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Abstract. We consider the problem of electing a leader among n parties
with the guarantee that each (honest) party has a reasonable probability
of being elected, even in the presence of a coalition that controls a subset
of parties, trying to bias the output. This notion is called “game-theoretic
fairness” because such protocols ensure that following the honest behav-
ior is an equilibrium and also the best response for every party and coali-
tion. In the two-party case, Blum’s commit-and-reveal protocol (where
if one party aborts, then the other is declared the leader) satisfies this
notion and it is also known that one-way functions are necessary. Recent
works study this problem in the multi-party setting. They show that
composing Blum’s 2-party protocol for log n rounds in a tournament-
tree-style manner results with perfect game-theoretic fairness: each hon-
est party has probability ě 1{n of being elected as leader, no matter
how large the coalition is. Logarithmic round complexity is also shown
to be necessary if we require perfect fairness against a coalition of size
n´1. Relaxing the above two requirements, i.e., settling for approximate
game-theoretic fairness and guaranteeing fairness against only constant
fraction size coalitions, it is known that there are Oplog˚ nq round pro-
tocols.

This leaves many open problems, in particular, whether one can go below
logarithmic round complexity by relaxing only one of the strong require-
ments from above. We manage to resolve this problem for commit-and-
reveal style protocols, showing that

- Ωplogn{ log lognq rounds are necessary if we settle for approximate
fairness against very large (more than constant fraction) coalitions;

- Ωplognq rounds are necessary if we settle for perfect fairness against
nε size coalitions (for any constant ε ą 0).

These show that both relaxations made in prior works are necessary to go
below logarithmic round complexity. Lastly, we provide several additional
upper and lower bounds for the case of single-round commit-and-reveal
style protocols.
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1 Introduction

Suppose that Rivest, Shamir, and Adleman win yet another important award for
the invention of their groundbreaking RSA crypto-system. The award committee
announces that all of them are invited to the ceremony but only one of them
can deliver a presentation. Since they all want to present and they all reside in
different parts of the world, they need to run a leader election protocol over the
internet. Of course, they are aware of Cleve’s famous lower bound [5] stating that
strongly fair protocols do not exist, i.e., in any protocol, there exists a strategy
for half of the parties to bias the output. However, not all hope is lost because
for their application the classical notion of fairness is overly stringent. Indeed,
a recent line of works [3,8,4,17,12] observed that a relaxed notion of fairness,
called game-theoretic fairness, in the context of leader election is often sufficient
and also possible to achieve even when an arbitrary number of parties may be
corrupt.

To exemplify the notion and possibility of game-theoretic fairness we recall
Blum’s original 2-party coin flipping protocol [2]: each party first commits to a
random coin, they then open their coin, and the XOR of the two bits is used to
elect the winner. If one party fails to commit or correctly open, it is eliminated
and the remaining party is declared the winner. Blum’s protocol satisfies game-
theoretic fairness in the following sense. As long as the commitment scheme is
not broken, a corrupt party cannot bias the coin to its own favor no matter
how it deviates from the protocol. Note that Blum’s protocol is not strongly fair
since a corrupt party can indeed bias the coin, but only to the other party’s
advantage.

The above 2-party protocol can be generalized to handle n parties via a
tournament-tree protocol, as follows. Suppose that n is a power of 2 for simplic-
ity. We first divide the n parties into n{2 pairs, and each pair elects a winner
using Blum’s protocol. The winner survives to the next round, where we again
divide the surviving n{2 parties into n{4 pairs. The protocol continues in the
same manner for log2 n rounds when a final winner is elected.4 At any point in
the protocol, if a party fails to commit or correctly open its commitment, it is
eliminated and its opponent survives to the next round.

The recent work of Chung et al. [3] proved that the above tournament-tree
protocol satisfies a strong notion of game-theoretic fairness, as explained below.
Suppose that the winner obtains a utility of 1 and everyone else obtains a utility
of 0. As long as the commitment scheme is not broken, the tournament tree
protocol guarantees that:

- No coalition of any size can increase its own expected utilty no matter what
strategy it adopts.

- No coalition of any size can harm any individual honest player’s expected
utility, no matter what strategy it adopts.

4 By default, throughout this paper log stands for log2.
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Recent work in this space [3,8,4,17] calls the former notion cooperative-
strategy-proofness (or CSP-fairness for short), and calls the latter notion max-
imin fairness. Philosophically, CSP-fairness guarantees that any rational, profit-
seeking individual or coalition has no incentive to deviate from the honest pro-
tocol; and maximin fairness ensures that any paranoid individual who wants
to maximally protect itself in the worst-case scenario has no incentive to devi-
ate either. In summary, the honest protocol is an equilibrium and also the best
response for every player and coalition. Therefore, prior works [4,3,17,8] argue
that game-theoretic notions of fairness are compelling and worth investigating
because (1) they are arguably more natural (albeit strictly weaker) than the clas-
sical strong fairness notion in practical applications; and (2) the game-theoretic
relaxation allows us to circumvent classical impossibility results pertaining to
strong fairness in the presence of majority coalitions [5].

Since we know that the tournament tree protocol satisfies game-theoretic
fairness, a natural question is whether logarithmic round complexity is necessary.
A protocol of [12] (following up on [3]) showed that if we settle for an approximate
notion of game-theoretic fairness, then the answer is no: there are Oplog˚ nq-
round protocols.5 In approximate fairness we require to satisfy the above notions
of game theoretic fairness (i.e., CSP-fairness and maximin fairness) up to an ε
slack. More specifically, we say that a protocol is p1 ´ εq-fair if every coalition’s
expected utility cannot exceed 1{pnp1 ´ εqq times the size of the coalition and
if any honest individual’s expected utility cannot drop below p1 ´ εq{n. Perfect
fairness holds when p1 ´ εq-fairness holds with ε “ 0.

While the above works provide feasibility of round-efficient protocols for
game-theoretically fair leader election, it is still widely open to characterize the
minimal round complexity needed. This is a major problem left open in the works
of [3,12]. Most strikingly, it is not even known if single-round commit-and-reveal
style protocols exist. This seemingly simple setting with minimal interaction al-
ready turns out to be quite challenging to analyze and our work is the first to
address this problem with various possibility and impossibility results.

Single-round protocols. We start by focusing on single-round “commit-
and-reveal” protocols which consist of two phases: in the first phase each party
commits to a value. In the second phase, each party either opens their com-
mitment or sends a special abort symbol. Finally, a publicly known function is
applied to the revealed values, specifying the identity of a leader. To simplify, we
assume an ideal commitment scheme; this has the advantage of separating the
computational issue regarding cryptography from the game-theoretic aspects of
the problem. Note that this will only make our lower bounds stronger.

Before stating our main results, we want to illustrate the non-triviality of
the problem by going back to the Rivest-Shamir-Adleman conundrum. As men-

5 In fact, their protocol enables a smooth trade-off between the round complexity and
the resilience to strategic behavior, but their framework requires at least Ωplog˚ nq

rounds to provide any meaningful fairness guarantee. Here log˚ n denotes the mini-
mum number of times the logarithm function must be iteratively applied to n before
the result is less 1.
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tioned, they can fairly decide who will deliver the presentation using a “depth-
two” tournament tree (commit-and-reveal-commit-and-reveal). Can they do it
using only commit-and-reveal? We answer this question by showing the following
results:

1. An upper bound : there is a commit-and-reveal protocol achieving p3{4q-
fairness.

2. A lower bound : there is no commit-and-reveal protocol achieving p1 ´ εq-
fairness for any ε ă 1{4.

The upper bound is obtained via the following simple protocol: every pair
runs Blum’s perfectly fair leader election protocol. A party is declared as the
leader if it wins both of its tournaments. If no party won both tournaments, we
simply declare party 1 as the leader. Because the pair-wise protocol is perfectly
fair, any fixed party will be declared as leader with probability at least 1{4. Thus,
the protocol is p1{4q{p1{3q “ p3{4q-fair. The more surprising aspect of the above
result is the lower bound, showing that this protocol is optimal. Our proof relies
on a non-trivial application of the minimax principle. More generally, we prove
the following theorem for any number of parties:

Theorem 1 (Fairness of single-round protocols; informal). For protocols
on n parties, even in the presence of a corrupted coalition of size n ´ 1:

- There exists pn{2n´1q-fair single-round “commit-and-reveal” protocol.
- Any α-fair single-round “commit-and-reveal” protocol satisfies α ď n{2n´1.

Extensions. By a “grouping” argument we extend the above impossibility
result to the setting where the honest set of parties consists of a constant β
fraction of parties. For instance, when β “ 1{3, our result shows that there is
no p8{9q-fair leader election protocol. See Theorem 18 for the exact statement.
Lastly, we consider the low-corruption regime, i.e., when the coalition is of size
say 1 or 2 and n ě 3 is arbitrarily large. We show (in Theorem 25) that in this
setting there are no perfectly fair leader election protocols.

Multiple-round protocols. It was shown in [3, Theorem 8.1] that Ωplog nq

rounds are required for perfectly fair leader election among n parties. When the
protocol is required to be only approximately fair, the number of rounds can be
reduced to Oplog˚ nq by [12].

This gap is due to two differences between the regimes. First, perfect fairness
is more stringent, requiring ε “ 0 in the fairness definition. Second, the Ωplog nq

lower bound implicitly assumes protection against a corrupted coalition of size
n ´ 1 (which we abbreviate as pn ´ 1q-corruption), while the Oplog˚ nq-round
protocol assumes a constant fraction (i.e. n ´ Ωpnq) of corrupted parties.

Therefore, there are two cases in which the round complexity is undetermined
(in addition to the question of whether the Oplog˚ nq protocol is most round-
efficient), giving rise to the following questions:

- Question 1: Is there a oplog nq-round protocol with guaranteed approximate
fairness against coalitions of size n ´ opnq?
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- Question 2: Is there a oplog nq-round protocol with guaranteed perfect fair-
ness against coalitions of size less than n ´ 1?

We answer both of the above questions by providing nearly tight lower bounds
on the number of rounds in both cases. At a high level, we show that for every ε P

p0, 1q, perfect fairness in the presence of nε corrupted parties requires Ωplog nq

rounds. We proceed with a more precise statement of our results.

Approximate fairness. We show that Ωplog n{ log log nq rounds are necessary
even in a weak p1{nq-fairness requirement by extending an argument of [3].
The protocols we consider are as in [3], and are composed of a sequence of r
rounds, each of which is a “commit-and-reveal” sub-protocol, as described earlier.
Specifically, we prove the following theorem in Section 5.

Theorem 2 (Approximate fairness against large coalitions requires at
least logpnq{ log logpnq rounds). A leader election protocol on n parties, having
r “commit-and-reveal” rounds, in which each honest party has a chance of 1{n2

to be elected (i.e. 1{n-fairness), even in the presence of a corrupted coalition of
size n ´ k, must satisfy

r ą
logpnq ´ logpkq

log logpnq ` 3
.

We further extend this result to the case of committee election, where a small
set of t parties is to be elected; see Section 5 for detail.

Perfect fairness. We also show a logarithmic lower bound on the round com-
plexity of any perfectly fair leader election protocol in the presence of sub-pn´1q

corrupted parties. Specifically, we prove the following theorem in Section 6.2.

Theorem 3 (Perfect fairness against size-k coalitions requires at least
log k rounds). A leader election protocol on n parties, having r “commit-and-
reveal” rounds, which is perfectly fair in the presence of a corrupted coalition of
size k, must satisfy

r ě rlogpminpn, 2kqqs .

Organization. In Section 2, we provide a technical overview of our proofs. In
Section 3, we define fairness, committee-election protocols, and prove an n-party
minimax theorem. In Section 4, we give a tight bound on the fairness of single-
round protocols. In Section 5, we apply this bound to bound the round-efficiency
of reasonably-fair protocols. Finally, in Section 6, we lower bound the number
of rounds of perfectly fair protocols.

1.1 Additional Related Work

There are several prior results on lower bounds of coin flipping protocols that
imply certain impossiblity results of leader election protocols. In the information-
theoretical regime, Russel, Saks and Zuckerman [14] showed that for any n-party
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coin flipping protocols with r “ oplog˚ nq rounds where each party can only
send one bit per round, a coalition of a constant fraction of parties can bias the
outcome. Later, Filmus et. al. [7] extended the results to protocols where each
party is allowed to send arbitrary messages. In the setting where a constant
fraction of parties are corrupted, since a fair n-party r-round leader election
protocol implies an n-party pr ` 1q-round coin flipping protocol safe against
a constant bias, the results imply that there is no fair n-party leader election
protocol with r “ oplog˚ nq rounds in the information-theoretical regime. The
plog˚ n`Op1qq-round protocol by Russell and Zuckerman [15] and Feige’s famous
lightest bin protocol [6] show that the above lower bounds are tight.

A result by Berman, Haitner and Tentes [1] (improving on [11]) shows that
any 2-party weak coin flipping protocol safe against any constant bias implies the
existence of one-way functions. Here the security of 2-party weak coin flipping
guarantees that the adversary cannot bias the outcome towards 1 by corrupting
party one and cannot bias the outcome towards 0 by corrupting party two. The
result implies that any fair n-party leader election protocol in the dishonest
majority setting implies the existence of one-way functions, since such an n-
party leader election protocol implies a 2-party weak coin flipping protocol safe
against a constant bias.

We also note that there is a line of work on random selection protocols in the
information-theoretical regime [9,16,10], wherein n parties want to agree on a
random value sampled from a output universe of size p and the security goal is to
prevent the corrupted parties from causing the output to lie in some small subset
of the output universe. Although one can view a random selection protocol as a
leader election protocol for p “ n, we emphasize that their security goal is very
different from our fairness notion. In particular, they do not prevent an attacker
that controls n´1 parties from always making sure that the output is one of the
corrupted n ´ 1 parties, which is exactly the setting that we are interested in.
As another evidence of the difference, Gradwohl, Vadhan and Zuckerman [10]
give a log˚

pnq-round random selection protocol in the dishonest majority setting
without using any cryptography/ideal model commitments, while for our notion
of fairness this is impossible [1] (as mentioned above).

1.2 Open Problems

One limitation of our impossibility results is that we only consider the commit-
and-reveal style protocols, and it is unclear whether we can generalize our im-
possibility results to stronger models (e.g., only assuming one-way functions or
oblivious transfer).

Another main open problem is whether we can extend our lower bounds on
the number of rounds to the setting where the number of honest parties is greater
than n{ log n. For example, when a constant fraction of parties are honest, the
protocol of [12] needs Oplog˚ nq rounds, but we do not know whether this is
optimal.

Regarding upper bounds, for the pn´ 1q-corruption case, we only know that
there are perfectly fair protocols with log n rounds, but it is unclear whether
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we can do slightly better than log n rounds for approximate fairness. Our lower
bound shows that a fair protocol needs at least logn

log logn`Op1q
rounds. It is inter-

esting to see whether we can close this gap.
In the regime of perfect fairness, it is unclear whether our lower bound is

tight. Even if the adversary only corrupts a single party, it is unclear whether
we can construct a perfectly fair leader election protocol with r ă log n rounds
or show it is impossible. Also, for single-round protocols, we only show there is
no perfect leader election protocol, but it is unclear whether it can be extended
to committee election protocol. For example, it is unclear whether we can elect
2 out of 5 parties by a single round protocol with perfect fairness assuming only
one party is malicious.

2 Technical Overview

In this section we describe the technical methods underlying the proofs of our
main results. In Section 2.1 we explain the ideas behind the proof of the single-
round setting Theorem 1, and in Section 2.2 we explain how to obtain our results
in the multi-round setting, i.e., Theorems 2 and 3.

For the lower bounds of approximate fairness, we focus on the pn ´ 1q-
corruption case in the following explanations. Our results for pn´ kq-corruption
follow by “grouping” various sets of parties together and treating them as one,
as follows: Roughly, given a fair n-party protocol against pn´kq-corruptions, we
construct a fair n{k-party protocol against pn{k´1q-corruptions by partitioning
n parties into n{k groups of size k and viewing each group as a single party. We
refer to Sections 4.3 and 5.1 for details on this reduction.

2.1 Lower Bounds for Single-Round Commit-and-Reveal Protocols

Given a single-round n-party commit-and-reveal leader election protocol, we
show that there exists an adversary corrupting n´ 1 parties such that the prob-
ability that the honest party is the leader is at most 2´pn´1q. Since the protocol
is commit-and-reveal, the adversary must choose the inputs for all corrupted
parties before seeing the honest party’s input. After receiving the honest party’s
input, the only strategy of the adversary is to let some corrupt parties abort.

The idea of our attack is to let all but one corrupted party abort. After
receiving the input of the honest party, the adversary checks whether there
exists a corrupted party i such that party i wins against the honest party if all
corrupted parties except party i abort. Denote the event that the honest party
j wins against party i as Lossi. The intuition that this attack works is that, on
average, the probability that Lossi occurs should be at most 1{2, and therefore,
since there are n ´ 1 corrupted parties, the probability that no corrupted party
wins against the honest party should be at most 2´pn´1q.

However, this simple argument does not work. The main issue is that the two
events Lossi and Lossk for two corrupted parties i and k are not independent. In
fact, they both depend on the input of the honest party j. The idea to address
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this is to fix the input of the honest party in our analysis. Since Lossi depends
only on the inputs of party i and the honest party, assuming the adversary
chooses the input of each corrupted party independently, the events Lossi and
Lossk are independent given the input of the honest party xj . Therefore, the
probability that the honest party is the leader is at most maxx

ś

i PrrLossi|xs,
where PrrLossi|xs denotes as the probability that Lossi occurs given that x is
input of the honest party.

The problem then reduces to bounding maxx
ś

i PrrLossi|xs. To this end,
we define a few notations for describing the adversary’s strategy. We use Si to
denote a (mixed) strategy for choosing the input of party i. We denote pi,jpSi, xjq

as the probability that Lossi occurs under the strategy Si given that party j is
the honest party and the input of party j is xj . Then, the probability that the
honest party j wins and elected as the leader is upper bounded by

Wj “ min
tSiuiPrnsztju

max
xj

ź

i

pi,jpSi, xjq. (1)

Recall that the protocol is ‘not fair’ even if for one specific j the value Wj is
too small. We will even show that the expected value of logpWjq over uniformly
random j „ rns is small.

To bound (1), we use the minimax theorem from game theory. The mini-
max theorem shows that for any two parties i and j, minSi

maxxj
pi,jpSi, xjq `

minSj maxxi pj,ipSj , xiq “ 1. Therefore, denoting pi,j :“ minSi maxxj pi,jpSi, xjq,
we rewrite the minimax equation as pi,j ` pj,i “ 1 for all i ‰ j P rns. Also, the
probability that the honest party is the leader is bounded by

ś

iPrnsztju pi,j .
Overall, we converted the problem to the following question: given 0 ď pi,j ď

1 and pi,j ` pj,i “ 1 for all i ‰ j P rns, show that there exists j such that
ś

iPrnsztju pi,j ď 2´pn´1q. To show this, we take the logarithm of both sides,
which converts products to sums. Since pi,j `pj,i “ 1, by Jensen’s inequality, we
have log pi,j ` log pj,i ď 2 logppi,j{2`pj,i{2q “ ´2. It remains to show that there
exists j such that

ř

iPrnsztju log pi,j ď ´pn ´ 1q. For simplicity, we demonstrate
the proof for n “ 3. By summing of all pairs of i ‰ j, we have

log p2,1 ` log p3,1 ` log p1,2 ` log p3,2 ` log p1,3 ` log p2,3 ď ´6 .

Therefore, one of the followings holds:

logpW1q “ log p2,1 ` log p3,1 ď ´2,

logpW2q “ log p1,2 ` log p3,2 ď ´2,

logpW3q “ log p1,3 ` log p2,3 ď ´2.

This proves that any one-round leader election protocol cannot be α-fair for
α ě 2´pn´1q{p1{nq “ n{2n´1. We refer to Section 4.2 for the full proof.

Extending to committee election. Committee election protocols are similar to
leader election protocols, except that they elect a committee of t parties, instead
of just one party. Each party wants to be elected with probability about t{n.
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If we wish to show that single-round protocols are not fair, we cannot use
the same adversary for committee election protocols, since it aborts all but two
parties. This means that the honest party will always be elected once two parties
are elected. The adversary is supposed to prevent this from happening.

To address this, the idea is to partition the corrupted parties into groups of
size k where k is larger than the committee size. After receiving the honest party’s
input, the adversary picks a group and lets all other groups abort. Similarly to the
leader election case, assuming that party j is the honest party and the input of j
is xj , for a set of parties T Ă rnsztju and a (mixed) strategy ST of parties in T ,
we denote pT,jpST , xjq the probability that the honest party is in the committee
under the strategy ST given that all corrupted parties except those in T abort.
Denote pT,j :“ minST

maxxj
pT,jpST , xjq. By extending the minimax theorem to

the pk ` 1q-party case, we can show that
ř

jPT 1 pT 1ztju,j ď t, where T 1 Ă rns is a
set of size k ` 1. Intuitively, this shows that on average pT,j ď t{pk ` 1q. Also,
given party j as the honest party and a partition P “ pT1, . . . , Tpn´1q{kq of the
corrupted parties, the probability that the honest party is in the committee is
bounded by

ś

TPP pT,j . Using a similar calculation for the leader election case,
we show that there exists party j and a partition P such that

ř

TPP log pT,j ď

pn ´ 1q{k logpt{pk ` 1qq. We refer to Section 4.2 for the full proof.
By setting k “ 2t´1, the probability that the honest party is in the committee

is bounded by 2´
n´1
2t´1 . We remark that other choices k cannot improve the bound

asymptotically. In fact, our upper bound for single-round committee election
protocols indicates that the lower bound is tight up to a constant factor in the
exponent. Intuitively, the lower bound means that it is not possible to fairly
elect a committee of size smaller than Opn{ log nq in one-round, which is a useful
fact used in proving the lower bounds of multi-round protocols (that we discuss
next).

2.2 Extending to Multi-Round Protocols

Here, we shall focus on leader election protocols and note that similar arguments
apply to committee election protocols as well. The key step is to show the fol-
lowing inductive argument: given an α-fair r-round n-party commit-and-reveal
leader election protocolΠ, there exists an α1-fair pr´1q-round commit-and-reveal
leader election protocol Π 1 for Ωpn{ log nq parties, where α1 is not significantly
lower than α. Intuitively, this means that at each round the number of parties
can only shrink by at most a factor of 1{ log n. Therefore, a fair n-party leader
election protocol requires at least logn

log logn`Op1q
rounds.

We prove such a reduction as follows. After the first round of commit-and-
reveal, we observe that some parties might be “eliminated,” making the proba-
bility that these parties are elected become small or 0. We first show that the
number of parties that are not “eliminated” is Ωpn{ log nq, meaning that the
number of parties after the first round does not shrink too much. We show this
by viewing the first round as a single-round committee election protocol, where
the elected committee is the set of parties that are not “eliminated.” Now, we
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use our lower bound for single-round committee election protocols to conclude
that the number of parties that are not “eliminated” is Ωpn{ log nq. Finally,
we construct Π 1 from Π by fixing the first-round execution and grouping all
eliminated parties together with one of the remaining parties as one party.

To make the above argument formal, we need to first define the condition
under which a party is eliminated formally and show that the condition implies
that Π 1 is α1-fair for some α1 ą 0. Concretely, after the first-round execution, we
say a party i is eliminated if and only if there exists an adversary corrupting all
but party i such that the probability that i is elected is smaller than α{n´2{n2.
Then, for the resulting pr ´ 1q-round protocol, no matter which parties the
adversary corrupts the probability that the honest party is elected is at least
α{n ´ 2{n2, meaning that the pr ´ 1q-round protocol is Ωppα ´ 2{nq{ log nq-fair.

Also, we need to show that there exists a first-round execution such that
the number of remaining (non-eliminated) parties is Ωpn{ log nq. We prove it by
contradiction. Suppose this is not true. By our lower bound of single-round com-
mittee election protocols, there exists an adversary such that the honest party
is not eliminated after the first round with probability at most 1{n2. There-
fore, by the definition of “elimination,” we can construct an adversary such that
the honest party is elected as the leader with probability at most ε{n ´ 1{n2,
which contradicts the fact that Π is ε-maximin-fair. The full details are given
in Section 5.

2.3 Lower Bounds for Perfectly Fair Protocols

The prior result [3] by Chung et. al. shows that any perfectly fair n-party leader
election protocol against pn ´ 1q-corruption is at least rlog ns-round. We extend
their result to protocols against k-corruption by showing that the requirement
for the number of corrupted parties in the following key step of their proof can be
relaxed. Concretely, their proof shows that for any perfectly fair n-party leader
election protocol against pn ´ 1q-corruption, there exists a first-round execution
such that given the first-round execution, the number of parties left is at least
n{2, where we say a party is eliminated if the probability that the party is elected
is 0. We relax the condition of pn ´ 1q-corruption in the above claim and show
that for any perfectly fair n-party leader election protocol against k-corruption,
there exists a first-round execution such that given the first-round execution, the
number of parties left is at least mintn{2, ku. Given the first-round execution, we
can view the rest of the execution of the protocol as a protocol for mintn{2, ku

parties by fixing the execution for all the eliminated parties arbitrarily. Intuitvely,
since there are k corrupted parties, the resulting protocol must be perfectly fair
even if all but one party are corrupted. Since the prior result indicates that the
resulting protocol needs at least rlogpmintn{2, kuqs rounds, the n-party protocol
needs at least rlogpmintn{2, kuqs ` 1 rounds. We refer to Section 6 for details.
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3 Preliminaries

Notations. We use rns to denote the set t1, . . . , nu and rℓ..ns to denote the set
tℓ, . . . , nu. We use x P Ωn to denote a vector and xi to denote the i-th entry of
x. We always use log x to denote the logarithm of x to the base 2.

3.1 Commit-and-Reveal Committee Election Protocols

An pn, r, tq-commit-and-reveal committee election protocol is a 2r-round interac-
tive protocol among n parties that outputs a committee of size at most t. In this
context, we assume that each party has a public identity 1, 2, . . . , n, and that the
interaction is synchronous, so that the protocol proceeds in rounds. Further, we
use the notion of an ideal commitment functionality Fcom, as defined in Figure 1.

Fcom runs with parties t1, . . . , nu.

- Upon receiving input pcommit, sid,msgq from party i, if msgpi,sidq is not
recorded, Fcom records msgpi,sidq :“ msg and sends preceipt, i, sidq to all
parties.

- Upon receiving input popen, sidq from party i, if msgpi,sidq is recorded, Fcom

sends popen, i, sid,msgq to all parties.

Fig. 1. The ideal commitment functionality Fcom

For each i P rrs, in the p2i ´ 1q-th round, each party j picks an element x
piq
j

from Ω and sends pcommit, i, x
piq
j q to Fcom. W.l.o.g., in an honest execution, we

assume that x
piq
j is sampled uniformly from Ω. In the 2i-th round, after receiving

preceipt, j1, iq for each party j1, each party j sends popen, iq to Fcom. If the party
aborts in either of the two rounds or does not open its commitment, we denote

x
pi1

q

j “ K for i ď i1 ď r. Finally, each party uses a deterministic algorithm which

takes pxp1q, . . . ,xprqq as input to compute the selected committee. Since all com-
munication relies on the functionality Fcom, which implicitly implies broadcast
channels, each party receives the same view during the execution of the protocol,
and thus all parties agree on the final selected committee.

For simplicity, we say the protocol is an r-round commit-and-reveal protocol.

We call xpiq the input of round i and x
piq
j the input of party j in round i.

Formally, the commit-and-reveal committee election protocol can be represented
as a function Π, indicating which parties win the election and are included in
the committee (see Definition 4).

Definition 4 (Commit-and-Reveal Committee/Leader Election). For
any integers r ě 1 and 1 ď t ď n, an pn, r, tq-commit-and-reveal committee

11



election protocol with input space Ω is a function

Π : pptKu Y Ωqnqr Ñ pt0, 1uq
n

such that for any xp1q, . . . ,xprq P ptKu Y Ωqn, 1 ď
řn

i“1 Πipx
p1q, . . . ,xprqq ď t,

where Πipx
p1q, . . . ,xprqq denotes the i-th entry of the output of Π. In particular,

an pn, r, 1q-commit-and-reveal committee election protocol is an pn, rq-commit-
and-reveal leader election protocol.

Remark 5. We note here that for committee election we only require the pro-
tocol to select a non-empty committee with size at most t instead of exactly t.
This is because we mainly consider impossibility results in this paper, and our
definition can cover a wider range of protocols, which makes our impossibility
results stronger. Also, for our positive results (see Section 4.1), our committee
election protocol does always select t parties.

Security. An adversary can corrupt k parties at the beginning, before the rounds
begin. Since we use the ideal commitment functionality, during each round, the
only strategy of the adversary is to choose the inputs of all corrupt parties
independent of all honest parties’ inputs (for that round) and decide, for each
corrupted party, whether to abort according to the revealed inputs of the honest
parties. That is, we assume the adversary is rushing, i.e., the adversary can
decide whether to abort after observing all honest parties’ revealed inputs.

Fairness. We use the same fairness definition as [12]. Maximin-fairness means
that the adversary cannot decrease the probability that an honest party is in the
committee by a factor of p1 ´ εq, and is formally defined in Definition 6. Fur-
thermore, CSP-fairness means that the adversary cannot increase the expected
fraction of corrupted parties in the committee by a factor of 1

1´ε , and is formally
defined in Definition 7.

Definition 6 (Maximin-Fairness). We say that an pn, r, tq-commit-and-reveal
committee election protocol is p1´ε, kq-maximin-fair if for any adversary A that
corrupts a set S Ď rns of parties of size k, and for any i P rnszS,

Prri is in the committees ě
p1 ´ εqt

n
,

where the probability is taken over the randomness of A and all honest parties’

inputs tx
pℓq

j ujPrnszS,ℓPrrs with x
pℓq

j sampled uniformly from Ω.

Definition 7 (CSP-Fairness). We say that an pn, r, tq-committee election
protocol is p1´ ε, kq-CSP-fair if for any adversary A that corrupts a set S Ď rns

of parties of size k,

Erthe fraction of corrupted parties in the committees ď
k

np1 ´ εq
,

12



where the expectation is taken over the randomness of A and all honest parties’

inputs tx
pℓq

j ujPrnszS,ℓPrrs with x
pℓq

j sampled uniformly from Ω.

Moreover, we say a scheme is p1 ´ ε, kq-fair if the scheme is both p1 ´ ε, kq-
maximin-fair and p1 ´ ε, kq-CSP-fair. We say a scheme is perfectly fair against
k-corruption if and only if the scheme is p1, kq-fair.

3.2 Minimax Theorem

We first recall the minimax theorem from game theory, which was first proved
in [13]. Then, we show an n-variable extension of the theorem, which is used in
our proofs of lower bounds for single-round protocols. For any n-variable function
f : Ωn Ñ R, a (mixed) strategy for a set S Ď rns (of players) is a probability
distribution over all inputs txi P ΩuiPS . Such a strategy can be regarded as a
function S : Ω|S| Ñ r0, 1s such that

ř

xPΩ|S| Spxq “ 1. Given two strategies
S1,S2 where S1 is for S Ď rns and S2 is for rnszS, we denote

fpS1, txjujPrnszSq :“
ÿ

txiuiPSPΩ|S|

S1ptxiuiPSqfpx1, . . . , xnq

and

fpS1,S2q :“
ÿ

xPΩn

S1ptxiuiPSqS2ptxjujPrnszSqfpx1, . . . , xnq .

Theorem 8 (Minimax Theorem [13]). For any 2-variable function f :
Ω2 Ñ R, we have

max
S1

min
S2

fpS1,S2q “ min
S2

max
S1

fpS1,S2q ,

where S1 denotes a strategy for the first input and S2 denotes a strategy for the
second input.

Using the above theorem, we deduce the following lemma, which can be
viewed as an n-variable extension of the original minimax theorem.

Lemma 9 (n-Party Minimax). For any k P R, and any n-variable functions
f1, . . . , fn : Ωn Ñ R such that

ř

iPrns fipxq ď k for any x P Ωn, we have

ÿ

iPrns

min
S

pi

max
Si

fipSpi,Siq ď k ,

where S
pi denotes a strategy for rnsztiu and Si denotes a strategy for tiu.

Remark 10. In order to see that Lemma 9 extends Theorem 8, we can apply
the former twice with pf1, f2, kq “ pf,´f, 0q and with pf1, f2, kq “ p´f, f, 0q

respectively.
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Proof. By viewing fi as a two-variable function and applying Theorem 8, we
have

min
S

pi

max
Si

fipSpi,Siq “ max
Si

min
S

pi

fipSpi,Siq .

For each i P rn ´ 1s, there exists Sp0q

i such that

max
Si

min
S

pi

fipSpi,Siq “ min
S

pi

fipSpi,S
p0q

i q .

Then, for each i P rn ´ 1s,

min
Sn

fipSp0q

1 , . . . ,Sp0q

n´1,Snq ě min
S

pi

fipSpi,S
p0q

i q “ max
Si

min
S

pi

fipSpi,Siq.

Therefore,

max
S

pn

min
Sn

ÿ

iPrn´1s

fipSpn,Snq ě min
Sn

ÿ

iPrn´1s

fipSp0q

1 , . . . ,Sp0q

n´1,Snq

ě
ÿ

iPrn´1s

min
Sn

fipSp0q

1 , . . . ,Sp0q

n´1,Snq

ě
ÿ

iPrn´1s

max
Si

min
S

pi

fipSpi,Siq .

(2)

Thus,
ÿ

iPrns

min
S

pi

max
Si

fipSpi,Siq “ min
S

pn

max
Sn

fnpS
pn,Snq `

ÿ

iPrn´1s

max
Si

min
S

pi

fipSpi,Siq

ď min
S

pn

max
Sn

¨

˝k ´
ÿ

iPrn´1s

fipSpn,Snq

˛

‚` max
S

pn

min
Sn

ÿ

iPrn´1s

fipSpn,Snq

“ k ´

¨

˝max
S

pn

min
Sn

ÿ

iPrn´1s

fipSpn,Snq

˛

‚` max
S

pn

min
Sn

ÿ

iPrn´1s

fipSpn,Snq

“ k ,

where the first equality is due to the minimax theorem, the first inequality is
due to Equation (2), and the next equality is due to the fact that minx ´fpxq “

´maxx fpxq.

4 Upper and Lower Bounds of Single-Round Protocols

In this section, we first show a single-round n-party commit-and-reveal leader
election protocol that is pn{2n´1, n´ 1q-fair. Then, we show that the protocol is
optimal by proving a tight lower bound for the pn ´ 1q-corruption case. Finally,
we extend the results to a general corruption setting .

We extend both the upper and lower bounds to committee election protocols.
The bounds we get are tight up to a constant factor in the exponent for the
pn ´ 1q-corruption case. These bounds are used in the next section when we
extend our lower bounds to multi-round protocols.
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The parties are divided into t groups with size at most rn{ts. Within each
group, we denote the parties as t1, . . . , ℓu. The input of each party i is
xi P t0, 1u

ℓ
ˆ rℓs. Given all parties’ inputs px1, . . . , xℓq, at most one party

in t1, . . . , ℓu is selected in the committee as follows.

- For each pair 1 ď i ă j ď ℓ, if xirjs ‘ xjris “ 1, we say party i wins
against party j. Otherwise, we say party j wins against party i. If one
of the parties abort, i.e., xi “ K or xj “ K, then the other party wins
against the party that aborts.

- Party i is selected if party i wins against all other parties in the group.
- If such i does not exist, the first party is selected.

Fig. 2. The single-round commit-and-reveal committee election protocol Πopt.

4.1 Optimal Single-Round Leader Election

The protocol works as follows. We let each pair of parties run a 2-party tourna-
ment. I.e., each party first commits to a random bit, which is then revealed in
the second round, and the winner of the tournament is indicated by the XOR
of the two revealed bits. If one of the two parties aborts, the other party is
the winner of the tournament. Finally, if there exists a party that wins all its
tournaments, then the party is selected as the leader (note that the winner is
unique). Otherwise, we select an arbitrary party.

Remark 11. We note that we can easily make the protocol perfectly fair in honest
executions by letting a random party be selected when there is no party that
won all its tournaments. More concretely, this can be done by letting party 1
additionaly sample a random index i P rns and put it in the input. If there is no
party that won all its tournaments, party i will be selected as the leader. We will
see that this change will not affect our analysis of fairness, and we only show a
version without perfect fairness in honest executions for simplicity of presenting
the protocol.

Since the probability that any honest party wins each tournament is at least
1/2, the probability of any honest party to be selected as the leader is at least
1{2n´1, no matter how the corrupted parties behave. This implies that the pro-
tocol is pn{2n´1, n ´ 1q-fair. The above protocol can be extended to select a
committee of size t, by dividing the parties into t groups with sizes at most
rn{ts, and electing a leader inside each group using the previous method. Sim-
ilarly, the probability of any honest party to be selected is at least 2´prn{ts´1q.
This protocol is detailed in Figure 2, and is denoted by Πopt.

Theorem 12. For any n ě 2 and 1 ď t ď n{2, there exists a pn, 1, tq-commit-
and-reveal committee election protocol that is p2´prn{ts´1q n

t , n ´ 1q-fair. In par-
ticular, for t “ 1, there exists a pn, 1q-commit-and-reveal leader election protocol
that is p2´pn´1qn, n ´ 1q-fair.

15



Proof. We show thatΠopt is p2´prn{ts´1q n
t , n´1q-fair. Let A be an adversary that

corrupts n´1 parties. For any honest party, no matter how A behaves, the prob-
ability that it wins against another party in its group is at least 1{2. Therefore,
the probability that the honest party is in the committee is at least 2´prn{ts´1q,
which implies that Πopt is pα, n´1q-maximin-fair, where α :“ 2´prn{ts´1q n

t . This
also implies that the expected fraction of corrupted parties in the committee is

at most t´2´prn{ts´1q

t , which means Πopt is p n´1
n´α , n ´ 1q-CSP-fair. Since α ď 1

and n´1
n´α ě 1

2´α ě α, Πopt is pα, n ´ 1q-fair. [\

4.2 Lower Bound for pn ´ 1q-Corruption

We show the above leader election protocol has the best possible fairness guar-
antee by showing the following theorem.

Theorem 13 (Single-Round, pn ´ 1q-Corruption). For any integers 1 ď

t ď n{2, there is no pn, 1, tq-commit-and-reveal committee election protocol that

is pα, n ´ 1q-fair for α ą 2´t n´1
2t´1 u n

t .

Remark 14. Note that in the t “ 1 case, which corresponds to leader election,
Theorem 13 shows that the protocol Πopt is optimally fair when exposed to n´1
corruptions.

Remark 15. In the proof, we show a slightly stronger result that there is no

pα, n ´ 1q-maximin-fair protocol for α ą 2´t n´1
2t´1 u n

t .

Proof. Let Π be an pn, 1, tq-commit-and-reveal committee election protocol. For
any set T Ď rns, suppose all parties not in T abort. Denote ΠT as the protocol Π
given all parties not in T abort, i.e., ΠT ptxiuiPT q :“ Πptx1

iuiPrnsq, where x
1
i “ xi

if i P T and x1
i “ K otherwise.

For each i P T , there exists a strategy ST,i for the players T ztiu that min-
imizes maxxiPΩ ΠT

i pST,i, xiq, where ΠT
i pST,i, xiq is defined according to Sec-

tion 3.2. By Lemma 9, we have that

ÿ

iPT

max
xiPΩ

ΠT
i pST,i, xiq ď t . (3)

Denote pT,i :“ maxxiPΩ ΠT
i pST,i, xiq, which is the maximal probability that

party i is in the committee under ST,i. We let t ď k ď n be an arbitrary integer
and denote ℓ :“ tpn ´ 1q{ku. To construct an adversary A, we pick an index
i P rns as the honest party (the party A does not corrupt) and pick a partition
P “ pT1, . . . , Tℓq of rnsztiu such that one of groups is of size k1 “ n´1´kpℓ´1q

and all the other groups are of size k. We note here that k1 ě k. Denote Pi as
the set of all such partitions.

For each Tj , A uses the strategy STjYtiu,i to sample the inputs for the parties
in Tj . After A sees the input of party i, it picks a Tj (if any) such that party i
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is not in the committee if all corrupted parties not in Tj aborts. Otherwise, A
does nothing. Thus, the probability that party i is in the committee is at most

Pr
xi„Ω,tx1

iui1PTj
„STjYtiu,i

»

–

ľ

jPrℓs

Π
TjYtiu
i ptx1

iui1PTjYtiuq “ 1

fi

fl

ď max
xiPΩ

Pr
tx1

iui1PTj
„STjYtiu,i

»

–

ľ

jPrℓs

Π
TjYtiu
i ptx1

iui1PTjYtiuq “ 1

fi

fl

“ max
xiPΩ

ź

jPrℓs

Pr
tx1

iui1PTj
„STjYtiu,i

”

Π
TjYtiu
i ptx1

iui1PTjYtiuq “ 1
ı

ď
ź

jPrℓs

max
xiPΩ

Π
TjYtiu
i pSTjYtiu,i, xiq

“
ź

jPrℓs

pTjYtiu,i ,

where the probability is taken over uniform choice of xi from Ω and the random-
ness used by STjYtiu. Also, note that the seond equality is due to the fact that the

event Π
TjYtiu
i pSTjYtiu,i, xiq “ 1 and Π

Tj1 Ytiu

i pSTj1 Ytiu,i, xiq “ 1 are independent

for j1 ‰ j given a fixed xi.
It is left to show there exists an index i P rns and a partition P P Pi such that

the above probability is small. By summing over all possible i and partitions,

ÿ

iPrns

ÿ

PPPi

log

˜

ź

TPP

pTYtiu,i

¸

“
ÿ

iPrns

ÿ

PPPi

ÿ

TPP

logppTYtiu,iq

“
ÿ

T 1
Ďrns

|T 1
|Ptk`1,k1

`1u

ÿ

iPT 1

ÿ

pT 1ztiuqPPPPi

logppT 1,iq

“
ÿ

T 1
Ďrns

|T 1
|Ptk`1,k1

`1u

ÿ

PPPT 1

ÿ

iPT 1

logppT 1,iq

ď
ÿ

T 1
Ďrns

|T 1
|Ptk`1,k1

`1u

ÿ

PPPT 1

|T 1| logpt{|T 1|q

“
n!

pk1 ` 1q!pk!qℓ´1pℓ ´ 1q!
pk1 ` 1q logpt{pk1 ` 1qq

`
n!

pk ` 1q!pk!qℓ´2pk1qpℓ ´ 2q!
pk ` 1q logpt{pk ` 1qqq

“
n!

pk!qℓ´1k1!pℓ ´ 1q!
plogpt{pk1 ` 1qq ` pℓ ´ 1q logpt{pk ` 1qqq

ď
n!

pk!qℓ´1k1!pℓ ´ 1q!
ℓ logpt{pk ` 1qqq ,
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where PT 1 denotes the set of all partitions of rnszT 1 of the form pT1, . . . , Tℓ´1q

such that, in case |T 1| “ k1 ` 1, each group is of size k; in case of |T 1| “ k ` 1,
one of groups is of size k1 and all the other groups are of size k. Also, note that
the first inequality is due to Equation (3) and Jensen’s inequality. Since

ÿ

iPrns

ÿ

PPPi

1 “
n!

pk!qℓ´1k1!pℓ ´ 1q!
,

there exists i P rns and P P Pi such that log
`
ś

TPP pTYtiu,i

˘

ď ℓ logpt{pk`1qq “
X

n´1
k

\

logpt{pk`1qq. By setting k “ 2t´1, we get log
`
ś

TPP pTYtiu,i

˘

ď ´

Y

n´1
2t´1

]

,

which concludes the proof. [\

4.3 Lower Bounds for pn ´ kq-Corruption

For any pn, 1, tq-commit-and-reveal committee election protocolΠ that is pαn
t , n´

kq-maximin-fair, we can construct a pn{k, 1, tq-commit-and-reveal committee
election protocol from Π by partitioning n parties into n{k groups of size k
and viewing each group as a single party. Each group is in the committee if and
only if one of the party in the group is in the committee. We can show that the
new protocol is pα n

kt , n{k ´ 1q-maximin fair.
Also, for any pn, 1, tq-commit-and-reveal committee election protocol Π that

is pn´k
nα , n´kq-CSP fair, i.e, for any adversary that corrupts at most n´k parties,

the expected fraction of corrupted parties in the committee is at most α, we can
construct an pn{k, r, tq-commit-and-reveal committee election protocol Π that
is pαn{k, n{k ´ 1q-CSP fair from Π in the same way as the above.

Combining the above two arguments, we have the following lemma.

Lemma 16. If there exists a pn, r, tq-commit-and-reveal committee election pro-
tocol Π that is pα, n ´ kq-fair, then there exists a pn{k, r, tq-commit-and-reveal
committee election protocol that is

ˆ

max

"

α

k
,

ˆ

1 ´
n ´ k

αn

˙

n

tk

*

, n{k ´ 1

˙

-maximin fair.

Remark 17. Here we only consider the case k divides n for simplicity of pre-
senting the results as the bound would not change asymptotically for the case k
does not divide n. If k does not divide n, similarly to the proof of Theorem 13,
we can divide n parties into ℓ “ tn{ku groups with ℓ ´ 1 groups of size k and
the last group of size k1 “ n ´ kpℓ ´ 1q ě k, and get a ptn{ku , r, tq committee
election protocol Π 1 from a pn, r, tq committee election protocol Π. The rest of
proof goes through since corrupting ℓ ´ 1 parties in Π corresponds to corrupt-
ing at most n ´ k parties in Π. The final bound on maximin fairness changes
to max tα tn{ku {n, p1 ´ pn ´ kq{pαnqq ¨ ptn{ku {tqu, which is asymptotically the
same as the bound in the above lemma.

Proof. For a pn, r, tq-commit-and-reveal committee election protocol Π that is
pα, n ´ kq-fair, we construct a pn{k, r, tq-commit-and-reveal committee election
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protocol Π 1 from Π by partitioning n parties into n{k groups T1, . . . , Tn{k of
size k and letting each party i in Π 1 simulate the behaviors of parties in Ti such
that party i is selected in Π 1 if and only if one of parties in Ti is selected in Π.

Consider an adversary A against Π 1 that corrupts n{k ´ 1 parties. Denote
the honest party corresponding to the group Ti. We can view A as an adversary
A1 against Π that corrupts all parties not in Ti, and the number of corrupted
party is n´k. Since Π is pα, n´kq-fair, it holds that (1) the probability that any
honest party is selected is at least α t

n and (2) the expected fraction of corrupted

parties in the committee is at most pn´kq

nα .
Since Ti is selected in Π 1 if one of the honest parties is selected in Π, by (1),

Ti is selected with probability at least α t
n , which means Π 1 is pα{k, n{k ´ 1q-

maximin fair. If Ti is not selected, then the fraction of corrupted parties in the

committee is 1. By (2), it holds that 1 ´ PrrTi is selecteds ď
pn´kq

nα . Therefore,
the probability that Ti is selected is at least p1´ pn´ kq{pnαqq, which means Π 1

is pp1 ´ pn ´ kq{pnαqqn{ptkq, n{k ´ 1q-maximin fair. Therefore, we can conclude
the lemma. [\

By Theorem 13 and Remark 15, we know there is no pn{k, 1, tq-commit-and-
reveal committee election protocol that is pβ, n{k ´ 1q-maximin-fair for β ą

2´t
n{k´1
2t´1 u n

kt . Therefore, by Lemma 16, we have the following theorem.

Theorem 18. For any integers 1 ď t ď k ď n{2, there is no pn, 1, tq-commit-
and-reveal committee election protocol that is pα, n ´ kq-fair for

α ą min

$

&

%

2´
n´k

kp2t´1q
n

t
,

n ´ k

n
´

1 ´ 2´
n´k

kp2t´1q

¯

,

.

-

.

In particular, for leader election protocols, there is no single-round n-party leader

election protocol that is pα, n ´ kq-fair for α ą min

$

&

%

2´
n´k
k n, n´k

n

ˆ

1´2´
n´k
k

˙

,

.

-

.

From the above theorem, for k “ βn where 0 ă β ă 1{2 is a constant, there
is no pn, 1q-commit-and-reveal leader election protocol that is pα, np1 ´ βqq-fair
for α ă

1´β

1´2
´

1´β
β

. For k ď n
4 logn , there is no pn, 1q-commit-and-reveal leader

election protocol that is p1{n, n ´ kq-fair.

5 Lower Bounds for Multiple Rounds

We extend the lower bounds for single-round commit-and-reveal protocols to
multi-round commit-and-reveal protocols for the pn ´ 1q-corruption case, which
is formally stated in Theorem 19. In particular, we show that there is no r-round
leader election protocol that achieves constant-fairness against pn´1q-corruption
for r ď

logn
log logn`3 , which is implied by Corollary 20 below.
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Theorem 19. For any 0 ă δ ă 1, any integer r, t ě 1, and any integer n ě

tp2 rlog 1{δsqr, there is no pn, r, tq-commit-and-reveal committee election protocol
that is pα, n ´ 1q-maximin-fair for α ą rδn{t.

For any n ě 1, if we set δ “ 1{n3, for any r ď
logpn{tq

logp2rlogn3sq
ď

logn´log t
log logn`3 , by

applying the above theorem, we get the following corollary.

Corollary 20. For any integer 1 ď t ď n, any integer r ď
logn´log t
log logn`3 , there

is no pn, r, tq-commit-and-reveal committee election protocol that is
`

1
nt , n ´ 1

˘

-
maximin-fair.

To prove Theorem 19, the key tool is the following inductive argument.
Roughly, it shows that a maximin-fair pn, r, tq-commit-and-reveal protocol im-
plies either a maximin-fair pn, 1, n1q-commit-and-reveal protocol or a maximin-
fair pn1, r ´ 1, tq-commit-and-reveal protocol.

Lemma 21. For any integers 1 ď t ď n1 and n ě 2n1, any integer r ě 1,
and 0 ă α1 ă α, if there exists an pn, r, tq-commit-and-reveal committee elec-
tion protocol that is pαn{t, n ´ 1q-maximin-fair, there exists either an pn1, r ´

1, tq-commit-and-reveal committee election protocol that is ppα´α1qn1{t, n1 ´ 1q-
maximin-fair or an pn, 1, n1q-commit-and-reveal committee election protocol that
is pα1n{n1, n ´ 1q-maximin-fair.

We use Lemma 21 through the following corollary. Intuitively, it shows that
a maximin-fair pn, r, tq-commit-and-reveal protocol implies a fair pn1, r ´ 1, tq-
commit-and-reveal protocol for n1 “ Opn{ log nq.

Corollary 22. For any integers 1 ď t ď n1 and n ě 2n1, any integer r ě 1, and
0 ă α, if there exists a pn, r, tq-commit-and-reveal committee election protocol
that is pαn{t, n´1q-maximin-fair, there exists an pn1, r´1, tq-commit-and-reveal

committee election protocol that is ppα ´ 2
´

Y

n´1
2n1´1

]

qn1{t, n1 ´ 1q-maximin-fair.

To prove Corollary 22 we note that Theorem 13 implies that there is no pn, 1, n1q-

commit-and-reveal protocol that is p2
´

Y

n´1
2n1´1

]

n
n1 , n ´ 1q-maximin-fair. Hence,

among the two options in Lemma 21, only the first is eligible. This immedi-
ately implies Corollary 22.

We now show how to prove Theorem 19 using Corollary 22.

Proof (Theorem 19). For r “ 1, since n ě 2t rlogp1{δqs implies 2´t n´1
2t´1 u ď

2´t n
2t u ď 2´rlogp1{δqs ď δ, the theorem follows from Theorem 13. For r ą 1,

suppose the theorem holds for pr ´ 1q-round protocols. For any t ě 1 and n ě

tp2 rlog 1{δsqr, assume there exists an pn, r, tq-commit-and-reveal protocol that is

pα, n ´ 1q-maximin-fair for α ă rδn{t. Let n1 “ n{p2 rlog 1{δsq. Since 2
´

Y

n´1
2n1´1

]

ď

δ, by Corollary 22, there exists an pn1, r ´ 1, tq-commit-and-reveal protocol that
is pα1, n1 ´ 1q-maximin-fair, where α1 “ α ´ δn{t. Since α1 ă pr ´ 1qδn1{t and
n1 “ n{p2 log 1{δq ě tp2 log 1{δqr´1, it contradicts with the assumption that the
theorem holds for pr ´ 1q-round protocols. Therefore, we concludes the theorem
by induction. [\
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Finally, we show how to prove Lemma 21. The key idea of the proof is to
consider a fixed first-round input. For an pn, r, tq-committee election protocol
that is pαn{t, n ´ 1q-maximin-fair, by fixing a first-round input x P Ωn, we can
view it as an pn, r ´ 1, tq-committee election protocol. Then, we look into the
probability pi that each party i is in the committee if the adversary corrupts
all parties but i and acts optimally. If, for any x, the number of i P rns such
that pi ě α ´ α1 is more than n1, we can construct an pn1, r ´ 1, tq-committee
election protocol that is ppα ´ α1qn1{t, n1 ´ 1q-maximin-fair. Otherwise, if for all
x, at most n1 of them satisfy pi ě α ´ α1, then we can construct an pn, 1, n1q-
committee election protocol such that given x, party i is in the committee if and
only if pi ě α´α1 and we can show this protocol is pα1n{t, n´ 1q-maximin-fair.

Proof (Lemma 21). Let Π be an pn, r, tq-commit-and-reveal committee election
protocol that is pαn{t, n ´ 1q-maximin-fair. Suppose there is no pn1, r ´ 1, tq-
committee election protocol that is ppα ´ α1qn1{t, n1 ´ 1q-maximin-fair and no
pn, 1, n1q-commit-and-reveal committee election protocol that is pα1n{n1, n ´ 1q-
maximin-fair. We just need to show that there is an adversary A against Π
corrupting n ´ 1 parties such that the probability that the honest party is in
the committee is less than α. For any first-round input x P ptKu Y Ωqn, let
Tx :“ ti | xi ‰ Ku and denote Πxp¨q :“ Πpx, ¨q, which is an pn, r ´ 1, tq-
committee election protocol. Denote px,i as the minimal probability that party
i is in the committee over all adversaries for Πx that corrupts all parties but i.
Denote Sx :“ ti P Tx|px,i ě α ´ α1u.

We first show that |Sx| ď n1 for all x. Suppose |Sx| ą n1. We construct
an pn1, r ´ 1, tq protocol Π 1 from Πx as follows. We first pick an arbitrary set
S1 of party of size |Sx| ´ n1 ` 1 from Sx and then let Π 1 be the same as Πx

except we let a single party (denoted as party i˚) simulate the behaviors of
parties in S1 Y prnszSxq, while the rest of parties (i.e., parties in SxzS1) acts the
same as before. Party i˚ is selected in Π 1 if and only if one of parties in the
set corresponding to i˚ is selected in Πx. Then, party i˚ would be selected with
probability as least px,j for any j P S1 even if all othe parties are corrupted.
Also, for party each j P SxzS1, px,j is exactly the probability that party j is
guaranteed to be elected in Π 1, given that j is honest and all other n1 ´1 parties
are corrupted. Therefore, each honest party among the n1 players wins with
probability at least α´α1. Thus, Π 1 is ppα´α1qn1{t, n1 ´1q-maximin-fair, which
contradict the impossibility assumption of such protocols.

We continue by describing the adversary A against the original protocol Π.
Consider an pn, 1, n1q-committee election protocol Γ defined using Sx as follows.
For any input x, party i is elected to be in the committee if and only if i P Sx,
i.e., Γipxq :“ 1ti P Sxu. By our assumption, there is no pn, 1, n1q-committee
election protocol that is pα1n{n1, n ´ 1q-maximin-fair. Therefore, there exists an
adversary B against Γ corrupting n ´ 1 parties such that the probability of the
honest party to be in the committee is at most α1. We now construct A using B.
In the first-round, A behaves exactly the same as B. After the first-round, A uses
the best strategy for the rest of the execution. Let party i be the honest party.
After the first round, if i is not in Sx, where x denotes the first-round message,
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we know the probability that i is in the committee is at most px,i ă α ´ α1.
By the definition of B, we have that the probability of i P Sx is less than α1.
Therefore, the probability that party i is in the committee is less than α. This
concludes the proof. [\

5.1 Lower Bounds for pn ´ kq-Corruption

By Lemma 16, if there exists a pn, r, tq-commit-and-reveal committee election
protocol Π that is pα, n ´ kq-fair, then there exists a pn{k, r, tq-commit-and-
reveal committee election protocol that is pα{k, n{k´1q-maximin-fair. Therefore,
by Theorem 19, we have the following corollary.

Corollary 23. For any 0 ă δ ă 1, any integer r, t, k ě 1, and any integer
n ě tkp2 rlog 1{δsqr, there is no pn, r, tq-commit-and-reveal committee election
protocol that is pα, n ´ kq-maximin-fair for α ą rδn{t.

For any constant n ě 1, if we set δ “ 1{n3, by applying the above corollary, we
get the following corollary.

Corollary 24. For any integer 1 ď t, k ď n, any integer r ď
logn´log t´log k

log logn`3 ,

there is no pn, r, tq-commit-and-reveal
`

1
nt , n ´ k

˘

-maximin-fair committee elec-
tion protocol.

6 Lower Bounds for Perfect Fairness

We recall that a n-party leader election protocol is perfectly fair against k-
party corruption if and only if it is p1, kq-fair, i.e., the probability of any honest
party being selected is at least 1{n if the number of corrupted party is at most
k. We first show that even if only one party is corrupted, there is no single-
round perfectly fair leader election protocol. The prior impossibility results [3]
by Chung et. al. only show it for the pn ´ 1q-corruption case. Also, for multi-
round protocols, we extend the prior results [3] to the case of k-corruption for
k ă n´1 and show that there is no r-round perfectly fair leader election protocol
against k-corruption for r ă mintrlog ns , rlog ks ` 1u.

Notations. We define the following convenient notations to simplify our proofs.
For any x P ptKu Y Ωqn and y P tKu Y Ω, we use px : xi Ð yq to denote a
vector which is exactly the same as x except the i-th entry of x is changed to
y. If multiple entries are changed, we denote it as px : txi Ð yiuiPSq, where S is
a subset of rns.

6.1 Impossibility of Single-Round Protocols

Theorem 25. For any n ě 3 and 1 ď k ă n, there is no perfectly fair single-
round commit-and-reveal leader election protocol against k-corruption.
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Proof Sketch. Our proof can be divided in two steps. First, we show that for any
p1, kq-fair single-round commit-and-reveal leader election protocol Π, Π must
be abort-invariant, i.e., the resulting leader will not change, if any party other
than the leader aborts. Moreover, this implies that if any party i other than the
resulting leader changes its input, the leader must be either the original leader
or changed to i, which is formally stated in Lemma 26. Then, we show that
this property implies that there must exist an input y˚ for party i˚ and another
party j˚ ‰ i˚ such that if the input of party i˚ is y˚, party j˚ will never be the
leader no matter how the other parties choose their inputs. This means that Π
is not fair.

To find such py˚, i˚, j˚q, we start from an arbitrary input x of all parties.
Suppose party i is selected given x. We pick an arbitrary j ‰ i and attempt
to find another input y of party j such that the leader is changed to party j if
party j changes its input to y while the inputs of all other parties remain the
same as x. If such y does not exist, it means that j would never be selected no
matter what input party j picks. Also, due to abort-invariance of Π, j would
never be selected no matter how parties other than i and j choose their inputs
given party i selects xi. Therefore, py˚ “ xi, i

˚ “ i, j˚ “ iq is the tuple we want.
If such y exists, we repeat the above for input px : xj Ð yq until we find such a
tuple.

We then show that the above process always terminates. Suppose it does not
terminate. Since the input set is finite, we can find a loop of input-party pairs
px1, i1q, . . . , pxℓ, iℓq with px1, i1q “ pxℓ, iℓq such that xk is the same as xk´1

except that party ik is selected given xk and the input of party ik is changed.
To yield a contradiction, the idea is to start from x1 and do all the changes
in the loop except that we do not change the input of party i1. Equivalently,
we consider an alternative loop px1

1, i1q, . . . , px1
ℓ, iℓq where x1

k :“ pxk : xk,i1 Ð

x1,i1q. We show that for ik ‰ i1, given x1
k, party ik is still selected. Then,

since iℓ´1 ‰ iℓ “ i1, it implies that party iℓ´1 is selected given x1
ℓ´1. However,

since x1 “ x1
ℓ “ x1

ℓ´1, party i1 should be selected given x1
ℓ´1, which yields a

contradiction.

Lemma 26. Suppose Π : ptKu Y Ωqn Ñ t0, 1un is a perfectly maximin-fair
n-party single-round commit-and-reveal leader election protocol against a single-
party corruption. Π must be abort-invariant, i.e., for any x P Ωn and i P rns

such that Πipxq “ 0, it holds that Πjpx : xi Ð Kq “ Πjpxq for any j P rns.
Moreover, abort-invariant implies, for any x P Ωn, y P Ω, if Πipxq “ Πipx :
xi Ð yq “ 0, i.e., party i is not selected given x or px : xi Ð yq, then Πjpx :
xi Ð yq “ Πjpxq for any j P rns.

Proof (Lemma 26). Suppose Π is not abort-invariant, which means there exists
x P Ωn and i, j P rns such that Πipxq “ 0, Πjpxq “ 1, and Πjpx : xi Ð Kq “ 0.
We construct an adversary A as follows. A corrupts party i and lets party i run
the protocol honestly except party i aborts if the inputs of all parties are exactly
x. Then, the probability that party j is selected as the leader is smaller than
the probability that party j is selected when all parties behave honestly, which
is exactly 1{n. Therefore, the protocol is not perfectly fair.
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We now show the “moreomver” part. For any x P Ωn, y P Ω, and i P rns

such that Πipx : xi Ð yq “ 0, since Π is abort-invariant, we have Πjpx : xi Ð

yq “ Πjpx : xi Ð Kq “ Πjpxq for any j P rns. [\

Proof (Theorem 25). Suppose Π : ptKu Y Ωqn Ñ t0, 1un is a n-party single-
round commmit-and-reveal leader election protocol. We just need to show that
there exists an input y˚ P Ω for some party i˚ and another party j˚ ‰ i˚ such
that Πj˚ pxq “ 0 for all x P Ωn with xi˚ “ y˚, which implies that Π is not fair.

We use the following algorithm to find pi˚, y˚, j˚q; The algorithm is not
efficient, but it is sufficient in order to show the existence of pi˚, y˚, j˚q. Initially,
the algorithm picks an arbitrary input x0 P Ωn. We denote i0 as the leader
given x0 as the inputs of all parties and y0 :“ x0,i0 as the input of party i0.
Then, we keep iterating the following. At the ℓ-th iteration, since n ě 3, the
algorithm picks an arbitrary iℓ P rnsztiℓ´1, iℓ´2u. (For the first iteration, the
algorithm picks an arbitrary i1 P rnszti0u.) Then, it finds yℓ such that party
iℓ is the leader given xℓ :“ pxℓ´1 : xℓ´1,iℓ Ð yℓq as the inputs of all parties,
i.e., the input of party iℓ is changed to yℓ while the inputs of all other parties
remain the same as xℓ´1. If such yℓ does not exist, then the algorithm returns
pi˚ Ð iℓ´1, y

˚ Ð yℓ´1, j
˚ Ð iℓq.

We first show that pi˚, y˚, j˚q returned by the algorithm satisfies the property
mentioned at the beginning of the proof. Denote x˚ :“ xℓ´1. By the execution
of the algorithm, party j˚ is not selected given input x˚. For any x P Ωn with
x1 “ y˚, we change x˚ step by step to make it equal to x and party j˚ remains
not the leader. First, we change the input of party j˚ in x˚ to xj˚ . By the
execution of the algorithm, party i˚ remains the leader. Then, by Lemma 26,
the leader is not changed to j˚ if party k P rnszti˚, j˚u changes its input to xk,
which concludes our claim.

It is left to show the algorithm always returns. Suppose the algorithm does
not return. Since the input space is finite, the algorithm must find a loop
piℓ,xℓ, yℓq, . . . , pim,xm, ymq such that piℓ,xℓ, yℓq “ pim,xm, ymq. We now show
that such a loop cannot exist. By the execution of the algorithm, it holds that
xj`1 is the same as xj except that the input of party ij`1 is changed to yj`1

for ℓ ď j ă m and party ij is leader given the input xj for ℓ ď j ď m.
To yield a contradiction, we consider the following loop of inputs px̃ℓ, . . . , x̃mq,

where x̃j is the same as xj except that the input of party iℓ is changed to yℓ,
i.e., x̃j :“ xj : xj,iℓ Ð yℓ. We will show that party iℓ is not selected as the
leader given input x̃j for any ℓ ă j ď m. It yields a contradiction since party iℓ
is selected as the leader given input xj “ x̃ℓ “ x̃m. More precisely, we are going
to show that for any ℓ` 1 ď j ď m, if ij ‰ iℓ, then party ij is selected given x̃j ,
and if ij “ iℓ, then party ij´1p‰ ij “ iℓq is selected given x̃j .

First, for j “ ℓ ` 1, since iℓ`1 ‰ iℓ, we know x̃ℓ`1 “ xℓ`1. Therefore, party
ij is selected given x̃j .

For j ą ℓ`1, there are three cases: (i) ij´1 ‰ iℓ and ij ‰ iℓ; (ii) ij´1 ‰ iℓ and
ij “ iℓ; (iii) ij´1 “ iℓ. For the first two cases, suppose party ij´1 is selected given
x̃j´1. If ij ‰ iℓ, since both party iℓ and party ij are not selected given x̃j´1,
by Lemma 26, party iℓ is also not selected given x̃j “ px̃j´1 : x̃j´1,ij Ð yjq.
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Then, since x̃j “ pxj : xj,iℓ Ð yℓq, by Lemma 26, we have Πij px̃jq “ Πij pxjq “

1. Otherwise, if ij “ iℓ, we have x̃j´1 “ x̃j and thus party ij´1 is selected given
x̃j .

For case (iii), suppose party ij´2 is selected given x̃j´1. By the execution of
the algorithm, we know ij , ij´1p“ iℓq, ij´2 are distinct. Since both party iℓ and
party ij are not the leader given the inputs x̃j´1, by Lemma 26, party iℓ is not
selected either given x̃j “ px̃j´1 : x̃j´1,ij Ð yjq. Then, since x̃j “ pxj : xj,iℓ Ð

yℓq, by Lemma 26, we have Πij px̃jq “ Πij pxjq “ 1. Therefore, we can conclude
the statement by induction. [\

6.2 Lower Bounds for Multi-Round Protocols

For multi-round protocols, the prior result [3] by Chung et. al. shows that there
is no perfectly fair prlog ns ´ 1q-round leader election protocol against pn ´ 1q-
corruption. We show that their result can be extended to any k-corruption for
k ě n{2. Also, for 2 ď k ă n{2, we show there is no perfectly fair rlog ks-
round protocol. Formally, we show Theorem 27. We also note that this result is
incomparable to our result for the single-round case since the statement is trivial
for k “ 1.

Theorem 27. For any 2 ď k ď n, there is no perfectly fair r-round commit-
and-reveal leader election protocol against k-corruption for r ď rlogpmintn{2, kuqs.

We prove a stronger statement: we show that the impossibility result holds
even for protocols satisfying a weaker security notion, called tightness, which is
introduced in [3]. We say a protocol is tight against k-corruption if and only if
the winning probability of any honest party given k corrupted parties is as high
as in honest executions, which is formally defined as follows. It is clear that a
perfectly fair protocol against k-corruption is tight against k-corruption.6

Definition 28 ([3]). A n-party leader election protocol Π is tight against k-
corruption if and only if for any adversary A that corrupts at most k parties
and any honest party i, no matter how A behaves,

Prri is the leaders ě Pi ,

where Pi denotes the probability that party i is elected in an honest execution.

The proof technique is similar to [3]. We say that a party is still alive after
i rounds if the party still has a chance to be the leader after i rounds. To show
a lower bound on round complexity, the idea is to lower bound the number of
alive parties. The prior work [3] shows that in a tight protocol against pn ´ 1q-
corruption, the number of alive parties after the first round is at least n1{2, where
n1 denotes the alive parties before the first round. Then, by fixing the first round

6 For a perfectly fair protocol, the winning probability of any party in an honest
execution is 1{n. Therefore, the winning probability of any honest party i given k
corrupted parties is at least Pi “ 1{n.
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input, one can show the rest of protocol is still tight, and the same argument
shows that the number of alive parties after i round is at least n1{2i. Since in
the final round, the number of alive parties is 1 and thus the round complexity
of a tight protocol is at least rlogpn1qs.

We extend the prior proof to the case of k-corruption and show that the
number of alive parties after the first round is at least mintn1{2, ku.7 By a similar
induction, we conclude that the round complexity is at least rlogpmintn1{2, kuqs

and for perfectly fair protocols, we have n1 “ n.

Remark 29. We also note that the technique here is different from the previ-
ous section on the single-round protocols. The single-round result shows that
the number of alive parties after the first round is at least 2 given that one
party is corrupted. However, it is unclear how to improve this bound for larger
corruptions.

Proof (Theorem 27). Let Π : ptKu YΩqnr Ñ t0, 1un be a r-round commit-and-
reveal leader election protocol. For any x P ptKu Y Ωqn, denote Pipxq as the
probability that party i is elected in an honest execution given that the first-
round inputs of all parties are x. We say that party i is eliminated if Pipxq “ 0.
Otherwise, we say that the party i is still alive. Denote Spxq :“ ti P rns | Pipxq ą

0u as the set of the alive parties. Also, we denote S0 :“
Ť

xPΩn Spxq, which is
the set of parties that are alive before the first round, and denote n1 “ |S0|. We
say Π is a protocol with n1 alive parties.

We first show the the following lemma which generalizes the abort-invariant
property of single-round leader election protocols (Lemma 26) to the multi-round
case. Roughly, the abort-invariance means that for any first-round input x, an
eliminated party i given x, and j ‰ i, Pjpxq would not change if party i aborts,
and moreover, it implies that if party i changes its input, Pjpxq would only
decrease. The proof is similar to the single-round case and deferred to the end
of the section.

Lemma 30. Suppose Π : ptKu Y Ωqn Ñ t0, 1un is a tight n-party commit-
and-reveal leader election protocol against a single-party corruption. Π must be
abort-invariant, i.e., for any x P Ωn and i P rns such that Pipxq “ 0, it holds
that Pjpx : xi Ð Kq “ Pjpxq for any j P rns. Moreover, for any y P Ω,
Pjpx : xi Ð yq ď Pjpxq for any j P rnsztiu.

We use the lemma to show the following claim.

Claim. If Π is tight, then there exists x P Ωn such that |Spxq| ě mintn1{2, ku.

Proof. Let x0 P Ωn be an arbitrary input. Without loss of generality, assume
S0 “ t1, ..., n1u and Spx0q “ t1, . . . , ℓu. The claim holds if ℓ ě mintn1{2, ku. Oth-
erwise, we run the following algorithm to find x such that |Spxq| ě mintn1{2, ku.
For 1 ď i ď n1 ´ ℓ, the algorithm finds yi P Ω such that party ℓ` i becomes alive

7 Note that this statement is only useful when k ě 2. For k “ 1, it means the number
of alive parties after the first round is at least 1, which holds trivially.
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after it changes its first round input to yi, i.e., Pℓ`ipxi´1 : xi´1,ℓ`i Ð yiq ą 0
and sets xi :“ xi´1 : xi´1,ℓ`i Ð yi. The algorithm returns xi if |Spxiq| ě

mintn{2, ku.
We first show that the algorithm can find yi for each i. Suppose for any y P Ω

such that Pℓ`ipxi´1 : xi´1,ℓ`i Ð yq “ 0. Since the algorithm did not return,
we know |Spxi´1q| ă mintn1{2, ku. For any x1 P Ωn such that x1

j “ xi´1,j for
each j P Spxi´1q, we show that Pℓ`ipx

1q “ 0. First, if we change the input
of party ℓ ` i to x1

ℓ`i, we have Pℓ`ipxi´1 : xi´1,ℓ`i Ð x1
ℓ`iq “ 0. Denote

x2 “ xi´1 : xi´1,ℓ`i Ð x1
ℓ`i. By Lemma 30, if we change the input of each party

j P rnszptℓ ` iu Y Spxi´1qq from x2
j to x1

j , the probability that party i ` ℓ is
the leader is still 0, which implies Pℓ`ipx

1q “ 0. This shows that Π is not tight,
since the adversary can prevent party ℓ` i from being selected by corrupting all
parties in Spxi´1q and setting their first-round inputs to be the same as xi´1.

We now show that the algorithm always returns. For 1 ď i ď n1 ´ ℓ, we show
that j P Spxiq for each ℓ ` 1 ď j ď ℓ ` i, which implies that the algorithm
must returns when i “ mintn1{2, ku ď n1 ´ ℓ. For each 1 ď i ď n1 ´ ℓ, suppose
j P Spxi´1q for each ℓ ` 1 ď j ď ℓ ` i ´ 1, which trivially holds for i “ 1.
Denote D :“ tx P Ωn | xj “ x0,j for j P rℓs Y ti ` ℓuu. For each x1 P D, since all
parties in rpℓ ` 1q..nsztℓ ` iu are eliminated given x0, by Lemma 30, we know
Pℓ`ipx

1q “ Pℓ`ipx0 : tx0,j Ð x1
jujPrpℓ`1q..nsztℓ`iuq ď Pℓ`ipx0q “ 0, which means

party ℓ ` i is eliminated given any input x1 P D. Then, by Lemma 30, for any
j P rnsztℓ ` iu

Pjpx1 : x1
ℓ`i Ð yiq ď Pjpx1q . (4)

Since Π is tight, it holds that for any j P rpℓ ` 1q..nsztℓ ` iu and any y P Ω,

Ex1„DrPjpx1qs “ Ex1„DrPjpx1 : x1
ℓ`i Ð yqs ,

since otherwise the adversary can decrease the chance that party j is selected
by corrupting parties rℓs Y tℓ` iu (the number of which is at most k) and letting
the input of parties rℓs be that same as x1 and the input of party ℓ ` i be y
that gives the worst expectation. Therefore, by Equation (4), we have Pjpx1 :
x1
ℓ`i Ð yiq “ Pjpx1q for each x1 P D. Since xi´1 P D and Pjpxi´1q ą 0 for each

ℓ`1 ď j ď ℓ` i´1, we have Pjpxiq “ Pjpxi´1 : xi´1,ℓ`i Ð yiq “ Pjpxi´1q ą 0.
Also, since Pℓ`ipxiq ą 0, we have j P Spxiq for each ℓ`1 ď j ď ℓ` i. Therefore,
we can conclude the statement by induction. [\

We now show that for any tight protocol Π with n1 alive parties, the round com-
plexity of Π is at least rlogpmintn1{2, kuqs by doing induction on n1. For n1 “ 1,
which means the leader is already determined at the beginning, the statement
holds trivially since r ě 0. For n1 ą 1, suppose the statement holds for smaller
n1 and Π is a protocol with n1 alive parties and optimal round complexity. By
the claim, there exists x P Ωn such that |Spxq| ě mintn1{2, ku. Given that the
first-round inputs is x, we can view the rest of the execution of Π as a pr ´ 1q-
round leader election protocol. Denote the resulting protocol as Π 1. It is not
hard to show that Π 1 is also tight and the number of alive parties of Π 1 before
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the first round is |Spxq|. Since Π is round optimal, we have|Spxq| ă n1. By our
assumption, the round complexity of Π 1 is at least rlogpmint|Spxq|{2, kuqs ě

rlogpmintn1{4, k{2, kuqs “ rlogpmintn1{2, ku{2qs “ rlogpmintn1{2, kuqs ´ 1, which
implies the round complexity of Π is at least rlogpmintn1{2, kuqs. We can con-
clude the theorem since a perfectly fair n-party protocol against k-corruption is
a tight protocol against k-corruption with n alive parties. [\

Proof (Lemma 30). Suppose Π is not abort-invariant, which means there exists
x P Ωn and i ‰ j P rns such that Pipxq “ 0, Pjpxq ‰ Pjpx : xi Ð Kq. Without
loss of generality we can assume Pjpxq ą Pjpx : xi Ð Kq. 8 We construct an
adversary A as follows. A corrupts party i and lets party i run the protocol
honestly except party i aborts if the inputs of all parties are exactly x. Then,
the probability that party j is selected as the leader

Pr
x1„Ωn

rx “ x1s¨Pjpx : xi Ð Kq `
ÿ

z‰xPΩn

Pr
x1„Ωn

rz “ x1s ¨ Pjpzq

ă Pr
x1„Ωn

rx “ x1s ¨ Pjpxq `
ÿ

z‰xPΩn

Pr
x1„Ωn

rz “ x1s ¨ Pjpzq

“
ÿ

zPΩn

Pr
x1„Ωn

rz “ x1s ¨ Pjpzq “ Pj ,

where Pj is the probability that party j is selected in an honest execution.
Therefore, the protocol is not tight.

For the “moreover” part, suppose there exists y P Ω and j P rnsztiu such that
Pjpx : xi Ð yq ą Pjpxq. Since Π is abort-invariant, we have Pjpx : xi Ð yq ą

Pjpxq “ Pjpx : xi Ð Kq. Let x̂ :“ px : xi Ð yq. Then, Pjpx̂q ă Pjpx̂ : x̂i Ð Kq.
Therefore, we can use the same argument from the first part to construct an
adversary A that breaks the tightness of Π. [\
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8 Otherwise, since
ř

kPrnszi Pkpxq “ 1 “
ř

kPrnszi Pkpx : xi Ð Kq, if there exists j such

that Pjpxq ă Pjpx : xi Ð Kq, there also exists j1 such that Pj1 pxq ą Pj1 px : xi Ð

Kq.
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