
Generic, Fast and Short Proofs for Composite
Statements⋆

Zhuo Wu1,2, Shi Qi1,2, Xinxuan Zhang1,2 and Yi Deng1,2

1 Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China
{wuzhuo, qishi, zhangxinxuan, deng}@iie.ac.cn

Abstract. This work introduces a novel technique to enhance the effi-
ciency of proving composite statements. We present the Hash-and-Prove
framework to construct zkSNARKs for proving satisfiability of arith-
metic circuits with additional Algebraic Gate. These algebraic gates serve
as building blocks for forming more generalized relations in algebra. Un-
like Pedersen-committed Commit-and-Prove SNARKs, which suffer from
increased proof size and verification overhead when proving composite
statements, our solution significantly improves both proof size and verifi-
cation time while maintaining competitive and practical prover efficiency.

In the application of proof of solvency where we need to prove knowl-
edge of x such that SHA256(gx) = y, our approach achieves a 100× re-
duction in proof size and a 500× reduction in verification time, along
with a 2× speedup in proving time compared to the work of Agrawal
et al.(CRYPTO 2018). For proving ECDSA signatures verification, we
achieve a proof time of 2.1 seconds, which is a 70× speedup compared
to using Groth16, and a proof size of 4.81 kb, which is a 160× reduction
compared to Field Agnostic SNARKs(Block et al., CRYPTO 2024).

1 Introduction

Zero-Knowledge Succinct Non-interactive Arguments of Knowledge (zkSNARKs)
are extremly short and non-interactive zero-knowledge proofs [GMR85]. In recent
years, SNARKs have garnered significant interest, leading to the development of
efficient constructions (e.g., [PHGR13,Gro16,WTS+18,BBHR18,MBKM19,XZZ+19],
[GWC19,BCR+19,CHM+20,Set20,GLS+23,CBBZ23]). Various SNARKs designed
to prove arithmetic circuit satisfiability have made great strides in efficiency and
scalability. They are now capable of efficiently proving non-algebraic statements,
such as hash functions like SHA256. However, a significant challenge remains in
proving algebraic statements, including but not limited to elliptic curve opera-
tions and exponentiation of large integers.

Algebraic operations cannot be accommodated by native field arithmetic
representations. Thus, when employing SNARKs to prove these statements, we

⋆ Submitted on October 2, 2024

2 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

must emulate non-native arithmetic operations using additions and multiplica-
tions within the native field arithmetic circuits, known as the “Non-Native Arith-
metic Problem”. Practical solutions like xJsnark and approaches based on the
Chinese Remainder Theorem [KPS18,JkY23] exist. However, current SNARKs
still struggle to efficiently prove algebraic operations, particularly those involving
group exponentiation.

An alternative approach for efficiently proving algebraic operations is pro-
vided by Sigma protocols, which are well-suited for algebraic statements within
a group structure. However, the main limitations of Sigma protocols include in-
creased proof size and verification time. In contrast, SNARKs generally offer
much lower overhead in both aspects.

Commit-and-Prove SNARKs. In many real-world scenarios, we need to
prove composite statements involving both algebraic and non-algebraic compo-
nents, such as ECDSA signatures verification, Elgamal encryption/decryption,
and proof of solvency [AGM18]. To tackle the challenge of efficiently proving
these statements, research has focused on developing Commit-and-Prove(CP)
SNARKs [Kil89,CLOS02,CGM16,BBB+18,AGM18,BHH+19,CFQ19,CFF+21],
[ABC+22,ZCYW23,OKMZ24]. CP-SNARKs prove statements about commit-
ted values and have a wide range of applications across various domains, such as
verifying the integrity of Machine Learning models, enabling privacy preserving
voting systems, and more [BCF+21]. When employing CP-SNARKs to prove
composite statements, the algebraic operations are addressed by Sigma proto-
cols under Pedersen commitment, while the arithmetic circuit operations, such
as hash functions, are executed within SNARKs. Pedersen commitment can be
utilized to prove composite statements for two reasons. Firstly, the additive ho-
momorphism and the capacity to prove modular multiplications allow effective
handling of operations within group structures, enhancing prover efficiency in
algebraic statements. Secondly, many SNARKs use commitment schemes based
on elliptic curves, which can be connected to Pedersen commitment through
"glue" proofs.

Efficiency Bottlenecks. Existing solutions employ Sigma protocols under Ped-
ersen commitment, resulting in increased proof size and verification overhead
when proving algebraic statements of the form: knowledge of x and g2 such that
gx1 = g2 (or knowledge of g1 and g2), where additional witnesses are included
[CGM16,AGM18]. Their proof size and verification time could be thousands of
times larger than SNARKs. Another drawback of Pedersen commitment is the
necessity of additional “glue” protocols to prove the the consistency of witnesses.3
These "glue" proofs restrict SNARK flexibility and increase proof size.

The discussion above highlights that SNARKs suitable for proving hash func-
tions are inefficient for proving algebraic statements. While existing Pedersen-

3 One exception is that in MPC-in-the-head proof systems, Sigma protocols from VSS
can be employed to bypass the need for “glue” proofs. However, these SNARKs result
in relatively large proof size and linear verification [ZCYW23].

Generic, Fast and Short Proofs for Composite Statements 3

committed CP-SNARKs enable fast proving for algebraic statements, they result
in large proof size and increased verification overhead. This motivates the central
question we address in this work:

Can we obtain both fast and short proofs for composite statements?

1.1 Our Results

In this work, we provide a positive answer to the above question by completely
discarding the Pedersen commitment. Unlike embedding all algebraic operations
within arithmetic circuits for SNARK proofs, which significantly reduces prover
efficiency, or delegating these operations to Sigma protocols under Pedersen com-
mitment to achieve faster proving at the cost of increased proof size and verifi-
cation overhead, we introduce a new method for building proofs for composite
statements that strikes a better trade-off. Our construction achieves faster prov-
ing than SNARKs, along with smaller proof size and faster verification compared
to Sigma protocols under Pedersen commitment. Moreover, for elliptic curve op-
erations, our approach outperforms all these methods in every aspect.

Hash-and-Prove Framework and Sigma Protocols. We start with the def-
inition of Algebraic Gate, which performs group exponentiation over a given
cyclic group. Algebraic gates serve as fundamental components for constructing
various algebraic statements. Then we develop the Hash-and-Prove(HP) frame-
work for proving the satisfiability of arithmetic circuits with algebraic gates.
This framework eliminates the need for additional “glue” proofs.

We develop a special type of Sigma protocol termed Sigma Argument of
Knowledge(Sigma AoK) to efficiently prove algebraic gates. These protocols en-
hance prover efficiency and minimize the proof size to only a few group elements
and a SNARK proof, thereby overcoming previous bottlenecks. We then propose
two optimizations to further accelerate performance by exploiting the unique
structure of our proposed Sigma protocols.

Implementation and Applications. Our proposed HP framework can be
utilized to prove a wide range of exponentiation operations in cyclic groups, in-
cluding elliptic curve groups, large prime-order groups Zp and RSA groups Z∗

n

where n = pq.
We provide the experimental results corresponding to each of these different

cases. In the application of proof of solvency within blockchains, our approach
achieves a 100× reduction in proof size, a 500 × reduction in verification time,
and a 2× speedup in proving time compared to the work of Agrawal et al.
[AGM18]. In the application of proving knowledge of signatures verification:
for ECDSA, we achieve a 160× reduction in proof size compared to the work of
Block et al. [BFK+24], and a 70× speedup in proving time compared to solutions
using Groth16 as the underlying prove system [Sun24]; for DSA, we achieve a
10× reduction in proof size and a 20× reduction in verification time compared
to the work of Chase et al. [CGM16]; for RSA signature, we provide a more

4 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

generic solution without sacrificing efficiency compared to the work of Agrawal
et al. [AGM18].

1.2 Techniques

We explore how to develop a general approach to solve the problem of proving
algebraic statements and integrating with existing SNARK systems to efficiently
prove composite statements. While specific cases exist, such as utilizing cycle of
elliptic curves [T+23], and straightforward solutions in bilinear groups by lever-
aging pairings [GS08], these specialized systems cannot address general scenarios.
In this work, we propose a more general approach that covers a wide range of
algebraic statements while achieving high efficiency.

In public key cryptography, exponentiations within a group are core op-
erations. While a single group multiplication can be efficiently verified within
SNARKs, proving the correctness of group exponentiation involves several hun-
dred to a few thousand multiplications. We introduce algebraic gates, param-
eterized by two key members: an Abelian group (G, ◦) and a finite integer set
I. Specifically, let g1 ∈ G, x ∈ I and g2 ∈ G. The inputs to an algebraic gate
consist of g1 and x, with the output being g2, corresponding to the operation
gx1 = g2.

We are particularly concerned with finite cyclic groups. Many cryptographic
systems rely on the hardness of certain computational problems, most notably
the Discrete Logarithm Problem (DLP). Therefore, we focus on groups (Gp, ◦)
with a prime order p and I = Fp. The group Gp can represent a prime-order
group derived from a finite field modulo a prime integer, or a prime-order elliptic
curve group. We describe the following relations {Ri

dl}i∈[4] to target any valuable
algebraic operations within the DLP setting, where g1, g2 ∈ Gp and x ∈ Fp.

Ri
dl := {sti : gx1 = g2}

st0 = ((g1, g2);x), st1 = (g1; (g2, x)), st2 = (x; (g1, g2)), st3 = (∅; (g1, g2, x))

These four relations are sufficient to encompass valuable algebraic statements
within the DLP setting. Note that if both g1 and x are private inputs while g2
is public, this configuration is equivalent to proving g−x

2 = g1, corresponding to
R1

dl. We construct specially designed Sigma protocols for {Ri
dl}i∈[4], denoted as

{Πi
dl}i∈[4]. These protocols are then used to build proofs for other cryptographic

schemes based on DLP, which can be applied to practical industrial applications.
Another common setting is to consider n as an RSA modulus, a given expo-

nent e (with gcd(e, φ(n)) = 1) and d such that de ≡ 1 mod φ(n). We describe
a type of algebraic gates targeting the RSA setting: G = Z∗

n, I = {e, d}. In this
case, we consider relations {Ri

rsa}i∈[2], where g1, g2 ∈ Z∗
n and x ∈ {e, d}.

Ri
rsa := {sti : gx1 = g2}

st0 = ((x, g2); g1), st1 = (x; (g1, g2))

Generic, Fast and Short Proofs for Composite Statements 5

Similarly, We construct specially designed Sigma protocols for these rela-
tions, denoted as {Πi

rsa}i∈[2]. These protocols are then used to build proofs of
knowledge for RSA encryption/decryption and signature schemes, which can be
applied to practical industrial applications. The relationships described here are
detailed in Section 4.

Decomposing Arithmetic and Algebraic Circuit. Our starting point is
extending arithmetic circuits with addition and multiplication gates over a field
Fq by incorporating algebraic gates.4 To prove the satisfiability of such a circuit
Calg with three types of gates, we first need to decompose it using a circuit
compiler. An example is shown in Figure 1.

Fig. 1: An example of algebraic gate A : gx1 = g2 with private x. H denote the
hash function circuit over Fq. Similarly, if g1 or g2 is also private, it can be
handled in the same manner as x.

4 When describing an algebraic gate within the Fq arithmetic circuit, the inputs and
output elements are represented by a set of wires over Fq.

6 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

On input Calg and a hash function H that is randomly chosen from a hash
family, the compiler Compil(H, Calg) outputs a standard arithmetic circuit Cstd
comprising addition and multiplication gates over Fq, along with a “Algebraic
with Hash” relation Cah: gx1 = g2 ∧ H(w, r), where r is a fixed length random
number, w are the witnesses consisting of one to three variables among x, g1
and g2. Any of these three that are public variables and not used as inputs
or outputs in other addition or multiplication gates are removed from Cstd. By
utilizing a common SNARK for Cstd and our propsed Sigma protocols for Cah,
we can successfully prove the satisfiability of Calg. In most cases, H refers to
a zk-friendly hash function like Poseidon [GKR+21]. This provides us with the
following properties that we will exploit in the subsequent protocol construction:

– It is very cheap to prove in SNARKs. Thus unlike the Pedersen commitment,
we can achieve linkage without an additional “glue” proof.

– It offers collision resistance and computational hiding properties, as detailed
in Sections 2.

Proving Algebraic with Hash Relation. Our Sigma protocol generates the
transcript (a, c, z), where a commits the temporary randomness k, c represents
the challenge from the verifier, and z typically represents a computation z(w)
that serves as the response. The verifier checks whether V(s, a, c, z) = 1, with s
represents the public part of the statement.

We first address how to prove gx1 = g2, where x is private and g1, g2 are public
within the DLP setting. One solution is to directly use SNARKs to prove both
z(x) and H(x, r) during the generation of the response in the Schnorr protocol
[KMN23,OKMZ24]. However, if either g1 or g2 serves as a witness, it is difficult
to generate such proofs. Previous approaches have leveraged the additive homo-
morphic properties of Pedersen commitment, along with its capacity to prove
modular multiplications, to establish proofs involving additional witnesses like
g1 or g2. As a substitute, we use hash functions instead of Pedersen commitment.

Fig. 2: “Ping-Pong” Alternating of SNARK and Sigma.

The difficulty resides in the inherent lack of homomorphic properties within
hash functions, which makes the Sigma verification difficult to execute. To ad-

Generic, Fast and Short Proofs for Composite Statements 7

dress this, we propose a “Ping-Pong” alternating approach, as illustrated in Fig-
ure 2. From a high-level perspective, the proving process begins with group ex-
ponentiations in a SNARK, transitions to a Sigma protocol, and then returns to
a SNARK for group multiplications and several lightweight computations, such
as zk-friendly hash. This process significantly reduces the circuit size, specifically
the number of group multiplications within the circuit.

An important observation is that if the challenge space is small enough (e.g.,
c ∈ {0, 1}), proving the relation {V(s, a, c, z) = 1 ∧ z(w) ∧ H(w, r)} directly
using a SNARK has become efficient, with minimal proof size owing to the
succinctness of SNARKs. For example, in protocols like Schnorr [Sch91] and
Guillou-Quisquater [GQ88], which prove the knowledge of group exponentiation
operations, we can make part of s private and use SNARKs to prove the ver-
ification expressions V(s, a, c, z) = 1 of these Sigma protocols. This allows us
to prove relations such as {Ri

dl}i∈[4] and {Ri
rsa}i∈[2]. By repeatedly proving the

same statement for multiple challenges c, we can reduce the soundness error (and
knowledge error).

On the one hand, this approach enhances prover efficiency by significantly
more than tenfold compared to embedding the entire group exponentiation op-
eration into the SNARK circuit. On the other hand, proving {V(s, a, c, z) =
1 ∧ z(w) ∧ H(w, r)} achieves linkage without the necessity for an additional
“glue” proof due to the hash function. Additionally, compared to simply parallel
repetition, we can further optimize efficiency by exploiting the specific structure
of this protocol as following:

– Minimizing the Circuit Size. We can adjust the size of challenge space
and the number of parallel repetitions to reduce circuit size that needs to be
proved by SNARKs, ensuring the soundness error remains sufficiently small
while minimizing the circuit size.

– Proof Aggregation for Uniform Circuits. Since the parallel repetitions
involve proving different inputs of the same circuit, we can leverage tech-
niques such as incrementally verifiable computation (IVC), folding schemes,
or proof batching to significantly accelerate the prover efficiency for uniform
circuits.

1.3 Related Work

Constructing SNARKs for composite statements has garnered significant atten-
tion, beginning with the works of Chase et al. [CGM16] and Agrawal et al.
[AGM18]. These works respectively introduced proof systems based on garbled
circuits and proof systems based on linear-PCP combined with Sigma protocols
to prove statements such as proof of solvency, DSA, ECDSA and RSA signa-
tures. While these approaches significantly improved prover efficiency and their
innovative designs opened new avenues for proving composite statements, the
corresponding solutions incurred substantial overhead in proof size and veri-
fication time when proving algebraic statements using sigma protocols under
Pedersen commitment, due to involving numerous group elements.

8 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

Backes et al. [BHH+19] constructed CP-SNARKs that combine MPC-in-the-
head techniques with Sigma protocols, offering a non-interactive approach with-
out requiring a trusted setup. Campanelli et al. [CFQ19] proposed a framework
for constructing CP-SNARKs that prove composite statements, where various
proof systems can be integrated with Pedersen commitment. They also intro-
duced several proving gadgets to enhance efficiency, providing a versatile and
impactful solution for integrating diverse proof systems.

Aranha et al. [ABC+22] further developed a framework that extends uni-
versal setup SNARKs to support Commit-and-Prove mechanisms, leveraging
compressed-Σ techniques to reduce the size of “glue” proofs to logarithmic levels.
Zhang et al. [ZCYW23] constructed a novel Sigma protocol based on verifiable
secret sharing (VSS), connecting it with MPC-in-the-head proof systems, and
eliminating the need for a “glue” protocol to maintain witness consistency be-
tween the SNARKs and Sigma protocols. More recently, Orrù et al. [OKMZ24]
utilized hiding-compatible functions to enable the integration of Pedersen com-
mitment into any SNARKs, thus enabling SNARKs not utilizing elliptic curves
such as code-based SNARKs which utilize Merkle Hash, to be integrated with
Pedersen commitment.

Most works in this line of research focus on expanding SNARKs that can
be connected to commitments like Pedersen commitment, Merkle Hash Tree,
and others. Fewer works concentrate on providing concrete constructions and
implementations for proving algebraic statements using Sigma protocols, leaving
significant room for further research in this area.

Existing approaches for proving algebraic statements using Sigma protocols
rely on Pedersen commitments and are connected to specific SNARKs. These
Sigma protocols significantly enhance prover efficiency, enabling proofs for al-
gebraic operations in composite statements. However, compared to standard
SNARKs, they suffer from increased proof size and slower verifier performance.
Specifically, when the group order in Pedersen commitments is large, the prover
efficiency can become a limiting factor. In this work, we eliminate the reliance
on Pedersen commitments and construct Sigma protocols using hash functions,
resulting in improved practicality and efficiency for real-world applications.

2 Preliminaries

In this section, we first provide the definitions essential for understanding this
paper. Next, we propose the hiding assumption that the hash function needs,
which plays a crucial role in our constructions. Finally, we discuss the recursion of
proofs constructed in the random oracle model, and offer a different perspective
that enhances confidence in the security of recursion instantiated with concrete
hash functions.

2.1 Zero-Knowledge Proofs

Definition 1 (Sigma protocol [Dam]). A 3-move public-coin protocol ⟨P,V⟩
is said to be a Sigma protocol for relation R, if it satisfies the following properties:

Generic, Fast and Short Proofs for Composite Statements 9

• Completeness: If P and V follow the protocol on instance x and witness w
to P where (x,w) ∈ R, then V always accepts the transcript.

• Special soundness: There exists a probability polynomial time extractor
Ext that on input any instance x and two accepting transcripts (a, c, z) and
(a, c′, z′), with c ̸= c′, outputs a witness w for x.

• Special honest-verifier zero-knowledge (SHVZK): There exists a poly-
nomial time simulator Sim which on input x and random challenge c outputs
a transcript (a, c, z) that is indistinguishable from the one generated by an
honest interaction between P and V on (common) input x.

Due to the use of zkSNARKs, our constructions of Sigma protocols satisfy
only a relaxed version of special soundness property, namely the computational
special soundness property [DG23]. This property states that, given a pair of
accepting transcripts (a, c, z) and (a, c′, z′) with c ̸= c′ produced by an efficient
adversary, the extractor succeeds in extracting with a probability negligibly to 1
(here we might let the extractor to get full access to the adversary’s state). It is
evident that computational special soundness also implies knowledge soundness,
and the knowledge error is determined by the size of challenge space. Since the
challenge space size in this paper changes from 2 to 2λ, we directly consider
the knowledge property for clarifying its knowledge error and define a new no-
tion called Sigma Argument of Knowledge, which replaces the special soundness
property of Sigma protocol with knowledge soundness.

Definition 2 (Sigma Argument of Knowledge (Sigma AoK)). A 3-move
public-coin protocol is said to be a Sigma Argument of Knowledge with knowledge
error κ for relation R, if it satisfies completeness, SHVZK, and the following
property:

• Knowledge soundness: An interactive protocol is knowledge sound with
knowledge error κ, if for any polynomial time (potentially malicious) prover
P∗, there exists a polynomial time extractor Ext such that for any instance
x, given full access to P∗’s state and random coins, it can output a witness
with probability:

Pr[(x,w) ∈ R|w ← ExtP
∗
(x)] ≥ Pr[⟨P∗,V⟩(x) = 1]− κ(|x|)− negl(|x|)

In the Common Reference String (CRS) model, all parties are assumed to
have access to a common string, which is drawn from a carefully defined distri-
bution. In particular, our Sigma AoKs are constructed under the CRS model.
Therefore, we consider the adaptive version of security, which allows the selection
of the instance x to depend on the CRS.

Definition 3 (zero-knowledge Succinct Non-interactive Argument of
Knowledge (zkSNARK)). A zkSNARK for an NP relation R in the CRS
model consists of a triple of polynomial time algorithms (Setup,P,V) defined as
follows:

10 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

– Setup(1λ) takes a security parameter λ and outputs a crs ∈ {0, 1}∗.
– P(crs, x;w) takes on input the crs, instance x and witness w, and outputs an

argument π.

– V(crs, x, π) takes on input the crs, instance x and argument π, and outputs
either 1 accepting the transcript or 0 rejecting it.

The algorithms above satisfy the following properties:

• Completeness: If P and V follow the protocol on instance x and witness w
to P where (x,w) ∈ R, then V always accepts the transcript.

• Knowledge soundness: A non-interactive protocol is knowledge sound
(with negligible knowledge error), if for any polynomial time (potentially ma-
licious) prover P∗, there exists a polynomial time extractor Ext such that,
given full access to P∗’s state and random coins, it can output a witness with
probability:

Pr

V(crs, x, π) = 1∧
(x,w) ∈ R

∣∣∣∣∣∣∣
crs← Setup(1λ);

(x, π)← P∗(crs; r);

w ← Ext(crs, x, π, r)

 ≥ Pr

[
V(crs, x, π) = 1

∣∣∣∣∣ crs← Setup(1λ);

(x, π)← P∗(crs; r)

]
− negl(|x|)

• Zero-knowledge: There exists a polynomial time simulator (S1,S2) such
that, for any polynomial time adversaries (A1,A2), the following probability
is negligible:∣∣∣∣∣∣∣Pr
 (x,w) ∈ R∧
A2(π, st) = 1

∣∣∣∣∣∣∣
crs← Setup(1λ);

(x,w, st)← A1(crs);

π ← P(crs, x, w)

− Pr

 (x,w) ∈ R∧
A2(π, st) = 1

∣∣∣∣∣∣∣
(crs, τ)← S1(1

λ);

(x,w, st)← A1(crs);

π ← S2(crs, τ, x)


∣∣∣∣∣∣∣

• Succinctness: For any x and w, the length of the transcript π is given by
|π| = poly(λ) · polylog(|x|+ |w|).

2.2 Hash Functions

Definition 4 (Hiding hash function). A hiding hash function is a hash func-
tion family (Gen,H), such that for any Hη : {0, 1}∗×{0, 1}λ → {0, 1}n generated
by η ← Gen(1λ) satisfies the following two properties:

• Collision resistance: For any probabilistic polynomial time adversary A,

Pr

[
x0 ̸= x1∧

Hη(x0, r0) = Hη(x1, r1)

∣∣∣∣∣ η ← Gen(1λ);

(x0, r0, x1, r1)← A(η)

]
≤ negl(λ)

• Computational hiding: For any equal-length x0, x1 ∈ {0, 1}∗, the follow-
ing two distributions are computationally indistinguishable.

{Hη(x0, r0)|r0
$←− {0, 1}λ}η

c≈ {Hη(x1, r1)|r1
$←− {0, 1}λ}η

Generic, Fast and Short Proofs for Composite Statements 11

Instantiation of hiding hash function. In this context, we use H to represent
the instantiated hiding hash function Hη. Under the random oracle model, the
hiding property is evident because H(x, r) is a uniform distribution. Therefore, if
a collision-resistant hash is believed to be secure to instantiate a random oracle
in the real world, then it should be believed as a hiding hash function.

Furthermore, we note that we cannot directly analysis the security of our
constructions in the random oracle model due to the necessity of proving such
a hash function. Therefore, we need to assume the existence of hiding hash
functions. In fact, it is a common issue appearing in the recursion of SNARKs.
We will discuss such issue further in the next subsection and provide confidence
in the security of corresponding constructions.

2.3 On Recursive Proof in Random Oracle Model

Here we primarily discuss recursive SNARKs, as they are more common. The
obtained observation also applies similarly to above case of hiding function,
which is more simple.

To be detailed, the constructions of recursive SNARKs [COS20] (furthermore,
IVC [Val08] and proof-carrying data (PCD) [BCMS20,BCL+21]), might face the
significant theoretical challenge that some times the hash function is treated as
a random oracle and sometimes it is described as a small circuit. It is somewhat
unreasonable, in fact, Chiesa and Liu [CL20] demonstrated that the PCP theo-
rem does not hold for random oracle, and Hall-Andersen and Nielsen [HAN23]
proved that constructing zero-knowledge IVC from random oracle model is im-
possible.

To address this issue, several studies [CT10,CCS22,CCG+23] have attempted
to endow the random oracle with additional structure, enabling the correctness
of queries to be proven using these structures. This approach often leads to
more complex constructions or security proofs. Furthermore, when instantiated
with concrete hash functions, the security of the resulting schemes still remain
heuristic.

Here, we observe a different perspective on this problem. Suppose that recur-
sive schemes instantiated with concrete hash functions are flawed or vulnerable
to certain attacks. It is highly likely that the original schemes, when instanti-
ated with the same concrete hash functions, are already vulnerable to the same
attacks.

This observation has appeared implicitly in many constructions [COS20],
[BCMS20,BCL+21] which assume the existence of concrete hash functions, where
replacing the random oracle with the hash function leads to a secure zkSNARK
or zk-accumulation scheme in the standard model. Now, without the random
oracle, they show that the zero-knowledge and knowledge soundness properties
are still preserved in the recursive setting.

We formalize our observation and extend existing results. Recall that, when
instantiated with concrete hash functions, it may be somewhat unreasonable
to assume that the resulting schemes maintain the same level of security (such
as standard zero-knowledge and knowledge soundness), due to the absence of

12 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

programmable and observable properties. We demonstrate that, as long as one
assumes the underlying scheme still satisfies some weaker security properties,
e.g., knowledge soundness with extractor (might not be efficient) and T -time
(T might not be a polynomial) simulatable zero-knowledge, then the recursive
schemes should also be considered to satisfy these properties.

In this context, we focus on a simple situation, ΠO := ΠO
1 (ΠO

2 (ΠO
3 (· · · (ΠO

n))))
(e.g., IVC and path PCD).

Theorem 1. (inherent from [COS20,BCMS20,BCL+21]) Let {ΠO
i }i∈[n] be a

series of proof systems, and ΠO := ΠO
1 (ΠO

2 (ΠO
3 (· · · (ΠO

n)))) be the recursion of
these proof systems. Specifically, for each Πi, it proves xi ∈ Li defined as that
“(xi;xi+1, wi) ∈ RL′

i
∧ there exists a valid proof πi+1 for xi+1 ∈ Li+1” for some

L′
i (with the exception of Πn, which only proves that (xn;wn) ∈ RL′

n
). Then,

when instantiated with concrete hash functions h, we have that:

• Recursion of Knowledge Soundness. Suppose that for each i, Πh
i satisfies

knowledge soundness with witness extractors of size fi (i.e., for any T -size
P ∗, the size of witness extractor is fi(T), which may not be efficient). Then,
Πh satisfies knowledge soundness with f -size extractor, where f = f1 ◦ f2 ◦
· · · ◦ fn.
• Recursion of Zero-Knowledge. Suppose that for each i, Πh

i satisfies T -time
simulatable zero-knowledge, where T may not be a polynomial. Then, Πh also
satisfies T -time simulatable zero-knowledge.

Remark 1. For the recursion of knowledge soundness, if the sizes of both ad-
versary and the extractor are polynomial, the result corresponds to the cases
discussed in [Val08,BCCT13].

Remark 2. For the recursion of T -time simulatable zero-knowledge, it is sufficient
for only Πh

n to satisfy this property. Additionally, other weak variants of zero-
knowledge can also be considered, such as distributional distinguisher-dependent
zero-knowledge (for general PCD, one additionally needs to assume that the local
inputs of all nodes are independent), witness indistinguishable or witness hiding.
All of these properties can be preserved in recursion.

3 Hash-and-Prove SNARKs

In this section, we first define a Arithmetic with Algebraic Circuit Satisfiability
relation Ralg for the arithmetic C-SAT that includes algebraic gates. Then, we
provide a circuit compiler that decomposes the relation circuit Ralg into a stan-
dard arithmetic C-SAT relation Rstd and some algebraic relations Rah. Finally,
we give a generalized description of Hash-and-Prove SNARKs.

3.1 Arithmetic with Algebraic Circuit Satisfiability

Notation. Let (Gp, ◦) be a cyclic group, for a group element P ∈ Gp, and an
integer x ∈ Fp, denote the scalar multiplication over Gp as P x, which means
multiplying x group elements P .

Generic, Fast and Short Proofs for Composite Statements 13

We extend the arithmetic C-SAT problem over a field Fq by allowing some
non-native operations over a cyclic group Gp without representing them as arith-
metic over Fq. In this circuit, there are three types of gates: addition and mul-
tiplication over Fq, and algebraic gates over Gp which are defined as follows:

Definition 5 (Algebraic gate). Let (Gp, ◦) be a cyclic group, and I ⊆ Z be a
finite set.5 An algebraic gate A over Gp is parameterized by two inputs, a group
element P ∈ Gp and a scalar x ∈ I, and an output Q ∈ Gp, satisfying P x = Q.

Algebraic gates can be used to model exponentiation operations in various
cryptographic protocols, forming a core component of circuits that involve group
operations. Since cryptographic algorithms are typically defined over a single
cyclic group, we will provide an arithmetic circuit with operations over a single
cyclic group. However, this can naturally be extended to circuits that include
operations over multiple cyclic groups.

Definition 6 (Arithmetic with algebraic circuit satisfiability). Let Fq be
an arithmetic field and Gp be a cyclic group, an arithmetic circuit with algebraic
gates {Ak} over Gp, denoted as Ralg, operates on wires ω := (s;w) and satisfies
a relation of the following form:

Ralg :=



(s;w) :

∀i ∈ Iadd, ωadd0(i) = ωadd1(i) + ωadd2(i) (mod q) ∧

∀j ∈ Imul, ωmul0(j) = ωmul1(j) · ωmul2(j) (mod q) ∧

∀k ∈ Ialg, P xk

k = Qk where:

Q̂k :=
(
ωah0,1(k), ωah0,2(k), . . . , ωah0,ξ(k)

)
,

P̂k :=
(
ωah1,1(k), ωah1,2(k), . . . , ωah1,ξ(k)

)
,

x̂k :=
(
ωah2,1(k), ωah2,2(k), . . . , ωah2,ζ(k)

)
,

Qk := L(Q̂k), Pk := L(P̂k), xk := L′(x̂k)


These symbols mean:

– ω := (s;w) denotes the vector of all wires in the circuit, where s represents
public wires, w represents private wires and ωi denotes the wire at index i.

– Iadd, Imul, Ialg ⊆ Z+ are index sets for addition gates, multiplication gates,
and algebraic gates, respectively.

– add0(i), add1(i), add2(i) denote indices for the output and input wires of the
i-th addition gate. Similarly for multiplication gates.

– P xk

k = Qk is the algebraic relation for Ak, where Pk, Qk ∈ Gp and xk ∈ I.
– ξ and ζ are the numbers of Fq variables required to represent each group or

scalar variable, respectively.
5 The scalar variable used in operations over cyclic group Gp is typically an Fp element.

However, there are exceptions, such as RSA accumulator schemes, where the scalar
belongs to a larger set of integers.

14 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

– Q̂k, P̂k ∈ Fξ
q and x̂k ∈ Fζ

q are vectors over Fq that uniquely represent the
original variables Qk, Pk and xk, respectively.

– L,L′ are the linear mapping that reconstructs original variables from their
representation of Fq elements.

– ah0,1∼ξ(k), ah1,1∼ξ(k), ah2,1∼ζ(k) denote indices for the output and input wires
of Ak, which correspond to Q̂k, P̂k and x̂k, respectively.

For Q̂k in the circuit Ralg, we restrict the wires in Q̂k to be either entirely
composed of the public wires in s or entirely composed of the private wires in w.
This distinction indicates whether the group element Qk is public or private in
Ak. The same applies to P̂k and x̂k. Furthermore, to ensure that L is reversible,
we assume that the value of each wire in Ak lies within a specific range.6

The standard arithmetic C-SAT relation and the relation Ralg can be mu-
tually reduced to each other, in particular, Ralg is equivalent to the standard
arithmetic C-SAT when there are no algebraic gates in the circuit, thus Ralg

is also an NP-complete relation. We can encompass nearly all mainstream con-
straint systems such as R1CS, PLONK, AIR, QAP, and layered arithmetic cir-
cuits into relation Ralg by incorporating these constraint systems along with
algebraic gates. Consequently, our methods can be applied to any proof system
based on C-SAT.

3.2 Decompose Circuit

Given a arithmetic with algebraic circuit Ralg(s;w)7, we demonstrate how to
apply a circuit compiler to decompose it into two relations. If both relations are
satisfied, this establishes that Ralg(s;w) is satisfied.

Circuit Compiler: For the input circuit Ralg(s;w) over arithmetic field Fq and
cyclic group Gp, a security parameter λ, and an initialized hash function H. The
compiler Compil(H,Ralg(s;w)) operates as follows:

1. Leave the addition gates and multiplication gates over Fq unchanged.
2. For every k ∈ Ialg, define two empty vectors s̃k and w̃k. Then proceed to

modify ω and append variables to s̃k and w̃k in the following way:

a. If P̂k ⊆ w, then append w̃k ← w̃k ∪ P̂k. Otherwise, append s̃k ←
s̃k ∪ {Pk}, and if P̂k ̸⊆ {ωadd(Iadd) ∪ ωmul(Imul)} then remove ω ← ω \ P̂k.8

b. If Q̂k ⊆ w, then append w̃k ← w̃k ∪ Q̂k. Otherwise, append s̃k ←
s̃k ∪ {Qk}, and if Q̂k ̸⊆ {ωadd(Iadd) ∪ ωmul(Imul)} then remove ω ← ω \ Q̂k.

6 An example in practice is that we represent a Secp256k1 element of 256-bits using 16
variables of 16-bits each in the Goldilocks field Fq where q = 264−232+1. Therefore,
we need a range proof to ensure that these Fq variables are less than 216 − 1.

7 We denote the circuit as R(s;w) where the wires (s;w) are unassigned variables.
8 If P̂k does not contain wires for arithmetic gates, then remove it from the new circuit.

We assume that the wires constituting P̂k are either all connected to some arithmetic
gates or none of them are, which is always the case in cryptographic algorithms.

Generic, Fast and Short Proofs for Composite Statements 15

c. If x̂k ⊆ w, then append w̃k ← w̃k ∪ x̂k. Otherwise, append s̃k ←
s̃k ∪ {xk}, and if x̂k ̸⊆ {ωadd(Iadd) ∪ ωmul(Imul)} then remove ω ← ω \ x̂k.

3. For every k ∈ Ialg, compile the hash circuit H(w̃k, rk) = hk, where rk is
a random variable in {0, 1}λ, then obtain a arithmetic circuit Hk

std over Fq

with wires (hk;w
k
H).

9 After that, append the public wires s̃k ← s̃k ∪ {hk},
s← s ∪ {hk} and private wires w← w ∪wk

H.
4. Output an arithmetic with hash circuit Rstd(s;w)10, and k algebraic with

hash relations Rk
ah(s̃k; (w̃k, rk)), which are defined as follows:

– Arithmetic with hash relation: An arithmetic with hash circuit Rstd

over Fq on wires (s;w) is a standard arithmetic circuit that leaves the
addition and multiplication relationship in Ralg and replaces the {Ak}Ialg
relations with the relations of arithmetic circuit {Hk

std}Ialg over Fq as follows:

Rstd :=

(s;w) :

∀i ∈ Iadd, ωadd0(i) = ωadd1(i) + ωadd2(i) (mod q) ∧
∀j ∈ Imul, ωmul0(j) = ωmul1(j) · ωmul2(j) (mod q) ∧
∀k ∈ Ialg, Hk

std(hk;w
k
H) = 1

where: hk ∈ s,wk
H ⊆ w


– Algebraic with hash relation: For all k ∈ Ialg, an algebraic relation Rk

ah

on public wires s̃k and private wires (w̃k, rk) is as follows:

Rk
ah :=

(s̃k; (w̃k, rk)) :

H(w̃k, rk) = hk ∧ P xk

k = Qk

where: hk ∈ s̃k,

Pk := L(P̂k), Qk := L(Q̂k), xk := L′(x̂k),

and P̂k, Q̂k, x̂k are in either s̃k or w̃k


Remark 3. The the input circuit Ralg and output relation circuits Rstd and
{Rk

ah}Ialg naturally imply a mapping of wires following executions of the Compil:

wire :
(
s, {hk}Ialg

)
7→
(
s, {s̃k}Ialg

)
where s and each s̃k contain a identical variable hk. Therefore, for a given public
wire assignments s in Ralg and each hash value hk, the public wire assignments
of Rstd and {Rk

ah}Ialg can be naturally computed by the mapping wire(·). In the
following text, we rewrite {ak}Ialg to {ak}.

Lemma 1. Assume H is a collision-resistant hash function. The compiler Compil
given an input relation Ralg outputs separate relations, Rstd and {Rk

ah}. Then
there exist two efficient deterministic algorithms S and E such that, for any
polynomial time algorithm P which outputs the public values s and {hk} and let
(s, {s̃k}) = wire(s, {hk}), it satisfies:
9 Typically, for the compiled circuit Hk

std over Fq, the private wires include not only
the original input variables (w̃k, rk) but also some intermediate wires.

10 We rename the output wires as (s;w) to distinguish it from the original wires (s;w).
For simplicity, we write the circuit R(s;w) as R in the context.

16 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

1. If P outputs private values (w, {rk}) satisfying Ralg(s;w) = 1, then the
algorithm S, on input (w, {rk}), outputs w and {w̃k, rk} satisfying Rstd and
{Rk

ah}, respectively.
2. If P outputs private values w and {w̃k, rk} satisfying Rstd and {Rk

ah}, then
the algorithm E, on input w and {w̃k, rk}, outputs w satisfying Ralg.

Proof sketch. On the one hand, for acceptable values (s;w) for Ralg, algorithm
S follows the executions of the compiler to obtain acceptable values for Rstd and
{Rk

ah}. On the other hand, the acceptable values (s;w) and (s̃k; (w̃k, rk)) with
the same hk in both s and s̃k implies Hk

std(hk,w) = 1 and H(w̃k, rk) = hk. That
implies the same values w̃k, rk ∈ w. Otherwise, the polynomial time algorithm
P breaks the collision resistance of H. Then, algorithm E follows the executions
of the compiler to obtain acceptable values w for Ralg. ⊓⊔

3.3 Hash-and-Prove Protocols

We restate the HP protocol, which links a SNARK to some Sigma protocols via
hash function, and an internal SNARK as a component of the Sigma protocol.
Both the SNARKs can be arbitrary, and we confirm that almost all algebraic
statements, as long as a Sigma protocol exists, can be efficiently utilized in the
HP protocol.

Specifically, during the HP protocol setup, the above compiler decomposes
arithmetic with algebraic circuit Ralg into two parts: Rstd and {Rk

ah}. The pro-
tocol execution consists of two parallelizable phases: a SNARK for Rstd and a
Sigma AoK for each Rk

ah. The internal SNARK operates as a sub-protocol within
the Sigma AoKs, which provides a linking function for the hash relation and the
algebraic relation in Rk

ah := {H(w̃k, rk) = hk ∧ P xk

k = Qk}.

Sigma AoKs with internal SNARK. There is almost no efficient Sigma
protocol for the relation {H(w̃k, rk) = hk∧P xk

k = Qk} with a hash function, but
a zk-friendly hash can be efficiently proven by SNARKs. A series of generalized
Sigma AoK (defined in Section 2.1) consisting of a Sigma protocol accompanied
by a SNARK proof are designed for these relations. The construction of Sigma
AoKs is detailed in Section 4. Let Πlnk be the internal zkSNARK. For an algebraic
with hash relation Rk

ah with algebraic gate Ak, let Πk
aok be the corresponding

Sigma AoK for Rk
ah.

Hash-and-Prove protocol Πhp. Let λ be the security parameter, H be a hash
function. For a circuit Ralg with algebraic gates {Ak}, let Π be a zkSNARK for
relation Rstd and Πk

aok be the customized Sigma AoK with negligible knowledge
error κk. A Hash-and-Prove protocol is a triple of polynomial time algorithms
Πhp := (Setup,P,V) behave as shown in Figure 3.

Theorem 2. Assume H is a hiding hash function, then Πhp in Figure 3 is a 3-
move public-coin SHVZK argument of knowledge (Sigma AoK) for NP relation
Ralg with negligible knowledge error.

Generic, Fast and Short Proofs for Composite Statements 17

Hash-and-Prove Protocol Πhp

Setup(1λ,Ralg).
1. Sample a random hash function H← Gen(1λ).
2. Rstd, {Rk

ah} ← Compil(H,Ralg).
3. crs0 ← Π.Setup(1λ,Rstd).
4. crsk ← Πk

aok.Setup(1
λ,Rk

ah) for each k ∈ Ialg.

Input(crs0, {crsk}, s;w).
1. P,V are given the public input s, and P is given the private input w.
2. For each k ∈ Ialg, P chooses random rk ∈ {0, 1}λ. Then P calls the efficient

algorithm S detailed in Lemma 1 to obtain w and {w̃k}.
3. P computes hk = H(w̃k, rk), and sends {hk} to V.
4. V computes (s, {s̃k}) = wire(s, {hk}).

SNARK phase. P,V follow the work of the SNARK Π.⟨P(w),V⟩(crs0, s) for
relation Rstd.

Sigma phase. For each k ∈ Ialg, P,V follow the work of Sigma AoK
Πk

aok.⟨P(w̃k, rk),V⟩(crsk, s̃k) for relation Rk
ah, in parallel.

Output. Accept if and only if the verifications in both SNARK phase
and Sigma phase are accepted. Otherwise, reject.

Fig. 3: Πhp for Ralg(s;w) = 1

Due to space limitation, we defer the detailed proof to Appendix B.

Non-interactive via Fiat-Shamir heuristic [FS87]. For a 3-move public-
coin interactive protocol, the Fiat-Shamir transformation can convert the HVZK
property into zero-knowledge while preserving the knowledge soundness in the
ROM. In the following, we would apply the recursion proof technique (includes
IVC,PCD) for further optimization. However, we cannot analysis the security of
the whole protocol in the random oracle model due to the issue of proving hash
function treated as random oracle. Therefore, we need to assume the existence
of concrete hash function such that when instantiated with this function, the
resulting proofs are secure in the real world. For the same reason, we need to
assume the existence of hiding hash functions rather than directly treat it as a
random oracle. A further discussion of this issue is provided in Section 2.3.

4 Sigma Protocols for Algebraic with Hash Relation

In this section, we instantiate the Sigma AoKs as {Πk
dl}k∈[4] and {Πk

rsa}k∈[2],
for the discrete logarithm relation {Rk

dl}k∈[4] and the RSA relation {Rk
rsa}k∈[2],

18 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

where [i] denotes the set of natural numbers {0, 1, . . . , i−1}. We first introduce a
protocol as an example for describing the main idea behind our technique. Next,
we discuss the variations of the protocol in different settings, such as the RSA
setting. Subsequently, we present some optimization strategies for Sigma AoKs
to reduce the parallel overhead further.

“Ping-pong” alternating of SNARK and Sigma. From a high-level perspec-
tive, our scheme applies a “ping-pong” mode: the proving starts with a SNARK,
transitions to a Sigma protocol, and then returns to a SNARK with a reduced
circuit size to be proven (see Figure 4). On the one hand, a trivial Sigma pro-
tocol can only prove the knowledge of one witness in the statement, whereas
our Sigma AoK is supplemented by a SNARK to complete the proof for the
statement containing multiple witnesses. On the other hand, the circuit size for
this supplementary proof is significantly smaller than that of the complete group
exponentiation circuit in the original SNARK.

Some Sigma protocols require parallelism to achieve sufficient soundness. We
present two optimization strategies to enhance the parallel efficiency in Sec-
tion 4.2. The first strategy involves applying computation reuse techniques and
adjusting the size of challenge space to minimize the prover’s computation in
parallel repeated circuits. Another strategy is that since the internal SNARK
circuit is a uniform circuit, which allows for different assignments to the same
circuit when executed in parallel. We can leverage techniques such as proof-
carrying data, folding schemes, or proof batching to significantly reduce prover
time.

Fig. 4: An example HP protocol for Π1
dl

Generic, Fast and Short Proofs for Composite Statements 19

Compared to using general zkSNARKs to prove everything within an arith-
metic circuit, these Sigma AoKs reduce more than 90% of the group operations
in the original circuit and delegate it to an internal SNARK. Further through our
parallel optimization techniques, we improve the prover efficiency by more that
100×. On the other hand, compared to the Commit-and-Prove schemes, these
Sigma AoKs (1) can connect to a generalized SNARK rather than a specific
SNARK, (2) do not require sending Pedersen commitments, which are typically
over a large group and result in intolerable proof size, and (3) do not require
an additional “glue” proof to connect to the circuit witness. So it significantly
reduces the proof size.

4.1 Sigma Argument of Knowledge

To facilitate understanding, we start with simple examples of several Sigma
AoKs for cyclic groups in discrete logarithm setting, including Schnorr protocol
[Sch91] and its variants. Additionally, to achieve the completeness of algebraic
gates over cyclic groups, we present the constructions of all remaining Sigma
AoK protocols in Appendix A.

Notation. Let (Gp, ◦) be a cyclic group with a prime order p and a generator
G. We denote scalar operations as Gx, where x belongs to the scalar field Fp.

Consider a zkSNARK Πlnk over Fq. And denote h := H(x, r), where r
$←− {0, 1}λ

and H is the hiding hash function defined by Definition 4.

I. Linking Hash into Sigma Protocols. The goal here is to achieve the
linkage of any SNARK and Sigma without an additional “glue” proof, reducing
the proof size. Here we build on the idea of Orrù et al. [KMN23,OKMZ24] and
extend it to general cases in general cyclic groups (including RSA groups).

Consider a simple example of proving the statement Q = P x, where (P,Q)
are public input and x is a private input. This can be efficiently proven using
Schnorr’s Sigma protocol. To combine the Schnorr statement Q = P x with the
SNARK statement h = H(x) to a conjunction(AND) statement, the prover can
be required to prove that the third message z = k + cx is actually computed
using the hashed value x, which can be efficiently achieved using SNARKs.

Above idea is enough for the construction of Sigma Aok for relations sin-
gle witness, like R0

dl := {(P,Q, h; (x, r)) : Q = P x ∧ h = H(x, r)}. And we
provide the constructions in Appendix A. However, as shown in Introduction,
above method fails to build proofs for statements with more witnesses, like the
statement {(P, h; (Q, x, r)) : Q = P x ∧ h = H(Q, x, r)}.

II. Expanding Linking to Support More Witnesses. First, we revisit
Schnorr’s Sigma protocol to understand why it fails when proving statements
with multiple witnesses. Consider relation {(P ; (Q, x)) : Q = P x}. After receiv-
ing the third round message z, the verifier needs to check that T = A ◦ Qc

where T = P z. However, since Q is private, the verifier cannot compute A ◦Qc

20 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

on its own. A straightforward approach is to require the prover to demonstrate
that T = A ◦ Qc using SNARKs. However, this necessitates proving a group
exponentiation, which brings us back to the initial challenge.

An observation here is that, if we reduce the size of challenge space, and
consider the corresponding Schnorr’s protocol as follows:

1. P chooses k
$←− Fp and sends A = P k to V.

2. V chooses c
$←− {0, 1} and sends it to P.

3. If c = 0, P sends z = k to V. Otherwise, P computes z = k+x(mod p), T =
P z and sends z to V.

4. If c = 0, V checks A = P z. Otherwise, V computes T = P z and checks
T = A ◦Q.

Then, the response proof is required to imply only a single group operation
T = A ◦ Q when c = 1 for checking. Even consider parallelization for reducing
soundness error, the computation is still much less than compute the exponen-
tial directly. Now, we can require the prover to prove T = A ◦ Q via SNARK
(some optimization technique will be discuss in the next subsections), to help the
verifier to conclude the verification. Furthermore, directly sending A in the first
round may lead to the leakage of Q through T = A ◦Q when c = 1. Therefore,
A also needs to be hidden in the hash function.

Protocol Π1
dl with x and Q as witness. Since Q is also a witness, the statement

includes the hash function h = H(Q, x, r). The response includes a linking proof
πlnk from the SNARK Πlnk, proving the following relationship:11

R1
lnk :=

{(
h, hk, c, z, T ;

(Q, x, k,A, r, rk)

)
:
h = H(Q, x, r) ∧ hk = H(A, k, rk)∧
z = k + cx (mod p) ∧ T = A ◦Qc

}

where c ∈ {0, 1} and r, rk ∈ {0, 1}λ and H is a hash function.

Theorem 3. Let Gp be a cyclic group with prime order p, if H is a hiding hash
function, Πlnk is a zkSNARK, then Π1

dl in Figure 5 is a Sigma AoK with 1/2
knowledge error for the relation:

R1
dl := {(P, h; (Q, x, r)) : Q = P x ∧ h = H(Q, x, r)}

where P,Q ∈ Gp, x ∈ Fp and r ∈ {0, 1}λ.

III. Sigma AoKs in Other Settings . In the discrete logarithm setting, the
order of the cyclic group Gp is included in the public parameters. However, this
is not the case for groups of unknown order. For example, in RSA encryption

11 We present the protocol of uniform version to support the proof batching (see Section
4.2). The protocol also has a non-uniform version, where the SNARK circuit does
not include group operations in c = 0, which supports the parallel composition.

Generic, Fast and Short Proofs for Composite Statements 21

Setup. Run internal SNARK setup crs← Πlnk.Setup(1
λ,R1

lnk)

Prover(crs, P, h; (Q, x, r)) Verifier(crs, P, h)

k
$←− Fp; rk

$←− {0, 1}λ;

A = P k;hk = H(A, k, rk);

hk

c
$←− {0, 1};

c

z = k + cx (mod p);T = A ◦Qc;

Run Πlnk for R1
lnk :

πlnk ← Πlnk.P
(
crs, h, hk, c, z, T ;

(Q, x, k,A, r, rk)
)
;

z, πlnk

Compute T = P z;

Πlnk.V(crs, πlnk)
?
= 1

Fig. 5: Π1
dl for R1

dl := {(P, h; (Q, x, r)) : Q = P x ∧ h = H(Q, x, r)}

and signature schemes defined over the RSA ring Zn, variables are selected from
Z∗
n, and the order φ(n) is unknown to anyone except the key holder.

In the RSA setting, we present two useful Sigma AoKs, as detailed in Ap-
pendix A. Protocol Π0

rsa constructs an argument of knowledge for RSA encryp-
tion: given a public key e and ciphertext c, the prover knows the corresponding
plaintext m. Protocol Π1

rsa constructs an argument of knowledge for RSA sig-
nature: given a public key e, the prover knows a message-signature pair (m,σ).
The latter can be widely used in anonymous credential scenarios.

The construction of Sigma AoKs in the RSA setting is essentially the same as
before. The key point to note is that, due to the unknown order of the RSA group,
the challenge space must be set to {0, 1} to provide the knowledge soundness.
In this case, the extractor can use the extended Euclidean algorithm on two
different transcripts to compute the witness. Then, for these Sigma AoKs with
1/2 knowledge error, we use the parallel optimization techniques introduced
below to reduce the error while saving costs.

4.2 Parallel Optimization for Sigma AoKs

For Sigma AoKs with a knowledge error of 1/2, we can reduce the knowledge
error through parallel repetition, similar to how the Sigma protocol reduces

22 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

soundness error. We can construct an extractor for the ℓ-times parallel Sigma
AoK protocol, where the extractor rewinds the prover to obtain two acceptable
Sigma proofs and extracts the witness, and at the same time, calls the SNARK
extractor to extract witness of SNARK statement. The consistency of witnesses
is guaranteed from the soundness of SNARKs. Since the negligible knowledge
error of SNARK and the exponential-sized challenge space, this extractor can
ensure knowledge soundness with negligible error.

Using protocol Π1
dl as an example, it has a knowledge error of 1/2, thus

requiring parallel. However, trivial parallelization leads to linear overhead. We
propose two different optimization strategies for the parallel of Sigma AoKs.
The first strategy for the non-uniform version is general and results in optimized
prover time and significant reducing proof size. The second strategy focuses on
proof batching for uniform circuits, which can significantly improve prover time
when using specific SNARKs.

Optimization I. Parallel Composition of Sigma AoKs. We present an ef-
fective trick to optimize the number of parallel repetitions and achieve minimum
circuit size. We slightly increase the size of challenge space and denote it by [m].
Observe that the prover needs to prove the same Qc in parallel repetitions when
the same c ∈ [m] is chosen, so the prover can reuse the proof for Q2, . . . , Qm.

For example, let the challenge c ∈ {0, 1, 2, 3} and knowledge error be 2−60.
Then, the number of parallel repetitions is ℓ = 60 log4 2 = 30. The precompu-
tation of Q2, Q3 requires 2 group operations. For a random c ∈ {0, 1, 2, 3}, the
average number of group operations per parallel repeated circuit is 3/4. This
is because there is nothing to be proven when c = 0. In other cases, only one
operation, A ◦Q′ (where Q′ = Qc), needs to be proven. Finally, the total num-
ber of group operations is 24.5, whereas the trivial parallel way requires 30. We
propose an optimization strategy for Π1

dl when the knowledge error is 2−λ, which
involves computing the minimum point of f(m) = λ(m−1)

m logm2 + (m− 1).
Next, we will introduce another optimization strategy for uniform circuits in

some special SNARK schemes. However, applying optimization I, which is gen-
erally applicable, will cause part of the circuit to become non-uniform, thereby
affecting the efficiency of the optimization II.

Optimization II. Proof batching for Uniform Circuits. When simply par-
allelizing the uniform version of Sigma AoKs, the internal SNARK are initialized
for the same circuit with different assignments. We can employ various methods
for this proof, such as proof-carrying data, folding schemes, or proof batching.
Specifically, we instantiate the internal SNARK using the Varuna scheme, which
leverage the proof batching technique [GMN22,ASS+22] to significantly reduce
prover time. This technique allows us to add more assignments of the same
circuit with only an additional prover time cost of approximately 1/8 for each
assignment.

For example, the uniform circuit R1
lnk includes two zk-friendly hash, a non-

native scalar multiplication z = k+ cx, and a group operation T = A◦Qc. Then

Generic, Fast and Short Proofs for Composite Statements 23

we discuss how to select appropriate zk-friendly hash functions and internal
SNARKs.

Select hash functions. We first consider two scenarios based on whether the
original SNARK and internal SNARK in the same field. In the same field sce-
nario, we can use a zk-friendly hash function within the native field. In different
field scenarios, we can only use binary field hash functions like SHA256, since
proving zk-friendly hash function in non-native field would result in higher over-
head. Despite employing proof batching techniques for SHA256 proofs, the prover
time remains intolerable.

We propose an effective trick to replace the SHA256 in the internal SNARK
with a zk-friendly hash like Poseidon over native field. As shown in Figure 6, the
prover additionally sends a “linking” SNARK proof, which implies that SHA256
and Poseidon contain the same witness. Then the internal SNARK can utilize
the Poseidon hash over native field for multiple parallels.

Fig. 6: Optimization II in different field.

Select internal SNARKs. Higher efficiency is achieved when the operations
of group Gp fall in the internal SNARK field Fq, as this avoids non-native arith-
metic. Due to recent works on SNARKs supporting arbitrary sufficiently large
field [GLS+23,ZCF24,BCKL22,HLP24], the HP protocol can support this opti-
mization.

24 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

5 Performance

The configuration of the testing machine used in the experiments is as follows:
Intel(R) Core(TM) i7-10870H CPU @ 2.20 GHz, 16.0 GB RAM. The reported
numbers are averages over five runs. To facilitate a clearer comparison with
previous work, our scheme adopts a knowledge error of 2−60, the same as in
prior study [AGM18]. Our framework is compatible with any SNARK, allowing
for faster implementations in practice. To showcase its efficiency, this section
primarily utilizes two proof systems: Plonky2 [0xP23] and Varuna [Ale23]. For
implementation details please refer to Appendix D.

In the comparative experiments of this section, we primarily aim to highlight
the advantages of our Sigma AoKs for algebraic statements compared to Sigma
protocols under Pedersen commitment. Specifically in terms of proving elliptic
curve operations, our approach demonstrates significant advantages in all as-
pects: proof time, proof size and verification time. For non-algebraic part, we
assume all the following solutions need to pay the same cost for some hash func-
tions like SHA256. One SHA256 hash can be proved within one second for most
SNARKs, which is relatively minimal overhead. But in high-throughput signa-
ture verification scenarios, we need to prove large amount of hash functions. Our
scheme offers the advantage of combining SNARKs that can efficiently proves
hash functions with those that are efficient in proving algebraic operations, as
illustrated in Figure 6.

5.1 Proof for Solvency

In the context of Proof of Solvency, we are required to prove a statement of
the form “SHA256(Gx) = y”, where the algebraic component “Gx” corresponds
precisely to the relation R1

dl as defined in our work. Accordingly, we retain all
other aspects of the proof unchanged, except for employing our proposed sigma
AoK Π1

dl to prove the statement involving “Gx”. The knowledge error of the sigma
AoK Π1

dl is 1/2. By employing the first optimization method from Section 4.2,
we achieve a challenge space size of 8, resulting in a knowledge error of 2−3 for
a single execution. By conducting this process in parallel 20 times, we obtain a
protocol with knowledge error of 2−60.

For n = 1, the computations we need to prove in the internal SNARK include,
on average: 25 elliptic curve point additions, 20 non-native multiplications and a
Poseidon hash of 42 elements. The proof consists of 20 field elements, 1 output of
Poseidon Hash and a proof of an internal SNARK. And the verifier work consists
of 20 group exponentiation and the verification of internal SNARK.

The internal SNARK circuit along with one SHA256 function can be proved
in 2.5 second within the Plonky2 system. In Plonky2, |π| ≈ 144.8 kb and Tv ≈ 7
ms; however, in plonky2 we can shrink to the recursion threshold which results
in |π| ≈ 50kb, Tv ≈ 4ms, this depends on the specific parameter settings of
the proof system. Previous works typically either encode an entire algebraic
statement in SNARKs or utilize SNARKs and Sigma protocols under Pedersen

Generic, Fast and Short Proofs for Composite Statements 25

Table 1: Comparison for Proof of Solvency using different methods. Tp, Tv and
|πs| represent the prover time, verifier time and proof size of the internal SNARK.
We can always generate one SNARK proof to include all necessary computations
in the third-round of Sigma AoKs for multiple statements. Tsha denotes the
cost for proving a SHA256 permutation. Let |H| = 256 denotes the fixed bit-
length output of the hash function H. n is the size of the anonymity set, m
is ⌈logMax⌉ = 51, and p denotes the size of the field over which the curve is
defined).

Proof size Prover time Verifier time

QAP+Sigma
[AGM18]

(2396n+ log p+ logm)
elements

(Tsha + 30p+ 1800)n
exp

(10p+ 4)n exp
+30 pairings

Our work
HP(Plonky2+Sigma)

20n elements
+ |H|+|πs|

nTsha exp +Tp 20n exp +Tv

100 200 300 400 500

101
102
103
104
105
106
107

109

Size of Anonymity Set n

P
ro

of
Si

ze
(k

b)

QAP+Sigma
Our Work

100 200 300 400 500

101
102
103
104
105
106
107

109

Size of Anonymity Set n

V
er

ifi
er

T
im

e
(m

s)

QAP+Sigma
Our Work

Fig. 7: Comparison for Proof Size and Verifier Time of QAP+Sigma [AGM18]
and our work (Plonky2+Sigma)

commitments. In the former case, we need to prove 256 elliptic curve point ad-
ditions on average in SNARKs. For this, we tested in Plonky2 and obtained a
proof time of approximately 20 seconds. In the latter case, the prover’s work in-
volves more than 20000 elliptic curve exponentiation, the order of corresponding
elliptic group is at least 2768 [AGM18]. We tested BLS12-377 for 24840 scalar
multiplications result in 6.5s. This is far shorter than the time it is supposed
to be. Therefore, this causes the prover to spend at least 2 times greater than
the solution in this work. In the proof size analysis, we account for all group
elements and field elements together. To clearly and directly demonstrate the
advantages of our scheme, we assume that these group and field elements are
256-bit in size, although in practice, other schemes may involve elements with
larger bit lengths(Exp denotes exponentiation in corresponding groups).

26 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

5.2 Proof for ECDSA Signature Verification

In the middle of ECDSA signature verification, for group operations of the form
“(x1, y1) = Gu1Pu2”, we apply our Sigma AoK Π1

dl twice: once for Gu1 and once
for Pu2 . These precisely correspond to the relation R1

dl that we have defined.
When employing Plonky2 as underlying proof system, the optimization method

is exactly the same as in Section 5.1. The only difference here is that we need
to use the Sigma AoK to prove two algebraic gates instead of one. When em-
ploying Varuna as underlying proof system, we use the second optimization in
section 4.2. We simply parallel run 60 times Π1

dl, on average, for 30 times c=0,
prover sends the random number used in hash function and “z” to verifier; and
for 30 times c=1, thus we need to prove R1

lnk with 30 different instances by utiliz-
ing batch strategy in Varuna. This batch strategy fundamentally involves linear
combinations to address batch sum-check problem instances. For one ECDSA
signature verification, the proof consists of 60 field elements, 30 outputs of Po-
seidon Hash, 30 random numbers within hash function and a proof of an internal
SNARK. We fix the random number length to 256 bits.

Table 2: Comparison for ECDSA signature verification using different methods.
The proof size of Varuna is 1.06 kb, while the proof size for Plonky2 is 145.1 kb.

Proof size Prover time Verifier time

Groth16 [Gro16,Sun24] 128bytes 149s 2ms

Field-Agnostic[BFK+24] 780kb 0.23s 67ms

Our work
HP(Plonky2+Sigma) 146.42kb 4.1s 7.3ms

Our work
HP(Varuna+Sigma) 4.81kb 2.1s 7.9ms

The test machine used for the experiments in the first two rows of table 2 is:
AWS c5a.16xlarge, Ubuntu 22.04, with 64 cores and 124 GB memory [BFK+24].

5.3 Proof for RSA Signature Verification

In the middle of RSA signature verification, the group operations of the form
“σe = m” precisely correspond to the relation R1

rsa that we have defined. We
utilize the second optimization method from Section 4.2, running it in parallel
60 times, thus we need to prove R4

lnk for 30 different instances.
For one RSA signature verification, the circuit for internal SNARK consists

of 2 non-native multiplications over RSA modulus and a Poseidon hash for 4

Generic, Fast and Short Proofs for Composite Statements 27

elements, with batching number of 30. This can be proved in the Varuna proof
system in less than 3.5 seconds in practice and proof size of 16.5kb. Our scheme
allows the public key e to take any value less than φ(n), where n is the RSA
modulus, while maintaining constant proof time and proof size.

Table 3: Comparison for RSA signature verification using different methods. |ne|
denotes the bit length of public key e, |N | denotes the length of corresponding
RSA mudulo which is normally 2000. |πg| denotes the proof size of “glue” proof.
Tg denotes the cost of “glue” proof’s verifier. Let |r|=256 denotes the fixed length
of random number in hash function.

Proof size Verifier time

QAP+Sigma[AGM18] (3|ne|+1)|N |+ |πs|+ |πg| 10|ne|exp + Tv + Tg

Our work
HP(Varuna+Sigma) 60|N |+ 30(|H|+ |r|) + |πs| 60 exp +Tv

5.4 Proof for DSA Signature Verification

In DSA signature verification, the group operations are the same as ECDSA
except the discrete-log is derived from large prime number modular exponenti-
ation. But we utilize the second optimization method from Section 4.2, running
it in parallel 60 times, thus we need to prove R1

lnk for 30 different instances.
For one DSA signature verification, the circuit for internal SNARK consists

of 1 non-native multiplication over an L-bit prime modulus, 1 non-native mul-
tiplication over an N -bit prime modulus and a Poseidon hash for 4 elements,
with batching number of 30. This can be proved in the Varuna proof system in
less than 3 seconds in practice and proof size of 3.75kb(assuming L = 2048 and
N = 256).

Table 4: Comparison for DSA signature verification using different methods. For
DSA parameters generation, we assume an N -bit prime number q and L-bit
prime number p such that q|p− 1.

Proof size Verifier time

GC+Sigma[CGM16] 120(L+ 2N) + |πs|+ |πg| 1200 exp+Tv+Tg

Our work
HP(Varuna+Sigma) 60N + 30(|H|+ |r|) + |πs| 60 exp + Tv

28 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

References

0xP23. 0xPolygonZero. Plonky2: Fast, recursive zksnarks, 2023.
ABC+22. Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli, Chaya

Ganesh, Claudio Orlandi, and Akira Takahashi. ECLIPSE: Enhanced com-
piling method for pedersen-committed zkSNARK engines. In Goichiro
Hanaoka, Junji Shikata, and Yohei Watanabe, editors, PKC 2022: 25th
International Conference on Theory and Practice of Public Key Cryptog-
raphy, Part I, volume 13177 of Lecture Notes in Computer Science, pages
584–614, Virtual Event, March 8–11, 2022. Springer, Cham, Switzerland.

AGM18. Shashank Agrawal, Chaya Ganesh, and Payman Mohassel. Non-interactive
zero-knowledge proofs for composite statements. In Hovav Shacham and
Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018,
Part III, volume 10993 of Lecture Notes in Computer Science, pages 643–
673, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Cham,
Switzerland.

Ale23. AleoNet. Varuna: Readme, 2023.
ASS+22. Sanjith Athlur, Nitika Saran, Muthian Sivathanu, Ramachandran Ramjee,

and Nipun Kwatra. Varuna: scalable, low-cost training of massive deep
learning models. In Yérom-David Bromberg, Anne-Marie Kermarrec, and
Christos Kozyrakis, editors, EuroSys ’22: Seventeenth European Conference
on Computer Systems, Rennes, France, April 5 - 8, 2022, pages 472–487.
ACM, 2022.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and Privacy, pages
315–334, San Francisco, CA, USA, May 21–23, 2018. IEEE Computer So-
ciety Press.

BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046, 2018.

BCCT13. Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. Recursive
composition and bootstrapping for SNARKS and proof-carrying data. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th Annual
ACM Symposium on Theory of Computing, pages 111–120, Palo Alto, CA,
USA, June 1–4, 2013. ACM Press.

BCF+21. Daniel Benarroch, Matteo Campanelli, Dario Fiore, Jihye Kim, Jiwon
Lee, Hyunok Oh, and Anaïs Querol. Proposal: commit-and-prove zero-
knowledge proof systems and extensions. In 4th ZKProof Workshop, 2021.

BCKL22. Eli Ben-Sasson, Dan Carmon, Swastik Kopparty, and David Levit. Scalable
and transparent proofs over all large fields, via elliptic curves - (ECFFT
part II). In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022: 20th
Theory of Cryptography Conference, Part I, volume 13747 of Lecture Notes
in Computer Science, pages 467–496, Chicago, IL, USA, November 7–10,
2022. Springer, Cham, Switzerland.

BCL+21. Benedikt Bünz, Alessandro Chiesa, William Lin, Pratyush Mishra, and
Nicholas Spooner. Proof-carrying data without succinct arguments.
In Tal Malkin and Chris Peikert, editors, Advances in Cryptology –
CRYPTO 2021, Part I, volume 12825 of Lecture Notes in Computer Sci-
ence, pages 681–710, Virtual Event, August 16–20, 2021. Springer, Cham,
Switzerland.

Generic, Fast and Short Proofs for Composite Statements 29

BCMS20. Benedikt Bünz, Alessandro Chiesa, Pratyush Mishra, and Nicholas
Spooner. Proof-carrying data from accumulation schemes. Cryptology
ePrint Archive, Report 2020/499, 2020.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct argu-
ments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, Advances in
Cryptology – EUROCRYPT 2019, Part I, volume 11476 of Lecture Notes in
Computer Science, pages 103–128, Darmstadt, Germany, May 19–23, 2019.
Springer, Cham, Switzerland.

BFK+24. Alexander R. Block, Zhiyong Fang, Jonathan Katz, Justin Thaler, Hen-
drik Waldner, and Yupeng Zhang. Field-agnostic snarks from expand-
accumulate codes. Springer-Verlag, 2024.

BHH+19. Michael Backes, Lucjan Hanzlik, Amir Herzberg, Aniket Kate, and Ivan
Pryvalov. Efficient non-interactive zero-knowledge proofs in cross-domains
without trusted setup. In Dongdai Lin and Kazue Sako, editors, PKC 2019:
22nd International Conference on Theory and Practice of Public Key Cryp-
tography, Part I, volume 11442 of Lecture Notes in Computer Science, pages
286–313, Beijing, China, April 14–17, 2019. Springer, Cham, Switzerland.

CBBZ23. Binyi Chen, Benedikt Bünz, Dan Boneh, and Zhenfei Zhang. Hyper-
Plonk: Plonk with linear-time prover and high-degree custom gates. In
Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EU-
ROCRYPT 2023, Part II, volume 14005 of Lecture Notes in Computer
Science, pages 499–530, Lyon, France, April 23–27, 2023. Springer, Cham,
Switzerland.

CCG+23. Megan Chen, Alessandro Chiesa, Tom Gur, Jack O’Connor, and Nicholas
Spooner. Proof-carrying data from arithmetized random oracles. In Car-
mit Hazay and Martijn Stam, editors, Advances in Cryptology – EURO-
CRYPT 2023, Part II, volume 14005 of Lecture Notes in Computer Science,
pages 379–404, Lyon, France, April 23–27, 2023. Springer, Cham, Switzer-
land.

CCS22. Megan Chen, Alessandro Chiesa, and Nicholas Spooner. On succinct non-
interactive arguments in relativized worlds. In Orr Dunkelman and Ste-
fan Dziembowski, editors, Advances in Cryptology – EUROCRYPT 2022,
Part II, volume 13276 of Lecture Notes in Computer Science, pages 336–
366, Trondheim, Norway, May 30 – June 3, 2022. Springer, Cham, Switzer-
land.

CFF+21. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and
Hadrián Rodríguez. Lunar: A toolbox for more efficient universal and up-
datable zkSNARKs and commit-and-prove extensions. In Mehdi Tibouchi
and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2021,
Part III, volume 13092 of Lecture Notes in Computer Science, pages 3–33,
Singapore, December 6–10, 2021. Springer, Cham, Switzerland.

CFQ19. Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modu-
lar design and composition of succinct zero-knowledge proofs. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019: 26th Conference on Computer and Communications Se-
curity, pages 2075–2092, London, UK, November 11–15, 2019. ACM Press.

CGM16. Melissa Chase, Chaya Ganesh, and Payman Mohassel. Efficient zero-
knowledge proof of algebraic and non-algebraic statements with applica-
tions to privacy preserving credentials. In Matthew Robshaw and Jonathan

30 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

Katz, editors, Advances in Cryptology – CRYPTO 2016, Part III, volume
9816 of Lecture Notes in Computer Science, pages 499–530, Santa Barbara,
CA, USA, August 14–18, 2016. Springer, Berlin, Heidelberg, Germany.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Psi Vesely,
and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with universal
and updatable SRS. In Anne Canteaut and Yuval Ishai, editors, Advances
in Cryptology – EUROCRYPT 2020, Part I, volume 12105 of Lecture Notes
in Computer Science, pages 738–768, Zagreb, Croatia, May 10–14, 2020.
Springer, Cham, Switzerland.

CL20. Alessandro Chiesa and Siqi Liu. On the impossibility of probabilistic proofs
in relativized worlds. In Thomas Vidick, editor, ITCS 2020: 11th Inno-
vations in Theoretical Computer Science Conference, volume 151, pages
57:1–57:30, Seattle, WA, USA, January 12–14, 2020. LIPIcs.

CLOS02. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Univer-
sally composable two-party and multi-party secure computation. In 34th
Annual ACM Symposium on Theory of Computing, pages 494–503, Mon-
tréal, Québec, Canada, May 19–21, 2002. ACM Press.

COS20. Alessandro Chiesa, Dev Ojha, and Nicholas Spooner. Fractal: Post-
quantum and transparent recursive proofs from holography. In Anne
Canteaut and Yuval Ishai, editors, Advances in Cryptology – EURO-
CRYPT 2020, Part I, volume 12105 of Lecture Notes in Computer Sci-
ence, pages 769–793, Zagreb, Croatia, May 10–14, 2020. Springer, Cham,
Switzerland.

CT10. Alessandro Chiesa and Eran Tromer. Proof-carrying data and hearsay ar-
guments from signature cards. In Andrew Chi-Chih Yao, editor, ICS 2010:
1st Innovations in Computer Science, pages 310–331, Tsinghua University,
Beijing, China, January 5–7, 2010. Tsinghua University Press.

Dam. Ivan Damgard. On Sigma Protocols.
DG23. Quang Dao and Paul Grubbs. Spartan and bulletproofs are simulation-

extractable (for free!). In Carmit Hazay and Martijn Stam, editors, Ad-
vances in Cryptology – EUROCRYPT 2023, Part II, volume 14005 of Lec-
ture Notes in Computer Science, pages 531–562, Lyon, France, April 23–27,
2023. Springer, Cham, Switzerland.

EFG22. Liam Eagen, Dario Fiore, and Ariel Gabizon. cq: Cached quotients for fast
lookups. Cryptology ePrint Archive, Report 2022/1763, 2022.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194, Santa Barbara, CA, USA, August 1987.
Springer, Berlin, Heidelberg, Germany.

GKR+21. Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. Poseidon: A new hash function for zero-
knowledge proof systems. In Michael Bailey and Rachel Greenstadt, ed-
itors, USENIX Security 2021: 30th USENIX Security Symposium, pages
519–535. USENIX Association, August 11–13, 2021.

GLS+23. Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler,
and Riad S. Wahby. Brakedown: Linear-time and field-agnostic SNARKs
for R1CS. In Helena Handschuh and Anna Lysyanskaya, editors, Advances
in Cryptology – CRYPTO 2023, Part II, volume 14082 of Lecture Notes in
Computer Science, pages 193–226, Santa Barbara, CA, USA, August 20–24,
2023. Springer, Cham, Switzerland.

Generic, Fast and Short Proofs for Composite Statements 31

GMN22. Nicolas Gailly, Mary Maller, and Anca Nitulescu. SnarkPack: Practical
SNARK aggregation. In Ittay Eyal and Juan A. Garay, editors, FC 2022:
26th International Conference on Financial Cryptography and Data Secu-
rity, volume 13411 of Lecture Notes in Computer Science, pages 203–229,
Grenada, May 2–6, 2022. Springer, Cham, Switzerland.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th Annual
ACM Symposium on Theory of Computing, pages 291–304, Providence, RI,
USA, May 6–8, 1985. ACM Press.

GQ88. Louis C. Guillou and Jean-Jacques Quisquater. A practical zero-knowledge
protocol fitted to security microprocessor minimizing both trasmission and
memory. In C. G. Günther, editor, Advances in Cryptology – EURO-
CRYPT’88, volume 330 of Lecture Notes in Computer Science, pages 123–
128, Davos, Switzerland, May 25–27, 1988. Springer, Berlin, Heidelberg,
Germany.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
– EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer
Science, pages 305–326, Vienna, Austria, May 8–12, 2016. Springer, Berlin,
Heidelberg, Germany.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for
bilinear groups. In Nigel P. Smart, editor, Advances in Cryptology – EU-
ROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science, pages
415–432, Istanbul, Turkey, April 13–17, 2008. Springer, Berlin, Heidelberg,
Germany.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over lagrange-bases for oecumenical noninteractive arguments of
knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.

HAN23. Mathias Hall-Andersen and Jesper Buus Nielsen. On valiant’s conjecture:
Impossibility of incrementally verifiable computation from random oracles.
In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology –
EUROCRYPT 2023, Part II, volume 14005 of Lecture Notes in Computer
Science, pages 438–469, Lyon, France, April 23–27, 2023. Springer, Cham,
Switzerland.

HLP24. Ulrich Haböck, David Levit, and Shahar Papini. Circle STARKs. Cryptol-
ogy ePrint Archive, Report 2024/278, 2024.

JkY23. JkY. Non-native field arithmetic. https://hackmd.io/@JkY-zACaSqerTtn_
UwFjKg/SJZw6x75o, 2023.

Kil89. Joe Kilian. Uses of Randomness in Algorithms and Protocols. Doctoral
dissertation, Massachusetts Institute of Technology, 1989.

KMN23. George Kadianakis, Mary Maller, and Andrija Novakovic. Sigmabus: Bind-
ing sigmas in circuits for fast curve operations. Cryptology ePrint Archive,
Report 2023/1406, 2023.

KPS18. Ahmed E. Kosba, Charalampos Papamanthou, and Elaine Shi. xJsnark: A
framework for efficient verifiable computation. In 2018 IEEE Symposium
on Security and Privacy, pages 944–961, San Francisco, CA, USA, May 21–
23, 2018. IEEE Computer Society Press.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng

https://hackmd.io/@JkY-zACaSqerTtn_UwFjKg/SJZw6x75o
https://hackmd.io/@JkY-zACaSqerTtn_UwFjKg/SJZw6x75o

32 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

Wang, and Jonathan Katz, editors, ACM CCS 2019: 26th Conference on
Computer and Communications Security, pages 2111–2128, London, UK,
November 11–15, 2019. ACM Press.

OKMZ24. Michele Orrù, George Kadianakis, Mary Maller, and Greg Zaverucha. Be-
yond the circuit: How to minimize foreign arithmetic in ZKP circuits. Cryp-
tology ePrint Archive, Report 2024/265, 2024.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, pages 238–252, Berkeley, CA, USA, May 19–22, 2013.
IEEE Computer Society Press.

Sch91. Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal
of Cryptology, 4(3):161–174, January 1991.

Set20. Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs with-
out trusted setup. In Daniele Micciancio and Thomas Ristenpart, editors,
Advances in Cryptology – CRYPTO 2020, Part III, volume 12172 of Lec-
ture Notes in Computer Science, pages 704–737, Santa Barbara, CA, USA,
August 17–21, 2020. Springer, Cham, Switzerland.

Sun24. Y. Sun. circom-ecdsa. https://github.com/0xPARC/circom-ecdsa, 2024.
T+23. Amir Tehrani et al. Spartan-ecdsa. https://github.com/personaelabs/

spartan-ecdsa, 2023.
Val08. Paul Valiant. Incrementally verifiable computation or proofs of knowledge

imply time/space efficiency. In Ran Canetti, editor, TCC 2008: 5th Theory
of Cryptography Conference, volume 4948 of Lecture Notes in Computer
Science, pages 1–18, San Francisco, CA, USA, March 19–21, 2008. Springer,
Berlin, Heidelberg, Germany.

WTS+18. Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael
Walfish. Doubly-efficient zksnarks without trusted setup. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA, pages 926–943. IEEE Computer
Society, 2018.

XZZ+19. Tiancheng Xie, Jiaheng Zhang, Yupeng Zhang, Charalampos Papaman-
thou, and Dawn Song. Libra: Succinct zero-knowledge proofs with optimal
prover computation. In Alexandra Boldyreva and Daniele Micciancio, edi-
tors, Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of
Lecture Notes in Computer Science, pages 733–764, Santa Barbara, CA,
USA, August 18–22, 2019. Springer, Cham, Switzerland.

ZCF24. Hadas Zeilberger, Binyi Chen, and Ben Fisch. Basefold: Efficient field-
agnostic polynomial commitment schemes from foldable codes. Springer-
Verlag, 2024.

ZCYW23. Min Zhang, Yu Chen, Chuanzhou Yao, and Zhichao Wang. Sigma pro-
tocols from verifiable secret sharing and their applications. In Jian Guo
and Ron Steinfeld, editors, Advances in Cryptology – ASIACRYPT 2023,
Part II, volume 14439 of Lecture Notes in Computer Science, pages 208–
242, Guangzhou, China, December 4–8, 2023. Springer, Singapore, Singa-
pore.

https://github.com/0xPARC/circom-ecdsa
https://github.com/personaelabs/spartan-ecdsa
https://github.com/personaelabs/spartan-ecdsa

Generic, Fast and Short Proofs for Composite Statements 33

A Other Sigma AoKs

In discrete logarithm setting, there are two trivial cases, when only P or Q
is the witness, the verifier can directly compute it. Additionally, in the case
where Q = P x with P and x as witness, the statement can be converted to
P = Qx−1mod p, thus using Π1

dl to prove it.

A.1 Protocol Π0
dl with x as witness.

Define relation R as follows:

R0
lnk :=

{
(h, hk, c, z; (x, k, r, rk)) :

h = H(x, r) ∧ hk = H(k, rk)

∧z = k + cx (mod p)

}
where x, k, c, z ∈ Fp, r, rk ∈ {0, 1}λ, and H is a hash function. The Sigma AoK
protocol with negligible knowledge error for the relationR0

dl := {(P,Q, h; (x, r)) :
Q = P x∧h = H(x, r)} is shown in Figure 8. And a complete proof for it security
is shown in Appendix C

Setup. Run internal SNARK setup crs← Πlnk.Setup(1
λ,R0

lnk)

Prover(crs, P,Q, h; (x, r)) Verifier(crs, P,Q, h)

k
$←− Fp; rk

$←− {0, 1}λ;

hk = H(k, rk);A = P k;

hk, A

c
$←− Fp;

c

z = k + cx (mod p);

Run Πlnk for R0
lnk :

πlnk ← Πlnk.P(crs, h, hk, c, z; (x, k, r, rk));

z, πlnk

P z ?
= A ◦Qc∧

Πlnk.V(crs, πlnk)
?
= 1

Fig. 8: Π0
dl forR0

dl := {(P,Q, h; (x, r)) : Q = P x∧h = H(x, r)} [KMN23,OKMZ24]

Theorem 4. [KMN23,OKMZ24] Assume H is a hiding hash function, then Π0
dl

in Figure 8 is a Sigma AoK with negligible knowledge error for the relation:

R0
dl := {(P,Q, h; (x, r)) : Q = P x ∧ h = H(x, r)}

where P,Q ∈ Gp and x ∈ Fp, r ∈ {0, 1}λ.

34 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

A.2 Protocol Π2
dl with P and Q as witness.

Protocol Π2
dl is a variant of the Guillou-Quisquater protocol [GQ88] for Q = P x

where P and Q are hashed. It includes a extending linking proof πlnk from the
SNARK Πlnk, proving the following relationship:

R2
lnk :=

{(
h, hk, c, Z, T ;

(P,Q,K,A, r, rk)

)
:
h = H(P,Q, r) ∧ hk = H(K,A, rk)

∧Z = K ◦ P c ∧ T = A ◦Qc

}

where c ∈ {0, 1}, r, rk ∈ {0, 1}λ and H is a hash function.

Setup. Run internal SNARK setup crs← Πlnk.Setup(1
λ,R2

lnk)

Prover(crs, x, h; (P,Q, r)) Verifier(crs, x, h)

K
$←− Gp;A = Kx;

rk
$←− {0, 1}λ;hk = H(K,A, rk);

hk

c
$←− {0, 1};

c

Z = K ◦ P c;T = A ◦Qc;

Run Πlnk for R2
lnk :

πlnk ← Πlnk.P
(
crs, h, hk, c, Z, T ;

(P,Q,K,A, r, rk)
)
;

Z, πlnk

Compute T = Zx;

Πlnk.V(crs, πlnk)
?
= 1

Fig. 9: Π2
dl for R2

dl := {(x, h; (P,Q, r)) : Q = P x ∧ h = H(P,Q, r)}

Theorem 5. Let Gp be a cyclic group with prime order p, if H is a hiding hash
function, Πlnk is a zkSNARK, then Π2

dl in Figure 9 is a Sigma AoK with 1/2
knowledge error for the relation:

R2
dl := {(x, h; (P,Q, r)) : Q = P x ∧ h = H(P,Q, r)}

where P,Q ∈ Gp and x ∈ Fp, r ∈ {0, 1}λ.

Generic, Fast and Short Proofs for Composite Statements 35

A.3 Protocol Π3
dl with P,Q and x as witness.

Protocol Π3
dl employs the “intermediate value” technique, which involves selecting

a pair of inverse exponents s and t, computing a public intermediate value T =
P s, and then deriving P = T t and Q = T tx as two statements of R1

dl, which
can be proven using Π1

dl in parallel. And it also includes a linking proof for
R3

lnk := {(hx; (x, rx)) : hx = H(x, rx)}.

Setup.Run crs0 ← Πlnk.Setup(1
λ,R3

lnk) and crs1, crs2 ← Π2
dl.Setup(1

λ,R2
dl)

Prover({crs}, hp, hq, hx; (P,Q, x, rp, rq, rx)) Verifier({crs}, hp, hq, hx)

s
$←− Fp; rt, rk

$←− {0, 1}λ;T = P s;

t = s−1 (mod p); k = tx (mod p);

ht=H(t, rt);hk=H(k, rk);

Run Πlnk for R3
lnk :

πlnk ← Πlnk.P
(
crs0, hx; (x, rx))

T, ht, hk, πlnk

Πlnk.V(crs0, πlnk)
?
= 1

Prover and Verifier run Π1
dl :

(crs1, T, hp, ht; (P, t, rp, rt)) ∈ R2
dl

(crs2, T, hq, hk; (Q, k, rq, rk)) ∈ R2
dl

Fig. 10: Π3
dl for R3

dl :=

{(
hp, hq, hx;

(P,Q, x, rp, rq, rx)

)
:

Q = P x ∧ hp = H(P, rp)∧
hq = H(Q, rq) ∧ hx = H(x, rx)

}

Theorem 6. Let Gp be a cyclic group with prime order p, if H is a hiding
hash function, Πlnk is a zkSNARK, Π1

dl is the parallel version Sigma AoK with
negligible knowledge error for R1

dl as described in Theorem 3, then Π3
dl in Figure

10 is a Sigma AoK with negligible knowledge error for the relation:

R3
dl :=

{(
hp, hq, hx;

(P,Q, x, rp, rq, rx)

)
:

Q = P x ∧ hp = H(P, rp)∧
hq = H(Q, rq) ∧ hx = H(x, rx)

}

where P,Q ∈ Gp, x ∈ Fp and rp, rq, rx ∈ {0, 1}λ.

36 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

A.4 Protocol Π0
rsa with P as witness.

Protocol Π0
rsa is a variant of the Guillou-Quisquater protocol for Q = P x where

P,Q, x ∈ Z∗
n and P is hashed. It includes a linking proof πlnk from the SNARK

Πlnk, proving the following relationship:

R3
lnk :=

{
(h, hk, c, Z; (P,K, r, rk)) :

h = H(P, r) ∧ hk = H(K,A, rk)

∧Z = K ◦ P c (mod n)

}

where c ∈ {0, 1} and r, rk ∈ {0, 1}λ and H is a hash function.

Setup. Run internal SNARK setup crs← Πlnk.Setup(1
λ,R3

lnk)

Prover(crs, Q, x, h; (P, r)) Verifier(crs, Q, x, h)

K
$←− Z∗

n; rk
$←− {0, 1}λ;

hk = H(K, rk);A = Kx (mod n);

hk, A

c
$←− {0, 1};

c

Z = K ◦ P c (mod n);

Run Πlnk for R3
lnk :

πlnk ← Πlnk.P(crs, h, hk, c, Z; (P,K, r, rk)
)
;

Z, πlnk

Zx ?
= A ◦Qc (mod n);

∧ Πlnk.V(crs, πlnk)
?
= 1

Fig. 11: Π0
rsa for R0

rsa := {(Q, x, h; (P, r)) : Q = P x ∧ h = H(P, r)}

Theorem 7. Let Zn be a RSA ring, if H is a hiding hash function, Πlnk is a
zkSNARK, then Π0

rsa in Figure 11 is a Sigma AoK with 1/2 knowledge error for
the relation:

R0
rsa := {(Q, x, h; (P, r)) : Q = P x ∧ h = H(P, r)}

where P,Q, x ∈ Z∗
n and r ∈ {0, 1}λ.

Generic, Fast and Short Proofs for Composite Statements 37

A.5 Protocol Π1
rsa with P and Q as witness.

Protocol Π1
rsa is quite similar to Π2

dl. It includes a linking proof πlnk from the
SNARK Πlnk, proving the following relationship:

R4
lnk :=

{(
h, hk, c, Z, T ;

(P,Q,K,A, r, rk)

)
:

h = H(P,Q, r) ∧ hk = H(K,A, rk)∧
Z = K ◦ P c (mod n) ∧ T = A ◦Qc (mod n)

}

where c ∈ {0, 1} and r, rk ∈ {0, 1}λ and H is a hash function.

Setup. Run internal SNARK setup crs← Πlnk.Setup(1
λ,R4

lnk)

Prover(crs, x, h; (P,Q, r)) Verifier(crs, x, h)

K
$←− Z∗

n;A = Kx (mod n);

rk
$←− {0, 1}λ;hk = H(K,A, rk);

hk

c
$←− {0, 1};

c

Z = K ◦ P c (mod n);

T = A ◦Qc (mod n);

Run Πlnk for R4
lnk :

πlnk ← Πlnk.P
(
crs, h, hk, c, Z, T ;

(P,Q,K,A, r, rk)
)
;

Z, πlnk

Compute T = Zx;

Πlnk.V(crs, πlnk)
?
= 1

Fig. 12: Π1
rsa for R1

rsa := {(x, h; (P,Q, r)) : Q = P x ∧ h = H(P,Q, r)}

Theorem 8. Let Zn be a RSA ring, if H is a hiding hash function, Πlnk is a
zkSNARK, then Π1

rsa in Figure 12 is a Sigma AoK with 1/2 knowledge error for
the relation:

R1
rsa := {(x, h; (P,Q, r)) : Q = P x ∧ h = H(P,Q, r)}

where P,Q, x ∈ Z∗
n and r ∈ {0, 1}λ.

38 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

B Proof of Theorem 2

Proof. Completeness is obvious.

Knowledge soundness. For any polynomial time prover P∗, the extractor Ext
is constructed as follows:

1. Call P∗ on ({crsk}, s) to obtain {hk}, then compute (s, {s̃k}) = wire(s, {hk}).
2. Call the SNARK extractor Π.ExtP

∗
for crs0 and instance s to obtain the

witness w.
3. For each k ∈ Ialg, call the Sigma AoK extractor Πk

aok.Ext
P∗

for instance s̃k
until a witness (w̃k, rk) is obtained.

4. Call the efficient algorithm E detailed in Lemma 1 to get w and output it.

Assume that P∗ can output an acceptable transcript for instance s with prob-
ability ϵ, which includes the acceptable transcript πstd and {πk

ah}. According to
the knowledge soundness of SNARK Π, the extractor successfully outputs a wit-
ness with a probability at least ϵ − negl0. For each k ∈ Ialg, according to the
knowledge soundness of Πk

aok, the extractor call Πk
aok.Ext

P∗
in expected polyno-

mial times and can successfully outputs the witness with probability 1 − negl1.
Following the Lemma 1, the efficient algorithm E can output a correct witness
except for a negligible probability of finding a collision of the hash function.
Therefore, the Ext successfully extracts a witness with a negligible knowledge
error.

Computational SHVZK. There exists a polynomial time simulator Sim that
given a random challenge c = {ck}, for any polynomial time algorithm A
(which is only allowed to adaptively choose the instance), outputs a transcript
(π∗

std, {πk∗
ah }), which is indistinguishable from the honest transcript (πstd, {πk

ah}).
The Sim behaves as follows:

1. Call the SNARK simulator Π.Sim and Sigma AoK simulator Πk
aok.Sim to

obtain (crs0, τ0) and {crsk, τk}. Then call A on (crs0, {crsk}) to obtain the
instance s.

2. For each k ∈ Ialg, choose a random rk ∈ {0, 1}λ and random elements
w∗(Pk, Qk, xk) acting witnesses in {Pk, Qk, xk}, and then compute h∗

k =
H(L−1(w∗(Pk, Qk, xk)), rk).

3. Compute (s∗, {s̃∗k}) = wire(s, {hk}), where s∗ and s̃∗k include the same h∗
k.

4. Call the SNARK simulator Π.Sim on (crs0, s, τ0) to obtain the output π∗
std.

5. For each k ∈ Ialg, call the SHVZK simulator Πk
aok.Sim on (crsk, s̃k, τk) with

the honest-verifier challenge ck to obtain the output πk∗
ah .

6. Output (s∗, {s̃∗k}, π∗
std, {πk∗

ah }).

For the transcript (s, {s̃k}, πstd, {πk
ah}) generated by the honest interaction

between P and V on public input s, we can show that Sim’s output is computa-
tionally indistinguishable from the honest transcript via a hybrid argument:

Generic, Fast and Short Proofs for Composite Statements 39

H0 :


crs0, {crsk},

s, s, {s̃k},
πstd, {πk

ah}


∣∣∣∣∣∣∣∣∣∣
(crs0, {crsk})← Setup(1λ); (s,w)← A(crs0, {crsk});

({hk},w, {w̃k, rk})← P(crs0, {crsk}, s,w);

(s, {s̃k}) = wire(s, {hk});πstd ← Π.P(crs0, s;w);

{πk
ah ← Πk

aok.⟨P(w̃k, rk),V⟩(crsk, s̃k)}



H1 :



crs0, {crsk},
s, s, {s̃k},
π∗
std, {πk

ah}


∣∣∣∣∣∣∣∣∣∣∣∣

(crs0, τ0)← Π.Sim(1λ); {crsk ← Πk
aok.Setup(1

λ)};
(s,w)← A(crs0, {crsk});

({hk},w, {w̃k, rk})← P(crs0, {crsk}, s,w);

(s, {s̃k}) = wire(s, {hk});π∗
std ← Π.Sim(crs0, s, τ0);

{πk
ah ← Πk

aok.⟨P(w̃k, rk),V⟩(crsk, s̃k)}


H0 represents the honest transcript, while H1 only substitutes the SNARK

prover’s proof with π∗
std, which is generated by the simulator. Therefore, the

indistinguishability is derived from the zero-knowledge property of Π.

H|Ialg|+1 :



crs0, {crsk},
s, s, {s̃k},
π∗
std, {πk∗

ah }


∣∣∣∣∣∣∣∣∣∣∣∣

(crs0, τ0)← Π.Sim(1λ); {(crsk, τk)← Πk
aok.Sim(1λ)};

(s,w)← A(crs0, {crsk});
({hk},w, {w̃k, rk})← P(crs0, {crsk}, s,w);

(s, {s̃k}) = wire(s, {hk});π∗
std ← Π.Sim(crs0, s, τ0);

{πk∗
ah ← Πk

aok.Sim(crsk, s̃k, ck, τk)}


H1 toH|Ialg|+1 sequentially replaces Πk

aok prover’s proof πk
ah with the transcript

πk∗
ah generated by the simulator with the challenge ck. Therefore, the indistin-

guishability is derived from the SHVZK property of Πk
aok.

H|Ialg|+2 :



crs0, {crsk},
s, s∗, {s̃∗k},
π∗
std, {πk∗

ah }


∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(crs0, τ0)← Π.Sim(1λ); {(crsk, τk)← Πk
aok.Sim(1λ)};

(s,w)← A(crs0, {crsk});w∗(Pk, Qk, xk)
$←− (Gp, I);

rk
$←− {0, 1}λ; {h∗

k = H(ŵ∗(Pk, Qk, xk), rk)};
(s∗, {s̃∗k}) = wire(s, {h∗

k});π∗
std ← Π.Sim(crs0, s

∗, τ0);

{πk∗
ah ← Πk

aok.Sim(crsk, s̃
∗
k, ck, τk)}


H|Ialg|+2 represents the transcript generated by the simulator Sim. The change

from (s, {s̃k}) to (s∗, {s̃∗k}) means that the public value {hk = H(ŵ(Pk, Qk, xk), rk)}
is replaced by {h∗

k = H(ŵ∗(Pk, Qk, xk), rk)}, which makes (s, {s̃k}) and (s∗, {s̃∗k})
computationally indistinguishable due to the hiding property of H. Additionally,
all the polynomial time simulators output indistinguishable distributions since
their input distributions are computational indistinguishable. ⊓⊔

40 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

C Proof of Theorem 4

Proof. Completeness is obvious.

Knowledge soundness. The knowledge soundness of Π0
dl is derived from the

SNARK proof πlnk, which ensures that the prover who can produce acceptable
transcripts authentically knows the witness x consistently in both h and z.

For any polynomial time prover P∗, there exists an expected polynomial time
extractor Ext which behaves as follows:

1. Call P∗ for instance (P,Q, h) and a random challenge c1
$←− Fp to obtain a

transcript (hk, A, c1, z1, π1). If it is acceptable, continue, otherwise abort.
2. Call the SNARK extractor Πlnk.Ext for the instance (h, hk, c1, z1) and ac-

ceptable transcript π1, then Πlnk.Ext output a witness (x1, k1, r1, r
1
k).

12

3. Then, rewind P∗ with fresh random challenge until obtain another accept-
able transcript (hk, A, c2, z2, π2). Similarly , call Πlnk.Ext for the instance
(h, hk, c2, z2) and acceptable transcript π2 to obtain the second witness
(x2, k2, r2, r

2
k).

4. Check if (x1, k1, r1, r
1
k) ̸= (x2, k2, r2, r

2
k), then reject.

5. Output (x1, r1).

Assume that P∗ can output an acceptable transcript for instance (P,Q, h)
with probability ϵ, which implies P z1 = A ◦Qc1 and π1 is acceptable in step 1.
Therefore, P∗ as the SNARK prover, generates an acceptable proof with at least
a probability of ϵ.

According to the knowledge soundness of SNARK Πlnk, the probability that
Πlnk.Ext successfully output a witness (x1, k1, r1, r

1
k) in step 2 is ϵ − κlnk. And

(x1, k1, r1, r
1
k) satisfies h = H(x1, r1), hk = H(k1, r

1
k) and z1 = k1+ c1x1 (mod p).

In step 3, the extractor can rewind P∗ in expected 1/ϵ times to obtain the
second transcripts with c2 ̸= c1 with probability 1 − negl. And the probability
that Πlnk.Ext fails to output a valid witness (x2, k2, r2, r

2
k) is negligiblr.

In steps 4, the extractor accepts the consistency of witness with probability
1 − negl, since the collision resistance of H. Then, we denote (x1, k1) as the
witness extracted above, and x, k ∈ Fp are the discrete logarithm of Q,A ∈ Gp

with base P . According to the standard Sigma protocol extraction, we have:

k1 + c1x1 = k + c1x (mod p) k1 + c2x1 = k + c2x (mod p)

Since c1 ̸= c2, it follows that x = x1 and k1 = k consistently. Finally, the
probability of Ext successfully extracting the witness (x, r) is ϵ − κlnk − negl.
Therefore, the knowledge error is negligible.

Computational SHVZK. There exists a polynomial time simulator Sim that
for any instance (P,Q, h) in R0

dl and for random c ∈ Fp outputs a transcript

12 Although the non-native field element x ∈ Fp is represented as an Fq element (or
vector) in the SNARK, it uniquely corresponds to x ∈ Fp.

Generic, Fast and Short Proofs for Composite Statements 41

(h∗
k, A

∗, c, z∗, π∗), indistinguishable from the honest transcript (hk, A, c, z, π).
The Sim behaves as follows:13

1. Randomly choose k∗, z∗
$←− Fp and rk

$←− {0, 1}λ.
2. Compute the first message h∗

k = H(k∗, rk) and A∗ = P z∗
/Qc.

3. Call Πlnk’s simulator Πlnk.Sim with (h, h∗
k, c, z

∗) to obtain the output π∗.
4. Output (h∗

k, A
∗, c, z∗, π∗).

For the transcript (hk, A, c, z, π) generated by the honest interaction between
P and V on public input (P,Q, h), where P has witness (x, r). We can show that
Sim’s output is computationally indistinguishable from the honest transcript via
a hybrid argument:

H0 :

{(
P,Q, h, hk,

A, c, z, π

)∣∣∣∣∣ (hk, A, c, z, π)← ⟨P(x, r),V⟩(h,X)

}

H1 :


(
P,Q, h, hk,

A, c, z, π′

)∣∣∣∣∣∣∣∣
k, c

$←− Fp; rk
$←− {0, 1}λ;

A = P k;hk = H(k, rk);

z = k + cx;π′ ← Πlnk.Sim(h, hk, c, z)


H0 represents the honest transcript, while H1 only substitutes the honest

prover’s proof with π′, which is generated by Πlnk.Sim. Therefore, the indistin-
guishability is derived from the zero-knowledge property of Πlnk.

H2 :


(
P,Q, h, h∗

k,

A, c, z, π′′

)∣∣∣∣∣∣∣∣
k∗, k, c

$←− Fp; rk
$←− {0, 1}λ;

A = P k;h∗
k = H(k∗, rk);

z = k + cx;π′′ ← Πlnk.Sim(h, h∗
k, c, z)


H2 uses a new random k∗ to compute h∗

k, and Πlnk.Sim uses h∗
k to simulate.

At first, the SNARK instance (h, h∗
k, c, z) is indistinguishable from (h, hk, c, z) in

H1, due to the computational hiding property of H.Therefore, the output π′ and
π′′ produced by the polynomial time algorithm Πlnk.Sim with these instances is
also indistinguishable.

H3 :


(
P,Q, h, h∗

k,

A∗, c, z∗, π∗

)∣∣∣∣∣∣∣∣
k∗, c, z∗

$←− Fp; rk
$←− {0, 1}λ;

A∗ = P z∗
/Qc;h∗

k = H(k∗, rk);

π∗ ← Πlnk.Sim(h, h∗
k, c, z

∗)


H3 represents the transcript computed by the simulator Sim. Similar to Sigma

protocol, due to that the distributions of {(P,Q, c, z)} inH2 andH3 are identical,
the distributions H2 and H3 are actually the same, which concludes the proof.

⊓⊔
13 We omit the process of generating CRS during the SNARK setup. In the CRS model,

the simulator is allowed to modify the CRS.

42 Zhuo Wu, Shi Qi, Xinxuan Zhang and Yi Deng

D Circuits in Internal SNARKs

Prove R1
lnk in elliptic curve discrete-log problem. Elliptic curve point

addition for (x1, y1) + (x2, y2) = (x3, y3) include the following non-native oper-
ations:

x3 = (
y2 − y1
x2 − x1

)2 − (x2 + x1)

y3 =
y2 − y1
x2 − x1

(x1 − x3)− y1

So in total, we need to prove 4×25+20=120 non-native multiplications over
the base field of curve P256, several non-native additions and poseidon hash
functions.

Prove R4
lnk and R1

lnk in modular exponentiation discrete-log problem.
InR4

lnk, the most resource-intensive part is proving the modular multiplication of
elements in Z∗

n, where n is the RSA modulus of approximately 2000-bit length.
In R1

lnk, we primarily need to prove modular multiplications over prime modulus
p and prime modulus q, where p|q − 1.

In modular multiplication, we need to prove equations of the form “A×B =
Q × N + R,” which represents (A × B) mod N = R. This process primarily
involves proving two large integer multiplications: A×B and Q×N , along with
corresponding range checks for the integers. These range checks can be efficiently
handled using lookup arguments [EFG22]. Additionally, further constraints arise
from non-native additions and the use of Poseidon hash functions.

	Generic, Fast and Short Proofs for Composite Statements

