
UTRA: Universal Token Reusability Attack and
Token Unforgeable Delegatable Order-Revealing

Encryption

Jaehwan Park1⋆ , Hyeonbum Lee2⋆ , Junbeom Hur3 , Jae Hong Seo2⋆⋆ ,
and Doowon Kim1⋆⋆

1 University of Tennessee, Knoxville
{jpark127,doowon}@utk.edu
2 Hanyang University, Seoul

{leehb3706,jaehongseo}@hanyang.ac.kr
3 Korea University, Seoul

jbhur@isslab.korea.ac.kr

Abstract. As dataset sizes grow, users increasingly rely on encrypted
data and secure range queries on cloud servers, raising privacy con-
cerns about potential data leakage. Order-revealing encryption (ORE)
enables efficient operations on numerical datasets, and Delegatable ORE
(DORE) extends this functionality to multi-client environments, but
it faces risks of token forgery. Secure DORE (SEDORE) and Efficient
DORE (EDORE) address some vulnerabilities, with EDORE improving
speed and storage efficiency. However, we find that both schemes remain
susceptible to token forgery.
To address this issue, we propose the concept of Verifiable Delegatable
Order-Revealing Encryption (VDORE) with a formal definition of token
unforgeability. We then construct a new VDORE scheme TUDORE (To-
ken Unforgebale DORE), which ensures token unforgeability. Further-
more, our TUDORE achieves about 1.5× speed-up in token generation
compared to SEDORE and EDORE.

1 Introduction

With increasing dataset sizes, processing tasks are becoming impractical on lo-
cal machines, driving demand for cloud services. To address privacy concerns,
clients upload encrypted data and use secure range queries, protecting datasets
from adversaries while facilitating database operations. Order-revealing encryp-
tion (ORE) has been proposed to enable secure operations on numerical data
[9,7,13,12,10,21,5,20,4,18].

ORE is a method that reveals only the order by using a publicly disclosed
comparison function, without leaking any information about the numerical datasets.
For example, ORE takes two ciphertexts as input and returns the order asso-
ciated with the underlying plaintexts. Furthermore, Li et al. [12] proposed an
⋆ Equal contribution

⋆⋆ Co-corresponding authors

https://orcid.org/0009-0002-4124-2164
https://orcid.org/0000-0003-0435-4394
https://orcid.org/0000-0002-4823-4194
https://orcid.org/0000-0003-0547-5702
https://orcid.org/0000-0002-9033-990X

ORE primitive called delegatable order-revealing encryption (DORE), which al-
lows appropriate operations even with different encryption keys. DORE works
by having data owners provide authorization tokens, based on their secret keys,
to users.

However, Hahn et al. [10] identified vulnerabilities in DORE, demonstrat-
ing that unauthorized users could forge authorization tokens under a threat
model that is both practical and reasonable [21]. In such attacks, an autho-
rized user (traitor) collaborates with an unauthorized user (attacker) to forge
tokens, enabling illegal query execution on the data owner’s database. These
attacks result not only in unauthorized data access but also financial losses for
the victims, as many modern cloud service providers (CSPs) [8,15,26] operate
on a pay-per-query model. Furthermore, in this attack scenario, the data owner
cannot identify the traitor, making the attack stealthy.

To address these security concerns, Hahn et al. proposed Secure Delegatable
Order-Revealing Encryption (SEDORE). Subsequently, Xu et al. [25] introduced
Efficient Delegatable Order-Revealing Encryption (EDORE), which improves
latency and reduces storage costs compared to SEDORE.

Despite the improvements in SEDORE and EDORE to mitigate practical
forgery attacks, we discover that the same vulnerability exists in DORE, SE-
DORE, and EDORE under the identical threat model proposed by [10]. We
term this vulnerability as universal token reusability. This attack remains highly
threatening because it adheres to the practical threat model defined by [10],
even when the traitor provides the attacker with more information in our sce-
nario compared to SEDORE.

To address these issues, we propose a revised DORE scheme incorporating
a verification algorithm, termed Verifiable Delegatable Order-Revealing Encryp-
tion (VDORE). We also formally define the token unforgeability of the VDORE
scheme for provable security.

Furthermore, we propose TUDORE, a novel token-unforgeable DORE scheme,
build upon VDORE. Like SEDORE [10], our scheme retains the original al-
gorithms of DORE [12] for setup, key generation, encryption, and test, while
modifying the token generation algorithm to prevent attacks. This ensures min-
imal computational and storage overhead. Additionally, we incorporate digital
signature schemes [22,6] into the token generation process to guarantee token un-
forgeability. We provide security analysis and experimental results showing that
TUDORE achieves competitive efficiency compared to previous works [12,10,25].

In summary, we make the following main contributions:

1. Universal Token Reusability Attack. We first highlight that token-based
DORE schemes [12,10,25] remain vulnerable to token forgery attacks. Specif-
ically, under the same threat model described in [10], we introduce a new
attack called universal token reusability attack in Section 5.

2. Token Verification and Security Definition. To mitigate the security
risks identified in the attack scenario, we revise the token-based DORE
scheme by integrating a token verification algorithm. We explain the neces-
sity of verification in Section 5. This revision results in a new concept called

2

2) Encryption

1) Key generation

Upload

3) Token generation

User A

4) Test

User B
Uses the tokens for test

Authorization token

Encrypted data
Cloud

Encrypted dataEncrypted data

Upload

Numerical data

Fig. 1: The description of order-revealing encryption. The orange box indicates
the operations executed by User A, whereas the blue box represents the processes
handled by the cloud.

Verifiable DORE (VDORE). VDORE ensures provable security by satisfying
three key properties: correctness, data privacy, and token unforgeability, as
detailed in Section 6.

3. Token Unforgeable VDORE Scheme. We present a new secure VDORE
scheme, named Token Unforgeable DORE (TUDORE), which leverages dig-
ital signature schemes [22,6]. Specifically, we prove that TUDORE satisfies
the properties of correctness, data privacy, and token unforgeability in Sec-
tion 7.

4. Implementation of TUDORE. We provide implementation results to
compare existing schemes [12,10,25] with our proposed method (TUDORE).
Our experimental evaluation demonstrates that TUDORE is both practical
and feasible, as detailed in Section 8.

2 Background

Cross-database systems. In our system, similar to DORE [12], SEDORE [10],
and EDORE [25], we consider a cross-database scenario. The cross-database
system allows multiple users to upload their encrypted databases onto the server,
based on their raw data. Users who want to collaborate and share datasets
can perform relevant operations by sending queries to each other’s databases.
However, it is essential to note that not all users on the cloud server can access all
databases; only those users authorized by the database owner can utilize specific
databases. From this, the database owner distributes authorization tokens to
grant authorized users access.

Delegatable Order-Revealing Encryption. DORE scheme has been intro-
duced in a multi-client environment [12]. This scheme allows the data owner to
grant authorization tokens to other users, enabling them to perform operations
on each other’s databases based on different secret keys.

In Figure 1, we show the process of delegatable order-revealing encryption
and explain it as follows: 1) User A generates their secret key using a key gener-
ation algorithm. 2) Afterward, they encrypt their numerical data with the key

3

and upload it to the cloud. 3) If User A wishes to perform computations on User
B’s dataset, they obtain an authorization token from User B and then generate a
token related to their dataset using the token generation algorithm. 4) When the
server receives the tokens, it compares the encrypted data of User A and B with
the tokens using a test algorithm. Finally, it determines the orders. Note that,
the token is not issued per query but only once and remains valid thereafter.

3 System and Threat Models

3.1 System model

As we mentioned in Section 2, we consider a scenario involving cross-database
environments with encrypted databases. In this context, there are three entities
with the following roles:

– The data owner: Encrypts data using the secret key and uploads it to the
server. The data owner also provides authorization tokens to users who are
authorized to access its databases.

– The user: Requests an authorization token from the data owner. Upon re-
ceiving the token, the user can use it to perform computations involving their
own database and the data owner’s database.

– The server: Acts as a storage system for encrypted data uploaded by multiple
data owners and processes incoming range queries from users.

Note that the entities uploading data to the server can all become data owners.
Moreover, entities obtaining authorization tokens from different data owners can
also access other databases.

3.2 Threat Model

Following the attack scenario described in [10], we consider two threat models
related to data privacy violations and token forgeability, as follows:

– Data privacy violation: The server might attempt to disclose the content of
the stored data, along with trying to acquire not only the ordering information
and the index of the first differing bit between the two ciphertexts but also to
recover the data.

– Token forgeability: The server and unauthorized users may attempt to ac-
cess the victim’s database by creating forged tokens.

From this, we focus on token forgeability. There are three entities involved in forge
token attacks: a victim (V) who is the owner of the database, the authorized user
(M) who may illegally aid an unauthorized user (A) in creating forge tokens.
Furthermore, we assume that M never shares its secret key with A, as A can
exploit not only V’s database but also M’s database by creating unintentional
tokens from M’s secret key.

4

4 Revisiting token-based DORE Schemes

4.1 Basic Notation

We first define some notations before revisiting the schemes. We denote Zp as a
prime field that is isomorphic to integers mod p. Uniform sampling is denoted
by $←. For instance, a $←Zp indicates that a is uniformly chosen from Zp. H and
F denote a cryptographic hash function whose range will be specified from the
context.

To describe bilinear groups, we denote ⟨p,G1,G2, g1, g2,GT , e⟩, that stands
for prime p and cyclic groups G1,G2,GT of order p, generators g1 ∈ G1 and
g2 ∈ G2, and bilinear map e : G1 × G2 → GT , which is non-degenerate and a
computable function satisfies e(P a,Kb) = e(P,K)ab for all a, b ∈ Zp. Hereafter,
we assume that the prime p is sufficiently large because the security of DORE
schemes relies on the discrete logarithm assumption.

4.2 Token-based delegatable ORE scheme

Li et al. [12] first proposed a token-based delegatable ORE scheme. The data
owner delegates the management of data but can manage authorization through
the tokens. DORE scheme consists of 5 algorithms as follows:

– pp← DORE.Setup(1λ): It takes the security parameter 1λ as input and returns
the public parameter pp.

– (pk, sk)← DORE.Keygen(pp) : It receives a public parameter pp as input and
returns a pair of public key and secret key (pk, sk)

– ct ← DORE.Enc(pp,m, sk): It takes a message m ∈ {0, 1}∗ and sk as input
and returns a ciphertext ct.

– tok(v→u) ← DORE.Token(pp, pk(v), sk(u)): It takes the public key pk(v) of user
v and the secret key sk(u) of user u as input and returns an authorization
token tok(v→u), indicating that user v is authorized by user u.

– res ← DORE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)): It takes the two cipher-
text ct(u) and ct(v), along with two tokens, tok(v→u) and tok(u→v), as input
and returns the comparison result res ∈ {−1, 0, 1}. The output values rep-
resent the following: 1 indicates mu > mv, 0 indicates mu = mv, and −1
indicates mu < mv, where m□ denotes the plaintext of ct(□) for □ = u, v.

Li et al.[12] introduced two security properties for DORE: correctness and IND-
OCPA. Furthermore, Hahn et al.[10] emphasized that token forgeability is a
critical security concern in the DORE scheme. Building on these works, token-
based DORE schemes should satisfy three essential properties: correctness, data
privacy, and token unforgeability. We formalize these properties in Section 6.
One-side Token is sufficient. In the Test algorithm, it currently requires two-
sided tokens, tok(v→u) and tok(u→v). When a user u queries a ciphertext ct(v)
stored in v’s database, u first generates tok(v→u) locally. Since the public key
pk(v) is openly available, u can compute tok(v→u) independently, without need-
ing v’s secret key. Subsequently, u uses the pair of tokens, tok(v→u) (generated
locally) and tok(u→v) (received from user v), to perform the Test algorithm.

5

– pp← DERE.Setup(1λ): It takes the security parameter 1λ as input and returns the
public parameter pp = (⟨p,G1,G2, g1, g2,GT , e⟩, H,F).

– (pk, sk) ← DERE.Keygen(pp) : It takes a public parameter pp as input and
uniformly chooses a, b

$←Zp. After then, it returns a pair of public key and se-
cret key (pk, sk) = (ga2 , (a, b)). Additionally, We denote a key pair of user u as
(pk(u), sk(u)) = (g

a(u)

2 , (a(u), b(u))).
– ct ← DERE.Enc(pp,m, sk): It takes a message m ∈ {0, 1}∗ and sk as input. It

randomly picks r
$←Zp and return ct := (c0, c1) = ((grb1 H(m))a, c1 = gr1). For user

u, we rewrite ct as ct(u) = (c0(u), c
1
(u)).

– tok(v→u) ← DERE.Token(pp, pk(v), sk(u)): It takes the public key pk(v) = g
a(v)

2 of
user v and the secret key sk(u) = (a(u), b(u)) of user u and returns an authorization
token tok(v→u). (v → u) from tok(v→u) means that the user u sends the authoriza-
tion token to user v and tok(v→u) consists of t0(v→u) and t1(v→u).

• (type-1, DERE [12]): t0(v→u) = pk(v), t1(v→u) = pk
a(u)b(u)

(v)

• (type-2, SEDERE [10]):t0(v→u) = F
(
pk

a(u)

(v)

)a−1
(u)

, t1(v→u) = F
(
pk

a(v)

(v)

)b(v)

Finally, it returns tok(v→u) := (t0(v→u), t
1
(v→u)).

– 0\1← DERE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)): It takes the ciphertexts from
user v and u, ct(v) and ct(u), and the tokens, tok(v→u) and tok(u→v) as input. After
that, it computes

d0 =
e(c0(u), t

0
(v→u))

e(c1(u), t
1
(v→u))

, d1 =
e(c0(v), t

0
(u→v))

e(c1(v), t
1
(u→v))

.

Finally, it compares d0 and d1 and returns 1 if d0 = d1 and 0 otherwise.

Fig. 2: DERE and SEDERE Scheme

4.3 Revisiting DORE, SEDORE and EDORE

DERE-to-DORE framework. In [12], Li et al. proposed a framework for con-
structing a DORE scheme from a token-based Delegatable Equality-Revealing
Encoding (DERE). The primary difference lies in the test algorithm: the DERE
test algorithm is restricted to checking only the equality between two cipher-
texts. From a DERE scheme, DORE leverages the key generation, encryption,
and testing algorithms of DERE and constructs its own encryption and test al-
gorithms by iteratively running the encryption and test algorithms of DERE.
We defer to describe the framework in Figure 5.

Subsequent researchs [10,25] follow this framework. For this reason, we now
focus on the DERE scheme rather than the DORE scheme itself.
DERE, SEDERE, and EDERE. Li et al. constructed the DERE scheme
based on the bilinear setting under generic group model (GGM) [12]. To prevent
a token forging attack, Hanh et al. revise the token generation algorithm of
DERE and then propose a new DERE scheme, called SEDERE [10]. We describe
the DERE and SEDERE schemes in Figure 2. Due to the page limits, we defer
the description of EDERE in Appendix A.

6

5 Universal Token Reusability Attack

In this section, we first demonstrate the vulnerability of SEDERE, which also
causes the vulnerability of SEDORE, within the threat model described in Sec-
tion 3.2 by presenting a concrete attack. Before explaining the attack, we propose
the notion of a universal forged token in the bilinear setting. A universal forged
token uft(V),h2

is a forged token to access V based on group element h2. Using
uft(V),h2

and h2, any adversary can query the database of V without authorized

token from V. We define an universal forged token as uft(V),h2
= (h

a−1
(V)

2 , h
b(V)

2) in
our attack. We introduce it as follows:
Step 1: The user V creates authorization token tok(M→V) by using (type-2)
DERE.Token algorithm 4 in Figure 2 and sends it to user M as below:

tok(M→V) =

(
F
(
pk

a(V)

(M)

)a−1
(V)

, F
(
pk

a(V)

(M)

)b(V)

)
Step 2: AfterM receives it,M randomly picks r $←Zp and sets a group element
h2 = F (pk

a(M)

(V))r. And then M computes a universal forged token uft(V),h2
as

following:

uft(V),h2
= tokr(M→V) =

((
F (pk

a(V)

(M))
r
)a−1

(V)

,
(
F (pk

a(V)

(M))
r
)b(V)

)
After then, M sends h2 and uft(V),h2

to A. Note that M can compute uft(V),h2

by symmetric property pk
a(V)

(M) = gaVaM
2 = pk

a(M)

(V) . Since h2 is randomized by
M’s randomness r, (h2, uft(V),h2

) ∈ G3
2 look like uniformly random in the view

of A. By DL assumption, it is interactable for the A to find M’s secret key
(a(M), b(M)) from h2 and uft(V),h2

. For this reason, M may help adversary A
without concern about leakingM’s secret.
Step 3: After receiving (h2, uft(V),h2

)A samples its secret key sk(A)(a(A), b(A))
$←Z2

p.
And it computes the counterpart forged token uft(A),h2

as follows:

uft(A),h2
= (h

a−1
(A)

2 , h
b(A)

2)

For the query, A generates ct(A) ← DERE.Enc(pp,m, sk(A)) using her secret key
(a(A), b(A)) and then use a pair of forged tokens uft(A),h2

and uft(V),h2
.

For a given message m, let us denote the victim’s ciphertext as ct(V) =

((g
b(V)r(V)

1 H(m))a(V) , g
r(V)

1). Then we can get DERE.Test(ct(V), ct(A), uft(V),h2
,

uft(A),h2
) = 1 by the following equations: For i = 0, 1, α0 = V and α1 = A,

di =
e(c0(αi)

, uft0(αi),h2
)

e(c1(αi)
, uft1(αi),h2

)
=

e((g
b(αi)

r(αi)

1 H(m))a(αi) , h
a−1
(αi)

2)

e(g
r(αi)

1 , h
b(αi)

2)

=
e(g

b(αi)
r(αi)

1 H(m), h2)

e(g
b(αi)

r(αi)

1 , h2)
= e(H(m), h2).

4 If the map F is the identity map on G2, type-2 DERE scheme becomes identical
to the type-1 DERE scheme. Thus, the following attack against the type-2 DERE
scheme can naturally be applied to the type-1 DERE scheme.

7

In other words, A can be identified as equality between ct(V) and ct(A) plain-
texts by the Test algorithm without the authorized token. The universal token
reusability attack can also be applied to EDORE but we defer the attack in
Appendix A due to space limitations.
Limitation of SEDORE. Hahn et al. proposed SEDORE [10] to prevent token
forging attacks against colluding usersM and A. Concretely, they applied cryp-
tographic hash functions to the token generation algorithm. Using hash functions
is helpful to prevent reconstructing new valid token tok(A→V) from an autho-
rized token. However, a pair of valid tokens tok(A→V) and tok(V→A) is not a
requirement for querying V’s database. Note that we give an attack scenario
using uft(V),h2

and uft(A),h2
, that are not valid tokens.

One of the main reasons is that the DERE,Test algorithm does not verify who
generates the tokens. For this reason, before executing the test algorithm, the
tester, corresponding to the server in our scenario, must ensure that the tokens
were generated by authorized individuals and not forged.

6 Verifiable DORE (VDORE) and Token Unforgeability

As we mentioned in the above section, the tester should check the validity of
the tokens to prevent universal token reusability attacks. To give a verifiability
on DORE scheme (Section 4.2), we revise the Keygen algorithm to output ver-
ification key vk and we newly propose a verification algorithm Vfy. We define
a verifiable DORE scheme VDORE := (Setup,Keygen,Enc,Token,Test,Vfy) as
follows:

– pp ← VDORE.Setup(1λ): It takes the security parameter 1λ as input and
returns the public parameter pp.

– (pk, vk , sk)← VDORE.Keygen(pp): It takes a public parameter as input and
returns a key tuple of public key, verification key, and secret key, (pk, vk, sk).
The verification key is used to verify the validity of tokens. Both pk and vk
may be managed publicly, but sk should be managed privately.

– ct ← VDORE.Enc(pp,m, sk): It takes a message m ∈ {0, 1}∗ and sk as input
and returns a ciphertext ct.

– tok(v→u) ← VDORE.Token(pp, pk(v), sk(u)): It takes the public key pk(v) of
user v and the secret key sk(u) of user u as input and returns an authorization
token tok(v→u), indicating that user v is authorized by user u.

– res← VDORE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)): It takes the two cipher-
text ct(u) and ct(v), along with two tokens, tok(v→u) and tok(u→v), as input
and returns the comparison result res ∈ {−1, 0, 1}. The output values rep-
resent the following: 1 indicates mu > mv, 0 indicates mu = mv, and −1
indicates mu < mv, where m□ denotes the plaintext of ct(□) for □ = u, v.

– 0\1← VDORE.Vfy(pp, vk(u), vk(v), tok(v→u), tok(u→v)) : It takes the two ver-
ification keys vk(u) and vk(v), and two tokens tok(v→u) and tok(u→v) as input.
If both tokens tok(v→u) and tok(u→v) go through (token validity) verification,
it returns 1 (accept); otherwise, it returns 0 (reject).

8

Token Forging game
A(1λ)→ (v̂k(A), ̂tok(C→A), ̂tok(A→C))

1. Setting Phase: C runs setup algorithm pp← Setup(1λ) and key generation algo-
rithm (sk(C), vk(C), pk(C))← Keygen(pp). And then sends (pp, vk(C), pk(C)) to A.

2. Query Phase: A can query to C:
(a) Key Query: A sends a query with index i. If (i, pk(i), vk(i)) ∈ Skey, then

output (i, pk(i), vk(i)). Otherwise, it runs (sk, pk, tk) ← Keygen(pp). And it
returns (pk, tk) and adds the tuple (i, pk, tk) to key query set Skey

(b) Token Query: If A sends a query with keys pk(A), C generates an authorized
token tok(A→C) ← Token(pp, pk(A), sk(C)) and then sends tok(A→C) to A and
adds tok(A→C) to token query set Stok.
The number of queries is at most polynomially large at λ.

3. Challenge Phase: A outputs a verification key and a pair of tokens
(v̂k(A), ̂tok(C→A), ̂tok(A→C)).
The A wins if Vfy(pp, vk(C), v̂k(A), ̂tok(A→C), ̂tok(C→A)) = 1 and ̂tok(A→C) /∈ Stok.

Fig. 3: Token forging Game

To ensure a secure VDORE scheme, we consider three properties: correctness,
data privacy, and token unforgeability.
Correctness. The correctness of VDORE ensures that the test algorithm accu-
rately discerns the sequence of two ciphertexts provided by two mutually au-
thenticated users. Let (m(u),m(v)) be a pair of messages, (pk(u), vk(u), sk(u)),
(pk(v), vk(v), sk(v)) be a pair of keys generated by Keygen algorithm, and ct(u),
ct(v) be a ciphertext of m(u) and m(v) with key sk(u) and sk(v) respectively. We
say VDORE scheme is correct if for any pair of messages (m(u),m(v)) and keys
(pk(u), vk(u), sk(u)), (pk(v), vk(v), sk(v)), the following holds:

– VDORE.Vfy(pp, vk(u), vk(v), tok(v→u), tok(u→v)) = 1
– VDORE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)) = res
• If m(u) > m(v), then res = 1
• If m(u) < m(v), then res = −1
• Otherwise, res = 0

Data Privacy. The data privacy of VDORE ensures that the ciphertexts ct
generated by Enc algorithm do not leak information except order. VDORE pro-
vides data privacy if Enc algorithm satisfies indistinguishability under an ordered
chosen plaintext attack (IND-OCPA) [12].
Token Unforgeability. Vfy algorithm of the VDORE scheme should detect
forged tokens. To give a provable security, we propose a new definition of token
unforgeability. First, we construct a token forging game to give a game-based
security. We describe the roles of adversary and challenger in Figure 3. Note
that token unforgeability can also be considered in the context of a verifiable
DERE(VDERE) scheme.

We denote theA’s advantage to the token forging game of VDORE scheme(or
Vdere scheme) AdvTF[A,VDORE](or AdvTF[A,VDERE]), which is a probability

9

that A wins the token forging game under the VDORE(or VDERE) scheme, re-
spectively.

Definition 1 (Token Unforgeability). Let (Setup,Keygen,Enc,Token,Test,
Vfy) be a VDORE (or VDERE) scheme. We say that VDORE (or VDERE) satisfies
token unforgeability if for any PPT adversary A against token forging game in
Figure 3, the A’s advantage to the game AdvTF[A,VDORE] (or AdvTF[A,VDERE])
is less than negl(λ).

Token forging game and attack scenario. We construct an attack game
for forging tokens in the above paragraph. The key (pk(C), vk(C)) which C sends
represents the key of V. Note that other users can know a public key pk(V) and
verification key vk(V) of V. After that, we allow A to send two types of queries:
key query and token query. From the queries, A can get several keys and tokens,
which stands for public/verification keys and tokens from other users colluding
with A. The purpose of A is to find a pair of tokens, which goes through the
verification algorithm Vfy. The hardness of finding a pair of tokens means those of
forging tokens, so our token unforgeability implies security against token forgery
attacks.

7 TUDORE: Token Unforgeable DORE

In this section, we first construct our novel VDERE scheme, called TUDERE.
And then, following the framework in [12], we complete the TUDORE scheme
by using the TUDERE scheme. One of the main concerns is how to construct
verify algorithm. To guarantee token unforegability, we apply digital signature
schemes.

7.1 Signature Schemes compatible with DERE scheme.

A digital signature is a cryptographic scheme for verifying the authenticity of dig-
ital messages. A valid digital signature on a message gives a recipient confidence
that the message came from a sender known to the recipient. In our scenario,
a signature scheme can give a token validity due to its unforgeability property.
Signature schemes consists of four algorithms Sig = (Setup,Keygen,Sign,Verify)
as follows:

– ppsig ← Sig.Setup(λ): This algorithm takes the security parameter λ as input
and returns the public parameter ppsig.

– (vksig, sksig) ← Sig.Keygen(ppsig): It takes a public parameter as input and
outputs a key tuple of signing key sksig and verifying key vksig.

– σ ← Sig.Sign(ppsig, sksig,m): It takes public parameter ppsig, signing key sksig
and message as input and outputs signature σ.

– 0\1 ← Sig.Verify(ppsig, vksig,m, σ): It takes public parameter ppsig, the veri-
fying key vksig , message m, and signature σ as input. If the signature is valid,
it returns 1; otherwise, it returns 0.

10

DERE scheme in Figure 2 utilize discrete logarithmic related keys: pk = ga2
and sk = (a, b). To utilize the secret key as a signing key, we consider signature
schemes with DL-related keys, e.g. Schnorr’s signature [22] and BLS signature [6].
Concretely, both signature schemes utilize the signing key sksig = b and verifica-
tion key vksig = gb1. Furthermore, both schemes satisfy existential unforgeability
under chosen message attack (EUF-CMA). For more details about both signa-
ture schemes, please refer to full version [19].

7.2 Construct TUDORE using Signature Scheme

By combining type-1 DERE scheme in Figure 2 with signature schemes Sig, we
construct a token unforgeable DORE scheme: TUDERE = (Setup,Keygen,Enc,
Token,Test,Vfy). The main difference between DERE and TUDERE lie in Keygen,
Token, and Vfy. In Keygen, an additional token verification key vk = gb1 is gener-
ated. The Token algorithm outputs a token that includes a signature. Finally, the
Vfy algorithm checks the token using the verification algorithm of the signature
scheme Sig. We describe TUDERE in Figure 4.

In a similar way in the DERE-to-DORE framework [12], we construct TUDORE
scheme using TUDERE scheme in Figure 4; iteratively running Enc and Test al-
gorithms but keeping other algorithms of TUDERE. We describe the scheme
TUDORE in Figure 5.

7.3 Security Analysis

In [12], the authors provided security proof for the correctness and IND-OCPA
for the DORE scheme in the GGM. With the proof in [12] and EUF-CMA
signature scheme, we can conclude the following theorem.

Theorem 1. Assume H and T are modeled as a random oracle and Sig is an
EUF-CMA signature scheme. Then, the TUDORE scheme (Figure 5) under the
TUDERE scheme (Figure 4) satisfies the correctness, data privacy and token
unforgeability under the generic group model.

Proof Sketch. (Correctness) The correctness of TUDERE holds in the similar
way of [12]. Concretely, for a valid token and ciphertext, the intermediate values
d0 and d1 of Test should be equal by the bilinearity of the pairing operation. Ad-
ditionally, from the correctness of the Schnorr signature, Vfy should be output 1
so that TUDERE satisfies the correctness. Since TUDORE.Test consists of several
correct TUDERE.Test algorithms, it follows that TUDORE satisfies correctness
as well.
(Data privacy) Since our underlying encryption algorithm is the same as DERE [12],
we can prove IND-OCPA in a similar way in [12]. Since DORE encryption un-
derlying the DERE scheme satisfies IND-OCPA in the generic group model,
our TUDORE encryption underlying the TUDERE scheme satisfies IND-OCPA.
Therefore, our TUDORE scheme satisfies Data privacy.
(Token Unforgeability) Because the Vfy algorithm contains sign verification,
TUDERE satisfies the token unforgeability of the EUF-CMA signature scheme.

11

– pp← TUDERE.Setup(1λ): This algorithm takes the security parameter 1λ as input
and returns the public parameter pp = (⟨p,G1,G2, g1, g2,GT , e⟩, H,T). Addition-
ally, it sets ppsig := (⟨p,G1, g1⟩, T).

– (pk, vk , sk) ← TUDERE.Keygen(pp): This algorithm takes the public parameter

pp as input and randomly chooses a, b $←Zp. After that, it returns a tuple of keys as
sk = (a, b), pk = ga2 , and vk = gb1. Additionally, it sets signature keys as sksig := b,
and vksig := vk.

– ct← TUDERE.Enc(pp,m, sk): This algorithm takes a public parameter pp, a mes-
sage m ∈ {0, 1}∗, and sk = (a, b) ∈ Z2

p as input and randomly picks r
$←Zp and

computes c0 and c1 as below:

c0 =
(
grb1 H(m)

)a

, c1 = gr1 .

Finally, it returns ct = (c0, c1).
– tok(u→v) ← TUDERE.Token(pp, pk(u), sk(v)): This algorithm takes the public key

pk(u) ∈ G2 of u and the secret key sk(v) = (a(v), b(v)) ∈ Z2
p of v as input and returns

the token tok(u→v) = (t0(u→v), t
1
(u→v), σv) as follows:

t0(u→v) = pk(u), t1(u→v) = pk
a(v)b(v)

(u)

σv ← Sig.Sign(ppsig, sksig,(v), (t
0
(u→v), t

1
(u→v)))

– 0\1 ← TUDERE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)):
This algorithm takes the two ciphertexts and tokens for u and v and computes

d0 =
e
(
c0(u), t

0
(v→u)

)
e
(
c1(u), t

1
(v→u)

) , d1 =
e
(
c0(v), t

0
(u→v)

)
e
(
c1(v), t

1
(u→v)

)
Finally, it compares d0 and d1, and if d0 = d1, it returns 1 and 0 otherwise.

– 0\1 ← TUDERE.Vfy(pp, vk(u), vk(v), tok(v→u), tok(u→v)): This algorithm takes
a public parameter pp, a pair of verification keys vk(u), vk(v) and tokens
tok(u→v), tok(v→u). It parses tok(u→v) and tok(v→u) to ((t0(u→v), t

1
(u→v)), σv) and

((t0(v→u), t
1
(v→u)), σu) respectively. Then, run verification algorithms as follows:

• resv ← Sig.Vfy(ppsig, vk(v), (t
0
(u→v), t

1
(u→v)), σv)

• resu ← Sig.Vfy(ppsig, vk(u), (t
0
(v→u), t

1
(v→u)), σu)

If resv = resu = 1, then it outputs 1. Otherwise, outputs 0.

Fig. 4: TUDERE Scheme

Concretely, to complete the proof, we construct an EUF-CMA adversary B
using the token forgeability adversary A. To simulate the token query of A, we
should restrict A not to get the public key locally. Since the public keys consist of
group elements and the adversary does not get the group element itself in GGM,
we ensure A does not get arbitrary token tok(i→C) without corresponding key
query for pk(i). Therefore, we claim that TUDERE satisfies token unforgeability

12

– pp ← TUDORE.Setup(1λ): With the inputs, run TUDERE.Setup algorithm and
output pp.

– (pk, vk, sk) ← TUDORE.Keygen(pp): With the inputs, run TUDERE.Keygen(pp)
algorithm and output (pk, vk, vk).

– tok(u→v) ← TUDORE.Token(pp, pk(u), sk(v)): With the inputs, run TUDERE.Token
algorithm and output tok(u→v).

– 0\1 ← TUDERE.Vfy(pp, vk(u), vk(v), tok(v→u), tok(u→v)): With the inputs, run
TUDERE.Vfy algorithm and output decision bit 0\1.

– ct ← TUDORE.Enc(pp,m, sk): It takes a message m ∈ {0, 1}∗ and sk as in-
put. It encrypts message bit encodings ϵ(mi, a), which is defined as ϵ(mi, a) =
(i,m1m2 . . .mi||0n−i, a) for a ∈ {0, 1, 2}, as follows:
If mi = 0, it computes ciphertexts ct[i] = (ct[i, 0], ct[i, 1]) as follows:

ct[i, 0] = TUDERE.Enc(pp, ϵ(mi, 0), sk), ct[i, 1] = TUDERE.Enc(pp, ϵ(mi, 1), sk).

Else if mi = 1, it computes ciphertexts ct[i] = (ct[i, 0], ct[i, 1]) as follows:

ct[i, 0] = TUDERE.Enc(pp, ϵ(mi, 1), sk), ct[i, 1] = TUDERE.Enc(pp, ϵ(mi, 2), sk).

Finally, this algorithm returns ct = (ct[1], . . . ct[n]).
– res ← TUDORE.Test(pp, ct(u), ct(v), tok(v→u), tok(u→v)): It takes a pair of ci-

phertexts ct(u), ct(v) and tokens tok(v→u), tok(u→v) as input. Test algorithm runs
TUDERE.Test iteratively. For i = 1 to n, the algorithm follows it:
1. If i = n+ 1, then return 0
2. Else Compute resiu and resiv as follows:

• resiu ← TUDERE.Test(ct(u)[i, 0], ct(v)[i, 1])
• resiv ← TUDERE.Test(ct(u)[i, 1], ct(v)[i, 0])

(a) If resiu = 1, then returns 1
(b) Else if resiv = 1, then return −1
(c) Else i← i+ 1

Fig. 5: TUDORE scheme from TUDERE

if the underlying signature scheme satisfies EUF-CMA. For the complete proof,
please refer to full version [19].

8 Experiment

This section evaluates our proposed TUDORE scheme compared to DORE, SE-
DORE, and EDORE, which serve as benchmarks.
Experiment environments. To conduct realistic experiments, we implement
and evaluate the system in two distinct environments representing the server and
the user. The server environment consists of a Linux desktop with a 5.20 GHz
Intel i9-12900K CPU and 64GB RAM for the test and verification. In contrast,
the user environment is simulated using a Linux laptop with a 1.4 GHz AMD
Ryzen 7 4700U CPU and 16GB RAM for token generations. For comparison,
we implement our proposed TUDORE scheme alongside the previous schemes.

13

10 100 1,000 10,000 100,000
user

50
100
150
200
250
300
350
400
450

To
ke

n
ge

ne
ra

tio
n

tim
e

(s
ec

on
ds

) DORE
SEDORE
EDORE
Our ORE (Schnorr & BLS)

(a) Token generation time

8 16 24 32 48 64
Bit length

100

101

102

103

Te
st

 ti
m

e
(m

illi
 se

co
nd

s)

DORE
SEDORE
EDORE
Our ORE

(b) Test time

101 102 103 104 105 G I A
users

079144217
310

1,247

1,784

Ve
rif

ica
tio

n
tim

e
(s

ec
on

ds
)

BLS
Schnorr

(c) Verification time

Fig. 6: The performance graphs for token generation time, test time, and verifi-
cation time for DORE, SEDORE, and our TUDORE. In Figure 6c’s x-axis, “G”
indicates Google, “I” indicates IBM, and “A” indicates Amazon, respectively.

Schemes # Elements # Operations

Enc Token Enc Test Token Vfy

DORE [12] 4n|G1| 2|G2| 6nEG1 8nPGT EG2 ×
SEDORE [10] 4n|G1| 2|G2| 6nEG1 8nPGT 3EG2 ×
EDORE [25] 4n|Zp|+ 2n|G2| 2|G1| 2nEG2 8nEG1 + 4nPGT 3EG1 ×
TUDORE (Schnorr) 4n|G1| 1|G1|+ 2|G2|+ 1|Zp| 6nEG1 8nPGT EG1 + EG2 4EG1

TUDORE (BLS) 4n|G1| 1|G1|+ 2|G2| 6nEG1 8nPGT EG1 + EG2 4PGT

|Gi|: size of a group element in Gi, |Zp|: size of a field element in Zp,
EGi : group exponentiation on Gi, PGT : bilinear pairing operation

Table 1: A comparative analysis for element and n-bit comparison, with con-
densed Group/Pairings section. × indicates the Verification algorithm is not
available.

Furthermore, we use the OpenSSL library for the hash function, the pairing-
based cryptography library written in C for bilinear maps with MNT224 curve
[14], and the GMP library for large integer arithmetic. Furthermore, we use
Schnorr and BLS signatures [22,6] for the verification algorithms. Therefore, we
present experiments on two signature schemes, allowing users to choose the one
that best suits their environment.

Dataset. We utilize the dataset [24] published by the United Nations, which
provides an estimate of the total population (both sexes combined) in five-year
age groups for our experiment. However, the range of data for the distribution
of the population is limited, we also incorporate the volume data of real stock
from FAANG companies [17]. We conduct experiments by extracting 5,000 data
from each dataset (i.e., a total of 10,000 data).

When 5,000 samples are randomly drawn from the stock volume dataset, the
largest number obtained is 3,372,969,600, which requires 32 bits to represent
in binary. Therefore, experiments using 8, 16, and 24 bits are conducted using
the age distribution dataset, while experiments using 32, 48, and 64 bits are
conducted using the stock dataset.

14

8.1 Performance

We evaluate our TUDORE with DORE, SEDORE, and EDORE across three
categories: token generation time, test algorithm time, and verification time.
Comparative analysis. Before experimentally comparing each scheme, we
show a theoretical cost analysis for each algorithm based on one bit. In Table
1, we suggest an analysis of storage cost and computational cost, where the left
side (group elements) represents storage cost, and the right side (group/pairings)
represents computational cost. Furthermore, |G1| and |G2| denote the sizes of
G1 and G1, respectively, while EG1

, EG2
, and EGT

represent the computational
overhead for exponential operation for G1, G2, and GT , respectively.

As shown in Table 1, the Enc and Test algorithms of SEDORE and TUDORE
are identical to those of DORE, resulting in the same storage and computa-
tional costs. EDORE improves speed by reducing group elements and pairing
operations. TUDORE requires more storage for tokens due to the inclusion of
Schnorr or BLS signatures, but since tokens are distributed to clients, this is
acceptable. DORE generates tokens with minimal overhead, needing only one
G2-exponentiation, while SEDORE requires three G2-exponentiations, EDORE
performs three G1-exponentiations, and TUDORE uses one G2- and one G1-
exponentiation. Therefore, TUDORE is about 2x slower than DORE but 1.5x
faster than SEDORE and EDORE.

Most importantly, only TUDORE provides token unforgeability. For the
Schnorr signature, it needs 4EG1 and BLS requires 4PGT

for verification. There-
fore, by comparing the size and computational speed of the tokens, users can
select the scheme that best meets their needs. Furthermore, we will demonstrate
the practicality of the verification process in the subsequent sections.

Note that because the encryption methods of DORE, SEDORE, and TU-
DORE are identical and there are page limitations, the experimental results of
Enc are not presented in this paper. We present comprehensive experiments in
[19].
Token generation time We introduce the results related to the token genera-
tion time with Schnorr and BLS signature schemes. We compare the generation
time required for data owners to provide authorization tokens to different users.
We conduct experiments assuming the data owner provides tokens to 10, 100,
1,000, 10,000, and 100,000 users, and the relevant results are shown in Figure 6a.
SEDORE and EDORE take about 3 times longer than DORE’s token generation
algorithm and our TUDORE method is approximately 1.5 times faster than the
existing SEDORE and EDORE method. Therefore, our method not only offers
enhanced security compared to SEDORE and EDORE but is also more efficient
in token generation time.
Test time. From Figure 6b, as with the preceding comparative analysis, it can
be observed that the test computation costs of DORE, SEDORE, and TUDORE
are identical, while EDORE proves to be the fastest. The computational time
increases as the bit size ranges from 8 to 24 bits and from 32 to 64 bits in the
test algorithm. This is because the padding increases with the increase in bit

15

size, leading to higher computational costs. Moreover, it can be observed that
the computational time at 32 bits is faster than that at 16 and 24 bits. This
is due to the dataset division in our experiments, with the order based on the
32-bit dataset’s most significant bit (MSB).

Verification time We present experimental results on the verification algorithm
for two signature schemes [22,6]. The experiments assume token verification for
10, 100, 1,000, 10,000, and 100,000 users. To simulate a realistic scenario, we
extend the experiments to CSP companies, testing with the employee counts of
Google (182,502)[2], Amazon (1,608,000)[1], and IBM (282,200) [3].

In Figure 6c, it is observed that verification times ranged from 0 to 79 seconds
for Schnorr and 0.5 to 84 seconds for BLS across 10 to 100,000 samples. For real-
world applications, verification times were approximately 144/164 seconds for
Google, 217/310 seconds for IBM, and 1,247/1,783 seconds (20.8/29.7 minutes)
for Amazon. Despite the relatively high total time for Amazon, the proposed
technique is highly practical, as the average time per person is only 0.77/1.1
milliseconds, ensuring enhanced security.

9 Related Works

Order-revealing encryption (ORE) is a technique that encrypts numerical data
without preserving the order of the plaintext, allowing the comparison of two ci-
phertexts using a public function to determine their order. To improve efficiency,
Chenette et al. [9] suggested a practical ORE scheme. Nonetheless, this scheme
leaks the most significant different bit (msdb) and thus lacks sufficient security
guarantees. After that, Cash et al. [7] introduced parameter-hiding ORE (pORE)
with probabilistic characteristics for the single-user scenario, revealing only the
equality pattern of msdb. Following this, many schemes have been suggested for
multi-client environments [13,18,12,21,25,4].

10 Conclusion

In our paper, we demonstrate the vulnerability of DORE, SEDORE, and EDORE
within the same threat model suggested by [10]. While providing additional in-
formation beyond the previously outlined attack process, our attack technique
remains a menacing and practical threat without violating the attack model
presented in [10]. Thus, to address these security concerns, we propose the con-
cept of VDORE with enhanced security proof. Additionally, we introduce TU-
DORE, which leverages the Schnorr and BLS signature schemes to ensure secu-
rity against universe token reusability attacks. We provide a formalized definition
and proof to address the unclear definition and proof of token unforgeability in
previous work. Furthermore, our scheme offers a faster token generation algo-
rithm than SEDORE and EDORE.

16

References

1. Amazon employee. https://explodingtopics.com/blog/amazon-employees, 12 2023.
2. Google employee. https://seo.ai/blog/how-many-people-work-at-google, 04 2024.
3. IBM employee. https://stockanalysis.com/stocks/ibm/employees/, 04 2024.
4. Robin Berger, Felix Dörre, and Alexander Koch. Two-party decision tree training

from updatable order-revealing encryption. In International Conference on Applied
Cryptography and Network Security, pages 288–317. Springer, 2024.

5. Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe
Zimmerman. Semantically secure order-revealing encryption: Multi-input func-
tional encryption without obfuscation. In Advances in Cryptology-EUROCRYPT
2015: 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part
II, pages 563–594. Springer, 2015.

6. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing.
Journal of cryptology, 17:297–319, 2004.

7. David Cash, Feng-Hao Liu, Adam O’Neill, Mark Zhandry, and Cong Zhang.
Parameter-hiding order revealing encryption. In Advances in Cryptology–
ASIACRYPT 2018: 24th International Conference on the Theory and Application
of Cryptology and Information Security, Brisbane, QLD, Australia, December 2–6,
2018, Proceedings, Part I 24, pages 181–210. Springer, 2018.

8. Stéphanie Challita, Faiez Zalila, Christophe Gourdin, and Philippe Merle. A precise
model for google cloud platform. In 2018 IEEE international conference on cloud
engineering (IC2E), pages 177–183. IEEE, 2018.

9. Nathan Chenette, Kevin Lewi, Stephen A Weis, and David J Wu. Practical order-
revealing encryption with limited leakage. In Fast Software Encryption: 23rd Inter-
national Conference, FSE 2016, Bochum, Germany, March 20-23, 2016, Revised
Selected Papers 23, pages 474–493. Springer, 2016.

10. Changhee Hahn and Junbeom Hur. Delegatable order-revealing encryption for
reliable cross-database query. IEEE Transactions on Services Computing, 2022.

11. Tibor Jager and Andy Rupp. The semi-generic group model and applications
to pairing-based cryptography. In Advances in Cryptology-ASIACRYPT 2010:
16th International Conference on the Theory and Application of Cryptology and
Information Security, Singapore, December 5-9, 2010. Proceedings 16, pages 539–
556. Springer, 2010.

12. Yuan Li, Hongbing Wang, and Yunlei Zhao. Delegatable order-revealing encryp-
tion. In Proceedings of the 2019 ACM Asia Conference on Computer and Commu-
nications Security, pages 134–147, 2019.

13. Chunyang Lv, Jianfeng Wang, Shi-Feng Sun, Yunling Wang, Saiyu Qi, and Xi-
aofeng Chen. Efficient multi-client order-revealing encryption and its applications.
In Computer Security–ESORICS 2021: 26th European Symposium on Research in
Computer Security, Darmstadt, Germany, October 4–8, 2021, Proceedings, Part II
26, pages 44–63. Springer, 2021.

14. Ben Lynn. Pairing-based cryptography library. https://crypto.stanford.edu/pbc/,
09 2006.

15. Sajee Mathew and J Varia. Overview of amazon web services. Amazon Whitepa-
pers, 105(1):22, 2014.

16. Ueli Maurer. Abstract models of computation in cryptography. In Cryptography
and Coding: 10th IMA International Conference, Cirencester, UK, December 19-
21, 2005. Proceedings 10, pages 1–12. Springer, 2005.

17

17. AAYUSH MISHRA. Faang- complete stock data. https://www.kaggle.com/
datasets/aayushmishra1512/faang-complete-stock-data, 05 2020. (Accessed
on 05/30/2024).

18. Jae Hwan Park, Zeinab Rezaeifar, and Changhee Hahn. Securing multi-client range
queries over encrypted data. Cluster Computing, pages 1–14, 2024.

19. Jaehwan Park, Hyeonbum Lee, Junbeom Hur, Jae Hong Seo, and Doowon Kim.
Utra: Universe token reusability attack and verifiable delegatable order-revealing
encryption. Cryptology ePrint Archive, 2024.

20. Cong Peng, Rongmao Chen, Yi Wang, Debiao He, and Xinyi Huang. Parameter-
hiding order-revealing encryption without pairings. In IACR International Con-
ference on Public-Key Cryptography, pages 227–256. Springer, 2024.

21. Hongyi Qiao, Cong Peng, Qi Feng, Min Luo, and Debiao He. Ciphertext range
query scheme against agent transfer and permission extension attacks for cloud
computing. IEEE Internet of Things Journal, 2024.

22. Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Ad-
vances in Cryptology—CRYPTO’89 Proceedings 9, pages 239–252. Springer, 1990.

23. Victor Shoup. Lower bounds for discrete logarithms and related problems. In
Advances in Cryptology—EUROCRYPT’97: International Conference on the The-
ory and Application of Cryptographic Techniques Konstanz, Germany, May 11–15,
1997 Proceedings 16, pages 256–266. Springer, 1997.

24. U.Nations. World population prospects - population division - united nations.
https://population.un.org/wpp/, 05 2022. (Accessed on 05/30/2024).

25. Jingru Xu, Cong Peng, Rui Li, Jintao Fu, and Min Luo. An efficient delegatable
order-revealing encryption scheme for multi-user range queries. IEEE Transactions
on Cloud Computing, 2024.

26. Jinzy Zhu, Xing Fang, Zhe Guo, Meng Hua Niu, Fan Cao, Shuang Yue, and Qin Yu
Liu. Ibm cloud computing powering a smarter planet. In Cloud Computing: First
International Conference, CloudCom 2009, Beijing, China, December 1-4, 2009.
Proceedings 1, pages 621–625. Springer, 2009.

A Universal Token Reusability Attack on efficient DORE

This section shows how to adapt our UTRA method to EDORE [25]. Before
describing our attack, we show the EDERE suggested by [25].

A.1 Efficient DERE

EDERE scheme consists of five algorithms: (Setup,Keygen,Enc,Token,Test) as
follows:

– pp ← EDERE.Setup(1λ): It takes the security parameter 1λ as input and
returns the public parameter pp = (⟨p,G1,G2, g1, g2,GT , e⟩, H,F).

– (pk, sk)← EDERE.Keygen(pp) : This algorithm takes a public parameter (pp)
as input and returns a pair of public key and secret key (pk, sk). From this,
it uniformly chooses a, b, ξ

$←Z∗
p and generates sk and the corresponding pk

as below:
pk = ga2 , sk = (a, b, ξ)

We denote a key pair of user u as (pk(u), sk(u)) = (g
a(u)

2 , (a(u), b(u), ξ(u))).

18

https://www.kaggle.com/datasets/aayushmishra1512/faang-complete-stock-data
https://www.kaggle.com/datasets/aayushmishra1512/faang-complete-stock-data
https://population.un.org/wpp/

– ct ← EDERE.Enc(pp,m, sk): This algorithm receives a message m ∈ {0, 1}∗
and sk as input and returns a ciphertext ct. This algorithm randomly picks
r, η

$←Zp and computes c1, c2, and c3 as below:

c1 = r − ξη, c2 = η, c3 = H(m)(br)
−1

After that, it returns ct = (c0, c1, c2). For user u, we rewrite ct as ct(u) =
(c0(u), c

1
(u), c

2
(u)).

– tok(v→u) ← EDERE.Token(pp, pk(v), sk(u)): This algorithm takes the public
key pk(v) = g

a(v)

2 of user v and the secret key sk(u) = (a(u), b(u), ξ(u)) of
user u and returns an authorization token tok(v→u) consisting of t1(v→u) and
t2(v→u).

t1(v→u) = F (pk
a(u)

(v))b(u) , t2(v→u) = F (pk
a(u)

(v))b(u)ξ(u)

Finally, it returns tok(v→u) := (t1(v→u), t
2
(v→u)).

– 0\1 ← EDERE.Test(ct(u), ct(v), tok(v→u), tok(u→v)): This algorithm receives
the ciphertexts from user v and u, ct(v) and ct(u), and the tokens tok(v→u)

and tok(u→v) as input. After that, it computes

d0 = e

(
2∏

k=1

(tk(v→u))
ck(u) , c3(u)

)
, d1 = e

(
2∏

k=1

(tk(u→v))
ck(v) , c3(v)

)
.

Finally, it compares d0 and d1 and returns 1 if d0 = d1 and 0 otherwise.

A.2 UTRA for EDORE.

Xu et al. also follow the DERE-to-DORE framework to construct EDORE [25].
Due to the equivalence of the Vfy algorithm between EDORE and EDERE, we
consider the universal token reusability attack on EDERE scheme. The scenario
is as follows:
Step 1: The user V creates authorization token tok(M→V) by using EDERE.Token
algorithm and sends it to userM as below:

tok(M→V) =
(
F (pk

a(V)

(M))
b(V) , F (pk

a(V)

(M))
b(V)ξ(V)

)
Step 2: AfterM receives it,M randomly picks r $←Zp and sets a group element
h2 = F (pk

a(M)

(V))r. And then M computes a universal forged token uft(V),h2
as

following:

uft(V),h2
= tokr(M→V)

=
((

F (pk
a(V)

(M))
r
)b(V)

,
(
F (pk

a(V)

(M))
r
)b(V)ξ(V)

)
After then, M sends uft(V),h2

and h2 to A. Note that M can compute uft(V),h2

by symmetric property pk
a(V)

(M) = gaVaM
2 = pk

a(M)

(V) . Since h2 is randomized by r,

19

h2 looks like uniform random in the view of A. Furthermore, it is intractable
for the A to find a secret key (a(M), b(M)) of M from h2 and uft(V),h2

due to
the discrete logarithm assumption. For this reason, M may help adversary A
without concern about leakingM’s secret.
Step 3: When A receives uft(V),h2

and h2, she samples her secret key sk(A) =

(a(A), b(A), ξ(A))
$←Z3

p and then computes the counterpart forged token uft(A),h2

as follows:
uft(A),h2

= (h
b(A)

2 , h
b(A)ξ(A)

2)

For the query, A generates ct(A) ← EDERE.Enc(m, sk(A)) using her secret key
(a(A), b(A), ξ(A)) and then use a pair of forged tokens uft(A),h2

and uft(V),h2
.

For a given message m, let us denote the victim’s ciphertext as ct(V) = (r(V)−
ξ(V)η(V), η(V), H(m)(b(V)r(V))

−1

). Then we can get DERE.Test(ct(V), ct(A), uft(V),h2
,

uft(A),h2
) = 1 by the following equations.

d0 = e

(
2∏

k=1

(uftk(V),h2
)c

k
(V) , c3(V)

)
= e(h

b(V)(r(V)−ξ(V)η(V))
2 · hb(V)ξ(V)η(V)

2 , H(m)(b(V)r(V))
−1

)

= e(h
b(V)r(V)

2 , H(m)(b(V)r(V))
−1

) = e(h2, H(m)).

d1 = e

(
2∏

k=1

(uftk(A),h2
)c

k
(A) , c3(A)

)
= e(h

b(A)(r(A)−ξ(A)η(A))
2 · hb(A)ξ(A)η(A)

2 , H(m)(b(A)r(A))
−1

)

= e(h
b(A)r(A)

2 , H(m)(b(A)r(A))
−1

) = e(h2, H(m)).

B Security Definitions

Definition 2 (DL Assumption). Let G be a group generation algorithm that
outputs cyclic group G with prime order p ∈ Zp and generator g ∈ G. We say that
G satisfies the discrete logarithm (DL) assumption if, for any PPT adversary
A, the following inequality holds:

Pr

[
gx = h

∣∣∣∣∣ (p, g,G)← G(1λ), h $← G;
x← A(p, g, h,G)

]
≤ negl(λ)

Definition 3 (EUF-CMA). Let Sig = (Setup,Keygen,Sign,Vfy) be a signa-
ture scheme. We say that Sig is Existential Unforgeability under Chosen Message
Attack (EUF-CMA) if for any PPT A, the A’s advantage AdvEUF−CMA[A,Sig]
to the game in Figure 7 is negl(λ).

20

Signature Forge game
A(1λ)→ (m∗, σ∗)

1. Setting Phase: Csig runs setup algorithm ppsig ← Setup(1λ) and key generation
algorithm (vksig, sksig)← Keygen(ppsig). And then sends (ppsig, vksig) to A.

2. Query Phase: A sends a query to C with chosen message m. Then, C generates
signature σm ← Sign(ppsig, sksig,m) and return it to A. Additionally, C adds m in
queried message setM. The number of queries is at most polynomially large at λ.

3. Challenge Phase: A outputs a message m∗ with forging signature σm∗ . The A
wins if Vfy(ppsig, vksig,m

∗, σm∗) = 1 and m∗ /∈M.

Fig. 7: EUF-CMA Game

C Signature Schemes

Schnorr Signature Scheme [22] Schnorr Signature scheme is a EUF-CMA
signature scheme under the DL assumption. The Schnorr signature scheme Sch
consists of four algorithms (Setup, Keygen, Sign, Verify) as follows:

– ppsig ← Sch.Setup(λ): This algorithm takes the security parameter λ as
input and returns the public parameter ppsig = (⟨p,G, g⟩, T). p is a prime
order of group G and g is a generator of G. T : {0, 1}∗ → Zp is a hash
function.

– (vksig, sksig)← Sch.Keygen(ppsig): It takes a public parameter as input and

picks random a
$←Zp. And then, it returns a key tuple of signing key sksig = a

and verifying key vksig = A = ga.
– σ ← Sch.Sign(ppsig, sksig,m): It takes public parameter ppsig, signing key

sksig = a and message m ∈ {0, 1}∗. The signing process is as follows:

1. Picks random r
$←Zp and compute R← gr

2. Compute c← T (R ∥ m)
3. Compute s← r + ca

And then, it returns σ = (R, s) ∈ G× Zp

– 0\1← Sch.Verify(ppsig, vksig,m, σ): It takes public parameter ppsig, the veri-
fying key vksig = A, message m, and signature σ = (R, s). If gs = R·AT (R∥m)

it returns 1; otherwise, it returns 0.

BLS Signature Scheme [6] The BLS signature is a pairing-based signature
scheme satisfying EUF-CMA under the CDH assumption, which is implied by
the DL assumption. The BLS signature scheme BLS consists of four algorithms
(Setup, Keygen, Sign, Verify) as follows:

– ppsig ← BLS.Setup(λ): This algorithm takes the security parameter λ as
input and returns the public parameter ppsig = (⟨p,G1,G2,GT , g1, g2, e⟩, T).

21

G1,G2 and GT are groups of prime order p. g1 and g2 are generators of G1

and G2, respectively. e : G1 × G2 → GT is a degenerated bilinear map.
T : {0, 1}∗ → G2 is a cryptographic hash function.

– (vksig, sksig)← BLS.Keygen(ppsig): It takes a public parameter as input and

picks random a
$←Zp. And then, it returns a key tuple of signing key sksig = a

and verifying key vksig = A = ga1 .
– σ ← BLS.Sign(ppsig, sksig,m): It takes public parameter ppsig, signing key

sksig = a and message m ∈ {0, 1}∗. And then, it returns σ = T (m)a

– 0\1 ← BLS.Verify(ppsig, vksig,m, σ): It takes public parameter ppsig, the
verifying key vksig = A, message m, and signature σ ∈ G2. If e(g1, σ) =
e(A, T (m)) it returns 1; otherwise, it returns 0.

Generic Group Model [23,16] A generic group model (GGM) is an idealized
model for a group whose operations are carried out by making oracle queries.
The GGM is designed to capture the behavior of general algorithms that oper-
ate independently of any particular group descriptions. By this restriction, the
GGM establishes a lower bound on the cost of solving the discrete logarithm
(DL) problem, which is sub-exponential [23,16]. In other words, GGM implies
DL assumption, which serves as the underlying assumption of both Schnorr’s
signature [22] and BLS signatures [6].

Specifically, we consider the bilinear GGM, which additionally simulates a
bilinear map e : G1×G2 → GT as proposed in [11]. The bilinear GGM is defined
by the following:

Definition 4 (Bilinear Generic Group Algorithm [23,11]). A bilinear
generic group algorithm A is an algorithm that can access bilinear generic group
oracle OBL to treat group operation. The bilinear generic group oracle runs as
follows in Figure 8.

D Token Unforgeability of TUDORE (Proof of Thm. 1)

In this section, we complete token unforgeability of VDORE scheme. As we men-
tioned, we show that the adventage of token forging game adversary A should
be negligible.

Let A and B be adversaries against the token forging game (Figure 3) and
EUF-CMA game (Figure 7) respectively. Now we construct B which exploits
A. Note that B roles challenger in token forging game against A. Additionally,
we restrict A should send key query to get a public key, which is reasonable
under GGM. Specifically, we consider the bilinear GGM model to access OBL in
Figure 8.

Simulation C against A As we mentioned, B should simulate challenger C for
the token forging game in Figure 3. We describe how to simulate C in Figure 9.

22

Generic Group Oracle OBL

– Query format: two indices with op-type (i, j, op) ∈ Zp × Zp × {×1,×2,×T , e}.
– Output: a bitstring s ∈ {0, 1}∗.
– Encoding List: L := {(i, type), s ∈ Zp × {1, 2, T} × {0, 1}∗}, the O manages the

list L locally.
– Group Operation: If O takes a query (i, j,×type) for type ∈ {1, 2, T}, then O

follows the process.
1. If the index-type tuple (i+j, type) belongs to the list L, then outputs (i+j, type)

corresponding string s where (i+ j, type, s) ∈ L
2. Else, sample s

$←{0, 1}∗ until (∗, ∗, s) /∈ L
3. Output s and adds (i+ j, type, s) to the list L

– Bilinear Map: If O takes a query (i, j, e), then O follows the process.
1. If the index-type tuple (ij, T) belongs to the list L, then outputs (ij, T) corre-

sponding string s where (ij, T, s) ∈ L
2. Else, sample s

$←{0, 1}∗ until (∗, ∗, s) /∈ L
3. Output s and adds (ij, T, s) to the list L

Fig. 8: Bilinear Generic Group Oracle

In the setting phase, B generates pk(B) using generic group oracle OBL in
Figure 8. And then, sends verificatino key vk(B) = vksig received by Csig and
public key pk(B) of B to A.

In the key query phase, B simulates C using OBL. Concretely, B runs Keygen
with accessing OBL.

In the token query phase, by our premise, B already knows an exponent a(A)

of token queried public key pk(A), which should belong to the key query set
Skey. Then, B can generates (t0(A→B), t

1
(A→B)) = (pk(A), pk

a(B)

A = g
a(A)a(B)

2) with
accessing OBL. After then, B gets signature σB from signature query to Csig.
Therefore B can response the token query by getting tok(A→C) from OBL.

Finally, B receives the forged token from A and then uses it to win the
EUF-CMA game (Figure 7).

In the simulation process, B does not fail to respond to the A’s queries, and
the responses follow the same distribution as in the real game. This means that,
from the adversary’s perspective, the real game in Figure 3 is indistinguishable
from the simulated game by B in Figure 9.

Probability Analysis If A succeeds to forge the token, then the signature parts
σ̂B should be valid signature for the message m̂ = (̂t0(A→B),

̂t1(A→B)). That means,
B can succeed in the forging signature of adaptively chosen message m̂. Then,
we get the following inequality.

AdvTF[A,VDERE] ≤ AdvEUF−CMA[B,SSig]

23

BA(1λ)→ (m̂, σ̂)

1. Setting Phase: Csig runs setup algorithm ppsig = ppsig := (⟨p, [G1, g1]OBL⟩, T)←
Setup(1λ) and key generation algorithm (vksig, sksig) ← Keygen(ppsig). And then
sends (ppsig, vksig) to B.

2. Simulation C against A: B roles token forging game challenger C against A.
(a) Setting Phase: B construct pp = (⟨p, [G1,G2, g1, g2,GT , e]OBL⟩, H,T) using

ppsig. And then B samples a(B)
$←Zp and access generic group oracle OBL to

get a public key pk(B) ← OBL(a(B), 0,×2). And then B sends (pp, vk(B) =
vksig, pk(B)) to A.

(b) Key Query: If A sends key query with index i to B, then B follows the role
of challenger in Figure 3. If (i, pk(i), vk(i)) ∈ Skey, then output (i, pk(i), vk(i)).
Otherwise, it runs (sk, pk, tk) ← KeygenOBL(pp). And it returns (pk, tk) and
adds the tuple (i, pk, tk) to key query set Skey

(c) Token Query: If A sends token query with pk(A), then B finds a(A) from
the key query set Skey. And then B access generic group oracle OBL to get
random string t1(A→B) ← OBL(a(A)a(B), 0,×2). After then, B sends signature
query (t0(A→B) := pk(A), t

1
(A→B)) to Csig and gets a signature σB. Finally, B

responses tok(A→B) = (t0(A→B), t
1
(A→B), σB) to A

(d) Receive Forged Token: B recieves forged token (v̂k(A), ̂tok(B→A), ̂tok(A→B))
from A.

3. Challenge Phase: B answers ̂tok(A→B) =
(
(̂t0(A→B),

̂t1(A→B)), σ̂B

)
= (m̂, σ̂) to

Csig.

Fig. 9: Construct B using A

where AdvTF[A,VDERE] is A’s advantage to the token forging game (Fig-
ure 3) and AdvEUF−CMA[B,SSig] is B’s advantage to the EUF-CMA game Figure 7
under the security parameter λ.

By our premise, AdvEUF−CMA[B,SSig] is at most negligible to λ. Then, we
can claim that AdvTF[A,VDERE] < negl(λ). Thus, we can conclude that VDERE
satisfies token unforgeability.

E Additioanl Experiments

This section introduces the performance for encryption time, ciphertext storage
cost, and test time. The encryption is executed by the users, and the test is
operated by the servers. As shown in Figure 10, we can identify all values are
identical throughout DORE, SEDORE, and VDORE because the three schemes
use the same encryption and test algorithm. Furthermore, in Figure 10c, we show
the evaluation of the test algorithm for the best and worst scenarios. From this,
the best-case scenario involved comparing two plaintexts where the most signifi-
cant bit (MSB) differed. For instance, comparing 1 · · · b6b7(2) and 0 · · · b′6b′7(2) in
an 8-bit scenario. Therefore, we compare values for this experiment where only
the MSB of each bit length is set to 1 and 0. On the other hand, the worst-case

24

8 16 24 32 48 64
Bit length

0

50

100

150

200

En
cr

yp
tio

n
tim

e
(m

ili
se

co
nd

s) DORE
SEDORE
EDORE
Our ORE

(a) Encryption time

8 16 24 32 48 64
Bit length

0

1,000

2,000

3,000

4,000

5,000

6,000

St
or

ag
e

co
st

 (b
yt

es
)

DORE
SEDORE
Our ORE

(b) Ciphertext storage cost

8 16 24 32 48 64
Bit length

100

101

102

103

Te
st

 ti
m

e
(m

ili
se

co
nd

s)

DORE with Worst
SEDORE with Worst
Our ORE with Worst
DORE with Best
SEDORE with Best
Our ORE with Best

(c) Test time(B & W)

Fig. 10: The performance graphs for encryption time, ciphertext storage cost, and
test time for DORE, SEDORE, and our VDORE. In Figure 10c, B indicates Best
and W indicates Worst.

scenario involves comparing two identical plaintexts. The light-colored graphs
represent results for the worst-case scenario, while the dark-colored ones depict
the best-case scenario. In the best-case scenario, regardless of the bit length,
each has a fixed cost of about 1 second. In the worst-case scenario, three ORE
schemes take approximately 19 seconds and 158 seconds for 8-bit and 64-bit op-
erations, respectively. In Figure 6b, we show that the computational time falls
within the range of Figure 10c.

25

	UTRA: Universal Token Reusability Attack and Token Unforgeable Delegatable Order-Revealing Encryption

