,kℓ,η problem, such that it holds that Advmlwe

k+1,kℓ,η(B
(κ)
i ) <
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Advmlwe
k+1,kℓ,η(B) for all i ∈ [4] and all κ ∈ UHonest. From the discussion above, we obtain

Advrkh-cpa
K-PRE,A(λ) ≤

3∑
i=1

nh∑
κ=1

∣∣∣Pr[W (κ−1)
i ]− Pr[W

(κ)
i ]

∣∣∣
+
∣∣∣Pr[W (nh)

3 ]− Pr[W4]
∣∣∣+ ∣∣∣∣Pr[W4]−

1

2

∣∣∣∣
≤ nh(qrkk + 3) · Advmlwe

k+1,kℓ,η(B).

This completes the proof.

5 Conclusion

We aimed at constructing a bounded CCA2 secure post-quantum PRE scheme with compact ci-
phertexts. To this end, we formalized the notions of re-encryption key homomorphism and RKH-CPA
security for PRE, and proposed a generic construction of bounded CCA2 secure PRE with com-
pact ciphertexts, which starts from re-encryption key homomorphic PRE with RKH-CPA security
and strongly unforgeable OTS. To instantiate this generic construction, we presented a Kyber-based
re-encryption key homomorphic PRE scheme with RKH-CPA security.

As a result, we can construct a bounded CCA2 secure post-quantum PRE scheme with compact
ciphertexts by applying the generic construction to our Kyber-based PRE. The resulting bounded
CCA2 PRE scheme from Kyber is simple because our Kyber-based PRE is constructed without
changing the original Kyber’s key generation, encryption, and decryption algorithms.

Although we just discussed single-hop PRE schemes, we can consider a multi-hop variant of our
PRE schemes C-PRE,K-PRE as an extension of these schemes.
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A Bounded CCA2 secure PRE from CPA secure PRE

In this section, we propose a generic construction of bounded CCA2 secure PRE, which starts
from any CPA secure PRE and strongly unforgeable OTS, and then give a security proof for this
construction.

A.1 Building Blocks

We describe the definitions of CPA security and all-or-nothing transforms, which are used to con-
struct the objective PRE scheme.

Following [ABH09], we describe the definitions of security against chosen plaintext attacks (de-
noted by CPA security) for PRE.

Definition 13 (CPA security). A PRE scheme PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc)
is CPA secure if for any PPT adversary A = (A0,A1,A2) against PRE, its advantage Advcpa

PRE,A(λ) :=∣∣∣Pr[Exptcpa
PRE,A(λ) = 1]− 1/2

∣∣∣ is negligible in λ, where the experiment Exptcpa
PRE,A(λ) is defined as

follows:

Exptcpa
PRE,A(λ) :

Generate pp← Setup(1λ);
(n,UCorrupt, state0)← A0(λ, pp);
Run ({pki}i∈[n], {ski}i∈UCorrupt)← O.KeyGen(n,UCorrupt);
(i∗,m∗

0,m
∗
1, state1)← A

O.ReKeyGen
1 (state0, {pki}i∈[n], {ski}i∈UCorrupt);

Sample b $← {0.1} and run ct∗ ← O.Challengeb(i
∗,m∗

0,m
∗
1);

b′ ← AO.ReKeyGen
2 (state1, ct

∗);
Return 1 if b = b′; otherwise, return 0,

where (state0, state1) is internal state information.

All-or-Nothing Transform. An all-or-nothing transform (AONT) splits a messageX into v secret
shares x1, . . . , xv and a public share z and recovers X from the shares (x1, . . . , xv, z). Thus, we can
regard an AONT as v-out-of-v secret sharing. We describe the definition of AONTs, as follows:

Definition 14 (AONT). An efficient randomized algorithm Trans is (µ, µ̄, v)-AONT if the following
conditions hold:

1. Given X ∈ {0, 1}µ, Trans outputs v+1 blocks (x1, . . . , xv, z) ∈ ({0, 1}µ̄)v+1, where for i ∈ [v],
xi is a secret share, and z is a public share.

2. There exists an efficient inverse function Inverse which, on input (x1, . . . , xv, z) ∈ ({0, 1}µ̄)v+1,
outputs X ∈ {0, 1}µ.

3. Trans satisfies indistinguishability, as follows: For any PPT algorithm A against Trans, its
advantage

Advind
Trans,A(λ) :=

∣∣∣∣Pr [b = b′ | b $← {0, 1}; b′ ← AO.LR(1λ)
]
− 1

2

∣∣∣∣
is negligible in λ, where O.LR is the left-or-right oracle which, on input (j,X0, X1) ∈ [v] ×
({0, 1}µ)2, returns (x1, . . . , xj−1, xj+1, . . . , xv, z).
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A.2 Construction from CPA secure PRE

We present a bounded CCA2 secure PRE scheme B-PRE which is based on a generic construc-
tion [CHH+07] of bounded CCA2 secure PKE. To ensure the re-encryption functionality, we use
CPA secure PRE while the PKE scheme of [CHH+07] uses CPA secure PKE. For simplicity, we
employ disjunct matrices while the bound CCA2 secure PKE [CHH+07] uses cover-free families.
Notice that the notion of disjunct matrices is identical to that of cover-free families.

In order to construct the proposed PRE scheme, we use the following building blocks:

• a CPA secure PRE scheme PRE′ = (PRE′.Setup,PRE′.KeyGen,PRE′.Enc,PRE′.Dec,PRE′.ReKeyGen,
PRE′.ReEnc) with the message space MPRE′ = {0, 1}µ̄, where µ̄ = µ̄(λ) is a positive integer
for a security parameter λ;

• a strongly unforgeable OTS scheme OTS = (OTS.KeyGen,OTS.Sign,OTS.Vrfy); and

• a (µ, µ̄, v)-AONT Trans with an efficient inverse function Inverse, where µ = µ(λ) and v = v(λ)
are positive integers for a security parameter λ.

The proposed PRE scheme B-PRE = (Setup,KeyGen,Enc,Dec,ReKeyGen,ReEnc) is constructed
as follows:

• Setup(1λ)→ pp:

– Generate pp′ ← PRE′.Setup(pp).

– Let µ = µ(λ), µ̄ = µ̄(λ), and v = v(λ) be positive integers.

– LetM = {0, 1}µ be the message space.

– Let n̄ = n̄(λ), u = u(λ) be positive integers, and let [n̄] be the verification key-space of
OTS.

– Let M = (mi,j) ∈ {0, 1}u×n̄ be a t-disjunct matrix, where the hamming weight of each
column vector is v.

Output pp = (pp′, µ, µ̄, v, n̄, u,M).

• KeyGen(pp)→ (pk, sk): Parse pp = (pp′, µ, µ̄, v, n̄, u,M) and generate (pk′i, sk
′
i)← PRE′.KeyGen(pp′)

for i ∈ [u]. Output pk = (pk′i)i∈[u] and sk = (sk′i)i∈[u].

• Enc(pk,m)→ ct:

1. Parse pk = (pk′i)i∈[u].

2. Generate (vk, sigk)← OTS.KeyGen(1λ).

3. Compute (x1, . . . , xv, z)← Trans(m).

4. Compute {τ1, . . . , τv} ← ϕM (vk), where all τ1, . . . , τv ∈ [u] are distinct.

5. Compute ct′i ← PRE′.Enc(pkτi , xi) for every i ∈ [v].

6. Compute σ ← OTS.Sign(sigk, (ct′1 ∥ · · · ∥ ct′v ∥ z)).
7. Output ct = (vk, (ct′i)i∈[v], z, σ).

• Dec(sk, ct)→ m/⊥:

1. Parse sk = (sk′i)i∈[u] and ct = (vk, (ct′i)i∈[v], z, σ).
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2. Output ⊥ if OTS.Vrfy(vk, (ct′1 ∥ · · · ∥ ct′v ∥ z), σ) = ⊥ holds.
3. Compute {τ1, . . . , τv} ← ϕM (vk).
4. Compute x′i ← PRE′.Dec(sk′τi , ct

′
i) for every i ∈ [v].

5. Output m′ ← Inverse(x′1, . . . , x
′
v, z) if x′i ̸= ⊥ holds for every i ∈ [v]; otherwise, output ⊥.

• ReKeyGen(skA, pkB)→ rkA→B:

1. Parse skA = (sk′A,i)i∈[u] and pkB = (pk′B,i)i∈[u].
2. For i ∈ [u] and j ∈ [u], compute rk(A,i)→(B,j) ← PRE′.ReKeyGen(sk′A,i, pk

′
B,j).

3. Output rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u].

• ReEnc(rkA→B, ctA)→ ctB:

1. Parse rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u] and ctA = (vkA, (ct
′
A,i)i∈[v], z, σA).

2. Output ⊥ if OTS.Vrfy(vkA, (ct′A,1 ∥ · · · ∥ ct′A,v ∥ z), σA) = ⊥ holds.

3. Generate (vkB, sigkB)← OTS.KeyGen(1λ).
4. Compute {α1, . . . , αv} ← ϕM (vkA) and {β1, . . . , βv} ← ϕM (vkB).
5. For every i ∈ [v], compute ct′B,i ← PRE′.ReEnc(rk(A,αi)→(B,βi), ct

′
A,i).

6. Compute σB ← OTS.Sign(sigkB, (ct
′
B,1 ∥ · · · ∥ ct′B,v ∥ z)).

7. Output ctB = (vkB, (ct
′
B,i)i∈[v], z, σB).

Proposition 4 shows that the correctness of PRE follows that of the underlying primitives PRE′,
OTS, and (Trans, Inverse). This proposition can be proved clearly. Hence, we omit this proof.

Proposition 4 (Correctness of B-PRE). If the PRE scheme PRE′, the OTS scheme OTS are correct,
and Trans with Inverse is (µ, µ̄, v)-AONT, then the resulting PRE scheme B-PRE is correct.

A.3 Security Proof

Theorem 3 shows the bounded CCA2 security (i.e., (t, t)-CCA2 security) of the proposed PRE scheme
B-PRE.

Theorem 3 ((t, t)-CCA2 security of PRE). Suppose that the matrix M ∈ {0, 1}u×n̄ is a t-disjunct
matrix, and nh is the number of honest users in the (t, t)-CPA2 game. If the PRE scheme PRE′

is CPA secure, the OTS scheme OTS is strongly unforgeable, and the algorithm Trans is (µ, µ̄, v)-
AONT, then the resulting PRE scheme B-PRE is (t, t)-CCA2 secure.

Particularlly, if there exists a PPT algorithm A against the (t, t)-CCA2 secure PRE B-PRE, then
there exist PPT adversaries B1 against the CPA secure PRE PRE′, F against the strongly unforgeable
OTS OTS, and B2 against (µ, µ̄, v)-AONT Trans such that

Adv
(t, t)-cca2
B-PRE,A (λ) ≤ nhu2 · Advcpa

B1,PRE
′(λ) + Advsuf

OTS,F (λ) + nhu
2 · Advind

B2,AONT(λ).

Proof. Let A be a PPT adversary against the PRE scheme B-PRE. Let ct∗ = (vk∗, (ct′∗i )i∈[v], z
∗, σ∗)

denote the challenge ciphertext under pki∗ .
For each i ∈ {0, 1}, we consider a security game Gamei and define Wi as the event that the

experiment in Gamei outputs 1, in order to prove Theorem 3.

Game0: This game is the same as the (t, t)-CCA2 security game. Then, we have Adv
(t, t)-cca2
PRE,A (λ) =

|Pr[W0]− 1/2|.
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Game1: This game is the same as Game0 except for the following procedures of the decryption oracle
O.Dec and the re-encryption oracle O.ReEnc: For a decryption or re-encryption query on cti = (vki,
(ct′i,j)j∈[v], zi, σi), the oracle O.Dec or O.ReEnc checks whether it holds that vki = vk∗, cti ̸= ct∗, and
OTS.Vrfy(vki, (ct

′
i,1∥ · · · ∥ct′i,v∥zi), σi) = ⊤. If so, the experiment aborts; otherwise, O.Dec computes

m′ ← Dec(ski, cti) and returns m′ ∈M∪ {⊥}.
Let Bad be the event that A issues a decryption or re-encryption query on cti such that

vki = vk∗, cti ̸= ct∗, and OTS.Vrfy(vki, (ct
′
i,1∥ · · · ∥ct′i,v∥zi), σi)) = ⊤. Then, Game0 and Game1

are identical unless Bad occurs. Hence, we bound the probability that Bad occurs. In order to
estimate this upper bound, we construct a PPT algorithm F breaking the strongly unforgeable OTS
scheme OTS. On input a verification key vk∗ of OTS, F generates pp ← Setup(1λ) and gives
pp to A. When A submits (n,UCorrupt), F generates (pki, ski) ← KeyGen(pp) for every i ∈ [n]
and returns ({pki}i∈[n], {ski}i∈UCorrupt). By using these generated key-pairs, F simulates the oracle
O.ReKeyGen. Additionally, the oracle O.Dec (resp., O.ReEnc) is simulated as follows: For a decryp-
tion query (i, cti) (resp., (i, j, cti)) (where cti = (vki, (ct

′
i,j)j∈[v], zi, σi)), F aborts and outputs a

forgery ((ct′i,1∥ · · · ∥ct′i,v∥zi), σi) in the strong unforgeability game of OTS, if it holds that vki = vk∗,
cti ̸= ct∗, and OTS.Vrfy(vki, (ct

′
i,1∥ · · · ∥ct′i,v∥zi), σi)) = ⊤ (i.e., Bad occurs); otherwise, the algorithm

computes m′ ← Dec(ski, cti) and returns m′ ∈ M ∪ {⊥} (resp., computes ctj ← ReEnc(rki→j , cti)
and returns ctj).

Furthermore, when A submits a challenge query (i∗,m∗
0,m

∗
1), F chooses b

$← {0, 1} com-
putes ((ct′∗i )i∈[v], z

∗) by following the procedure of Enc(pki∗ ,m
∗
b). Then, this algorithm issues

(ct′∗1 ∥ · · · ∥ct′∗v ∥z∗) to the signing oracle in the strong unforgeability game and obtains σ∗. And then,
F returns the challenge ciphertext ct∗ = (vk∗, (ct′∗i )i∈[v], z

∗, σ∗). Finally, when A outputs b′ ∈ {0, 1}
and Bad has not occurred, F halts and outputs 0.

We analyze the algorithm F against OTS. It is clear that the output of F is a valid forgery in
the strong unforgeability game if Bad occurs. Unless this event happens, F completely simulates the
oracles in the (t, t)-CCA2 game by using all key-pairs. Hence, the probability Pr[Bad] is at most the
advantage Advsuf

OTS,F (λ) of F , and we have |Pr[W0]− Pr[W1]| ≤ Advsuf
OTS,F (λ).

In order to bound the winning probability of A in Game1, we consider the following exper-
iment B: At the beginning of the (t, t)-CCA2 game, B gives pp ← Setup(1λ) to A and sim-
ulates ({pki}i∈[n], {ski}i∈UCorrupt) ← O.KeyGen(n,UCorrupt). And then, B generates (vk∗, sigk∗) ←
OTS.KeyGen(1λ), chooses indices i∗ $← [nh], j∗

$← ϕM (vk∗), and simulates the environment of A
except for the following: The experiment aborts and outputs a random bit if A issues

• a decryption or re-encryption query on (i∗, (vki∗ , (ct
′
i∗,j)j∈[v], zi∗ , τi∗)) such that j∗ ∈ ϕM (vki∗);

or

• a challenge query (i′,m∗
0,m

∗
1) such that i∗ ̸= i′.

Finally, when A outputs b′ ∈ {0, 1}, B also outputs b′.
For the event WB that b = b′ holds in the experiment B, we estimate the probability Pr[WB].

Let Abort be the event that B aborts in the simulation of the decryption or re-encryption oracle.
Notice that Pr[WB | Abort] = 1/2. Due to the t-disjunct property of M , it holds that Pr[¬Abort] ≥

24



1/(nhu
2). Then, we have

Pr[WB] = Pr[Abort] · Pr[WB | Abort] + Pr[¬Abort] · Pr[WB | ¬Abort]

≥ 1

2

(
1− 1

nhu2

)
+

1

nhu2
· Pr[WB | ¬Abort]

=
1

2
+

1

nhu2

(
Pr[WB | ¬Abort]−

1

2

)
.

The A’s advantage εA in Game1 is equivalent to |Pr[WB | ¬Abort]− 1/2|. Hence, the B’s advan-
tage εB = |Pr[WB]− 1/2| is at least εA/(nhu2). Here, let ϕM (vk∗) := {τ∗1 , . . . , τ∗v } and τ∗k∗ := j∗

(where τ∗1 , . . . , τ∗v ∈ [u] and k∗ ∈ [v]). In order to bound εB, we change the environment of A.
In this modified environment, the j∗-th share x∗j∗ generated by Trans is replaced with the all-zero
string 0

|x∗
j∗ |, when producing the challenge ciphertext. The probability Pr[WB] is defined as p(0),

and the probability that WB occurs in the modified environment is defined as p(1). Then we have
εB ≤ |p(0) − p(1)|+ |p(1) − 1/2|.

In order to bound |p(0) − p(1)|, we construct a PPT algorithm B1 against the CPA security
of PRE′, as follows: On input the public parameter pp′ in the CPA game, B1 generates pp by
following the algorithm Setup and gives pp to A. When A submits the key generation query
(n,UCorrupt), B1 generates (vk∗, sigk∗) ← OTS.KeyGen(1λ), chooses i∗ $← [n], j∗

$← ϕM (vk∗), and
obtains ({pk′i,j}(i,j)∈[n]×[u], {sk′i,j}(i,j)∈[n]×[u]\{(i∗,j∗)}) by issuing a key generation query (nu,U ′

Corrupt)
such that U ′

Corrupt = {(i, j)}\{(i∗, j∗)}, in the CPA game. Here, for simplicity, we suppose that
(i, j) ∈ [n]×[u] represents a user in the CPA game. Then B1 returns ({pki}i∈[n], {ski}i∈UCorrupt), where
let pki := (pk′i,j)j∈[u] for every i ∈ [n], let ski := (sk′i,j)j∈[u] for every i ∈ [n]\{i∗}, and let ski∗ :=
(sk′i∗,j)j∈[u]\{j∗}. Furthermore, B1 simulates the oracles O.ReKeyGen, O.Dec, O.ReEnc, O.Challengeb,
as follows:

• O.ReKeyGen(A,B): If (A ∈ UHonest ∧B ∈ UCorrupt) or A = B holds, B1 returns ⊥; otherwise it
does the following:

– (Case A = i∗): Obtain rk(i∗,j∗)→(B,j) by issuing ((i∗, j∗), (B, j)) to the re-encryption key
generation oracle in the CPA game, for every j ∈ [u]. For every i ∈ [u]\{j∗} and every
j ∈ [u], compute rk(i∗,i)→(B,j) ← PRE′.ReKeyGen(sk′i∗,i, pk

′
B,j).

– (Case A ̸= i∗): Compute rk(A,i)→(B,j) ← PRE′.ReKeyGen(sk′A,i, pk
′
B,j) for every i ∈ [u]

and every j ∈ [u].

Finally, B1 returns rkA→B = (rk(A,i)→(B,j))i∈[u],j∈[u].

• O.Dec(A, ctA): B1 parses ctA = (vkA, (ct
′
A,i)i∈[v], z, σA) and does the following:

1. Return ⊥ if (A, ctA) is a derivative of (i∗, ct∗).

2. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.

3. Return ⊥ if it holds that vkA = vk∗, ctA ̸= ct∗ and OTS.Vrfy(vkA, (ct
′
A,1∥ · · · ∥ct′A,v∥z),

σA) = ⊤.

4. Return ⊥ if OTS.Vrfy(vkA, (ct′A,1∥ · · · ∥ct′A,v∥z), σA) = ⊥ holds.

5. Compute x′i ← PRE′.Dec(sk′A,i, ct
′
A,i) for every i ∈ [v],.

6. Return m′ ← Inverse(x′1, . . . , x
′
v, z) if x′i ̸= ⊥ holds for every i ∈ [v]; otherwise return ⊥.

• O.ReEnc(A,B, ctA): B1 parses ctA = (vkA, (ct
′
A,i)i∈[v], z, σA) and does the following:
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1. Return ⊥ if B ∈ UCorrupt holds and (A, ctA) is a derivative of (i∗, ct∗).

2. Abort and output a random bit if A = i∗ ∧ j∗ ∈ ϕM (vkA) holds.

3. Return ⊥ if it holds that vkA = vk∗, ctA ̸= ct∗ and OTS.Vrfy(vkA, (ct
′
A,1∥ · · · ∥ct′A,v∥z),

σA) = ⊤.

4. Return ⊥ if OTS.Vrfy(vkA, (ct′A,1∥ · · · ∥ct′A,v∥z), σA) = ⊥ holds.

5. Generate (vkB, sigkB)← OTS.KeyGen(1λ).

6. Compute rk(A,i)→(B,j) ← PRE′.ReKeyGen(sk′A,i, pk
′
B,j) for every i ∈ [u] and j ∈ [u].

7. Let {α1, . . . , αv} ← ϕM (vkA) and {β1, . . . , βv} ← ϕM (vkB).

8. Compute ct′B,i ← PRE′.ReEnc(rk(A,αi)→(B,βi), ct
′
A,i) for every i ∈ [v].

9. Compute σB ← OTS.Sign(sigkB, (ct
′
B,1∥ · · · ∥ct′B,v∥z)).

10. Return ctB = (vkB, (ct
′
B,i)i∈[v], z, σB).

• O.Challengeb(i
′,m∗

0,m
∗
1): B1 does the following:

1. Abort and output a random bit if i∗ ̸= i′.

2. Let {τ∗1 , . . . , τ∗v } ← ϕM (vk∗).

3. Compute (x∗1, . . . , x
∗
v, z

∗)← Trans(m∗
b).

4. Obtain ct′∗j∗ by submitting a challenge query (x∗j∗ , 0
µ̄) to the CPA game.

5. For every j ∈ [v]\{j∗}, then compute ct′∗j ← PRE′.Enc(pk′τ∗j , x
∗
j ).

6. Compute σ∗ ← OTS.Sign(sigk∗, (ct′∗1 ∥ · · · ∥ct′∗v ∥z∗)).
7. Return ct∗ = (vk∗, (ct′∗i )i∈[v], z

∗, σ∗).

When A finally outputs the guessing bit b′ ∈ {0, 1}, B1 outputs 1 if b = b′; otherwise, it outputs 0.
We analyze the algorithm B1. Unless A issues a decryption query or re-encryption query on (A,

(vkA, (ct
′
A,i)i∈[v], zA, σA)) such that A = i∗ ∧ j∗ ∈ ϕM (vkA), B1 can simulate the oracles O.Dec and

O.ReEnc. The t-disjunct property of M ensures that A cannot issue such a query. Additionally,
B1 wins the CPA game by employing A’s output, in the straightforward way. Hence, we have∣∣p(0) − p(1)∣∣ ≤ Advcpa

PRE′,B1
(λ).

In order to bound the winning probability in the modified environment (i.e., |p(1) − 1/2|), we
construct a PPT algorithm B2 against (µ, µ̄, v)-AONT Trans. By using A, we construct B2 given the
oracle O.LR in the indistinguishability game of AONT: At the beginning of the (t, t)-CCA game, B2 gives
pp ← Setup(1λ) to A. When A issues (n,UCorrupt), B2 generates (vk∗, sigk∗) ← OTS.KeyGen(1λ),

chooses i∗ $← [n], j∗
$← ϕM (vk∗), and generates all key-pairs (pki, ski) ← KeyGen(pp) for all users

i ∈ [n]. And then, B2 simulates the oracles O.ReKeyGen, O.Dec, O.ReEnc by using the generated
key-pairs. Furthermore, B2 simulates the oracle O.Challengeb(i

′,m∗
0,m

∗
1) as follows:

1. Abort and output a random bit if i∗ = i′.

2. Obtain ((x∗i )i∈[v]\{j∗}, z
∗) by issuing (m∗

b , 0
µ) to the given oracle O.LR.

3. Compute ct′∗i ← PRE′.Enc(pkτ∗i , x
∗
i ) for every i ∈ [v], where {τ∗1 , . . . , τ∗v } = ϕM (vk∗).

4. Compute σ∗ ← OTS.Sign(sigk∗, (ct′∗1 ∥ · · · ∥ ct′∗v ∥ z∗)).

5. Return ct∗ = (vk∗, (ct′∗i )i∈[v], z
∗, σ∗).
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When A outputs the guessing bit b′ ∈ {0, 1}, B2 also outputs b′.
B2 simulates the oracles O.KeyGen, O.ReKeyGen, O.Dec, O.ReEnc completely since it has the key-

pairs of all users. The oracle O.Challenge is also simulated correctly since B2 can generate the
challenge ciphertext without knowledge of x∗j∗ . Hence, the B2’ advantage Advind

Trans,B2
(λ) is at least∣∣p(1) − 1/2

∣∣. Therefore, we have Advcpa
PRE′,B1

(λ) + Advind
Trans,B2

(λ) ≥ εA/(nhu). From the discussion
above, we obtain

Adv
(t, t)-cca2
PRE,A (λ) ≤ nhu2 · Advcpa

B1,PRE
′(λ) + nhu

2 · Advind
AONT,B2

(λ) + Advsuf
OTS,F (λ).

and complete the proof.

B Omitted Proofs for Our Kyber-based PRE Scheme

In this section, we give proofs of the correctness and re-encryption key homomorphism of our scheme
K-PRE.

In order to show the correctness and re-encryption key homomorphic property of K-PRE, we employ
the distribution ψk

d over R which is defined in [BDK+18]. Following [BDK+18], we describe the
definition of ψk

d for positive integers d and k, as follows:

1. Choose y ← Rk uniformly at random.

2. Return (y − Decompressq(Compressq(y, d), d))mod± q.

B.1 Proof of Correctness

We show the correctness of K-PRE.

Proposition 5 (Correctness of K-PRE). Let pp = (λ, µ,N,N ′, q, ℓ, η, k, dt, du, dv,A) be a public
parameter determined by running Setup(1λ) and let A,B be distinct users. Then, the key-pairs of
these users and a ciphertext under the user A ’s public key are defined as follows:

• Let (pkA, skA) = ((tA, t̂A), (sA, ŝA)) and (pkB, skB) = ((tB, t̂B), (sB, ŝB)) be key-pairs of the
users A and B, respectively, where ti = Compressq(Asi + ei, dt) and t̂i = Compressq(Aŝi +
êi, dt) for i ∈ {A,B};

• Let ctA = (uA, vA) be a ciphertext generated by running Enc(pkA,m) for an arbitrary mes-
sage m ∈ M, where tA = Decompress(tA, dt), u = Compressq(A

⊤r + e⊤1 , du), and v =

Compressq(t
⊤
Ar + e2 + ⌈ q2⌋ ·m, dv).

• Let ctB = (uB, vB) be a re-encrypted ciphertext running ReEnc(rkA→B, ctA).

Let ct,A, ct,B ← ψk
dt

, cu,A, cu,B ← ψk
du

, cv,A ← ψdv . Denote

w := e⊤Ar + e2 + cv,A + c⊤t,Ar − s⊤Ae1 − s⊤Acu,A;

ŵ := w + (ê⊤B + c⊤t,B)BitDecomp(uA)

+ r⊤A→B,3 · BitDecomp(uA)− ŝ⊤BRA→B,2 · BitDecomp(uA)− ŝ⊤Bcu,B;

δ := Pr [∥ŵ∥∞ ≥ q/4] .

Then, the proposed PRE scheme K-PRE is correct with probability 1− δ.
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Proof. We consider an arbitrary message m ∈ M when showing the encryption correctness and re-
encryption correctness of K-PRE. Recall that pp = (λ, µ,N,N ′, q, ℓ, η, k, dt, du, dv,A) is a public
parameter determined by running Setup(1λ) and let A,B be two distinct users. Then, these users’
key-pairs and an encryption of m are defined as follows:

• (pkA, skA) = ((tA, t̂A), (sA, ŝA)) and (pkB, skB) = ((tB, t̂B), (sB, ŝB)) are key-pairs of the
users A and B, respectively, where ti = Compressq(Asi + ei, dt) and t̂i = Compressq(Aŝi +
êi, dt) for i ∈ {A,B}; and

• ctA = (uA, vA) is a ciphertext generated by running Enc(pkA,m), where u = Compressq(A
⊤r+

e⊤1 , du) and v = Compressq(t
⊤
Ar + e2 + ⌈ q2⌋ ·m, dv).

First we show the encryption-correctness of K-PRE. Then, the public value tA is represented as

tA = Decompressq(Compressq(AsA + eA, dt), dt)

= AsA + eA + ct,A

for some value ct,A ← ψk
dt

.
Additionally, the value uA of the ciphertext ctA = (uA, vA) under pkA is

uA = Decompressq(Compressq(A
⊤
ArA + eA,1, du), du)

= A⊤r + e1 + cu,A,

for some cu,A ← ψk
du

. And the value vA is

vA = Decompressq(Compressq(t
⊤
Ar + e2 +

⌈q
2

⌋
·m, dv), dv)

= t⊤Ar + e2 + cv,A +
⌈q
2

⌋
·m

= (AsA + eA + ct,A)
⊤r + e2 + cv,A +

⌈q
2

⌋
·m

= (AsA + eA)
⊤r + e2 + cv,A +

⌈q
2

⌋
·m+ c⊤t,Ar,

for some cv,A ← ψdv .
Then, we have

vA − s⊤AuA = (AsA + eA)
⊤r + e2 + cv,A +

⌈q
2

⌋
·m+ c⊤t,Ar

− s⊤A(A
⊤r + e1 + cu,A)

=
⌈q
2

⌋
·m+ e⊤Ar + e2 + cv,A + c⊤t,Ar − s⊤Ae1 − s⊤Acu,A.

Let w := e⊤Ar + e2 + cv,A + c⊤t,Ar − s⊤Ae1 − s⊤Acu,A.
We define m′ = Compressq(vA − s⊤AuA, 1) and see that⌈q

4

⌋
≥

∥∥∥vA − s⊤AuA −
⌈q
2

⌋
·m′

∥∥∥
∞

=
∥∥∥w +

⌈q
2

⌋
·m−

⌈q
2

⌋
·m′

∥∥∥
∞
.

Due to the triangle inequality and the fact that ∥w∥∞ < ⌈q/4⌋, it holds that∥∥∥⌈q
2

⌋
· (m−m′)

∥∥∥
∞
< 2

⌈q
4

⌋
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This implies m = m′, and the proof of the encryption correctness is completed.
Next, we show the re-encryption correctness of K-PRE. For simplicity, we also employ the above

value of (tA,uA, vA). Then, a re-encryption key rkA→B = (UA→B,vA→B) generated by running
ReKeyGen(skA, pkB) are

UA→B = A⊤RA→B,1 +RA→B,2 ∈ Rk×kw
q ; and

v⊤
A→B = t̂⊤BRA→B,1 + r⊤A→B,3 − Powersof2(s⊤A).

Additionally, a re-encrypted ciphertext ctB = (uB, vB) is generated by using the value of (UA→B,vA→B),
as follows:

uB =
(
A⊤

BRA→B,1 +RA→B,2

)
· BitDecomp(uA);

vB = vA + (t̂⊤BRA→B,1 + r⊤A→B,3 − Powersof2(s⊤A)) · BitDecomp(uA).

Moreover, the decompressed value of (uB, vB) is

uB = Decompressq(Compressq(uB, du))

= A⊤RA→B,1 · BitDecomp(uA) +RA→B,2 · BitDecomp(uA) + cu,B;

vB = Decompressq(Compressq(vB, du))

= vA + (t̂⊤BRA→B,1 + r⊤A→B,3 − Powersof2(s⊤A)) · BitDecomp(uA) + cv,B

= (vA − s⊤AuA) + t̂⊤BRA→B,1 · BitDecomp(uA) + r⊤A→B,3 · BitDecomp(uA) + cv,B,

for some (cu,B, cv,B) ∈ Rk ×R. Additionally, the public value t̂B is

t̂B = Decompressq(Compressq(AŝB + êB, dt), dt)

= AŝB + êB + ct,B

for some ct,B ∈ Rk. Hence, we have

vB − ŝ⊤BuB

= (vA − s⊤AuA) + t̂⊤BRA→B,1 · BitDecomp(uA) + r⊤A→B,3 · BitDecomp(uA) + cv,B

− ŝ⊤B(A
⊤RA→B,1 · BitDecomp(uA) +RA→B,2 · BitDecomp(uA) + cu,B)

=
(
w +

⌈q
2

⌋
m
)
+ (t̂⊤BRA→B,1 − (AŝB)

⊤RA→B,1)BitDecomp(uA)

+ r⊤A→B,3 · BitDecomp(uA)− ŝ⊤BRA→B,2 · BitDecomp(uA)− ŝ⊤Bcu,B

=
(
w +

⌈q
2

⌋
m
)
+ (ê⊤B + c⊤t,B)BitDecomp(uA)

+ r⊤A→B,3 · BitDecomp(uA)− ŝ⊤BRA→B,2 · BitDecomp(uA)− ŝ⊤Bcu,B.

The error-term ŵ of (vB − ŝ⊤BuB) is defined as

ŵ := w + (ê⊤B + c⊤t,B)BitDecomp(uA)

+ r⊤A→B,3 · BitDecomp(uA)− ŝ⊤BRA→B,2 · BitDecomp(uA)− ŝ⊤Bcu,B.

In addition, let m′ := Compressq(vB − ŝ⊤BuB, 1). Hence, if ∥ŵ∥∞ < ⌈q/4⌋, it holds that⌈q
4

⌋
≥

∥∥∥vB − s⊤BuB −
⌈q
2

⌋
·m′

∥∥∥
∞

=
∥∥∥ŵ +

⌈q
2

⌋
·m−

⌈q
2

⌋
·m′

∥∥∥
∞
.
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Due to the triangle inequality and the fact ∥ŵ∥∞ < ⌈q/4⌋, we obtain∥∥∥⌈q
2

⌋
· (m−m′)

∥∥∥
∞
< 2 ·

⌈q
4

⌋
.

This indicates m = m′. Therefore, the reencryption-correctness is shown.
From the discussion above, we complete the proof of the correctness of the proposed PRE scheme

K-PRE.

B.2 Proof of Re-Encryption Key Homomorphism

We prove the re-encryption key homomorphism of K-PRE.

Proposition 6 (Re-encryption key homomorphism of K-PRE). Let pp = (λ, µ,N,N ′, q, ℓ, η, k, dt, du,
dv,A) be a public parameter determined by running Setup(1λ), and let A = {A1, . . . , Au} and
B = {B1, . . . , Bu} be two sets of distinct users. Then, the key-pairs of these users and a ciphertext
are defined as follows:

• For each i ∈ [u], let (pkAi
, skAi) = ((tAi , t̂Ai), (sAi , ŝAi)) (resp. (pkBi

, skBi) = ((tBi , t̂Bi), (sBi , ŝBi)))
be the key-pair of the user Ai (resp. the user Bi), where tAi = Compressq(AsAi + eAi , dt) and
t̂Bi = Compressq(AŝBi + êBi , dt);

• Let ctA = (uA, vA) be a ciphertext generated by running Enc(pkA,m) for an arbitrary mes-
sage m ∈ M, where pkA = tA =

∑
i∈[u] tAi , uA = Compressq(A

⊤r + e⊤1 , du) and vA =

Compressq(t
⊤
Ar + e2 + ⌈ q2⌋ ·m, dv).

Let ct,A, ct,B ← ψk
dt

, cu ← ψk
du

, cv ← ψdv . Let (UA→B,vAi→Bj )i∈[u],j∈[u] ← HReKeyGen((skAi)i∈[u], (pkBj
)j∈[u])

and (UA→B,vA→B)← ReKeyEval((rkAi→Bi)i∈[u]).
Denote

wA := e⊤Ar + e2 + cv + c⊤t,Ar − s⊤Ae1 − s⊤Acu;

wB := wA +

∑
i∈[u]

r⊤Ai→Bi,3

BitDecomp(uA) +

∑
i∈[u]

êBi +
∑
i∈[u]

ĉt,Bi

⊤

RA→B,1 + ĉv

− ŝ⊤BRA→B,2 · BitDecomp(uA)− ŝ⊤B ĉu; and

δ := Pr [∥wB∥∞ ≥ q/4]

for ĉu ← ψk
du

, ĉv ← ψdv and ĉt,Bi ← ψk
dt

(i ∈ [u]), where let ŝB :=
∑

i∈[u] ŝBi , and for every i ∈
[u], (RA→B,1,RA→B,2, rAi→Bi,3) is a tuple of values generated by running HReKeyGen((skAi)i∈[u],
(pkBi

)j∈[u]).
Then, the proposed PRE scheme K-PRE satisfies re-encryption key homomorphic with probability

1− δ.

Proof. We consider an arbitrary message m ∈ M throughout the proof of Theorem 6. Recall that
pp = (λ, µ,N,N ′, q, ℓ, η, k, dt, du, dv,A) is a public parameter determined by running Setup(1λ),
and let A = {A1, . . . , Au} and B = {B1, . . . , Bu} be two sets of distinct users. For each i ∈ [u], let
(pkAi

, skAi) = ((tAi , t̂Ai), (sAi , ŝAi)) (resp. (pkBi
, skBi) = ((tBi , t̂Bi), (sBi , ŝBi))) be the key-pair of

the user Ai (resp. the user Bi), where tAi = Compressq(AsAi+eAi , dt) and t̂Bi = Compressq(AŝBi+
êBi , dt).
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For every i ∈ [u], the values of tAi and t̂Bi is

tAi = Decompressq(Compress(AsAi + eAi , dt), dt)

= AsAi + eAi + ct,Ai ;

t̂Bi = Decompressq(Compress(A⊤ŝBi + êBi , dt), dt)

= AŝBi + êBi + ĉt,Bi

for some (ct,Ai , ĉt,Bi) ∈ Rk ×Rk.
Then we define public keys pkA, pkB, as follows:

pkA :=
∑
i∈[u]

tAi = A
∑
i∈[u]

sAi +
∑
i∈[u]

eAi +
∑
i∈[u]

ct,Ai = AsA + eA + ct,A;

pkB :=
∑
i∈[u]

t̂Bi = A
∑
i∈[u]

ŝBi +
∑
i∈[u]

êBi +
∑
i∈[u]

ĉt,Bi = AŝB + êB + ĉt,B,

where

• let sA :=
∑

i∈[u] sAi , eA :=
∑

i∈[u] eAi , and ct,A :=
∑

i∈[u] ct,Ai ; and

• let ŝB :=
∑

i∈[u] ŝBi , êB :=
∑

i∈[u] êBi , and ĉt,B :=
∑

i∈[u] ĉt,Bi .

Let ctA = (uA, vA) be an encryption of m under pkA (i.e., (uA, vA)← Enc(pkA,m)). The values
of uA and vA are

uA = Decompressq(Compressq(A
⊤r + e1, du), du)

= A⊤r + e1 + cu; and

vA = Decompressq(Compressq((pkA)
⊤r + e2 + ⌈q/2⌋ ·m, dv), dv)

= (AsA + eA + ct,A)
⊤r + e2 + ⌈q/2⌋ ·m+ cv

= (AsA + eA)
⊤r + e2 + ⌈q/2⌋ ·m+ cv + c⊤t,Ar

for some (cu, cv) ∈ Rk ×R.
Let (rkAi→Bj )i∈[u],j∈[u] ← HReKeyGen((skAi)i∈[u], (pkBj

)j∈[u]). For every i ∈ [u] and every j ∈
[u], the value of the re-encryption key rkAi→Bj = (UA→B,vAi→Bj ) is

UA→B = A⊤RA→B,1 +RA→B,2;

vAi→Bj = t̂⊤Bj
RA→B,1 + r⊤Ai→Bj ,3 − Powersof2(s⊤Ai

).

Then, the homomorphicly evaluated value vA→B generated by running (UA→B,uA→B) ←
ReKeyEval((rkAi→Bi)i∈[u]) is

vA→B :=
∑
i∈[u]

vAi→Bi =
∑
i∈[u]

t̂⊤Bi
RA→B,1 +

∑
i∈[u]

r⊤Ai→Bi,3 −
∑
i∈[u]

Powersof2(s⊤Ai
).

Let ctB = (uB, vB) be a re-encrypted ciphertext generated by using the re-encryption key
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(UA→B,vA→B), and the value of (uB, vB) is

uB = (A⊤RA→B,1 +RA→B,2) · BitDecomp(uA);

vB = vA +

∑
i∈[u]

t̂⊤Bi
RA→B,1 +

∑
i∈[u]

r⊤Ai→Bi,3 −
∑
i∈[u]

Powersof2(s⊤Ai
)

BitDecomp(uA)

= vA −
∑
i∈[u]

s⊤Ai
uA +

∑
i∈[u]

t̂⊤Bi
RA→B,1 +

∑
i∈[u]

r⊤Ai→Bi,3

BitDecomp(uA)

= vA − s⊤AuA +

(AŝB + êB + ĉt,B)
⊤RA→B,1 +

∑
i∈[u]

r⊤Ai→Bi,3

BitDecomp(uA)

= vA − s⊤AuA

+ ŝ⊤BA
⊤RA→B,1 +

∑
i∈[u]

r⊤Ai→Bi,3

BitDecomp(uA) + (êB + ĉt,B)
⊤RA→B,1.

Then, the decompressed values of uB and vB are

uB = Decompressq(Compressq(uA, du), du)

= A⊤RA→B,1 · BitDecomp(uA) +RA→B,2 · BitDecomp(uA) + ĉu;

vB = Decompressq(Compressq(vA, dv), dv)

= vA − s⊤AuA

+ ŝ⊤BA
⊤RA→B,1 +

∑
i∈[u]

r⊤Ai→Bi,3

BitDecomp(uA)

+ (êB + ĉt,B)
⊤RA→B,1 + ĉv

for some (ĉu, ĉv) ∈ Rk ×R. Hence, we have

vB − ŝ⊤BuB

= vA − s⊤AuA

+ ŝ⊤BA
⊤RA→B,1 +

∑
i∈[u]

r⊤Ai→Bi,3

BitDecomp(uA) + (êB + ĉt,B)
⊤RA→B,1 + ĉv

− ŝ⊤B

(
A⊤RA→B,1 · BitDecomp(uA) +RA→B,2 · BitDecomp(uA) + ĉu

)
= vA − s⊤AuA +

∑
i∈[u]

r⊤Ai→Bi,3

BitDecomp(uA) + (êB + ĉt,B)
⊤RA→B,1 + ĉv

− ŝ⊤BRA→B,2 · BitDecomp(uA)− ŝ⊤B ĉu.

The error-term wB of vB − ŝ⊤BuB is defined as

wB := wA +

∑
i∈[u]

r⊤Ai→Bi,3

BitDecomp(uA) + (êB + ĉt,B)
⊤RA→B,1 + ĉv

− ŝ⊤BRA→B,2 · BitDecomp(uA)− ŝ⊤B ĉu,
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where wA is the error-term of vA − s⊤AuA, i.e., wA = e⊤Ar + e2 + cv + c⊤t,Ar − s⊤Ae1 − s⊤Acu.
Additionally, let m′ := Compressq(vB − ŝ⊤BuB, 1). Then it holds that⌈q

4

⌋
≥

∥∥∥vB − ŝ⊤BuB −
⌈q
2

⌋
·m′

∥∥∥
∞

=
∥∥∥wB +

⌈q
2

⌋
·m−

⌈q
2

⌋
·m′

∥∥∥
∞
.

Due to the fact that ∥wB∥∞ < ⌈q/4⌋, it holds that∥∥∥⌈q
2

⌋
(m−m′)

∥∥∥
∞
< 2

⌈q
4

⌋
,

and this indicates m = m′. The proof is completed.
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