
MultiReg-FE: Registered FE for Unbounded
Inner-Product and Attribute-Weighted Sums

Qiuyan Du1, Qiaohan Chu1, Jie Chen1�, Man Ho Au2�, and Debiao He3

1 Shanghai Key Laboratory of Trustworthy Computing, Software Engineering
Institute, East China Normal University, Shanghai 200062, China

s080001@e.ntu.edu.sg
2 Department of Computing, The Hong Kong Polytechnic University

mhaau@polyu.edu.hk
3 School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China

Abstract. Recently, Francati et al. (Asiacrypt 2023) provided the first
registered functional encryption (Reg-FE) beyond predicates. Reg-FE
addresses the key escrow problem in functional encryption by allowing
users to generate their own key pairs, effectively replacing the traditional
private-key generator with a key curator. The key curator holds no secret
information and runs deterministic algorithms to generate master pub-
lic key for encryption and helper keys for decryption. However, existing
Reg-FE schemes under standard assumptions require fixed data sizes,
which limits their practicality in real-world applications.
In this work, we introduce Multi-Function Registered Functional En-
cryption for Inner-Product (MultiReg-FE for IP), a novel extension of
Reg-FE. It enables users to register multiple functions under a single
public key. With MultiReg-FE, we achieve both Reg-FE for Unbounded
Inner-Product (Unbounded IP), which removes the need to predetermine
vector lengths, and Reg-FE for Attribute-Weighted Sums with Inner-
Product (AWSw/IP), allowing computations over arbitrary numbers of
attribute-value pairs.
Specifically, we present:
– MultiReg-FE for Inner-Product, which supports unbounded num-

ber of function vectors from each user and achieves adaptive-IND-
security;

– Reg-FE for Unbounded Inner-Product, removing the need for preset
vector lengths and achieves adaptive-IND-security;

– The first Reg-FE for AWSw/IP in public-key settings with weekly
security.

Keywords: Registered Functional Encryption · Attribute-Weighted Sums
· Unbounded Inner-Product.

1 Introduction

Functional Encryption (FE) [4,15] has emerged as a powerful cryptographic
tool that allows fine-grained access control over encrypted data beyond “all-or-
nothing” type. Instead of revealing entire plaintexts, FE enables users to compute

2 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

specific functions on encrypted data, thus ensuring privacy while still allowing
useful computations. However, traditional FE schemes often suffer from a major
limitations: the key escrow problem.

Registered Functional Encryption (Reg-FE). Reg-FE [10,7,20,6] was in-
troduced to tackle the key escrow problem by allowing users to generate their
own key pairs. Reg-FE eliminates the need for a trusted key authority while
still providing fine-grained access control. Specifically, the system only requires
a one-time trusted setup to generate a common reference string (CRS) crs, after
which users can independently generate their public and secret keys (pk, sk) and
register their public keys pk associated with the functions f with a key curator.
The key curator only runs deterministic algorithms and holds no secret infor-
mation. Upon the registration, the key curator updates the master public key
mpk and distributes helper keys hsk to users, enabling them to decrypt specific
functions of encrypted data.

While Reg-FE addresses key escrow, existing schemes are limited to requiring
a predetermined size or structure of data. However, many real-world applications
require more flexibility, particularly when dealing with uncertain or dynamically
sized data. For example, in decentralized environments where the size of the
data is not known in advance, predefined limits on vector lengths or function
complexity can be impractical.

Our work is motivated by the need to handle dynamic and unbounded data.
Specifically, we aim to extend Reg-FE to support unbounded inner-product (IP)
functionalities and more complex operations like Attribute-Weighted Sums (with
Inner-Product) (AWSw/IP), both of which can deal with dynamically sized
datasets.

Unbounded Inner-Product Functionality. In a traditional Functional En-
cryption system for Inner-Product, the vector length must be determined during
the setup phase. Therefore, a large length is usually set to ensure that various
data can be handled, which can lead to inefficiencies when the data scale is un-
known or dynamic. To solve this problem, Tomida and Takashima [17] proposed
the first unbounded IPFE schemes from standard assumptions, where there is
no need to fix the lengths of vectors in the setup phase and it can handle un-
bounded polynomial lengths of vectors. To handle vectors of different lengths,
they used a method that, regardless of the length of a plaintext (or function)
vector x (or y), splits it into multiple one-dimensional vectors {(xi)}i (or {yi}i).
This reduces the problem to handling fixed-length vectors. To ensure that only
the sum

∑
i xiyi, they appended random values (whose sum equals zero) to

the function vectors {(yi)}i and a constant 1 to the plaintext vectors {(xi)}i.
This ensures only the sum

∑
i∈[n](xi, ρi)(yi, 1)

⊤ =
∑

i xiyi = xy⊤ is recovered,
hiding individual products. This is a common approach to achieve unbounded
inner-product. Except for inner-product, FE schemes for other unbounded func-
tionalities (e.g., quadratic functions and predicate inner-product, etc.) have also
been studied [8,16].

In addition to supporting arbitrary vector lengths, Reg-FE scheme for un-
bounded IP enables the reuse of the common reference string crs, which signifi-

MultiReg-FE: Reg-FE for Unbounded IP and AWS 3

cantly reduces the complexity of the system. In traditional Reg-FE schemes, the
crs is tightly coupled to the data size, making crs reuse difficult and requiring a
new trusted setup for each instance. However, Reg-FE for unbounded IP allows
the same crs to be reused across multiple instances by decoupling the crs from
the specific data parameters. In decentralized environments, where performing
multiple trusted setups can be impractical, crs reuse offers a practical advantage.

Attribute-Weighted Sums Functionality. Consider a database where data
users are allowed to compute aggregate statistics on encrypted data, like average
salaries or medical conditions, without compromising individual privacy. More
precisely, the data are multiple attribute-value pairs (xj , zj), f is a function given
by a user. The owner of the database only allow the user to compute weighted
sums

∑
j f(xj)z

⊤
j without access to any other information of {zj}j . This is where

Attribute-Weighted Sums (AWS), a class of functionality proposed by [2], comes
into play. AWS enables the computation of sums

∑
j f(xj)z

⊤
j where each term

is the product of a private value zi and a function f applied to a public value
xi. It ensures that only the weighted sum is revealed during decryption, not the
individual zi values.

Attribute-Weighted Sums (with Inner-Product) (AWSw/IP) proposed by [3]
is an direct extension of AWS. In short, this new functionality supports the sum
of regular AWS and additional inner product, that is

∑
j f(xj)z

⊤
j +pq⊤, where p

is a private vector from encryptor and q is an additional function vector. Agrawal
et al. [3] propose a generic method to transform FE for inner product (IPFE)
to FE for AWSw/IP using the Partial Garbling Scheme (PGS) [13,18,2]. Specifi-
cally, PGS can transform one AWSw/IP function into multiple vector functions.
But this method only supports the transformation from IPFE in secret-key set-
ting.

This Work. We focus on the challenges of handling unbounded data and com-
plex computations in a decentralized and non-interactive manner. We note that
both unbounded IP and AWSw/IP require users to handle multiple function
vectors simultaneously, making it necessary to design a flexible scheme that can
accommodate this need. Thus, we introduce a auxiliary scheme with a novel
registration pattern as our core technique, which allows a single public key to
be associated with multiple functions. We refer to it as Multi-Function Reg-FE
(MultiReg-FE). With this scheme, we can simply achieve Reg-FE for unbounded
IP, which can handle arbitrary vector lengths, or AWSw/IP to support arbitrary
number of attribute-value pairs, suitable for environments where data size and
structure are not known in advance.

To illustrate how this auxiliary scheme works in practice, we now introduce
the details of MultiReg-FE.

Multi-Function Registered Functional Encryption (MultiReg-FE). In
MultiReg-FE, each user registers multiple functions, each labeled with a number
corresponding to a specific function set. For instance, in a collaborative data
analysis platform, researchers or organizations may need to compute different

4 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

functions on encrypted datasets. These functions are grouped into categories,
and within each category (or function set), each researcher registers a unique
function. For example, all researchers may register a function for category 1
(e.g., computing the mean), category 2 (e.g., performing a regression), and so
on, up to M categories.

When a dataset is encrypted, the encryptor can choose a specific function
set (or sets) for encryption. Users can then decrypt and compute the value of
their registered function within that set. For example, if the dataset is encrypted
for function set r, researcher i can only decrypt the data using their registered
function fi,r, obtaining fi,r(x), but not any functions from other sets or from
other researchers.

This flexible registration pattern allows each user to associate a single public
key with multiple functions, enabling efficient encryption and decryption without
relying on a trusted central authority. Moreover, in our MultiReg-FE scheme,
the number of function sets M need not be determined in the setup phase.

For inner-product, MultiReg-FE can be extended to support multiple in-
put vectors. The encryptor can encrypt data vectors x1, . . . ,xN for several
sets of function vectors {yi,ϕ(1)}i, . . . , {yi,ϕ(N)}i, where ϕ(·) is a labeling func-
tion. User i can then compute only the sum of their registered function values,∑

j∈[N] xjyi,ϕ(j).

1.1 Our Results

We present the following key contributions:

– MultiReg-FE for Inner-Product: We introduce Multi-Function Regis-
tered Functional Encryption (MultiReg-FE), where each user i registers
a public key associated with multiple function vectors {yi,r}r∈[mi], where
mi is arbitrary and does not need to be fixed during setup. An encryp-
tor can encrypt multiple vectors {xj}j∈[N] for a set of function vectors
{yi,r}r∈ϕ(N) labeled by ϕ(·); , and user i can only decrypt and retrieve the
sum

∑
j∈[N] xjy

⊤
ϕ(j), provided ϕ([N]) ⊆ [mi]. This scheme achieves adaptive-

IND-security.

– Reg-FE for Unbounded Inner-Product: With the MultiReg-FE scheme,
we achieve the first registered functional encryption scheme supporting un-
bounded inner-product functionalities. This scheme allows for unbounded
vector lengths, removing the need to predetermine vector sizes during the
setup phase. This scheme also achieves adaptive-IND-security.

– Reg-FE for Attribute-Weighted Sums (with Inner-Product): We
obtain the first Reg-FE for attribute-weighted sums (with inner-product)
(AWSw/IP). This scheme allows for computations over an arbitrary number
of attribute-value pairs. It is the first scheme to implement AWSw/IP func-
tionality in publick-key settings, whereas previous schemes for AWS were lim-
ited to private-key settings. This scheme also achieves adaptive-IND-security.

MultiReg-FE: Reg-FE for Unbounded IP and AWS 5

Related Works. Reg-FE for functionality beyond predicates is a new crypto-
graphic primitive that has been studied recently. Both Francati et al. [10] and
Datta et al. [7] presented a Reg-FE scheme for general functionalities from indis-
tinguishability obfuscation (iO) and binding hash functions, and their schemes
support an exponential number of users. Zhu et al. [20] introduced the first Reg-
FEs for linear functions (or inner-product) and for quadratic functions using
pairings. The scheme for linear functions achieves adaptive-IND-security. Mean-
while, the scheme for quadratic functions achieves very-selective-SIM-security, a
weaker security notion defined by Zhu et al., which requires adversaries to de-
clare their challenge functions, and the types of challenge public keys before the
setup phase. Simultaneously, Chu et al. [6] proposed a Reg-FE scheme for linear
functions that achieves weakly selective-IND-security and weakly selective-SIM-
security. These weakly selective security definitions, introduced by Chu et al.
Specificially, weakly selective-IND security extends the selective-IND-security by
requiring that for any function f in the function space, the challenge messages x∗

0

and x∗
1 satisfy f(x∗

0) = f(x∗
1). Weakly selective-SIM security allows the adversary

to obtain more function values in the final simulation game without revealing
the encrypted message, which is considered acceptable in centralized FE where
the message remains hidden. Zhang et al. proposed bounded collision-resistant
Reg-FE schemes for general functionalities without iO, achieving adaptive-SIM-
security. Compared to plain RFE, bounded collusion-resistant Reg-FE addition-
ally requires that a prior-bound Q of the number of corrupted users should be
declared at the setup phase. We summarize our results and existing Reg-FE with
full collusion-resistance and from standard assumptions in Table 1.

Scheme Function Assumption Security Unbounded

ZL24-1 [20] Linear k-Lin adp-IND ×
ZL24-2 [20] Quadratic bi-k-Lin sel∗-SIM ×
CL24-1[6] Linear k-Lin sel′-IND ×
CL24-2[6] Quadratic bi-k-Lin sel′-SIM ×
Our (3) Linear k-Lin adp-IND ✓
Our (4) Linear k-Lin adp-IND ✓
Our (5) AWSw/IP k-Lin adp-IND ✓

Table 1. Comparison with all existing schemes achieving full collusion-resistance from
standard assumptions. In the column of Function, “Linear” stands for “linear functions
(inner-product)”. In the column of Security, adp, sel, sel∗, and sel′ stand for “adap-
tive”, “selective”, “very selective” [20], and “weakly selective” [6], respectively; IND and
SIM stand for “indistinguishability-based security” and “simulation-based security”, re-
spectively. In the column of Unbounded, schemes (3), (4) and (5) support unbounded
“number of functions with one public key”, “vector length” and ” number of attribute-
value pairs”, respectively.

6 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

1.2 Technical Overview

In this part, we focus on constructing the slotted Reg-FE. There is already
a proven and mature method to convert slotted Reg-FE to Reg-FE using the
‘powers-of-two’ transformation [11,12,10,20].
Here, we briefly introduce the concept of slotted Reg-FE, a simplified version of
Reg-FE, where the number of registered users is fixed and all users must register
their public keys with the curator together. This eliminates the need to han-
dle updates for newly registered users. Specifically, a L-slotted Reg-FE scheme,
which has L registered users, consists of six algorithms (Setup,Gen,Ver,Agg,
Enc, Dec). The system relies on one-time trusted sampling to generate a com-
mon reference crs only at Setup, and the key generation algorithm is run by
every user to obtain their own key pair (pk, sk). There are only L users to reg-
ister their public keys pk and functions f with the curator. After receiving all
L pairs of public key and function (pk, f), the curator needs to verify that each
public key is correctly generated using the verification algorithm Ver. Then the
curator aggregates the pairs {(pki, fi)}i∈[L] to produce a master public key mpk
and L helper keys hsk1, . . . ,hskL for the corresponding users. The master public
key mpk is for encryptors to encrypt their data x. Each registered user, who
has registered a different function f , can decrypt the data to obtain the value of
their specific function f(x) using their secret key sk and helper key hsk.

To extend this to a more flexible setting, we introduce MultiReg-FE, where
a single public key can be associated with multiple functions. Specifically, in
MultiReg-FE for IP, each user generates a single public-secret key pair and reg-
isters multiple vectors with the key curator, all under the same public key.

Starting Point: Slotted MultiReg-FE. To associate a public key with mul-
tiple functions (e.g., M functions), the first idea is to simply extend the length
of the vector to M times the original length. However, when the system is set
up, M is fixed, making it impossible to register a public key associated with an
arbitrary number of functions.

Thus, we need to find another way to associate a public key with multiple
function vectors.

Our construction idea is quite simple. It can be seen as a multi-instance
extension of Zhu et al.’s work, but with a shared common reference string crs
across all instances.

MultiReg-FE: Reg-FE for Unbounded IP and AWS 7

Here, we briefly recap the core components of the L-slotted Reg-FE scheme
for inner products of vector length n. For i ∈ [L],

crs = ([A]1,
{[
B1r

⊤
i

]
2
, [Ri,AWi]1

}
i∈[L]

,
{[

Wu

(
In ⊗B1r

⊤
i

)]
2

}
i∈[L],u∈[L]\{i})

pki = ([AUi,RiUi]1, {[UiB1r
⊤
u]2}u∈[L]\{i})

ski = Ui

mpk = [P0,P1,P2]1]1

=
[
A,

∑
u

(
AUu +AWu

(
y⊤
u ⊗ I2k+1

))
,
∑

u AWu

]
1

hski = [k⊤
i,0,k

⊤
i,1,Ki,2]2

= [B1r
⊤
i ,

∑
u̸=i

(UuB1r
⊤
i +Wu(In ⊗B1r

⊤
i)y

⊤
u),

∑
u ̸=i

Wu(In ⊗B1r
⊤
i)]2

ct = [c0, c1, c2, c3]1

= [sP0, sP1,x⊗ v + sP2,v]1
= [sA, s

∑
u∈[L]

(
AUu +AWu(y

⊤
u ⊗ I2k+1)

)
,x⊗ v + s

∑
u∈[L]

AWu,v]1

where A← Zk×(2k+1)
p ,B← Z(2k+1)×k

p ,Ri ← Z(2k+2)×(2k+1)
p , Wi ←Z(2k+1)×n(2k+1)

p ,
Ui ← Z(2p+1)×(2p+1)

p , s← Z1×k
p and v← Z1×(2k+1)

p .

To construct MultiReg-FE, consider a simple case where we have M sets of func-
tion vectors {yi,1}i∈[L], . . . , {yi,M}i∈[L], and N plaintext vectors x1, . . . ,xN . We
extend the original scheme by replicating the components related to the function
vectors and plaintext vectors. Specifically, we extend the terms corresponding to
the function vectors (e.g., P1 and k⊤

i,1) to handle multiple sets of function vectors
{yi,1}i∈[L], . . . , {yi,M}i∈[L], and likewise extend the terms corresponding to the
plaintext vectors (e.g., c0, c1, c2) to process multiple plaintexts x1, . . . ,xN .

Next, we need to ensure that decryption reveals only the sum
∑

j∈[N] xjy
⊤
i,ϕ(j)

without leaking any other information. As we mentioned before, Tomida et al.
[17] achieved this by appending random values (whose sum equals zero) to the
function vectors, which relies on Private Key Generator (acting as a trusted
center) to sample these random values. In contrast, there is no trusted center
in our scheme. Instead, we delegate the role of sampling random values to the
encryptor. Specifically, we we append an additional random component ρj to
each vector xj and require

∑
j∈[N] ρj = 0. Correspondingly, we need to add an

additional component 1 to each vector yi to match the dimension of the vector
xi.

Then, we can consider the case where users registers different number of
functions. Let mi be the number of functions registered by user i. We can just
let M = maxi∈[L] mi. Then for the case where the number of function vectors mi

is less than M , we make up to M with zero vectors, i.e. set yi,r = 0 for i ∈ [L],
r > mi. In this case, user i can’t decrypt the ciphertext ct associated with the
labeling function ϕ(·) if ϕ([N]) ̸⊆ [mi].

8 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

Finally, our overall extension is structured as follows, with boxing the changes.

P1 → {P1,r}r∈[M]

k⊤
i,1 → {k⊤

i,1,r}r∈[M]

c0, c1, c2 → {c0,j , c1,j , c2,j}j∈[N], ϕ(·)

where

P1,r =
∑

u∈[L](AUu +AWu((yu,r, 1)
⊤ ⊗ I2k+1))

k⊤
i,1,r =

∑
u∈[L]\{i}(UuB1r

⊤
i +Wu(In+1 ⊗B1r

⊤
i) (yu,r, 1)

⊤)

c0,j = sjP0

= sjA

c1,j = sjP1,ϕ(j)

=
∑

u∈[L]

(
sjAUu + sjAWu(y

′⊤
u,ϕ(j) ⊗ I2k+1)

)
c2,j = (xj , ρj) ⊗ v + sjP2

= (xj , ρj) ⊗ v + sj
∑

u∈[L] AWu

and ϕ(·) is a labeling function, v← Z1×(2k+1)
p , s1, . . . , sN ← Z1×k

p , ρ1, . . . , ρN ←
Zp s.t.

∑
j∈[N]

ρj = 0.

Although our construction method is conceptually simple, the security proof
is far from trivial. We give the full proof in Section 3.2. The basic proof strategy
is similar to that of Zhu et al. [20], but we face several new challenges that do
not arise in the single-instance case.

Challenges in the Proof. Here, we highlight two of the primary technical
challenges encountered in our security proof:

Dealing with Malicious Public Keys in a Multi-Instance Setting.
The first challenge arises when we need to process multiple plaintext vectors
simultaneously. Specifically, malicious users may register a malicious public key
pk that is not generated by the trusted key generation algorithm Gen. In such
cases, the challenger lacks knowledge of the corresponding secret key Ui, ren-
dering the malicious public key indistinguishable from random values rather
than the legitimate form ([AUi,RiUi]1 ,

{[
UiB1r

⊤
u

]
2

}
u∈[L]\{i}). Thus, we use

the Non-Interactive Zero-Knowledge (NIZK) Arguments in the algorithm Ver to
verify the correctness of a malicious public key pk. Once the key is verified, it
holds that Ti = AUi and Qi = RiUi for some unknown Ui.

The challenge, however, is that in the ciphertext, every [sjA]1 must be treated
as random value [aj]1 for all j, which can be proved by MDDH assumption.
Note that the value sjTi contains sjA, so we need to find a way to eliminate
the influence of sjA embedded in sjTi so that we can use MDDH assumption.

Previous works, such as [21,20], implicitly set the structure of Ri for all i as:

R̂i = R̃i

(
sA

I2k+1

)
, where R̃i ← Z(2k+2)×(2k+2)

p

MultiReg-FE: Reg-FE for Unbounded IP and AWS 9

They replaced sTi with e1R̃
−1
i Qi to remove the influence of sTi. However, this

method is effective only in a single-instance setting, where there is only one s.
Because we can neither replace different {sjA}j with the same e1R̃

−1
i Qi nor

embed all distinct {sjA}j in Ri.
Our approach is different: instead of treating sjTi as a whole, we explicitly

extract A from Ti. To achieve this, we propose a conceptual change to the
structure of R̂i:

R̂i =

(
R̃i

ti

)
where R̃i ← Z(2k+1)×(2k+1)

p and ti ← Z1×(2k+1)
p . This allows us to express Ti

as:
Ti = AR̃−1

i (I2k+1∥0⊤)Qi,

where 0⊤ is a zero vector in Z2k+1
p . Thus, we can express sjA as sjAR̃−1

i (I2k+1∥0⊤)Qi

for all j, allowing us to handle multiple plaintext vectors.
Generating Random Values to Hide an Unbounded Number of

Plaintext Vectors with a Shared CRS. The second challenge involves gen-
erating random values to hide an unbounded number of plaintext vectors when
using a shared CRS. This is crucial in the nested dual system methodology,
where the hidden plaintext vectors are finally replaced with random vectors.

In prior works such as [21,20], the approach was limited to handling a single
plaintext vector (i.e. N = 1), because they use the following argument to sample
randomnessA, [Ri]1,B1,B2,d

⊤
i ,AWi,Wi(In+1 ⊗B1),Wi(In+1 ⊗B2)

{[aj]1, [ajUi + ajWi]1, [ajWi]1}j∈[N]

AUi, [RiUi]1,UiB1,UiB3

 ≈c

A, [Ri]1,B1,B2,d

⊤
i ,AWi,Wi(In+1 ⊗B1),Wi(In+1 ⊗B2)

{[aj]1, [ajUi + cj,is
(3) + ajWi +wj,i ⊗ s(3)]1, [ajWi +wj,i ⊗ s(3)]1}j∈[N]

AUi, [RiUi + uis
(3)]1,UiB1,UiB3

However, in this argument, N must be 1. Simply put, they applied transfor-

mations such as Wi →Wi + a⊥1 (w1,i ⊗ s(3)) and Ui → Ui + a⊥1 (uis
(3)), where

a1a
⊥
1 = 1, a technique that relies on dual vectors. However, in the multi-instance

setting (i.e., when N ̸= 1), this technique becomes difficult to apply, because a
single a⊥1 cannot satisfy aja

⊥
1 = 1 for all j ∈ [N]. Therefore, this method fails

to handle multiple plaintext vectors.
To overcome this limitation, we are inspired by the Entropy Expansion

Lemma presented in [5]. We introduce novel lemmas 3 and 4 that rely on two
DDH-like (Decisional Diffie-Hellman) assumptions on matrices. These lemmas
allow us to generate an unbounded number of random values, which are neces-
sary to hide multiple plaintext vectors effectively.

To Slotted Reg-FE for Unbounded IP. We extend Reg-FE for unbounded
inner products by leveraging the registration pattern of MultiReg-FE. First, the

10 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

Setup algorithm in slotted MultiReg-FE is independent of the number of func-
tions registered by each user. Second, an arbitrary number of function vectors can
naturally extend to vectors of unbounded length. To achieve this, for any vector
yi = (yi,1, . . . , yi,mi) ∈ Zmi

p , we treat each element yi,r as a single-entry vector
yi,r = (yi,r) ∈ Z1

p for all r ∈ [mi]. Similarly, for x ∈ ZN
p , we generate {xj}j∈[N],

where each xj is a 1-dimensional vector. Finally, we use {yi,r}r∈[mi] for all i
and {xj}j∈[N] as the function vectors and plaintext vectors in the MultiReg-FE
scheme.

To Slotted Reg-FE for AWSw/IP. Along the way, we also propose a slot-
ted Reg-FE for AWSw/IP. AWSw/IP proposed by [2,3] is a direct extension of
AWS. In FE for AWSw/IP, an arithmetic branching program f and a vector q
are associated with a public key; multiple attribute-value pairs {(xj , zj)}j and a
vector p are associated with ciphertext, where only {xj}i are public and {zj}i;
and decryption only reveals pq⊤ +

∑
i f(xj)z

⊤
j .

Agrawal et al. [3] proposed a generic method to transforming FE for IP to
FE for AWSw/IP via a partial garbling scheme (PGS) [13,18,2]. This method
inherently requires multiple functions to be specified per user, which aligns with
the registration pattern of MultiReg-FE. However, their approach is confined to
the private-key setting, where there is a trusted center to generate secret encryp-
tion key and distribute it to encryptors. The primary reason for this limitation is
that their method relies on the generation of random vectors {tj}j by a trusted
center to hide private information {zj}j . Consequently, their method does not
extend to settings where decentralized key management is required, such as in
registration-based systems without a trusted center.

The main challenge lies in eliminating the necessity for the center to sam-
ple these random values. We scrutinize the algebraic structure of their generic
transformations and propose the following method suitable for no-trusted-center
systems. And we notice a similar idea is used in [19,16].

For function {fi ∈ FABP,n1,n2
}i∈[L], we computes Li,0 and Li,1 ={Li,1,1, . . . ,

Li,1,n} from fi, and set

Li =

Li,1,1

· · ·
Li,1,n

Li,0

 = {ℓi,1, . . . , ℓi,m}(n1+1)(m+n2−1)×m.

We set the form of function vectors and plaintext vector as follows.

(function vectors) ỹi,r =

(ℓ⊤i,r, 0

n2 , 1, qi) if r = 1

(ℓ⊤i,r, 0
n2 , 0, 0n3) if 1 < r ≤ m

(0m
′
, ek−s, 0, 0n3) if m < r ≤M

(input vectors) x̃j =

 ((xj , 1)⊗ tj , zj − t̄j , wj , p) if j = 1

((xj , 1)⊗ tj , zj − t̄j , wj , 0
n3) if j ∈ [N]\{1}

MultiReg-FE: Reg-FE for Unbounded IP and AWS 11

where
∑

j∈[N] wj = 0. Note that, as indicated by the boxed terms, we have
already shifted the role of sampling random vectors {tj}j to the encryptor.
Clearly, for j = 1,

(ỹi,1x̃j , . . . , ỹi,M x̃j) = pgb+(f,xj , zj , wj + pqi);

for j ∈ [N]\{1},

(ỹi,1x̃j , . . . , ỹi,M x̃j) = pgb+(f,xj , zj , wj).

2 Preliminaries

Notations. For a finite set R, we use |R| to denote its size and denote by r ← R
the fact that r is picked uniformly at random from a finite set R. We denote [L]
the set {1, ..., L}. For an ordered list or array D, we denote D[i] the i-th element
of D. When |D| < i or i < 1, we denote D[i] = ⊥; when we append d to D, we
set D[|D + 1|] = d. We denote ⋆ and · as wildcards. We use negl(λ) to denote a
negligible function of λ. We use ≈s to denote two distributions being statistically
indistinguishable, and use ≈c to denote two distributions being computationally
indistinguishable. We use bolded lowercase to denote row vectors (e.g. x) and
use bolded uppercase to denote matrices (e.g. A). We use span(A) to denote
the row span of A, and use basis(A) to denote a basis of the column space
of A. Let F be a field. We denote A ⊗ B a Kronecker Product for matrices
A ∈ Fk×n and B ∈ Fm×ℓ. For matrices A, B, C, D of proper sizes, we have
(A ⊗B)(C ⊗D) = AC ⊗BD. For simplicity, we use {ci}i to denote {ci}i∈[N]

in the overly long equation.

2.1 Prime-Order Groups

A generator G takes as input a security parameter λ and outputs a description
G := (p,G1, G2, GT , e), where p is a prime of Θ(λ) bits, G1, G2 and GT are cyclic
groups of order p, and e : G1 ×G2 → GT is a non-degenerate bilinear map. We
require that the group operations in G1, G2 and GT as well the bilinear map e
are computable in deterministic polynomial time with respect to λ. Let g1 ∈ G1,
g2 ∈ G2 and gT = e (g1, g2) ∈ GT be the respective generators. We employ the
implicit representation of group elements: for a matrix M over Zp, we define
[M]1 := gM1 , [M]2 := gM2 , [M]T := gMT , where exponentiation is carried out
component-wise. Also, given [A]1, [B]2, we let e ([A]1, [B]2) = [AB]T . We define
the matrix decision Diffie-Hellman (MDDH) assumption on G1 [9]:

Definition 1 (MDDHm
k,ℓ Assumption [9]). Let ℓ > k ≥ 1 and m ≥ 1. We say

that the MDDHm
k,ℓ assumption holds if for all PPT adversaries A, the following

advantage function is negligible in λ.

Adv
MDDHm

k,ℓ

A (λ) := |Pr [A (G, [M]1, [MS]1) = 1]− Pr [A (G, [M]1, [U]1) = 1]|

where M←R Zℓ×k
p ,S←R Zk×m

p and U←R Zℓ×m
p .

12 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

The MDDH assumption on G2 can be defined in an analogous way. Escala et al.
[9] showed that

k-Lin ⇒ MDDH1
k,k+1 ⇒ MDDHm

k,ℓ ∀ℓ > k,m ≥ 1

with a tight security reduction.

2.2 Dual System

This part is mainly adopted from [20].
Let ℓ1, ℓ2, ℓ3 ≥ 1 and ℓ := ℓ1 + ℓ2 + ℓ3. We use basis

B1 ← Zℓ×ℓ1
p ,B2 ← Zℓ×ℓ2

p ,B3 ← Zℓ×ℓ3
p

we denote B
∥
1,B

∥
2,B

∥
3as its dual basis, for all σ, δ ∈ {1, 2, 3}, it holds that:

B⊤
σB

∥
δ =

{
I when σ = δ (non-degeneracy)
0 when σ ̸= δ (orthogonality)

Facts. With basis B1,B2,B3 and its dual basis B
∥
1,B

∥
2,B

∥
3, for all t ∈ Z1×nℓ

p ,
we can uniquely decompose t as

t =
∑

σ∈{1,2,3}

t(σ) where t(σ) ∈ span

(
In ⊗

(
B∥

σ

)⊤
)

Note that for all σ ∈ {1, 2, 3} and n ∈ N, t(σ) can be seen as the projection of t

onto span

(
In ⊗

(
B

∥
σ

)⊤
)

, and for each S ⊆ {1, 2, 3}, we write tS =
∑

σ∈S s(σ).

Moreover, it holds that:

vBσ = t(σ)Bσ, and {t(σ), {t(δ)}δ ̸=σ} ≡ {t∗, {t(δ)}δ ̸=σ}

where t∗ ← span

(
In ⊗

(
B

∥
σ

)⊤
)

Definition 2 (SDGs

B1→B2
Assumption). s ∈ {1, 2}, Let ℓ1, ℓ2, ℓ3 ≥ 1 and ℓ :=

ℓ1 + ℓ2 + ℓ3. We say that the subspace decision assumption SDGs

B1 7→B2
holds in

Gs if there exist an efficient sampler outputting random [B1]s ∈ Gℓ×ℓ1
s , [B2]s ∈

Gℓ×ℓ2
s , [B3]s ∈ Gℓ×ℓ3

s along with its dual basis: B∥
1,B

∥
2,B

∥
3such that for all PPT

adversaries A, the following advantage function is negligible in λ.

Adv
SDGs

B1→B2

A,s,ℓ1,ℓ2,ℓ3
=

∣∣Pr [A (
G, D,

[
t⊤0

]
s

)
= 1

]
− Pr

[
A
(
G, D,

[
t⊤1

]
s

)
= 1

]∣∣
where G := (p,G1,G2,GT , e)← G

(
1λ

)
, D :=

(
[B1]s , [B2]s , [B3]s ,basis

(
B

∥
1,B

∥
2

)
,

basis
(
B

∥
3

))
and t0 ← span

(
B⊤

1

)
, t1 ← span

(
B⊤

2

)

MultiReg-FE: Reg-FE for Unbounded IP and AWS 13

2.3 Registered Functional Encryption

Let F be a function family such that, for all f ∈ F , f : X → Z. A Registered
Functional Encryption (Reg-FE) for F consists of six algorithms:

– Setup(1λ, 1L, F) → crs: It takes a security parameter 1λ, the maximum
number of users 1L, and a function family F as input, and outputs a common
reference string crs.

– Gen(crs, aux)→ (pk, sk): It takes crs and state aux as input, and outputs a
key pair (pk, sk).

– Reg(crs, aux,pk, f) → (mpk, aux′): It takes crs, aux, a public key pk and
a function f ∈ F as input, and outputs a master public key mpk and an
updated state aux′.

– Upd(crs, aux,pk)→ hsk: It takes crs, aux,pk as input, and outputs a helper
key hsk.

– Enc(mpk, x)→ ct : It takes mpk and x ∈ X as input, and outputs a cipher-
text ct.

– Dec(sk,hsk, ct) → z/⊥/getupd: It takes sk,hsk, ct as input, and outputs
z ∈ Z, or a decryption failure symbol ⊥, or a flag getupd prompting to
update hsk.

Correctness, Compactness and Update Efficiency. A Reg-FE is correct if
for all stateful adversary A making a polynomial number of oracle queries and
all L, the following advantage function is negligible in λ:

Pr

[
b = 1

∣∣∣∣ crs← Setup(1λ, 1L, F); b = 0;
AORegNT,ORegT,OEnc,ODec(crs)

]
where oracles are defined as follows with aux = ⊥, E ∈ ∅, R = ∅, and t = ⊥ at
the beginning.

– ORegNT(pk, f): It runs (mpk, aux′)← Reg(crs,pk, f), updates aux = aux′,
adds (mpk, aux) to R and returns (|R|,mpk, aux);

– ORegT(f∗): It runs (pk∗, sk∗)← Gen(crs, aux), (mpk, aux′)← Reg(crs, aux,pk∗, f∗),
updates aux = aux′, computes hsk∗ ← Upd(crs, aux,pk∗), appends (mpk, aux)
to R, and returns (t = |R|,mpk, aux,pk∗, sk∗,hsk∗);

– OEnc(i, x): It sets R[i] = (mpk, ⋆), runs ct← Enc(mpk, x), adds (x, ct) to E
and returns (|E|, ct);

– ODec(j): let E [j] = (xj , ctj), compute zj ← Dec(sk∗,hsk∗, ctj); if zj =
getupd, run hsk∗ ← Upd(crs, aux,pk∗) and recompute zj ← Dec(sk∗,hsk∗,ctj).
Set b = 1 when zj ̸= f∗(xj).

with the following restrictions:

– there are at most L − 1 queries to ORegNT and there is exactly one query
to ORegT; therefore we will consider f∗,pk∗, sk∗,hsk∗ to be global;

– for query (i, x) to OEnc, it holds that i ≤ t, R[i] ̸= ⊥;
– for query (j)to ODec, it holds that E[j] ̸= ⊥.

14 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

Adaptive IND-Security. For all stateful PPT adversary A, the adaptive IND-
security requires the advantage function Advadp-Reg-FE

A defined as follows is neg-
ligible in λ :

Advadp-Reg-FE
A (λ)

= Pr

b = b′

∣∣∣∣∣∣
crs← Setup

(
1λ, F

)
;

x0, x1 ← AORegCK,ORegHK,OCorHK(crs);
b← {0, 1}, ctb ← Enc (mpk, xb) , b

′ ← A (ctb)

− 1/2,

where the oracles are defined as follows with aux =⊥,mpk =⊥,H = ∅, C = ∅
and D being a dictionary with D[pk] = ∅ for all possible pk at the beginning of
the game:

– ORegCK(pk, f) :run
(
mpk′, aux

)
← Reg(crs, aux,pk, f), update mpk =

mpk′, aux = aux′,D[pk] = D[pk]∪{f}, append pk to C and return (mpk, aux);
– ORegHK(f) : run (pk, sk)←Gen(crs, aux) and

(
mpk′, aux

)
← Reg(crs, aux,pk, f),

update mpk = mpk′ and aux = aux′, D[pk] = D[pk] ∪ {f}, append (pk, sk)
to H and return (|H|,mpk, aux,pk),;

– OCorHK(i): let H[i] = (pk, sk), append pk to C and return sk;

with the following restrictions:

– for query i to OCorHK, it holds that H[i] ̸=⊥;
– for all f ∈

⋃
pk∈C D[pk], it holds that f (x0) = f (x1).

2.4 Slotted Registered Functional Encryption

For a modular approach to constructing Reg-FE schemes, the concept of slotted
Reg-FE was introduced, which can be transformed to standard Reg-FE through
a well-established “powers-of-two” technique, as demonstrated in [11,12,10,20].
A slotted Reg-FE consists of six algorithms, where Ver and Agg are deterministic
algorithms:

– Setup(1λ, 1L,F) → crs: It takes as input security parameter 1λ, maximum
number of users 1L, and a function family F , and outputs a common refer-
ence string crs.

– Gen(crs, i) → (pki, ski): It takes as input crs and slot number i ∈ [L], and
outputs key pair (pki, ski).

– Ver(crs, i,pki)→ 0/1: It takes as input crs, i and pki, and outputs a bit.
– Agg(crs, (pki, fi)i∈[L])→ (mpk, {hski}i∈[L]): It takes as input crs, and public-

key-function pairs (pki, fi)i∈[L], and outputs master public key mpk and
helper keys {hski}i∈[L].

– Enc(mpk, x)→ ct: It takes as input mpk and x ∈ X . It outputs a ciphertext
ct.

– Dec(ski,hski, ct)→ z ∈ Z/⊥: It takes as input ski,hski and ct, and outputs
z ∈ Z or a special symbol ⊥ to indicate a decryption failure.

MultiReg-FE: Reg-FE for Unbounded IP and AWS 15

Completeness. For all λ, L ∈ N, all F , and all i ∈ [L], we have

Pr

[
Ver (crs, i,pki) = 1

∣∣∣∣ crs← Setup
(
1λ, 1L, F

)
;

(pki, ski)← Gen(crs, i)

]
= 1− negl(λ).

Correctness. For all λ, L ∈ N, all F , all i∗ ∈ [L], all l ∈ Lables, all crs ←
Setup

(
1λ, 1L,F

)
, all (pki∗ , ski∗) ← Gen (crs, i∗), all {pki}i∈[L]\{i∗} such that

Ver (crs, i,pki) = 1, all x ∈ X and f1, . . . , fL ∈ F , we have

Pr

[
Dec (ski∗ ,hski∗ , ct) = fi∗(x)

∣∣∣∣ (mpk, {hski}i)← Agg (crs, {pki, fi}i)
ct← Enc(mpk, x)

]
= 1−negl(λ).

Compactness. For all mpk and hski, we have

|mpk| = poly(λ, P, logL) and |hski| = poly(λ, P, logL).

where P is a parameter depending on the functionality F .

Adaptive-IND-Security. For all stateful PPT adversary A, the adaptive IND-
security requires the advantage function Advadp-sRFE

A defined as follows is negli-
gible in λ:

Advadp-sRFE
A (λ)

= Pr

b = b′

∣∣∣∣∣∣∣∣∣∣
L← A

(
1λ

)
; crs← Setup

(
1λ, 1L, F

)
{pk∗i , f∗

i }i , x0, x1 ← AOGen,OCor(crs)
(mpk, {hski})← Agg(crs, {pk∗i , f∗

i }i)
b← {0, 1}, ctb ← Enc(mpk, xb)
b′ ← A (ctb)

− 1

2

where the oracles work as follows with the initial setting C = ∅ and Di = ∅ for
all i ∈ [L]:

- OGen(i): run (pk, sk)← Gen(crs, i), set Di[pk] = sk and return pk.
- OCor(i,pk): return Di[pk] and update C = C ∪ {(i,pk)}.

and for all i ∈ [L], we require that

- Ver(crs, i,pk∗i) = 1 for all i s.t. Di[pk
∗
i] = ⊥;

- f∗
i (x

∗
0) = f∗

i (x
∗
1) for all i s.t. (i,pk∗i) ∈ C ∨ Di[pk

∗
i] = ⊥ .

Note that pki serves as a general entry in Di while pk∗i is the specific challenge
public for slot i; there can be more than one assignments for pki since the
adversary can query OGen(i) for many times.

2.5 Tools

Quasi-Adaptive Non-Interactive Zero-Knowledge Argument. A Quasi-
Adaptive Non-Interactive Zero-Knowledge (QA-NIZK) argument [14] for linear
space over bilinear group G from pairing consists of four efficient algorithms:

16 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

– LGen(1λ, 1n, 1m, 1ℓ, [A]1): It takes the security parameter 1λ as input, lan-
guage parameter 1n, 1m, 1ℓ, and a matrix [A]1 ← Gn×m

1 defining a linear
space, outputs a common reference string crs and trapdoor td.

– LPrv(crs, [F]1,U): It takes crs as input, a matrix [F]1 ∈ Gn×ℓ
1 along with

U ∈ Zm×ℓ
p such that F = AU, and outputs a proof π.

– LVer(crs, [F]1, π): It takes crs, [F]1 and π as input, and outputs a bit showing
the validity of π.

– LSim(crs, td, [F]1): It takes crs, td, [F]1 as input, and outputs a simulation
proof π̃.

Perfect Completeness. For all λ,A, and all U,F such that F = AU :

Pr

[
LVer (crs, [F]1, π) = 1

∣∣∣∣ (crs, td)← LGen
(
1λ, 1n, 1m, 1ℓ, [A]1

)
π ← LPrv (crs, [F]1,U)

]
= 1.

Perfect Zero-knowledge. For all λ,A, (crs, td) ← LGen
(
1λ, 1n, 1m, 1ℓ, [A]1

)
,

and all U,F such that F = AU :

LPrv (crs, [F]1,U) ≡ LSim (crs, td, [F]1) .

Unbounded Simulation Soundness. For all adversary A, the advantage

Pr

 ([F∗]1 , π) /∈ Q∧
F∗⊤ /∈ span(A⊤)∧
LVer (crs, [F∗]1 , π

∗) = 1

∣∣∣∣∣∣∣
A← Zn×m

p

(crs, td)← LGen
(
1λ, 1n, 1m, 1ℓ, [A]1

)
([F∗]1 , π

∗)← ALSim (crs,td,·) (1λ, crs,A)

is negligible in λ, where Q records all queries to LSim(crs, td, ·) along with re-
sponse. Note that the definition is stronger in the sense that the adversary is
given A instead of [A]1.

Arithmetic Branching Programs (ABPs). An arithmetic branching pro-
gram f : Zn1

p → Zp is defined by a prime p, a directed acyclic graph (V,E), two
special vertices v0, v1 ∈ V and a labeling function Φ : E → Faffine that assigns
to each edge in E an affine function g : Zn0

p → Zp, and f(x) is the sum over
all v0 − v1 paths of the product of all the values along the path. We refer to
|V |+ |E| as the size of f . The definition extends to functions f : Zn1

p → Zn2
p in a

coordinate-wise manner. And we denote FABP
n1,n2

the class of ABP f : Zn1
p → Zn2

p .

Partial Garbling Scheme. A partial garbling scheme [13,18,2] for f(x)⊤z
where f ∈ FABP,n1,n2

consists four efficient algorithms (lgen,pgb, rec,pgb∗),
where lgen and rec are deterministic, with the following properties:

– (syntax) on input f ∈ FABP,n1,n′ , lgen(f) outputs L0 ∈ Z(m+n2−1)×mn1
p ,L1 ∈

Z(m+n2−1)×m
p , and

pgb(f,x, z; t) =
(
t⊤ (L1 (x⊗ Im) + L0) , z

⊤ − t̄⊤
)

pgb∗(f,x, µ; t) =
(
t⊤ (L1 (x⊗ Im) + L0) + µ · e⊤1 , t̄⊤

)
where t ← Zm+n2−1

p and t̄ consists of the last n2 entries in t and m are
linear in the size of f .

MultiReg-FE: Reg-FE for Unbounded IP and AWS 17

– (reconstruction) rec(f,x) outputs gf,x ∈ Zn2+m
p such that for all f,x, z, t,

pgb(f,x, z; t)g⊤
f,x = f(x)⊤z.

– (privacy) for all f,x, z,

pgb(f,x, z; t) ≈s pgb
∗ (f,x, f(x)⊤z; t)

where the randomness is over t← Zm+n2−1
p .

Extension. We will also rely on an extra property of the above construction to
handle shifts by δ ∈ Zp and define a new algorithm pgb+.

pgb+(f,x, z, δ; t) =
(
t⊤ (L1 (x⊗ Im) + L0) + δ · e⊤1 , z⊤ − t̄⊤

)
together with (f,x), we can recover f(x)⊤z+δ, while learning nothing else about
z, δ. That is, for all f,x, z and δ ∈ Zp :

– (reconstruction)

pgb+(f,x, z, δ; t) =
(
pgb(f,x, z; t) +

(
δ · e⊤1 ∥0

))
g⊤
f,x = f(x)⊤z+ δ

– (privacy)

pgb+(f,x, z, δ; t) = pgb(f,x, z; t) +
(
δ · e⊤1 ∥0

)
≈s pgb

∗ (f,x, f(x)⊤z+ δ; t
)

where the randomness is over t← Zm+n2−1
p .

3 Slotted MultiReg-FE for Inner-Product

In this section, we introduce MultiReg-FE and give the construction. First of
all, we show the definition of inner-product functionality.

Definition 3 (Inner-Product Functionality). This definition is adapted from
that in [1]. The function family F IP

n,m consists of functions fy1,...,ym
: (Rn)m → R

where R is either Z or Zp for some integer p, yi ∈ Rn for i ∈ [m] and

fy1,...,ym(x1, . . . ,xm) =

m∑
i=1

⟨xi,yi⟩ ,

and the vectors satisfy the following bounds: ∥xi∥∞ < X, ∥yi∥∞ < Y , for i ∈ [m].
X and Y are some positive integer. If omitted, then X = Y = p is used (i.e. no
constraint).

Remark 1. For single-input inner-product functionality, m = 1. For multi-input
inner-product functionality, m > 1.
Remark 2. This definition applies to bounded inner product functionality, while
for unbounded one, we will elaborate it in Definition 4.

18 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

The above is a common definition of the inner-product functionality. We give
a more specific definition of Inner-Product in MultiReg-FE that is close to the
multi-input one.

Inner-Product Functionality in MultiReg-FE. For ease of understand-
ing, we can conceptually view inner-product functionality in MultiReg-FE as a
new functionality Fmulti-IP

n which is a variant of inner-product, thus MultiReg-
FE is a case of Reg-FE. This function family Fmulti-IP

n consists of functions
f{yi}i∈[m]

: (Rn)∗ × L → R where m ∈ N and m is polynomial , yi ∈ Rn for
i ∈ [m], R is either Z or Zp for some integer p, and L is a family of labeling
functions ϕ(·) : N→ N. We defines for any N ∈ N and labeling function ϕ(·) ∈ L
s.t. ϕ(N) ⊆ [m], for any input x1, . . . ,xN , the function

f{yi}i∈[m]
(x1, . . . ,xN , ϕ(·)) =

N∑
j=1

⟨xj ,yϕ(j)⟩ .

The vectors satisfy the same bounds as in inner-product functionality.

Note that the summation is over the subscript j. And we don’t limit the
number of vectors {xi}∗ and {yi}∗.

Slotted MultiReg-FE for Inner-Product. Having defined the inner-product
functionality, we now proceed to introduce the definition of MultiReg-FE for IP.
It is important to note that we treat MultiReg-FE for IP as a specific case of
a Reg-FE scheme, but one that corresponds to the new functionality family
Fmulti-IP

n . Therefore, we highlight the differences between MultiReg-FE for IP
and the general Reg-FE for IP as follows:

– Agg
(
crs,

(
pki, {yi,r}r∈[mi]

)
i∈[L]

)
→ (mpk, {hski}i∈[L]): It takes as input

crs, and public-key-function pairs (pki, {yi,r}r∈[mi])i∈[L], and outputs master
public key mpk and helper keys {hski}i∈[L].

– Enc(mpk, {xj}j∈[N], ϕ)→ ct: It takes as input mpk, {xj}j∈[N] and a labeling
function ϕ. It outputs a ciphertext ct.

In the next session, we will show the construction of MultiReg-FE for IP.

3.1 Construction

Let Π0 = (SimSetup,ExtSetup,Prove,Verify,Sim,Extract) be a Dual-Mode NIZK
for relation R described as above.

Setup
(
1λ, 1L,Fmulti-IP

n

)
:

It runs G := (p,G1,G2,GT , e)← G
(
1λ

)
and samples

A← Zk×(2k+1)
p ,B1 ← Z(2k+1)×k

p

MultiReg-FE: Reg-FE for Unbounded IP and AWS 19

For all i ∈ [L], it samples

Wi ← Z(2k+1)×(n+1)(2k+1)
p ,Ri ← Z(2k+2)×(2k+1)

p , ri ← Z1×k
p ,

runs
(crs, td)← SimSetup

(
1λ, [A]1

)
and outputs4

CRS =

 [A]1,
{[

B1r
⊤
i

]
2

}
i∈[L]

{crs, [Ri,AWi]1}i∈[L]{[
Wu

(
In+1 ⊗B1r

⊤
i

)]
2

}
i∈[L],u∈[L]\{i}

Gen(CRS, i):

It chooses Ui ← Z(2k+1)×(2k+1)
p . It defines Ti = (AUi) = AiUi ∈ Zk×(2k+1)

p ,
runs

πi ← Prove (crs, [Ti]1 ,Ui) ,

and outputs

pki = (Ti, {hi,u}u∈[L]\i, πi) = ([AUi]1, {[UiB1r
⊤
u]2}u∈[L]\{i}, πi)

ski = Ui

Ver(crs, i,pki) :

It parses pki =
(
[Ti]1 ,

{
[hi,u]2

}
u∈[L]\{i} , πi

)
, and checks

Verify (crs, [Ti]1 , πi)
?
= 1

For each u ∈ [L]\{i}, it checks

e
(
[A]1, [hi,u]2

) ?
= e

(
[Ti]1 ,

[
B1r

⊤
u

]
2

)
.

If all these checks pass, it outputs 1; otherwise, it outputs 0.

Agg
(
CRS,

(
pki, {yi,r}r∈[mi]

)
i∈[L]

)
:

For all i ∈ [L], it takes CRS,pki =
(
[Ti]1 ,

{
[hi,u]2

}
u∈[L]\{i} , πi

)
and yi,1, . . . ,

yi,mi ∈ Zn
p as input, where mi = poly(λ). It defines M = max

i∈[L]
mi and for r ∈ [M]

sets

y′
i,r =

{
(yi,r, 1) if r ≤ mi

0n+1 if r > mi

.

4 Note that td1, . . . , tdL are not used in the actual scheme and {Ri}i are only actually
used in the verification algorithm Ver. However, both will be used in the security
proof.

20 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

It outputs mpk =
[
P0, {P1,r}r∈[M] ,P2

]
1
, and hski =

[
k⊤
i,0,

{
k⊤
i,1,r

}
r∈[mi]

,Ki,2

]
2
for

all i ∈ [L], where

P0 = A
P1,r =

∑
u∈[L]

(
Tu +AWu

(
y′⊤
u,r ⊗ I2k+1

))
P2 =

∑
u∈[L] AWu

k⊤
i,0 = B1r

⊤
i

k⊤
i,1,r =

∑
u∈[L]\{i}

(
hu,i +Wu

(
In+1 ⊗B1r

⊤
i

)
y′⊤
u,r

)
Ki,2 =

∑
u∈[L]\{i} Wu

(
In+1 ⊗B1r

⊤
i

)
Enc(mpk, {xj}j∈[N], ϕ):

It chooses v ← Z1×(2k+1)
p , s1, . . . , sN ← Z1×k

p , ρ1, . . . , ρN ← Zp s.t.
∑

j∈[N]

ρj = 0,

sets
x′
j = (xj , ρj)

and computes

c0,j = sjP0 = sjA

c1,j = sjP1,ϕ(j) =
∑

u∈[L]

(
sjTu + sjAWu(y

′⊤
u,ϕ(j) ⊗ I2k+1)

)
c2,j = x′

j ⊗ v + sjP2 = x′
j ⊗ v + sj

∑
u∈[L] AWu

c3 = v

It outputs ct =
([
{c0,j , c1,j , c2,j}j∈[N], c3

]
1
, ϕ

)
.

Dec(ski,hski, ct):
It parses

ski = Ui, hski =
[
k⊤
i,0, {k⊤

i,1,r}r∈[mi],Ki,2

]
2
, ct =

[
{c0,j , c1,j , c2,j}j∈[N], c3

]
1
,

and for all j ∈ [N], computes

[z1,j]T = e
(
[c2,j]1 ,

[
In ⊗ k⊤

i,0

]
2

)
, [z2,j]T = e

(
[c0,j]1 , [Ki,2]2

)
,

[z3,j]T = e
(
[c1,j]1 ,

[
k⊤
i,0

]
2

)
, [z4,j]T = e

(
[c0,j]1 ,

[
k⊤
i,1,ϕ(j)

]
2

)
,

[z5,j]T = e
(
[c0,jUi]1 ,

[
k⊤
i,0

]
2

)
,

[z6]T = e
(
[c3]1 ,

[
k⊤
i,0

]
2

)
,[

z′j
]
T
=

[
(z1,j − z2,j)y

′⊤
i,ϕ(j) − (z3,j − z4,j − z5,j)

]
T

[z′]T =

[∑
j∈[N]

z′j

]
T

.

It recovers z from [z′]T over [z6]T via brute-force DLog and outputs z =
∑

j∈[N] zj .

MultiReg-FE: Reg-FE for Unbounded IP and AWS 21

Completeness. For all λ, L, n ∈ N, all i ∈ [L], all CRS← Setup
(
1λ, 1n, 1L,Fmulti-IP

)
and (pki, ski)← Gen(CRS, i), we have

pki =
(
[Ti]1 ,

{
[hi,u]2

}
u∈[L]\{i} , πi

)
=

(
[AUi]1 ,

{[
UiB1r

⊤
u

]
2

}
u∈[L]\{i} , πi

)

for some Ui ← Z(2k+1)×(2k+1)
p and πi ← Prove (crs, [Ti]1 ,Ui) where (crs, td)←

SimSetup
(
1λ, [A]1

)
with A ← Zk×(2k+1)

p . We have Verify (crs, [Ti]1 , πi)=1 by
the perfect completeness of Π0; For each u ∈ [L]\{i}, we have e

(
[A]1,

[
UiB1r

⊤
u

]
2

)
=

e
(
[AUi]1 ,

[
B1r

⊤
u

]
2

)
from the fact that A

(
UiB1r

⊤
u

)
= (AUi)

(
B1r

⊤
u

)
. Thus,

Ver (crs, i,pki) = 1.

Correctness. In decryption, we have

[z1,j]T = e
(
[c2,j]1 ,

[
In ⊗ k⊤

i,0

]
2

)
= [(x′

jIn)⊗ (vB1r
⊤
i) +

∑
u∈[L]

sjAWu(In ⊗B1r
⊤
i)]T

= [vB1r
⊤
i x

′
j +

∑
u∈[L]

sjAWu(In ⊗B1r
⊤
i)]T

[z2,j]T = e
(
[c0,j]1 , [Ki,2]2

)
= [sjA

∑
u∈[L]\{i}

(
Wu(In ⊗B1r

⊤
i)

)
]T

= [
∑

u∈[L]\{i}

sjAWu(In ⊗B1r
⊤
i)]T

[z3,j]T = e
(
[c1,j]1 ,

[
k⊤
i,0

]
2

)
= [

∑
u∈[L]

(
sjTu + sjAWu(y

′
u,ϕ(j) ⊗ I2k+1)

)
B1r

⊤
i]T

= [
∑
u∈[L]

(
sjTuB1r

⊤
i + sjAWu(y

′⊤
u,ϕ(j) ⊗ I2k+1)B1r

⊤
i

)
]T

= [
∑
u∈[L]

(
sjTuB1r

⊤
i + sjAWu(In ⊗B1r

⊤
i)y

′⊤
u,ϕ(j)

)
]T

22 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

[z4,j]T = e
(
[c0,j]1 ,

[
k⊤
i,1,j

]
2

)
= [sjA

∑
u∈[L]\{i}

(hu,i +Wu(In ⊗B1r
⊤
i)y

′⊤
u,ϕ(j))]T

= [
∑

u∈[L]\{i}

(sjAhu,i + sjAWu(In ⊗B1r
⊤
i)y

′⊤
u,ϕ(j))]T

[z5,j]T = e
(
[c0,jUi]1 ,

[
k⊤
i,0

]
2

)
= [sjAUiB1r

⊤
i]T

[z6]T = e ([c3]1 ,
[
k⊤
i,0]2

)
= [vB1r

⊤
i]T

Due to Ahu,i = TuB1r
⊤
i for u ̸= i, and AUi = Ti, we have

[z4,j]T = [
∑

u∈[L]\{i} sjTuB1r
⊤
i +

∑
u∈[L]\{i} sjAWu(In ⊗B1r

⊤
i)y

′⊤
u,ϕ(j)]T

[z5,j]T = [(sjTiB1r
⊤
i)]T

[z3,j − z4,j − z5,j]T = sjAWi(In ⊗B1r
⊤
i)y

′⊤
i,ϕ(j)

Then we have

[z1,j − z2,j]T = vB1r
⊤
i x

′
j + sjAWi(In ⊗B1r

⊤
i)[

z′j
]
T
= [(z1,j − z2,j)y

′⊤
i,ϕ(j) − (z3,j − z4,j − z5,j)]T

= vB1r
⊤
i x

′
jy

′⊤
i,ϕ(j)

[z′]T = [
∑
j∈[N]

z′j]T

= [vB1r
⊤
i

∑
j∈[N]

⟨x′
j ,y

′
i,ϕ(j)⟩]T

= [vB1r
⊤
i

∑
j∈[N]

⟨(xj , ρj), (yi,ϕ(j), 1)⟩]

= [vB1r
⊤
i

∑
j∈[N]

⟨xj ,yi,ϕ(j)⟩]

Finally, solve the discrete logarithm in basis [z6]T to extract
∑

j∈[N]

⟨xj ,yi,ϕ(j)⟩

via brute-force DLog.

Compactness and Efficiency. Our slotted MultiReg-FE has the following
properties:

|crs| = L2 · (n+ 1) · poly(λ); |mpk| = (n+ 1) ·M · poly(λ);
|hski| = (n+ 1) ·mi · poly(λ); |ct| = (n+ 1) ·N · poly(λ).

MultiReg-FE: Reg-FE for Unbounded IP and AWS 23

3.2 Security

Theorem 1. If Dual-Mode NIZK Π0 = (SimSetup,ExtSetup,Prove,Verify,Sim,Extract)
has perfect completeness, perfect extractability in the binding mode, and mode-
indistinguishability, and the MDDH and SD assumptions hold, our slotted MultiReg-
FE scheme achieves adaptive IND-security.

Proof.
We prove the Theorem 1 via nested dual-system method. The series of game

sequence is as follows.
Game Sequence. Suppose that crs is the common reference string, ({x0,j}j∈[N],

{x1,j}j∈[N]) is the challenge pair, {pk∗i , {yi,r}r∈[mi]}i∈[L] are challenge public
keys along with challenge functions to be registered. For all i ∈ [L], define Di =
{pki : Di [pki] ̸=⊥} as responses from OGen(i) and Ci = {pki : (i,pki) ∈ C} as
public keys in Di queried to OCor(i, ·). For all i ∈ [L], we require that

- Ver(crs, i,pk∗i) = 1 for all i s.t. Di[pk
∗
i] = ⊥;

-
∑

j∈[N]

⟨x0,j ,yi,ϕ(j)⟩ =
∑

j∈[N]

⟨x1,j ,yi,ϕ(j)⟩ for all i s.t. ((i,pk∗i) ∈ C ∨ Di[pk
∗
i] =

⊥) ∧ ϕ([N]) ⊆ [mi∗].

Note that there can be more than one assignment for pki since the adversary
can query OGen(i) many times.

– G0: This is the real game. Specifically,
• CRS is in the form:

CRS =

 [A]1,
{[
B1r

⊤
i

]
2

}
i∈[L]

{crs, [AWi]1}i∈[L]{[
Wu

(
In+1 ⊗B1r

⊤
i

)]
2

}
i∈[L],u∈[L]\{i}

where (crs, td)← SimSetup

(
1λ, [A]1

)
,Ai ← Zk×(2k+1)

p .
• For each i ∈ [L], each pair pki ∈ Di is in the form:

pki = (Ti, {hi,j}j∈[L]\{i}, πi)

= ([AUi,]1, {[UiB1r
⊤
j]2}j∈[L]\{i}, πi)

ski = Ui

where πi ← Prove (crs, [Ti]1 ,Ui).
• For all i ∈ [L],pk∗i is in the form:

pk∗i =

(
[T∗

i]1 ,
{[

h∗
i,u

]
2

}
u∈[L]\{i}

, π∗
i

)
such that Ver (CRS, i,pk∗i) = 1, which means Verify (crs, [Ti]1 , πi)=1
and Ah∗

i,u = T∗
iB1r

⊤
u for each u ∈ [L]\{i}.

24 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

• ct for (x0,x1) is in the form:

ct =
[
{c0,j}j∈[N], {c1,j}j∈[N], {c2,j}j∈[N], c3

]
1

=

{sjA}j∈[N],

{
∑

u∈[L]

(
sjTu + sjAWu(y

′⊤
u,ϕ(j) ⊗ I2k+1)

)
}j∈[N],

{
∑

u∈[L]

(
sjTu + sjAWu(y

′⊤
u,ϕ(j) ⊗ I2k+1)

)
}j∈[N],

{x′
b,j ⊗ v +

∑
u∈[L] sjAWu}j∈[N],

v

1

where b← {0, 1} is the secret bit, x′
b,j = (xb,j , ρb,j) and

∑
j∈[N] ρb,j = 0.

– G1: Same as G0, except that for all i ∈ [L] and all pki ∈ Di, we replace crs
with c̃rs, where

(c̃rs, t̃d)← ExtSetup
(
1λ, [A]1

)
We have G1 ≡ G0 from the mode indistinguishability of Π0.

– G3: Same as G2, except that we replace all c2,j as follows:

c1,j =
∑
u∈[L]

(
sjAŨ∗

u + sjAWu(y
′⊤
u,ϕ(j) ⊗ I2k+1)

)

where Ũ∗
i ← Extract(c̃rs, [Ti]1, πi) for all i ∈ [L].

We have G3 ≡ G2. This follows from perfect extractability of Π0 along
with the fact that Verify

(
c̃rs, [T∗

i]1 , πi

)
=1 for all i ∈ [L]. Observe that the

condition sjAŨ∗
u∗ ̸= sjT

∗
u∗ occurs with zero probability, which follows from

the property of perfect extractability. And when pk∗i∗ ∈ Di∗ , we always have
G3 ≡ G2.

– G4: Same as G3 except that we replace all sjA with aj ← Z1×(2k+1)
p , that

is the challenge ciphertext

ct = [{c0,j}j∈[N], {c1,j}j∈[N], {c2,j}j∈[N], c3]1

=

{aj}j∈[N],{∑

u∈[L]

(
ajR̃

−1
u (I2k+1∥0⊤)Q∗

u + ajWu(y
′⊤
u,ϕ(j) ⊗ I2k+1)

)}
j∈[N]

,

{x′
b,j ⊗ v +

∑
u∈[L] ajWu}j∈[N],

v

1

We have G4 ≈c G3 from the fact that MDDH assumption tells {[A]1, [sjA]1}j∈[N] ≈c

{[A]1, [aj]1}j∈[N] when A← Zk×(2k+1)
p , sj ← Z1×k

p , and aj ← Z1×(2k+1)
p .

– G5 : Same as G5, except that we sample B2 ← Z2k+1
p ,B3 ← Z(2k+1)×k

p ,
compute the dual basis B

∥
1,B

∥
2,B

∥
3, and change all c2,j as follows:

c2,j = x′
b,j ⊗ v(1,3) + x′

0,j ⊗ v(2) +
∑
u∈[L]

ajWu

MultiReg-FE: Reg-FE for Unbounded IP and AWS 25

We have G6 ≡ G5 from the fact that the basis B2 and dual basis B∥
2 are not

revealed. So (cWi)
(2) is hidden, which implies that

∑
i∈[L] (cWi)

(2) hides
xb′ ⊗ v(2). Specifically,

xb′,j ⊗ v(2) +
∑
u∈[L]

(ajWu)
(2) ≡

∑
u∈[L]

(ajWu)
(2)

where b′ = b in G5 or b′ = 0 in G6.

– G6,ℓ (ℓ ∈ [0, L]): Same as G5, except that for all i ∈ [ℓ] we replace all B1r
⊤
i

in crs with
d⊤
j where dj ← span

(
B⊤

2

)
.

Note that
• G6,0 = G5;
• G6,ℓ ≈c G6,ℓ−1 for all ℓ ∈ [L] from Lemma 1.

– G7: Same as G6,L except that we generate the c2 as follows:

c2 = x0 ⊗ v(1,3) + x0 ⊗ v(2) +
∑
u∈[L]

cWu

We have G7 ≡ G6,L from the basis B1,B3 and dual basis B
∥
1,B

∥
3 are not

revealed in G6,L. The proof is analogous to that of G5 ≡ G4.

Observe that the challenge ciphertext ct is independent of the random bit b
in the final game G8 and the adversary’s advantage is exactly 0. □

Lemma 1 (G6,ℓ ≈c G6,ℓ−1). If MDDH and SD assumption holds, we have
G6,ℓ ≈c G6,ℓ−1.

Proof.
We prove the Lemma 1 via a series of game sequence:

– G6,ℓ−1,0 : Same as G7,ℓ−1. Recall crs, pki ∈ Di and c2 and box the changes
involved in subsequent games as follows:

crs =

[A]1, {[d⊤
i]}i∈[ℓ−1], [B1r

⊤
ℓ] ,

{[
B1r

⊤
i

]
2

}
i∈[L]\[ℓ]{

crsi,
[
R̂i,AWi

]
1

}
i∈[L]{[

Wu

(
In+1 ⊗ d⊤

i

)]
2

}
i∈[ℓ−1],u∈[L]\{i}{[

Wu

(
In+1 ⊗B1r

⊤
ℓ

)]
2

}
u∈[L]\{i}{[

Wu

(
In+1 ⊗B1r

⊤
i

)]
2

}
i∈[L]\[ℓ],u∈[L]\{i}

26 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

(for i = ℓ) pkℓ =
(
[Tℓ,Qℓ]1, {[hℓ,u]2}u∈[L]\{ℓ}, π̃ℓ

)
=
(
[AUℓ,RℓUℓ]1, {[Uℓd

⊤
u]2}u∈[ℓ], {[UℓB1r

⊤
u]2}u∈[L]\[ℓ], π̃ℓ

)
(for i ̸= ℓ) pki =

(
[Ti,Qi]1, {[hi,u]2}u∈[L]\{i}, π̃i

)
=

 [AUi,RiUi]1,

{[Uid
⊤
u]2}u∈[ℓ−1]\{i}, [UiB1r

⊤
ℓ]2 , {[UiB1r

⊤
u]2}u∈[L]\({i}∪[ℓ]),

π̃i

c2 =xb ⊗ v(1) + x0 ⊗ v(2) + xb ⊗ v(3) +

∑
u∈[L]

ajWu

where di ← span
(
B⊤

2

)
for all i ∈ [ℓ− 1].

– G6,ℓ−1,1 : Same as G6,ℓ−1,0, except that we replace all B1r
⊤
ℓ in crs with

d⊤
ℓ , where dℓ ← span

(
B⊤

3

)
.

In particular, we change the boxed terms in crs and pki as follows:

in crs

{
[B1r

⊤
ℓ]2 → [d⊤

ℓ]2
{[WuB1r

⊤
ℓ]2}u∈[L]\ℓ → {[Wud

⊤
ℓ]2}u∈[L]\ℓ

in pki (i ̸= ℓ) UiB1r
⊤
ℓ → Uid

⊤
ℓ

We have G6,ℓ−1,1 ≈c G6,ℓ−1,0 from the SDG2

B1 7→B3
assumption which ensures

[t0]2 ≈c [t1]2 given [B1]2 , [B2]2 , [B3]2 ,basis
(
B

∥
1,B

∥
3

)
,basis

(
B

∥
2

)
where t0 ← span

(
B⊤

1

)
corresponding to G6,ℓ−1,0, and dℓ ← span

(
B⊤

3

)
corresponding to G6,ℓ−1,1.

– G6,ℓ−1,2 : Same as G6,ℓ−1,1, except that we generate the c2 as follows:

c2 = xb ⊗ v(1) + x0 ⊗ v(2) + x0 ⊗ v(3) +
∑
i∈[L]

ajWi

We have G6,ℓ−1,2 ≈c G6,ℓ−1,1 from Lemma 2 .
– G6,ℓ−1,3 : Same as G6,ℓ−1,2, except that we replace all d⊤

ℓ in crs with

d⊤
ℓ where dℓ ← span

(
B⊤

2

)
In particular, we change the dashed boxed terms in crs and pki as follows:[

d⊤
ℓ

]
2
,
{[
Wi

(
In ⊗ d⊤

ℓ

)]
2
,
[
Uid

⊤
ℓ

]
2

}
i∈[L]\{ℓ}

We have G6,ℓ−1,3 ≈c G6,ℓ−1,2 from the SDG2

B3 7→B2
assumption which ensures

that

[t0]2 ≈c [t1]2 , given [B1]2 , [B2]2 , [B3]2 ,basis
(
B

∥
2,B

∥
3

)
,basis

(
B

∥
1

)
where t0 ← span

(
B⊤

3

)
corresponding to G6,ℓ−1,2, and dℓ ← span

(
B⊤

2

)
corresponding to G6,ℓ−1,3.

MultiReg-FE: Reg-FE for Unbounded IP and AWS 27

– G6,ℓ−1,4: Same as G6,ℓ−1,3, except that we generate the c2 as follows:

c2 = xb ⊗ v(1) + x0 ⊗ v(2) + xb ⊗ v(3) +
∑
i∈[L]

ajWi

We have G6,ℓ−1,4 ≈c G6,ℓ−1,3. The proof is identical to that for G6,ℓ−1,2 ≈
G6,ℓ−1,1.

Observe that G6,ℓ−1,4 = G6,ℓ and this prove G6,ℓ−1 ≈c G6,ℓ. □

Lemma 2 (G6,ℓ−1,1 ≈c G6,ℓ−1,2). If MDDH assumption holds, we have G6,ℓ−1,1 ≈c

G6,ℓ−1,2.

Proof.
We recall the relevant terms crs,pki ∈ Di, c

∗
1,j , c

∗
2,j in G6,ℓ−1,1 in the following

form and box the changes. For all j ∈ [ℓ− 1], we rewrite dj ← span
(
B⊤

2

)
with

rjB
⊤
2 , for some rj ← Zp.

crs =

[A]1, {[riB2]}i∈[ℓ−1], [d
⊤
ℓ],

{[
B1r

⊤
i

]
2

}
i∈[L]\[ℓ]{

crsi,
[
R̂i,AWi

]
1

}
i∈[L]

{[Wu (In+1 ⊗ riB2)]2}i∈[ℓ−1],u∈[L]\{i}{[
Wu

(
In+1 ⊗ d⊤

ℓ

)]
2

}
u∈[L]\{i}{[

Wu

(
In+1 ⊗B1r

⊤
i

)]
2

}
i∈[L]\[ℓ],u∈[L]\{i}

(i = ℓ) pkℓ =

(
[Tℓ,Qℓ]1, {[hℓ,u]2}u∈[L]\{ℓ}, π̃ℓ

)
=

 [AUℓ, R̂ℓUℓ]1,
{[UℓruB2]2}u∈[ℓ−1], {[UℓB1r

⊤
u]2}u∈[L]\[ℓ],

π̃ℓ

(i ̸= ℓ) pki =

(
[Ti,Qi]1, {[hi,u]2}u∈[L]\{i}, π̃i

)
=

 [AUi, R̂iUi]1,
{[UiruB2]2}u∈[ℓ−1]\{i}, [Uid

⊤
ℓ]2, {[UiB1r

⊤
u]2}u∈[L]\({i}∪[ℓ])

π̃i

(∀j) c∗1,j =ajR̃

−1
ℓ (I2k+1∥0⊤)Q∗

ℓ + ajWℓ(y
′⊤
ℓ,ϕ(j) ⊗ I2k+1)

+
∑

u∈[L]\{ℓ}

(
ajR̃

−1
i (I2k+1∥0⊤)Q∗

i + ajWu(y
′⊤
u,ϕ(j) ⊗ I2k+1)

)
(∀j) c2,j =x′

b,j ⊗ v(1) + x′
0,j ⊗ v(2) + x′

b,j ⊗ v(3) + ajWℓ +
∑

u∈[L]\{ℓ}

ajWu

where dℓ ← span
(
B⊤

3

)
. With the orthogonality of dual basis, for v(3) ∈ span((B

∥
3)

⊤),
we have:

v(3)B1 = 0, v(3)B2 = 0

We will proof G6,ℓ−1,2 ≈c G6,ℓ−1,1 by considering two cases: (1) pk∗ℓ is honest;
(2) pk∗ℓ is corrupted or maliciously generated by the adversary.

28 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

Honest Case In this case, U∗
ℓ is hidden from the adversary. Thus, we rewrite

the pk∗ℓ and c∗1,j by as follows.

pk∗ℓ = [AU∗
ℓ ,RℓU

∗
ℓ]1, {[U∗

ℓruB2]2}u∈[ℓ−1], {[U∗
ℓB1r

⊤
u]2}u∈[L]\[ℓ]

c∗1,j = ajU
∗
ℓ + ajWℓ(y

′⊤
ℓ,ϕ(j) ⊗ I2k+1)

+
∑

u∈[L]\{ℓ}

(
ajR̃

−1
i (I2k+1∥0⊤)Q∗

i + ajWu(y
′⊤
u,ϕ(j) ⊗ I2k+1)

)
We present only the relevant terms of the two games as follows. (We abbreviate
{⋆j}j∈[N] to {⋆j}j in the overly long equation.)

crs,pkℓ =
ct∗ =
pk∗ℓ =

A, [Rℓ]1,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

{[aj]1, [ajU∗
ℓ + ajWℓ(y

′⊤
ℓ,ϕ(j) ⊗ I2k+1)]1, [x

′
b′,j ⊗ v(3) + ajWℓ]1}j

AU∗
ℓ , [RℓU

∗
ℓ]1,U

∗
ℓB1,U

∗
ℓB3

(Lemma 3)
≈c

A, [Rℓ]1,B1,B2,d
⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

[aj]1,

[ajU
∗
ℓ + cj,ℓv

(3) + ajWℓ(y
′⊤
ℓ,ϕ(j) ⊗ I2k+1)]1,

[x′
b′,j ⊗ v(3) + ajWℓ]1

j

AU∗
ℓ , [RℓU

∗
ℓ + u⊤

ℓ v
(3)]1,U

∗
ℓB1,U

∗
ℓB3

(Lemma 4)
≈c

A, [Rℓ]1,B1,B2,d
⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

[aj]1,

[ajU
∗
ℓ + cj,ℓv

(3) + ajWℓ(y
′⊤
ℓ,ϕ(j) ⊗ I2k+1) + (wj,ℓy

′⊤
ℓ,ϕ(j))v

(3)]1,

[x′
b′,j ⊗ v(3) + ajWℓ + wj,ℓ ⊗ v(3)]1

j

AU∗
ℓ , [RℓU

∗
ℓ + u⊤

ℓ v
(3)]1,U

∗
ℓB1,U

∗
ℓB3

≈s

A, [Rℓ]1,B1,B2,d
⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

[aj]1,

[ajU
∗
ℓ + cj,ℓv

(3) + ajWℓ(y
′⊤
ℓ,ϕ(j) ⊗ I2k+1) + (wj,ℓy

′⊤
ℓ,ϕ(j))v

(3)]1,

[������
x′
b′,j ⊗ v(3) + ajWℓ +wj,ℓ ⊗ v(3)]1

j

AU∗
ℓ , [RℓU

∗
ℓ + u⊤

ℓ v
(3)]1,U

∗
ℓB1,U

∗
ℓB3

where uℓ ← Z1×(2k+2)
p and cj,ℓ ← Zp, wj,ℓ ← Z1×n

p . The ≈s follows from the
fact that cj,ℓv(3) hides (wj,ℓy

′⊤
ℓ,ϕ(j))v

(3), then wj,ℓ⊗v(3) further hide x′
b′,j⊗v(3).

Note that when b′ = b, these terms are identical to those in G6,ℓ−1,1, and when
b′ = 0, they are identical to those in G6,ℓ−1,2.

Corrupted & Malicious Case In this case, we have pk∗ℓ ∈ Cℓ ∪ D̄ℓ and
require

∑
j∈[N] ⟨x0,j ,yℓ,ϕ(j)⟩ =

∑
j∈[N] ⟨x1,j ,yℓ,ϕ(j)⟩. We also show the simplified

transition from G6,ℓ−1,1 to G6,ℓ−1,2 as follows.

MultiReg-FE: Reg-FE for Unbounded IP and AWS 29

crs =
ct∗ =

{
A, [Rℓ]1,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

{[aj]1, [ajU∗
ℓ + ajWℓ(y

′⊤
ℓ,ϕ(j) ⊗ I2k+1)]1, [x

′
b,j ⊗ v(3) + ajWℓ]1}j

(Lemma 4)
≈c

A, [Rℓ]1,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

[aj]1,

[ajU
∗
ℓ + (ajWℓ − x′

b,j ⊗ v(3))(y′⊤
ℓ,ϕ(j) ⊗ I2k+1)]1,

[x′
b,j ⊗ v(3) + ajWℓ − x′

b,j ⊗ v(3)]1

j

=

A, [Rℓ]1,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

[aj]1,

[ajU
∗
ℓ + ajW(y′⊤

ℓ,ϕ(j) ⊗ I2k+1)− (x′
b,jy

′⊤
ℓ,ϕ(j))⊗ v(3)]1,

[ajWℓ]1

j

≈s

A, [Rℓ]1,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

[aj]1,

[ajU
∗
ℓ + ajW(y′⊤

ℓ,ϕ(j) ⊗ I2k+1)− (x′
0,jy

′⊤
ℓ,ϕ(j))v

(3)]1,

[ajWℓ]1

j

(Lemma 4)
≈c

A, [Rℓ]1,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

[aj]1,

[ajU
∗
ℓ + (ajWℓ + x′

0,j ⊗ v(3))(y′⊤
ℓ,ϕ(j) ⊗ I2k+1)− (x′

0,jy
′⊤
ℓ,ϕ(j))v

(3)]1,

[ajWℓ + x′
0,j ⊗ v(3)]1

j

=

{
A, [Rℓ]1,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

{[aj]1, [ajU∗
ℓ + ajWℓ(y

′⊤
ℓ,ϕ(j) ⊗ I2k+1)]1, [x

′
0,j ⊗ v(3) + ajWℓ]1}j

The ≈s follows from the following fact. If ϕ([N]) ⊆ [mℓ], we require that∑
j∈[N] ⟨x0,j ,yℓ,ϕ(j)⟩ =

∑
j∈[N] ⟨x1,j ,yℓ,ϕ(j)⟩. And we have x′

b,jy
′⊤
ℓ,ϕ(j) = xb,jy

⊤
ℓ,ϕ(j)+

ρb,j . From the randomness of ρb,j and
∑

j∈[N] ρb,j = 0, we have

{x′
0,jy

′⊤
ℓ,ϕ(j)}j∈[N]

= {x0,jy
⊤
ℓ,ϕ(j) + ρ0,j}j∈[N]

≈s {x1,jy
⊤
ℓ,ϕ(j) + ρ1,j}j∈[N]

= {x′
0,jy

′⊤
ℓ,ϕ(j)}j∈[N]

where the≈c uses the fact that {z0,1+ρ0,1, . . . , z0,N+ρ0,N} ≈s {z1,1+ρ1,1, . . . , z1,N+
ρ1,N} for

∑
j∈[N] z0,j =

∑
j∈[N] z1,j . Otherwise, ϕ([N])\[mℓ] ̸= ∅ holds, i.e., there

is at least one j0 ∈ [N] s.t. ϕ(j0) /∈ [mℓ]. Then,

{x′
0,jy

′⊤
ℓ,ϕ(j)}j∈[N] ≈s {ρ0,j}j∈[N]

{x′
1,jy

′⊤
ℓ,ϕ(j)}j∈[N] ≈s {ρ1,j}j∈[N]

30 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

We have
{x′

0,jy
′⊤
ℓ,ϕ(j)}j∈[N] ≈s {x′

1,jy
′⊤
ℓ,ϕ(j)}j∈[N].

□

Lemma 3. If MDDH assumption holds, we have[
Rℓ,RU∗

ℓ , {aj}j∈[N], {ajU∗
ℓ}j∈[N]

]
1

≈c

[
Rℓ,RU∗

ℓ + u⊤
ℓ v

(3), {aj}j∈[N], {ajU∗
ℓ + cj,ℓv

(3)}j∈[N]

]
1

given A,AU∗
ℓ ,v, where uℓ ← Z1×(2k+1)

p , cj,ℓ ← Zp.

Proof. Given A,AU∗
ℓ ,v, we have

[Rℓ,RU∗
ℓ , {aj}j , {ajU∗

ℓ}j]1
MDDH
≈c

[
R̃Dℓ, R̃DU

∗
ℓ , {ãjD}j , {ãjDU∗

ℓ}j
]
1

≈s

[
R̃Dℓ, R̃D(U∗

ℓ +D⊥ũ⊤
ℓ v

(3)), {ãjD}j ,
{
ãjD(U∗

ℓ +D⊥ũ⊤
ℓ v

(3))
}
j

]
1

MDDH
≈c

[
R̃Dℓ, R̃DU∗

ℓ + R̃DD⊥ũ⊤
ℓ v

(3), {ãjD}j ,
{
ãjDU∗

ℓ + ãjDD⊥ũ⊤
ℓ v

(3)
}
j

]
1

=
[
R̃Dℓ, R̃DU∗

ℓ + R̃ũ⊤
ℓ v

(3), {ãjD}j , {ãjDU∗
ℓ + ãjũ

⊤
ℓ v

(3)}j
]
1

MDDH
≈c

[
Rℓ,RℓU

∗
ℓ + R̃ũ⊤

ℓ v
(3), {aj}j , {ajU∗

ℓ + ãjũ
⊤
ℓ v

(3)}j
]
1

MDDH
≈c

[
Rℓ,RℓU

∗
ℓ + u⊤

ℓ v
(3), {aj}j , {ajU∗

ℓ + u⊤
ℓ v

(3)}j
]
1

where R̃ ← Z(2k+2)×k
p ,D ← Zk×(2k+1)

p , ũℓ ← Z1×(2k+1)
p ,uℓ ← Z1×(2k+1)

p , ãj ←
Z1×k
p , cj,ℓ ← Zp for all j ∈ [N]. The ≈s uses change of variables

U∗
ℓ 7→ U∗

ℓ +D⊥ũ⊤
ℓ v

(3),

where we require that DD⊥ = Ik and AD⊥ = 0. □

Lemma 4. If MDDH assumption holds, we have[
{aj}j∈[N], {ajWℓ}j∈[N]

]
1
≈c

[
{aj}j∈[N], {ajWℓ +wj,ℓ ⊗ v(3)}j∈[N]

]
1

given A,B1,B2,v,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2), where wj,ℓ ← Z1×n
p .

Proof. Given A,B1,B2,v,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2), we have

[{aj}j , {ajWℓ}j]1
MDDH
≈c [{ãjD}j , {ãjDWℓ}j]1
≈s

[
{ãjD}j , {ãjD(Wℓ +D⊥w̃⊤

ℓ ⊗ v(3)))}j
]
1

MDDH
≈c

[
{ãjD}j , {ãjD (Wℓ +D⊥(W̃ℓ ⊗ v(3)))}j

]
1

=
[
{ãjD}j , {ãjDWℓ + (ãjW̃ℓ)⊗ v(3)}j

]
1

MDDH
≈c

[
{[aj]1,ajWℓ + (ãjW̃ℓ)⊗ v(3)}j

]
1

MDDH
≈c

[
{ajWℓ +wj,ℓ ⊗ v(3)}j

]
1

MultiReg-FE: Reg-FE for Unbounded IP and AWS 31

where D ← Zk×(2k+1)
p ,W̃ℓ ← Zk×n

p , ãj ← Z1×k
p for all j ∈ [N]. The ≈s uses

change of variables
Wℓ 7→Wℓ +D⊥(W̃ℓ ⊗ v(3)),

where we require that DD⊥ = Ik and AD⊥ = 0. □

4 Slotted Reg-FE for Unbounded Inner-Product

In this section, we present our Reg-FE for unbounded IP. Firstly, we give the
definition of unbounded IP.

Definition 4 (Unbounded Inner-Product Functionality.). This function
family Fu-IP consists of functions fy : R∗ → R, where y = (y1, . . . , ym) ∈ Rm,
m ∈ N, and R is either Z or Zp for some integer p. For any input vector
x = (x1, . . . , xn) ∈ Rn with n ≤ m, the function is defined as:

fy(x1, . . . , xn) =

n∑
i=1

xiyi.

The vectors satisfy the same bounds as in Definition 3.

Different from previous work, this scheme allows each user to register their public
key and a vector (as inner-product function) of arbitrary polynomial length, i.e.
the length of vector will not be bounded in the setup phase.. The length of vectors
from different user can be different. Additionally, the encryptor can encrypt a
vector of arbitrary length. And the decryption is invalid if the length of plaintext
vector is larger than that of function vector.

With the slotted MultiReg-FE scheme in 3, we can simply achieve the con-
struction of slotted Reg-FE for unbounded IP. Specifically, we divide a (function
or plaintext) vector of length n bit by bit into n vectors of length 1. In this case
the slotted Reg-FE scheme for unbounded IP is actually a slotted MultiReg-FE
for vectors of length 1. We present the detailed construction as follows.

4.1 Construction

This construction is based on our slotted MultiReg-FE scheme. Let mRFE =
{mSetup,mGen,mReg,mUpd,mEnc,mDec} be our slotted MultiReg-FE scheme.
Our Reg FE scheme for unbounded IP works as follows:
Setup

(
1λ, 1L

)
:

It takes crs← mSetup(1λ, 1L,Fmulti-IP
2), and outputs crs.

Gen(crs, i):
It runs (pk, sk)← mGen(crs, i), and outputs (pk, sk).

Ver(crs, i,pki)

32 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

It runs and outputs 0/1← mVer(crs, i,pki).

Agg(crs, (pki,yi)i∈[L]):

It parses yi = (yi,1, . . . , yi,mi
) ∈ Z1×mi

p for i ∈ [L], where mi = poly(λ), and sets
M = maxi∈[L] mi, yi,r = (yi,r) for r ∈ [mi].
It runs (mpk, {hski}i∈[L])← mAgg(crs, (pki, {yi,r}r∈[mi])i∈[L]). It outputs mpk
and {hski}i∈[L].

Enc(mpk,x):
It parses x = (x1, . . . , xN), and set x = (xj) for j ∈ [N]. It runs ct ←
mEnc(mpk, {xj}j∈[N],1Z), where 1Z is an identity function serving as the la-
beling function. It outputs ct.

Dec(ski,hski, ct):
It runs and outputs result← mDec(ski,hski, ct).

Compactness and Efficiency. Our slotted Reg-FE for unbounded IP has the
following properties:

|crs| = L2 · poly(λ);
|mpk| = M · poly(λ) = poly(λ);
|hski| = mi · poly(λ) = poly(λ);
|ct| = N · poly(λ) = poly(λ).

Completeness, Correctness and Security. Note that our Reg-FE scheme for
unbounded IP is a special case of our MultiReg-FE at n = 1. The completeness,
correctness and security of our Reg-FE scheme for unbounded IP derive from
those of the underlying MultiReg-FE.

5 Slotted Reg-FE for Attribute-Weighted Sums (with
Inner-Product)

In this section, we give the construction of slotted Reg-FE for AWSw/IP. Firstly,
we begin with the AWS/wIP functionality.

Definition 5 (Attribute-Weighted Sums (with Inner-Product) Func-
tionality). This defines function family FAWSw/IP

n1,n2,n3 = FABP
n1,n2

× Zn3
p with the

message space X =
⋃

N∈N(Zn1
p × Zn2

p)N × Zn3
p . For f ∈ FAWSw/IP

n1,n2,n3 , f = (f̂ ,q)
represents the function f : X → Zp:

f({xj , zj}j∈[N],p) = ⟨f̂(xj), zj⟩+ ⟨p,q⟩ .

where {xj}j∈[N] are public, and {zj}j∈[N] are private.

To achieve the slotted Reg-FE for AWSw/IP, we convert the AWSw/IP func-
tion in public-key settings into an IP function in MultiReg-FE by the technique
introduced in Technical Overview 1.2.

MultiReg-FE: Reg-FE for Unbounded IP and AWS 33

5.1 Construction

Let mRFE ={mSetup, mGen, mReg, mUpd, mEnc, mDec} be our MultiReg-
FE scheme. Our Reg-FE scheme for AWSw/IP is as follows:

Setup(1λ, 1L,FABP
n1,n2

,F IP
n3
):

It runs crs← mSetup(1λ, 1n, 1L,F IP), where n = (n1+1)(m+n2−1)+n2+n3+1,
m is the parameter in the partially garbling scheme. It outputs crs.

Gen(crs, i):
It runs and outputs (pki, ski)← mGen.

Ver(crs, i,pki)

It runs and outputs 0/1← mVer(crs, i,pki).

Agg(crs, (pki, {fi,qi ∈ Z1×n3

P })i∈[N]):

It computes ℓi,1, . . . , ℓi,m ∈ Z1×m′

p from f via the partial garbling scheme men-
tioned in Preliminaries 2.5, where m′ = (n1 + 1)(m+ n2 − 1), and defines

ỹi,r =

(ℓ⊤i,r, 0

n2 , 1, qi) if r = 1

(ℓ⊤i,r, 0
n2 , 0, 0n3) if 1 < r ≤ m

(0m
′
, ek−s, 0, 0n3) if m < r ≤M

,

where ek−s = (0, . . . , 1, . . . , 0) is one-hot vector with the (k − s)-th element
being 1, M = m + n2, m′ = (n1 + 1)(m + n2 − 1) and |ỹi,r| = n. It runs
(mpk, {hsk}i∈[N])← mAgg

(
crs,

(
pki, {ỹi,r}r∈[M]

)
i∈[L]

)
, outputs (mpk, {hski}i∈[L]).

Enc(mpk, {(xj , zj)j∈N ,p}):
For all j ∈ [N], it chooses t1,j , . . . , tm+n2−1,j , wj ← Zp s.t.

∑
j∈[N] wj = 0, and

sets x′
j = (xj , 1), tj = (t1,j , . . . , tm+n2−1,j) and t̄j = (tm,j , . . . , tm+n2−1,j) that

is the last n2 elements of tj . It sets

x̃j =

{
(x′

j ⊗ tj , zj − t̄j , wj , p) if j = 1,
(x′

j ⊗ tj , zj − t̄j , wj , 0
n3) if j ̸= 1,

It runs mctj,r ← mEnc(mpk, x̃j , ϕr(·) ≡ r;v) for all r ∈ [M] and all j ∈ [L] with
the same randomness v in the algorithm mEnc of the scheme mRFE, where
ϕr(·) ≡ r is a constant function that always outputs r. Each mctj,r can be
parsed as

(
[mct0,j,r,mct1,j,r,mct2,j,r,mct3,j,r]1 , ϕr

)
according to the algorithm

mEnc in section 3. Note that for all j ∈ [N] and all r ∈ [M], mct3,j,r ≡ s, thus
we rewrite it as ct3. It defines

ct =
[
{mct0,j,r,mct1,j,r,mct2,j,r}j∈[N],r∈[M], ct3

]
1
.

It outputs
(
ct, {xj}j∈[N]

)
.

34 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

Dec(ski,hski, ct, {xj}j∈[N]):

It parses ct =
[
{mct0,j,r,mct1,j,r,mct2,j,r}j∈[N],r∈[M], ct3

]
1
. For all j ∈ [N] and

all r ∈ [M], it runs [dj,r]T ← mDec(ski,hski, {mct0,j,r,mct1,j,r,mct2,j,r,mct3, ϕr ≡
r}) without recovering dj,r via brute-force DLog in the final step.
It defines [gj]T = [d1,j , . . . , dM,j]T and computes bf,xj

← rec(f,xj) for all
j ∈ [N]. It computes ∑

j∈[N]

bf,xj
g⊤
j

T

.

And it recovers
∑

j∈[N] ⟨bf,xj
,gj⟩ over the same GT group elements via brute-

force DLog as the final step in the algorithm mDec, and outputs
∑

j∈[N] ⟨bf,xj ,gj⟩.

Completeness. The completeness of the scheme is from that of MultiReg-FE.

Correctness. The correctness of the above slotted Reg-FE for AWS derives
from those of our slotted MultiReg-FE and partially garbling Scheme. With
[gj]T ← mDec and bf,xj

← rec(f,xj) for all j, we have

[bf,xjg
⊤
j]T =

{[
(fi(xj)z

⊤
j + pq⊤

i + wj)vB1r
⊤
i

]
T

if j = 1[
(fi(xj)z

⊤
j + wj)vB1r

⊤
i

]
T

if j ̸= 1 ∑
j∈[N]

bf,xjg
⊤
j

T

=

 ∑
j∈[N]

fi(xj)zj
⊤
+ pq⊤

i +
∑
j∈[N]

wj

vB1r
⊤
i

T

=

 ∑
j∈[N]

fi(xj)zj
⊤
+ pq⊤

i

vB1r
⊤
i

T

Then it recover
∑

j∈[N] fi(xj)zj
⊤
+ pq⊤

i over [vB1r
⊤
i]T via brute-force DLog.

Compactness and Efficiency. Our slotted Reg-FE for AWSw/IP has the fol-
lowing properties:

|crs| = L2 · (n+ 1) · poly(λ); |mpk| = (n+ 1) ·M · poly(λ);
|hski| = (n+ 1) ·M · poly(λ); |ct| = (n+ 1) ·N · poly(λ).

where n is the parameter of AWSw/IP functionality.

5.2 Security

Theorem 2. If the slotted MultiReg-FE scheme mRFE ={mSetup, mGen, mReg,
mUpd, mEnc, mDec} achieves adaptive IND-security, the above slotted Reg-FE
for AWSw/IP achieves adaptive IND-security.

MultiReg-FE: Reg-FE for Unbounded IP and AWS 35

Proof.

We instantiate the above construction by applying it to our slotted MultiReg-
FE scheme and still prove the Theorem 2 via nested dual-system method, but in
simplified ways. Notice that encryption and decryption algorithms Enc,Dec of
our slotted Reg-FE for AWSw/IP are essentially the same as those of our slot-
ted MultiReg-FE scheme. In both schemes, it actually computes [c0,j , c1,j , c2,j]1
from xj for the target vectors {yi,ϕ(j)}i∈[L] with the same randomness [s]1. Ex-
cept that in AWS scheme, we encrypt one x̃j for different targets {ỹi,r}r∈[M]

respectively, and we can decrypt every single ⟨x̃j , ỹi,r⟩ for all j ∈ [N], r ∈ [M].
Thus, the proof of the AWS scheme is similar to that of slotted MultiReg-FE.
We provide here a simplified proof in which only the differences from the proof
of Theorem 1 are presented. Note that the essential difference between the secu-
rity definitions of these two scheme is that for corrupted & malicious keys and
functions, we require

∑
j∈[N]

fi(xj)z
⊤
0,j + p0q

⊤
i =

∑
j∈[N]

fi(xj)z
⊤
1,j + p1q

⊤
i ,

instead of

x̃0,jỹ
⊤
i,r = x̃1,jỹ

⊤
i,r for all j ∈ [N], r ∈ [M].

The above difference is only involved in the Corrupted & Malicious case of
the transitions G6,ℓ−1,1 ≈c G6,ℓ−1,2 and G6,ℓ−1,3 ≈c G6,ℓ−1,4. And G6,ℓ−1,3 ≈c

G6,ℓ−1,4 is identical to G6,ℓ−1,1 ≈c G6,ℓ−1,2, thus we just present the Corrupted
& Malicious case G6,ℓ−1,1 ≈c G6,ℓ−1,2 as follows.

Corrupted & Malicious Case In this case, we have pk∗ℓ ∈ Cℓ ∪ D̄ℓ and re-
quire

∑
j∈[N] fi(xj)z

⊤
0,j + p0q

⊤
i =

∑
j∈[N] fi(xj)z

⊤
1,j + p1q

⊤
i . We also show the

simplified transition from G6,ℓ−1,1 to G6,ℓ−1,2 as follows.

36 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

crs =
ct =

{
A,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

{[aj,r]1, [aj,rU∗
ℓ + aj,rWℓ(ỹ′⊤ℓ,r ⊗ I2k+1)]1, [x̃′b,j ⊗ v(3) + aj,rWℓ]1}j,r

(Lemma 4)
≈c

A,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

[aj,r]1,

[aj,rU
∗
ℓ + (aj,rWℓ − x̃′b,j ⊗ v(3))(ỹ′⊤ℓ,r ⊗ I2k+1)]1,

[x̃′b,j ⊗ v(3) + aj,rWℓ − x̃′b,j ⊗ v(3)]1

j,r

=

A,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

[aj,r]1,

[aj,rU
∗
ℓ + aj,rW(ỹ′⊤ℓ,r ⊗ I2k+1)− (x̃′b,jỹ′⊤ℓ,r)⊗ v(3)]1,

[aj,rWℓ]1

j,r

(Lemma 5)
≈s

A,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

[aj,r]1,

[aj,rU
∗
ℓ + aj,rW(ỹ′⊤ℓ,r ⊗ I2k+1)− (x̃′0,jỹ′⊤ℓ,r)v(3)]1,

[aj,rWℓ]1

j,r

(Lemma 4)
≈c

A,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

[aj,r]1,

[aj,rU
∗
ℓ + (aj,rWℓ + x̃′0,j ⊗ v(3))(ỹ′⊤ℓ,r ⊗ I2k+1)− (x̃′0,jỹ′⊤ℓ,r)v(3)]1,

[aj,rWℓ + x̃′0,j ⊗ v(3)]1

j,r

=

{
A,B1,B2,d

⊤
ℓ ,AWℓ,Wℓ(In+1 ⊗B1),Wℓ(In+1 ⊗B2)

{[aj,r]1, [aj,rU∗
ℓ + aj,rWℓ(ỹ′⊤ℓ,r ⊗ I2k+1)]1, [x̃′0,j ⊗ v(3) + aj,rWℓ]1}j,r

□

Lemma 5. From the privacy of the expanded partial garbling scheme PGS =
(lgen,pgb+,pgb∗, rec), we have

{(x̃′0,jỹ′⊤ℓ,1, . . . , x̃′0,jỹ′
⊤
ℓ,M)}j∈[N] ≈s {(x̃′1,jỹ′⊤ℓ,1, . . . , x̃′1,jỹ′

⊤
ℓ,M)}j∈[N]

Proof.
We will rely on pgb∗ and a series of transition vectors {x̂′0,j , x̂′1,j}j∈[N] to

prove the lemma.

x̂′0,j =

{
(x′j ⊗ t0,j , −t̄0,j , w0,j + fℓ(xj)z

⊤
0,j + p0q

⊤ , 0n3) if j = 1,

(x′j ⊗ t0,j , −t̄0,j , w0,j + fℓ(xj)z
⊤
0,j , 0n3) if j ̸= 1,

x̂′1,j =

{
(x′j ⊗ t1,j , −t̄1,j , w1,j + fℓ(xj)z

⊤
1,j + p1q

⊤ , 0n3) if j = 1,

(x′j ⊗ t1,j , −t̄1,j , w1,j + fℓ(xj)z
⊤
1,j , 0n3) if j ̸= 1,

MultiReg-FE: Reg-FE for Unbounded IP and AWS 37

From the privacy of the expanded partial garbling scheme, we have the argument:
for b ∈ {0, 1}

for j = 1, (x̃′
b,jỹ′

⊤
ℓ,j , . . . , x̃

′
b,jỹ′

⊤
ℓ,M)

= pgb+(fℓ,xj , zb,j , wb,j + pbq
⊤; tb,j)

≈s pgb
∗(fℓ,xj , wb,j + fℓ(xj)z

⊤
b,j + pbq

⊤; tb,j)

= (x̂′b,jỹ′⊤ℓ,j , . . . , x̂′b,jỹ′
⊤
ℓ,M);

for j ̸= 1, (x̃′b,jỹ′⊤ℓ,1, . . . , x̃′b,jỹ′
⊤
ℓ,M)

= pgb+(fℓ,xj , zb,j , wb,j ; tb,j)
≈s pgb

∗(fℓ,xj , wb,j + fℓ(xj)z
⊤
b,j ; tb,j)

= (x̂′b,jỹ′⊤ℓ,1, . . . , x̂′b,jỹ′
⊤
ℓ,M).

We have

{(x̃′0,jỹ′⊤ℓ,1, . . . , x̃′0,jỹ′
⊤
ℓ,M)}j∈[N]

(privacy of PGS)≈s {(x̂′0,jỹ′⊤ℓ,1, . . . , x̂′0,jỹ′
⊤
ℓ,M)}j∈[N]

(randomness {w0,j , w1,j}j∈[N])≈s {(x̂′1,jỹ′⊤ℓ,1, . . . , x̂′1,jỹ′
⊤
ℓ,M)}j∈[N]

(privacy of PGS)≈s {(x̃′1,jỹ′⊤ℓ,1, . . . , x̃′1,jỹ′
⊤
ℓ,M)}j∈[N]

□

References

1. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.S., Nielsen, J.B. (eds.) EUROCRYPT 2017,
Part I. LNCS, vol. 10210, pp. 601–626. Springer, Heidelberg (Apr / May 2017).
https://doi.org/10.1007/978-3-319-56620-7_21

2. Abdalla, M., Gong, J., Wee, H.: Functional encryption for attribute-weighted sums
from k-Lin. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS,
vol. 12170, pp. 685–716. Springer, Heidelberg (Aug 2020). https://doi.org/10.
1007/978-3-030-56784-2_23

3. Agrawal, S., Tomida, J., Yadav, A.: Attribute-based multi-input FE (and
more) for attribute-weighted sums. In: Handschuh, H., Lysyanskaya, A. (eds.)
CRYPTO 2023, Part IV. LNCS, vol. 14084, pp. 464–497. Springer, Heidelberg
(Aug 2023). https://doi.org/10.1007/978-3-031-38551-3_15

4. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(Mar 2011). https://doi.org/10.1007/978-3-642-19571-6_16

5. Chen, J., Gong, J., Kowalczyk, L., Wee, H.: Unbounded ABE via bilinear en-
tropy expansion, revisited. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018,
Part I. LNCS, vol. 10820, pp. 503–534. Springer, Heidelberg (Apr / May 2018).
https://doi.org/10.1007/978-3-319-78381-9_19

6. Chu, Q., Lin, L., Qian, C., Chen, J.: Registered functional encryption for quadratic
functions from mddh. Cryptology ePrint Archive, Paper 2024/177 (2024), https:
//eprint.iacr.org/2024/177

https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-030-56784-2_23
https://doi.org/10.1007/978-3-031-38551-3_15
https://doi.org/10.1007/978-3-031-38551-3_15
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-319-78381-9_19
https://doi.org/10.1007/978-3-319-78381-9_19
https://eprint.iacr.org/2024/177
https://eprint.iacr.org/2024/177

38 Qiuyan Du , Qiaohan Chu , Jie Chen �, Man Ho Au �, and Debiao He

7. Datta, P., Pal, T., Yamada, S.: Registered fe beyond predicates: (attribute-based)
linear functions and more. Cryptology ePrint Archive, Paper 2023/457 (2023),
https://eprint.iacr.org/2023/457

8. Dowerah, U., Dutta, S., Mitrokotsa, A., Mukherjee, S., Pal, T.: Unbounded pred-
icate inner product functional encryption from pairings. Journal of Cryptology
36(3), 29 (Jul 2023). https://doi.org/10.1007/s00145-023-09458-2

9. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework
for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013,
Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (Aug 2013). https:
//doi.org/10.1007/978-3-642-40084-1_8

10. Francati, D., Friolo, D., Maitra, M., Malavolta, G., Rahimi, A., Venturi, D.: Reg-
istered (inner-product) functional encryption. In: Guo, J., Steinfeld, R. (eds.) ASI-
ACRYPT 2023, Part V. LNCS, vol. 14442, pp. 98–133. Springer, Heidelberg (Dec
2023). https://doi.org/10.1007/978-981-99-8733-7_4

11. Garg, S., Hajiabadi, M., Mahmoody, M., Rahimi, A.: Registration-based encryp-
tion: Removing private-key generator from IBE. In: Beimel, A., Dziembowski, S.
(eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 689–718. Springer, Heidelberg (Nov
2018). https://doi.org/10.1007/978-3-030-03807-6_25

12. Hohenberger, S., Lu, G., Waters, B., Wu, D.J.: Registered attribute-based encryp-
tion. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part III. LNCS, vol.
14006, pp. 511–542. Springer, Heidelberg (Apr 2023). https://doi.org/10.1007/
978-3-031-30620-4_17

13. Ishai, Y., Wee, H.: Partial garbling schemes and their applications. In: Esparza, J.,
Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part I. LNCS,
vol. 8572, pp. 650–662. Springer, Heidelberg (Jul 2014). https://doi.org/10.
1007/978-3-662-43948-7_54

14. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Os-
wald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057,
pp. 101–128. Springer, Heidelberg (Apr 2015). https://doi.org/10.1007/
978-3-662-46803-6_4

15. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010), https://eprint.iacr.org/2010/556

16. Tomida, J.: Unbounded quadratic functional encryption and more from pair-
ings. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part III. LNCS, vol.
14006, pp. 543–572. Springer, Heidelberg (Apr 2023). https://doi.org/10.1007/
978-3-031-30620-4_18

17. Tomida, J., Takashima, K.: Unbounded inner product functional encryption from
bilinear maps. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II.
LNCS, vol. 11273, pp. 609–639. Springer, Heidelberg (Dec 2018). https://doi.
org/10.1007/978-3-030-03329-3_21

18. Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited.
In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677,
pp. 206–233. Springer, Heidelberg (Nov 2017). https://doi.org/10.1007/
978-3-319-70500-2_8

19. Wee, H.: Functional encryption for quadratic functions from k-lin, revisited.
In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550,
pp. 210–228. Springer, Heidelberg (Nov 2020). https://doi.org/10.1007/
978-3-030-64375-1_8

20. Zhu, Z., Li, J., Zhang, K., Gong, J., Qian, H.: Registered functional encryptions
from pairings. IACR Cryptol. ePrint Arch. p. 327 (2024), https://eprint.iacr.
org/2024/327

https://eprint.iacr.org/2023/457
https://doi.org/10.1007/s00145-023-09458-2
https://doi.org/10.1007/s00145-023-09458-2
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/978-981-99-8733-7_4
https://doi.org/10.1007/978-981-99-8733-7_4
https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-030-03807-6_25
https://doi.org/10.1007/978-3-031-30620-4_17
https://doi.org/10.1007/978-3-031-30620-4_17
https://doi.org/10.1007/978-3-031-30620-4_17
https://doi.org/10.1007/978-3-031-30620-4_17
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-43948-7_54
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-662-46803-6_4
https://eprint.iacr.org/2010/556
https://doi.org/10.1007/978-3-031-30620-4_18
https://doi.org/10.1007/978-3-031-30620-4_18
https://doi.org/10.1007/978-3-031-30620-4_18
https://doi.org/10.1007/978-3-031-30620-4_18
https://doi.org/10.1007/978-3-030-03329-3_21
https://doi.org/10.1007/978-3-030-03329-3_21
https://doi.org/10.1007/978-3-030-03329-3_21
https://doi.org/10.1007/978-3-030-03329-3_21
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1007/978-3-319-70500-2_8
https://doi.org/10.1007/978-3-030-64375-1_8
https://doi.org/10.1007/978-3-030-64375-1_8
https://doi.org/10.1007/978-3-030-64375-1_8
https://doi.org/10.1007/978-3-030-64375-1_8
https://eprint.iacr.org/2024/327
https://eprint.iacr.org/2024/327

MultiReg-FE: Reg-FE for Unbounded IP and AWS 39

21. Zhu, Z., Zhang, K., Gong, J., Qian, H.: Registered ABE via predicate encod-
ings. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part V. LNCS, vol.
14442, pp. 66–97. Springer, Heidelberg (Dec 2023). https://doi.org/10.1007/
978-981-99-8733-7_3

https://doi.org/10.1007/978-981-99-8733-7_3
https://doi.org/10.1007/978-981-99-8733-7_3
https://doi.org/10.1007/978-981-99-8733-7_3
https://doi.org/10.1007/978-981-99-8733-7_3

	MultiReg-FE: Registered FE for Unbounded Inner-Product and Attribute-Weighted Sums

