
Deletions and Dishonesty:
Probabilistic Data Structures

in Adversarial Settings

Mia Filić1, Keran Kocher1 , Ella Kummer1, and Anupama Unnikrishnan1

1ETH Zurich
mfilic@ethz.ch

Abstract. Probabilistic data structures (PDS) are compact representa-
tions of high-volume data that provide approximate answers to queries
about the data. They are commonplace in today’s computing systems,
finding use in databases, networking and more. While PDS are designed
to perform well under benign inputs, they are frequently used in appli-
cations where inputs may be adversarially chosen. This may lead to a
violation of their expected behaviour, for example an increase in false
positive rate.
In this work, we focus on PDS that handle approximate membership

queries (AMQ). We consider adversarial users with the capability of mak-
ing adaptive insertions, deletions and membership queries to AMQ-PDS,
and analyse the performance of AMQ-PDS under such adversarial inputs.
We argue that deletions significantly empower adversaries, presenting a

challenge to enforcing honest behaviour when compared to insertion-only
AMQ-PDS. To address this, we introduce a new concept of an honest
setting for AMQ-PDS with deletions. By leveraging simulation-based
security definitions, we then quantify how much harm can be caused
by adversarial users to the functionality of AMQ-PDS. Our resulting
bounds only require calculating the maximal false positive probability
and insertion failure probability achievable in our novel honest setting.
We apply our results to Cuckoo filters and Counting filters. We show

how to protect these AMQ-PDS at low cost, by replacing or composing
the hash functions with keyed pseudorandom functions in their construc-
tion. This strategy involves establishing practical bounds for the proba-
bilities mentioned above. Using our new techniques, we demonstrate that
achieving security against adversarial users making both insertions and
deletions remains practical.

Keywords: probabilistic data structures · Counting filters · Cuckoo filters ·
security · simulation-based proofs

1 Introduction

Probabilistic data structures (PDS) are widespread in today’s data-driven world.
They find a multitude of uses across our computing systems, in databases, net-

working and communication. By compactly representing data, they offer im-
proved efficiency, with the tradeoff of providing approximate (rather than exact)
answers to queries about the data.

Each PDS is specifically designed to answer certain kinds of queries. An im-
portant category of PDS is those providing approximate answers to membership
queries, i.e. “is an element x a member of a set S?”. We refer to this category
as AMQ-PDS, which are the focus of this work. Examples of AMQ-PDS include
Bloom filters [5], Counting filters [12] and Cuckoo filters [10]. While Bloom fil-
ters only support insertions of elements into the set, Counting and Cuckoo filters
also allow elements to be deleted. Other categories of PDS include frequency es-
timators such as Count-Min sketches [9] and Heavy Keepers [17], and cardinality
estimators such as HyperLogLog [14] and KMV sketches [3].

PDS find a myriad of applications, from estimating the number of distinct
Google search queries [19] and detecting anomalies in network traffic [17, 22] to
building privacy-preserving recommendation systems [28]. AMQ-PDS are bene-
ficial for database query speedup [34], spam detection [38], resource and packet
routing in networks [6], certificate revocation systems [23], DNA sequence anal-
ysis [37, 29], and more [26]. In particular, AMQ-PDS that support deletions,
such as Counting and Cuckoo filters, are useful for cache sharing among web
proxies [12], speedup of post-quantum TLS handshakes [36], efficient certificate
revocation checking [35], mobile private contact discovery [20, 18], and fighting
fake news [25].

The wide deployment of PDS across applications, however, comes with an
increasing risk of adversarial interference. By carefully choosing inputs, malicious
users can force specific elements to become false positives in AMQ-PDS [16],
cause frequencies of elements to be overestimated [8, 27], or artificially inflate
cardinality estimates [33], for example. This leads to dangerous consequences for
the use of PDS in practice. In spite of this, such adversarial settings are typically
not covered by the performance guarantees of PDS; their expected behaviour
is characterised assuming honest inputs. To protect PDS against adversarial
influence, cryptographic techniques can be a powerful tool. Combining PDS with
cryptography results in a significant new research area with many critical open
questions.

1.1 Our Contributions

In this paper, we study the correctness of AMQ-PDS in adversarial settings.
We focus on malicious users interacting with an AMQ-PDS hosted by an honest
service provider. In practice, users interact with the AMQ-PDS through an API,
allowing dynamic updates to the stored dataset, through insertions and deletions,
as well as membership queries. In this work, we address how malicious users can
leverage adaptive insertions, membership queries and deletions to manipulate
the performance of AMQ-PDS. We will argue that deletions, in particular, are a
powerful tool for adversaries. While we focus on two commonly used AMQ-PDS,
Cuckoo filters [10] and Counting filters [12], our definitions are general and can
be applied to a broad range of AMQ-PDS.

2

Syntax for AMQ-PDS. Inspired by [13, 8], we establish a syntax for AMQ-PDS
that support insertions, deletions and membership queries. We identify consis-
tency rules for the behaviour of AMQ-PDS, satisfied by Counting and Cuckoo
filters, that will allow us to prove results on their adversarial correctness.

Simulation-based framework. We employ a simulation-based approach [24] to
define security, following recent work [13, 33]. In this approach, the adversary is
modelled as interacting with the AMQ-PDS in either a “real world” or an “ideal
world”. In the real world, the adversary has access to the AMQ-PDS through
an API that allows it to insert and delete items, and make membership queries.
In the ideal world, the adversary instead interacts with a simulator that models
honest behaviour of the AMQ-PDS. At the end of its execution, the adversary
produces an output, which is used to distinguish between the two worlds. By
quantifying the distance between the worlds, we bound how much harm the
adversary can do in the real world by relating it to the honest operation of the
AMQ-PDS in the ideal world.

Simulation-based security definitions are traditionally used to analyse no-
tions of privacy (for example, in searchable encryption [7]), where the simulator
is given some leakage. By proving that the two worlds are indistinguishable, one
concludes that the adversary can only learn this leakage, which is deemed ac-
ceptable. In contrast, our approach does not require indistinguishability between
the worlds in order to give useful bounds; we will show how they can be used to
set parameters for secure PDS in practice.

The power of the simulation-based approach in analysing correctness is that
it covers all adversarial goals, in contrast to the game-based approach with a
specific adversarial goal [8]. In practice, this means that one only needs to com-
pute the probability of achieving a particular goal in the honest setting (which
is well-studied in the PDS literature), in order to upper bound the probability
of achieving it in the adversarial setting.

Adversarial correctness for AMQ-PDS with insertions and deletions. To analyse
adversarial correctness using the simulation-based approach, the first question
to address is how to define “honest” behaviour. Allowing deletions (in addition
to insertions and membership queries), however, introduces substantial hurdles.

In [13], the notion of a non-adversarially-influenced (NAI) state was proposed
for insertion-only AMQ-PDS. Intuitively, this captures the idea that the state of
an AMQ-PDS can be thought of as honest if one cannot predict the effect of each
insertion on the state, prior to the insertion. To achieve this for many prominent
AMQ-PDS, one can replace the hash functions used in their constructions with
keyed Pseudo-Random Functions (PRFs).

With deletions, however, the above idea no longer suffices to capture honesty.
The ability to delete elements after inserting them means that an adversary
could effectively reset the state if not satisfied. For example, consider cache
summarisation for content routing [1, 12]. Here, an element is automatically
added to or removed from the filter whenever the cache is updated. The cache’s
size poses a natural bound on the number of elements the filter stores. So, the

3

attacker might want to force removal of elements that do not contribute to its
goal of, for example, increasing the false positive probability (FPP) or making a
specific target a false positive. The former significantly increases time for content
retrieval on average, while the latter substantially increases retrieval time of the
targeted content. While such a final state satisfy insertion unpredictability, it
would still be adversarially influenced. Therefore, the deletion functionality of
AMQ-PDS forms an intrinsic barrier to enforcing honesty.

Further, another complication arises from false negatives. While insertion-
only AMQ-PDS may have false positives (elements that appear to be in the set
when they have not been inserted), deletions may also lead to false negatives
(elements that appear to not be in the set when they have not been deleted).
The FPP of AMQ-PDS is typically well-characterised; false negatives, which can
arise (for example) through deleting elements that were never inserted, are often
assumed not to occur under honest operation. In an adversarial setting, we can
no longer assume this.

We circumvent these obstacles by proposing a new notion of honesty for
AMQ-PDS with both insertions and deletions, which we call NAI*. We show that
building a simulator that satisfies NAI* suffices to analyse adversarial correctness
for our AMQ-PDS of interest.

Our results show how to provably protect AMQ-PDS by replacing or com-
posing public hash functions with PRFs and giving concrete bounds on the
probability of achieving any adversarial goal through adaptive queries. Practi-
tioners can use our concrete bounds to set AMQ-PDS parameters that guarantee
security even with adversarial users. This is in contrast to how parameters are
currently set in practice, with bounds on (for example) FPP being easily violated
through precomputation attacks (on public hash functions). Using our results,
practitioners can guarantee that FPP will stay below a certain threshold even
with adaptive queries. This extends to any adversarial goal, e.g. creating false
negatives, causing insertion failures. By showing how to ensure AMQ-PDS be-
have as expected even with malicious users, our work impacts any application of
AMQ-PDS - in particular, applications requiring dynamic deletions, insertions
and membership queries (e.g. cache sharing, coupon validation, etc.).

We emphasise that our focus is on users exploiting the API that allows inter-
action with an AMQ-PDS hosted by an honest service provider. To our knowl-
edge, such an API typically does not allow users to view its internal state, e.g.
[2]. Of course, in a different adversarial scenario with a compromised service
provider, users could gain access to the state. While out of scope in this work,
we later discuss why our results are not directly applicable to such a setting in
Remark 3.

Analysis of Counting and Cuckoo filters. We conclude by providing a concrete
evaluation of our security theorems by analysing Counting and Cuckoo filters.
The usage of public hash functions in their original formulations leads to vulnera-
bilities from precomputation attacks [16, 8]. Using our theorems, we demonstrate
how to provably protect them by replacing or composing the hash functions with
PRFs (at the cost of needing secure key management). This requires deriving

4

novel bounds on their NAI* false positive probability, as well as their NAI* in-
sertion failure probability, both of which we show how to upper bound using
results from the (insertion-only) AMQ-PDS literature.

Finally, we investigate the impact of our analysis for choosing appropriate
parameters to secure AMQ-PDS in practice. Our results illustrate that protect-
ing AMQ-PDS against adversarial users who can harness their full functionality
is practical. Further, as a result of our new insights and techniques, extending
the user’s capabilities to include deletions does not compromise security.

1.2 Related Work

In [13], Filić et al. proposed a simulation-based framework for analysing the
adversarial correctness and privacy of AMQ-PDS that only support insertions.
By building a simulator that models the non-adversarial operation of AMQ-PDS,
they derived bounds on the closeness of an adversarially generated state to that
of an honest one, applying their framework to derive correctness guarantees for
Bloom and insertion-only Cuckoo filters under adversarial inputs. In our work,
we use a similar methodology but cover the full functionality of AMQ-PDS, i.e.
allowing deletions as well as insertions. Thus, we solve an important question left
unanswered by their work, resulting in a more complete analysis of adversarial
correctness of AMQ-PDS.

A simulation-based approach was also employed in [33] to study the Hyper-
LogLog cardinality estimator in adversarial settings. While our proof technique
is conceptually similar, the types of queries supported by AMQ-PDS lead to
more powerful adversarial strategies, and thus a more complicated analysis.

The work of Clayton et al. [8] focused on the adversarial correctness of
AMQ-PDS Bloom and Counting filters. They examined an “l-thresholded” vari-
ant of Counting filters, where insertions are disallowed if more than ℓ counters are
set. Their approach utilised a game-based formalism, which required defining a
specific winning condition for the adversary, i.e. finding a certain number of false
positives or false negatives. We provide a more detailed comparison of our work
with [8] in Supplementary material C. A similar approach was adopted in [4]
with an adversary who tries to maximise the false positive rate of AMQ-PDS
by repeating membership queries. In contrast to these game-based methods, the
simulation-based formalism does not require specifying an adversarial goal. This
allows one to use our results to re-derive bounds for any specific adversary.

In [31, 32], Naor and Yogev studied the adversarial correctness of Bloom
filters, again using a game-based approach. Recent work by Naor and Oved [30]
further extended this to propose various robustness notions for Bloom filters.
However, their adversarial model is more restricted than ours, without the ability
to make adaptive insertions and membership queries. Further, as their focus is
on Bloom filters, deletions do not play a role.

In [39], Yeo analysed Cuckoo hash tables, which are closely related to Cuckoo
filters. However, they considered a static adversarial setting, where a set of el-
ements is inserted at the start, with a specific adversarial goal of causing the
insertion of this set to fail. In this work, we are interested in a more powerful

5

setting where adversaries can dynamically update the dataset and can have any
goal. Adversarial influence on the false positive rate of Cuckoo filters was studied
in [21], but in a similarly restricted adversarial model.

Therefore, in comparison to previous work, we are the first to rigorously anal-
yse adversarial correctness of Counting and Cuckoo filters in their full capability,
for any adversarial goal. This fills a significant gap in the literature.

For scenarios where the data itself is sensitive, studying privacy might also be-
come important. Leveraging the power of deletions to deduce information about
elements in Counting filters, [15] proposed attacks on their privacy. This high-
lights an intrinsic challenge in enforcing privacy for AMQ-PDS with deletions,
leaving the task an interesting open question.

1.3 Paper Organisation

We start with preliminaries in Section 2. In Section 3.1, we define the syntax for
AMQ-PDS with deletions, the notion of a non-adversarial setting, and properties
of our AMQ-PDS of interest. We analyse adversarial correctness in Section 4,
and discuss the usefulness of our results in practice in Section 5.

2 Preliminaries

Notation. We follow the notation of [13], repeated here for clarity. For an integer
m ∈ Z≥1, we write [m] to denote the set {1, 2, ...,m}. We consider all logarithms
to be in base 2. Given two sets D and R, we define Funcs[D,R] to be the set
of functions from D to R. We write F ←$ Funcs[D,R] to mean that F is a

random function D
F−→ R. Given a set S, we denote the identity function over

S as IdS : S → S. For a probability distribution D, we write x←$ D to mean
that x is sampled according to D. We define the statistical distance between
two random variables X,Y with finite support D = Supp(X) = Supp(Y) as
SD(X,Y) := 1

2

∑
z∈D|Pr[X = z]− Pr[Y = z]|. For a set S (resp. a list L), we

denote by |S| (resp. |L|) the number of elements in S (resp. L). A fixed-length
list of length s initialised empty is denoted by a← ⊥s. We denote by load(a) the
number of set entries of a. To insert an entry x into the first unused slot in a we
write a′← a ⋄x such that a′ =x⊥ ...⊥ with s−1 trailing ⊥s and load(a′) = 1. A
further insertion a′′← a′ ⋄ y results in a′′ =x y⊥ ...⊥ with load(a′′) = 2, and so
on. We refer to the i-th entry in a list a as a[i]. In algorithms, we assume that all
key-value stores are initialised with value ⊥ at every index, using the convention
that ⊥ < n, ∀n ∈ R, and we denote it as {}. For a key-value store a, we refer to
the value of the entry with key k as a[k]. We write variable assignments using
←, unless the value is output by a randomised algorithm, for which we use ←$.

For a randomised algorithm alg, we write output ← alg(input1, input2, ...,
inputℓ; r), where r ∈ R denotes the coins that can be used by alg and R is the
set of possible coins. We may also suppress coins whenever it is notationally
convenient to do so. For a deterministic algorithm, r can be set to ⊥. We remark
that the output of a randomised algorithm can be seen as a random variable over

6

ExpPRF
R (B)

1 K←$K; F ←$ Func[D,R]

2 b←$ {0, 1}; b′←$ BRoR

3 return b′

Oracle RoR(x)

1 if b = 0 : y ← RK(x)

2 else : y ← F (x)

3 return y

Fig. 1: The PRF experiment.

the output space of the algorithm. Unless otherwise specified, we will consider
random coins to be sampled uniformly from R, independently from all other
inputs and/or state, and refer to such r as “freshly sampled”. If alg is given
oracle access to functions f1, ..., fn, we denote it by algf1,...fn .

We will consider AMQ-PDS that can store elements from finite domains D
by letting D = ∪Lℓ=0{0, 1}ℓ for some large but finite value of L, say L = 264. In
our constructions, we will make use of pseudorandom functions, which we will
model as truly random functions to which the AMQ-PDS has oracle access.

Definition 1. Consider the PRF experiment in Fig. 1. We say a pseudorandom
function family R : K×D→ R is (q, t, ε)-secure if for all adversaries B running
in time at most t and making at most q queries to its RoR oracle in ExpPRF

R ,

AdvPRF
R (B) := |Pr [b′ = 1|b = 0]− Pr [b′ = 1|b = 1]| ≤ ε.

We say B is a (q, t)-PRF adversary.

3 AMQ-PDS

In this section, we formalise the syntax of AMQ-PDS and their behaviour under
non-adversarial inputs. We formally define our AMQ-PDS of interest, Counting
and Cuckoo filters, and discuss some common properties that they satisfy.

3.1 Syntax

We now define the syntax of an AMQ-PDS, extending that of [13] to include
deletions. Let Π be an AMQ-PDS. We denote its public parameters by pp, and
its state as σ ∈ Σ, where Σ denotes the space of possible states of Π. The set of
elements that can be inserted into Π is denoted by D, unless stated otherwise.
We consider a syntax consisting of four algorithms:

– The setup algorithm σ ← setup(pp; r) sets up the initial state of an empty
PDS with public parameters pp; it will always be called first to initialise the
AMQ-PDS.

– The insertion algorithm (b, σ′) ← ins(x, σ; r), given an element x ∈ D,
attempts to insert it into the AMQ-PDS, and returns a bit b ∈ {⊥,⊤} rep-
resenting whether the insertion was successful (b = ⊤) or not (b = ⊥), and
the state σ′ of the AMQ-PDS after the insertion.

7

– The deletion algorithm (b, σ′)← del(x, σ), given an element x ∈ D, attempts
to delete x from the AMQ-PDS, i.e. attempts to remove everything that a
successful insertion on x added to σ. The algorithm return a bit b ∈ {⊥,⊤}
representing whether the deletion was successful (b = ⊤) or not (b = ⊥), and
the state σ′ of the AMQ-PDS after the deletion.

– The membership querying algorithm b← qry(x, σ), given an element x ∈ D,
returns a bit b ∈ {⊥,⊤} (approximately) answering whether x was previously
inserted (b = ⊤) or not (b = ⊥) into the AMQ-PDS.

We remark that we only consider AMQ-PDS where membership queries do not
change the state of the AMQ-PDS; thus, qry does not need to output a new σ′

value. This includes popular AMQ-PDS such as Counting and Cuckoo filters.
Due to the approximate nature of AMQ-PDS, qry calls may return a false pos-

itive result with a certain probability. That is, we may have ⊤← qry(x, σ) even
though no call ins(x, σ′; r) was made post setup and prior to the membership
query. We refer to the probability Pr[⊤← qry(x, σ) | x was not inserted into Π]
as the false positive probability of an AMQ-PDS Π. In addition, since Counting
and Cuckoo filters support deletions, qry calls may return a false negative result,
where we may have ⊥ ← qry(x, σ) even though an ins(x, σ′; r) call was made be-
forehand. We refer to the probability Pr[⊥ ← qry(x, σ) | x was inserted into Π]
as the false negative probability of an AMQ-PDS Π.

Moreover, the insertion algorithm may fail to insert an element, for example
if the AMQ-PDS has reached capacity. We denote the probability Pr[(⊥, σ)←$

ins(x, σ)] as the insertion failure probability.

3.2 AMQ-PDS under non-adversarial inputs

We now define the expected behaviour of AMQ-PDS in a non-adversarial setting,
since we will later quantify how much the state of an AMQ-PDS can deviate from
this under adversarial inputs. As in [13], we will focus on AMQ-PDS that satisfy
the following properties of function-decomposability and reinsertion invariance.

Definition 2 (Function-decomposability [13]). Let Π be an AMQ-PDS
and let F ←$ Funcs[D,R] with R ⊂ D be a random function to which Π has
oracle access. We say Π is F -decomposable if

insF (x, σ; r) = insIdR(F (x), σ; r) ∀x ∈ D, σ ∈ Σ, r ∈ R,
delF (x, σ) = delIdR(F (x), σ) ∀x ∈ D, σ ∈ Σ,

qryF (x, σ) = qryIdR(F (x), σ) ∀x ∈ D, σ ∈ Σ,

where insIdR , delIdR and qryIdR cannot internally evaluate F due to not hav-
ing oracle access to it and F being truly random. Function-decomposability also
applies to AMQ-PDS with oracle access to multiple functions.

Definition 3 (Reinsertion invariance [13]). Let Π be an AMQ-PDS. We
say Π is reinsertion invariant if for all x ∈ D, σ ∈ Σ such that ⊤ ← qry(x, σ),
we have (⊤, σ′)← ins(x, σ; r) =⇒ σ = σ′ ∀r ∈ R.

8

Reinsertion invariance is a natural property to expect from AMQ-PDS since
they are designed to represent sets and not multisets. Note that if reinsertion
invariance does not apply, simply repeatedly inserting a single element could
lead to blocking of further insertions.

If a reinsertion-invariant AMQ-PDS contains multiple copies of the same
element, deleting one copy will result in all other copies being deleted. However,
reinsertion invariance does not require the state of the AMQ-PDS to remain
unchanged if elements are reinserted after being deleted.

For an insertion-only AMQ-PDS satisfying function-decomposability and
reinsertion invariance, the notion of a non-adversarially influenced state was
proposed in [13]. We give an alternative (but equivalent) definition below.

Definition 4 (n-NAI state). Let Π be an AMQ-PDS with public parameters
pp using F = IdR satisfying reinsertion invariance, and let σ ← setup(pp). Let
n be a non-negative integer. Let X1, ..., Xn←$ R. Let L be the list of operations
on σ, where L = [insIdR(X1, σ), ..., ins

IdR(Xn, σ)]. Then, σ is an n-NAI state.

We then give an alternative (but equivalent) definition of the NAI false positive
probability from [13].

Definition 5 (NAI false positive probability). Let Π be an AMQ-PDS
with public parameters pp, using a random function F : D → R satisfying F -
decomposability and reinsertion invariance. Let n be a non-negative integer. De-
fine the NAI false positive probability after n distinct insertions as

PΠ,pp(FP |n) := Pr

 σ ← setup(pp)

for i ∈ [n] : (b, σ)←$ insIdR(Xi←$ R, σ) :
⊤←$ qryIdR(X ←$ R, σ)

 .

Remark 1. Defs. 4 and 5 are equivalent to that of [13, Def. 3.4] for F -decomposable
AMQ-PDS. Sampling n distinct elements from D is equivalent to sampling n
strings X ←$ R. Similarly, sampling the queried element from D \ V , where V
is the set of n inserted elements, is equivalent to sampling X ←$ R.

As mentioned, the NAI state constructed in Def. 4 captures honesty for
insertion-only AMQ-PDS. As long as the effect of every insertion on the state
is unpredictable, the final state cannot deviate from “honest”. However, for
AMQ-PDS that also allow deletions, defining an honest setting is more involved.
The deletion capability means that a user could insert elements, observe their
effects, and then decide whether to delete them, i.e. to reset the state if not
satisfied. In other words, even if every insertion is unpredictable, the final state
may still be adversarially influenced (i.e. no longer an NAI state).

We overcome these issues with a new definition of the non-adversarial setting
for function-decomposable, reinsertion-invariant AMQ-PDS, which we call NAI*.
NAI* captures honesty up to the extent that can be achieved with both insertions
and deletions. We will show that the final state of the AMQ-PDS satisfying NAI*

9

suffices to capture a non-adversarial setting that we can analyse using results
from the PDS literature.

A key component of NAI* will be the following notion: for any element not
previously inserted, the effect of its insertion on the state is unpredictable (in-
sertion unpredictability). Intuitively, this can be thought of as replacing every
insertion of an element x ∈ D with X ∈ R sampled uniformly at random. This is
not necessarily ensured only by F -decomposability, since the interplay between
ins, del and qry on the same input could reveal information about F . We define
insertion unpredictability in Def. 6.

Definition 6 (Insertion unpredictability). Let Π be an AMQ-PDS with
public parameters pp, using a random function F : D ← R, and satisfying F -
decomposability and reinsertion invariance. Let σ ← setup(pp). Let {zi} be the
elements that are successfully inserted into σ. For every first insertion of zi, let
(⊤, σ′)← insF (zi, σi) and (⊤, σ)← insIdR(X ←$ R, σi). We say σ has insertion
unpredictability if SD

(
σ′, σ

)
= 0.

We are now ready to define an n-NAI* state. Although an NAI* state of an
AMQ-PDS can be constructed through both insertions and deletions of elements,
our definition will require that all insertions are unpredictable, deletions only
happen on currently inserted elements, and repeated insertions of elements only
change the state if that element has been deleted. These requirements essentially
capture what we would expect from honest insertions and deletions on function-
decomposable, reinsertion-invariant AMQ-PDS.

Definition 7 (n-NAI* state). Let Π be an AMQ-PDS with public parameters
pp using F = IdR satisfying reinsertion invariance, and let σ ← setup(pp). Let
n be a non-negative integer. Let X1, ..., Xn←$ R. Let L be the list of operations
on σ, where each item in L is either insIdR(·, σ) or delIdR(·, σ) on X1, ..., Xn.
Then, σ is an n-NAI* state if:

– for all Xi there is an operation in L equal to insIdR(Xi, σ),
– for all successful delIdR(Xi, σ) operations in L, the preceding successful op-

eration in L on Xi is insIdR(Xi, σ),
– all successful insIdR(Xi, σ) operations in L for which any prior successful

operation in L on Xi is ins
IdR(Xi, σ) either do not change the state, or have

delIdR(Xi, σ) as their preceding successful operation on Xi in L.

It is clear to see that every n-NAI state (Def. 4) is then an n-NAI* state. We
now give an analogous formulation of Def. 7 for F -decomposable AMQ-PDS,
where unsuccessful insertions do not change the state.

Corollary 1. Let Π be an AMQ-PDS with public parameters pp using a random
function F : D → R satisfying F -decomposability and reinsertion invariance,
where unsuccessful insertions do not change the state. Let σ ← setup(pp) and n
be a non-negative integer. Let L be the list of operations on σ, where each item
in L is either insF (·, σ) or delF (·, σ). Then, σ is an n-NAI* state if:

10

– it satisfies Def. 6,
– there are n distinct elements {zi}i∈[n] for which an operation in L on zi is

insF (zi, σ),
– for all successful delF (zi, σ) operations in L, the preceding successful opera-

tion in L on zi is insF (zi, σ), and
– all insF (zi, σ) operations in L for which any prior successful operation in L

on zi is ins
F (zi, σ) either do not change the state, or have delF (zi, σ) as their

preceding successful operation on zi in L.

A natural next step would be to define the false positive probability and in-
sertion failure probability for NAI* states, analogous to that of the insertion-only
setting [13]. However, while deleting an inserted element may be an operation
allowed under NAI*, a user could insert elements, observe their effects, and then
decide whether to delete them, i.e. to reset the state. This means that, using only
n distinct elements, a user can create many different NAI* states. Therefore, a
more useful notion for NAI* states is the maximal false positive and insertion
failure probability, defined in terms of the “worst possible” NAI* state.

Definition 8 (Maximal NAI* false positive probability). Let Π be an
AMQ-PDS with public parameters pp using a random function F : D → R
satisfying F -decomposability and reinsertion invariance. Let n be a non-negative
integer. Define the maximal NAI* false positive probability after n insertions as

P ∗
Π,pp(FP |n) := Pr

 X1, ..., Xn←$ R

σ ← U IdR

Π,pp(X1, ..., Xn) :

⊤←$ qryIdR(X ←$ R, σ)

 ,

where U IdR

Π,pp(X1,...,Xn) outputs an NAI* state created using insIdR(·,σ),delIdR(·,σ)
on X1,...,Xn that has the maximal false positive probability.

Def. 8 captures the false positive probability of the “worst possible” NAI* state
that can be created with insertions and deletions. The algorithm U gets n strings
sampled uniformly at random from R as input, and finds the ordering of inser-
tions and deletions of these strings (possibly excluding some) that maximises
the false positive probability. Since the queried X ←$ R is sampled randomly,
U is not increasing the probability that a particular element is a false positive;
rather, it is creating a state with the highest false positive probability in general.

Definition 9 (Maximal NAI* insertion failure probability). Let Π be
an AMQ-PDS with public parameters pp, using a random function F : D → R
satisfying F -decomposability and reinsertion invariance. Let n be a non-negative
integer. Define the maximal NAI* insertion failure probability within n insertions
as

P ∗
Π,pp(IF |n) := Pr

 X1, ..., Xn←$ R

σ ← VIdR

Π,pp(X1, ..., Xn) :

for some l ∈ [n], (⊥, σ)←$ insIdR(Xl, σ)

 ,

11

where VIdR

Π,pp(X1,...,Xn) outputs an NAI* state created using insIdR(·,σ), delIdR(·,σ)
on X1,...,Xn that has the maximal probability of an insertion on one of X1,...,Xn

failing.

Def. 9 captures the insertion failure probability of the “worst possible” NAI*
state that can be created with insertions and deletions. The algorithm V gets
as an input n strings sampled uniformly at random from R, and then finds the
ordering of insertions and deletions of these strings (possibly excluding some)
that maximises the probability that inserting one of these strings will fail. Note
that the definition is of a slightly different flavour to Def. 8; V can optimise
its output in respect to Xl that is most likely to result in an insertion failure.
Def. 9 naturally extends upon insertion failure definitions found in the literature
[10, 12], where the probability is defined as one among n insertions failing.

3.3 Counting filters

Counting filters are an extension of the popular Bloom filters, with the added
capability of supporting deletions of elements. A Counting filter consists of an
array of counters σ of length m initially set to 0m, and a family of k independent
hash functions Hi : {0, 1}∗ → [m], for i ∈ [k]. To insert an element x into the
filter, all k counters Hi(x) of σ are incremented; if any counter reaches the
maximum value maxVal, the insertion fails. To delete an element x from the
filter, if all k counters Hi(x) are greater than zero, they are all decremented;
if not, the deletion fails. A membership query on x returns ⊤ if all k counters
Hi(x) are greater than zero. Due to collisions in the hash functions Hi, Counting
filters can have both false positives and false negatives. As in [13], we will bundle
the k hash functions Hi into a single function F : D→ [m]k.

We now formally define Counting filters.

Definition 10. Let m,k,maxVal be positive integers. We define an (m,k,maxVal)-
Counting filter to be the AMQ-PDS with algorithms defined in Fig. 2, with
pp = (m,k,maxVal), and F : D→ [m]k.

We recall from the literature a bound on the NAI false positive probability
for Counting filters. Due to their membership query algorithm only checking for
non-zero counters, as in the case of Bloom filters, this bound is the same for
both Counting and Bloom filters.

Lemma 1. ([12],[13, Lemma 3.7]) Let Π be an (m, k,maxVal)-Counting filter
using a random function F : D → [m]k. Then, for any n, PΠ,pp(FP |n) ≤[
1− e−

(n+0.5)k
m−1

]k
.

We now derive upper bounds on the maximal NAI* false positive probability
and the maximal NAI* insertion failure probability for Counting filters.

Lemma 2. Let Π be an (m, k,maxVal)-Counting filter using a random function

F : D→ [m]k. Then, for any n, P ∗
Π,pp(FP |n) ≤

[
1− e−

(n+0.5)k
m−1

]k
.

12

setup(pp)

1 m, k, maxVal← pp

2 σ ← 0m

3 return σ

qryF (x, σ)

1 (p1, . . . , pk)← F (x)

2 for i ∈ [k]

3 if σ[pi] = 0

4 return ⊥
5 return ⊤

insF (x, σ)

1 (p1, . . . , pk)← F (x)

2 a← ⊤; c← {}
3 for i ∈ [k]

4 if σ[pi] = 0

5 a← ⊥
6 if a = ⊤ : return ⊤, σ
7 for i ∈ [k]

8 if c[pi] = ⊥
9 c[pi]← 0

10 c[pi] += 1

11 for p ∈ c.keys()

12 // p s.t.c[p] ̸= ⊥
13 if σ[p]+c[p] > maxVal

14 return ⊥, σ
15 for p ∈ c.keys() :

16 σ[p] += c[p]

17 return ⊤, σ

delF (x, σ)

1 (p1, . . . , pk)← F (x)

2 c← {}
3 for i ∈ [k]

4 if c[pi] = ⊥
5 c[pi]← 0

6 c[pi] += 1

7 for p ∈ c.keys()

8 // p s.t.c[p] ̸= ⊥
9 if σ[p]− c[p] < 0

10 return ⊥, σ
11 for p ∈ c.keys() :

12 σ[p] −= c[p]

13 return ⊤, σ

Fig. 2: AMQ-PDS syntax instantiation for the Counting filter.

Proof (sketch). We construct an algorithm that inserts all X1, . . . , Xn with
maxVal set to ∞, and show that the false positive probability of the resulting
state (which follows from Lemma 1) is an upper bound on the false positive
probability of any n-NAI* state. For the full proof, see Supplementary Material.

Lemma 3. Let Π be an (m, k,maxVal)-Counting filter using a random function

F : D→ [m]k. Then, for any n, P ∗
Π,pp(IF |n) ≤ m ·

[
e·n·k

maxVal·m
]maxVal

.

Proof (sketch). We construct an algorithm that inserts all X1, . . . , Xn, using
a modified insertion algorithm that always increments counters (i.e. the check
in line 6 of the ins algorithm in Fig. 2 is skipped), and with maxVal set to ∞.
Let the resulting state be denoted by ∆. We show that the insertion failure
probability of any n-NAI* state with maxVal equal to some limit can be upper
bounded by the probability that any counter in ∆ exceeds limit. For the full
proof, see Supplementary Material.

3.4 Cuckoo filters

Cuckoo filters were proposed as an alternative to Bloom filters with improved
performance and support for deletions [10]. A Cuckoo filter consists of a collection

13

(σi)i of 2
λI buckets, each indexed by i ∈ [2λI] and containing s slots, together

with a stash σstash containing one slot. They use two hash functions HI : D→
{0, 1}λI and HT : D → {0, 1}λT . To insert (resp. delete) an element x into the
filter, its tag is computed as HT (x) and inserted (resp. deleted) into its first or
second bucket, whose indices are computed as i1 = HI(x), i2 = i1 ⊕HI(HT (x))
respectively. If both buckets are full, an eviction process begins. A membership
query on x returns ⊤ if HT (x) is found in either of its corresponding buckets
or the stash. As for Counting filters, membership queries can return both false
positive and false negative responses.

In [13], a variant of the standard Cuckoo filter called the PRF-wrapped
Cuckoo filter was proposed, which was required for the proofs of adversarial
correctness and privacy. In this variant, inputs to the ins, del and qry algorithms
are simply preprocessed with a random function F : D → R, resulting in a
function-decomposable filter that remains easy to implement, while satisfying
the desired properties. For this reason, our work will also make use of PRF-
wrapped Cuckoo filters, which we formally define below.

Definition 11. Let pp = (s, λI , λT , num) be a tuple of positive integers. We
define an (s, λI , λT , num)-PRF-wrapped Cuckoo filter to be the AMQ-PDS with
algorithms defined in Fig. 7, with pp = (s, λI , λT , num), making use of hash
functions HT : D→ {0, 1}λT and HI : D→ {0, 1}λI .

Our next step is to derive upper bounds on the NAI* false positive probability
and the NAI* insertion failure probability for PRF-wrapped Cuckoo filters.

Lemma 4. Let Π be an (s, λI , λT , num)-PRF-wrapped Cuckoo filter using ran-
dom functions F : D → R, HT : D → {0, 1}λT , and HI : D → {0, 1}λI . Then,

for any n, P ∗
Π,pp(FP |n) ≤ 1−

(
1− 2−λT

)2s+1
+ n

|R| .

Proof (sketch). We demonstrate that, apart from the collision probability in
the range of F between the queried element and those used to create the state,
the false positive probability bound in [10] upper bounds the probability for any
n-NAI* state. For the full proof, see Supplementary Material.

Lemma 5. Let Π be an (s, λI , λT , num)-PRF-wrapped Cuckoo filter using ran-
dom functions F : D → R, HT : D → {0, 1}λT , and HI : D → {0, 1}λI . Then,
for any n,

P ∗
Π,pp(IF |n) ≤

2(
|R| · 2λT+λI−1

)s−1

(
n

s

) s−1∏
i=1

[
(|R| − i)(2λT − i)

]
.

Proof (sketch). We construct an algorithm that inserts all X1, ..., Xn, using a
modified insertion algorithm where an element’s tag is added to both of its buck-
ets (if they do not already contain it), and with s set to∞. Let the resulting state
be denoted by ∆. We show that the insertion failure probability of any n-NAI*
state with s equal to some limit can be upper bounded by the probability that
the load of any bucket in ∆ exceeds limit. For the full proof, see Supplementary
Material.

14

3.5 Consistency rules

In this work, we will consider AMQ-PDS that satisfy some properties that we re-
fer to as consistency rules, specified below. These rules are satisfied by Counting
and Cuckoo filters.

Definition 12 (AMQ-PDS consistency rules). Consider an AMQ-PDS Π.
We say Π has

– Successful deletion of positives if for all x ∈ D, σ ∈ Σ, ⊤ ← qry(x, σ) =⇒
(⊤, σ′)← del(x, σ).

– Unsuccessful deletion of negatives if for all x ∈ D, σ ∈ Σ, ⊥ ← qry(x, σ) =⇒
(⊥, σ)← del(x, σ).

– Unsuccessful operation invariance if for all x ∈ D, σ ∈ Σ, (⊥, σ′)← ins(x, σ)
=⇒ σ′ = σ and (⊥, σ′)← del(x, σ) =⇒ σ′ = σ.

In the insertion-only setting, AMQ-PDS satisfy an additional consistency
rule: for all x ∈ D, σ ∈ Σ, (⊤, σ)← ins(x, σ) =⇒ ⊤← qry(x, σ). In other words,
a membership query on an inserted element will always return ⊤, meaning that
σ has no false negative elements. In a setting with both insertions and deletions,
one might expect the same rule to hold as long as x has not yet been deleted
from σ. In Def. 13, we define σ having no false negatives more precisely.

Definition 13 (No false negatives). Let Π be an AMQ-PDS with public
parameters pp satisfying reinsertion invariance, and let σ ← setup(pp). Let {zi}
be the elements that are successfully inserted into σ. Let Li be the list of successful
operations on zi, where each item in Li is either ins(zi, σ) or del(zi, σ). We say
σ has no false negatives if, for all zi, if the last item in Li is ins(zi, σ), then
⊤ ← qry(zi, σ).

Unfortunately, with deletions, we cannot say that σ contains no false negatives.
They can arise as a result of inserting or deleting false positive elements, as we
will see later. Therefore, Def. 13 is not satisfied by AMQ-PDS in general, and we
will not require this from the AMQ-PDS we consider. Instead, we will analyse
false negatives in our security proofs by using their relationship to false positives.

4 Adversarial Correctness

In this section, we analyse the correctness of AMQ-PDS under adversarial inputs.
Our starting point is the simulation-based security definition for adversarial cor-
rectness in [13]. However, while their focus was on AMQ-PDS that only support
insertions and membership queries, we are now interested in a more complex
scenario with insertions, membership queries and deletions. As we will see, this
increase in adversarial power requires tackling some new obstacles.

We derive bounds on the correctness of AMQ-PDS that satisfy function-
decomposability, reinsertion invariance, and the consistency rules in Def. 12.
Then, we apply our results to analyse Counting filters instantiated using a PRF,

15

Real-or-Ideal(A,S,D, pp)

1 d←$ {0, 1}
2 if d = 0 // Real

3 K←$K;F ← RK

4 σ ← setup(pp)

5 out←$AIns,Del,Qry

6 else // Ideal

7 out←$ S(A, pp)
8 return d′←$D(out)

Oracle Ins(x)

1 (b, σ)←$ insF (x, σ)

2 return b

Oracle Del(x)

1 (b, σ)←$ delF (x, σ)

2 return b

Oracle Qry(x)

1 return qryF (x, σ)

Fig. 3: Correctness game for AMQ-PDS Π.

and PRF-wrapped Cuckoo filters. In both cases, we provide concrete guarantees
on their adversarial correctness.

In the following, we consider an adversary A interacting with an AMQ-PDS
Π through an API, which we model as three oracles: Ins, which inserts elements
of its choice into Π, Del, which deletes elements of its choice from Π, and Qry,
which responds to membership queries (i.e. whether x has been inserted into Π).

4.1 Notions of Correctness

We employ a simulation-based approach to analysing the adversarial correctness
of AMQ-PDS, which proceeds as follows. The adversary A plays in either the
“real” or “ideal” world. In the real world, A interacts with a keyed AMQ-PDSΠ,
through oracles allowing it to make insertions, deletions and membership queries
on elements of its choice. In the ideal world, A instead interacts with a simulator
S, constructed such that it provides an NAI* view of Π to A. (Note that this
differs from the definition of adversarial correctness in [13], which required S to
provide an NAI view.)
A then produces some arbitrary output, which the distinguisher D uses to

compute which world A was operating in. Finally, we bound D’s ability to dis-
tinguish between the two worlds. This allows us to quantify A’s probability of
achieving any adversarial goal in the real world (through adaptive insertions,
deletions and membership queries) by relating it to the ideal world, which we
know how to analyse.

In Fig. 3, we define the Real-or-Ideal game.

Definition 14. Let Π be an AMQ-PDS with public parameters pp, and let RK

be a keyed function family. We say Π is (qins, qqry, qdel, ta, td, ts, ε)-adversarially
correct if, for all adversaries A running in time at most ta and making qins, qqry,
qdel queries to oracles Ins,Qry,Del respectively in the Real-or-Ideal game (Fig. 3)
with a simulator S that provides an NAI* view of Π to A and runs in time at
most ts, and for all distinguishers D running in time at most td, we have:

AdvRoI
Π,A,S(D):=

∣∣Pr [Real(A,D)=1]−Pr [Ideal(A,D,S)=1]
∣∣ ≤ ε.

16

Remark 2. We discuss why Def. 14 captures adversarial correctness, by outlining
how it can be used to analyse a specific adversarial goal. Consider an adversary
A that, throughout its execution, makes Ins and Del queries on adversarially
selected inputs x1, ..., xn, interspersed with Qry queries, and ending with a final
membership query Qry(x) with x←$ D \ {x1, ..., xn}. Suppose the output of A
is the result of that final query, and D’s output is identical to that of A. Then,
Pr[Real(A,D)] is the adversarial false positive probability of Π produced by A,
for which we cannot directly compute an upper bound, since A makes adaptive
queries. However, Pr[Ideal(A,D,S)] is the NAI* false positive probability, for
which we can derive upper bounds for our AMQ-PDS of interest. Then, if Def. 14
is satisfied, it means we can upper bound Pr[Real(A,D)] by Pr[Ideal(A,D,S)]+ε.
Note that our definition covers any adversarial goal (see [13, Appendix C.2]).

In Fig. 4, we construct a simulator S providing an NAI* view for function-
decomposable AMQ-PDS supporting insertions, deletions and membership queries.
We first observe that the state constructed by S is always an NAI* state (Def. 7).
Every insertion of element zi either executes ins

IdR(·, σ) on freshXi←$ R or does
not change the state if on a currently inserted element. Moreover, only deletions
of zi that are currently inserted run delIdR(Xi, σ). Further, by inspection, the
runtime of S is not significantly higher than that of the underlying AMQ-PDS.

Theorem 1. Let qins, qdel, qqry be non-negative integers, and let ta, td > 0. Let
F : D→ R. Let Π be an AMQ-PDS with public parameters pp and oracle access
to F , such that Π satisfies the consistency rules from Def. 12, F -decomposability
(Def. 2), and reinsertion invariance (Def. 3). Let α, β, γ be the number of calls
to F required to insert, query, delete an element respectively in Π using its
ins, qry, del algorithms.

If RK : D → R is an (αqins + βqqry + γqdel, ta + td, ε)-secure pseudorandom
function with key K←$K, then Π is (qins, qqry, qdel, ta, ts, td, ε

′)-adversarially
correct with respect to the simulator in Fig. 4, where ts ≈ ta and ε′ = ε +
2P ∗

Π,pp(IF | qins) + (qins + 2qqry + qdel) · P ∗
Π,pp(FP | qins).

Proof. We define an intermediate game G∗ in Fig. 5. Let Real denote the d =
0 version of Real-or-G∗, let G∗ denote the d = 1 version of Real-or-G∗ (or
equivalently, the d = 0 version of G∗-or-Ideal), and let Ideal denote the d = 1
version of G∗-or-Ideal. Then,

AdvRoI
Π,A,S(D) := |Pr [Real(A,D)=1]−Pr [Ideal(A,D,S)=1] |

≤ |Pr[Real(A,D)=1]−Pr[G∗(A,D)=1]|
+ |Pr[G∗(A,D)=1]−Pr[Ideal(A,D,S)=1]|. (1)

Our proof proceeds by bounding the closeness of Real, G∗ in Lemma 6 in terms of
the PRF advantage, and that of G∗, Ideal in Lemma 7 in terms of the probability
of some “bad” event. Then, we combine these lemmas to obtain our result.

17

Simulator S(A, pp)

1 F ←$ Funcs[D,R]

2 σ ← setup(pp)

3 σ∗ ← setup(pp)

4 inserted← {}
5 f ← {}

6 return AInsSim, DelSim, QrySim

Oracle InsSim(x)

1 (cG
∗
, σ∗)←$ insF (x, σ∗)

2 cIdeal ← ⊤
3 // If it’s not already inserted

4 if inserted[x] = ⊥
5 f [x]←$ R

6 (cIdeal, σ)←$ insIdR(f [x], σ)

7 // If the insertion succeeded

8 if cIdeal = ⊤
9 inserted[x]← ⊤

10 return cIdeal return cG
∗

Oracle DelSim(x)

1 (bG
∗
, σ∗)←$ delF (x, σ∗)

2 bIdeal ← ⊥
3 if inserted[x] = ⊤

4 bIdeal ← ⊤
5 inserted[x] = ⊥

6 (−, σ)←$ delIdR(f [x], σ)

7 return bIdeal return bG
∗

Oracle QrySim(x)

1 aG∗
← qryF (x, σ∗)

2 aIdeal ← ⊤
3 // If it isn’t inserted

4 if inserted[x] = ⊥

5 aIdeal←$ qryIdR(X←$ R, σ)

6 return aIdeal return aG∗

Fig. 4: Simulator and G∗ for AMQ-PDS with deletions.

Lemma 6. The difference in probability of an arbitrary td-distinguisher D out-
putting 1 in experiments of game Real-or-G∗ in Fig. 5 with a (qins, qqry, qdel, ta)-
AMQ-PDS adversary A is bounded by the maximal PRF advantage ε of an
(αqins + βqqry + γqdel, ta + td, ε)-PRF adversary attacking RK :

AdvReal-or-G∗

Π,A,S (D) := |Pr [Real(A,D) = 1]− Pr [G∗(A,D) = 1]| ≤ ε.

Proof. Consider the PRF adversary B (Fig. 1), instantiating the AMQ-PDS
queried by A using its RoR oracle, in relation to the Real-or-G∗ game (Fig. 5).
When b = 0, B is running Real for A, and when b = 1, B is instead running G∗

for A. Then, the advantage of B is AdvPRF
R (B) = AdvReal-or-G∗

Π,A,S (D). Since RK is

an (αqins + βqqry + γqdel, ta + td, ε)-secure PRF, AdvReal-or-G∗

Π,A,S (D) ≤ ε.

Lemma 7. The difference in probability of an arbitrary td-distinguisher D out-
putting 1 in experiments of game G∗-or-Ideal in Fig. 5 with a (qins, qqry, qdel, ta)-

18

Real-or-G∗(A,D, pp)

1 d←$ {0, 1}
2 if d = 0 // Real

3 K←$K;F ← RK

4 else // G∗

5 F ←$ Funcs[D,R]

6 σ ← setup(pp)

7 out←$AIns,Del,Qry

8 return d′←$D(out)

G∗-or-Ideal(A,S,D, pp)

1 d←$ {0, 1}
2 if d = 0 // G∗

3 F ←$ Funcs[D,R]

4 σ ← setup(pp)

5 out←$AIns,Del,Qry

6 else // Ideal

7 out←$ S(A, pp)
8 return d′←$D(out)

Fig. 5: Intermediate game G∗ for the proof of Theorem 1.

AMQ-PDS adversary A is bounded as follows:

AdvG
∗-or-Ideal

Π,A,S (D) := |Pr [G∗(A,D) = 1]− Pr [Ideal(A,D,S) = 1]|
≤ 2P ∗

Π,pp(IF | qins) + (qins + 2qqry + qdel) · P ∗
Π,pp(FP | qins).

Proof. We wish to bound the probability of distinguishing between G∗ and Ideal.
Let E be the divergence event between G∗ and Ideal, which occurs due to a
mismatch in responses toQry,Del, Ins queries across the two games (see Fig. 4).

First, we observe that Ideal cannot have false negative responses to member-
ship queries, but G∗ could have. If A induces a false negative for some element x
in G∗ and then calls Qry(x), the two games would diverge with probability one.
False negatives lead to repercussions when comparing responses to all types of
queries across the two games. Therefore, we will deal with them separately, by
defining EFN to be the event that a false negative occurs in G∗ before any other
query response mismatch. We then split the analysis of event E into two parts:
(1) the query response mismatch occurs without a false negative occurring in G∗

beforehand (i.e.¬EFN), or (2) the query response mismatch occurs with a false
negative occurring in G∗ beforehand (i.e. EFN). Then,

Pr [E] ≤ Pr [E ∧ ¬EFN] + Pr [E ∧EFN] ≤ Pr [E ∧ ¬EFN] + Pr [EFN] .

We will analyse E∧¬EFN for each query type separately. Let aGi , b
G
i , c

G
i denote

the responses to A’s i-th query, deletion, and insertion query in game G ∈
{G∗, Ideal}. Then, the games diverge the first time that aG

∗

i , bG
∗

i or cG
∗

i does not

19

match aIdeali , bIdeali or cIdeali , respectively. We define

EQry :=

[[
The first query response mismatch is

aIdeali ̸= aG
∗

i for some i ∈ [qqry]

]
∧ ¬EFN

]
, (2)

EDel :=

[[
The first query response mismatch is

bIdeali ̸= bG
∗

i for some i ∈ [qdel]

]
∧ ¬EFN

]
, (3)

EIns :=

[[
The first query response mismatch is

cIdeali ̸= cG
∗

i for some i ∈ [qins]

]
∧ ¬EFN

]
. (4)

Hence,

Pr [E] ≤ Pr [EFN] + Pr [EQry] + Pr [EDel] + Pr [EIns] . (5)

We now proceed to bound the probability of each event in Eq. (5). In the
following, we take the probability over the randomness used by A (which we
refer to as A’s coins), and the randomness used by game G ∈ {G∗, Ideal} to
answer A’s queries (which we refer to as G’s coins). We will use xi, yi and zi to
denote the input to A’s i-th query, deletion and insertion query, respectively.

Calculation of Pr [EFN]. We start by analysing the probability of a false nega-
tive occurring in G∗. Our key observation is that false negatives can only occur
from inserting or deleting false positives.

Consider an element x that is a false positive due to insertions of {z1, ..., zℓ},
where ℓ ≥ 1. By the consistency rule successful deletion of positives, the deletion
of x will succeed, although it was never inserted. However, this may cause ele-
ments in {z1, ..., zℓ} to become false negatives. Now, consider inserting this false
positive x. By reinsertion invariance, the state will remain unchanged, but x will
become a true positive. Then, deleting any element in {x, z1, ..., zℓ} will succeed,
but may cause other elements in {x, z1, ..., zℓ} to become false negatives.

Recall that we are interested in analysing the probability of a false negative
occurring in G∗ before any other mismatch in query responses across the two
games. Therefore, we do not need to consider deletions of false positives; it would
result in a mismatch in Del responses, since Ideal does not allow deletions of
false positives while G∗ does. We will then focus solely on false negatives caused
by insertions of false positives in the following. We write

Pr [EFN] := Pr

[
A false negative occurs in G∗

before a query response mismatch occurred

]
≤ Pr

[
A false positive is inserted in G∗

before a query response mismatch occurred

]
≤

qins∑
i=1

Pr

[
zi is the first false positive inserted in G∗

before a query response mismatch occurred

]
.

Let σ∗
i denote the state of Π in game G∗ just before the i-th Ins query. Then,

since no prior query response mismatch occurred and zi is the first false positive

20

inserted, σ∗
i contains no false negatives up to this point. Then,

Pr[EFN] ≤
qins∑
i=1

Pr

 [zi is a false positive in σ∗
i]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

≤

qins∑
i=1

Pr
G∗’s coins
Ideal’s coins
A’s coins

 [inserted[zi] = ⊥] ∧ [⊤←$ qryF (zi, σ
∗
i)]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

 . (6)

Let Li be the list of successful operations on σ∗ in G∗ up to the i-th Ins query,
where each item in Li is either insF (·, σ∗) or delF (·, σ∗) on z1, ..., zi−1. By the
consistency rule unsuccessful operation invariance, we do not need to consider
unsuccessful operations when constructing σ∗

i . So,

Pr[EFN]≤
qins∑
i=1

Pr
G∗’s coins
Ideal’s coins
A’s coins

σ∗
i ← setup(pp)

for opF (zj , σ
∗) ∈ Li : (⊤, σ∗

i)← opF (zj , σ
∗
i):

[inserted[zi] = ⊥] ∧ [⊤←$ qryF (zi, σ
∗
i)]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

 . (7)

Now, if no prior query response mismatch has occurred, inserted[zi] = ⊥ implies
that either zi was never inserted into σ∗

i , or zi was inserted but then deleted. In
the latter scenario, since σ∗

i contains no false negatives up to this point (as per
Eq. (7)), zi must be a positive at the time of its deletion. Then, by the consistency
rule successful deletion of positives, its deletion will succeed, thus fully undoing
the effect of its insertion on σ∗

i . Since F is a random function satisfying F -
decomposability and A has no information about F , we write Eq. (7) as

Pr [EFN] ≤
qins∑
i=1

Pr
G∗’s coins
Ideal’s coins
A’s coins

σ∗
i ← setup(pp)

for opF (zj , σ
∗) ∈ Li : (⊤, σ∗

i)← opIdR(F (zj), σ
∗
i) :

[⊤←$ qryIdR(X ←$ R, σ∗
i)]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

 .

Now, since F is a random function and A has no information about F , we can
replace every first insertion of an element F (zj) by Xzj ←$ R (i.e. σ∗

i satisfies
insertion unpredictability). For repeated insertions on an element, we have two
possibilities. If this element has not been deleted since its last insertion, the
repeated insertion will not change the state, due to reinsertion invariance. How-
ever, if it has been deleted since its last insertion, it will change the state in the
same way as its first insertion, since both use the same F . Therefore, we can
rewrite the above by sampling |{z1, ..., zi−1}| random strings, and associating

21

each string to a distinct zj , giving

Pr[EFN]≤
qins∑
i=1

Pr
Ideal’s coins
A’s coins

ℓ← |{z1, ..., zi−1}|
{u1, ..., uℓ} ← {z1, ..., zi−1}

Xu1 , ..., Xuℓ
←$ R

σ∗
i ← setup(pp)

for opF (zj , σ
∗)∈Li:(⊤, σ∗

i)←opIdR(Xzj , σ
∗
i):

[⊤←$ qryIdR(X ←$ R, σ∗
i)]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

. (8)

We now argue that every σ∗
i is an n-NAI* state, where n is upper bounded

by qins, by showing that it satisfies the requirements in Corollary 1. Firstly,
observe that the construction of σ∗

i in Eq. (8) enforces insertion unpredictability
(Def. 6). Secondly, there are at most qins insertions in σ∗

i . Thirdly, since no query
response mismatch has yet occurred, all deletions must be on elements for which
the preceding successful operation was an insertion. Finally, since there are no
false negatives up to this point and reinsertion invariance holds, any insertion
on a currently inserted element will not change the state.

Let U IdR

Π,pp be the algorithm from Def. 8 that, given X1, ..., Xn, outputs an

NAI* state created using insIdR , delIdR on X1, ..., Xn with the maximal false
positive probability. Then, no matter how σ∗

i is created, the state output by
U IdR

Π,pp will result in an equal or higher false positive probability than that of σ∗
i .

Since ℓ ≤ qins and with more distinct insertions, U IdR

Π,pp may be able to create a
state with even higher false positive probability,

Pr [EFN] ≤
qins∑
i=1

Pr
Ideal’s coins

 X1, ..., Xqins ←$ R

σ ← U IdR

Π,pp(X1, ..., Xqins) :

⊤←$ qryIdR(X ←$ R, σ)

 .

Finally, applying Def. 8, we obtain

Pr [EFN] ≤ qins · P ∗
Π,pp(FP | qins). (9)

Calculation of Pr [EQry]. We first rewrite Eq. (2) using the union bound as

Pr[EQry] ≤
qqry∑
i=1

Pr

[Qry(xi) yields the first mismatch]∧[
[(aIdeali = ⊤) ∧ (aG

∗

i = ⊥)]
∨[(aIdeali = ⊥) ∧ (aG

∗

i = ⊤)]
]

 ∧ ¬EFN

 . (10)

We start by inspecting the Qry algorithms of G∗ and Ideal to see where they
could diverge. In G∗, the responses to A’s Qry queries are always computed
using the same function F , while in Ideal, a fresh random string X ←$ R is
sampled each time a non-inserted element is queried.

Let σi denote the state of Π in game Ideal just before the i-th Qry query,
and σ∗

i denote the corresponding state in game G∗. Since Qry(xi) yields the
first query response mismatch, both G∗ and Ideal must contain the same set of

22

inserted elements. As EFN did not yet occur, σ∗
i has no false negatives. Moreover,

Qry queries in Ideal do not give false negative responses. This means that Qry
queries on elements that were inserted (and not yet deleted) will always return a
positive response in both games. Therefore, in order for xi to yield a mismatch in
Qry query responses between the games, we must have that xi is not currently
inserted in Ideal (i.e. inserted[xi] = ⊥ in line 4 of QrySim). This gives

Pr [EQry] ≤
qqry∑
i=1

[
Pr

[[
[Qry(xi) yields the first mismatch]∧

[inserted[xi] = ⊥] ∧ [aIdeali = ⊤]

]
∧ ¬EFN

]
+ Pr

[[
[Qry(xi) yields the first mismatch]∧

[inserted[xi] = ⊥] ∧ [aG
∗

i = ⊤]

]
∧ ¬EFN

]]
(11)

:=

qqry∑
i=1

[
Pr

[
EIdeal

Qry

]
+ Pr

[
EG∗

Qry

]]
, (12)

where, for simplicity, we will use Pr
[
EIdeal

Qry

]
to denote the first term of Eq. (11),

and Pr
[
EG∗

Qry

]
to denote the second term.

We start by bounding Pr
[
EIdeal

Qry

]
. In Ideal, a fresh random string X ←$ R

is sampled each time a non-inserted element is queried, and so

Pr
[
EIdeal

Qry

]
≤ Pr

Ideal’s coins
A’s coins

[
[Qry(xi) yields the first mismatch]∧

[⊤←$ qryIdR(X ←$ R, σi)]

]
.

We now argue that every σi is an n-NAI* state, with n being upper bounded
by qins, by showing that it satisfies the requirements in Def. 7. Firstly, from
line 3 of DelSim, we observe that only deletions of currently inserted elements
run delIdR(·, σ), possibly changing the state. Secondly, we note that in InsSim,
every insertion either executes insIdR(·, σ) on Xi←$ R, or does not change the
state if it is on a currently inserted element. Therefore, σi is an NAI* state
containing at most qins elements. Then, we can upper bound the false positive
probability of σi by that of the NAI* state with the maximal false positive
probability (Def. 8), giving Pr

[
EIdeal

Qry

]
≤ P ∗

Π,pp(FP | qins).
We use a reasoning similar to calculating EFN to compute Pr

[
EG∗

Qry

]
, replac-

ing zi with xi. Under ¬EFN , the state σ∗
i contains no false negatives. Therefore,

we can apply Eq. (6) from the EFN calculation to get

Pr
[
EG∗

Qry

]
= Pr

G∗’s coins
Ideal’s coins
A’s coins

[[
[Qry(xi) yields the first mismatch]∧
[inserted[xi] = ⊥] ∧ [⊤←$ qryF (xi, σ

∗
i)]

]
∧ ¬EFN

]

≤ Pr
G∗’s coins
Ideal’s coins
A’s coins

 [inserted[xi] = ⊥] ∧ [⊤←$ qryF (xi, σ
∗
i)]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

≤ P ∗

Π,pp(FP | qins). (13)

23

Substituting Pr
[
EIdeal

Qry

]
,Pr

[
EG∗

Qry

]
in Eq. (12) gives

Pr [EQry] ≤
qqry∑
i=1

2P ∗
Π,pp(FP | qins) = 2qqry · P ∗

Π,pp(FP | qins). (14)

Calculation of Pr [EDel]. We first rewrite Eq. (3) using the union bound as

Pr [EDel] ≤
qdel∑
i=1

Pr

[Del(yi) yields the first mismatch]∧[
[(bIdeali = ⊤) ∧ (bG

∗

i = ⊥)]
∨[(bIdeali = ⊥) ∧ (bG

∗

i = ⊤)]
]

 ∧ ¬EFN

 . (15)

We now examine the Del algorithms of G∗ and Ideal. In G∗, the responses to A’s
Del queries are always computed using the same function F . In Ideal, deletions
are only allowed on an element yi if it is currently inserted in the filter, and use
the same random string f [yi] that was used for yi’s insertion.

We note that in Eq. (15), we are only interested in the case where Del(yi)
is the first query response mismatch. In this case, both G∗ and Ideal must con-
tain the same set of inserted elements. As EFN did not occur, every inserted
element is a true positive in both games. We observe that in Ideal, true positives
are always successfully deleted (see line 3 of DelSim), while in G∗, successful
deletion of true positives is ensured by the consistency rule successful deletion of
positives. However, by the same consistency rule, deletions of false positives also
succeed in G∗, while they do not in Ideal. Consequently, deletions in G∗ succeed
on at least the elements on which they succeed in Ideal. Thus, it never happens
that a deletion succeeds in Ideal but not in G∗, and we can rewrite Eq. (15) as

Pr [EDel] ≤
qdel∑
i=1

Pr

[[
[Del(yi) yields the first mismatch]∧

[(bIdeali = ⊥) ∧ (bG
∗

i = ⊤)]

]
∧ ¬EFN

]
.

Let σ∗
i denote the state of Π in game G∗ just before the i-th Del query. By the

consistency rule unsuccessful deletion of negatives,

Pr [EDel] ≤
qdel∑
i=1

Pr
G∗’s coins
Ideal’s coins
A’s coins

[[
[Del(yi) yields the first mismatch]∧

[inserted[yi] = ⊥
]
∧
[
⊤←$ qryF (yi, σ

∗
i)]

]
∧ ¬EFN

]
.

We use a reasoning similar to calculating EFN to compute this, replacing zi
with yi. Under ¬EFN , the state σ∗

i contains no false negatives. Therefore, we
can apply Eq. (6) from the EFN calculation to get

Pr [EDel] ≤
qdel∑
i=1

Pr
G∗’s coins
Ideal’s coins
A’s coins

 [inserted[yi] = ⊥] ∧ [⊤←$ qryF (yi, σ
∗
i)]∧

[σ∗
i has no false negatives]∧

[no prior query response mismatch occurred]

≤

qdel∑
i=1

P ∗
Π,pp(FP | qins) = qdel · P ∗

Π,pp(FP | qins). (16)

24

Calculation of Pr [EIns]. We first rewrite Eq. (4) as

Pr [EIns] = Pr

[Ins(zi) yields the first mismatch]∧[

[(cIdeali = ⊥) ∧ (cG
∗

i = ⊤)]
∨[(cIdeali = ⊤) ∧ (cG

∗

i = ⊥)]
]

for some i ∈ [qins]

 ∧ ¬EFN

 . (17)

Let us now compare the Ins algorithms of G∗ and Ideal. In G∗, the responses to
A’s Ins queries are always computed using the same function F . On the other
hand, in Ideal, a fresh random string f [zi]←$ R is sampled at each insertion of
an element zi which is not already inserted.

Let σi denote the state of Π in game Ideal just before the i-th Ins query, and
σ∗
i denote the corresponding state in game G∗. If Ins(zi) is the first mismatch,

it must be that both G∗ and Ideal contain the same set of inserted elements up
to this point. In Ideal, by inspecting InsSim we observe that the insertion of
any currently inserted element zi will always succeed. In G∗, since we are only
considering the case where EFN did not yet occur, σ∗

i has no false negatives.
This means that any element zi that was inserted and not yet deleted will result
in ⊤ ← qryF (zi, σ

∗
i). Then, by reinsertion invariance, the insertion of zi will

succeed (but not change the state) in G∗. Therefore, for the first query response
mismatch it must be that xi is not currently inserted in Ideal (i.e. inserted[zi] = ⊥
in line 3 of InsSim). Then,

Pr [EIns] ≤ Pr

[Ins(zi) yields the first mismatch]∧
[cIdeali = ⊥] ∧ [inserted[zi] = ⊥]

for some i ∈ [qins]

 ∧ ¬EFN

+ Pr

[Ins(zi) yields the first mismatch]∧
[cG

∗

i = ⊥] ∧ [inserted[zi] = ⊥]
for some i ∈ [qins]

 ∧ ¬EFN

 (18)

:= Pr
[
EIdeal

Ins

]
+ Pr

[
EG∗

Ins

]
, (19)

where, for simplicity, we will use Pr
[
EIdeal

Ins

]
to denote the first term of Eq. (18),

and Pr
[
EG∗

Ins

]
to denote the second term.

We start by computing Pr
[
EIdeal

Ins

]
. In Ideal, a fresh random string X ←$ R

is sampled each time a non-inserted element is queried, and so we can write

Pr
[
EIdeal

Ins

]
≤ Pr

Ideal’s coins
A’s coins

[Ins(zi) yields the first mismatch]∧
[(⊥, σi)←$ insIdR(X ←$ R, σi)]

for some i ∈ [qins]

 .

Since every σi is an n-NAI* state, with n being upper bounded by qins, we can
upper bound the insertion failure probability of σi by that of the NAI* state
with the maximal insertion failure probability (Def. 9), giving Pr

[
EIdeal

Ins

]
≤

P ∗
Π,pp(IF | qins).

25

We now compute Pr
[
EG∗

Ins

]
. We have that

Pr
[
EG∗

Ins

]
≤ Pr

G∗’s coins
Ideal’s coins
A’s coins

[Ins(zi) yields the first mismatch]∧
[(⊥, σ∗

i)←$ insF (zi, σ
∗
i)]

for some i ∈ [qins]

 ∧ ¬EFN

 .

Let Li be the list of successful operations on σ∗ in G∗ up to the i-th Ins query,
where each item in Li is either insF (·, σ∗) or delF (·, σ∗) on z1, ..., zi−1. Recall
that we do not need to consider unsuccessful operations when constructing σ∗

i ,
by the consistency rule unsuccessful operation invariance. Then,

Pr
[
EG∗

Ins

]
≤ Pr

G∗’s coins
Ideal’s coins
A’s coins

σ∗
i ← setup(pp)

for opF (zj , σ
∗) ∈ Li : (⊤, σ∗

i)← opF (zj , σ
∗
i) :

[inserted[zi] = ⊥] ∧ [(⊥, σ∗
i)←$ insF (zi, σ

∗
i)]∧

[σ∗
i has no false negatives]∧

[Ins(zi) yields the first mismatch]
for some i ∈ [qins]

= Pr
G∗’s coins
Ideal’s coins
A’s coins

σ∗
i ← setup(pp)

for opF (zj , σ
∗) ∈ Li : (⊤, σ∗

i)← opIdR(F (zj), σ
∗
i) :

[inserted[zi] = ⊥] ∧ [(⊥, σ∗
i)←$ insIdR(F (zi), σ

∗
i)]∧

[σ∗
i has no false negatives]∧

[Ins(zi) yields the first mismatch]
for some i ∈ [qins]

 ,

by F -decomposability. Now, since F is a random function and A has no informa-
tion about F , we can then proceed in a similar manner as in the EFN calculation,
with the caveat that we are now interested in any of the qins insertions failing:

Pr[EG∗

Ins] ≤ Pr
Ideal’s coins
A’s coins

ℓ← |{z1, ..., zqins}|
{u1, ..., uℓ} ← {z1, ..., zqins}

Xu1
, ..., Xuℓ

←$ R
for some i ∈ [qins],
σ∗
i ← setup(pp)

for opF (zj , σ
∗)∈Li: (⊤, σ∗

i)←opIdR(Xzj , σ
∗
i):

[(⊥, σ∗
i)←$ insIdR(Xzi ←$ R, σ∗

i)]∧
[σ∗

i has no false negatives]∧
[Ins(zi) yields the first mismatch]

. (20)

Similarly as in Eq. (8), we conclude that σ∗
i in Eq. (20) is an NAI* state. Then,

we again upper bound the insertion failure probability of σ∗
i by that of the NAI*

state with the maximal insertion failure probability (Def. 9), giving Pr
[
EG∗

Ins

]
≤

P ∗
Π,pp(IF | qins). Substituting Pr

[
EIdeal

Ins

]
,Pr

[
EG∗

Ins

]
in Eq. (19), we obtain

Pr [EIns] ≤ 2P ∗
Π,pp(IF | qins). (21)

Finally, substituting Eqs. (9, 14, 16, 21) in Eq. (5), we have

AdvG
∗-or-Ideal

Π,A,S (D) ≤ 2P ∗
Π,pp(IF | qins) + (qins + 2qqry + qdel) · P ∗

Π,pp(FP | qins).

26

To prove Theorem 1, we then apply Lemmas 6 and 7 to Eq. (1) to obtain

AdvRoI
Π,A,S(D) ≤ ε+ 2P ∗

Π,pp(IF | qins) + (qins + 2qqry + qdel) · P ∗
Π,pp(FP | qins).

Remark 3. We discuss why our results do not directly extend to a setting where
A can access the internal state σ. In Fig. 4, observe that, upon reinsertion of an
element not currently in the filter, Ideal always samples a freshX ←$ R, while G∗

inserts the same element again. This choice allowed us to obtain distinguishing
bounds involving only the NAI* false positive and insertion failure probabilities.
However, this difference is clearly detectable if A can view σ after reinsertion,
leading to Ideal and G∗ being distinguished with a probability close to 1.

4.2 Guarantees for Counting and Cuckoo filters

In this section, we will use Theorem 1 to give concrete correctness guarantees
for Counting and Cuckoo filters.

Corollary 2. Let qins, qdel, qqry be non-negative integers, and let ta, td > 0. Let
F : D→ R. Let Π be a Counting filter AMQ-PDS with public parameters pp and
oracle access to F . If RK for K←$K is a (qins + qqry + qdel, ta + td, ε)-secure
pseudorandom function and F = RK , then Π is (qins, qqry, qdel, ta, ts, td, ε

′)-

adversarially correct, where ts ≈ ta and ε′ = ε+2m ·
[

e·qins·k
maxVal·m

]maxVal
+ (qins +

2qqry + qdel) ·
[
1− e−

(qins+0.5)k
m−1

]k
.

Proof. From the ins, del, qry algorithms in Fig. 2, we see that Counting filters with
oracle access to a random function F are F -decomposable, reinsertion invariant,
and satisfy the consistency rules in Def. 12. Further, each ins, del and qry call
contains one call to the function F . Then, Theorem 1 holds with α = β = γ = 1.
Using Lemmas 2 and 3, we obtain the result.

Remark 4. The adversarial correctness bound for Bloom filters in [13, Corollary
4.4] holds for insertion-only Counting filters.

Corollary 3. Let qins, qdel, qqry be non-negative integers, and let ta, td > 0. Let
F : D→ R. Let Π be a PRF-wrapped Cuckoo filter AMQ-PDS with public param-
eters pp and oracle access to F . If RK for K←$K is a (qins+qqry+qdel, ta+td, ε)-
secure pseudorandom function and F = RK , then Π is (qins, qqry, qdel, ta, ts, td, ε

′)-
adversarially correct, where ts ≈ ta and

ε′ = ε+
4(

|R| · 2λT+λI−1
)s−1

(
qins
s

) s−1∏
i=1

[
(|R| − i)(2λT − i)

]
+ (qins + 2qqry + qdel) ·

[
1−

(
1− 2−λT

)2s+1
+

qins
|R|

]
.

Proof. From the ins, del, qry algorithms in Fig. 7, we see that PRF-wrapped
Cuckoo filters with oracle access to a random function F are F -decomposable,
reinsertion invariant, and satisfy the consistency rules in Def. 12. Further, each
ins, del and qry call contains one call to the function F . Then, Theorem 1 holds
with α = β = γ = 1. Using Lemmas 4 and 5, we obtain the result.

27

Fig. 6: Correctness guarantees vs. storage trade-offs for Counting filters with
maxVal = 15 (4 bits counters), qins = qdel = qqry = 220, ε = 2−128. Dashed lines
represent non-adversarial guarantees (Lemma 2), solid lines represent adversarial
guarantees for the insertion-only setting ([13, Corollary 4.4]), and dotted lines
represent adversarial guarantees for the setting with insertions and deletions
(Corollary 2).

5 Secure instances

In this section, we outline how our results can be used to secure AMQ-PDS in
practice. Let us consider the example outlined in Remark 2, with the predicate
P := [A’s final Qry(x) query on x←$ D \ {x1, ..., xn} returns ⊤].

Since Theorem 1 holds for any predicate, the probability of an adversary A
satisfying P in the real world is given by Pr [D(A)=1] ≤ ε+2P ∗

Π,pp(IF | qins) +
(qins + 2qqry + qdel + 1) · P ∗

Π,pp(FP | qins).
We illustrate the behaviour of this bound for the example of Counting filters.

In Fig. 6, we plot an upper bound of the false positive probability against the size
of the Counting filter in three settings: the non-adversarial setting, the insertion-
only adversarial setting, and the setting with deletions studied in this work. By
Remark 4, we can analyse the insertion-only setting using the results in [13]:
Pr [D(A)=1] ≤ ε+ (2qqry + 1) · PΠ,pp(FP | qins).

From Fig. 6, we observe that guaranteeing a specific false positive probability
even in an adversarial setting with deletions requires roughly trebling the size
of the filter, when compared to the honest (NAI) setting. Crucially, deletions
do not incur a significant cost when compared to the insertion-only setting; the
additional term of P ∗

Π,pp(IF | qins) can be made very small with the choice of
an appropriate maxVal. For Cuckoo filters, the same observation holds for the
choice of λI and λT . Hence, moving to the more complex scenario of allowing
deletions does not hinder the practicality of our results.

28

Bibliography

[1] Bloom filters and cuckoo filters for cache sum-
marization. https://blog.fleek.network/post/

bloom-and-cuckoo-filters-for-cache-summarization/.

[2] Redisbloom: Probabilistic data structures for redis. https://redis.com/

modules/redis-bloom/.

[3] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, D. Sivakumar, and Luca Tre-
visan. Counting distinct elements in a data stream. In International Work-
shop on Randomization and Approximation Techniques in Computer Sci-
ence, 2002. https://doi.org/10.1007/3-540-45726-7_1.

[4] Michael A. Bender, Martin Farach-Colton, Mayank Goswami, Rob Johnson,
Samuel McCauley, and Shikha Singh. Bloom filters, adaptivity, and the
dictionary problem. In FOCS, 2018. https://doi.org/10.1109/FOCS.

2018.00026.

[5] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970. https://doi.

org/10.1145/362686.362692.

[6] Andrei Z. Broder and Michael Mitzenmacher. Survey: Network applica-
tions of Bloom filters: A survey. Internet Mathematics, 1(4):485–509, 2003.
https://doi.org/10.1080/15427951.2004.10129096.

[7] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword
searches on remote encrypted data. In Applied Cryptography and Network
Security, 2005. https://doi.org/10.1007/11496137_30.

[8] David Clayton, Christopher Patton, and Thomas Shrimpton. Probabilistic
data structures in adversarial environments. In ACM SIGSAC CCS, 2019.
https://doi.org/10.1145/3319535.3354235.

[9] Graham Cormode and S. Muthukrishnan. An improved data stream sum-
mary: the count-min sketch and its applications. Journal of Algorithms,
55(1):58–75, 2005. https://doi.org/10.1016/j.jalgor.2003.12.001.

[10] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzen-
macher. Cuckoo filter: Practically better than Bloom. In CoNEXT, 2014.
https://doi.org/10.1145/2674005.2674994.

[11] Bin Fan, David G. Andersen, and Michael Kaminsky. Cuckoo filter reference
implementation. https://github.com/efficient/cuckoofilter/blob/

917583d6abef692dfa8e14453bd77d6e0b61eef3/src/cuckoofilter.h#

L139, 2013.

[12] Li Fan, Pei Cao, J. Almeida, and A.Z. Broder. Summary cache: a scal-
able wide-area web cache sharing protocol. IEEE/ACM Transactions on
Networking, 8(3):281–293, 2000. https://doi.org/10.1109/90.851975.

[13] Mia Filić, Kenny Paterson, Anupama Unnikrishnan, and Fernando Virdia.
Adversarial correctness and privacy for probabilistic data structures. In
ACM SIGSAC CCS, 2022. https://doi.org/10.1145/3548606.3560621.

https://blog.fleek.network/post/bloom-and-cuckoo-filters-for-cache-summarization/
https://blog.fleek.network/post/bloom-and-cuckoo-filters-for-cache-summarization/
https://redis.com/modules/redis-bloom/
https://redis.com/modules/redis-bloom/
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1109/FOCS.2018.00026
https://doi.org/10.1109/FOCS.2018.00026
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1007/11496137_30
https://doi.org/10.1145/3319535.3354235
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1145/2674005.2674994
https://github.com/efficient/cuckoofilter/blob/917583d6abef692dfa8e14453bd77d6e0b61eef3/src/cuckoofilter.h#L139
https://github.com/efficient/cuckoofilter/blob/917583d6abef692dfa8e14453bd77d6e0b61eef3/src/cuckoofilter.h#L139
https://github.com/efficient/cuckoofilter/blob/917583d6abef692dfa8e14453bd77d6e0b61eef3/src/cuckoofilter.h#L139
https://doi.org/10.1109/90.851975
https://doi.org/10.1145/3548606.3560621

[14] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. Hy-
perloglog: the analysis of a near-optimal cardinality estimation algorithm. In
Conference on Analysis of Algorithms, 2007. https://doi.org/10.46298/
dmtcs.3545.

[15] Sergio Galán, Pedro Reviriego, Stefan Walzer, Alfonso Sánchez-Macian,
Shanshan Liu, and Fabrizio Lombardi. On the privacy of counting bloom
filters under a black-box attacker. IEEE Transactions on Dependable and
Secure Computing, 20(5), 2023. https://doi.org/10.1109/TDSC.2022.

3217115.
[16] Thomas Gerbet, Amrit Kumar, and Cédric Lauradoux. The power of evil

choices in Bloom filters. In IEEE/IFIP Conference on Dependable Systems
and Networks, 2015. https://doi.org/10.1109/DSN.2015.21.

[17] Junzhi Gong, Tong Yang, Haowei Zhang, Hao Li, Steve Uhlig, Shigang
Chen, Lorna Uden, and Xiaoming Li. HeavyKeeper: An accurate algorithm
for finding top-k elephant flows. In USENIX Annual Technical Conference,
2018. https://doi.org/10.1109/TNET.2019.2933868.

[18] Laura Hetz, Thomas Schneider, and Christian Weinert. Scaling mobile
private contact discovery to billions of users. In ESORICS, 2023. https:

//doi.org/10.1007/978-3-031-50594-2_23.
[19] Stefan Heule, Marc Nunkesser, and Alexander Hall. Hyperloglog in prac-

tice: Algorithmic engineering of a state of the art cardinality estima-
tion algorithm. In Conference on Extending Database Technology, 2013.
https://doi.org/10.1145/2452376.2452456.

[20] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker,
and Christian Weinert. Mobile private contact discovery at scale. In
USENIX Security, 2019.

[21] Tsvi Kopelowitz, Samuel McCauley, and Ely Porat. Support optimality and
adaptive cuckoo filters. In Algorithms and Data Structures, 2021. https:

//doi.org/10.1007/978-3-030-83508-8_40.
[22] Anukool Lakhina, Mark Crovella, and Christiphe Diot. Characterization of

network-wide anomalies in traffic flows. In ACM SIGCOMM Conference
on Internet Measurement, 2004. https://doi.org/10.1145/1028788.

1028813.
[23] James Larisch, David Choffnes, Dave Levin, Bruce M Maggs, Alan Mislove,

and Christo Wilson. Crlite: A scalable system for pushing all tls revocations
to all browsers. In IEEE S&P, 2017. https://doi.org/10.1109/SP.2017.
17.

[24] Yehuda Lindell. How to simulate it – a tutorial on the simulation proof
technique, 2017. https://doi.org/10.1007/978-3-319-57048-8_6.

[25] Linsheng Liu, Daniel S. Roche, Austin Theriault, and Arkady Yerukhi-
movich. Fighting fake news in encrypted messaging with the fuzzy anony-
mous complaint tally system (facts). In Network and Distributed Sys-
tems Security Symposium, 2022. https://doi.org/10.14722/ndss.2022.
23109.

[26] Lailong Luo, Deke Guo, Richard T. B. Ma, Ori Rottenstreich, and Xueshan
Luo. Optimizing bloom filter: Challenges, solutions, and comparisons. IEEE

30

https://doi.org/10.46298/dmtcs.3545
https://doi.org/10.46298/dmtcs.3545
https://doi.org/10.1109/TDSC.2022.3217115
https://doi.org/10.1109/TDSC.2022.3217115
https://doi.org/10.1109/DSN.2015.21
https://doi.org/10.1109/TNET.2019.2933868
https://doi.org/10.1007/978-3-031-50594-2_23
https://doi.org/10.1007/978-3-031-50594-2_23
https://doi.org/10.1145/2452376.2452456
https://doi.org/10.1007/978-3-030-83508-8_40
https://doi.org/10.1007/978-3-030-83508-8_40
https://doi.org/10.1145/1028788.1028813
https://doi.org/10.1145/1028788.1028813
https://doi.org/10.1109/SP.2017.17
https://doi.org/10.1109/SP.2017.17
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.14722/ndss.2022.23109
https://doi.org/10.14722/ndss.2022.23109

Communications Surveys & Tutorials, 21(2):1912–1949, 2019. https://

doi.org/10.1109/COMST.2018.2889329.

[27] Sam A. Markelon, Mia Filić, and Thomas Shrimpton. Compact frequency
estimators in adversarial environments. In ACM SIGSAC CCS, 2023.
https://doi.org/10.1145/3576915.3623216.

[28] Luca Melis, George Danezis, and Emiliano De Cristofaro. Efficient private
statistics with succinct sketches. In Network and Distributed Systems Secu-
rity Symposium, 2016. https://doi.org/10.14722/ndss.2016.23175.

[29] Páll Melsted and Jonathan K Pritchard. Efficient counting of k-mers in
dna sequences using a bloom filter. BMC Bioinformatics, 12, 2011. https:
//doi.org/10.1186/1471-2105-12-333.

[30] Moni Naor and Noa Oved. Bet-or-pass: Adversarially robust bloom filters.
In TCC, 2022. https://doi.org/10.1007/978-3-031-22365-5_27.

[31] Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. In
CRYPTO, 2015. https://doi.org/10.1007/978-3-662-48000-7_28.

[32] Moni Naor and Eylon Yogev. Bloom filters in adversarial environments.
ACM Transactions on Algorithms, 15(3):35:1–35:30, 2019. https://doi.

org/10.1145/3306193.

[33] Kenneth G. Paterson and Mathilde Raynal. HyperLogLog: Exponentially
bad in adversarial settings. In EuroS&P, 2022. https://doi.org/10.1109/
EuroSP53844.2022.00018.

[34] Henning Perl, Yassene Mohammed, Michael Brenner, and Matthew Smith.
Fast confidential search for bio-medical data using bloom filters and homo-
morphic cryptography. IEEE Conference on E-Science, pages 1–8, 2012.
https://doi.org/10.1109/eScience.2012.6404484.

[35] Xiaofeng Shi, Shouqian Shi, Minmei Wang, Jonne Kaunisto, and Chen Qian.
On-device iot certificate revocation checking with small memory and low la-
tency. In ACM SIGSAC CCS, 2021. https://doi.org/10.1145/3460120.
3484580.

[36] Dimitrios Sikeridis, Sean Huntley, David Ott, and Michael Devetsikiotis.
Intermediate certificate suppression in post-quantum tls: An approximate
membership querying approach. In CoNEXT, 2022. https://doi.org/10.
1145/3555050.3569127.

[37] Henrik Stranneheim, Max Käller, Tobias Allander, Björn Andersson, Lars
Arvestad, and Joakim Lundeberg. Classification of dna sequences using
bloom filters. volume 26, pages 1595–1600, 2010. https://doi.org/10.

1093/bioinformatics/btq230.

[38] Jeff Yan and Pook Leong Cho. Enhancing collaborative spam detection
with bloom filters. In Annual Computer Security Applications Conference,
2006. https://doi.org/10.1109/ACSAC.2006.26.

[39] Kevin Yeo. Cuckoo hashing in cryptography: Optimal parameters, robust-
ness and applications. In CRYPTO, 2023. https://doi.org/10.1007/

978-3-031-38551-3_7.

31

https://doi.org/10.1109/COMST.2018.2889329
https://doi.org/10.1109/COMST.2018.2889329
https://doi.org/10.1145/3576915.3623216
https://doi.org/10.14722/ndss.2016.23175
https://doi.org/10.1186/1471-2105-12-333
https://doi.org/10.1186/1471-2105-12-333
https://doi.org/10.1007/978-3-031-22365-5_27
https://doi.org/10.1007/978-3-662-48000-7_28
https://doi.org/10.1145/3306193
https://doi.org/10.1145/3306193
https://doi.org/10.1109/EuroSP53844.2022.00018
https://doi.org/10.1109/EuroSP53844.2022.00018
https://doi.org/10.1109/eScience.2012.6404484
https://doi.org/10.1145/3460120.3484580
https://doi.org/10.1145/3460120.3484580
https://doi.org/10.1145/3555050.3569127
https://doi.org/10.1145/3555050.3569127
https://doi.org/10.1093/bioinformatics/btq230
https://doi.org/10.1093/bioinformatics/btq230
https://doi.org/10.1109/ACSAC.2006.26
https://doi.org/10.1007/978-3-031-38551-3_7
https://doi.org/10.1007/978-3-031-38551-3_7

A Counting Filters

In Lemma 2, we compute the maximal NAI* false positive probability for Count-
ing filters.

Lemma 2. Let Π be an (m, k,maxVal)-Counting filter using a random function

F : D→ [m]k. Then, for any n, P ∗
Π,pp(FP |n) ≤

[
1− e−

(n+0.5)k
m−1

]k
.

Proof. Recall the maximal NAI* false positive probability definition (Def. 8),
where an algorithm U IdR

Π,pp constructs an NAI* state for a Counting filter with
public parameters pp = (m, k,maxVal) with the maximal false positive proba-
bility using X1, ..., Xn. To calculate the maximal false positive probability for
Counting filters, we would need to construct this algorithm U IdR

Π,pp.

We start by considering a U IdR

Π,pp that inserts all X1, ..., Xn, since the state
with the maximal false positive probability maximises the number of non-zero
counters, and the false positive probability cannot decrease with each insertion.
However, such a U IdR

Π,pp does not necessarily lead to the maximal false positive
probability due to the possibility of failed insertions. For example, consider two
elements,Xi andXj , for i < j < n, which share a counter. If that counter reaches
maxVal with the insertion of Xi, any later insertion of Xj will fail. However, it
may be that the insertion of Xj would lead to more non-zero counters in σ than
the insertion of Xi, and so the false positive probability may be higher by not
inserting Xi at all. Therefore, the construction of U IdR

Π,pp for maxVal < ∞ (and
thus an exact calculation of P ∗

Π,pp(FP |n)) is not so straightforward. However,
we will show that it is still possible to upper bound P ∗

Π,pp(FP |n) using the
existing results on false positive probability from Lemma 1.

To do so, let us consider a Counting filter with public parameters pp′ =
(m, k,∞). Since every insertion will succeed when maxVal is equal to∞, we can
define U IdR

Π,pp′ as an algorithm that simply inserts all X1, ..., Xn.

Let σ be the output of U IdR

Π,pp, and let ∆ be the output of U IdR

Π,pp′ . Regardless

of the definition of U IdR

Π,pp, running U
IdR

Π,pp and U IdR

Π,pp′ on the same input will result
in at least all counters that are non-zero in σ being non-zero in ∆. Therefore,

P ∗
Π,pp(FP |n) ≤ P ∗

Π,pp′(FP |n)

= Pr

 X1, ..., Xn←$ R

∆← BIdR

Π,pp′(X1, ..., Xn) :

⊤←$ qryIdR(X ←$ R, ∆)

= Pr

X1, ..., Xn←$ R

∆← setup(m, k,∞)

for i ∈ [n] : (⊤, ∆)←$ insIdR(Xi, ∆) :
⊤←$ qryIdR(X ←$ R, ∆)

= PΠ,pp(FP |n),

where the last line follows from Lemma 1.

32

In Lemma 3, we compute the maximal NAI* insertion failure probability for
Counting filters.

Lemma 3. Let Π be an (m, k,maxVal)-Counting filter using a random function

F : D→ [m]k. Then, for any n, P ∗
Π,pp(IF |n) ≤ m ·

[
e·n·k

maxVal·m
]maxVal

.

Proof. Recall the maximal NAI* insertion failure probability definition (Def. 9),
where an algorithm VIdR

Π,pp constructs an NAI* state for a Counting filter with
public parameters pp = (m, k,maxVal) with the maximal probability of an in-
sertion on one of X1, . . . , Xn failing. To calculate this probability for Counting
filters, we would need to construct this algorithm VIdR

Π,pp.
First, note that if the insertion of Xl fails, then Xl must be associated with

a counter j ∈ [m] such that σ[j] ≥ maxVal. We can then upper bound this by

P ∗
Π,pp(IF |n) ≤ Pr

 X1, . . . , Xn←$ R

σ ← VIdR

Π,pp(X1, . . . , Xn) :

∃j ∈ [m] such that σ[j] ≥ maxVal

≤ Pr

limit← maxVal
X1, . . . , Xn←$ R

σ ←WIdR

Π,pp(X1, . . . , Xn, limit) :

∃j ∈ [m] such that σ[j] ≥ limit

 ,

whereWIdR

Π,pp(X1,...,Xn, limit) outputs an NAI* state using insIdR(·,σ), delIdR(·,σ)
on X1, ..., Xn that has the maximal probability of one of its counters being
greater than or equal to limit.

Although the latter probability increases with n, in general, we cannot con-
struct WIdR

Π,pp by simply inserting all X1, . . . , Xn due to insertion failures (as
in Lemma 2). Therefore, we will again upper bound this probability instead of
directly calculating it.

Let ins denote a modified version of the ins algorithm in Fig. 2, where the
counters are always incremented upon insertion, i.e. the check in line 6 is skipped.

Let WIdR

Π,pp be the same as WIdR

Π,pp but where insertions are done using ins. Con-
sider a Counting filter with public parameters pp′ = (m, k,∞), such that no

insertion can fail. Then, we can define WIdR

Π,pp′ as an algorithm that simply in-
serts all X1, . . . , Xn.

Let σ be the output of WIdR

Π,pp, and let ∆ be the output of WIdR

Π,pp′ . Running

WIdR

Π,pp andWIdR

Π,pp′ on the same input will result in σ[j] ≤ ∆[j] for every counter
j ∈ [m], giving

P ∗
Π,pp(IF |n) ≤ Pr

X1, . . . , Xn←$ R

∆← setup(m, k,∞)

for i ∈ [n] : (⊤, ∆)← ins
IdR

(Xi, ∆) :
∃j ∈ [m] such that ∆[j] ≥ maxVal

≤ m ·

[e · n · k
maxVal ·m

]maxVal
,

where the last line follows from [12].

33

B Cuckoo Filters

In Fig. 7, we give the AMQ-PDS syntax instantiation for PRF-wrapped Cuckoo
filters.

In Lemma 4, we compute the maximal NAI* false positive probability for
PRF-wrapped Cuckoo filters.

Lemma 4. Let Π be an (s, λI , λT , num)-PRF-wrapped Cuckoo filter using ran-
dom functions F : D → R, HT : D → {0, 1}λT , and HI : D → {0, 1}λI . Then,

for any n, P ∗
Π,pp(FP |n) ≤ 1−

(
1− 2−λT

)2s+1
+ n

|R| .

Proof. In [10], an upper bound was proven on the false positive probability when
querying a randomly sampled element on any state, i.e. not necessarily an NAI*
state. To derive this bound, it is assumed that the “worst” state σmax can be
constructed, which contains a distinct fingerprint in every slot, and that the
queried element is not among elements Vmax used to create the state.

Thus, from Def. 8, the result follows from [10], but accounting for a random
element from the range of F equalling one of the n elements used to create the
state. Thus,

P ∗
Π,pp(FP |n) := Pr

σ ← setup(s, λI , λT ,num)

X1, . . . , Xn←$ R
V ← X1, . . . , Xn

σ ← U IdR

Π,pp(X1, . . . , Xn) :

⊤←$ qryIdR(X ←$ R, σ)

≤ Pr

σ ← setup(s, λI , λT ,num)

X1, . . . , Xn←$ R
V ← X1, . . . , Xn

σ ← U IdR

Π,pp(X1, . . . , Xn) :

⊤←$ qryIdR(X ←$ R\V, σ)

+ Pr

σ ← setup(s, λI , λT ,num)

X1, . . . , Xn←$ R
V ← X1, . . . , Xn

σ ← U IdR

Π,pp(X1, . . . , Xn) :

[X ←$ R ∈ V]

≤ Pr

[
⊤←$ qryIdR(X ←$ R\Vmax, σmax)

]
+ Pr

[
X1, . . . , Xn←$ R :
[X ←$ R ∈ V]

]
≤ Pr

[
⊤←$ qryIdR(X ←$ R\Vmax, σmax)

]
+

n

|R|
,

≤ 1−
(
1− 2−λT

)2s+1
+

n

|R|
,

where the last step follows from [10].

In Lemma 5, we compute the maximal NAI* insertion failure probability for
PRF-wrapped Cuckoo filters.

Lemma 5. Let Π be an (s, λI , λT , num)-PRF-wrapped Cuckoo filter using ran-
dom functions F : D → R, HT : D → {0, 1}λT , and HI : D → {0, 1}λI . Then,
for any n,

P ∗
Π,pp(IF |n) ≤

2(
|R| · 2λT+λI−1

)s−1

(
n

s

) s−1∏
i=1

[
(|R| − i)(2λT − i)

]
.

34

Proof. Recall the maximal NAI* insertion failure probability definition (Def. 9).
If the insertion of Xl in σ fails, then Xl must be associated with two distinct
buckets j1, j2 ∈ [2λI] such that load(σ[j1]) = load(σ[j2]) = s. Therefore, we can
upper bound this by

P ∗
Π,pp(IF |n) ≤ Pr

X1, ..., Xn←$ R

σ ← VIdR

Π,pp(X1, ..., Xn) :

∃j1, j2 ∈ [2λI] such that
[load(σ[j1]) = s] ∧ [load(σ[j2]) = s]

≤ Pr

 X1, ..., Xn←$ R

σ ← VIdR

Π,pp(X1, ..., Xn) :

∃j ∈ [2λI] such that load(σ[j]) ≥ s

≤ Pr

limit← s

X1, ..., Xn←$ R

σ ←WIdR

Π,pp(X1, ..., Xn, limit) :

∃j ∈ [2λI] such that load(σ[j]) ≥ limit

 ,

whereWIdR

Π,pp(X1,...,Xn, limit) outputs an NAI* state using insIdR(·,σ), delIdR(·,σ)
on X1,...,Xn that has the maximal probability of one of its buckets having at
least limit fingerprints.

Let ins denote a modified version of the ins algorithm in Fig. 7, where an
element’s tag is added to both of its buckets, if they do not already contain

it. Let WIdR

Π,pp be the same as WIdR

Π,pp but where insertions are done using ins.
Consider a Cuckoo filter with public parameters pp′ = (∞, λI , λT ,num), such

that no insertion can fail. Then, we can define WIdR

Π,pp′ as an algorithm that
simply inserts all X1, ..., Xn.

Let σ be the output of WIdR

Π,pp, and let ∆ be the output of WIdR

Π,pp′ . Running

WIdR

Π,pp and WIdR

Π,pp′ on the same input will result in the set of tags in bucket σ[j]

being a subset of tags stored in bucket ∆[j] for every bucket j ∈ [2λI], giving

P ∗
Π,pp(IF |n) ≤ Pr

limit← s

X1, ..., Xn←$ R

σ ←WIdR

Π,pp(X1, ..., Xn, limit) :

∃j ∈ [2λI] such that load(σ[j]) ≥ limit

≤ Pr

limit← s

X1, ..., Xn←$ R

∆←WIdR

Π,pp′(X1, ..., Xn, limit) :
∃j ∈ [2λI] such that load(∆[j]) ≥ limit

= Pr

∆← setup(∞, λI , λT ,num)

X1, ..., Xn←$ R

for i ∈ [n] : (⊤, ∆)← ins
IdR

(Xi, ∆) :
∃j ∈ [2λI] such that load(∆[j]) ≥ s

 .

35

There are 2λI possible choices of j, and
(
n
s

)
possible choices of s elements whose

first or second bucket is j. Now, the s elements must be distinct in order to be
added to their buckets; since we are considering PRF-wrapped Cuckoo filters,
this means they must be distinct even after they are passed through F : D→ R,

which occurs with probability [1 ·
(|R|−1

|R|
)
· ...

(|R|−(s−1)
|R|

)
]. Then, observe that we

also require the tags of the s elements to be distinct, so that they are added to

their buckets. This occurs with probability [1 ·
(
2λT −1
2λT

)
· ...

(2λT −(s−1)

2λT

)
]. Finally,

we compute the probability that the s distinct elements have their first or second
bucket equal to j, which is

(
2

2λI

)s
. Putting this together, we obtain

P ∗
Π,pp(IF |n) ≤ 2λI

(
n

s

)[(|R| − 1) · ...(|R| − (s− 1))

|R|s−1

]
×
[(2λT − 1) · ...(2λT − (s− 1))

2λT ·(s−1)

](2

2λI

)s

=
2(

|R| · 2λT+λI−1
)s−1

(
n

s

) s−1∏
i=1

[
(|R| − i)(2λT − i)

]
.

36

setup(pp)

1 s, λI , λT , num← pp

2 // initialise 2λI buckets

3 // and s λT -bit slots

4 for i ∈ [2λI]

5 σi ← ⊥s

6 // stashed element bucket

7 kstash ← ⊥
8 // stashed element tag

9 σstash ← ⊥
10 σ ← (σi)i∈[2λI], σstash, kstash

11 return σ

qryF,HT ,HI (x, σ)

1 x← F (x)

2 tag ← HT (x)

3 i1 ← HI(x)

4 i2 ← i1 ⊕HI(tag)

5 // tag in stash?

6 a← (tag = σstash)

7 a← a ∧ (kstash ∈ {i1, i2})
8 // tag in bucket?

9 a← a ∨ tag ∈ σi1 ∨ tag ∈ σi2

10 return a

insF,HT ,HI (x, σ)

1 x← F (x)

2 tag ← HT (x)

3 i1 ← HI(x)

4 i2 ← i1 ⊕HI(tag)

5 a← (tag = σstash)

6 a← a ∧ (kstash ∈ {i1, i2})
7 a← a ∨ tag ∈ σi1 ∨ tag ∈ σi2

8 if a = ⊤ : return ⊤, σ
9 // ins disabled?

10 if σstash ̸= ⊥ : return ⊥, σ
11 // check if empty slots

12 for i ∈ {i1, i2}
13 if load(σi) < s

14 σi ← σi ⋄ tag

15 return ⊤, σ
16 // displace something

17 i←$ {i1, i2}

18 σ ← evictHI (i, tag, σ)

19 return ⊤, σ

evictHI (i, tag, σ)

1 for g ∈ [num]

2 slot←$ [s]

3 elem← σi[slot]

4 // swap elem, tag

5 σi[slot]← tag; tag ← elem

6 i← i⊕HI(tag)

7 if load(σi) < s

8 σi ← σi ⋄ tag

9 return ⊤, σ
10 kstash ← i

11 σstash ← tag

12 return σ

delF,HT ,HI (x, σ)

1 x← F (x)

2 tag ← HT (x)

3 i1 ← HI(x)

4 i2 ← i1 ⊕HI(tag)

5 // tag in stash?

6 if [tag = σstash]

7 if (kstash ∈ {i1, i2})
8 σstash ← ⊥
9 kstash ← ⊥
10 return ⊤, σ
11 // tag in bucket?

12 for i ∈ {i1, i2}
13 if tag ∈ σi

14 σi ← σi \ tag
15 // empty the stash

16 if σstash ̸= ⊥
17 j1 ← kstash

18 j2 ← j1 ⊕HI(σstash)

19 for j ∈ {j1, j2}
20 if load(σj) < s

21 σj ← σj ⋄ σstash

22 σstash ← ⊥
23 kstash ← ⊥
24 // displace something

25 if σstash ̸= ⊥
26 j←$ {j1, j2}

27 σ ← evictHI (j, σstash, σ)

28 return ⊤, σ
29 // nothing to delete

30 return ⊥, σ

Fig. 7: AMQ-PDS syntax instantiation for the PRF-wrapped Cuckoo filter. Fol-
lowing the reference implementation [11] by the authors of [10], after we delete
an element, we try to empty the stash by re-inserting the stashed element. We
write the procedure evict separately for ease of understanding.

37

C More on comparison with [8]

Clayton et al. [8] focused on the adversarial correctness of Bloom and Counting
filters, as concrete instantiations of their general PDS syntax (which is the basis
of ours). They employed a game-based formalism, which required defining a
specific winning condition for the adversary, i.e. finding a certain number of false
positives or false negatives. In contrast, we use a simulation-based approach to
analyse correctness. The power of the simulation-based approach in analysing
correctness is that it covers all adversarial goals. In practice, this means that
one only needs to compute the probability of achieving a particular goal in the
honest setting (which is well-studied in the PDS literature) to upper bound the
probability of achieving it in the adversarial setting.

We analyse a class of AMQ-PDS with deletions, focusing on Counting and
Cuckoo filters with deletions. Counting filters generalise Bloom filters to allow
for deletions. With 1-bit counters and no deletions allowed, Counting filters
effectively become Bloom filters. However, Bloom filters do not stop accepting
insertions when some of their bit positions are set to their maximum value of 1.
Therefore, it is straightforward to see that setting the number of deletions and
the insertion failure probability to 0 in our Counting filter results yields bounds
for Bloom filters.

While [8] also analysed Counting filters, they examine an altered “ℓ - thresh-
olded” variant, a variant of Counting filters where insertions are disallowed if
more than ℓ counters are set. Clayton et al. [8] proved the variant to be ad-
versarially correct against a goal of finding r false positives or negatives. Their
proof’s complexity stems from the proof’s reliance on the chosen PDS and ad-
versarial goal. However, it is also important to study the difficulty of making
an insertion to the PDS fail in adversarial settings, as this tells us about the
difficulty of denial-of-service-style attacks against the structure. Unfortunately,
[8] did not analyse this, and their results are not easily transferable to address
alternative adversarial goals, such as insertion failure. Moreover, extending [8]
to a slight variant of any of their focus PDS, like traditional Counting filters, re-
quires a new proof of similar complexity, as evidenced by their separate analysis
of ℓ-thresholded and traditional Bloom filters.

With our approach, (a) the process of deriving results for additional adversar-
ial goals for the same PDS is simplified, and (b) the effort required to transform
results for a PDS to its variant is reduced by focusing on NAI* probabilities,
which inherently exhibit closer relations among the same events for slight PDS
variations compared to those in adversarial settings.

Clayton et al. [8] did not analyse Cuckoo filters. However, they analysed
Count-Min sketches (CMS), but again a version with ℓ-thresholding. As CMS
are primarily designed for frequency rather than membership queries, they fall
outside the scope of our paper due to their primary functionality goal. The
CMS analysis in [8] is worthwhile but has two limitations: (a) it examines an
impractical version due to ℓ-thresholding; (b) their adversarial objective does
not align with typical ways of compromising CMS correctness, which considers

38

the magnitude of overestimates, and not their count. A more suitable adversarial
goal for the CMS was discussed in [27].

D Recovering results for insertion-only AMQ-PDS from
[13]

In the following, we derive results for the class of insertion-only AMQ-PDS
analysed in [13]. In general, this class is characterised by the following consistency
rules.

Definition 15 (Insertion-only AMQ-PDS consistency rules [13]). Con-
sider an AMQ-PDS Π. We say Π has:

– Element permanence if for all x ∈ D, σ ∈ Σ such that ⊤ ← qry(x, σ), and for
any sequence of insertions resulting in a later state σ′, b ← qry(x, σ′) =⇒
b = ⊤.

– Permanent disabling if given σ ∈ Σ such that there exists x ∈ D, r ∈ R where
(b, σ) ← up(x, σ; r) and b = ⊥, then σ = σ and for any x′ ∈ D, r′ ∈ R,
(b′, σ′)← up(x′, σ; r′)⇒ b′ = ⊥ and σ′ = σ.

– Non-decreasing membership probability if for all σ ∈ Σ, x, y ∈ D, r ∈ R,
(b, σ′)← up(x, σ; r)⇒ Pr[⊤ ← qry(y, σ)] ≤ Pr[⊤ ← qry(y, σ′)].

– No false negatives if for all x ∈ D, σ ∈ Σ suach that (⊤, σ)← ins(x, σ), and for
any sequence of insertions resulting in a later state σ′, b ← qry(x, σ′) =⇒
b = ⊤.

These rules are satisfied by, for example, Bloom and Cuckoo filters.
We use our new definition of Ideal, along with a modified version of the

simulator from Fig. 4 that allows for permanent disabling. We manage to rederive
results from [13], but with the NAI probabilities in the bounds being replaced
with maximal NAI* probabilities. We note that this does not worsen the bounds
for Bloom and Cuckoo filters.

Theorem 2. Let qins, qqry be non-negative integers, and let ta, td > 0. Let
F : D→ R. Let Π be an AMQ-PDS with public parameters pp and oracle access
to F , such that Π satisfies F -decomposability (Def. 2), and reinsertion invari-
ance (Def. 3). Let α, β be the number of calls to F required to insert or query
an element respectively in Π using its ins, qry algorithms.

If Π satisfies permanent disabling and no false negatives (Def. 15), RK : D→
R is an (αqins+βqqry, ta+td, ε)-secure pseudorandom function with key K←$K,
then Π is (qins, qqry, qdel = 0, ta, ts, td, ε

′)-adversarially correct with respect to the
simulator in Fig. 8, where ts ≈ ta and ε′ = ε+ 2qqry · P ∗

Π,pp(FP | qins).

Note that our result relies solely on permanent disabling and no false nega-
tives (Def. 15). Focusing on NAI* instead of NAI probabilities allows the result
not to depend on the other consistency rules, making it more general than the
result in [13].

39

Proof. As in the proof of Theorem 1, we use an intermediate game G∗ (Fig. 5
with the simulator from Fig. 8) to obtain

AdvRoI
Π,A,S(D) := |Pr [Real(A,D)=1]−Pr [Ideal(A,D,S)=1] |

≤ |Pr[Real(A,D)=1]−Pr[G∗(A,D)=1]|
+ |Pr[G∗(A,D)=1]−Pr[Ideal(A,D,S)=1]|.

Using the proof to Lemma 6 with qdel = 0, we get a bound on the closeness of
Real, G∗ in terms of the PRF advantage ε, obtaining

AdvRoI
Π,A,S(D) := |Pr [Real(A,D)=1]−Pr [Ideal(A,D,S)=1] |

≤ ε+ |Pr[G∗(A,D)=1]−Pr[Ideal(A,D,S)=1]|. (22)

We next bound the closeness of G∗, Ideal, proving the statement.

Lemma 8. The difference in probability of an arbitrary td-distinguisher D out-
putting 1 in experiments of game G∗-or-Ideal (Fig. 5 with the simulator from
Fig. 8) with a (qins, qqry, qdel = 0, ta)-AMQ-PDS adversary A is bounded as:

AdvG
∗-or-Ideal

Π,A,S (D) := |Pr [G∗(A,D) = 1]− Pr [Ideal(A,D,S) = 1]|
≤ 2qqry · P ∗

Π,pp(FP | qins).

Proof. Let E be the divergence event between G∗ and Ideal, which occurs due
to a mismatch in responses to the adversary’s queries across the two games (see
Fig. 8). Then,

Pr [E] = Pr [EQry] (23)

with

EQry :=

[[
The first query response mismatch is

aIdeali ̸= aG
∗

i for some i ∈ [qqry]

]]
, (24)

where aGi defines the response to the adversary’s i-th query.

In contrast to the proof of Theorem 1 and its Eq. (5), Eq. (23) does not
involve divergence events related to a mismatch in responses to Del, Ins queries
across the two games. This is because the number of deletions is set to 0, allowing
us to focus on the simulator from Fig. 8. Due to F-decomposability (Def. 2), both
G∗ and Ideal from Fig. 8 on insertions proceed to change the state in exactly the
same way, outputting exactly the same answer to the adversary, and permanently
disabling the structure at exactly the same time. So, responses to Ins queries
cannot help the adversary to distinguish between the two games.

40

Simulator S(A, pp)

1 F ←$ Funcs[D,R]

2 σ ← setup(pp)

3 σ∗ ← setup(pp)

4 inserted← {}
5 f ← {}

6 return AInsSim, QrySim

Oracle InsSim(x)

1 r←$R

2 (cG
∗
, σ∗)←$ insF (x, σ∗; r)

3 (cIdeal, σ)←$ insIdR(F (x), σ; r)

4 return cIdeal return cG
∗

Oracle QrySim(x)

1 aG∗
← qryF (x, σ∗)

2 aIdeal ← ⊤
3 // If it isn’t inserted

4 if inserted[x] = ⊥

5 aIdeal←$ qryIdR(X←$ R, σ)

6 return aIdeal return aG∗

Fig. 8: Simulator and G∗ for AMQ-PDS.

We now proceed to bound the probability of EQry. In the following, we take
the probability over the randomness used by A (which we refer to as A’s coins),
and the randomness used by game G ∈ {G∗, Ideal} to answer A’s queries (which
we refer to as G’s coins). We will use xi and zi to denote the input to A’s i-th
query and insertion, respectively.

We first rewrite Eq. (2) using the union bound as

Pr[EQry] ≤
qqry∑
i=1

Pr

[Qry(xi) yields the first mismatch]∧[
[(aIdeali = ⊤) ∧ (aG

∗

i = ⊥)]
∨[(aIdeali = ⊥) ∧ (aG

∗

i = ⊤)]
]

 . (25)

In G∗, the responses to A’s Qry queries are always computed using the same
function F , while in Ideal, a fresh random string X ←$ R is sampled each time
a non-inserted element is queried.

Let σi denote the state of Π in game Ideal just before the i-th Qry query,
and σ∗

i denote the corresponding state in game G∗. Due to the no false negatives
consistency rule, σ∗

i has no false negatives. Moreover, Qry queries in Ideal do
not give false negative responses. This means that Qry queries on elements that
were inserted will always return a positive response in both games. Therefore, in
order for xi to yield a mismatch in the Qry query responses, we must have that
xi is not currently inserted in Ideal (i.e. inserted[xi] = ⊥ in line 4 of QrySim).

41

This gives

Pr [EQry] ≤
qqry∑
i=1

[
Pr

[
[Qry(xi) yields the first mismatch]∧

[inserted[xi] = ⊥] ∧ [aIdeali = ⊤]

]
+ Pr

[
[Qry(xi) yields the first mismatch]∧

[inserted[xi] = ⊥] ∧ [aG
∗

i = ⊤]

]
(26)

:=

qqry∑
i=1

[
Pr

[
EIdeal

Qry

]
+ Pr

[
EG∗

Qry

]]
, (27)

where, for simplicity, we will use Pr
[
EIdeal

Qry

]
to denote the first term of Eq. (26),

and Pr
[
EG∗

Qry

]
to denote the second term.

We start by bounding Pr
[
EIdeal

Qry

]
. In Ideal, a fresh random string X ←$ R

is sampled each time a non-inserted element is queried, and so

Pr
[
EIdeal

Qry

]
≤ Pr

Ideal’s coins
A’s coins

[
[Qry(xi) yields the first mismatch]∧

[⊤←$ qryIdR(X ←$ R, σi)]

]
. (28)

We now argue that every σi is an n-NAI* state, with n being upper bounded by
qins, by showing that it satisfies the requirements in Corollary 1. Let {zj}j∈[ji]

be inputs to A’s insertions before the i-th query.
As A has no direct access to random function F and Π satisfies permanent

disabling, no information about F (zj) is available to A before zj has been suc-
cessfully inserted. Unsuccessful insertions do not reveal any information about
the action of F on elements not yet inserted. This is because if an insertion does
not succeed, permanent disabling ensures that also no other element can be suc-
cessfully inserted. So, every first call to InsSim on zj can use Xzj ←$ R in place
of F (zj), without changing the distribution of the resulting state. Therefore, σ∗

i

satisfies insertion unpredictability (Def. 6).
The requirements of Corollary 1 related to deletions are trivially satisfied

as qdel = 0. Moreover, reinsertions do not change the state due to reinsertion
invariance.

Thus, σi is an NAI* state containing at most qins elements, and we can
upper bound the false positive probability of σi by that of the NAI* state with
the maximal false positive probability (Def. 8), giving

Pr
[
EIdeal

Qry

]
≤ Pr

Ideal’s coins
A’s coins

[
[Qry(xi) yields the first mismatch]∧

[⊤←$ qryIdR(X ←$ R, σi)]

]
≤ P ∗

Π,pp(FP | qins). (29)

We next compute

Pr
[
EG∗

Qry

]
= Pr

G∗’s coins
Ideal’s coins
A’s coins

[
[Qry(xi) yields the first mismatch]∧
[inserted[xi] = ⊥] ∧ [⊤←$ qryF (xi, σ

∗
i)]

]
. (30)

42

We have that aG∗
i is never returned to A in Ideal, A has no direct access to

random function F andΠ satisfies permanent disabling. So, no information about
F (xi) is available to A (as xi has never been successfully inserted), and we can
write Eq. (30) as

Pr
[
EG∗

Qry

]
≤ Pr

Ideal’s coins
A’s coins

[
[Qry(xi) yields the first mismatch]∧

[⊤←$ qryIdR(Xi←$ R, σ∗
i)]

]
. (31)

Since σ∗
i = σi (Fig. 8), the right-hand sides of Eq. (31) and Eq. (28) are equal,

and Eq. (29) implies

Pr
[
EG∗

Qry

]
≤P ∗

Π,pp(FP | qins). (32)

Substituting Pr
[
EIdeal

Qry

]
,Pr

[
EG∗

Qry

]
in Eq. (27) gives

Pr [EQry] ≤
qqry∑
i=1

2P ∗
Π,pp(FP | qins) = 2qqry · P ∗

Π,pp(FP | qins). (33)

⊓⊔

To prove Theorem 2, we then apply Lemma 8 to Eq. (22) and obtain

AdvRoI
Π,A,S(D) ≤ ε+ 2qqry · P ∗

Π,pp(FP | qins).

⊓⊔

43

	Deletions and Dishonesty: Probabilistic Data Structures in Adversarial Settings
	Introduction
	Our Contributions
	Related Work
	Paper Organisation

	Preliminaries
	AMQ-PDS
	Syntax
	AMQ-PDS under non-adversarial inputs
	Counting filters
	Cuckoo filters
	Consistency rules

	Adversarial Correctness
	Notions of Correctness
	Guarantees for Counting and Cuckoo filters

	Secure instances
	Counting Filters
	Cuckoo Filters
	More on comparison with CCS:ClaPatShr19
	Recovering results for insertion-only AMQ-PDS from CCS:FPUV22

