Papers updated in last 183 days (Page 10 of 1675 results)

Last updated:  2025-02-10
AUCIL: An Inclusion List Design for Rational Parties
Sarisht Wadhwa, Julian Ma, Thomas Thiery, Barnabe Monnot, Luca Zanolini, Fan Zhang, and Kartik Nayak
The decentralized nature of blockchains is touted to provide censorship resistance. However, in reality, the ability of proposers to completely control the contents of a block makes censorship relatively fragile. To combat this, a notion of inclusion lists has been proposed in the blockchain community. This paper presents the first formal study of inclusion lists. Our inclusion list design leverages multiple proposers to propose transactions and improve censorship resistance. The design has two key components. The first component is a utility-maximizing input list creation mechanism that allows rational proposers to achieve a correlated equilibrium while prioritizing high-value transactions. The second component, AUCIL (auction-based inclusion list), is a mechanism for aggregating the input lists from the proposers to output an inclusion list.
Last updated:  2025-02-10
A Round-Optimal Near-Linear Third-Party Private Set Intersection Protocol
Foo Yee Yeo and Jason H. M. Ying
Third-party private set intersection (PSI) enables two parties, each holding a private set to compute their intersection and reveal the result only to an inputless third party. In this paper, we present an efficient round-optimal third-party PSI protocol. Our work is motivated by real-world applications such as contact tracing whereby expedition is essential while concurrently preserving privacy. Our construction only requires $2$ communication rounds and attains a near-linear computational complexity of $O(n^{1+\varepsilon})$ for large dataset size $n$, where $\varepsilon>0$ is any fixed constant. Our improvements stem from algorithmic changes and the incorporation of new techniques along with precise parameter selections to achieve a tight asymptotic bound. Furthermore, we also present a third-party PSI cardinality protocol which has not been explored in prior third-party PSI work. In a third-party PSI cardinality setting, only the third-party obtains the size of the intersection and nothing else. Our construction to achieve the cardinality functionality attains a quasilinear computational complexity for the third-party.
Last updated:  2025-02-10
Practical Electromagnetic Fault Injection on Intel Neural Compute Stick 2
Shivam Bhasin, Dirmanto Jap, Marina Krček, Stjepan Picek, and Prasanna Ravi
Machine learning (ML) has been widely deployed in various applications, with many applications being in critical infrastructures. One recent paradigm is edge ML, an implementation of ML on embedded devices for Internet-of-Things (IoT) applications. In this work, we have conducted a practical experiment on Intel Neural Compute Stick (NCS) 2, an edge ML device, with regard to fault injection (FI) attacks. More precisely, we have employed electromagnetic fault injection (EMFI) on NCS 2 to evaluate the practicality of the attack on a real target device. We have investigated multiple fault parameters with a low-cost pulse generator, aiming to achieve misclassification at the output of the inference. Our experimental results demonstrated the possibility of achieving practical and repeatable misclassifications.
Last updated:  2025-02-10
The Supersingular Isogeny Path and Endomorphism Ring Problems: Unconditional Reductions
Maher Mamah
In this paper we study several computational problems related to current post-quantum cryptosystems based on isogenies between supersingular elliptic curves. In particular we prove that the supersingular isogeny path and endomorphism ring problems are unconditionally equivalent under polynomial time reductions. We show that access to a factoring oracle is sufficient to solve the Quaternion path problem of KLPT and prove that these problems are equivalent, where previous results either assumed heuristics or the generalised Riemann Hypothesis (GRH). Consequently, given Shor’s quantum algorithm for factorisation, our results yield unconditional quantum polynomial reductions between the isogeny path and EndRing problems. Recently these reductions have become foundational for the security of isogeny-based cryptography
Last updated:  2025-02-09
Binary Codes for Error Detection and Correction in a Computationally Bounded World
Jad Silbak and Daniel Wichs
We study error detection and correction in a computationally bounded world, where errors are introduced by an arbitrary $\textit{polynomial-time}$ adversarial channel. Our focus is on $\textit{seeded}$ codes, where the encoding and decoding procedures can share a public random seed, but are otherwise deterministic. We can ask for either $\textit{selective}$ or $\textit{adaptive}$ security, depending on whether the adversary can choose the message being encoded before or after seeing the seed. For large alphabets, a recent construction achieves essentially optimal rate versus error tolerance trade-offs under minimal assumptions, surpassing information-theoretic limits. However, for the binary alphabet, the only prior improvement over information theoretic codes relies on non-standard assumptions justified via the random oracle model. We show the following: $\textbf{Selective Security under LWE:}$ Under the learning with errors (LWE) assumption, we construct selectively secure codes over the binary alphabet. For error detection, our codes achieve essentially optimal rate $R \approx 1$ and relative error tolerance $\rho \approx \frac{1}{2}$. For error correction, they can uniquely correct $\rho < 1/4$ relative errors with a rate $R$ that essentially matches that of the best list-decodable codes with error tolerance $\rho$. Both cases provide significant improvements over information-theoretic counterparts. The construction relies on a novel form of 2-input correlation intractable hash functions that we construct from LWE. $\textbf{Adaptive Security via Crypto Dark Matter:}$ Assuming the exponential security of a natural collision-resistant hash function candidate based on the ``crypto dark matter'' approach of mixing linear functions over different moduli, we construct adaptively secure codes over the binary alphabet, for both error detection and correction. They achieve essentially the same trade-offs between error tolerance $\rho$ and rate $R$ as above, with the caveat that for error-correction they only do so for sufficiently small values of $\rho$.
Last updated:  2025-02-09
Experimentally studying path-finding problem between conjugates in supersingular isogeny graphs: Optimizing primes and powers to speed-up cycle finding
Madhurima Mukhopadhyay
We study the problem of finding a path between conjugate supersingular elliptic curves over $\mathbb{F}_{p^2}$ for a prime $p$, which is important for cycle finding in supersingular isogeny graphs. We see that for any given $p$, there is some $l$ corresponding to $p$ which accelerates the process of conjugate path-finding. Also, time-wise, the most efficient way of overviewing the graph is seeing $i(=3)$ steps at once. We have outlined methods in which the next vertex of any pseudo-random walk should be chosen to reach conjugate vertex faster. We have experimentally investigated the paths between frobenius conjugates for wide ranges of small prime $l$. We introduce sets to experimentally learn about the structure of the isogeny graphs when short cycles are present.
Last updated:  2025-02-09
Polynomial Inversion Algorithms in Constant Time for Post-Quantum Cryptography
Abhraneel Dutta, Emrah Karagoz, Edoardo Persichetti, and Pakize Sanal
The computation of the inverse of a polynomial over a quotient ring or a finite field plays a very important role during the key generation of post-quantum cryptosystems like NTRU, BIKE, and LEDACrypt. It is therefore important that there exist an efficient algorithm capable of running in constant time, to prevent timing side-channel attacks. In this article, we study both constant-time algorithms based on Fermat's Little Theorem and the Extended $GCD$ Algorithm, and provide a detailed comparison in terms of performance. According to our conclusion, we see that the constant-time Extended $GCD$-based Bernstein-Yang's algorithm shows a better performance with 1.76x-3.76x on \texttt{x86} platforms compared to FLT-based methods. Although we report numbers from a software implementation, we additionally provide a short glimpse of some recent results when these two algorithms are implemented on various hardware platforms. Finally, we also explore other exponentiation algorithms that work similarly to the Itoh-Tsuji inversion method. These algorithms perform fewer polynomial multiplications and show a better performance with 1.56x-1.96x on \texttt{x86} platform compared to Itoh-Tsuji inversion method.
Last updated:  2025-02-08
Asymptotic improvements to provable algorithms for the code equivalence problem
Huck Bennett, Drisana Bhatia, Jean-François Biasse, Medha Durisheti, Lucas LaBuff, Vincenzo Pallozzi Lavorante, and Philip Waitkevich
We present several new provable algorithms for two variants of the code equivalence problem on linear error-correcting codes, the Linear Code Equivalence Problem (LCE) and the Permutation Code Equivalence Problem (PCE). Specifically, for arbitrary codes of block length $n$ and dimension $k$ over any finite field $\mathbb{F}_q$, we show: 1) A deterministic algorithm running in $2^{n + o(n+q)}$ time for LCE. 2) A randomized algorithm running in $2^{n/2 + o(n+q)}$ time for LCE and PCE. 3) A quantum algorithm running in $2^{n/3 + o(n+q)}$ time for LCE and PCE. The first algorithm complements the deterministic roughly $2^n$-time algorithm of Babai (SODA 2011) for PCE. The second two algorithms improve on recent work of Nowakowski (PQCrypto 2025), which gave algorithms with similar running times, but only for code equivalence on \emph{random} codes and only over fields of order $q \geq 7$.
Last updated:  2025-02-08
Communication-Optimal Convex Agreement
Diana Ghinea, Chen-Da Liu-Zhang, and Roger Wattenhofer
Byzantine Agreement (BA) allows a set of $n$ parties to agree on a value even when up to $t$ of the parties involved are corrupted. While previous works have shown that, for $\ell$-bit inputs, BA can be achieved with the optimal communication complexity $O(\ell n)$ for sufficiently large $\ell$, BA only ensures that honest parties agree on a meaningful output when they hold the same input, rendering the primitive inadequate for many real-world applications. This gave rise to the notion of Convex Agreement (CA), introduced by Vaidya and Garg [PODC'13], which requires the honest parties' outputs to be in the convex hull of the honest inputs. Unfortunately, all existing CA protocols incur a communication complexity of at least $O(\ell n^2)$. In this work, we introduce the first CA protocol with the optimal communication of $\mathcal{O}(\ell n)$ bits for inputs in $\mathbb{Z}$ of size $\ell = \Omega(\kappa \cdot n \log^2 n)$, where $\kappa$ is the security parameter.
Last updated:  2025-02-08
Relativized Succinct Arguments in the ROM Do Not Exist
Annalisa Barbara, Alessandro Chiesa, and Ziyi Guan
A relativized succinct argument in the random oracle model (ROM) is a succinct argument in the ROM that can prove/verify the correctness of computations that involve queries to the random oracle. We prove that relativized succinct arguments in the ROM do not exist. The impossibility holds even if the succinct argument is interactive, and even if soundness is computational (rather than statistical). This impossibility puts on a formal footing the commonly-held belief that succinct arguments require non-relativizing techniques. Moreover, our results stand in sharp contrast with other oracle models, for which a recent line of work has constructed relativized succinct non-interactive arguments (SNARGs). Indeed, relativized SNARGs are a powerful primitive that, e.g., can be used to obtain constructions of IVC (incrementally-verifiable computation) and PCD (proof-carrying data) based on falsifiable cryptographic assumptions. Our results rule out this approach for IVC and PCD in the ROM.
Last updated:  2025-02-08
SPADE: Digging into Selective and PArtial DEcryption using Functional Encryption
Camille Nuoskala, Hossein Abdinasibfar, and Antonis Michalas
Functional Encryption (FE) is a cryptographic technique established to guarantee data privacy while allowing the retrieval of specific results from the data. While traditional decryption methods rely on a secret key disclosing all the data, FE introduces a more subtle approach. The key generation algorithm generates function-specific decryption keys that can be adaptively provided based on policies. Adaptive access control is a good feature for privacy-preserving techniques. Generic schemes have been designed to run basic functions, such as linear regression. However, they often provide a narrow set of outputs, resulting in a lack of thorough analysis. The bottom line is that despite significant research, FE still requires appropriate constructions to unleash its full potential in securely analyzing data and providing more insights. In this article, we introduce SPADE, a novel FE scheme that features multiple users and offers fine-grained access control through partial decryption of the ciphertexts. Unlike existing FE schemes, our construction also supports qualitative data, such as genomics, expanding the applications of privacy-preserving analysis to enable a comprehensive study of the data. SPADE is a significant advancement that balances privacy and data analysis with clear implications in healthcare and finance. To verify its applicability, we conducted extensive experiments on datasets used in sleep medicine (hypnogram data) and DNA analysis (genomic records).
Last updated:  2025-02-07
PEReDi: Privacy-Enhanced, Regulated and Distributed Central Bank Digital Currencies
Amirreza Sarencheh, Aggelos Kiayias, and Markulf Kohlweiss
Central Bank Digital Currencies (CBDCs) aspire to offer a digital replacement for physical cash and, as such, must address two fundamental yet conflicting requirements. On the one hand, they should be private to prevent the emergence of a financial “panopticon.” On the other hand, they must be regulation friendly, facilitating threshold-limiting, tracing, and counterparty auditing functionalities necessary for compliance with regulations such as Know Your Customer (KYC), Anti-Money Laundering (AML), and Combating the Financing of Terrorism (CFT), as well as financial stability considerations. In this work, we propose PEReDi, a new asynchronous model for CBDCs and present an efficient construction that, for the first time, simultaneously addresses these challenges in full. Moreover, recognizing the necessity of avoiding a single point of failure, our construction is distributed to ensure that all its properties remain intact even when a bounded number of entities are corrupted by an adversary. Achieving all the above properties efficiently is technically involved; among others, our construction employs suitable cryptographic tools to thwart man-in-the-middle attacks, introduces a novel traceability mechanism with significant performance gains over previously known techniques, and, perhaps surprisingly, shows how to obviate Byzantine agreement or broadcast from the optimistic execution path of a payment, something that results in an essentially optimal communication pattern and minimal communication overhead. We demonstrate the efficiency of our payment system by presenting detailed computational and communication cost analyses. Beyond “simple” payments, we also discuss how our scheme can support one-off large transfers while complying with Know Your Transaction (KYT) disclosure requirements. Our CBDC concept is expressed and realized within the Universal Composition (UC) framework, providing a modular and secure way for integration into a broader financial ecosystem.
Last updated:  2025-02-07
Snake-eye Resistant PKE from LWE for Oblivious Message Retrieval and Robust Encryption
Zeyu Liu, Katerina Sotiraki, Eran Tromer, and Yunhao Wang
Oblivious message retrieval (OMR) allows resource-limited recipients to outsource the message retrieval process without revealing which messages are pertinent to which recipient. Its realizations in recent works leave an open problem: can an OMR scheme be both practical and provably secure against spamming attacks from malicious senders (i.e., DoS-resistant) under standard assumptions? In this paper, we first prove that a prior construction $\mathsf{OMRp2}$ is DoS-resistant under a standard LWE assumption, resolving an open conjecture of prior works. Then, we present $\mathsf{DoS\text{-}PerfOMR}$: a provably DoS-resistant OMR construction that is 12x faster than $\mathsf{OMRp2}$, and (almost) matches the performance of the state-of-the-art OMR scheme that is $\textit{not}$ DoS-resistant (proven by the attacks we show). To achieve this, we analyze the $\textit{snake-eye resistance}$ property for general PKE schemes (i.e., it is hard to encrypt an identical message under two keys). We construct a new lattice-based PKE scheme: $\mathsf{LWEmongrass}$, that is provably snake-eye resistant and has better efficiency than the PVW scheme underlying $\mathsf{OMRp2}$. We also show that the natural candidates (e.g., RingLWE PKE) are not snake-eye resistant. Furthermore, we show that a snake-eye resistant PKE scheme implies a robust PKE scheme, thus introducing the first robust lattice-based PKE scheme without relying on the KEM-DEM paradigm and its inherent inefficiencies. Of independent interest, we introduce two variants of LWE with side information, as components towards proving the properties of $\mathsf{LWEmongrass}$, and reduce standard LWE to them for the parameters of interest.
Last updated:  2025-02-07
NodeChain: Cheap Data Integrity Without Consensus
Orfeas Stefanos Thyfronitis Litos, Zhaoxuan Wu, Alfredo Musumeci, Songyun Hu, James Helsby, Michael Breza, and William Knottenbelt
Blockchains enable decentralised applications that withstand Byzantine failures and do not need a central authority. Unfortunately, their massive replication requirements preclude their use on constrained devices. We propose a novel blockchain-based data structure which forgoes replication without affecting the append-only nature of blockchains, making it suitable for maintaining data integrity over networks of storage-constrained devices. Our solution does not provide consensus, which is not required by our motivating application, namely securely storing sensor data of containers in cargo ships. We elucidate the practical promise of our technique by following a multi-faceted approach: We (i) formally prove the security of our protocol in the Universal Composition (UC) setting, as well as (ii) provide a small-scale proof-of-concept implementation, (iii) a performance simulation for large-scale deployments which showcases a reduction in storage of more than $1000$x compared to traditional blockchains, and (iv) a resilience simulation that predicts the practical effects of network jamming attacks.
Last updated:  2025-02-07
Worst-Case Lattice Sampler with Truncated Gadgets and Applications
Corentin Jeudy and Olivier Sanders
Gadget-based samplers have proven to be a key component of several cryptographic primitives, in particular in the area of privacy-preserving mechanisms. Most constructions today follow the approach introduced by Micciancio and Peikert (MP) yielding preimages whose dimension linearly grows with that of the gadget. To improve performance, some papers have proposed to truncate the gadget but at the cost of an important feature of the MP sampler, namely the ability to invert arbitrary syndromes. Technically speaking, they replace the worst-case MP sampler by an average-case sampler that can only be used in specific contexts. Far from being a mere theoretical restriction, it prevents the main applications of gadget-based samplers from using truncated variants and thus from benefiting from the associated performance gains. In this paper, we solve this problem by describing a worst-case sampler that still works with truncated gadgets. Its main strength is that it retains the main characteristics of the MP sampler while providing flexibility in the choice of the truncation parameter. As a consequence, it can be used as a plug-in replacement for all applications relying on the MP sampler so far, leading to performance improvements up to 30% as illustrated by several examples in this paper. Our sampler is supported by a thorough security analysis that addresses the hurdles met by previous works and its practicality is demonstrated by a concrete implementation.
Last updated:  2025-02-07
Improved Lattice Blind Signatures from Recycled Entropy
Corentin Jeudy and Olivier Sanders
Blind signatures represent a class of cryptographic primitives enabling privacy-preserving authentication with several applications such as e-cash or e-voting. It is still a very active area of research, in particular in the post-quantum setting where the history of blind signatures has been hectic. Although it started to shift very recently with the introduction of a few lattice-based constructions, all of the latter give up an important characteristic of blind signatures (size, efficiency, or security under well-known assumptions) to achieve the others. In this paper, we propose another design which revisits the link between the two main procedures of blind signatures, namely issuance and showing, demonstrating that we can significantly alleviate the second one by adapting the former. Concretely, we show that we can harmlessly inject excess randomness in the issuance phase, and then recycle the entropy surplus during showing to decrease the complexity of the zero-knowledge proof which constitutes the main component of the signature. This leads to a blind signature scheme with small sizes, low complexity, and that still relies on well-known lattice assumptions.
Last updated:  2025-02-07
A light white-box masking scheme using Dummy Shuffled Secure Multiplication
Alex Charlès and Aleksei Udovenko
In white-box cryptography, early encoding-based countermeasures have been broken by the DCA attack, leading to the utilization of masking schemes against a surge of automated attacks. The recent filtering attack from CHES 2024 broke the last viable masking scheme from CHES 2021 resisting both computational and algebraic attacks, raising the need for new countermeasures. In this work, we perform the first formal study of the combinations of existing countermeasures and demonstrate that applying Dummy Shuffling (EUROCRYPT 2021) then ISW masking (CRYPTO 2003) to a circuit carries algebraic, correlation, and filtering security - necessary conditions to withstand state-of-the-art automated attacks. We also show that applying these two countermeasures in the opposite order leads to a Higher-Order Filtering attack, highlighting the importance of the order of application of the combined countermeasures. We also propose a new masking scheme called S5, standing for the Semi-Shuffled Secret Sharing Scheme, a scheme merging Dummy Shuffling and ISW in a single countermeasure more efficiently than a direct composition.
Last updated:  2025-02-07
On the Atomicity and Efficiency of Blockchain Payment Channels
Di Wu, Shoupeng Ren, Yuman Bai, Lipeng He, Jian Liu, Wu Wen, Kui Ren, and Chun Chen
Payment channels have emerged as a promising solution to address the performance limitations of cryptocurrencies payments, enabling efficient off-chain transactions while maintaining security guarantees. However, existing payment channel protocols, including the widely-deployed Lightning Network and the state-of-the-art Sleepy Channels, suffer from a fundamental vulnerability: non-atomic state transitions create race conditions that can lead to unexpected financial losses. We first formalize current protocols into a common paradigm and prove that this vulnerability is fundamental—any protocol following this paradigm cannot guarantee balance security due to the inherent race conditions in their design. To address this limitation, we propose a novel atomic paradigm for payment channels that ensures atomic state transitions, effectively eliminating race conditions while maintaining all desired functionalities. Based on this paradigm, we introduce Ultraviolet, a secure and efficient payment channel protocol that achieves both atomicity and high performance, while avoiding the introduction of unimplemented Bitcoin features. Ultraviolet reduces the number of required messages per transaction by half compared to existing solutions, while maintaining comparable throughput. We formally prove the security of Ultraviolet under the universal composability framework and demonstrate its practical efficiency through extensive evaluations across multiple regions. This results in a 37% and 52% reduction in latency compared to the Lightning Network and Sleepy Channels, respectively. Regarding throughput, Ultraviolet achieves performance comparable to the Lightning Network and delivers 2× the TPS of Sleepy Channels.
Last updated:  2025-02-06
PIE: $p$-adic Encoding for High-Precision Arithmetic in Homomorphic Encryption
Luke Harmon, Gaetan Delavignette, Arnab Roy, and David Silva
A large part of current research in homomorphic encryption (HE) aims towards making HE practical for real-world applications. In any practical HE, an important issue is to convert the application data (type) to the data type suitable for the HE. The main purpose of this work is to investigate an efficient HE-compatible encoding method that is generic, and can be easily adapted to apply to the HE schemes over integers or polynomials. $p$-adic number theory provides a way to transform rationals to integers, which makes it a natural candidate for encoding rationals. Although one may use naive number-theoretic techniques to perform rational-to-integer transformations without reference to $p$-adic numbers, we contend that the theory of $p$-adic numbers is the proper lens to view such transformations. In this work we identify mathematical techniques (supported by $p$-adic number theory) as appropriate tools to construct a generic rational encoder which is compatible with HE. Based on these techniques, we propose a new encoding scheme PIE, that can be easily combined with both AGCD-based and RLWE-based HE to perform high precision arithmetic. After presenting an abstract version of PIE, we show how it can be attached to two well-known HE schemes: the AGCD-based IDGHV scheme and the RLWE-based (modified) Fan-Vercauteren scheme. We also discuss the advantages of our encoding scheme in comparison with previous works.
Last updated:  2025-02-06
Cairo – a Turing-complete STARK-friendly CPU architecture
Lior Goldberg, Shahar Papini, and Michael Riabzev
Proof systems allow one party to prove to another party that a certain statement is true. Most existing practical proof systems require that the statement will be represented in terms of polynomial equations over a finite field. This makes the process of representing a statement that one wishes to prove or verify rather complicated, as this process requires a new set of equations for each statement. Various approaches to deal with this problem have been proposed. We present Cairo, a practically-efficient Turing-complete STARK-friendly CPU architecture. We describe a single set of polynomial equations for the statement that the execution of a program on this architecture is valid. Given a statement one wishes to prove, Cairo allows writing a program that describes that statement, instead of writing a set of polynomial equations.
Last updated:  2025-02-06
Higher-Order Deterministic Masking with Application to Ascon
Vahid Jahandideh, Bart Mennink, and Lejla Batina
Side-channel attacks (SCAs) pose a significant threat to the implementations of lightweight ciphers, particularly in resource-constrained environments where masking—the primary countermeasure—is constrained by tight resource limitations. This makes it crucial to reduce the resource and randomness requirements of masking schemes. In this work, we investigate an approach to minimize the randomness complexity of masking algorithms. Specifically, we explore the theoretical foundations of deterministic higher-order masking, which relies solely on offline randomness present in the initial input shares and eliminates the need for online (fresh) randomness during internal computations. We demonstrate the feasibility of deterministic masking for ciphers such as Ascon, showing that their diffusion layer can act as a refresh subcircuit. This ensures that, up to a threshold number, probes placed in different rounds remain independent. Based on this observation, we propose composition theorems for deterministic masking schemes. On the practical side, we extend the proof of first- and second-order probing security for Ascon’s protected permutation from a single round to an arbitrary number of rounds
Last updated:  2025-02-06
Improved Differential and Linear Cryptanalysis on Round-Reduced SIMON
Chao Niu, Muzhou Li, Jifu Zhang, and Meiqin Wang
SIMON is a lightweight block cipher proposed by the National Security Agency. According to previous cryptanalytic results on SIMON, differential and linear cryptanalysis are the two most effective attacks on it. Usually, there are many trails sharing the same input and output differences (resp. masks). These trails comprise the differential (resp. linear hull) and can be used together when mounting attacks. In ASIACRYPT 2021, Leurent et al. proposed a matrix-based method on SIMON-like ciphers, where only trails whose active bits stay in a $w$-bit window are considered. The static window in each round is chosen to be $w$ least significant bits. They applied this efficient framework on SIMON and SIMECK, and have obtained many better differentials and linear hulls than before. For SIMON, they also found that there seems to be some potential for improvement, which should be further investigated. In this paper, we dynamically choose window for each round to achieve better distinguishers. Benefiting from these dynamic windows, we can obtain stronger differentials and linear hulls than previously proposed for almost all versions of SIMON. Finally, we provided the best differential/linear attacks on SIMON48, SIMON64, and SIMON96 in terms of round number, complexity, or success rate.
Last updated:  2025-02-06
Partial-guess, Pre-sieve, Greedy-search - New Unified Key Recovery Framework of Impossible Boomerang Attacks: Full-round Attack on ARADI
Xichao Hu and Lin Jiao
The impossible boomerang attack is a very powerful attack, and the existing results show that it is more effective than the impossible differential attack in the related-key scenario. However, several limitations persist in the current key recovery process: the division of pre-guess keys is rather coarse; the details of S-boxes are ignored in the differential propagation; the complexity estimation and the key guessing order's determination are relatively rough and primitive. These are the obstacles that prevent the broader application of impossible boomerang attacks. In this paper, we propose a series of improvement measures and overcome these limitations: we propose the flexible partial pre-guess key technique based on directed graphs, which enable selective determination of necessary guessing keys required to generate partial pairs; we propose the pre-sieving technique, which enable the early elimination of impossible quartets using the cipher details; we propose greedy key-guessing strategy, which enable the efficient search of key guessing order and precise complexity evaluation. Moreover, we integrate these techniques and propose a unified key recovery framework of IBAs. Additionally, we apply it to launch an attack on ARADI, a low-latency block cipher proposed by the NSA in 2024 for the purpose of memory encryption. Consequently, we achieve the first full-round attack on ARADI with a data complexity of $2^{130}$, a time complexity of $2^{254.81}$, and a memory complexity of $2^{252.14}$. In particular, none of the previous key recovery methods of IBAs are able to attain such an outcome, which demonstrates the power of our new techniques and framework.
Last updated:  2025-02-05
Blue fish, red fish, live fish, dead fish
Victor Shoup
We show that the DAG-based consensus protocol Tusk [DKSS22] does not achieve liveness, at least under certain reasonable assumptions on the implementation that are consistent with its specification. In addition, we give a simple 2-round variation of Tusk with lower latency and strong liveness properties, but with suboptimal resilience. We also show that another 2-round protocol, GradedDAG [DZX+24], which has optimal resilience, also has liveness problems analogous to Tusk.
Last updated:  2025-02-05
Sing a song of Simplex
Victor Shoup
We flesh out some details of the recently proposed Simplex atomic broadcast protocol, and modify it so that leaders disperse blocks in a more communication-efficient fashion. The resulting protocol, called DispersedSimplex, maintains the simplicity and excellent -- indeed, optimal -- latency characteristics of the original Simplex protocol. We also present several variations, including a variant that supports "stable leaders", variants that incorporate very recently developed data dissemination techniques that allow us to disperse blocks even more efficiently, and variants that are "signature free". We also suggest a number of practical optimizations and provide concrete performance estimates that take into account not just network latency but also network bandwidth limitations and computational costs. Based on these estimates, we argue that despite its simplicity, DispersedSimplex should, in principle, perform in practice as well as or better than any other state-of-the-art atomic broadcast protocol, at least in terms of common-case throughput and latency.
Last updated:  2025-02-05
HyperLoop: Rationally secure efficient cross-chain bridge
Aniket Kate, Easwar Vivek Mangipudi, Charan Nomula, Raghavendra Ramesh, Athina Terzoglou, and Joshua Tobkin
Cross-chain bridges, realizing the transfer of information and assets between blockchains, form the core of blockchain interoperability solutions. Most existing bridge networks are modeled in an honest-malicious setting, where the bridge nodes are either honest or malicious. Rationality allows the nodes to deviate from the protocol arbitrarily for an economic incentive. In this work, we present HyperLoop, an efficient cross-chain multi-signature bridge and prove that it is safe and live game-theoretically, under the more realistic rational-malicious model. As rational bridge nodes are allowed to deviate from the protocol and even collude, a monitor mechanism is necessitated, which we realize by introducing whistle-blower nodes. These whistle-blowers constantly check the operations of the bridge and raise complaints to a complaint resolution network in case of discrepancies. To enforce punishments, it is necessary for the nodes to stake an amount before participating as bridge nodes. Consequently, a cap on the volume of funds transferred over the bridge is established. We describe a sliding window mechanism and establish a relation between the stake and the sliding window limit necessary for the safety of the bridge. Our design yields an economic, computation, and communication-efficient bridge. We realize and deploy our bridge prototype bridging Ethereum and Polygon chains over testnets. For a 19-node bridge network, each bridge node takes an average of only 3 msec to detect and sign a source chain request, showing the highly efficiency and low-latency of the bridge.
Last updated:  2025-02-05
No Fish Is Too Big for Flash Boys! Frontrunning on DAG-based Blockchains
Jianting Zhang and Aniket Kate
Frontrunning is rampant in blockchain ecosystems, yielding attackers profits that have already soared into several million. Most existing frontrunning attacks focus on manipulating transaction order (namely, prioritizing attackers' transactions before victims' transactions) $\textit{within}$ a block. However, for the emerging directed acyclic graph (DAG)-based blockchains, these intra-block frontrunning attacks may not fully reveal the frontrunning vulnerabilities as they introduce block ordering rules to order transactions belonging to distinct blocks. This work performs the first in-depth analysis of frontrunning attacks toward DAG-based blockchains. We observe that the current block ordering rule is vulnerable to a novel $\textit{inter-block}$ frontrunning attack, which enables the attacker to prioritize ordering its transactions before the victim transactions across blocks. We introduce three attacking strategies: $\textit{(i)}$ Fissure attack, where attackers render the victim transactions ordered later by disconnecting the victim's blocks. $\textit{(ii)}$ Speculative attack, where attackers speculatively construct order-priority blocks. $\textit{(iii)}$ Sluggish attack, where attackers deliberately create low-round blocks assigned a higher ordering priority by the block ordering rule. We implement our attacks on two open-source DAG-based blockchains, Bullshark and Tusk. We extensively evaluate our attacks in geo-distributed AWS and local environments by running up to $n=100$ nodes. Our experiments show remarkable attack effectiveness. For instance, with the speculative attack, the attackers can achieve a $92.86\%$ attack success rate (ASR) on Bullshark and an $86.27\%$ ASR on Tusk. Using the fissure attack, the attackers can achieve a $94.81\%$ ASR on Bullshark and an $87.31\%$ ASR on Tusk. We also discuss potential countermeasures for the proposed attack, such as ordering blocks randomly and reordering transactions globally based on transaction fees. However, we find that they either compromise the performance of the system or make the protocol more vulnerable to frontrunning using the existing frontrunning strategies.
Last updated:  2025-02-05
SoK: On the Physical Security of UOV-based Signature Schemes
Thomas Aulbach, Fabio Campos, and Juliane Krämer
Multivariate cryptography currently centres mostly around UOV-based signature schemes: All multivariate round 2 candidates in the selection process for additional digital signatures by NIST are either UOV itself or close variations of it: MAYO, QR-UOV, SNOVA, and UOV. Also schemes which have been in the focus of the multivariate research community, but are broken by now - like Rainbow and LUOV - are based on UOV. Both UOV and the schemes based on it have been frequently analyzed regarding their physical security in the course of the NIST process. However, a comprehensive analysis regarding the physical security of UOV-based signature schemes is missing. In this work, we want to bridge this gap and create a comprehensive overview of physical attacks on UOV and its variants from the second round of NIST’s selection process for additional post-quantum signature schemes, which just started. First, we collect all existing side-channel and fault attacks on UOV-based schemes and transfer them to the current UOV specification. Since UOV was subject to significant changes over the past few years, e.g., adaptions to the expanded secret key, some attacks need to be reassessed. Next, we introduce new physical attacks in order to obtain an overview as complete as possible. We then show how all these attacks would translate to MAYO, QR-UOV, and SNOVA. To improve the resistance of UOV-based signature schemes towards physical attacks, we discuss and introduce dedicated countermeasures. As related result, we observe that certain implementation decisions, like key compression techniques and randomization choices, also have a large impact on the physical security, in particular on the effectiveness of the considered fault attacks. Finally, we provide implementations of UOV and MAYO for the ARM Cortex-M4 architecture that feature first-order masking and protection against selected fault attacks. We benchmark the resulting overhead on a NUCLEO-L4R5ZI board and validate our approach by performing a TVLA on original and protected subroutines, yielding significantly smaller t-values for the latter.
Last updated:  2025-02-05
Updatable Public-Key Encryption, Revisited
Joël Alwen, Georg Fuchsbauer, and Marta Mularczyk
We revisit Updatable Public-Key Encryption (UPKE), which was introduced as a practical mechanism for building forward-secure cryptographic protocols. We begin by observing that all UPKE notions to date are neither syntactically flexible nor secure enough for the most important multi-party protocols motivating UPKE. We provide an intuitive taxonomy of UPKE properties -- some partially or completely overlooked in the past -- along with an overview of known (explicit and implicit) UPKE constructions. We then introduce a formal UPKE definition capturing all intuitive properties needed for multi-party protocols. Next, we provide a practical pairing-based construction for which we provide concrete security bounds under a standard assumption in the random oracle and the algebraic group model. The efficiency profile of the scheme compares very favorably with existing UPKE constructions (despite the added flexibility and stronger security). For example, when used to improve the forward security of the Messaging Layer Security protocol [RFC9420], our new UPKE construction requires $\approx 1\%$ of the bandwidth of the next-most efficient UPKE construction satisfying the strongest UPKE notion previously considered.
Last updated:  2025-02-05
VITARIT: Paying for Threshold Services on Bitcoin and Friends
Lucjan Hanzlik, Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukherjee, and Sri AravindaKrishnan Thyagarajan
Blockchain service offerings have seen a rapid rise in recent times. Many of these services realize a decentralized architecture with a threshold adversary to avoid a single point of failure and to mitigate key escrow issues. While payments to such services are straightforward in systems supporting smart contracts, achieving fairness poses challenges in systems like Bitcoin, adhering to the UTXO model with limited scripting capabilities. This is especially challenging without smart contracts, as we wish to pay only the required threshold of t + 1 out of the n servers offering the service together, without any server claiming the payment twice. In this paper, we introduce VITARIT 1, a novel payment solution tailored for threshold cryptographic services in UTXO systems like Bitcoin. Our approach guarantees robust provable security while facilitating practical deployment. We focus on the t-out-of-n distributed threshold verifiable random function (VRF) service with certain properties, such as threshold BLS signatures, a recently highlighted area of interest. Our protocol enables clients to request verifiable random function (VRF) values from the threshold service, triggering payments to up to t + 1 servers of the distributed threshold VRF. Our efficient design relies on simple transactions using signature verification scripts, making it immediately applicable in Bitcoin-like systems. We also introduce new tools and techniques at both the cryptographic and transaction layers, including a novel signature-VRF exchange protocol for standard constructions, which may be of independent interest. Addition- ally, our transaction flow design prevents malicious servers from claiming payments twice, offering broader implications for decentralized payment systems. Our prototype implementation shows that in the two-party interaction, the client takes 126.4 msec, and the server takes 204 msec, demonstrating practicality and deployability of the system
Last updated:  2025-02-05
Matching radar signals and fingerprints with MPC
Benjamin Hansen Mortensen, Mathias Karsrud Nordal, and Martin Strand
Vessels can be recognised by their navigation radar due to the characteristics of the emitted radar signal. This is particularly useful if one wants to build situational awareness without revealing one's own presence. Most countries maintain databases of radar fingerprints but will not readily share these due to national security regulations. Sharing of such information will generally require some form of information exchange agreement. However, all parties in a coalition benefit from correct identification. We use secure multiparty computation to match a radar signal measurement against secret databases and output plausible matches with their likelihoods. We also provide a demonstrator using MP-SPDZ.
Last updated:  2025-02-05
SoK: Understanding zk-SNARKs: The Gap Between Research and Practice
Junkai Liang, Daqi Hu, Pengfei Wu, Yunbo Yang, Qingni Shen, and Zhonghai Wu
Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs) are a powerful tool for proving computation correctness, attracting significant interest from researchers, developers, and users. However, the complexity of zk-SNARKs has created gaps between these groups, hindering progress. Researchers focus on constructing efficient proving systems with stronger security and new properties, while developers and users prioritize toolchains, usability, and compatibility. In this work, we provide a comprehensive study of zk-SNARK, from theory to practice, pinpointing gaps and limitations. We first present a master recipe that unifies the main steps in converting a program into a zk-SNARK. We then classify existing zk-SNARKs according to their key techniques. Our classification addresses the main difference in practically valuable properties between existing zk-SNARK schemes. We survey over 40 zk-SNARKs since 2013 and provide a reference table listing their categories and properties. Following the steps in master recipe, we then survey 11 general-purpose popular used libraries. We elaborate on these libraries' usability, compatibility, efficiency and limitations. Since installing and executing these zk-SNARK systems is challenging, we also provide a completely virtual environment in which to run the compiler for each of them. We identify that the proving system is the primary focus in cryptography academia. In contrast, the constraint system presents a bottleneck in industry. To bridge this gap, we offer recommendations and advocate for the opensource community to enhance documentation, standardization and compatibility.
Last updated:  2025-02-05
Secure Showing of Partial Attributes
Foteini Baldimtsi, Julia Kastner, Julian Loss, and Omar Renawi
Anonymous Attribute-Based Credentials (ABCs) allow users to prove possession of attributes while adhering to various authentication policies and without revealing unnecessary information. Single-use ABCs are particularly appealing for their lightweight nature and practical efficiency. These credentials are typically built using blind signatures, with Anonymous Credentials Light (ACL) being one of the most prominent schemes in the literature. However, the security properties of single-use ABCs, especially their secure showing property, have not been fully explored, and prior definitions and corresponding security proofs fail to address scenarios involving partial attribute disclosure effectively. In this work, we propose a stronger secure showing definition that ensures robust security even under selective attribute revelation. Our definition extends the winning condition of the existing secure showing experiment by adding various constraints on the subsets of opened attributes. We show how to represent this winning condition as a matching problem in a suitable bipartite graph, thus allowing for it to be verified efficiently. We then prove that ACL satisfies our strong secure showing notion without any modification. Finally, we define double-spending prevention for single-use ABCs, and show how ACL satisfies the definition.
Last updated:  2025-02-05
A New World in the Depths of Microcrypt: Separating OWSGs and Quantum Money from QEFID
Amit Behera, Giulio Malavolta, Tomoyuki Morimae, Tamer Mour, and Takashi Yamakawa
While in classical cryptography, one-way functions (OWFs) are widely regarded as the “minimal assumption,” the situation in quantum cryptography is less clear. Recent works have put forward two concurrent candidates for the minimal assumption in quantum cryptography: One-way state generators (OWSGs), postulating the existence of a hard search problem with an efficient verification algorithm, and EFI pairs, postulating the existence of a hard distinguishing problem. Two recent papers [Khurana and Tomer STOC’24; Batra and Jain FOCS’24] showed that OWSGs imply EFI pairs, but the reverse direction remained open. In this work, we give strong evidence that the opposite direction does not hold: We show that there is a quantum unitary oracle relative to which EFI pairs exist, but OWSGs do not. In fact, we show a slightly stronger statement that holds also for EFI pairs that output classical bits (QEFID). As a consequence, we separate, via our oracle, QEFID, and one-way puzzles from OWSGs and several other Microcrypt primitives, including efficiently verifiable one-way puzzles and unclonable state generators. In particular, this solves a problem left open in [Chung, Goldin, and Gray Crypto’24]. Using similar techniques, we also establish a fully black-box separation (which is slightly weaker than an oracle separation) between private-key quantum money schemes and QEFID pairs. One conceptual implication of our work is that the existence of an efficient verification algorithm may lead to qualitatively stronger primitives in quantum cryptography.
Last updated:  2025-02-05
A Modular Approach to Unclonable Cryptography
Prabhanjan Ananth and Amit Behera
We explore a new pathway to designing unclonable cryptographic primitives. We propose a new notion called unclonable puncturable obfuscation (UPO) and study its implications for unclonable cryptography. Using UPO, we present modular (and in some cases, arguably, simple) constructions of many primitives in unclonable cryptography, including, public-key quantum money, quantum copy-protection for many classes of functionalities, unclonable encryption, and single-decryption encryption. Notably, we obtain the following new results assuming the existence of UPO: - We show that any cryptographic functionality can be copy-protected as long as this functionality satisfies a notion of security, which we term as puncturable security. Prior feasibility results focused on copy-protecting specific cryptographic functionalities. - We show that copy-protection exists for any class of evasive functions as long as the associated distribution satisfies a preimage-sampleability condition. Prior works demonstrated copy-protection for point functions, which follows as a special case of our result. - We show that unclonable encryption exists in the plain model. Prior works demonstrated feasibility results in the quantum random oracle model. We put forward a candidate construction of UPO and prove two notions of security, each based on the existence of (post-quantum) sub-exponentially secure indistinguishability obfuscation and one-way functions, the quantum hardness of learning with errors, and a new conjecture called simultaneous inner product conjecture.
Last updated:  2025-02-05
Efficient Error Detection Methods for the Number Theoretic Transforms in Lattice-Based Algorithms
Mohamed Abdelmonem, Lukas Holzbaur, Håvard Raddum, and Alexander Zeh
The Number Theoretic Transform (NTT) is a crucial component in many post-quantum cryptographic (PQC) algorithms, enabling efficient polynomial multiplication. However, the reliability of NTT computations is an important concern, especially for safety-critical applications. This work presents novel techniques to improve the fault tolerance of NTTs used in prominent PQC schemes such as Kyber, Dilithium, and Falcon. The work first establishes a theoretical framework for error detection in NTTs, exploiting the inherent algebraic properties of these transforms. It derives necessary and sufficient conditions for constructing error-detecting vectors that can identify single faults without the need for costly recomputation. For the Dilithium scheme, the work further advances the state-of-the-art by developing the first algorithm capable of detecting up to two maliciously placed faults. The proposed error detection methods are shown to reduce the number of required multiplications by half, leading to significant improvements in computational efficiency compared to existing single error-detecting algorithms. Concrete implementations for Kyber, Dilithium, and Falcon demonstrate the practicality and effectiveness of the error-detection scheme.
Last updated:  2025-02-05
TallyGuard: Privacy Preserving Tallied-as-cast Guarantee
Athish Pranav Dharmalingam, Sai Venkata Krishnan, KC Sivaramakrishnan, and N.S. Narayanaswamy
This paper presents a novel approach to verifiable vote tallying using additive homomorphism, which can be appended to existing voting systems without modifying the underlying infrastructure. Existing End-to-End Verifiable (E2E-V) systems like Belenios and ElectionGuard rely on distributed trust models or are vulnerable to decryption compromises, making them less suitable for general elections. Our approach introduces a tamper-evident commitment to votes through cryptographic hashes derived from homomorphic encryption schemes such as Paillier. The proposed system provides tallied-as-cast verifiability without revealing individual votes, thereby preventing coercion. The system also provides the ability to perform public verification of results. We also show that this system can be transitioned to quantum-secure encryption like Regev for future-proofing the system. We discuss how to deploy this system in a real-world scenario, including for general political elections, analyzing the security implications and report on the limitations of this system. We believe that the proposed system offers a practical solution to the problem of verifiable vote tallying in general elections.
Last updated:  2025-02-04
Raccoon: A Masking-Friendly Signature Proven in the Probing Model
Rafaël del Pino, Shuichi Katsumata, Thomas Prest, and Mélissa Rossi
This paper presents Raccoon, a lattice-based signature scheme submitted to the NIST 2022 call for additional post-quantum signatures. Raccoon has the specificity of always being masked. Concretely, all sensitive intermediate values are shared into 𝑑 parts. The main design rationale of Raccoon is to be easy to mask at high orders, and this dictated most of its design choices, such as the introduction of new algorithmic techniques for sampling small errors. As a result, Raccoon achieves a masking overhead $𝑂(𝑑 \log 𝑑)$ that compares favorably with the overheads $𝑂(𝑑^2 \log 𝑞)$ observed when masking standard lattice signatures. In addition, we formally prove the security of Raccoon in the 𝑡-probing model: an attacker is able to probe $𝑡 ≤ 𝑑 −1$ shares during each execution of the main algorithms (key generation, signing, verification). While for most cryptographic schemes, the black-box 𝑡-probing security can be studied in isolation, in Raccoon this analysis is performed jointly. To that end, a bridge must be made between the black-box game-based EUF-CMA proof and the usual simulation proofs of the ISW model (CRYPTO 2003). We formalize an end-to-end masking proof by deploying the probing EUF-CMA introduced by Barthe et al.(Eurocrypt 2018) and exhibiting the simulators of the non-interference properties (Barthe et al. CCS 2016). The proof is divided into three novel parts: - a simulation proof in the ISW model that allows to propagate the dependency to a restricted number of inputs and random coins, - a game-based proof showing that the security of Raccoon with probes can be reduced to an instance of Raccoon with smaller parameters, - a parameter study to ensure that the smaller instance is secure, using a robust generalization of the Rényi divergence. While we apply our techniques to Raccoon, we expect that the algorithmic and proof techniques we introduce will be helpful for the design and analysis of future masking-friendly schemes.
Last updated:  2025-02-04
Revisiting Beimel-Weinreb Weighted Threshold Secret Sharing Schemes
Oriol Farràs and Miquel Guiot
A secret sharing scheme is a cryptographic primitive that allows a dealer to share a secret among a set of parties, so that only authorized subsets of them can recover it. The access structure of the scheme is the family of authorized subsets. In a weighted threshold secret sharing scheme, each party is assigned a weight according to its importance, and the authorized subsets are those in which the sum of their weights is at least the threshold value. For these access structures, the best general constructions were presented by Beimel and Weinreb [IPL 2006]: The scheme with perfect security has share size $n^{O(\log n)}$, while the scheme with computational security has share size polynomial in $n$. However, these constructions require the use of shallow monotone sorting networks, which limits their practical use. In this context, we revisit this work and provide variants of these constructions that are feasible in practice. This is done by considering alternative circuits and formulas for weighted threshold functions that do not require monotone sorting networks. We show that, under the assumption that subexponentially secure one-way functions exist, any WTAS over $n$ parties and threshold $\sigma$ admits a computational secret sharing scheme where the size of the shares is $\mathrm{polylog}(n)$ and the size of the public information is $O(n^2\log n\log \sigma)$. Moreover, we show that any authorized subset only needs to download $O(n\log n\log \sigma)$ bits of public information to recover the secret.
Last updated:  2025-02-04
Wiretapping LLMs: Network Side-Channel Attacks on Interactive LLM Services
Mahdi Soleimani, Grace Jia, In Gim, Seung-seob Lee, and Anurag Khandelwal
Recent server-side optimizations like speculative decoding significantly enhance the interactivity and resource efficiency of Large Language Model (LLM) services. However, we show that these optimizations inadvertently introduce new side-channel vulnerabilities through network packet timing and size variations that tend to be input-dependent. Network adversaries can leverage these side channels to learn sensitive information contained in \emph{encrypted} user prompts to and responses from public LLM services. This paper formalizes the security implications using a novel indistinguishability framework and introduces a novel attack that establishes the insecurity of real-world LLM services with streaming APIs under our security framework. Our proposed attack effectively deconstructs encrypted network packet traces to reveal the sizes of underlying LLM-generated tokens and whether the tokens were generated with or without certain server-side optimizations. Our attack can accurately predict private attributes in real-world privacy-sensitive LLM applications in medicine and finance with $71$--$92\%$ accuracy on an open-source vLLM service and $50$--$90\%$ accuracy on the commercial ChatGPT service. Finally, we show that solutions that hide these side channels to different degrees expose a tradeoff between security and performance --- specifically, interactivity and network bandwidth overheads.
Last updated:  2025-02-04
Multi-Authority Functional Encryption with Bounded Collusions from Standard Assumptions
Rishab Goyal and Saikumar Yadugiri
Multi-Authority Functional Encryption ($\mathsf{MA}$-$\mathsf{FE}$) [Chase, TCC'07; Lewko-Waters, Eurocrypt'11; Brakerski et al., ITCS'17] is a popular generalization of functional encryption ($\mathsf{FE}$) with the central goal of decentralizing the trust assumption from a single central trusted key authority to a group of multiple, independent and non-interacting, key authorities. Over the last several decades, we have seen tremendous advances in new designs and constructions for $\mathsf{FE}$ supporting different function classes, from a variety of assumptions and with varying levels of security. Unfortunately, the same has not been replicated in the multi-authority setting. The current scope of $\mathsf{MA}$-$\mathsf{FE}$ designs is rather limited, with positive results only known for (all-or-nothing) attribute-based functionalities, or need full power of general-purpose code obfuscation. This state-of-the-art in $\mathsf{MA}$-$\mathsf{FE}$ could be explained in part by the implication provided by Brakerski et al. (ITCS'17). It was shown that a general-purpose obfuscation scheme can be designed from any $\mathsf{MA}$-$\mathsf{FE}$ scheme for circuits, even if the $\mathsf{MA}$-$\mathsf{FE}$ scheme is secure only in a bounded-collusion model, where at most two keys per authority get corrupted. In this work, we revisit the problem of $\mathsf{MA}$-$\mathsf{FE}$, and show that existing implication from $\mathsf{MA}$-$\mathsf{FE}$ to obfuscation is not tight. We provide new methods to design $\mathsf{MA}$-$\mathsf{FE}$ for circuits from simple and minimal cryptographic assumptions. Our main contributions are summarized below 1. We design a $\mathsf{poly}(\lambda)$-authority $\mathsf{MA}$-$\mathsf{FE}$ for circuits in the bounded-collusion model. Under the existence of public-key encryption, we prove it to be statically simulation-secure. Further, if we assume sub-exponential security of public-key encryption, then we prove it to be adaptively simulation-secure in the Random Oracle Model. 2. We design a $O(1)$-authority $\mathsf{MA}$-$\mathsf{FE}$ for circuits in the bounded-collusion model. Under the existence of 2/3-party non-interactive key exchange, we prove it to be adaptively simulation-secure. 3. We provide a new generic bootstrapping compiler for $\mathsf{MA}$-$\mathsf{FE}$ for general circuits to design a simulation-secure $(n_1 + n_2)$-authority $\mathsf{MA}$-$\mathsf{FE}$ from any two $n_1$-authority and $n_2$-authority $\mathsf{MA}$-$\mathsf{FE}$.
Last updated:  2025-02-03
Learning from Functionality Outputs: Private Join and Compute in the Real World
Francesca Falzon and Tianxin Tang
Private Join and Compute (PJC) is a two-party protocol recently proposed by Google for various use-cases, including ad conversion (Asiacrypt 2021) and which generalizes their deployed private set intersection sum (PSI-SUM) protocol (EuroS&P 2020). PJC allows two parties, each holding a key-value database, to privately evaluate the inner product of the values whose keys lie in the intersection. While the functionality output is not typically considered in the security model of the MPC literature, it may pose real-world privacy risks, thus raising concerns about the potential deployment of protocols like PJC. In this work, we analyze the risks associated with the PJC functionality output. We consider an adversary that is a participating party of PJC and describe four practical attacks that break the other party's input privacy, and which are able to recover both membership of keys in the intersection and their associated values. Our attacks consider the privacy threats associated with deployment and highlight the need to include the functionality output as part of the MPC security model.
Last updated:  2025-02-03
Plinko: Single-Server PIR with Efficient Updates via Invertible PRFs
Alexander Hoover, Sarvar Patel, Giuseppe Persiano, and Kevin Yeo
We study single-server private information retrieval (PIR) where a client wishes to privately retrieve the $x$-th entry from a database held by a server without revealing the index $x$. In our work, we focus on PIR with client pre-processing where the client may compute hints during an offline phase. The hints are then leveraged during queries to obtain sub-linear online time. We present Plinko that is the first single-server PIR with client pre-processing that obtains optimal trade-offs between client storage and total (client and server) query time for all parameters. Our scheme uses $t = \tilde{O}(n/r)$ query time for any client storage size $r$. This matches known lower bounds of $r \cdot t = \Omega(n)$ up to logarithmic factors for all parameterizations whereas prior works could only match the lower bound when $r = \tilde{O}(\sqrt{n})$. Moreover, Plinko is also the first updateable PIR scheme where an entry can be updated in worst-case $\tilde{O}(1)$ time. As our main technical tool, we define the notion of an invertible pseudorandom function (iPRF) that generalizes standard PRFs to be equipped with an efficient inversion algorithm. We present a construction of an iPRF from one-way functions where forward evaluation runs in $\tilde{O}(1)$ time and inversion runs in time linear in the inverse set (output) size. Furthermore, our iPRF construction is the first that remains efficient and secure for arbitrary domain and range sizes (including small domains and ranges). In the context of single-server PIR, we show that iPRFs may be used to construct the first hint set representation where finding a hint containing an entry $x$ may be done in $\tilde{O}(1)$ time.
Last updated:  2025-02-03
Post-Quantum Online/Offline Signatures
Martin R. Albrecht, Nicolas Gama, James Howe, and Anand Kumar Narayanan
Post-quantum signatures have high costs compared to RSA and ECDSA, in particular for smart cards. A line of work originating from Even, Goldreich, and Micali (CRYPTO'89) aimed to reduce digital signature latency by splitting up signing into an online and offline phase. The online/offline paradigm combines an ordinary long-term signature scheme with a fast, generally one-time, signature scheme. We reconsider this paradigm in the context of lattice-based post-quantum signatures in the GPV framework, with an example instantiation based on Falcon.
Last updated:  2025-02-03
A Holistic Framework for Impossible Boomerang Attacks
Yincen Chen, Qinggan Fu, Ning Zhao, Jiahao Zhao, Ling Song, and Qianqian Yang
In 2011, Lu introduced the impossible boomerang attack at DCC. This powerful cryptanalysis technique combines the strengths of the impossible differential and boomerang attacks, thereby inheriting the advantages of both cryptographic techniques. In this paper, we propose a holistic framework comprising two generic and effective algorithms and a MILP-based model to search for the optimal impossible boomerang attack systematically. The first algorithm incorporates any key guessing strategy, while the second integrates the meet-in-the-middle (MITM) attack into the key recovery process. Our framework is highly flexible, accommodating any set of attack parameters and returning the optimal attack complexity. When applying our framework to Deoxys-BC-256, Deoxys-BC-384, Joltik-BC-128, Joltik-BC-192, and SKINNYe v2, we achieve several significant improvements. We achieve the first 11-round impossible boomerang attacks on Deoxys-BC-256\ and Joltik-BC-128. For SKINNYe v2, we achieve the first 33-round impossible boomerang attack, then using the MITM approach in the key recovery attack, the time complexity is significantly reduced. Additionally, for the 14-round Deoxys-BC-384 and Joltik-BC-192, the time complexity of the impossible boomerang attack is reduced by factors exceeding 2^{27} and 2^{12}, respectively.
Last updated:  2025-02-03
Mira: Efficient Folding for Pairing-based Arguments
Josh Beal and Ben Fisch
Pairing-based arguments offer remarkably small proofs and space-efficient provers, but aggregating such proofs remains costly. Groth16 SNARKs and KZG polynomial commitments are prominent examples of this class of arguments. These arguments are widely deployed in decentralized systems, with millions of proofs generated per day. Recent folding schemes have greatly reduced the cost of proving incremental computations, such as batch proof verification. However, existing constructions require encoding pairing operations in generic constraint systems, leading to high prover overhead. In this work, we introduce Mira, a folding scheme that directly supports pairing-based arguments. We construct this folding scheme by generalizing the framework in Protostar to support a broader class of special-sound protocols. We demonstrate the versatility and efficiency of this framework through two key applications: Groth16 proof aggregation and verifiable ML inference. Mira achieves 5.8x faster prover time and 9.7x lower memory usage than the state-of-the-art proof aggregation system while maintaining a constant-size proof. To improve the efficiency of verifiable ML inference, we provide a new lincheck protocol with a verifier degree that is independent of the matrix order. We show that Mira scales effectively to larger models, overcoming the memory bottlenecks of current schemes.
Last updated:  2025-02-02
Shadowfax: Combiners for Deniability
Phillip Gajland, Vincent Hwang, and Jonas Janneck
As cryptographic protocols transition to post-quantum security, most adopt hybrid solutions combining pre-quantum and post-quantum assumptions. However, this shift often introduces trade-offs in terms of efficiency, compactness, and in some cases, even security. One such example is deniability, which enables users, such as journalists or activists, to deny authorship of potentially incriminating messages. While deniability was once mainly of theoretical interest, protocols like X3DH, used in Signal and WhatsApp, provide it to billions of users. Recent work (Collins et al., PETS'25) has further bridged the gap between theory and real-world applicability. In the post-quantum setting, however, protocols like PQXDH, as well as others such as Apple’s iMessage with PQ3, do not support deniability. This work investigates how to preserve deniability in the post-quantum setting by leveraging unconditional (statistical) guarantees instead of computational assumptions - distinguishing deniability from confidentiality and authenticity. As a case study, we present a hybrid authenticated key encapsulation mechanism (AKEM) that provides statistical deniability, while maintaining authenticity and confidentiality through a combination of pre-quantum and post-quantum assumptions. To this end, we introduce two combiners at different levels of abstraction. First, at the highest level, we propose a black-box construction that combines two AKEMs, showing that deniability is preserved only when both constituent schemes are deniable. Second, we present Shadowfax, a non-black-box combiner that integrates a pre-quantum NIKE, a post-quantum KEM, and a post-quantum ring signature. We demonstrate that Shadowfax ensures deniability in both dishonest and honest receiver settings. When instantiated, we rely on statistical security for the former, and on a pre- or post-quantum assumption in the latter. Finally, we provide an optimised, yet portable, implementation of a specific instantiation of Shadowfax yielding ciphertexts of 1781 bytes and public keys of 1449 bytes. Our implementation achieves competitive performance: encapsulation takes 1.9 million cycles and decapsulation takes 800000 cycles on an Apple M1 Pro.
Last updated:  2025-02-02
Breaking the Blindfold: Deep Learning-based Blind Side-channel Analysis
Azade Rezaeezade, Trevor Yap, Dirmanto Jap, Shivam Bhasin, and Stjepan Picek
Physical side-channel analysis (SCA) operates on the foundational assumption of access to known plaintext or ciphertext. However, this assumption can be easily invalidated in various scenarios, ranging from common encryption modes like Cipher Block Chaining (CBC) to complex hardware implementations, where such data may be inaccessible. Blind SCA addresses this challenge by operating without the knowledge of plaintext or ciphertext. Unfortunately, prior such approaches have shown limited success in practical settings. In this paper, we introduce the Deep Learning-based Blind Side-channel Analysis (DL-BSCA) framework, which leverages deep neural networks to recover secret keys in blind SCA settings. In addition, we propose a novel labeling method, Multi-point Cluster-based (MC) labeling, accounting for dependencies between leakage variables by exploiting multiple sample points for each variable, improving the accuracy of trace labeling. We validate our approach across four datasets, including symmetric key algorithms (AES and Ascon) and a post-quantum cryptography algorithm, Kyber, with platforms ranging from high-leakage 8-bit AVR XMEGA to noisy 32-bit ARM STM32F4. Notably, previous methods failed to recover the key on the same datasets. Furthermore, we demonstrate the first successful blind SCA on a desynchronization countermeasure enabled by DL-BSCA and MC labeling. All experiments are validated with real-world SCA measurements, highlighting the practicality and effectiveness of our approach.
Last updated:  2025-02-01
Non Linearizable Entropic Operator
Daniel Nager
In [Pan21] a linearization attack is proposed in order to break the cryp- tosystem proposed in [Gli21]. We want to propose here a non-linearizable operator that disables this attack as this operator doesn't give raise to a quasigrup and doesn't obey the latin square property.
Last updated:  2025-02-01
A notion on S-boxes for a partial resistance to some integral attacks
Claude Carlet
In two recent papers, we introduced and studied the notion of $k$th-order sum-freedom of a vectorial function $F:\mathbb F_2^n\to \mathbb F_2^m$. This notion generalizes that of almost perfect nonlinearity (which corresponds to $k=2$) and has some relation with the resistance to integral attacks of those block ciphers using $F$ as a substitution box (S-box), by preventing the propagation of the division property of $k$-dimensional affine spaces. In the present paper, we show that this notion, which is rarely satisfied by vectorial functions, can be weakened while retaining the property that the S-boxes do not propagate the division property of $k$-dimensional affine spaces. This leads us to the property that we name $k$th-order $t$-degree-sum-freedom, whose strength decreases when $t$ increases, and which coincides with $k$th-order sum-freedom when $t=1$. The condition for $k$th-order $t$-degree-sum-freedom is that, for every $k$-dimensional affine space $A$, there exists a non-negative integer $j$ of 2-weight at most $t$ such that $\sum_{x\in A}(F(x))^j\neq 0$. We show, for a general $k$th-order $t$-degree-sum-free function $F$, that $t$ can always be taken smaller than or equal to $\min(k,m)$ under some reasonable condition on $F$, and that it is larger than or equal to $\frac k{\deg(F)}$, where $\deg(F)$ is the algebraic degree of $F$. We also show two other lower bounds: one, that is often tighter, by means of the algebraic degree of the compositional inverse of $F$ when $F$ is a permutation, and another (valid for every vectorial function) by means of the algebraic degree of the indicator of the graph of the function. We study examples for $k=2$ (case in which $t=1$ corresponds to APNness) showing that finding $j$ of 2-weight 2 can be challenging, and we begin the study of power functions, for which we prove upper bounds. We study in particular the multiplicative inverse function (used as an S-box in the AES), for which we characterize the $k$th-order $t$-degree-sum-freedom by the coefficients of the subspace polynomials of $k$-dimensional vector subspaces (deducing the exact value of $t$ when $k$ divides $n$) and we extend to $k$th-order $t$-degree-sum-freedom the result that it is $k$th-order sum-free if and only if it is $(n-k)$th-order sum-free.
Last updated:  2025-01-31
SHIFT SNARE: Uncovering Secret Keys in FALCON via Single-Trace Analysis
Jinyi Qiu and Aydin Aysu
This paper presents a novel single-trace side-channel attack on FALCON---a lattice-based post-quantum digital signature protocol recently approved for standardization by NIST. We target the discrete Gaussian sampling operation within the FALCON key generation scheme and use a single power measurement trace to succeed. Notably, negating the 'shift right 63-bit' operation (for 64-bit values) leaks critical information about the '-1' vs. '0' assignments to intermediate coefficients. These leaks enable full recovery of the generated secret keys. The proposed attack is implemented on an ARM Cortex-M4 microcontroller running both reference and optimized software implementation from FALCON's NIST Round 3 package. Statistical analysis with 500k tests reveals a per coefficient success rate of 99.9999999478% and a full key recovery success rate of 99.99994654% for FALCON-512. This work highlights the vulnerability of current software solutions to single-trace attacks and underscores the urgent need to develop single-trace resilient software for embedded systems.
Last updated:  2025-01-31
A Comprehensive Formal Security Analysis of OPC UA
Vincent Diemunsch, Lucca Hirschi, and Steve Kremer
OPC UA is a standardized Industrial Control System (ICS) protocol, deployed in critical infrastructures, that aims to ensure security. The forthcoming version 1.05 includes major changes in the underlying cryptographic design, including a Diffie-Hellmann based key exchange, as opposed to the previous RSA based version. Version 1.05 is supposed to offer stronger security, including Perfect Forward Secrecy (PFS). We perform a formal security analysis of the security protocols specified in OPC UA v1.05 and v1.04, for the RSA-based and the new DH-based mode, using the state-of-the-art symbolic protocol verifier ProVerif. Compared to previous studies, our model is much more comprehensive, including the new protocol version, combination of the different sub-protocols for establishing secure channels, sessions and their management, covering a large range of possible configurations. This results in one of the largest models ever studied in ProVerif raising many challenges related to its verification mainly due to the complexity of the state machine. We discuss how we mitigated this complexity to obtain meaningful analysis results. Our analysis uncovered several new vulnerabilities, that have been reported to and acknowledged by the OPC Foundation. We designed and proposed provably secure fixes, most of which are included in the upcoming version of the standard.
Last updated:  2025-01-31
Cycles and Cuts in Supersingular L-Isogeny Graphs
Sarah Arpin, Ross Bowden, James Clements, Wissam Ghantous, Jason T. LeGrow, and Krystal Maughan
Supersingular elliptic curve isogeny graphs underlie isogeny-based cryptography. For isogenies of a single prime degree $\ell$, their structure has been investigated graph-theoretically. We generalise the notion of $\ell$-isogeny graphs to $L$-isogeny graphs (studied in the prime field case by Delfs and Galbraith), where $L$ is a set of small primes dictating the allowed isogeny degrees in the graph. We analyse the graph-theoretic structure of $L$-isogeny graphs. Our approaches may be put into two categories: cycles and graph cuts. On the topic of cycles, we provide: a count for the number of non-backtracking cycles in the $L$-isogeny graph using traces of Brandt matrices; an efficiently computable estimate based on this approach; and a third ideal-theoretic count for a certain subclass of $L$-isogeny cycles. We provide code to compute each of these three counts. On the topic of graph cuts, we compare several algorithms to compute graph cuts which minimise a measure called the edge expansion, outlining a cryptographic motivation for doing so. Our results show that a greedy neighbour algorithm out-performs standard spectral algorithms for computing optimal graph cuts. We provide code and study explicit examples. Furthermore, we describe several directions of active and future research.
Last updated:  2025-01-31
KZH-Fold: Accountable Voting from Sublinear Accumulation
George Kadianakis, Arantxa Zapico, Hossein Hafezi, and Benedikt Bünz
Accumulation schemes are powerful primitives that enable distributed and incremental verifiable computation with less overhead than recursive SNARKs. However, existing schemes with constant-size accumulation verifiers, suffer from linear-sized accumulators and deciders, leading to linear-sized proofs that are unsuitable in distributed settings. Motivated by the need for bandwidth efficient accountable voting protocols, (I) We introduce KZH, a novel polynomial commitment scheme, and (II) KZH-fold, the first sublinear accumulation scheme where the verifier only does $3$ group scalar multiplications and $O(n^{1/2})$ accumulator size and decider time. Our scheme generalizes to achieve accumulator and decider complexity of $k \cdot n^{1/k}$ with verifier complexity $k$. Using the BCLMS compiler, (III) we build an IVC/PCD scheme with sublinear proof and decider. (IV) Next, we propose a new approach to non-uniform IVC, where the cost of proving a step is proportional only to the size of the step instruction circuit, and unlike previous approaches, the witness size is not linear in the number of instructions. (V) Leveraging these advancements, we demonstrate the power of KZH-fold by implementing an accountable voting scheme using a novel signature aggregation protocol supporting millions of participants, significantly reducing communication overhead and verifier time compared to BLS-based aggregation. We implemented and benchmarked our protocols and KZH-fold achieves a 2000x reduction in communication and a 50x improvement in decider time over Nova when proving 2000 Poseidon hashes, at the cost of 3x the prover time.
Last updated:  2025-01-31
Error floor prediction with Markov models for QC-MDPC codes
Sarah Arpin, Jun Bo Lau, Ray Perlner, Angela Robinson, Jean-Pierre Tillich, and Valentin Vasseur
Quasi-cyclic moderate-density parity check (QC-MDPC) code-based encryption schemes under iterative decoders offer highly-competitive performance in the quantum-resistant space of cryptography, but the decoding-failure rate (DFR) of these algorithms are not well-understood. The DFR decreases extremely rapidly as the ratio of code-length to error-bits increases, then decreases much more slowly in regimes known as the waterfall and error-floor, respectively. This work establishes three, successively more detailed probabilistic models of the DFR for iterative decoders for QC-MPDC codes: the simplified model, the refined model for perfect keys, and the refined model for all keys. The models are built upon a Markov model introduced by Sendrier and Vasseur that closely predicts decoding behavior in the waterfall region but does not capture the error floor behavior. The simplified model introduces a modification which captures the dominant contributor to error floor behavior which is convergence to near codewords introduced by Vasseur in his PhD thesis. The refined models give more accurate predictions taking into account certain structural features of specific keys. Our models are based on the step-by-step decoder, which is highly simplified and experimentally displays worse decoding performance than parallel decoders used in practice. Despite the use of the simplified decoder, we obtain an accurate prediction of the DFR in the error floor and demonstrate that the error floor behavior is dominated by convergence to a near codeword during a failed decoding instance. Furthermore, we have run this model for a simplified version of the QC-MDPC code-based cryptosystem BIKE to better ascertain whether the DFR is low enough to achieve IND-CCA2 security. Our model for a modified version of BIKE 1 gives a DFR which is below $2^{-129.5}$, using a block length $r = 13477$ instead of the BIKE 1 parameter $r = 12323$.
Last updated:  2025-01-31
On Maximum Size Simultaneous Linear Approximations in Ascon and Keccak and Related Translation and Differential Properties
Nicolas T. Courtois, Frédéric Amiel, and Alexandre Bonnard de Fonvillars
In this paper we study the S-box known as Chi or \chi initially proposed by Daemen in 1995 and very widely used ever since in Keccak, Ascon, and many other. This type of ciphers is typically analyzed [in recent research] in terms of subspace trail attacks [TeDi19] and vector space invariants. An interesting question is then, when different spaces are mapped to each other by translations with a constant. In this paper we relax this fundamental question and we consider arbitrary sets of points and their translations. We generalize previous S-box partial linearization results on Keccak and Ascon from Eurocrypt 2017. We basically introduce new ways to linearize the Ascon S-box to the maximum possible extent. On this basis we show further remarkable properties and some surprising connections between [simultaneous] linear and [prominent] differential properties. We exhibit a new family of maximum size and optimal approximation properties with 11 points, beyond the maximum size of any set in the DDT table. We prove a theorem which guarantees that this type of properties are stable by arbitrary input-side translations which holds for all quadratic permutations. All this will be placed in the context of previous work on classification of 5-bit quadratic permutations.
Last updated:  2025-01-31
Efficient Quantum-safe Distributed PRF and Applications: Playing DiSE in a Quantum World
Sayani Sinha, Sikhar Patranabis, and Debdeep Mukhopadhyay
We propose the first $\textit{distributed}$ version of a simple, efficient, and provably quantum-safe pseudorandom function (PRF). The distributed PRF (DPRF) supports arbitrary threshold access structures based on the hardness of the well-studied Learning with Rounding (LWR) problem. Our construction (abbreviated as $\mathsf{PQDPRF}$) practically outperforms not only existing constructions of DPRF based on lattice-based assumptions, but also outperforms (in terms of evaluation time) existing constructions of: (i) classically secure DPRFs based on discrete-log hard groups, and (ii) quantum-safe DPRFs based on any generic quantum-safe PRF (e.g. AES). The efficiency of $\mathsf{PQDPRF}$ stems from the extreme simplicity of its construction, consisting of a simple inner product computation over $\mathbb{Z}_q$, followed by a rounding to a smaller modulus $p < q$. The key technical novelty of our proposal lies in our proof technique, where we prove the correctness and post-quantum security of $\mathsf{PQDPRF}$ (against semi-honest corruptions of any less than threshold number of parties) for a polynomial $q/p$ (equivalently, "modulus to modulus")-ratio. Our proposed DPRF construction immediately enables efficient yet quantum-safe instantiations of several practical applications, including key distribution centers, distributed coin tossing, long-term encryption of information, etc. We showcase a particular application of $\mathsf{PQDPRF}$ in realizing an efficient yet quantum-safe version of distributed symmetric-key encryption ($\mathsf{DiSE}$ -- originally proposed by Agrawal et al. in CCS 2018), which we call $\mathsf{PQ-DiSE}$. For semi-honest adversarial corruptions across a wide variety of corruption thresholds, $\mathsf{PQ-DiSE}$ substantially outperforms existing instantiations of $\mathsf{DiSE}$ based on discrete-log hard groups and generic PRFs (e.g. AES). We illustrate the practical efficiency of our $\mathsf{PQDPRF}$ via prototype implementation of $\mathsf{PQ-DiSE}$.
Last updated:  2025-01-31
Towards Verifiable FHE in Practice: Proving Correct Execution of TFHE's Bootstrapping using plonky2
Louis Tremblay Thibault and Michael Walter
In this work we demonstrate for the first time that a full FHE bootstrapping operation can be proven using a SNARK in practice. We do so by designing an arithmetic circuit for the bootstrapping operation and prove it using plonky2. We are able to prove the circuit on an AWS Hpc7a instance in under 20 minutes. Proof size is about 200kB and verification takes less than 10ms. As the basis of our bootstrapping operation we use TFHE's programmable bootstrapping and modify it in a few places to more efficiently represent it as an arithmetic circuit (while maintaining full functionality and security). In order to achieve our results in a memory-efficient way, we take advantage of the structure of the computation and plonky2's ability to efficiently prove its own verification circuit to implement a recursion-based IVC scheme. Lastly, we present a security proof in the UC model that captures active attacks in real world applications of verifiable FHE and augment our prototype to fit such applications.
Last updated:  2025-01-31
Quantum function secret sharing
Alex B. Grilo and Ramis Movassagh
We propose a quantum function secret sharing scheme in which the communication is exclusively classical. In this primitive, a classical dealer distributes a secret quantum circuit $C$ by providing shares to $p$ quantum parties. The parties on an input state $\ket{\psi}$ and a projection $\Pi$, compute values $y_i$ that they then classically communicate back to the dealer, who can then compute $\lVert\Pi C\ket{\psi}\rVert^2$ using only classical resources. Moreover, the shares do not leak much information about the secret circuit $C$. Our protocol for quantum secret sharing uses the Cayley path, a tool that has been extensively used to support quantum primacy claims. More concretely, the shares of $C$ correspond to randomized version of $C$ which are delegated to the quantum parties, and the reconstruction can be done by extrapolation. Our scheme has two limitations, which we prove to be inherent to our techniques: First, our scheme is only secure against single adversaries, and we show that if two parties collude, then they can break its security. Second, the evaluation done by the parties requires exponential time in the number of gates.
Last updated:  2025-01-31
ProbeShooter: A New Practical Approach for Probe Aiming
Daehyeon Bae, Sujin Park, Minsig Choi, Young-Giu Jung, Changmin Jeong, Heeseok Kim, and Seokhie Hong
Electromagnetic side-channel analysis is a powerful method for monitoring processor activity and compromising cryptographic systems in air-gapped environments. As analytical methodologies and target devices evolve, the importance of leakage localization and probe aiming becomes increasingly apparent for capturing only the desired signals with a high signal-to-noise ratio. Despite its importance, there remains substantial reliance on unreliable heuristic approaches and inefficient exhaustive searches. Furthermore, related studies often fall short in terms of feasibility, practicality, and performance, and are limited to controlled DUTs and low-end MCUs. To address the limitations and inefficiencies of the previous approaches, we propose a novel methodology―${\rm P{\tiny ROBE}S{\tiny HOOTER}}$―for leakage localization and probe aiming. This approach leverages new insights into the spatial characteristics of amplitude modulation and intermodulation distortion in processors. As a result, ${\rm P{\tiny ROBE}S{\tiny HOOTER}}$ provides substantial improvements in various aspects: $\boldsymbol 1)$ it is applicable to not only simple MCUs but also complex SoCs, $\boldsymbol 2)$ it effectively handles multi-core systems and dynamic frequency scaling, $\boldsymbol 3)$ it is adoptable to uncontrollable DUTs, making it viable for constrained real-world attacks, and $\boldsymbol 4)$ it performs significantly faster than previous methods. To demonstrate this, we experimentally evaluate ${\rm P{\tiny ROBE}S{\tiny HOOTER}}$ on a high-end MCU (the NXP i.MX RT1061 featuring a single ARM Cortex-M7 core) and a complex SoC (the Broadcom BCM2711 equipped with the Raspberry Pi 4 Model B, featuring four ARM Cortex-A72 cores).
Last updated:  2025-01-31
MicroSecAgg: Streamlined Single-Server Secure Aggregation
Yue Guo, Antigoni Polychroniadou, Elaine Shi, David Byrd, and Tucker Balch
This work introduces MicroSecAgg, a framework that addresses the intricacies of secure aggregation in the single-server landscape, specifically tailored to situations where distributed trust among multiple non-colluding servers presents challenges. Our protocols are purpose-built to handle situations featuring multiple successive aggregation phases among a dynamic pool of clients who can drop out during the aggregation. Our different protocols thrive in three distinct cases: firstly, secure aggregation within a small input domain; secondly, secure aggregation within a large input domain; and finally, facilitating federated learning for the cases where moderately sized models are considered. Compared to the prior works of Bonawitz et al. (CCS 2017), Bell et al. (CCS 2020), and the recent work of Ma et al. (S&P 2023), our approach significantly reduces the overheads. In particular, MicroSecAgg halves the round complexity to just 3 rounds, thereby offering substantial improvements in communication cost efficiency. Notably, it outperforms Ma et al. by a factor of n on the user side, where n represents the number of users. Furthermore, in MicroSecAgg the computation complexity of each aggregation per user exhibits a logarithmic growth with respect to $n$, contrasting with the linearithmic or quadratic growth observed in Ma et al. and Bonawitz et al., respectively. We also require linear (in n) computation work from the server as opposed to quadratic in Bonawitz et al., or linearithmic in Ma et al. and Bell et al. In the realm of federated learning, a delicate tradeoff comes into play: our protocols shine brighter as the number of participating parties increases, yet they exhibit diminishing computational efficiency as the sheer volume of weights/parameters increases significantly. We report an implementation of our system and compare the performance against prior works, demonstrating that MicroSecAgg significantly reduces the computational burden and the message size.
Last updated:  2025-01-31
On pairs of primes with small order reciprocity
Craig Costello and Gaurish Korpal
We give a sieving algorithm for finding pairs of primes with small multiplicative orders modulo each other. This problem is a necessary condition for obtaining constructions of $2$-cycles of pairing-friendly curves, which have found use in cryptographic applications. Our database of examples suggests that, with the exception of a well-known infinite family of such primes, instances become increasingly rare as the size of the primes increase. This leads to some interesting open questions for which we hope our database prompts further investigation.
Last updated:  2025-01-30
Practical Asynchronous Distributed Key Reconfiguration and Its Applications
Hanwen Feng, Yingzi Gao, Yuan Lu, Qiang Tang, and Jing Xu
In this paper, we study practical constructions of asynchronous distributed key reconfiguration ($\mathsf{ADKR}$), which enables an asynchronous fault-tolerant system with an existing threshold cryptosystem to efficiently generate a new threshold cryptosystem for a reconfigured set of participants. While existing asynchronous distributed threshold key generation ($\mathsf{ADKG}$) protocols theoretically solve $\mathsf{ADKR}$, they fail to deliver satisfactory scalability due to cubic communication overhead, even with simplifications to the reconfiguration setting. We introduce a more efficient \textit{share-dispersal-then-agree-and-recast} paradigm for constructing $\mathsf{ADKR}$ with preserving adaptive security. The method replaces expensive $O(n)$ asynchronous verifiable secret sharing protocols in classic $\mathsf{ADKG}$ with $O(n)$ cheaper dispersals of publicly-verifiable sharing transcripts; after consensus confirms a set of finished dispersals, it selects a small $\kappa$-subset of finished dispersals for verification, reducing the total overhead to $O(\kappa n^2)$ from $O(n^3)$, where $\kappa$ is a small constant (typically $\sim$30 or less). To further optimize concrete efficiency, we propose an interactive protocol with linear communication to generate publicly verifiable secret sharing (PVSS) transcripts, avoiding computationally expensive non-interactive PVSS. Additionally, we introduce a distributed PVSS verification mechanism, minimizing redundant computations across different parties and reducing the dominating PVSS verification cost by about one-third. Our design also enables diverse applications: (i) given a quadratic-communication asynchronous coin-flipping protocol, it implies the first quadratic-communication $\mathsf{ADKG}$; and (ii) it can be extended to realize the first quadratic-communication asynchronous dynamic proactive secret sharing (ADPSS) protocol with adaptive security. Experimental evaluations on a global network of 256 AWS servers show up to 40\% lower latency compared to state-of-the-art $\mathsf{ADKG}$ protocols (with simplifications to the reconfiguration setting), highlighting the practicality of our $\mathsf{ADKR}$ in large-scale asynchronous systems.
Last updated:  2025-01-30
Efficient algorithms for the detection of $(N,N)$-splittings and endomorphisms
Maria Corte-Real Santos, Craig Costello, and Sam Frengley
We develop an efficient algorithm to detect whether a superspecial genus 2 Jacobian is optimally $(N, N)$-split for each integer $N \leq 11$. Incorporating this algorithm into the best-known attack against the superspecial isogeny problem in dimension 2 (due to Costello and Smith) gives rise to significant cryptanalytic improvements. Our implementation shows that when the underlying prime $p$ is 100 bits, the attack is sped up by a factor of $25$; when the underlying prime is 200 bits, the attack is sped up by a factor of $42$; and, when the underlying prime is 1000 bits, the attack is sped up by a factor of $160$. Furthermore, we describe a more general algorithm to find endomorphisms of superspecial genus 2 Jacobians.
Last updated:  2025-01-30
Breaking RSA with Overclocking-induced GPU Faults
Reuven Yakar, Avishai Wool, and Eyal Ronen
Overclocking is a a supported functionality of Nvidia GPUs, and is a common performance enhancement practice. However, overclocking poses a danger for cryptographic applications. As the temperature in the overclocked GPU increases, spurious computation faults occur. Coupled with well known fault attacks against RSA implementations, one can expect such faults to allow compromising RSA private keys during decryption or signing. We first validate this hypothesis: We evaluate two commercial-grade GPU-based implementations of RSA within openSSL (called RNS and MP), under a wide range of overclocking levels and temperatures, and demonstrate that both implementations are vulnerable. However, and more importantly, we show for the first time that even if the GPU is benignly overclocked to a seemingly ``safe'' rate, a successful attack can still be mounted, over the network, by simply sending requests at an aggressive rate to increase the temperature. Hence, setting any level of overclocking on the GPU is risky. Moreover, we observe a huge difference in the implementations' vulnerability: the rate of RSA breaks for RNS is 4 orders of magnitude higher than that of MP. We attribute this difference to the implementations' memory usage patterns: RNS makes heavy use of the GPU's global memory, which is accessed via both the Unified (L1) cache and the L2 cache; MP primarily uses ``shared'' on-chip memory, which is local to each GPU Streaming MultiProcessor (SM) and is uncached, utilizing the memory banks used for the L1 cache. We believe that the computation faults are caused by reads from the global memory, which under a combination of overclocking, high temperature and high memory contention, occasionally return stale values.
Last updated:  2025-01-30
How to Prove False Statements: Practical Attacks on Fiat-Shamir
Dmitry Khovratovich, Ron D. Rothblum, and Lev Soukhanov
The Fiat-Shamir (FS) transform is a prolific and powerful technique for compiling public-coin interactive protocols into non-interactive ones. Roughly speaking, the idea is to replace the random coins of the verifier with the evaluations of a complex hash function. The FS transform is known to be sound in the random oracle model (i.e., when the hash function is modeled as a totally random function). However, when instantiating the random oracle using a concrete hash function, there are examples of protocols in which the transformation is not sound. So far all of these examples have been contrived protocols that were specifically designed to fail. In this work we show such an attack for a standard and popular interactive succinct argument, based on the GKR protocol, for verifying the correctness of a non-determinstic bounded-depth computation. For every choice of FS hash function, we show that a corresponding instantiation of this protocol, which was been widely studied in the literature and used also in practice, is not (adaptively) sound when compiled with the FS transform. Specifically, we construct an explicit circuit for which we can generate an accepting proof for a false statement. We further extend our attack and show that for every circuit $C$ and desired output $y$, we can construct a functionally equivalent circuit $C^*$, for which we can produce an accepting proof that $C^*$ outputs $y$ (regardless of whether or not this statement is true). This demonstrates that any security guarantee (if such exists) would have to depend on the specific implementation of the circuit $C$, rather than just its functionality. Lastly, we also demonstrate versions of the attack that violate non-adaptive soundness of the protocol -- that is, we generate an attacking circuit that is independent of the underlying cryptographic objects. However, these versions are either less practical (as the attacking circuit has very large depth) or make some additional (reasonable) assumptions on the underlying cryptographic primitives.
Last updated:  2025-01-30
Trustless Bridges via Random Sampling Light Clients
Bhargav Nagaraja Bhatt, Fatemeh Shirazi, and Alistair Stewart
The increasing number of blockchain projects introduced annually has led to a pressing need for secure and efficient interoperability solutions. Currently, the lack of such solutions forces end-users to rely on centralized intermediaries, contradicting the core principle of decentralization and trust minimization in blockchain technology. In this paper, we propose a decentralized and efficient interoperability solution (aka Bridge Protocol) that operates without additional trust assumptions, relying solely on the Byzantine Fault Tolerance (BFT) of the two chains being connected. In particular, relayers (actors that exchange messages between networks) are permissionless and decentralized, hence eliminating any single point of failure. We introduce Random Sampling, a novel technique for on-chain light clients to efficiently follow the history of PoS blockchains by reducing the signature verifications required. Here, the randomness is drawn on-chain, for example, using Ethereum's RANDAO. We analyze the security of the bridge from a crypto-economic perspective and provide a framework to derive the security parameters. This includes handling subtle concurrency issues and randomness bias in strawman designs. While the protocol is applicable to various PoS chains, we demonstrate its feasibility by instantiating a bridge between Polkadot and Ethereum (currently deployed), and discuss some practical security challenges. We also evaluate the efficiency (gas costs) of an on-chain light-client verifier implemented as a smart contract on ethereum against SNARK-based approaches. Even for large validator set sizes (up to $10^6$), the signature verification gas costs of our light-client verifier are a magnitude lower.
Last updated:  2025-01-30
DeepFold: Efficient Multilinear Polynomial Commitment from Reed-Solomon Code and Its Application to Zero-knowledge Proofs
Yanpei Guo, Xuanming Liu, Kexi Huang, Wenjie Qu, Tianyang Tao, and Jiaheng Zhang
This work presents Deepfold, a novel multilinear polynomial commitment scheme (PCS) based on Reed-Solomon code that offers optimal prover time and a more concise proof size. For the first time, Deepfold adapts the FRI-based multilinear PCS to the list decoding radius setting, requiring significantly fewer query repetitions and thereby achieving a 3$\times$ reduction in proof size compared to Basefold (Crypto'24), while preserving its advantages in prover time. Compared with PolyFRIM (USENIX Security'24), Deepfold achieves a 2$\times$ improvement in prover time, verifier time, and proof size. Another contribution of this work is a batch evaluation scheme, which enables the FRI-based multilinear PCS to handle polynomials whose size is not a power of two more efficiently. Our scheme has broad applications in zk-SNARKs, since PCS is a key component in modern zk-SNARK constructions. For example, when replacing the PCS component of Virgo (S&P'20) with Deepfold, our scheme achieves a 2.5$\times$ faster prover time when proving the knowledge of a Merkle tree with 256 leaves, while maintaining the similar proof size. When replacing the PCS component of HyperPlonk (Eurocrypt'23) with Deepfold, our scheme has about 3.6$\times$ faster prover time. Additionally, when applying our arbitrary length input commitment to verifiable matrix multiplications for matrices of size 1200$\times$768 and 768$\times$2304, which are actual use cases in GPT-2 model, the performance showcases a 2.4$\times$ reduction in prover time compared to previous approaches.
Last updated:  2025-01-30
Miller Inversion is Easy for the Reduced Tate Pairing of Embedding Degree Greater than one
Takakazu Satoh
We present algorithms for Miller inversion for the reduced Tate pairing with embedding degree k>1. Let q be a number of elements of field of definition of an elliptic curve. For even k, our algorithm run deterministically with O((k log q)^3) bit operations. For odd k, out algorithm run probabilistically with O(k^6 (log q)^3) bit operations in average.
Last updated:  2025-01-29
Arbitrary-Threshold Fully Homomorphic Encryption with Lower Complexity
Yijia Chang and Songze Li
Threshold fully homomorphic encryption (ThFHE) enables multiple parties to compute functions over their sensitive data without leaking data privacy. Most of existing ThFHE schemes are restricted to full threshold and require the participation of all parties to output computing results. Compared with these full-threshold schemes, arbitrary threshold (ATh)-FHE schemes are robust to non-participants and can be a promising solution to many real-world applications. However, existing AThFHE schemes are either inefficient to be applied with a large number of parties $N$ and a large data size $K$, or insufficient to tolerate all types of non-participants. In this paper, we propose an AThFHE scheme to handle all types of non-participants with lower complexity over existing schemes. At the core of our scheme is the reduction from AThFHE construction to the design of a new primitive called approximate secret sharing (ApproxSS). Particularly, we formulate ApproxSS and prove the correctness and security of AThFHE on top of arbitrary-threshold (ATh)-ApproxSS's properties. Such a reduction reveals that existing AThFHE schemes implicitly design ATh-ApproxSS following a similar idea called ``noisy share''. Nonetheless, their ATh-ApproxSS design has high complexity and become the performance bottleneck. By developing ATASSES, an ATh-ApproxSS scheme based on a novel ``encrypted share'' idea, we reduce the computation (resp. communication) complexity from $\mathcal{O}(N^2K)$ to $\mathcal{O}(N^2+K)$ (resp. from $\mathcal{O}(NK)$ to $\mathcal{O}(N+K)$). We not only theoretically prove the (approximate) correctness and security of ATASSES, but also empirically evaluate its efficiency against existing baselines. Particularly, when applying to a system with one thousand parties, ATASSES achieves a speedup of $3.83\times$ -- $15.4\times$ over baselines.
Last updated:  2025-01-29
Falcon on ARM Cortex-M4: an Update
Thomas Pornin
This note reports new implementation results for the Falcon signature algorithm on an ARM Cortex-M4 microcontroller. Compared with our previous implementation (in 2019), runtime cost has been about halved.
Last updated:  2025-01-29
Space-Lock Puzzles and Verifiable Space-Hard Functions from Root-Finding in Sparse Polynomials
Nico Döttling, Jesko Dujmovic, and Antoine Joux
Timed cryptography has initiated a paradigm shift in the design of cryptographic protocols: Using timed cryptography we can realize tasks fairly, which is provably out of range of standard cryptographic concepts. To a certain degree, the success of timed cryptography is rooted in the existence of efficient protocols based on the sequential squaring assumption. In this work, we consider space analogues of timed cryptographic primitives, which we refer to as space-hard primitives. Roughly speaking, these notions require honest protocol parties to invest a certain amount of space and provide security against space constrained adversaries. While inefficient generic constructions of timed-primitives from strong assumptions such as indistinguishability obfuscation can be adapted to the space-hard setting, we currently lack concrete and versatile algebraically structured assumptions for space-hard cryptography. In this work, we initiate the study of space-hard primitives from concrete algebraic assumptions relating to the problem of root-finding of sparse polynomials. Our motivation to study this problem is a candidate construction of VDFs by Boneh et al. (CRYPTO 2018) which are based on the hardness of inverting permutation polynomials. Somewhat anticlimactically, our first contribution is a full break of this candidate. However, we then revise this hardness assumption by dropping the permutation requirement and considering arbitrary sparse high degree polynomials. We argue that this type of assumption is much better suited for space-hardness rather than timed cryptography. We then proceed to construct both space-lock puzzles and verifiable space-hard functions from this assumption.
Last updated:  2025-01-29
Blink: An Optimal Proof of Proof-of-Work
Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Giulia Scaffino, and Dionysis Zindros
Designing light clients to securely and efficiently read Proof-of-Work blockchains has been a foundational problem since the inception of blockchains. Nakamoto themselves, in the original Bitcoin paper, presented the first client protocol, i.e., the Simplified Payment Verification, which consumes an amount of bandwidth, computational, and storage resources that grows linearly in the system's lifetime $\mathcal{C}$. Today, the blockchain ecosystem is more mature and presents a variety of applications and protocols deployed on-chain and, often, cross-chain. In this landscape, light clients have become the cornerstone of decentralized bridges, playing a pivotal role in the security and efficiency of cross-chain operations. These new use cases, combined with the growth of blockchains over time, raise the need for more minimalist clients, which further reduce the resource requirements and, when applicable, on-chain costs. Over the years, the light client resource consumption has been reduced from $\mathcal{O}( \mathcal{C})$ to $\mathcal{O}(\text{polylog}( \mathcal{C}))$, and then down to $\mathcal{O}(1)$ with zero-knowledge techniques at the cost of often assuming a trusted setup. In this paper, we present Blink, the first interactive provably secure $\mathcal{O}(1)$ PoW light client without trusted setup. Blink can be used for a variety of applications ranging from payment verification and bootstrapping, to bridges. We prove Blink secure in the Bitcoin Backbone model, and we evaluate its proof size demonstrating that, at the moment of writing, Blink obtains a commitment to the current state of Bitcoin by downloading only 1.6KB, instead of 67.3MB and 197KB for SPV and zk-based clients, respectively.
Last updated:  2025-01-29
Vector Commitments With Proofs of Smallness: Short Range Proofs and More
Benoit Libert
Vector commitment schemes are compressing commitments to vectors that make it possible to succinctly open a commitment for individual vector positions without revealing anything about other positions. We describe vector commitments enabling constant-size proofs that the committed vector is small (i.e., binary, ternary, or of small norm). As a special case, we obtain range proofs featuring the shortest proof length in the literature with only $3$ group elements per proof. As another application, we obtain short pairing-based NIZK arguments for lattice-related statements. In particular, we obtain short proofs (comprised of $3$ group elements) showing the validity of ring LWE ciphertexts and public keys. Our constructions are proven simulation-extractable in the algebraic group model and the random oracle model.
Last updated:  2025-01-29
An Improved Algorithm for Code Equivalence
Julian Nowakowski
We study the linear code equivalence problem (LEP) for linear $[n,k]$-codes over finite fields $\mathbb{F}_q$. Recently, Chou, Persichetti and Santini gave an elegant algorithm that solves LEP over large finite fields (with $q = \Omega(n)$) in time $2^{\frac{1}{2}\operatorname{H}\left(\frac{k}{n}\right)n}$, where $\operatorname{H}(\cdot)$ denotes the binary entropy function. However, for small finite fields, their algorithm can be significantly slower. In particular, for fields of constant size $q = \mathcal{O}(1)$, its runtime increases by an exponential factor in $n$. We present an improved version of their algorithm, which achieves the desired runtime of $2^{\frac{1}{2}\operatorname{H}\left(\frac{k}{n}\right)n}$ for all finite fields of size $q \geq 7$. For a wide range of parameters, this improves over the runtime of all previously known algorithms by an exponential factor.
Last updated:  2025-01-29
HELP: Everlasting Privacy through Server-Aided Randomness
Yevgeniy Dodis, Jiaxin Guan, Peter Hall, and Alison Lin
Everlasting (EL) privacy offers an attractive solution to the Store-Now-Decrypt-Later (SNDL) problem, where future increases in the attacker's capability could break systems which are believed to be secure today. Instead of requiring full information-theoretic security, everlasting privacy allows computationally-secure transmissions of ephemeral secrets, which are only "effective" for a limited periods of time, after which their compromise is provably useless for the SNDL attacker. In this work we revisit such everlasting privacy model of Dodis and Yeo (ITC'21), which we call Hypervisor EverLasting Privacy (HELP). HELP is a novel architecture for generating shared randomness using a network of semi-trusted servers (or "hypervisors"), trading the need to store/distribute large shared secrets with the assumptions that it is hard to: (a) simultaneously compromise too many publicly accessible ad-hoc servers; and (b) break a computationally-secure encryption scheme very quickly. While Dodis and Yeo presented good HELP solutions in the asymptotic sense, their solutions were concretely expensive and used heavy tools (like large finite fields or gigantic Toeplitz matrices). We abstract and generalize the HELP architecture to allow for more efficient instantiations, and construct several concretely efficient HELP solutions. Our solutions use elementary cryptographic operations, such as hashing and message authentication. We also prove a very strong composition theorem showing that our EL architecture can use any message transmission method which is computationally-secure in the Universal Composability (UC) framework. This is the first positive composition result for everlasting privacy, which was otherwise known to suffer from many "non-composition" results (Müller-Quade and Unruh; J of Cryptology'10).
Last updated:  2025-01-28
Path Privacy and Handovers: Preventing Insider Traceability Attacks During Secure Handovers
Rabiah Alnashwan, Benjamin Dowling, and Bhagya Wimalasiri
The rise of 5G and IoT has shifted secure communication from centralized and homogeneous to a landscape of heterogeneous mobile devices constantly travelling between myriad networks. In such environments, it is desirable for devices to securely extend their connection from one network to another, often referred to as a handover. In this work we introduce the first cryptographic formalisation of secure handover schemes. We leverage our formalisation to propose path privacy, a novel security property for handovers that has hitherto remained unexplored. We further develop a syntax for secure handovers, and identify security properties appropriate for secure handover schemes. Finally, we introduce a generic handover scheme that captures all the strong notions of security we have identified, combining our novel path privacy concept with other security properties characteristic to existing handover schemes, demonstrating the robustness and versatility of our framework.
Last updated:  2025-01-28
Application-Aware Approximate Homomorphic Encryption: Configuring FHE for Practical Use
Andreea Alexandru, Ahmad Al Badawi, Daniele Micciancio, and Yuriy Polyakov
Fully Homomorphic Encryption (FHE) is a powerful tool for performing computations on encrypted data. The Cheon-Kim-Kim-Song (CKKS) scheme, an instantiation of approximate FHE, is particularly effective for privacy-preserving machine learning applications over real and complex numbers. Although CKKS offers clear efficiency advantages, confusion persists around accurately describing applications in FHE libraries and securely instantiating the scheme for these applications, particularly after the key recovery attacks by Li and Micciancio (EUROCRYPT'21) for the $IND-CPA^D$ setting. There is presently a gap between the application-agnostic, generic definition of $IND-CPA^D$, and efficient, application-specific instantiation of CKKS in software libraries, which led to recent attacks by Guo et al. (USENIX Security'24). To close this gap, we introduce the notion of application-aware homomorphic encryption (AAHE) and devise related security definitions. This model corresponds more closely to how FHE schemes are implemented and used in practice, while also identifying and addressing the potential vulnerabilities in popular libraries. We then provide an application specification language (ASL) and formulate guidelines for implementing the AAHE model to achieve $IND-CPA^D$ security for practical applications of CKKS. We present a proof-of-concept implementation of the ASL in the OpenFHE library showing how the attacks by Guo et al. can be countered. Moreover, we show that our new model and ASL can be used for the secure and efficient instantiation of exact FHE schemes and to counter the recent $IND-CPA^D$ attacks by Cheon et al. (CCS'24) and Checri et al. (CRYPTO'24).
Last updated:  2025-01-28
Preprocessing Security in Multiple Idealized Models with Applications to Schnorr Signatures and PSEC-KEM
Jeremiah Blocki and Seunghoon Lee
In modern cryptography, relatively few instantiations of foundational cryptographic primitives are used across most cryptographic protocols. For example, elliptic curve groups are typically instantiated using P-256, P-384, Curve25519, or Curve448, while block ciphers are commonly instantiated with AES, and hash functions with SHA-2, SHA-3, or SHAKE. This limited diversity raises concerns that an adversary with nation-state-level resources could perform a preprocessing attack, generating a hint that might later be exploited to break protocols built on these primitives. It is often notoriously challenging to analyze and upper bound the advantage of a preprocessing attacker even if we assume that we have idealized instantiations of our cryptographic primitives (ideal permutations, ideal ciphers, random oracles, generic groups). Coretti et al. (CRYPTO/EUROCRYPT'18) demonstrated a powerful framework to simplify the analysis of preprocessing attacks, but they only proved that their framework applies when the cryptographic protocol uses a single idealized primitive. In practice, however, cryptographic constructions often utilize multiple different cryptographic primitives. We verify that Coretti et al. (CRYPTO/EUROCRYPT'18)'s framework extends to settings with multiple idealized primitives and we apply this framework to analyze the multi-user security of (short) Schnorr Signatures and the CCA-security of PSEC-KEM against pre-processing attackers in the Random Oracle Model (ROM) plus the Generic Group Model (GGM). Prior work of Blocki and Lee (EUROCRYPT'22) used complicated compression arguments to analyze the security of {\em key-prefixed} short Schnorr signatures where the random oracle is salted with the user's public key. However, the security analysis did not extend to standardized implementations of Schnorr Signatures (e.g., BSI-TR-03111 or ISO/IEC 14888-3) which do not adopt key-prefixing, but take other measures to protect against preprocessing attacks by disallowing signatures that use a preimage of $0$. Blocki and Lee (EUROCRYPT'22) left the (in)security of such "nonzero Schnorr Signature" constructions as an open question. We fully resolve this open question demonstrating that (short) nonzero Schnorr Signatures are also secure against preprocessing attacks. We also analyze PSEC-KEM in the ROM+GGM demonstrating that this Key Encapsulation Mechanism (KEM) is CPA-secure against preprocessing attacks.
Last updated:  2025-01-28
Early Stopping for Any Number of Corruptions
Julian Loss and Jesper Buus Nielsen
Minimizing the round complexity of byzantine broadcast is a fundamental question in distributed computing and cryptography. In this work, we present the first early stopping byzantine broadcast protocol that tolerates up to $t=n-1$ malicious corruptions and terminates in $O(\min\{f^2,t+1\})$ rounds for any execution with $f\leq t$ actual corruptions. Our protocol is deterministic, adaptively secure, and works assuming a plain public key infrastructure. Prior early-stopping protocols all either require honest majority or tolerate only up to $t=(1-\epsilon)n$ malicious corruptions while requiring either trusted setup or strong number theoretic hardness assumptions. As our key contribution, we show a novel tool called a polariser that allows us to transfer certificate-based strategies from the honest majority setting to settings with a dishonest majority.
Last updated:  2025-01-28
Quadratic Modelings of Syndrome Decoding
Alessio Caminata, Ryann Cartor, Alessio Meneghetti, Rocco Mora, and Alex Pellegrini
This paper presents enhanced reductions of the bounded-weight and exact-weight Syndrome Decoding Problem (SDP) to a system of quadratic equations. Over $\mathbb{F}_2$, we improve on a previous work and study the degree of regularity of the modeling of the exact weight SDP. Additionally, we introduce a novel technique that transforms SDP instances over $\mathbb{F}_q$ into systems of polynomial equations and thoroughly investigate the dimension of their varieties. Experimental results are provided to evaluate the complexity of solving SDP instances using our models through Gröbner bases techniques.
Last updated:  2025-01-28
PRISM: Simple And Compact Identification and Signatures From Large Prime Degree Isogenies
Andrea Basso, Giacomo Borin, Wouter Castryck, Maria Corte-Real Santos, Riccardo Invernizzi, Antonin Leroux, Luciano Maino, Frederik Vercauteren, and Benjamin Wesolowski
The problem of computing an isogeny of large prime degree from a supersingular elliptic curve of unknown endomorphism ring is assumed to be hard both for classical as well as quantum computers. In this work, we first build a two-round identification protocol whose security reduces to this problem. The challenge consists of a random large prime $q$ and the prover simply replies with an efficient representation of an isogeny of degree $q$ from its public key. Using the hash-and-sign paradigm, we then derive a signature scheme with a very simple and flexible signing procedure and prove its security in the standard model. Our optimized C implementation of the signature scheme shows that signing is roughly $1.8\times$ faster than all SQIsign variants, whereas verification is $1.4\times$ times slower. The sizes of the public key and signature are comparable to existing schemes.
Last updated:  2025-01-28
Impossible Differential Automation: Model Generation and New Techniques
Emanuele Bellini, Paul Huynh, David Gerault, Andrea Visconti, Alessandro De Piccoli, and Simone Pelizzola
In this paper, we aim to enhance and automate advanced techniques for impossible differential attacks. To demonstrate these advancements, we present improved attacks on the LBlock and HIGHT block ciphers. More precisely, we (a) introduce a methodology to automatically invert symmetric ciphers when represented as directed acyclic graphs, a fundamental step in the search for impossible differential trails and in key recovery techniques; (b) automate the search for impossible differential distinguishers, reproducing recent techniques and results; (c) present a new hybrid model combining cell-wise properties and bit-wise granularity; (d) integrate these techniques in the automated tool CLAASP; (e) demonstrate the effectiveness of the tool by reproducing a state-of-the-art 16-round impossible differential for LBlock previously obtained using a different technique and exhibiting a new 18-round improbable trail; (f) improve the state-of-the-art single-key recovery of HIGHT for 27 rounds, by automating the use of hash tables to current state-of-the-art results.
Last updated:  2025-01-28
Cryptanalysis of an Efficient Signature Based on Isotropic Quadratic Forms
Henry Bambury and Phong Q. Nguyen
We present a key-recovery attack on DEFI, an efficient signature scheme proposed recently by Feussner and Semaev, and based on isotropic quadratic forms, borrowing from both multivariate and lattice cryptography. Our lattice-based attack is partially heuristic, but works on all proposed parameters: experimentally, it recovers the secret key in a few minutes, using less than ten (message,signature) pairs.
Last updated:  2025-01-28
Improved Provable Reduction of NTRU and Hypercubic Lattices
Henry Bambury and Phong Q. Nguyen
Lattice-based cryptography typically uses lattices with special properties to improve efficiency. We show how blockwise reduction can exploit lattices with special geometric properties, effectively reducing the required blocksize to solve the shortest vector problem to half of the lattice's rank, and in the case of the hypercubic lattice $\mathbb{Z}^n$, further relaxing the approximation factor of blocks to $\sqrt{2}$. We study both provable algorithms and the heuristic well-known primal attack, in the case where the lattice has a first minimum that is almost as short as that of the hypercubic lattice $\mathbb{Z}^n$. Remarkably, these near-hypercubic lattices cover Falcon and most concrete instances of the NTRU cryptosystem: this is the first provable result showing that breaking NTRU lattices can be reduced to finding shortest lattice vectors in halved dimension, thereby providing a positive response to a conjecture of Gama, Howgrave-Graham and Nguyen at Eurocrypt 2006. Yet, the best primal attack on NTRU heuristically decreases the $1/2$ provable dimension reduction factor to $4/9$.
Last updated:  2025-01-28
Intmax2: A ZK-rollup with Minimal Onchain Data and Computation Costs Featuring Decentralized Aggregators
Erik Rybakken, Leona Hioki, Mario Yaksetig, Denisa Diaconescu, František Silváši, and Julian Sutherland
We present a blockchain scaling solution called Intmax2, which is a Zero-Knowledge rollup (ZK-rollup) protocol with stateless and permissionless block production, while minimizing the usage of data and computation on the underlying blockchain. Our architecture distinctly diverges from existing ZK-rollups since essentially all of the data and computational costs are shifted to the client-side as opposed to imposing heavy requirements on the block producers or the underlying Layer 1 blockchain. The only job for block producers is to periodically generate a commitment to a set of transactions, distribute inclusion proofs to each sender, and collect and aggregate signatures by the senders. This design allows permissionless and stateless block production, and is highly scalable with the number of users. We give a proof of the main security property of the protocol, which has been formally verified by the Nethermind Formal Verification Team in the Lean theorem prover.
Last updated:  2025-01-27
On the Anonymity of Linkable Ring Signatures
Xavier Bultel and Charles Olivier-Anclin
Security models provide a way of formalising security properties in a rigorous way, but it is sometimes difficult to ensure that the model really fits the concept that we are trying to formalise. In this paper, we illustrate this fact by showing the discrepancies between the security model of anonymity of linkable ring signatures and the security that is actually expected for this kind of signature. These signatures allow a user to sign anonymously within an ad hoc group generated from the public keys of the group members, but all their signatures can be linked together. Reading the related literature, it seems obvious that users' identities must remain hidden even when their signatures are linked, but we show that, surprisingly, almost none have adopted a security model that guarantees it. We illustrate this by presenting two counter-examples which are secure in most anonymity model of linkable ring signatures, but which trivially leak a signer's identity after only two signatures. A natural fix to this model, already introduced in some previous work, is proposed in a corruption model where the attacker can generate the keys of certain users themselves, which seems much more coherent in a context where the group of users can be constructed in an ad hoc way at the time of signing. We believe that these two changes make the security model more realistic. Indeed, within the framework of this model, our counter-examples becomes insecure. Furthermore, we show that most of the schemes in the literature we surveyed appear to have been designed to achieve the security guaranteed by the latest model, which reinforces the idea that the model is closer to the informal intuition of what anonymity should be in linkable ring signatures.
Last updated:  2025-01-27
Symmetric Perceptrons, Number Partitioning and Lattices
Neekon Vafa and Vinod Vaikuntanathan
The symmetric binary perceptron ($\mathrm{SBP}_{\kappa}$) problem with parameter $\kappa : \mathbb{R}_{\geq1} \to [0,1]$ is an average-case search problem defined as follows: given a random Gaussian matrix $\mathbf{A} \sim \mathcal{N}(0,1)^{n \times m}$ as input where $m \geq n$, output a vector $\mathbf{x} \in \{-1,1\}^m$ such that $$|| \mathbf{A} \mathbf{x} ||_{\infty} \leq \kappa(m/n) \cdot \sqrt{m}~.$$ The number partitioning problem ($\mathrm{NPP}_{\kappa}$) corresponds to the special case of setting $n=1$. There is considerable evidence that both problems exhibit large computational-statistical gaps. In this work, we show (nearly) tight average-case hardness for these problems, assuming the worst-case hardness of standard approximate shortest vector problems on lattices. For $\mathrm{SBP}_\kappa$, statistically, solutions exist with $\kappa(x) = 2^{-\Theta(x)}$ (Aubin, Perkins and Zdeborova, Journal of Physics 2019). For large $n$, the best that efficient algorithms have been able to achieve is a far cry from the statistical bound, namely $\kappa(x) = \Theta(1/\sqrt{x})$ (Bansal and Spencer, Random Structures and Algorithms 2020). The problem has been extensively studied in the TCS and statistics communities, and Gamarnik, Kizildag, Perkins and Xu (FOCS 2022) conjecture that Bansal-Spencer is tight: namely, $\kappa(x) = \widetilde{\Theta}(1/\sqrt{x})$ is the optimal value achieved by computationally efficient algorithms. We prove their conjecture assuming the worst-case hardness of approximating the shortest vector problem on lattices. For $\mathrm{NPP}_\kappa$, statistically, solutions exist with $\kappa(m) = \Theta(2^{-m})$ (Karmarkar, Karp, Lueker and Odlyzko, Journal of Applied Probability 1986). Karmarkar and Karp's classical differencing algorithm achieves $\kappa(m) = 2^{-O(\log^2 m)}~.$ We prove that Karmarkar-Karp is nearly tight: namely, no polynomial-time algorithm can achieve $\kappa(m) = 2^{-\Omega(\log^3 m)}$, once again assuming the worst-case subexponential hardness of approximating the shortest vector problem on lattices to within a subexponential factor. Our hardness results are versatile, and hold with respect to different distributions of the matrix $\mathbf{A}$ (e.g., i.i.d. uniform entries from $[0,1]$) and weaker requirements on the solution vector $\mathbf{x}$.
Last updated:  2025-01-27
DewTwo: a transparent PCS with quasi-linear prover, logarithmic verifier and 4.5KB proofs from falsifiable assumptions
Benedikt Bünz, Tushar Mopuri, Alireza Shirzad, and Sriram Sridhar
We construct the first polynomial commitment scheme (PCS) that has a transparent setup, quasi-linear prover time, $\log N$ verifier time, and $\log \log N$ proof size, for multilinear polynomials of size $N$. Concretely, we have the smallest proof size amongst transparent PCS, with proof size less than $4.5$KB for $N\leq 2^{30}$. We prove that our scheme is secure entirely under falsifiable assumptions about groups of unknown order. The scheme significantly improves on the prior work of Dew (PKC 2023), which has super-cubic prover time and relies on the Generic Group Model (a non-falsifiable assumption). Along the way, we make several contributions that are of independent interest: PoKEMath, a protocol for efficiently proving that an arbitrary predicate over committed integer vectors holds; SIPA, a bulletproofs-style inner product argument in groups of unknown order; we also distill out what prior work required from the Generic Group Model and frame this as a falsifiable assumption.
Last updated:  2025-01-27
Summation-based Private Segmented Membership Test from Threshold-Fully Homomorphic Encryption
Nirajan Koirala, Jonathan Takeshita, Jeremy Stevens, and Taeho Jung
In many real-world scenarios, there are cases where a client wishes to check if a data element they hold is included in a set segmented across a large number of data holders. To protect user privacy, the client's query and the data holders' sets should remain encrypted throughout the whole process. Prior work on Private Set Intersection (PSI), Multi-Party PSI (MPSI), Private Membership Test (PMT), and Oblivious RAM (ORAM) falls short in this scenario in many ways. They either require data holders to possess the sets in plaintext, incur prohibitively high latency for aggregating results from a large number of data holders, leak the information about the party holding the intersection element, or induce a high false positive. This paper introduces the primitive of a Private Segmented Membership Test (PSMT). We give a basic construction of a protocol to solve PSMT using a threshold variant of approximate-arithmetic homomorphic encryption and show how to overcome existing challenges to construct a PSMT protocol without leaking information about the party holding the intersection element or false positives for a large number of data holders ensuring IND-CPA^D security. Our novel approach is superior to existing state-of-the-art approaches in scalability with regard to the number of supported data holders. This is enabled by a novel summation-based homomorphic membership check rather than a product-based one, as well as various novel ideas addressing technical challenges. Our PSMT protocol supports many more parties (up to 4096 in experiments) compared to prior related work that supports only around 100 parties efficiently. Our experimental evaluation shows that our method's aggregation of results from data holders can run in 92.5s for 1024 data holders and a set size of 2^25, and our method's overhead increases very slowly with the increasing number of senders. We also compare our PSMT protocol to other state-of-the-art PSI and MPSI protocols and discuss our improvements in usability with a better privacy model and a larger number of parties.
Last updated:  2025-01-27
A Revision of CROSS Security: Proofs and Attacks for Multi-Round Fiat-Shamir Signatures
Michele Battagliola, Riccardo Longo, Federico Pintore, Edoardo Signorini, and Giovanni Tognolini
Signature schemes from multi-round interactive proofs are becoming increasingly relevant in post-quantum cryptography. A prominent example is CROSS, recently admitted to the second round of the NIST on-ramp standardisation process for post-quantum digital signatures. While the security of these constructions relies on the Fiat-Shamir transform, in the case of CROSS the use of the fixed-weight parallel-repetition optimisation makes the security analysis fuzzier than usual. A recent work has shown that the fixed-weight parallel repetition of a multi-round interactive proof is still knowledge sound, but no matching result appears to be known for the non-interactive version. In this paper we provide two main results. First, we explicitly prove the EUF-CMA security of CROSS, filling a gap in the literature. We do this by showing that, in general, the Fiat-Shamir transform of an HVZK and knowledge-sound multi-round interactive proof is EUF-CMA secure. Second, we present a novel forgery attack on signatures obtained from fixed-weight repetitions of 5-round interactive proofs, substantially improving upon a previous attack on parallel repetitions due to Kales and Zaverucha. Our new attack has particular relevance for CROSS, as it shows that several parameter sets achieve a significantly lower security level than claimed, with reductions up to 24% in the worst case.
Last updated:  2025-01-27
Universal Adaptor Signatures from Blackbox Multi-Party Computation
Michele Ciampi, Xiangyu Liu, Ioannis Tzannetos, and Vassilis Zikas
Adaptor signatures (AS) extend the functionality of traditional digital signatures by enabling the generation of a pre-signature tied to an instance of a hard NP relation, which can later be turned (adapted) into a full signature upon revealing a corresponding witness. The recent work by Liu et al. [ASIACRYPT 2024] devised a generic AS scheme that can be used for any NP relation---which here we will refer to as universal adaptor signatures scheme, in short UAS---from any one-way function. However, this generic construction depends on the Karp reduction to the Hamiltonian cycle problem, which adds significant overhead and hinders practical applicability. In this work, we present an alternative approach to construct universal adaptor signature schemes relying on the multi-party computation in the head (MPCitH) paradigm. This overcomes the reliance on the costly Karp reduction, while inheriting the core property of the MPCitH---which makes it an invaluable tool in efficient cryptographic protocols---namely, that the construction is black-box with respect to the underlying cryptographic primitive (while it remains non-black-box in the relation being proven). Our framework simplifies the design of UAS and enhances their applicability across a wide range of decentralized applications, such as blockchain and privacy-preserving systems. Our results demonstrate that MPCitH-based UAS schemes offer strong security guarantees while making them a promising tool in the design of real-world cryptographic protocols.
Last updated:  2025-01-27
Near-Optimal Oblivious Key-Value Stores for Efficient PSI, PSU and Volume-Hiding Multi-Maps
Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo
In this paper, we study oblivious key-value stores (OKVS) that enable encoding n key-value pairs into length $m$ encodings while hiding the input keys. The goal is to obtain high rate, $n/m$, with efficient encoding and decoding algorithms. We present $\mathsf{RB\text{-}OKVS}$ built on random band matrices that obtains near-optimal rates as high as 0.97 whereas prior works could only achieve rates up to 0.81 with similar encoding times. Using $\mathsf{RB\text{-}OKVS}$, we obtain state-of-the-art protocols for private set intersection (PSI) and union (PSU). Our semi-honest PSI has up to 12% smaller communication and 13% reductions in monetary cost with slightly larger computation. We also obtain similar improvements for both malicious and circuit PSI. For PSU, our protocol obtains improvements of up to 22% in communication, 40% in computation and 21% in monetary cost. In general, we obtain the most communication- and cost-efficient protocols for all the above primitives. Finally, we present the first connection between OKVS and volume-hiding encrypted multi-maps (VH-EMM) where the goal is to outsource storage of multi-maps while hiding the number of values associated with each key (i.e., volume). We present $\mathsf{RB\text{-}MM}$ with 16% smaller storage, 5x faster queries and 8x faster setup than prior works.
Last updated:  2025-01-27
STIR: Reed–Solomon Proximity Testing with Fewer Queries
Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev
We present STIR (Shift To Improve Rate), an interactive oracle proof of proximity (IOPP) for Reed-Solomon codes that achieves the best known query complexity of any concretely efficient IOPP for this problem. For $\lambda$ bits of security, STIR has query complexity $O(\log d + \lambda \cdot \log \log d )$, while FRI, a popular protocol, has query complexity $O(\lambda \cdot \log d )$ (including variants of FRI based on conjectured security assumptions). STIR relies on a new technique for recursively improving the rate of the tested Reed-Solomon code. We provide an implementation of STIR compiled to a SNARK. Compared to a highly-optimized implementation of FRI, STIR achieves an improvement in argument size that ranges from $1.25\times$ to $2.46\times$ depending on the chosen parameters, with similar prover and verifier running times. For example, in order to achieve 128 bits of security for degree $2^{26}$ and rate $1/4$, STIR has argument size $114$ KiB, compared to $211$ KiB for FRI.
Last updated:  2025-01-27
Always by Your Side: Constructing Traceable Anonymous Credentials with Hardware-Binding
Chang Chen, Guoyu Yang, Qi Chen, Wei Wang, and Jin Li
With the development of decentralized identity (DID), anonymous credential (AC) technology, as well as its traceability, is receiving more and more attention. Most works introduce a trusted party (regulator) that holds a decryption key or backdoor to directly deanonymize the user identity of anonymous authentication. While some cryptographic primitives can help regulators handle complex tracing tasks among large amounts of user profiles (stored by the issuer) and authentication records (stored by the service provider), additional security primitives are still needed to ensure the privacy of other users. Besides, hardware-binding anonymous credential (hbAC) systems have been proposed to prevent credential sharing or address platform resource constraints, the traceability of hbAC has yet to be discussed. In this paper, we introduce a public key encryption with equality test as a regulatory text for each authentication record to address the above-mentioned challenges. The security of this feature is guaranteed by the verifiability, non-frameability, and round isolation of the proposed scheme. We compared the asymptotic complexity of our scheme with other traceable AC schemes and shows our scheme has advantages in tracing tasks as well as securely outsourcing them. The key feature of our scheme is that the ability of equality test of regulatory texts is independent of the public key, but rather depends on the round identifier of the authentication. We instantiate a traceable, hardware-binding AC scheme based on smart cards and BBS+ signature and give the performance analysis of it.
Last updated:  2025-01-27
Succinct Randomized Encodings from Laconic Function Evaluation, Faster and Simpler
Nir Bitansky and Rachit Garg
Succinct randomized encodings allow encoding the input $x$ of a time-$t$ uniform computation $M(x)$ in sub-linear time $o(t)$. The resulting encoding $\tilde{x}$ allows recovering the result of the computation $M(x)$, but hides any other information about $x$. These encodings have powerful applications, including time-lock puzzles, reducing communication in MPC, and bootstrapping advanced encryption schemes. Until not long ago, the only known constructions were based on indistinguishability obfuscation, and in particular were not based on standard post-quantum assumptions. In terms of efficiency, these constructions' encoding time is $\rm{polylog}(t)$, essentially the best one can hope for. Recently, a new construction was presented based on Circular Learning with Errors, an assumption similar to the one used in fully-homomorphic encryption schemes, and which is widely considered to be post-quantum resistant. However, the encoding efficiency significantly falls behind obfuscation-based scheme and is $\approx \sqrt{t} \cdot s$, where $s$ is the space of the computation. We construct, under the same assumption, succinct randomized encodings with encoding time $\approx t^{\varepsilon} \cdot s$ for arbitrarily small constant $\varepsilon<1$. Our construction is relatively simple, generic and relies on any laconic function evaluation scheme that satisfies a natural "efficiency preservation" property. Under sub-exponential assumptions, the encoding time can be further reduced to $\approx \sqrt{s}$, but at the account of a huge security loss. As a corollary, assuming also bounded-space languages that are worst-case hard-to-parallelize, we obtain time-lock puzzles with an arbitrary polynomial gap between encoding and decoding times.
Last updated:  2025-01-27
Double Auction Meets Blockchain: Consensus from Scored Bid-Assignment
Xiangyu Su, Xavier Défago, Mario Larangeira, Kazuyuki Mori, Takuya Oda, Yasumasa Tamura, and Keisuke Tanaka
A double auction system, where buyers and sellers trade through bids, requires a transparent and immutable mechanism to record allocation results. This demand can be met with robust ledgers that ensure persistence and liveness, as exemplified by the Bitcoin blockchain (EuroCrypt {'}15). While existing blockchain-aided auction systems often rely on secure smart contracts or layer-$2$ techniques, this work proposes a more fundamental approach by constructing a provably secure blockchain protocol directly from the computation of bid allocations. The core component is an alternative proof-of-work (PoW) scheme based on a scored generalized multiple assignment problem (SGMAP), integrated into a tailored blockchain protocol. Unlike conventional PoW-based protocols, our leader selection is driven by block scores derived from the SGMAP scoring function, which is designed to be flexible enough to define the difficulty level and accommodate real-life requirements of the underlying double auction system. We prove persistence and a modified liveness property for our design, and present implementation results to validate its robustness and practicality.
Last updated:  2025-01-26
SPY-PMU: Side-Channel Profiling of Your Performance Monitoring Unit to Leak Remote User Activity
Md Kawser Bepary, Arunabho Basu, Sajeed Mohammad, Rakibul Hassan, Farimah Farahmandi, and Mark Tehranipoor
The Performance Monitoring Unit (PMU), a standard feature in all modern computing systems, presents significant security risks by leaking sensitive user activities through microarchitectural event data. This work demonstrates the feasibility of remote side-channel attacks leveraging PMU data, revealing vulnerabilities that compromise user privacy and enable covert surveillance without physical access to the target machine. By analyzing the PMU feature space, we create distinct micro-architectural fingerprints for benchmark applications, which are then utilized in machine learning (ML) models to detect the corresponding benchmarks. This approach allows us to build a pre-trained model for benchmark detection using the unique micro-architectural fingerprints derived from PMU data. Subsequently, when an attacker remotely accesses the victim’s PMU data, the pre-trained model enables the identification of applications used by the victim with high accuracy. In our proof-of-concept demonstration, the pre-trained model successfully identifies applications used by a victim when the attacker remotely accesses PMU data, showcasing the potential for malicious exploitation of PMU data. We analyze stress-ng benchmarks and build our classifiers using logistic regression, decision tree, k-nearest neighbors, and random forest ML models. Our proposed models achieve an average prediction accuracy of 98%, underscoring the potential risks associated with remote side-channel analysis using PMU data and emphasizing the need for more robust safeguards. This work underscores the urgent need for robust countermeasures to protect against such vulnerabilities and provides a foundation for future research in micro-architectural security.
Last updated:  2025-01-26
Qelect: Lattice-based Single Secret Leader Election Made Practical
Yunhao Wang and Fan Zhang
In a single secret leader election (SSLE) protocol, all parties collectively and obliviously elect one leader. No one else should learn its identity unless it reveals itself as the leader. The problem is first formalized by Boneh \textit{et al.} (AFT'20), which proposes an efficient construction based on the Decision Diffie-Hellman (DDH) assumption. Considering the potential risk of quantum computers, several follow-ups focus on designing a post-quantum secure SSLE protocol based on pure lattices or fully homomorphic encryption. However, no concrete benchmarks demonstrate the feasibility of deploying such heavy cryptographic primitives. In this work, we present Qelect, the first practical constant-round post-quantum secure SSLE protocol. We first adapt the commitment scheme in Boneh \textit{et al.} (AFT'23) into a \textit{multi-party randomizable commitment} scheme, and propose our novel construction based on an adapted version of ring learning with errors (RLWE) problem. We then use it as a building block and construct a \textit{constant-round} single secret leader election (crSSLE) scheme. We utilize the single instruction multiple data (SIMD) property of a specific threshold fully homomorphic encryption (tFHE) scheme to evaluate our election circuit efficiently. Finally, we built Qelect from the crSSLE scheme, with performance optimizations including a preprocessing phase to amortize the local computation runtime and a retroactive detection phase to avoid the heavy zero-knowledge proofs during the election phase. Qelect achieves asymptotic improvements and is concretely practical. We implemented a prototype of Qelect and evaluated its performance in a WAN. Qelect is at least two orders of magnitude faster than the state-of-the-art.
Last updated:  2025-01-26
On symbolic computations over arbitrary commutative rings and cryptography with the temporal Jordan-Gauss graphs.
Vasyl Ustimenko
The paper is dedicated to Multivariate Cryptography over general commutative ring K and protocols of symbolic computations for safe delivery of multivariate maps. We consider itera-tive algorithm of generation of multivariate maps of prescribed degree or density with the trapdoor accelerator, i.e. piece of information which allows to compute the reimage of the map in polynomial time. The concept of Jordan-Gauss temporal graphs is used for the obfus-cation of known graph based public keys and constructions of new cryptosystems. We sug-gest use of the platforms of Noncommutative Cryptography defined in terms of Multivariate Cryptography over K for the conversion of Multivariate Public Keys into El Gamal type Cryptosystems. Some new platforms are introduced.
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.