
Asynchronous Byzantine Consensus with Trusted Monotonic1

Counters2

Yackolley Amoussou-Guenou1, Maurice Herlihy2, and Maria Potop-Butucaru3
3

1 Université Paris-Panthéon-Assas, CRED, Paris, France4
2 Brown University Computer Science Dept, Providence RI 02912, USA5

3 Sorbonne Université, CNRS, LIP6, Paris, France6

Abstract. The paper promotes a new design paradigm for Byzantine tolerant distributed algorithms7

using trusted abstractions (oracles) specified in a functional manner. The contribution of the paper is8

conceptual. The objective here is to design distributed fundamental algorithms such as reliable broadcast9

and asynchronous byzantine consensus using trusted execution environments and to help designers to10

compare various solutions on a common ground. In this framework we revisit the Bracha’s seminal work11

on Asynchronous Byzantine Consensus. Our solution uses trusted monotonic counters abstraction and12

tolerates t Byzantine processes in a system with n processes, n ≥ 2t+1. The keystone of our construction13

is a novel and elegant Byzantine Reliable Broadcast algorithm resilient to t < n Byzantine processes14

that uses an unique trusted monotonic counter (at the initiator).15

Keywords: Asynchronous, Byzantine agreement, Trusted abstractions16

1 Introduction17

Byzantine Agreement problem introduced in the seminal paper [29] has been studied for decades in18

various models ranging from synchronous (e.g. [28]), to asynchronous (e.g. [7, 35]).19

The blockchains era revived the interest for the problem. In Algorand [12] for example the20

authors propose solutions for synchronous and partially synchronous systems constructing their21

solution on top of Verifiable Random Function abstraction [33]. In [1] the authors define and address22

the complexity issues. More recently, in [18] the authors use recent advances in cryptography in order23

to reduce the word complexity. In [36] authors analyze the complexity of randomized algorithms for24

Binary consensus under different common coins. However, none of these works focus on breaking the25

3f + 1 bound for the asynchronous settings.26

One of the main problems to be solved in order to break the 3f + 1 bound in Byzantine prone27

environments is the ability of Byzantine nodes to equivocate (i.e. a faulty node may send different28

messages to different nodes). Trusted execution components (e.g. A2M [14], TrInc [31], USIG [38])29

are reputed to be powerful tools for avoiding equivocation.30

Trusted components have been heavily used to increase the resilience of PBFT like protocols [10]31

and therefore they found applications in many recent blockchain algorithms. Among the first to32

attack the execution of PBFT in trusted execution environments are Correia et al. [19, 20]. They33

introduced TTCB wormhole, a distributed component with local parts (local TTCBs) in nodes and34

its own bounded secure communication channel (i.e. a channel that cannot be affected by malicious35

faults where all operations have a bounded delay). By using this wormhole, the authors proved that36

PBFT can support a fraction of half Byzantine nodes. In other words, they circumvent FLP [24]37

impossibility by relying on a synchronous and secure distributed subsystem. Although this method38

allows to increase fault tolerance, its practical implementation is too difficult to set up.39

In the quest of practicality, Chun et al. [14] introduced Attested Append-Only Memory (A2M),40

a trusted system that targets to remove from the faulty nodes the ability to equivocate. An A2M is41

a set of trusted ordered append-only logs that provide an attestation for each entry. Furthermore,42

2 Yackolley Amoussou-Guenou, Maurice Herlihy, and Maria Potop-Butucaru

they propose PBFT-EA, a modified PBFT [9] that uses A2M for each message exchanged; the43

message is appended to a log and the attestation produced is sent along with the message. The44

use of this abstraction increases the resilience to half. Compared to TTCB that requires a secure45

and synchronous communication channel, A2M requires no stronger assumptions on network than46

PBFT. However, A2M needs large secure storage (for the log).47

An alternative to this is the use of a monotonic counters implemented in a tamperproof module.48

Levin et al. propose TrInc ([31]), a trusted monotonic counter that deals with equivocation in large49

distributed systems by providing a primitive: once-in-a-lifetime attestations. They also prove that50

TrInc can implement A2M.51

Later, Veronese et al. in [38] propose a specific monotonic trusted counter, USIG (Unique Se-52

quential Identifier Generator), a local service available in each node that signs a message and assigns53

it the value of a counter. The service offers two functions: one that returns a certificate, and one54

that validates certificates. These certificates are based on a secure counter: the counter value is never55

duplicated, and successive counter values are successive integers. This service has to be implemented56

in a tamper-proof module. Furthermore, they propose two algorithms (MinBFT and its speculative57

version MinZyzzyva) that implement following the same pattern as PBFT state machine replication58

which consists of replicating a service in a group of servers with strong consistency guaranties. Each59

server maintains a set of state variables, which are modified by a set of operations. The operations60

are deterministic and atomic. The initial state of the servers is the same. The properties that the two61

proposed algorithms satisfy are: safety– all correct servers execute the same requests in the same62

order; liveness– all correct clients’ requests are eventually executed. MinBFT and its speculative63

version MinZyzzyva implement state machine replication using USIG in systems with a minority of64

Byzantines.65

Another line of research combines speculative methods and trusted environments (e.g. CheapBFT66

[27] and ReBFT [23]). In a normal execution case (when there are no Byzantine nodes), f +1 nodes67

are enough to guarantee the agreement. In case of detected or suspected Byzantine nodes the protocol68

switches to a PBFT inspired protocol with trusted hardware and activates f extra passive replicas.69

Interestingly, in the context of blockchains, the use of trusted environments in order to increase70

the resilience is very recent (e.g. VABA [40], the asynchronous version of HotStuff, Damysus [22], and71

TenderTee [3]). The first use of it was proposed in [40]. The authors enhance HotStuff blockchain in72

order to tolerate a minority of corruptions in a PBFT style protocol. Their algorithm builds on top of73

an underlying expander graphs and use threshold signatures. The small trusted component used has74

A2M flavour. Another recent paper introduces Damysus ([22]), a PBFT protocol that uses trusted75

environments to improve Hotstuff resilience. In this paper, the authors introduce two trusted services76

Checker and Accumulator that respectively increase resilience and reduce latency. The correctness77

of the proposed protocol has been proven for the partially synchronous environments. In [3] the78

authors propose a methodology to automatically plug A2M in the Tendermint protocol to increase79

its resilience. Furthermore, they prove that the same methodology can be applied to the repeated80

consensus abstraction with the same results in terms of resilience. This work still needs a partially81

synchronous execution environment.82

In this paper we are interested in designing trusted distributed algorithms (e.g. reliable broadcast,83

consensus) having optimal resilience to Byzantine faults in asynchronous settings without the use of84

threshold signatures or assumptions on the underlying topology as in [40]. We focus here in solving85

Byzantine Consensus problem [7] in asynchronous settings. Probabilistic consensus enhanced with86

trusted environments in order to avoid equivocation seems to be a good compromise in this direction.87

One of the key building blocks of our Probabilistic Byzantine Consensus is a deterministic Byzantine88

Reliable broadcast algorithm tolerant to t < n Byzantine processes. Byzantine reliable broadcast is89

a fundamental problem in fault-tolerant distributed systems. It consists of ensuring that a correct90

Asynchronous Byzantine Consensus with Trusted Monotonic Counters 3

initiator process broadcasts its value to all correct processes, even in the presence of malicious91

Byzantine processes. For decades, Byzantine Reliable Broadcast has been at the core of various92

consensus protocols, and more recently, at the core of certain blockchains.93

Algorithms solving the Byzantine Reliable Broadcast problem have been proposed in various94

environments: with static or dynamic Byzantine nodes, or in conjunction with transient faults.95

Byzantine Reliable Broadcast solutions (e.g. [5,6,25,32,37]) achieve resilience of at least n ≥ 3t+ 196

processes, where t is the maximum number of Byzantine processes. In this paper we continue the97

line of work opened by [21] which proposes a reliable broadcast algorithm tolerant with n ≥ 2f + 198

processes where f is the number of Byzantine faults. Contrarily to us, they use failure detectors.99

In [39] authors proposed an algorithm similar to ours but which only tolerates f < n/3 Byzantine100

processes. This bound has been ameliorated to f < n/2 in [2]. Our work improves further the bound101

to f < n.102

Tackling another problem, [30] proposes an algorithm for the atomic broadcast problem which103

uses a trusted execution environment with a monotonic counter similarly to us. However, differently104

from us the focus of the authors is not on the minimal trust assumptions is expected from the105

trusted execution environment. Moreover, their solution builds on the failure detector based reliable106

broadcast of [21].107

Another line of research related to the use of trusted execution environments for improving the108

resilience of distributed algorithms is the line initiated by Clement et al. [17]. Although the trusted109

execution environments make protocols immune to equivocation (where the initiator sends different110

messages to different processes), Clement et al. [17] show that non-equivocation is not enough to111

provide n ≥ 2f +1 resilience, nor to support the equivalent of digital signatures. The authors prove112

that it is possible to use non-equivocation to transform any protocol that works under the crash113

fault model into a protocol that tolerates Byzantine faults by adding the ability to guarantee the114

transferable authentication of network messages (e.g., using digital signatures). In [4] the authors115

revisited and extend the work of Clement et al. [17] providing a transformer with a polynomial116

communication overhead instead of exponential and covering also randomized distributed algorithms.117

Our approach is more conceptual in the sens that we would like to design Byzantine tolerant118

distributed algorithms on top of trusted oracles that allow to abstract low level (trusted hardware)119

assumptions and provide a separation between the conceptual and the technical part. Notice that, the120

trusted oracles we define may have different implementations. Specifying the functional property that121

is needed at the application level we need a generic solution that can be implemented using different122

technologies or physical architectures. Oracles in distributed systems have been used for decades123

starting with the seminal work on failure detectors [11] that paved the way of designing protocols124

with formal proofs of correctness and the investigation of precise lower bounds and impossibility125

results.126

Our contribution. Our work extends the line of research related to using trusted execution en-127

vironments in order to increase the resilience of distributed algorithms in Byzantine prone environ-128

ments. The novelty of our approach is in identifying the minimal assumptions on trusted abstraction129

needed to solve fundamental building blocks in distributed computing (e.g. consensus and reliable130

broadcast). In this paper we revisit the original simple and elegant solutions proposed by Bracha [7]131

in an environment where processes are equipped with a trusted monotonic counter abstraction that132

provides a non-falsifiable, verifiable, unique, monotonic, and sequential counter. The use of this133

abstraction in a clever way allows us to first implement a Reliable Broadcast resilient to t < n134

Byzantine processes in asynchronous communication environments. Moreover, on top of this opti-135

mized Reliable Broadcast primitive we construct a Probabilistic Byzantine Consensus resilient to t136

Byzantine processes in systems of size n ≥ 2t+ 1. Differently from the transformer-based approach137

where the transformations are obtained with an important communication overhead (exponential in138

4 Yackolley Amoussou-Guenou, Maurice Herlihy, and Maria Potop-Butucaru

the case of [17] and polynomial in the case of [4]), our design uses only a constant overhead with the139

respect of the Bracha’s original solutions while improving both the resilience and the number of com-140

munication rounds. Our work opens a new direction of research similar to oracle-based distributed141

computing [11]. The trusted environment is encapsulated in a trusted abstraction (oracle) provid-142

ing a set of guaranties. The methodology used in this paper for Byzantine Reliable Broadcast and143

Probabilistic Byzantine Consensus can be easily extended to other Byzantine tolerant distributed144

algorithms.145

2 System Model and Problems definition146

We consider a set of n asynchronous sequential processes, of which up to t can be Byzantine, meaning147

they can deviate from the given protocol. The rest are correct processes.148

Processes communicate by exchanging messages through an asynchronous network. We make the149

usual assumptions that there is a public key infrastructure (PKI) where public keys are distributed,150

each process has a (universally known) public key a matching private key, and each message is signed151

by its creator. Messages are not lost or spuriously generated. Each process can send messages directly152

to any other process, and each process can identify the sender of every message it receives.153

We assume that the communication is asynchronous, and that processes have access to a com-154

munication primitive which ensures that any message m sent by a correct process is received by155

every correct process in a finite (but unknown) time.156

Following Bracha, [7], we define Byzantine Reliable Broadcast and Probabilistic Byzantine Con-157

sensus as follows:158

Definition 1 (Byzantine Reliable Broadcast). We say that an algorithm implements Byzantine159

reliable broadcast if:160

– brb-CorrectInit: If the initiator is correct, all correct processes deliver the initiator’s value.161

– brb-ByzantineInit: If the initiator is Byzantine, then either no correct process delivers any value,162

or all correct processes deliver the same value.163

Definition 2 (Probabilistic Byzantine Consensus). A protocol implements probabilistic Byzan-164

tine consensus if:165

– Agreement: all correct processes decide on the same value.166

– Validity: if all processes start with the same value v, then all correct processes decide on v.167

– Termination (probabilistic). The probability that a correct process is undecided after r rounds168

approaches zero as r approaches infinity.169

3 Trusted Monotonic Counter Object170

The Trusted Monotonic Counter Oracle abstraction TMC-Object defined below is the core of our171

novel Byzantine Reliable Broadcast protocol that supports t Byzantine failures among n processes,172

where n > t, a great improvement on the classical n ≥ 3t+ 1 algorithms.173

The TMC-Object supports the operation get_certificate(). A process p invokes get_certificate(m)174

with a message m. The object returns a certificate and a unique identifier. The certificate certifies175

that the returned unique identifier was created by the tamper-proof TMC-Object object for the176

message m. The unique identifier is essentially a reading of the monotonic counter trustedCounter,177

which is incremented whenever get_certificate(m) is called. The TMC-Object object guarantees178

the following properties:179

Asynchronous Byzantine Consensus with Trusted Monotonic Counters 5

– Uniqueness: TMC-Object will never assign the same identifier to two different messages.180

– Sequentiality: TMC-Object will always assign an identifier that is the successor of the previous181

one.182

Note that the sequentiality property implies Strict Monotonicity: TMC-Object will always assign183

an identifier that is strictly greater than the previous one.184

To send a message u certified by TMC-Object, a process p first invokes the TMC-Object, which185

creates a certificate C(p,u) corresponding to the value of the trustedCounter cp, then the process186

sends the tuple (u, C(p,u), cp), which can be verified by any other process receiving the message. Each187

invocation to TMC-Object increments the value of the trustedCounter cp of process p. We call that188

sequence of operations TMC-Object-Send u.189

When receiving a message (u, C(p,u), cp), a process must check if the certificate C(p,u) for message190

u corresponds to the value of the counter cp. If not, the message is considered invalid and is ignored.191

If they correspond, the message is said to be valid according to the TMC-Object.192

4 Asynchronous Byzantine Reliable Broadcast193

We describe Algorithm 1, a Byzantine reliable broadcast algorithm which uses a unique TMC-194

Object(with the counter initialized at 0), where the initiator of the broadcast uses the TMC-Object-195

Send operation to send the value to be broadcast. Our Byzantine Reliable Broadcast is resilient to196

any number, t < n, of Byzantine processes.197

The protocol works in two sequential asynchronous steps. In the initial step (Step 0) of the198

protocol, when a process p wants to broadcast a value v, it TMC-Object-Sends an initial message for199

v (< initial, v >) to all other processes. The process initiating the broadcast is called the initiator.200

The initiator sends the message as well as the associated certificate and counter, which can be201

checked by all other processes.202

In Step 1, when receiving a valid initial message from the proposer, say with value v, a process203

sends back the initiator message (with the certificate and value of the counter). In such a way, it204

ensures that all other processes will eventually receive the initiator’s certified message. First notice205

that only messages with counter value of 1 are considered valid, since a message with a higher counter206

value means that the initiator already sent another value. More generally, the value of the counter207

should be 1 more than the previously known value of the counter.208

Algorithm 1: Byzantine Reliable Broadcast with an unique TMC-Object
1 [1] TMC-Object_Broadcastv Step 0 if p is the initiator then TMC-Object-Send

< initial, v, id_initiator > to all Equivalent to Send (m, C(initiator,m), cinitiator) to all, where
m =< initial, u, id_initiator >

2 Step 1 Upon reception of (< initial, u, id_initiator >, C, 1) message The message of the initiator should
have value 1 as the trusted counter of the initiator and related to the certificate

3 Send (< initial, u, id_initiator >, C, 1) to all The process sends back the initiator’s message with the
associated certificate and trusted counter to all processes

4 Deliver u

Theorem 1. Let n be the number of processes, and t be an upper bound of the Byzantine processes.209

If n > t, Algorithm 1 implements Byzantine Reliable Broadcast with a unique TMC-Object and in210

O(n2) messages.211

6 Yackolley Amoussou-Guenou, Maurice Herlihy, and Maria Potop-Butucaru

Proof. First, notice that when a correct process p delivers a message u, it means that p received a212

valid initiator message u. Eventually every other correct process q will receive that same initiator213

message thanks to the network guarantees. Therefore, if there is no equivocation, they must deliver214

that same value.215

If the initiator is correct, then all other correct processes eventually receive and deliver the216

initiator’s message.217

It remains to show that when two different correct processes deliver a message, they deliver the218

same message.219

Recall that when a correct process receives a (TMC-Object) message, it checks the value of the220

trusted counter associated to the message. Moreover, it checks whether the message and the value221

of the counter are coherent with the corresponding certificate.222

By way of contradiction, assume there exist two correct processes p and q which deliver distinct223

messages u ̸= v. Without loss of generality, assume that p delivers message u and q delivers message224

v. To do so, p must have received (< initial, u, id_initiator >, Cinitiator, 1) and q must have received225

(< initial, v, id_initiator >, C′
initiator, 1), which is impossible because of the Uniqueness property226

of the TMC-Object. Therefore, p and q must have delivered the same message, which concludes the227

proof.228

In Algorithm 1, the number of messages sent is exactly n+n2, which is a O(n2). In more details,229

the initiator sends n messages (one to each other process), and each process when receiving the230

initiator message sends it back which is n× n.231

5 Asynchronous Byzantine Consensus232

In this section we propose a Byzantine Probabilistic Consensus algorithm (Algorithm 2) resilient233

to t < n/2 Byzantine processes. The keystone of the solution is the Byzantine Reliable Broadcast234

resilient to any number, t < n, of Byzantine processes (Algorithm 1).235

Remark 1. Notice that when there are two different initiators, there are two instances of the broad-236

cast.237

Algorithm 2: Probabilistic Byzantine Consensus
1 [1] Probabilistic_Consensusvi Step 2k TMC-Object_Broadcast(vi) here, we say that the process proposes

vi wait until n− t messages from Step 2k or ∃k′ ≤ k, v : (#(d, v)receivedfromStep2k′ + 1) > n/2: if
∃v : (#vreceivedfromStep2k > n/2) then vi = (d, v) v is tagged by symbol d, i.e., the process is ready
to decide v during this round

2 if ∃k′ ≤ k, v : (#(d, v)receivedfromStep2k′ + 1) > n/2 then Decide v and Terminate
3 Step 2k + 1 TMC-Object_Broadcast(vi) wait until n− t messages from Step 2k + 1 or

∃k′ ≤ k, v : (#(d, v)receivedfromStep2k′ + 1) > n/2: if
∃k′ ≤ k, v : (#(d, v)receivedfromStep2k′ + 1) > n/2 then Decide v and Terminate

4 if ∃v : (#(d, v)receivedfromStep2k + 1) ≥ 1) then vi = v
5 otherwise vi = flip()The flip function is made thanks to VRF to ensure non-manipulability

k = k + 1 go to Round k More specifically, go to Step 2k

We present a probabilistic Byzantine consensus protocol in Algorithm 2 inspired from the238

Bracha’s probabilistic consensus [7]. The protocol works in asynchronous sequential rounds where239

each round, k ≥ 0 is split in two sequential steps, 2k and 2k + 1.240

In the each even step 2k, of round k ≥ 0, after proposing its local value, each process waits to241

collect n− t messages from this step. If the process delivers the same message, say v, from strictly242

Asynchronous Byzantine Consensus with Trusted Monotonic Counters 7

more than n/2 times from different processes, then the process locally tags v, by setting its local243

value to (d, v). d is the tag marker. It means the process is ready to decide v and is letting the other244

processes know about it.245

In the each odd step 2k+1 of round k ≥ 0, after broadcasting its local value, each process waits246

to collect n− t messages from the current step. If among the delivered messages, the process delivers247

at least one tagged value from the current step, say (d, v), the process sets its local value to the value248

v which will be propose during the next step. Otherwise if the process delivers no tagged value from249

the current step, it randomly selects a value which will be its proposal for the next step.250

In each step, if a process delivers the tagged message (d, v) from strictly more than n/2 different251

processes from the same round, the process decides value v and terminates.252

To prove the correctness of Algorithm 2, we emphasize the main guarantees we rely on. These253

guarantees need not be taken as axiomatic, because they could be implemented as described below.254

Moreover, we also make explicit for which property each guarantee is necessary.255

Hypothesis 1 Byzantine processes cannot lie about the output of their randomness.256

Hypothesis 1 is achievable by the use of verifiable random functions (VRF [13, 34]). We rely on257

this hypothesis to prove the (probabilistic) Termination property.258

Hypothesis 2 All messages sent are causally valid.259

We rely on Hypothesis 2 to provide the Agreement property. Hypothesis 2 can be implemented by260

requiring each process to accompany each message with the prior messages that caused the process261

to compute that message. In the case of Algorithm 2, this hypothesis simply means that a message262

sent at a step s > 0 should be accompanied by the messages the process received at the previous263

step s− 1. Any message that is not causally valid is ignored.264

Lemma 1. Suppose there are n processes, of which at most t are Byzantine. If n ≥ 2t+ 1, for any265

k ≥ 0, if all correct processes at step 2k proposes value v, then at the end of step 2k all correct266

processes will have as value either (d, v) or v.267

Proof. Assume there exists a correct process q that has a value u or (d, u) with u ̸= v at the end of268

step 2k.269

Case 1: q received more than n/2 messages with value u, which is impossible since all correct270

processes started with the same value v and the number of Byzantine processes is limited to t < n/2.271

Case 2: q changed its value to some value u. This is impossible since q received n− t messages.272

Among the n− t messages there at most t messages with an erroneous value u forged by fewer than273

n/2 Byzantine processes, and at least one message from correct processes with value v. In this case,274

q keeps its initial value v.275

Lemma 2. Let n be the number of processes, and t be an upper bound of the Byzantine processes.276

If n ≥ 2t+ 1, for any k ≥ 0, if all processes at step 2k propose value v, then at the end of the step277

2k all correct processes will have as value (d, v).278

Proof. By Lemma 1 if all correct processes start with value v then at the end of step 2k all correct279

processes will have as value either (d, v) or v.280

Assume that there exists a correct process q which ends step 2k with v instead of (d, v). This281

means that q did not receive more than n/2 messages with the same value v. This is impossible282

since q waits for n − t messages. Over the n − t messages either all of them come from correct283

processes (hence same value v) or some of them (up to t) come from Byzantine processes. However,284

8 Yackolley Amoussou-Guenou, Maurice Herlihy, and Maria Potop-Butucaru

Byzantine processes start with v (by assumption) and cannot change their initial value without proof285

of modification.286

Overall, if all processes start with value v then at the end of step 2k all correct processes will287

have value (d, v).288

Lemma 3. For any k ≥ 0, if all processes propose value v at step 2k, then at step 2k + 1, if a289

Byzantine process broadcasts a value then its only causally valid message is (d, v).290

Proof. By Lemma 2, a correct process at the end of step 2k will have as value (d, v). Hence in the291

next step it will broadcast (d, v). If at step 2k + 1 a Byzantine process broadcasts a message, then292

that message should be (d, v).293

Lemma 4 (Validity). For any k ≥ 0, if all processes propose value v at step 2k, then all correct294

processes decide on v.295

Proof. If all processes start with the same value v then at the end of step 0 (which is a 2k step with296

k = 0) all correct processes end with the value (d, v) (see Lemma 2). In step 1 (which is 2k+1) each297

correct process sends (d, v) and waits for n− t messages from step 2k+ 1. Based on Hypothesis #2298

and Lemma 3, Byzantine processes either send (d, v) or stay silent. Therefore, all correct processes299

will gather at least n− t messages with v, hence all correct processes decide v.300

Lemma 5 (Agreement). Let n be the number of processes, and t be an upper bound of the Byzan-301

tine processes. If n ≥ 2t + 1, if two correct processes decide, they decide the same value. More302

generally, if one correct process decides, all correct processes decide the same value.303

Proof. Let p and q be two correct processes that decided. Let p decide at some round k and q at some304

round k′ > k. It follows that p received more than n/2 messages (d, v) in round k. Therefore, all305

correct processes receive at least one (d, v) message in round k, in particular, q received at least one306

(d, v) in round k. Since all processes send the causal proof of their messages (to satisfy Hypothesis307

#2), it follows that all processes, including q, will start round k+1 with the same value v. Following308

Lemma 4 all correct processes, including q, decide v in round k + 1.309

Lemma 6 (Termination). The probability that a correct process is undecided after r rounds ap-310

proaches zero as r approaches infinity.311

Proof. As shown in Lemma 4, if all processes propose the same value v, then all correct processes312

eventually decide value v.313

If one correct process decides, then thanks to Lemma 5, all correct processes eventually decide.314

Therefore, let us assume that no correct process decides yet. There are two cases. Either (i) no315

process enters line 3 and all processes randomly flip their value, or (ii) at least one correct process316

received one (d, v) message from its current step and so does not flip its value.317

– First, consider the case where no process ever receives a (d, v) message corresponding to its318

current step and round. Therefore, they will always flip their coins at each round. Notice, how-319

ever, that thanks to Lemma 4, when all processes will have the same proposal, then all correct320

processes decide that value, which guarantees Termination. The probability of such an event321

happening for each round k is low, i.e., pn, where p the probability of having any value. Since322

the Byzantine processes cannot control (nor lie about, by Hypothesis #1) their random input323

value, the probability of having a value for any Byzantine process is the same as for any correct324

process. However, the probability this event never occurs in an infinite execution is the limit of325

(1 − pn)k when k goes to infinity, which is equal to 0, since p ∈ (0, 1), and n > 0. Hence, if326

processes always flip their value, they will terminate with probability 1.327

Asynchronous Byzantine Consensus with Trusted Monotonic Counters 9

– There remains to discuss what happens if at least one process does not flip their value.328

If a process does not flip its value, it means that such process received a (d, v) message from329

its current step (say, 2k + 1). It means no other value (v′ ̸= v) could be sent as (d, v′), in fact,330

by Hypothesis 2, since Byzantine processes must causally justify their votes, they cannot send331

a (d, v′) with v′ ̸= v. Therefore, all the processes that will receive such message and will not332

flip will have v as value for the next round. Notice that if one correct process decides, then by333

Lemma 5, all correct processes eventually decide. Suppose there is no decision yet. Either all334

correct processes do not flip and have the same value v for the next round (and terminate at335

that round by Lemma 4), or some do flip.336

Therefore, if some processes flip repeatedly, and the others do not flip but have the same value;337

then as in the case above, with probability 1 over the infinite execution, there will be a situation338

where the processes that flipped will end up with the same value as those that do not flip,339

and hence, by Lemma 4 they will terminate. Notice that the probability of having all processes340

having the same value must be higher in this case (than in the above case) since some are already341

proposing the same value.342

In both cases, therefore, with probability 1, all correct processes eventually terminate.343

Theorem 2. Let n be the number of processes, and t be an upper bound of the Byzantine processes.344

If n ≥ 2t+ 1, Algorithm 2 implements Probabilistic Byzantine Consensus with O(n3) messages.345

6 Conclusions and Discussions346

In this paper we propose a novel solution for Probabilistic Byzantine Consensus in an environment347

where processes are equipped with a trusted monotonic counter abstraction that provides a non-348

falsifiable, verifiable, unique, monotonic, and sequential counter. Our solution tolerates t Byzantine349

processes with n ≥ 2t + 1 in asynchronous settings. The keystone of our construction is an elegant350

deterministic Byzantine Reliable Broadcast algorithm that uses a single trusted monotonic counter351

in a clever way and implements a Reliable Broadcast resilient to t < n Byzantine processes. Our work352

continues the line of research opened by [19,20] and continued by [26,38] that promotes the benefits353

of using trusted hardware in improving the resilience of distributed algorithms. The novelty of our354

study resides in investigating the minimal trusted abstractions or minimal trusted properties needed355

to solve two fundamental problems in distributed computing in Byzantine prone environments. Our356

work has similar flavor to the line of work of oracle-based distributed computing [11] and opens357

several research directions including the modelisation of distributed algorithms executed in trusted358

environments or their composition [8, 15, 16]. We believe that our oracle-based approach may be359

easily refined in order to address other distributed problems.360

References361

1. Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymptotically optimal validated asynchronous byzan-362

tine agreement. In Peter Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM Symposium on Principles363

of Distributed Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 337–346. ACM,364

2019. doi:10.1145/3293611.3331612.365

2. Yackolley Amoussou-Guenou, Lionel Beltrando, Maurice Herlihy, and Maria Potop-Butucaru. Byzantine reliable366

broadcast with one trusted monotonic counter. IACR Cryptol. ePrint Arch., page 774, 2024. URL: https:367

//eprint.iacr.org/2024/774.368

3. Lionel Beltrando, Maria Potop-Butucaru, and José Alfaro. Tendertee: Increasing the resilience of tendermint by369

using trusted environments. In 24th International Conference on Distributed Computing and Networking, ICDCN370

2023, Kharagpur, India, January 4-7, 2023, pages 90–99. ACM, 2023. doi:10.1145/3571306.3571394.371

https://doi.org/10.1145/3293611.3331612
https://eprint.iacr.org/2024/774
https://eprint.iacr.org/2024/774
https://eprint.iacr.org/2024/774
https://doi.org/10.1145/3571306.3571394

10 Yackolley Amoussou-Guenou, Maurice Herlihy, and Maria Potop-Butucaru

4. Naama Ben-David, Benjamin Y. Chan, and Elaine Shi. Revisiting the power of non-equivocation in distributed372

protocols. In Alessia Milani and Philipp Woelfel, editors, PODC ’22: ACM Symposium on Principles of Distributed373

Computing, Salerno, Italy, July 25 - 29, 2022, pages 450–459. ACM, 2022.374

5. Silvia Bonomi, Jérémie Decouchant, Giovanni Farina, Vincent Rahli, and Sébastien Tixeuil. Practical byzantine375

reliable broadcast on partially connected networks. In 2021 IEEE 41st International Conference on Distributed376

Computing Systems (ICDCS), pages 506–516. IEEE, 2021.377

6. Silvia Bonomi, Giovanni Farina, and Sébastien Tixeuil. Reliable broadcast despite mobile byzantine faults. In378

Alysson Bessani, Xavier Défago, Junya Nakamura, Koichi Wada, and Yukiko Yamauchi, editors, 27th International379

Conference on Principles of Distributed Systems, OPODIS 2023, December 6-8, 2023, Tokyo, Japan, volume 286380

of LIPIcs, pages 18:1–18:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/381

10.4230/LIPIcs.OPODIS.2023.18, doi:10.4230/LIPICS.OPODIS.2023.18.382

7. Gabriel Bracha. Asynchronous byzantine agreement protocols. Inf. Comput., 75(2):130–143, 1987. doi:10.1016/383

0890-5401(87)90054-X.384

8. Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar, Nancy A. Lynch, and Olivier Pereira. Compositional security for385

task-pioas. In 20th IEEE Computer Security Foundations Symposium, CSF 2007, 6-8 July 2007, Venice, Italy,386

pages 125–139. IEEE Computer Society, 2007.387

9. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the Third USENIX388

Symposium on Operating Systems Design and Implementation (OSDI), New Orleans, Louisiana, USA, February389

22-25, 1999, pages 173–186. USENIX Association, 1999. URL: https://dl.acm.org/citation.cfm?id=296824.390

10. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery. ACM Trans.391

Comput. Syst., 20(4):398–461, 2002.392

11. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed systems. J. ACM,393

43(2):225–267, 1996.394

12. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci., 777:155–395

183, 2019. URL: https://doi.org/10.1016/j.tcs.2019.02.001, doi:10.1016/J.TCS.2019.02.001.396

13. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor. Comput. Sci., 777:155–397

183, 2019. URL: https://doi.org/10.1016/j.tcs.2019.02.001, doi:10.1016/J.TCS.2019.02.001.398

14. Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. Attested append-only memory: making399

adversaries stick to their word. In Proceedings of the 21st ACM Symposium on Operating Systems Principles400

2007, SOSP 2007, Stevenson, Washington, USA, October 14-17, 2007, pages 189–204. ACM, 2007. doi:10.1145/401

1294261.1294280.402

15. Pierre Civit and Maria Potop-Butucaru. Brief announcement: Composable dynamic secure emulation. In Kunal403

Agrawal and I-Ting Angelina Lee, editors, SPAA ’22: 34th ACM Symposium on Parallelism in Algorithms and404

Architectures, Philadelphia, PA, USA, July 11 - 14, 2022, pages 103–105. ACM, 2022.405

16. Pierre Civit and Maria Potop-Butucaru. Dynamic probabilistic input output automata. In Christian Scheideler,406

editor, 36th International Symposium on Distributed Computing, DISC 2022, October 25-27, 2022, Augusta,407

Georgia, USA, volume 246 of LIPIcs, pages 15:1–15:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.408

17. Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues. On the (limited) power of non-409

equivocation. In ACM Symposium on Principles of Distributed Computing, PODC ’12, Funchal, Madeira, Por-410

tugal, July 16-18, 2012, pages 301–308. ACM, 2012. doi:10.1145/2332432.2332490.411

18. Shir Cohen and Idit Keidar. Brief announcement: Subquadratic multivalued asynchronous byzantine agreement412

WHP. In Rotem Oshman, editor, 37th International Symposium on Distributed Computing, DISC 2023, October413

10-12, 2023, L’Aquila, Italy, volume 281 of LIPIcs, pages 39:1–39:6. Schloss Dagstuhl - Leibniz-Zentrum für414

Informatik, 2023.415

19. Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. How to tolerate half less one byzantine nodes in416

practical distributed systems. In 23rd International Symposium on Reliable Distributed Systems (SRDS 2004),417

18-20 October 2004, Florianpolis, Brazil, pages 174–183. IEEE Computer Society, 2004. doi:10.1109/RELDIS.418

2004.1353018.419

20. Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. BFT-TO: intrusion tolerance with less replicas.420

Comput. J., 56(6):693–715, 2013. doi:10.1093/comjnl/bxs148.421

21. Miguel Correia, Giuliana Santos Veronese, and Lau Cheuk Lung. Asynchronous byzantine consensus with 2f+1422

processes. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J. Palakal, and Chih-Cheng Hung,423

editors, Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), Sierre, Switzerland, March 22-26,424

2010, pages 475–480. ACM, 2010. doi:10.1145/1774088.1774187.425

22. Jérémie Decouchant, David Kozhaya, Vincent Rahli, and Jiangshan Yu. DAMYSUS: streamlined BFT consensus426

leveraging trusted components. In EuroSys ’22: Seventeenth European Conference on Computer Systems, Rennes,427

France, April 5 - 8, 2022, pages 1–16. ACM, 2022. doi:10.1145/3492321.3519568.428

23. Tobias Distler, Christian Cachin, and Rüdiger Kapitza. Resource-efficient byzantine fault tolerance. IEEE Trans.429

Computers, 65(9):2807–2819, 2016. doi:10.1109/TC.2015.2495213.430

https://doi.org/10.4230/LIPIcs.OPODIS.2023.18
https://doi.org/10.4230/LIPIcs.OPODIS.2023.18
https://doi.org/10.4230/LIPIcs.OPODIS.2023.18
https://doi.org/10.4230/LIPICS.OPODIS.2023.18
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1016/0890-5401(87)90054-X
https://doi.org/10.1016/0890-5401(87)90054-X
https://dl.acm.org/citation.cfm?id=296824
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1016/J.TCS.2019.02.001
https://doi.org/10.1016/j.tcs.2019.02.001
https://doi.org/10.1016/J.TCS.2019.02.001
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/2332432.2332490
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1093/comjnl/bxs148
https://doi.org/10.1145/1774088.1774187
https://doi.org/10.1145/3492321.3519568
https://doi.org/10.1109/TC.2015.2495213

Asynchronous Byzantine Consensus with Trusted Monotonic Counters 11

24. Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with one faulty431

process. In Proceedings of the Second ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,432

March 21-23, 1983, Colony Square Hotel, Atlanta, Georgia, USA, pages 1–7. ACM, 1983. doi:10.1145/588058.433

588060.434

25. Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Yvonne-Anne Pignolet, Dragos-Adrian Seredinschi, and435

Andrei Tonkikh. Dynamic byzantine reliable broadcast [technical report]. arXiv preprint arXiv:2001.06271, 2020.436

26. Suyash Gupta, Sajjad Rahnama, Shubham Pandey, Natacha Crooks, and Mohammad Sadoghi. Dissecting BFT437

consensus: In trusted components we trust! In Giuseppe Antonio Di Luna, Leonardo Querzoni, Alexandra Fe-438

dorova, and Dushyanth Narayanan, editors, Proceedings of the Eighteenth European Conference on Computer439

Systems, EuroSys 2023, Rome, Italy, May 8-12, 2023, pages 521–539. ACM, 2023.440

27. Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle, Seyed Vahid Mohammadi,441

Wolfgang Schröder-Preikschat, and Klaus Stengel. Cheapbft: resource-efficient byzantine fault tolerance. In442

European Conference on Computer Systems, Proceedings of the Seventh EuroSys Conference 2012, EuroSys ’12,443

Bern, Switzerland, April 10-13, 2012, pages 295–308. ACM, 2012. doi:10.1145/2168836.2168866.444

28. Valerie King and Jared Saia. Breaking the O(n2) bit barrier: Scalable byzantine agreement with an adaptive445

adversary. J. ACM, 58(4):18:1–18:24, 2011.446

29. Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem. ACM Trans.447

Program. Lang. Syst., 4(3):382–401, 1982. doi:10.1145/357172.357176.448

30. Marc Leinweber and Hannes Hartenstein. Brief announcement: Let it TEE: asynchronous byzantine atomic449

broadcast with n ≥ 2f+1. In Rotem Oshman, editor, 37th International Symposium on Distributed Computing,450

DISC 2023, October 10-12, 2023, L’Aquila, Italy, volume 281 of LIPIcs, pages 43:1–43:7. Schloss Dagstuhl -451

Leibniz-Zentrum für Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.DISC.2023.43.452

31. Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda. Trinc: Small trusted hardware for453

large distributed systems. In Proceedings of the 6th USENIX Symposium on Networked Systems Design and454

Implementation, NSDI 2009, April 22-24, 2009, Boston, MA, USA, pages 1–14. USENIX Association, 2009.455

URL: http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf.456

32. Alexandre Maurer and Sébastien Tixeuil. Self-stabilizing byzantine broadcast. In 2014 IEEE 33rd International457

Symposium on Reliable Distributed Systems, pages 152–160. IEEE, 2014.458

33. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In 40th Annual Symposium on459

Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 120–130. IEEE460

Computer Society, 1999. doi:10.1109/SFFCS.1999.814584.461

34. Silvio Micali, Salil Vadhan, and Michael Rabin. Verifiable random functions. In Proceedings of the 40th Annual462

Symposium on Foundations of Computer Science, FOCS ’99, page 120, USA, 1999. IEEE Computer Society.463

doi:10.1109/SFFCS.1999.814584.464

35. Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous binary byzantine465

consensus with t < n/3, o(n2) messages, and O(1) expected time. J. ACM, 62(4):31:1–31:21, 2015. doi:466

10.1145/2785953.467

36. Achour Mostefaoui, Matthieu Perrin, and Julien Weibel. Randomized consensus: Common coins are not the holy468

grail! Technical report, LS2N-Nantes Université, 2024.469

37. Michel Raynal. Fault-tolerant message-passing distributed systems: an algorithmic approach. springer, 2018.470

38. Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and Paulo Veríssimo. Efficient471

byzantine fault-tolerance. IEEE Trans. Computers, 62(1):16–30, 2013. doi:10.1109/TC.2011.221.472

39. Roger Wattenhofer. Distributed systems. Lecture notes, https://disco.ethz.ch/courses/hs21/distsys/473

lnotes/DistSys_Script.pdf, 2022.474

40. Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and Michael K. Reiter. Communication-efficient BFT protocols475

using small trusted hardware to tolerate minority corruption. IACR Cryptol. ePrint Arch., page 184, 2021. URL:476

https://eprint.iacr.org/2021/184.477

https://doi.org/10.1145/588058.588060
https://doi.org/10.1145/588058.588060
https://doi.org/10.1145/588058.588060
https://doi.org/10.1145/2168836.2168866
https://doi.org/10.1145/357172.357176
https://doi.org/10.4230/LIPIcs.DISC.2023.43
http://www.usenix.org/events/nsdi09/tech/ full_papers/levin/levin.pdf
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1109/SFFCS.1999.814584
https://doi.org/10.1145/2785953
https://doi.org/10.1145/2785953
https://doi.org/10.1145/2785953
https://doi.org/10.1109/TC.2011.221
https://disco.ethz.ch/courses/hs21/distsys/lnotes/DistSys_Script.pdf
https://disco.ethz.ch/courses/hs21/distsys/lnotes/DistSys_Script.pdf
https://disco.ethz.ch/courses/hs21/distsys/lnotes/DistSys_Script.pdf
https://eprint.iacr.org/2021/184

	Asynchronous Byzantine Consensus with Trusted Monotonic Counters

