
STIR: Reed–Solomon Proximity Testing with Fewer Queries

Gal Arnon
gal.arnon@weizmann.ac.il

Weizmann Institute

Alessandro Chiesa
alessandro.chiesa@epfl.ch

EPFL

Giacomo Fenzi
giacomo.fenzi@epfl.ch

EPFL

Eylon Yogev
eylon.yogev@biu.ac.il

Bar-Ilan University

January 27, 2025

Abstract

We present STIR (Shift To Improve Rate), an interactive oracle proof of proximity (IOPP) for
Reed–Solomon codes that achieves the best known query complexity of any concretely efficient
IOPP for this problem. For λ bits of security, STIR has query complexity O(log d+λ · loglog d),
while FRI, a popular protocol, has query complexity O(λ·log d) (including variants of FRI based
on conjectured security assumptions). STIR relies on a new technique for recursively improving
the rate of the tested Reed–Solomon code.

We provide an implementation of STIR compiled to a SNARK. Compared to a highly-
optimized implementation of FRI, STIR achieves an improvement in argument size that ranges
from 1.25× to 2.46× depending on the chosen parameters, with similar prover and verifier
running times. For example, in order to achieve 128 bits of security for degree 226 and rate 1/4,
STIR has argument size 114 KiB, compared to 211 KiB for FRI.

Keywords: interactive oracle proofs; Reed–Solomon proximity testing

1

Contents
1 Introduction 3

1.1 A new Reed–Solomon proximity test . 4
1.2 Additional result: batch degree correction . 6

2 Techniques 7
2.1 Overview of STIR . 7
2.2 Anatomy of a STIR iteration . 8
2.3 Efficient degree correction . 11

3 Preliminaries 13
3.1 Interactive oracle proofs of proximity and their polynomial variant 13
3.2 The Reed–Solomon code . 15

4 Tools for Reed–Solomon codes 16
4.1 Random linear combination as a proximity generator . 16
4.2 Univariate function quotienting . 16
4.3 Out of domain sampling . 18
4.4 Folding univariate functions . 18
4.5 Combining functions of varying degrees . 20

5 STIR 22
5.1 Construction . 22
5.2 Round-by-round soundness . 24
5.3 Recommended parameters . 27

6 Implementation and experimental results 30
6.1 Implementation . 30
6.2 Parameter choices . 30
6.3 Benchmarks . 31
6.4 Results . 31

7 An efficient compiler for poly-IOPs 35
7.1 Construction . 35
7.2 Round-by-round knowledge soundness . 38

A Additional experimental data 43

B A poly-IOP for R1CS 46
B.1 Construction . 46
B.2 Completeness . 48
B.3 Round-by-round knowledge soundness . 49

C Derivations for Section 5.3 51
C.1 Provable security . 51
C.2 Conjectured security . 55

Acknowledgments 58

References 58

2

1 Introduction

Reed–Solomon (RS) codes [RS60] are a fundamental object of study in algebraic coding theory and
theoretical computer science; in particular, they often play a notable role in the design of proof
systems. For a finite field F, evaluation domain L ⊆ F, and degree bound d, the Reed–Solomon
code RS[F,L, d] consists of all functions f : L → F obtained by evaluating on L a polynomial of
degree (strictly) smaller than d over F. The rate ρ := d/|L| of the code represents (the inverse of)
the relative amount of redundancy of the code.

The RS proximity testing problem considers the setting where a verifier has query access to a
function f : L → F and the goal is to distinguish, by querying f at few locations, whether f is a
codeword of RS[F,L, d] or f is far in relative Hamming distance from all codewords in RS[F,L, d].
An untrusted prover may help the verifier, and different models consider different types of help.
Here, we consider interactive oracle proofs of proximity (IOPPs), wherein the verifier interacts with
the prover and has oracle access to the prover’s messages.

Testing proximity to RS codes with few queries is a powerful capability. From a theoretical
perspective, it is a key building block in celebrated PCP constructions [BS08; Din07; Mie09] and
more. Moreover, in practice, it enables highly efficient constructions of succinct non-interactive
arguments (SNARGs) [BBHR18; BGKS20; BCIKS20].

Especially noteworthy is FRI (and its variants), which is an IOPP for RS codes that enjoys
practical efficiency [BBHR18; BGKS20; BCIKS20]. The most practically efficient version of FRI is
given in [BCIKS20] and its implementation underlies numerous SNARG-based real-world systems,
including [Pol; Ris; Stab; Staa; Zks; San; Mid; Nep; Ola; Her]. These systems offer state-of-the-art
technology that protects billions of dollars’ worth of transactions across various blockchains.
Query complexity. Small query complexity of an IOPP is crucial for achieving a small argument
size when the IOPP is compiled into a SNARK. The compilation is typically performed via the
BCS transformation [BCS16], in which each verifier query contributes additional size to the resulting
argument string. In more detail, the BCS transformation can be viewed as two steps: (i) compile the
IOPP into a succinct interactive argument by using Merkle commitments to the prover’s messages
and opening these commitments wherever the verifier wishes to query; and then (ii) apply the Fiat–
Shamir transformation to the succinct interactive argument to obtain a non-interactive argument.

Thus, each query of the IOPP verifier leads to the argument prover sending an additional opening
of a Merkle commitment, which the argument verifier must subsequently verify. Consequently, with
other factors being equal, reducing the query complexity of the IOPP verifier reduces the argument
size and the argument verifier time for the corresponding non-interactive argument.
Round by round soundness. The BCS transformation requires a strong soundness property of
the IOP (or IOPP) called round-by-round soundness.1 Informally, this soundness notion requires
that every round of the IOP individually has “small soundness error” (which is stronger than merely
requiring than the entire IOP has small soundness error). Hence, to establish the compiled SNARG’s
security, one must establish the IOP’s round-by-round soundness. The round-by-round soundness
of FRI was only recently established [Sta21; BGKTRTZ23].

1More precisely, the BCS transformation requires a notion called state-restoration soundness, which is implied by
round-by-round soundness.

3

1.1 A new Reed–Solomon proximity test

We give a concretely efficient IOP of proximity for Reed–Solomon codes with small query complexity.

Theorem 1 (informal). Let RS[F,L, d] be a “nice” Reed–Solomon code (L is a multiplicative coset
of F∗ whose size is a power of 2 and d is a power of 2) and λ ∈ N be a security parameter. If
|F| > Ω

(
λ·2λ·d2·|L|3.5

log 1/ρ

)
, then RS[F,L, d] has an IOPP with round-by-round soundness error 2−λ,

round complexity O(log d), proof length O(|L|), and query complexity O
(
log d+ λ · log

(
log d

log 1/ρ

))
.

The formal version of the above theorem along with tighter bounds for the soundness analysis
and field size appears in Section 5. We refer to the IOPP in Theorem 1 as STIR, standing for
“Shift To Improve Rate”. STIR is a recursive protocol that repeatedly reduces the degree by a
constant factor k thus achieving O(logk d) rounds. Crucially, this reduction also “improves the rate”
in the sense that the rate shrinks (with each recursion), which improves soundness and reduces the
query complexity. In particular, a round of STIR reduces testing proximity to RS[F,L, d] to testing
proximity to RS[F,L′, d/k] where |L′| = |L|/2. The reduction in the rate leads to a decrease in
query complexity in the next recursive step. Consequently, the query complexity decreases with
each iteration of the recursion.
Comparison to prior works. FRI [BBHR18] is a concretely efficient IOPP for RS codes. A
variant called DEEP-FRI [BGKS20] achieves better soundness while essentially preserving other
efficiency measures. Later, [BCIKS20] improved the analysis of the [BBHR18] protocol, showing
that it achieves better parameters and, in fact, subsumes previous variants, including DEEP-FRI.
This version, which we refer to as FRI, is widely used in practice.

FRI has a similar structure to STIR, also with O(logk d) rounds, where the degree is reduced
by a factor of k from one round to the next. Informally, the main difference between the two
is that FRI does not enjoy a decrease in rate between rounds, which requires more queries to
achieve the same level of security. For λ bits of security, FRI uses O

(
λ · log d

log 1/ρ

)
queries while STIR

uses O
(
log d+ λ · log

(
log d

log 1/ρ

))
. Moreover, STIR is arguably “simpler” than FRI, as STIR can

be analyzed iteration by iteration (as opposed to FRI that demands a “global” analysis due to its
structure). This also facilitates a simpler proof of round-by-round soundness.

[ACY23] gives an IOPP for RS codes with inverse-polynomial soundness error, round complexity
O(loglog d), and query complexity O(loglog d). Due to its small round complexity, this protocol
has the potential to achieve smaller query complexity than STIR but, in order to be useful in
practice, this would require addressing significant problems with regard to concrete efficiency. For
instance, to achieve λ bits of security, the query complexity of (the amplified version of) [ACY23] is
O
(
λ2 · log

(
log d

log 1/ρ

))
(moreover, the verifier does not have sublinear runtime). We leave open the

question of whether the protocol in [ACY23] can be made concretely efficient.
Experimental results. We implement STIR in Rust using the arkworks [ark] ecosystem for
developing zkSNARKs. For comparison, we also implement FRI with a similar level of optimizations
(e.g., Merkle tree pruning, proof of work, and so on). Both FRI and STIR can be deployed with
provable security parameters or improved parameters based on conjectures related to list-decoding
of RS codes. Mirroring real-wold deployments of FRI, we compare STIR and FRI basing both on
conjectured security parameters.

Our experiments show that STIR’s improved IOPP query complexity leads to a significant
reduction in both the argument size and the number of hashes computed by the argument verifier

4

for the compiled SNARG. Depending on the parameters chosen, the improvement in argument size
ranges from 1.25× to 2.46×, and the improvement in verifier hash complexity ranges from 1.55× to
2.67×.

Additionally, our experiments show that the running time of the prover is comparable to that
of FRI. Typically, proximity tests are used in a batched setting, where the prover’s running time is
primarily constrained by computing the initial commitment (prior to running the proximity test).
In this setting, replacing FRI with STIR leaves the prover time essentially unchanged.

We give concrete examples in Table 1. For a 192-bit prime field, degree d = 222, rate ρ = 1/4, and
the goal of 128 bits of security, our experiments yield an argument of size 94 KiB for STIR versus
154 KiB for FRI. For degree 228 with rate ρ = 1/2, we get an argument size of 189 KiB for STIR
versus 430 KiB for FRI. In both examples, the STIR verifier performs roughly half the number of
hash computations performed by the FRI verifier, with a similar prover running time. See Section 6
for more details about the implementation and a detailed comparison with FRI, including argument
sizes, prover times, verifier times, and number of hashes computed by the verifier.

d = 222, ρ = 1/4 d = 228, ρ = 1/2

STIR FRI STIR FRI
Argument size 94 KiB 154 KiB 189 KiB 430 KiB
Verifier time 2.1 ms 1.9 ms 4.3 ms 5.5 ms
Verifier hashes 1521 2821 3451 8479
Prover time 14 s 11 s 640 s 420 s

Table 1: Comparison of STIR and FRI.

Overall, since STIR and FRI solve the same problem (testing proximity to nice RS codes), STIR
can be used as a drop-in replacement for FRI.
A polynomial IOP compiler. In practice IOPs are often constructed by combining two in-
gredients: a polynomial IOP for the language of interest (or other related IOP variants) and an
RS proximity test (such as FRI or STIR or some other protocol).2 Prior compilers [BCRSVW19;
ACY23] were not analyzed for round-by-round soundness and, even for standard soundness, did not
achieve high soundness guarantees. To address these limitations, we provide a new compiler that
(is concretely efficient and) achieves high round-by-round knowledge soundness (knowledge sound-
ness is a stronger soundness notion, where we require that if the verifier accepts with high enough
probability, a witness for the language can be extracted efficiently given the protocol transcript).

Moreover, to illustrate the how to use our new compiler, we also give a polynomial IOP for the
NP-complete language R1CS similar to the one given in [BCRSVW19] and analyze its round-by-
round soundness error. Then, using our compiler with the polynomial IOP for R1CS, we compare
the performance of STIR and FRI in this application using a Python script that computes the
argument sizes. As in the experimental results, STIR outperforms FRI regarding argument size,
yielding an improvement ranging from 1.29× to 2.25×. For example, for a 192-bit prime field,
instance size n = 224, rate ρ = 1/2, and the goal of 128 bits of security, STIR has argument size 220
KiB compared to 422 KiB for FRI.

2A polynomial IOP is an IOP where both honest and malicious provers send bounded-degree polynomials as their
oracle messages.

5

1.2 Additional result: batch degree correction

Degree correction is a problem that commonly arises in applications of RS proximity tests. The
(batch) degree correction problem is as follows. Given functions f1, . . . , fm : L → F and degrees
d1, . . . , dm, d∗ with d∗ ≥ maxi∈[m]{di}, define a function f∗ : L → F (possibly using randomness or
interaction) such that: (a) if fi ∈ RS[F,L, di] for every i ∈ [m] then f∗ ∈ RS[F,L, d∗]; (b) if any
fi is δ-far from RS[F,L, di] then (with high probability) f∗ is δ-far from RS[F,L, d∗]; and (c) query
access to f∗ can be efficiently simulated given query access to f1, . . . , fm.3 Below ρ := d∗/|L|.

Prior work provides various solutions to this problem. [BCIKS20] gives a technique for the
special case d1 = · · · = dm = d∗ for δ ∈ (0, 1−√ρ); answering each query to f∗ requires performing
O(m) operations. [BCRSVW19] shows (implicitly in their proof) a technique for the general case
that works for δ ∈ (0, 1−2ρ2) (where ρ := d∗/|L|) and where answering each query requires performing
O(m · log d∗) operations. For the same technique, [ACY23] improve the bound to δ ∈ (0,min{1 −√
ρ, 1− 2 · ρ}) (also implicitly in their proof).

We provide a concretely-efficient protocol for (batch) degree correction that further improves
the bound on δ. We use this protocol in STIR and our efficient polynomial IOP compiler (yielding
further concrete efficiency gains). Beyond these examples, our protocol can be used in other places
where degree correction is needed (e.g., this would improve the compiler in [BCRSVW19]).

Theorem 2 (informal). There is a probabilistic transformation Combine such that for every func-
tions f1, . . . , fm : L → F, degrees d1, . . . , dm, d∗ with d∗ ≥ maxi∈[m]{di}, and distance δ ∈ (0,min{1−√
ρ, 1− (1 + 1/d∗) · ρ}), if

Pr [∆(Combine(d∗, r, (f1, d1), . . . , (fm, dm)),RS[F,L, d∗]) ≤ δ] > err⋆
(
d∗, ρ, δ,m · (d+ 1)−

∑
di

)
,

then each fi is δ-close to RS[F,L, di]. Moreover, the functions have correlated agreement: there
exists S ⊆ L with |S| ≥ (1− δ) · |L| such that

∀ i ∈ [m], ∃u ∈ RS[F,L, di], fi(S) = u(S) .

Finally, any entry of the function Combine(d∗, r, (f1, d1), . . . , (fm, dm)) can be computed by reading
a single entry from each of f1, . . . , fm and performing O(m · log d∗) operations.

In the above theorem, err⋆ is the error defined in [BCIKS20, Theorem 1.2] which satisfies

err⋆(d, ρ, δ, ℓ) ≤ (ℓ− 1) · d2

|F| ·
(
2 ·min

{
1−√ρ− δ,

√
ρ

20

})7 .

3Degree correction is useful even when m = 1, in which case one obtains a reduction from testing proximity to
RS[F,L, d] to testing proximity to RS[F,L, d∗] for d∗ ≥ d. This is useful when one only has a tester for the latter
code; indeed, we rely on this case in STIR.

6

2 Techniques

We outline the main ideas behind our results. In Section 2.1, we present the basic properties of STIR
and explain how these lead to improved query complexity. In Section 2.2, we describe and analyze
a single iteration of STIR. In Section 2.3, we describe a technique to do batch degree correction for
functions of different degrees.

2.1 Overview of STIR

We discuss the high-level structure of STIR. The goal is to test whether a function is close to the
Reed–Solomon code RS[F,L, d] where F is a finite field, L is a “smooth” subset of F of size n (i.e., a
multiplicative coset of F∗ whose size is a power of 2), and d is a power of 2. Throughout, ρ := d/n
is the rate of this Reed–Solomon code.
Outline of STIR. STIR is parameterized by a “folding parameter” k ≥ 4 (a power of 2) and a query
repetition parameter t. An iteration of STIR reduces testing proximity to the code C := RS[F,L, d]
to testing proximity to a related code C′ := RS[F,L′, d/k] where |L′| = n/2, i.e., STIR reduces the
degree by a factor of k while decreasing the size of the evaluation domain only by a factor of 2.

Testing proximity to C′ is easier than testing proximity to C for two reasons: (i) C′ is “smaller”
than C in the sense that the degree is reduced from d to d/k and the evaluation domain size is reduced
from n to n/2; (ii) the rate of the code is reduced from ρ = d

|L| to ρ′ = d/k
|L′| =

2
k · ρ. Intuitively,

testing proximity to a code with a smaller rate is easier because the code has more “redundancy”.
Indeed, rate reduction in STIR is the key feature that facilitates smaller query complexity (the
smaller the rate, the fewer queries are needed to achieve a target soundness error), as we discuss
later in this section. Similar ideas of rate reduction have proven useful elsewhere to achieve efficient
IOPPs [RR20; RR22].

The proof length of a single iteration is roughly n/2, and the verifier’s query complexity is t
(over an alphabet consisting of tuples of k field elements). A STIR iteration additionally amplifies
distance: roughly, given a function that is δ-far from C, except with probability (1 − δ)t, the new
function has distance 1−

√
ρ′ from C′.

STIR consists of M := O(logk d) iterations of this base protocol, reducing testing proximity
to the code RS[F,L, d] to testing proximity to the code RS[F,L′, O(1)] where |L′| = n/2M . In
iteration i ∈ {0, 1, . . . ,M − 1},4 testing proximity to RS[F,Li, d/ki] is reduced to testing proximity
to RS[F,Li+1, d/k

i+1] where |Li+1| = |Li|/2 and the repetition parameter is ti. As we see later, the
improvement in rate in each round allows us to use a decreasing sequence of repetition parameters
t0 ≥ t1 ≥ · · · ≥ tM , starting with the given parameter t0 := t. Once a constant degree is reached,
proximity to this last Reed–Solomon code is tested using the standard test for constant-degree codes:
the prover sends the entire constant-degree polynomial to the verifier, who compares the function
being tested to this polynomial at tM random locations.

STIR has query complexity
∑M

i=1 ti and proof length
∑M

i=1 |Li| which is O(n) since |Li| = |L|/2i.
If the initial function has distance δ from RS[F,L, d], then the round-by-round5 soundness error of
the protocol is roughly ε := max

{
(1− δ)t0 , ρ

t1/2
1 , . . . , ρ

tM/2
M

}
, where ρi is the rate of RS[F,Li, d/ki].

4We index the repetitions starting from 0 rather than 1 for notational convenience.
5Recall that round-by-round soundness is a strong soundness notion that turns out to be more important than

standard soundness when compiling IOPs into SNARGs. See Section 3.1 for a precise definition.

7

Making fewer queries by improving rate. The improvement in rate and subsequent decrease
in the required repetitions to achieve security is at the heart of how STIR achieves small query
complexity. Given a desired security parameter λ, we set parameters such that the round-by-round
soundness error is bounded by 2−λ. To this end, we set t0 :=

λ
− log(1−δ) and ti :=

λ
− log

√
ρi

(ignoring
rounding issues) to get error 2−λ. Then, the query complexity in each iteration decreases: since
RS[F,Li, d/ki] has rate

ρi :=
d

ki
· 1

|Li|
=

(
2

k

)i

· d
n
=

(
2

k

)i

· ρ .

the query complexity at round i is

ti :=
λ

− log
(
(2/k)i/2 · √ρ

) =
2 · λ

i · log(k/2)− 2 · log√ρ
.

Thus, the verifier queries the input function at t0 = λ
− log(1−δ) locations (this is optimal for this

soundness error) and the total proof query complexity is
∑M

i=1 ti = Ok

(
log d+ λ · log

(
log d

log 1/ρ

))
.

Comparison with FRI. FRI [BBHR18] with folding parameter k also reduces testing proximity
to a Reed–Solomon code to testing proximity to a Reed–Solomon code with smaller degree. FRI
consists of multiple iterations where in iteration i the problem of testing proximity to RS[F,Li, d/ki]
is reduced to testing proximity to RS[F,Li+1, d/k

i+1] and a final test for constant-degree codes.
FRI differs from STIR in that |Li+1| = |Li|/k (as opposed to |Li|/2), so that |Li| = n/ki.

As a result, the code associated to iteration i has rate ρi := d
ki
· kin = ρ. In other words, the

rates in FRI remain fixed. Consequently, to achieve soundness 2−λ, the protocol must make at
least λ

− log
√
ρ queries in every round except for the first. In fact, due to how FRI makes corre-

lated queries to its iterations, all rounds including the first will have the same query complexity
t := max

{
λ

− log(1−δ) ,
λ

− log
√
ρ

}
. As a result, the input query complexity of FRI is t and its proof

query complexity is
∑M

i=1 t = Ok

(
λ ·
(

log d
− log(1−δ) +

log d
− log

√
ρ

))
which for reasonable settings of λ is a

significantly larger dependence on d and 1/ρ when compared to STIR.
Concrete parameters. The number of repetitions in both STIR and FRI is determined by the
security analysis, which in turn relies on facts about the list-decoding of Reed–Solomon codes. As
there are gaps in our understanding of Reed–Solomon codes, it is possible that the actual security
of both protocols is higher, requiring fewer repetitions. Indeed, in real-world applications, the
soundness of FRI is assumed higher based on a “List-Decoding Conjecture”, which posits that the
distance of the function following an iteration is (roughly) (1− ρ′)-far from its corresponding code
as opposed to 1 −

√
ρ′. As a result, the repetitions in a round of the protocol can be reduced by

a factor of two to be λ
− log ρ . Similarly, by adopting a comparable conjecture, we can decrease the

number of repetitions of in STIR to ti :=
λ

− log ρi
.

2.2 Anatomy of a STIR iteration

We describe a single iteration of STIR, reducing the goal of testing proximity to RS[F,L, d] to
testing proximity to RS[F,L′, d/k] where L := ⟨ω⟩ is generated by ω and L′ := ω · ⟨ω2⟩. The
detailed protocol allows for a more general setting of L and L′. Before describing an iteration of
STIR, we introduce the concepts of folding and quotienting.

8

Folding Reed–Solomon codewords. The k-wise folding of a function f : ⟨ω⟩ → F at a point
r ∈ F is a function fr := Fold(f, r) : ⟨ωk⟩ → F. The function fr at a point x ∈ ⟨ωk⟩ is defined as
the output of p̂(r), where p̂ is the unique polynomial of degree less than k such that p̂(y) = f(y) for
every y ∈ ⟨ω⟩ with yk = x. This mapping has been used in prior low degree tests (e.g., [BBHR18;
BGKS20; ACY23]), and has the following properties (see Section 4.4 for a proof of these properties):

1. If f ∈ RS[F, ⟨ω⟩, d], then, for every r, fr ∈ RS[F, ⟨ωk⟩, d/k]; and
2. If f is δ-far from RS[F, ⟨ω⟩, d] for δ ∈ (0, 1−√ρ), then with probability at least 1−poly(|L|)/|F|

over the choice of r, fr is δ-far from RS[F, ⟨ωk⟩, d/k].

Furthermore, this mapping is local: given r and oracle access to f , Fold(f, r) can be computed at
any point by reading a k tuple of field elements from f .
Univariate function quotienting. The quotient of a function f : ⟨ω⟩ → F relative to p : S → F
with S ⊆ F is defined as:

Quotient(f, S, p)(x) :=
f(x)− p̂(x)∏
a∈S(x− a)

,

where p̂ is the unique polynomial of degree less than |S| such that p̂(a) = p(a) for every a ∈ S.
Provided that ⟨ω⟩ and S do not intersect, the quotient has the following properties (see Section 4.2
for a proof of these facts):

1. If f ∈ RS[F, ⟨ω⟩, d] is the evaluation on ⟨ω⟩ of a polynomial of degree less than d that agrees with
p on S, then Quotient(f, S, p) ∈ RS[F, ⟨ω⟩, d− |S|].

2. If every polynomial û of degree less than d that is δ-close to f on ⟨ω⟩ satisfies û(a) ̸= p(a) for
some a ∈ S, then Quotient(f, S, p) is δ-far from RS[F, ⟨ω⟩, d− |S|].

This mapping is local: given p and oracle access to f , Quotient(f, S, p) can be computed at any
point of ⟨ω⟩ with a single query to f .
The protocol. We describe an iteration of STIR, which reduces the goal of testing that f is close to
RS[F,L, d] to testing that a function f ′ is close to RS[F,L′, d/k] where L := ⟨ω⟩ and L′ := ω · ⟨ω2⟩.6

1. Sample folding randomness: The verifier samples and sends rfold ← F.

2. Send folded function: The prover sends a function g : L′ → F. In the honest case, g is the
evaluation of the polynomial ĝ over L′, where ĝ is the extension of Fold(f, rfold) to a polynomial
of degree less than d/k.

3. Out-of-domain sample: The verifier samples and sends rout ← F \ L′.

4. Out-of-domain reply: The prover sends a field element β ∈ F. In the honest case, β := ĝ(rout).

5. Shift queries: The verifier, for every i ∈ [t], samples rshift
i ← ⟨ωk⟩ and obtains yi := frfold(r

shift
i) by

querying the (virtual) oracle frfold , where frfold := Fold(f, rfold).

The next function f ′ is defined as f ′ := Quotient(g,G, p) where G := {rout, rshift
1 , . . . , rshift

t } and p : G →
F is the function such that p(rout) = β and p(rshift

i) = yi. Observe that the verifier has virtual oracle
access to f ′ through its oracle access to g.

In Figure 1, we illustrate which functions are sent in the protocol and which are virtually derived
with their corresponding evaluation domains.

6More precisely, the protocol as described reduces testing f to testing that f ′ is close to RS[F,L′, d/k − |G|] for a
certain small set G. We discuss the disparity between the degrees later on in this section.

9

⟨ωk⟩

L′ := ω · ⟨ω2⟩

L := ⟨ω⟩

f

frfold g

f ′

shift

Figure 1: The basic structure of STIR: given rfold, the function f virtually defines frfold := Fold(f, rfold),
which is (virtually) evaluated over ⟨ωk⟩. The prover then sends g evaluated over the larger domain L′.
Finally, the function f ′ := Quotient(g,G, p) is virtually defined by quotienting g.

The protocol has perfect completeness which directly follows from the honest prover’s strategy
described above and the properties of the fold and quotient operations. We discuss the complexity
measures protocol of the protocol and its soundness error.
Analysis. The prover sends one oracle of length |ω ·⟨ω2⟩| = |⟨ω⟩|/2 plus an additional field element
sent as a non-oracle message. The query complexity is t. Next, we discuss soundness.

Lemma 1. If f is δ-far from RS[F,L, d] then f ′ is (approximately) (1 −
√
ρ′)-far from the code

RS[F,L′, d/k − |G|], except with probability (1− δ)t + poly(|L|)/|F|.

Proof sketch.

1. With high probability, the function frfold := Fold(f, rfold) is δ-far from low degree. Specifically,
by the properties of the folding function, ∆(frfold ,RS[F, ⟨ωk⟩, d/k]) ≥ δ with probability at least
1− poly(|L|)/|F|.

2. With high probability there is at most one codeword at distance 1−
√
ρ′ of g that evaluates to

β at rout. In more detail, with probability 1 − poly(|L|)/|F| there exists at most one codeword
u ∈ RS[F,L′, d/k] at distance ≈ 1 −

√
ρ′ from g with û(rout) = β, where û is the extension of u

to a unique degree d/k polynomial.

To see this, by the Johnson bound, the code RS[F,L′, d/k] is (γ, ℓ)-list-decodable for γ ≈ 1−
√
ρ′

and ℓ = poly(|L′|) = poly(|L|), meaning that there are at most ℓ polynomials of degree less than
d/k at distance γ to g. Each pair of such polynomials agree on less than d/k points, and so the
total number of points in F for which there exist two distinct polynomials that are γ-close to g
that agree on these points is bounded by

(
ℓ
2

)
· d/k = O(ℓ2 · d/k). One such point is sampled from

F with probability at most O(ℓ2 · d/(k · |F|)) = poly(|L|)/|F|.

If Item 1 and Item 2 both hold, which happens with probability 1 − poly(|L|)/|F|, then f ′ is
(approximately) (1−

√
ρ′)-far from the code RS[F,L′, d/k−|G|] with probability at least 1−(1−δ)t.

To see this, consider the following two cases.

• If there is no codeword u as in Item 2, then f ′ := Quotient(g,G, p) is (1 −
√
ρ′)-far from

RS[F,L′, d/k − |G|] since p(rout) = β.

10

• If there exists a codeword u as in Item 2, then by Item 1 the polynomial û agrees with Fold(f, rfold)
on at most a 1− δ fraction of the domain. Thus, the probability that none of the t samples rshift

i

hits such a location is at most (1 − δ)t. If a point rshift
i is chosen such that frfoldi

(rshift
i) ̸= û(rshift

i),
then there is no polynomial (1−

√
ρ′)-close to g that simultaneously agrees with f on rshift

i and is
equal to β at rout. As a result, f ′ := Quotient(g,G, p) is (1−

√
ρ′)-far from RS[F,L′, d/k − |G|].

In fact, a more thorough analysis reveals that the protocol has round-by-round soundness error
roughly max

{
poly(|L|)
|F| , (1− δ)t

}
. See Section 5.2 for a detailed analysis.

Degree correction. The protocol described above reduces testing that f is close to RS[F,L, d]
to testing that f ′ is close to RS[F,L′, d/k − |G|]. STIR requires the degree to be a power of 2, and
so in order to continue iterating to further reduce the degree, we modify the protocol to correct the
degree up to d/k. The procedure to correct the degree is described in general terms in Section 2.3.

2.3 Efficient degree correction

We discuss efficient degree correction. We seek a transformation that, given a function f : L → F,
an initial degree d, and a target degree d∗ ≥ d, outputs a function f∗ such that:

1. if f ∈ RS[F,L, d] then f∗ ∈ RS[F,L, d∗];
2. if f is δ-far from RS[F,L, d] then with high probability f∗ is δ-far from RS[F,L, d∗]; and
3. query access to f∗ can be simulated efficiently given query access to f .

In our applications we would like δ to be as large as possible, as a higher distance translates to
smaller query complexity. The problem presented above is sufficient for STIR, but can be generalized
for batch-degree correction for multiple functions with varying degrees, as presented in Section 1.2.
We discuss this more general case, later on in this section. This more general case is used in our
polynomial IOP to IOP compiler (see Section 7).
Prior solutions. Degree correction was tackled (implicitly) in [BCRSVW19] and in [ACY23]. Both
use the same technique: sample a random field element r ← F, and output f∗(x) := f(x)+r·xe·f(x),
where e := d∗−d. Letting ρ := d∗/|L|, [BCRSVW19] show that this works provided that δ < 1−2·ρ

2 ,
and [ACY23] improve the analysis to show that it works for δ < min{1−√ρ, 1−2 ·ρ} (which in turn
can be improved to δ < 1− 2 · ρ assuming the List-Decoding Conjecture described in Section 2.1).
Our degree correction. We provide a different method that we prove works provided that
f has distance δ < min{1 − √ρ, 1 − (1 + 1/d∗) · ρ} or, assuming the List-Decoding Conjecture,
δ < 1− (1 + 1/d∗) · ρ. Our method is as follows: sample a random field element r ← F and define
f∗(x) =

∑e
i=0 r

i · fi(x), where fi(x) := xi · f(x) and e := d∗ − d.
Item 1 holds by construction. Next we sketch the proof that Item 2 holds provided that δ <

min{1−√ρ, 1− (1 + 1/d∗) · ρ}.
By a theorem of [BCIKS20], if with probability at least err⋆(d∗, ρ, δ, e+ 1) (as defined in Theo-

rem 2) the function f∗ is δ-close to RS[F,L, d∗] for δ < 1−√ρ, then the functions fi have δ-correlated
agreement : there exists a set S with |S| ≥ (1−δ)·|L| such that for every fi there exists a polynomial
f̂i of degree less than d∗ such that fi(x) = f̂i(x) for every x ∈ S.

The following claim implies that f0 = f agrees with a polynomial of degree bounded by d = d∗−e
polynomial over S, leading to the conclusion that f is δ-close to RS[F,L, d].

11

Claim 1. deg(f̂i) < d∗ − e+ i for every i.

Proof sketch. We prove the claim via (reverse) induction on i. The base case is immediate since
deg(f̂e) < d∗. Assuming that deg(f̂i+1) < d∗−e+ i+1, we show that deg(f̂i) < d∗−e+ i. Consider
the polynomial p̂(X) := X · f̂i(X) and observe that, since deg(f̂i) < d∗, it holds that deg(p̂) < d∗+1.
By correlated agreement on S, for every x ∈ S:

p̂(x) = x · f̂i(x) = x · fi(x) = xi+1 · f(x) = fi+1(x) = f̂i+1(x) .

We conclude that p̂ and f̂i+1 agree on all points of S. Since |S| ≥ (1−δ)·|L| > (1+1/d∗)·ρ·|L| = d∗+1
and deg(p̂), deg(f̂i+1) < d∗ + 1, it follows that p̂ and f̂i+1 are identical. In particular, deg(p̂) =
deg(f̂i+1) < d∗− e+ i+1. Recalling that p̂(X) := X · f̂i(X), it follows that deg(f̂i) < d∗− e+ i.

Efficient evaluation of f∗. At first glance, the technique described above does not allow for
efficient local access to f∗ as described in Item 3. Indeed, as the sum of e+1 different functions, it
naively takes O(e) time to compute f∗ at a single point given access to f . While usable for small
values of e, if e = Ω(d) this computation method is inefficient. However, we observe that f∗(x) can
be computed much faster since it can be viewed as a geometric sum:

f∗(x) =

e∑
i=0

ri · fi(x) =
e∑

i=0

(r · x)i · f(x) =

{
f(x) ·

(
1−(r·x)e+1

1−r·x

)
if r · x ̸= 1

f(x) · (e+ 1) if r · x = 1
.

The right-most expression can be computed in O(log e) operations using a single query to f and
repeated squaring.
Combining functions of varying degrees. More generally, we have functions f1, . . . , fm : L → F
and degrees d1, . . . , dm that we wish to batch-degree-correct into a single function f∗. We extend
our method to this setting as follows: sample a random field element r ← F and define ei = d∗ − di
and:

f∗(x) =

e1∑
i=0

ri · xi · f1(x) + r1+e1 ·
e2∑
i=0

ri · xi · f2(x) + · · ·+ rm−1+
∑m−1

j=1 ej ·
em∑
i=0

ri · xi · fm(x) .

We show, using similar techniques to those previously described, that if there is any fi that is
δ-far from RS[F,L, di] then with high probability f∗ is δ-far from RS[F,L, d∗] provided that δ <
min{1−√ρ, 1− (1+1/d∗) ·ρ}. Moreover, by again utilizing geometric sums, local access for f∗ can
be simulated in time O(

∑
i log ei) = O(m · log d∗) given local access to f1, . . . , fm.

12

3 Preliminaries

We define objects and state results that we use in this paper. We use the following notation:

• The “hat” symbol over a function (e.g., p̂) denotes that it is a polynomial.
• For two functions f, g : L → F, ∆(f, g) is the fractional Hamming distance between f and g (the

fraction of points in which they disagree). For a set S ⊆ FL, ∆(f,S) := minh∈S ∆(f, h).
• For a set L ⊆ F and k ∈ N, Lk := {xk : x ∈ L}.
• A set L ⊆ F is smooth if it is a multiplicative coset of F∗ whose order is a power of 2.
• For interactive (oracle) algorithms A and B, we denote by ⟨A(a),B(b)⟩(c) the random variable

describing the output of B following the interaction between A and B, where A is given private
input a, B is given private input b, and both parties are given joint input c.

• For a ternary relation R = {(x,y,w)}, let L(R) = {(x,y) | ∃w, (x,y,w) ∈ R} be the language
induced by R.

3.1 Interactive oracle proofs of proximity and their polynomial variant

Interactive Oracle Proofs (IOPs) [BCS16; RRR16] are information-theoretic proof systems that com-
bine aspects of Interactive Proofs [Bab85; GMR89] and Probabilistically Checkable Proofs [BFLS91;
FGLSS96; AS98; ALMSS98], and also generalize the notion of Interactive PCPs [KR08]. Below we
describe public-coin IOPs of proximity (IOPPs).

A k-round public-coin IOPP for a ternary relation R = {(x,y,w)} works as follows. The honest
prover receives as input (x,y,w), while the verifier receives as input x and oracle access to y. In
every round i ∈ [k], the verifier sends a uniformly random message αi to the prover; then the prover
sends a proof string πi to the verifier. After k rounds of interaction, the verifier makes some queries
to y and proof strings π1, . . . , πk sent by the prover, and then outputs a decision bit.

In more detail, let IOP = (P,V) be a tuple where P is an interactive algorithm and V is an
interactive oracle algorithm. We say that IOP is a public-coin IOP for a relation R with k rounds,
perfect completeness, and soundness error β if the following holds.

• (Perfect) Completeness. For every (x,y,w) ∈ R,

Pr
α1,...,αk

 Vy,π1,...,πk(x, α1, . . . , αk) = 1

π1 ← P(x,y,w)
...

πk ← P(x,y,w, α1, . . . , αk)

 = 1 .

• Soundness. For every (x,y) /∈ L(R) and unbounded malicious prover P̃,

Pr
α1,...,αk

 Vy,π1,...,πk(x, α1, . . . , αk) = 1

π1 ← P̃(α1)
...

πk ← P̃(α1, . . . , αk)

 ≤ β(x,y) .

When the soundness error depends only on the lengths of the inputs and on the proximity δ of y
from the language Lx := {y′ : ∃w, (x,y′,w) ∈ R}, we write β(|x|, |y|, δ) (and sometimes leave
out |x| and |y|, writing β(δ), when the lengths are clear from context).

13

IOPs. An IOP is an IOPP where y is the empty string (i.e., for a relation R = {(x,⊥,w)}, in
which case we generally omit ⊥ which results in R being a binary relation).
Efficiency measures. We study several efficiency measures. All of these complexity measures
are implicitly functions of the instance x.
• Rounds k: The IOP has k rounds of interaction.
• Alphabet Σ and alphabet size λ: the symbols of each πi come from the alphabet Σ, of size λ. In

this paper, the alphabet is always a field F.
• Proof length l: the total number of symbols in the proofs π1, . . . , πk.
• Input queries qy: the number of alphabet elements read by the verifier from y.
• Proof queries qπ: the number of alphabet elements read by the verifier from π1, . . . , πk.
• Randomness r: the verifier’s i-th message αi has length ri and r :=

∑k
i=1 ri is the total number

of random bits sent by the verifier.
• Verifier time vt: V runs in time vt measured in algebraic field operations.
• Prover time pt: P runs in time pt measured in algebraic field operations.
State function. Let (P,V) be an IOPP for a relation R = {(x,y,w)}. A state function for
(P,V) is a (possibly inefficient) function State that receives as inputs x, y, and a transcript tr and
outputs a bit, and has the following properties:

• Empty transcript: if tr = ∅ is the empty transcript, then State(x,y, tr) = 1 if and only (x,y) ∈
L(R).

• Prover moves: if tr is a transcript where the prover is about to move, and State(x,y, tr) = 0 then,
for every prover message π, State(x,y, tr||π) = 0.

• Full transcript: if tr is a full transcript and State(x,y, tr) = 0, then V rejects given this interaction
transcript.

Round-by-round knowledge soundness. A k-round IOPP (P,V) for a relationR = {(x,y,w)}
has round-by-round knowledge soundness with errors (ε1, . . . , εk) and extraction time et if the IOPP
has a state function State and there exists a deterministic “extractor” E that runs in time at most
et with the following property: for every x, y and transcript tr = (π1, α1, . . . , πi−1, αi−1, πi), if

• State(x,y, tr) = 0, and
• Prαi [State(x,y, tr||αi) = 1] > εi(x,y),

then ((x,y),E(x,y, tr)) ∈ R.
As with standard soundness, we write εi as a function of proximity when appropriate. If et

is unbounded, then we omit the word “knowledge” and say that the IOPP has round-by-round
soundness.
Polynomial IOPPs. A polynomial IOPP (poly-IOPP) is an IOPP (P,V) system where the
prover (both honest and malicious) sends as its messages the evaluation of univariate polynomials
over a field F. In more detail, for every round i there is a prescribed list of mi degrees (di,j)j∈[mi])
where di,j ∈ N. In round i, the prover (both honest and malicious) outputs mi polynomials by
specifying their coefficients, where the j-th polynomial f̂i,j ∈ F≤di,j [X] has degree at most di,j . The
verifier is then given as a message (f̂i,j(F))j∈mi where f̂i,j(F) is the evaluation of f̂i,j over the entire
field F.

14

Completeness and soundness for a poly-IOPP are similar to that of standard IOPPs, except in
both cases the prover is restricted to sending polynomials as above. Round-by-round knowledge
soundness is adapted similarly (where the state function and extractor are given the polynomial
coefficients as the prover message). A poly-IOPP has the same parameters as an IOPP, except that,
rather than counting the proof length, we count the number of functions:
• m is the number of polynomials sent by the prover: m :=

∑k
i=1mi.

• qpoly,m is the number of polynomials queried by the verifier (multiple queries to the same polynomial
do not add towards this value). Observe that qpoly,m ≤ q.

When referring to the prover’s messages we generally ignore the description of the polynomials f̂i,j
as coefficients, and simply say that the prover outputs a polynomial. Similarly, since the verifier
has oracle access to f̂i,j evaluated over the entire field, we simply denote that it has direct oracle
access to f̂i,j .

We also use polynomial IOPs (poly-IOP), which are defined similarly with respect to IOPs.

3.2 The Reed–Solomon code

Definition 3.1. An error-correcting code of length n over an alphabet Σ is a subset C ⊆ Σn.
The code C is a linear code if Σ = F is a field and C is a subspace of Fn.

Definition 3.2. The Reed–Solomon code over field F, evaluation domain L ⊆ F, and degree
d ∈ N is the set of evaluations over L of univariate polynomials (over F) of degree less than d:

RS[F,L, d] :=
{
f : L → F : ∃ f̂ ∈ F<d[X] s.t. ∀x ∈ L , f(x) = f̂(x)

}
.

The rate of RS[F,L, d] is ρ := d/|L|.

Given a code C := RS[F,L, d] and function f : L → F, we sometimes use f̂ ∈ F<d[X] to denote
a nearest polynomial to f on L (breaking ties arbitrarily).

Definition 3.3. For a Reed–Solomon code C := RS[F,L, d], parameter δ ∈ [0, 1], and f : L → F,
List(f, d, δ) denotes the list of codewords in C within relative Hamming distance at most δ from f .
We say that C is (δ, ℓ)-list decodable if |List(f, d, δ)| ≤ ℓ for every f .

The Johnson bound bounds the list size of the Reed–Solomon code:

Theorem 3.4 (Johnson bound). The Reed–Solomon code RS[F,L, d] is (1−√ρ− η, 1/(2η
√
ρ))-list

decodable for every η ∈ (0, 1−√ρ), where ρ := d/|L| is the rate of the code.

15

4 Tools for Reed–Solomon codes

We describe tools for Reed–Solomon codes that we use in this paper.

• In Section 4.1 we describe a theorem of [BCIKS20] showing that taking a random linear combi-
nation is a good proximity generator for Reed–Solomon codes.

• In Section 4.2 we describe the quotient of a univariate function and show that that if a function
is “quotiented by the wrong value”, then the output is far from a Reed–Solomon codeword.

• In Section 4.3 we describe “out-of-domain sampling”, a method to reduce the Reed–Solomon
list-decoding size of a given function.

• In Section 4.4 we describe how to “fold” a univariate function and show that this preserves the
function’s distance to the Reed–Solomon code.

• In Section 4.5 we give a novel technique for combining functions of varying degrees (or correcting
the degree of a single function) with nearly no loss in the range of parameters.

4.1 Random linear combination as a proximity generator

The theorem below states that if the random linear combination of several functions is low-degree
with high probability then all of the functions are close to low-degree, with correlated agreement.

Theorem 4.1 ([BCIKS20]). Let C := RS[F,L, d] be a Reed–Solomon code with rate ρ := d/|L|, and
let B⋆(ρ) :=

√
ρ. For every δ ∈ (0, 1− B⋆(ρ)) and functions f1 . . . , fm : L → F, if

Pr
r←F

∆
 m∑

j=1

rj−1 · fj , RS[F,L, d]

 ≤ δ

 > err⋆(d, ρ, δ,m) ,

then there exists S ⊆ L with |S| ≥ (1− δ) · |L|, and

∀ i ∈ [m], ∃u ∈ RS[F,L, d], fi(S) = u(S) .

Above, err⋆(d, ρ, δ,m) is defined as follows:

• If δ ∈
(
0, 1−ρ2

]
then

err⋆(d, ρ, δ,m) :=
(m− 1) · d

ρ · |F|
.

• If δ ∈
(
1−ρ
2 , 1−√ρ

)
then

err⋆(d, ρ, δ,m) :=
(m− 1) · d2

|F| ·
(
2 ·min

{
1−√ρ− δ,

√
ρ

20

})7 .

4.2 Univariate function quotienting

We define the quotient of a univariate function.

16

Definition 4.2. Let f : L → F be a function, S ⊆ F be a set, and Ans,Fill : S → F be functions.
Let Âns ∈ F<|S|[X] be the (unique) polynomial with Âns(x) = Ans(x) for every x ∈ S, and let
V̂S ∈ F<|S|+1[X] be the unique non-zero polynomial with V̂S(x) = 0 for every x ∈ S.

The quotient function Quotient(f, S,Ans,Fill) : L → F is defined follows:

∀x ∈ L , Quotient(f, S,Ans,Fill)(x) :=

Fill(x) x ∈ S
f(x)−Âns(x)

V̂S(x)
otherwise

.

Next we define the polynomial quotient operator, which quotients a polynomial relative to its
output on evaluation points. The polynomial quotient is a polynomial of lower degree.

Definition 4.3. Let f̂ ∈ F<d[X] be a polynomial and S ⊆ F be a set, and let V̂S ∈ F<|S|+1[X]
be the unique non-zero polynomial with V̂S(x) = 0 for every x ∈ S. The polynomial quotient
PolyQuotient(f̂ , S) ∈ F<d−|S|[X] is defined as follows:

PolyQuotient(f̂ , S)(X) :=
f̂(X)− Âns(X)

V̂S(X)
,

where Âns ∈ F<|S|[X] is the unique (nonzero) polynomial with Âns(x) = f̂(x) for every x ∈ S.

The following lemma, implicit in prior works (e.g., [BGKS20; ACY23]), shows that if a function
is “quotiented by the wrong value”, then its quotient is far from low-degree.

Lemma 4.4. Let f : L → F be a function, d ∈ N be a degree parameter, δ ∈ (0, 1) be a distance
parameter, S ⊆ F be a set with |S| < d, and Ans,Fill : S → F be functions. Suppose that for every
u ∈ List(f, d, δ) there exists x ∈ S with û(x) ̸= Ans(x). Then

∆(Quotient(f, S,Ans,Fill),RS[F,L, d− |S|]) + |T |/|L| > δ ,

where T := {x ∈ L ∩ S : Âns(x) ̸= f(x)}.

Proof. Let g := Quotient(f, S,Ans,Fill) and suppose towards contradiction that there exists a poly-
nomial ĝ ∈ F<d−|S|[X] that agrees with g on at least a (1 − δ + |T |/|L|)-fraction of the locations
of L. Consider the “unquotiented” polynomial ŵ(X) = V̂S(X) · ĝ(X) + Âns(X) where Âns and V̂S

are defined as in Definition 4.2. Observe that deg(ŵ) < d and that for every x ∈ L \ T where
ĝ(x) = g(x), we have

ŵ(x) = V̂S(x) · ĝ(x) + Âns(x) = V̂S(x) · g(x) + Âns(x) = f(x) .

The last equality follows by Definition 4.2 since:

• if x ∈ S \ T then ŵ(x) = Âns(x) = f(x);
• if x /∈ S then g(x) = f(x)−Âns

V̂S(x)
so that V̂S(x) · g(x) + Âns(x) = f(x).

The number of points in L\T with g(x) = ĝ(x) is at least (1−δ+|T |/|L|)·|L|−|T | = (1−δ)·|L|, so we
deduce that ŵ on L is δ-close to f . Moreover, for every x ∈ S it holds that ŵ(x) = Âns(x) = Ans(x).
This is a contradiction to the assumption in the lemma statement.

17

4.3 Out of domain sampling

The following lemma shows that the probability that there exist two distinct codewords in the
list-decoding set of a function that both agree on a random point is small.

Lemma 4.5. Let f : L → F be a function, d ∈ N be a degree parameter, s ∈ N be a repetition
parameter, and δ ∈ [0, 1] be a distance parameter. If RS[F,L, d] is (δ, ℓ)-list decodable then

Pr
r1,...,rs←F\L

[
∃ distinct u, u′ ∈ List(f, d, δ) : ∀ i ∈ [s], û(ri) = û′(ri)

]
≤
(
ℓ

2

)
·
(

d− 1

|F| − |L|

)s

≤ ℓ2

2
·
(

d

|F| − |L|

)s

.

Proof. Fix two distinct codewords u, u′ ∈ List(f, d, δ) . Since û and û′ are distinct and have degree
less than d, Prr←F\L[û(r) = û′(r)] ≤ d−1

|F|−|L| , so the probability that the polynomials agree on

points r1, . . . , rs is at most
(

d−1
|F|−|L|

)s
. Since the code RS[F,L, d] is (δ, ℓ)-list decodable, there are at

most
(
ℓ
2

)
pairs of distinct codewords u, u′ at distance at most δ from f . By the union bound, the

probability that, over a random choice of r ∈ F, there exist distinct codewords u, u′ at distance at
most δ from f such that û(r) = û′(r) is at most

(
ℓ
2

)
·
(

d−1
|F|−|L|

)s
.

4.4 Folding univariate functions

STIR relies on k-wise “folding” of functions and polynomials. As shown below, folding a function
preserves its proximity from the Reed–Solomon code with high probability. While described in
slightly different form, this is identical to folding in prior works (e.g., [BBHR18; BGKS20; ACY23]).

The folding operator is based on the following fact, decomposing univariate polynomials into
bivariate polynomials.

Fact 4.6 ([BS08]). Given a polynomial q̂ ∈ F[X]:

• For every f̂ ∈ F[X] there exists a unique bivariate polynomial Q̂ ∈ F[X,Y] with degX(Q̂) =⌊
deg(f̂)/deg(q̂)

⌋
and degY (Q̂) < deg(q̂) such that f̂(Z) = Q̂(q̂(Z), Z). Moreover, Q̂ can be

computed efficiently given f̂ and q̂. Observe that if deg(f̂) < t · deg(q̂) then degX(Q̂) < t.

• For every Q̂ ∈ F[X,Y] with degX(Q̂) < t and degY (Q̂) < deg(q̂), the polynomial f̂(Z) :=
Q̂(q̂(Z), Z) has degree deg(f̂) < t · deg(q̂).

We define the folding of a polynomial and then the folding of a function.

Definition 4.7. Given a polynomial f̂ ∈ F<d[X], a folding parameter k ∈ N, and r ∈ F, we define
a polynomial PolyFold(f̂ , k, r) ∈ F<d/k[X] as follows. Let Q̂ ∈ F[X,Y] be the bivariate polynomial
derived from f̂ using Fact 4.6 with q̂(X) := Xk. Then PolyFold(f̂ , k, r)(X) := Q̂(X, r).

Definition 4.8. Let f : L → F be a function, k ∈ N a folding parameter, and α ∈ F. For every
x ∈ Lk, let p̂x ∈ F<k[X] be the polynomial where p̂x(y) = f(y) for every y ∈ L such that yk = x.
We define Fold(f, k, α) : Lk → F as follows:

Fold(f, k, α)(x) := p̂x(α) .

In order to compute Fold(f, k, α)(x) it suffices to interpolate the k values {f(y) : y ∈ L s.t. yk = x}
into the polynomial p̂x and evaluate this polynomial at α.

18

The following lemma shows that the distance of a function is preserved under folding. If f has
distance δ to a given Reed–Solomon code then, with high probability over the choice of folding
randomness, its folding also has distance δ to the “k-wise folded” Reed–Solomon code.

Lemma 4.9. For every function f : L → F, degree parameter d ∈ N, folding parameter k ∈ N, and
distance parameter δ ∈ (0,min{∆(f,RS[F,L, d]), 1− B⋆(ρ)}), letting ρ := d/|L|,

Pr
rfold←F

[
∆(Fold(f, k, rfold),RS[F,Lk, d/k]) ≤ δ

]
≤ err⋆(d/k, ρ, δ, k) .

Above, B⋆ and err⋆ are the proximity bound and error (respectively) described in Section 4.1.

Proof. Suppose towards contradiction that

Pr
rfold←F

[
∆(Fold(f, k, rfold),RS[F,Lk, d/k]) ≤ δ

]
> err⋆(d/k, ρ, δ, k) .

Letting p̂x be defined from f as in Definition 4.8, define c0, . . . , ck−1 where cj : Lk → F is the
function where cj(x) is the j-th coefficient of p̂x (i.e., so that p̂x(X) ≡

∑k−1
j=0 cj(x) · Xj for every

x ∈ Lk). Observe that

Fold(f, k, α)(x) = p̂x(α) =
k−1∑
j=0

cj(x) · αj .

Therefore, we get that

Pr
rfold←F

∆
k−1∑

j=0

cj · (rfold)j ,RS[F,Lk, d/k]

 ≤ δ


= Pr

rfold←F

[
∆(Fold(f, k, rfold),RS[F,Lk, d/k]) ≤ δ

]
> err⋆(d/k, ρ, δ, k) .

By Theorem 4.1, there exists a set S ⊆ Lk with |S| ≥ (1 − δ) · |Lk| such that for every
j ∈ {0, . . . , k − 1} there exists a codeword uj ∈ RS[F,Lk, d/k] such that cj and uj agree on S.

Let S′ ⊆ S be a set with |S′| = min{|S|, d/k} and, for every x ∈ S′, let Ix,S′ ∈ F<d/k[X] be
the indicator polynomial where Ix,S′(x) = 1 and Ix,S′(y) = 0 for every y ∈ S′ \ {x}. Consider the
following bivariate polynomial

Q̂(X,Y) :=
∑
x∈S′

Ix,S′(X) · p̂x(Y) .

The degrees of Q̂ are degX(Q̂) < d/k and degY (Q̂) < k.
For every α ∈ F and x ∈ S′, Q̂(x, α) = p̂x(α) =

∑k−1
j=0 cj(x) ·αj =

∑k−1
j=0 ûj(x) ·αj . If |S′| ≥ d/k

then, since the degree of ûj is d/k, it holds that Q̂(X,α) ≡
∑k−1

j=0 ûj(X) · αj . Observing that
p̂x(α) =

∑k−1
j=0 cj(x) · αj =

∑k−1
j=0 ûj(x) · αj also for x ∈ S \ S′, we deduce that Q̂(x, Y) ≡ p̂x(Y) for

every x ∈ S. If |S| < d/k then S = S′, and so this holds trivially.
Observe that the polynomial f̂(X) := Q̂(Xk, X) has degree d. Moreover, by construction for

every x with xk ∈ S:
f̂(x) = Q̂(xk, x) = p̂xk(x) = f(x) .

Thus, there are at least k · |S| ≥ k · (1 − δ) · |Lk| = (1 − δ) · |L| points where f̂ and f agree. This
contradicts the fact that δ < ∆(f,RS[F,L, d]).

19

4.5 Combining functions of varying degrees

We show a new method for combining functions of varying degrees with minimal proximity require-
ments using geometric sums. We begin by recalling a fact about geometric sums.

Fact 4.10. Let F be a field, r ∈ F be a field element, and a ∈ N be a natural number. Then

a∑
i=0

ri =

{(
1−ra+1

1−r

)
r ̸= 1

a+ 1 r = 1
.

Definition 4.11. Given target degree d ∈ N, shifting parameter r, functions f1, . . . , fm : L → F,
and degrees 0 ≤ d1, . . . , dm ≤ d∗, we define Combine(d∗, r, (f1, d1), . . . , (fm, dm)) : L → F as follows:

Combine(d∗, r, (f1, d1), . . . , (fm, dm))(x) :=
m∑
i=1

ri · fi(x) ·

(
d∗−di∑
ℓ=0

(r · x)ℓ
)

=


∑m

i=1 ri · fi(x) ·
(
1−(xr)d∗−di+1

1−xr

)
x · r ̸= 1∑m

i=1 ri · fi(x) · (d∗ − di + 1) x · r = 1
.

Above, r1 := 1 and ri := ri−1+
∑

j<i(d
∗−dj) for i > 1.

In cases when we only want to degree correct, but have no need for combining multiple functions
we use the following explicit degree correction notation.

Definition 4.12. Given target degree d ∈ N, shifting parameter r, function f : L → F, and degree
0 ≤ d ≤ d∗, we define DegCor(d∗, r, f, d) : L → F as follows:

DegCor(d∗, r, f, d)(x) := f(x) ·

(
d∗−d∑
ℓ=0

(r · x)ℓ
)

=

f(x) ·
(
1−(xr)d∗−d+1

1−xr

)
x · r ̸= 1

f(x) · (d∗ − d+ 1) x · r = 1
.

(Observe that DegCor(d∗, r, f, d) ≡ Combine(d∗, r, (f, d)).)

We show that combining multiple polynomials of varying degrees can be done as long as the
proximity error is bounded by min {1− B⋆(ρ), 1− ρ− 1/|L|}.

Lemma 4.13. Let d∗ ∈ N be a target degree, f1, . . . , fm : L → F be functions, 0 ≤ d1, . . . , dm ≤ d∗

be degrees, and δ ∈ (0,min {1− B⋆(ρ), 1− ρ− 1/|L|}) be a distance parameter, where ρ := d∗/|L|.
If

Pr
r←F

[∆(Combine(d∗, r, (f1, d1), . . . , (fm, dm)),RS[F,L, d∗]) ≤ δ] > err⋆

(
d∗, ρ, δ,m · (d∗ + 1)−

m∑
i=1

di

)
,

then there exists S ⊆ L with |S| ≥ (1− δ) · |L|, and

∀ i ∈ [m], ∃u ∈ RS[F,L, di], fi(S) = u(S) .

Note that this implies that ∆(fi,RS[F,L, di]) ≤ δ for every i. Above, B⋆ and err⋆ are the proximity
bound and error (respectively) described in Section 4.1.

20

Proof. By Definition 4.11, for every r,

Combine(d∗, r, (f1, d1), . . . , (fm, dm)) =
m∑
i=1

ri · fi(x) ·

(
d∗−di∑
ℓ=0

(r · x)ℓ
)

.

Then, since r1 = 1 and ri := ri−1+
∑

j<i(d
∗−dj):

Pr
r←F

[
∆

(
m∑
i=1

ri · fi(x) ·

(
d∗−di∑
ℓ=0

(r · x)ℓ
)
,RS[F,L, d∗]

)
≤ δ

]
= Pr

r←F
[∆(Combine(d∗, r, (f1, d1), . . . , (fm, dm)),RS[F,L, d∗]) ≤ δ]

> err⋆

(
d∗, ρ, δ,m · (d∗ + 1)−

m∑
i=1

di

)
.

By Theorem 4.1, there exists a set S ⊆ L with |S| > (1 − δ) · |L| such that for every i ∈ [m] and
j ∈ {0, . . . , d∗ − di} there exists a polynomial p̂i,j ∈ F<d∗ [X] such that p̂i,j(x) = xj · fi(x) for every
x ∈ S.

Fix i ∈ [m]. We inductively show that deg(p̂i,j) < di+ j. This proves the lemma since it implies
that there is a polynomial p̂i,0 ∈ F<di [X] that agrees with fi(x) on all of the points in S, and this
was true for any i ∈ [m].

As the base case, it is immediate that deg(p̂i,d∗−di) < d∗ = di + d∗ − di. For 0 ≤ j < d∗ − di
suppose that deg(p̂i,j+1) < di + j + 1. We show that deg(p̂i,j) < di + j. Consider the polynomial
q̂(X) := X · p̂i,j(X). Since deg(p̂i,j) < d, it follows that deg(q̂) < d∗ + 1. Observe that for every
x ∈ S,

q̂(x) = x · p̂i,j(x) = xj+1 · fi(x) = p̂i,j+1(x) .

The polynomials q̂ and p̂i,j+1 have degree less than d∗+1, and agree on |S| ≥ (1−δ)·|L| > (ρ+1/|L|)·
|L| = d∗+1 points. They are therefore identical and, in particular, deg(q̂) = deg(p̂i,j+1) < d∗+j+1.
Recalling that q̂(X) := X · p̂i,j(X) we conclude that deg(p̂i,j) < di + j.

21

5 STIR

We describe STIR, an interactive oracle proof of proximity for nice Reed–Solomon codes.

• In Section 5.1 we describe the construction and analyze its complexity parameters.
• In Section 5.2 we prove round-by-round soundness of STIR.
• In Section 5.3 we give recommended settings of parameters for STIR, including a numeric example.

Theorem 5.1. Consider the following ingredients:
• A security parameter λ ∈ N.
• A Reed–Solomon code RS[F,L, d] with rate ρ := d/|L| where d is a power of 2, and L is a smooth

domain.
• A proximity parameter δ ∈ (0, 1− 1.05 · √ρ).
• A folding parameter k ∈ N that is a power of 2 with k ≥ 4.
If |F| = Ω

(
λ·2λ·d2·|L|3.5

log(1/ρ)

)
, there is a public-coin IOPP for RS[F,L, d] with the following parameters:

• Round-by-round soundness error: 2−λ.
• Round complexity: M := O(logk d).
• Proof length: |L|+Ok(log d).
• Query complexity to the input: λ

− log(1−δ) .

• Query complexity to the proof strings: Ok

(
log d+ λ · log

(
log d

log 1/ρ

))
.

5.1 Construction

We describe STIR and analyze its complexity parameters.

Construction 5.2. Consider the following ingredients:

• a field F;
• an iteration count M ∈ N;
• an initial degree parameter d ∈ N that is a power of 2;
• folding parameters k0, . . . , kM ∈ N that are powers of two, with d ≥

∏
i ki;

• evaluation domains L0, . . . ,LM ⊆ F where Li is a smooth coset of F∗ with order |Li| > d/
∏

j<i kj ;
7

• repetition parameters t0, . . . , tM ∈ N where ti + 1 ≤ d/
∏

j≤i kj for every i ∈ {0, . . . ,M − 1};
• out-of-domain repetition parameter s ∈ N.

For every i ∈ {0, . . . ,M}, set di :=
d∏

j<i kj
. The protocol proceeds as follows.

• Initial function: Let f0 : L0 → F be an oracle function. In the honest case, f0 ∈ RS[F,L0, d0]
and the prover has access to the polynomial f̂0 ∈ F<d0 [X] whose restriction to L0 is f0.

• Initial folding: The verifier sends rfold
0 ← F.

• Interaction phase loop: For i = 1, . . . ,M :

1. Send folded function: The prover sends a function gi : Li → F. In the honest case, gi is the
evaluation of the polynomial ĝi := PolyFold(f̂i−1, ki−1, r

fold
i−1) over Li.

7If, additionally, Li ∩ Li+1 = ∅ for every i, then the protocol can be made more efficient. See Remark 5.3.

22

2. Out-of-domain samples: The verifier sends rout
i,1, . . . , r

out
i,s ← F \ Li.

3. Out-of-domain reply: The prover sends field elements βi,1, . . . , βi,s ∈ F. In the honest case,
βi,j := ĝi(r

out
i,j).

4. STIR message: The verifier sends rfold
i , rcomb

i ← F and rshift
i,1 , . . . , r

shift
i,ti−1

← Lki−1

i−1 .

5. Define next polynomial and send hole fills: The prover sends oracle message Filli : {rshift
i,1 , . . . , r

shift
i,ti−1
}∩

Li → F. In the honest case, the prover defines Gi := {rout
i,1, . . . , r

out
i,s, r

shift
i,1 , . . . , r

shift
i,ti−1
}, ĝ′i :=

PolyQuotient(ĝi,Gi), and Filli(r
shift
i,j) := ĝ′i(r

shift
i,j) (if rshift

i,j ∈ Li).
Additionally, the honest prover defines the degree-corrected polynomial f̂i ∈ F<di [X] as follows:

f̂i := DegCor(di, r
comb
i , ĝ′i, di − |Gi|) .

The protocol proceeds to the next iteration with f̂i.

• Final round: The prover sends dM coefficients of a polynomial p̂ ∈ F<dM [X]. In the honest
case, p̂ := Fold(f̂M , kM , rfold

M).

• Verifier decision phase:

1. Main loop: For i = 1, . . . ,M :

(a) For every j ∈ [ti−1], query Fold(fi−1, ki−1, r
fold
i−1) at rshift

i,j . This involves querying fi−1 at all
ki−1 points x ∈ Li−1 with xki−1 = rshift

i,j .
(b) Define Gi := {rout

i,1, . . . , r
out
i,s, r

shift
i,1 , . . . , r

shift
i,ti−1
}, and let Ansi : Gi → F be the function where

Ansi(r
out
i,j) = βi,j and Ansi(r

shift
i,j) = Fold(fi−1, ki−1, r

fold
i−1)(r

shift
i,j). Finally, (virtually) set g′i :=

Quotient(gi,Gi,Ansi,Filli).
(c) Define the virtual oracle fi : Li → F as follows:

fi := DegCor(di, r
comb
i , g′i, di − |Gi|) .

Observe that a query x to fi translates to a single query either to gi (if x /∈ Gi) or to Filli
(if x ∈ Gi).

2. Consistency with final polynomial:
(a) Sample random points rfin

1 , . . . , r
fin
tM
← LkMM .

(b) Check that p̂(rfin
j) = Fold(fM , kM , rfold

M)(rfin
j) for every j ∈ [tM].

3. Consistency with Ans: For every i ∈ {1, . . . ,M} and every x ∈ Gi ∩ Li query gi(x) and
check that gi(x) = Ansi(x).

Remark 5.3. If Lki−1

i−1 ∩ Li = ∅ for every i ∈ [M] then the oracles Filli and the verifier’s check in
Item 3 can be removed, reducing the proof length to M ·s+ d∏M

i=0 ki
+
∑M

i=1 |Li| and query complexity

to
∑M

i=1 ti.

Complexity parameters. We analyze the complexity measures of Construction 5.2.

• Rounds. The protocol has 2 ·M + 1 rounds.

23

• Proof length. In iteration i ∈ {1, . . . ,M} the prover sends gi, of length |Li|, out-of-domain replies
βi,1, . . . , βi,s, and the Filli function, of length at most ti−1 + s. In the final round, the prover
sends dM := d/

∏M
i=0 ki field elements. Thus the oracle proof length is

∑M
i=1(|Li| + ti−1 + s)

and the number of field elements sent is M · s + d/
∏M

i=0 ki. Therefore the total proof length is:
2 ·M · s+ d∏M

i=0 ki
+
∑M

i=1(|Li|+ ti−1).

• Input query complexity. The verifier reads k0 points t0 times. Since each set of k0 points are
always queried together, they can be grouped together into a single symbol. The input query
complexity over this alphabet is t0.

• Proof query complexity. For i ∈ {1, . . . ,M}, the verifier performs ti queries to Fold(fi−1, ki−1, r
fold
i−1),

which induces reading ki−1 symbols from fi−1. The verifier also queries fi at at most |Gi|−1 ≤ ti
points. If i = 1 then this is where things end, but when i > 1, fi−1 is a virtual function where
every query maps to a single query to either gi−1 or to Filli−1. Thus the verifier queries gi−1
at ki−1 points per query. Since these ki symbols are always read together, they can be grouped
together into a single symbol of a larger alphabet. Therefore the query complexity to the proof
strings over this alphabet is 2 ·

∑M
i=1 ti.

5.2 Round-by-round soundness

We analyze the round-by-round soundness of STIR.

Lemma 5.4. Consider (F,M, d, k0, . . . , kM ,L0, . . . ,LM , t0, . . . , tM , s) and d0, . . . , dM as in Con-
struction 5.2, and for every 0 ≤ i ≤ M let ρi := di/|Li|. For every f /∈ RS[F,L0, d0] and every
δ0, . . . , δM where

• δ0 ∈ (0,∆(f,RS[F,L0, d0])] ∩ (0, 1− B⋆(ρ0)),
• for every 0 < i ≤M : δi ∈ (0, min{1− ρi − 1/|Li|, 1− B⋆(ρi)}), and
• for every 0 < i ≤M : RS[F,Li, di] is (δi, ℓi)-list decodable,

STIR (Construction 5.2) has round-by-round soundness error (εfold, εout1 , εshift1 , . . . , εoutM , εshiftM , εfin) where:

• εfold ≤ err⋆(d0/k0, ρ0, δ0, k0).
• εouti ≤

ℓ2i
2 ·
(

di
|F|−|Li|

)s
.

• εshifti ≤ (1− δi−1)
ti−1 + err⋆(di, ρi, δi, ti−1 + s) + err⋆(di/ki, ρi, δi, ki).

• εfin ≤ (1− δM)tM .

Above, B⋆ and err⋆ are the proximity bound and error (respectively) described in Section 4.1.

Proof. Establishing round-by-round soundness requires defining a state function, which in turn
requires specifying in more detail the structure of an interaction transcript for STIR. We also discuss
how to derive a function fi−1 from f , the main function being tested and a partial transcript for
i− 1 full iterations of STIR.

In the initial round, the transcript is empty, and we can trivially derive f0 := f . In subsequent
rounds, the transcript has the form

tr := (rfold
0 , tr1, . . . , tri−1, tr

′) ,

24

where trj := (rout
j , βj , (r

fold
j , rcomb

j , rshift
j,1 , . . . , r

shift
j,tj

)) is a full transcript of the j-th iteration of STIR and
tr′ is a partial transcript of iteration i (or is equal to p̂ in the case that we are in the final round).
Given such a transcript and the function f0 := f we derive a function fi−1 in an identical way to
the virtual function defined by the verifier algorithm, by running the main loop (Item 1) for i − 1
times.

We now describe the state function State and analyze its error.

0. State function for empty transcript. Given a function f : L → F we set State(f, ∅) = 1 if and
only if f ∈ RS[F,L, d].

1. Bounding εfold. The interaction starts with the verifier sending rfold
0 .

• State function. We set State(f, rfold
0) = 1 if and only if

∆(Fold(f, k0, r
fold
0),RS[F,Lk0 , d0/k0]) ≤ δ0 .

• Bounding the error. Since δ0 < 1− B⋆(ρ0), from Lemma 4.9 we obtain that

εfold = Pr
rfold0

[
State(f, rfold

0) = 1 State(f, ∅) = 0
]

= Pr
rfold0 ←F

[
∆(Fold(f, k0, r

fold
0),RS[F,Lk0 , d0/k0]) ≤ δ0

]
< err⋆(d0/k0, ρ0, δ0, k0) .

2. Bounding εouti . The transcript so far has the form tr := (rfold
0 , tr1, . . . , tri−1, gi), and the verifier

sends randomness rout
i,1, . . . , r

out
i,s. Deriving fi−1 from tr, we define the state function.

• State function. We set State(f, tr||(rout
i,1, . . . , r

out
i,s)) = 1 if both conditions below hold.

(a) At least one of the following holds:
i. ∆(Fold(fi−1, ki−1, r

fold
i−1),RS[F,L

ki−1

i−1 , di]) ≤ δi−1, or
ii. there exist distinct codewords u, u′ ∈ List(gi, di, δi) such that û(rout

i,j) = û′(rout
i,j) for every

j ∈ [s].
(b) For every j ∈ {1, . . . , i− 1}, gj(x) = Ansj(x) for every x ∈ Lj ∩Gj where Ansj is defined as

in the verifier decision algorithm.
• Bounding the error. We show that

εouti = Pr
routi,1 ,...,r

out
i,s

[
State(f, tr||(rout

i,1, . . . , r
out
i,s)) = 1 State(f, tr) = 0

]
≤ ℓ2i

2
·
(

di
|F| − |Li|

)s

.

Suppose that State(f, tr) = 0. If there exists j ∈ {1, . . . , i − 1} and x ∈ Lj ∩ Gj such that
gj(x) ̸= Ansj(x) then Item 2b cannot hold. Thus in order for the state to switch to 1, we
assume Item 2b holds. By the assumption that State(f, tr) = 0:

∆(Fold(fi−1, ki−1, r
fold
i−1),RS[F,L

ki−1

i−1 , di−1/ki−1]) > δi−1 .

This, together with the fact that di := di−1/ki−1, rules out Item 2(a)i. Hence we only need
to bound the probability that Item 2(a)ii holds; by Lemma 4.5 this probability is at most
ℓ2i
2 ·
(

di
|F|−|Li|

)s
.

25

3. Bounding εshifti . The transcript so far has the form tr := (rfold
0 , tr1, . . . , tri−1, gi, r

out
i , βi) and the

verifier sends rfold
i , rcomb

i , rshift
1 , . . . , rshift

ti−1
. Deriving fi−1 from tr, we define the state function.

• State function. We set State(f, tr||(rfold
i , rcomb

i , rshift
1 , . . . , rshift

ti−1
)) = 1 if and only if both of the

following hold:

(a) ∆(Fold(fi, ki, r
fold
i),RS[F,Lkii , di/ki]) ≤ δi where fi is defined using fi−1, gi, (rout

i,j , βi,j)j∈[s],
rcomb
i , and rshift

i,1 , . . . , r
shift
i,t as in Item 1c in the verifier decision algorithm;

(b) for every j ∈ {1, . . . , i}, gj(x) = Ansj(x) for every x ∈ Lj ∩ Gj where Ansj is defined as in
the verifier decision algorithm.

• Bounding the error. We show that

εshifti = Pr
rfoldi ,rcomb

i ,

rshift1 ,...,rshiftti−1

[
State(f, tr||(rfold

i , rcomb
i , rshift

1 , . . . , rshift
ti−1

)) = 1 State(f, tr) = 0
]

≤ (1− δi−1)
ti−1 + err⋆(di, ρi, δi, ti−1 + s) + err⋆(di/ki, ρi, δi, ki) .

Suppose that State(f, tr) = 0. If this is due to the fact that there exists j ∈ {1, . . . , i − 1} and
x ∈ Lj ∩Gj such that gj(x) ̸= Ansj(x) (i.e., Item 2b does not hold), then Item 3b does not hold.
Hence we assume that this is not the case. We show that except with probability (1− δi)

ti there
are no codewords that are close to gi whose low-degree extensions agree on the points where we
will later quotient gi.

Claim 5.5. With probability 1 − (1 − δi−1)
ti−1 over the choice of rshift

i,1 , . . . , r
shift
i,ti−1

for every u ∈
List(gi, di, δi) there exists x ∈ Gi such that û(x) ̸= Ansi(x).

Proof. Since State(f, tr) = 0, by Item 2(a)ii there is at most one u ∈ List(gi, di, δi) such that
û(rout

i,j) = βi,j for every j ∈ [s]. If no such codeword exists, then the claim holds trivially since
Ansi(r

out
i,j) = βi,j for some j. We are left to analyze the case where there is exactly one codeword

u ∈ List(gi, di, δi) for which û(rout
i,j) = βi,j for every j.

Since State(f0, tr) = 0 we have that

∆(Fold(fi−1, ki−1, r
fold
i−1), û(L

ki−1

i−1)) ≥ ∆(Fold(fi−1, ki−1, r
fold
i−1),RS[F,L

ki−1

i−1 , di]) > δi−1 .

Thus, for every j the probability that û(rshift
i,j) ̸= Fold(fi−1, ki−1, r

fold
i−1)(r

shift
i,j) = Ansi(r

shift
i,j) is at

least δi−1. It follows that the probability that this event does not occur for every j ∈ [ti−1]
simultaneously is at most (1− δi−1)

ti−1 .

Suppose that event described in Claim 5.5 occurs. Then by Lemma 4.4:

∆
(
g′i,RS[F,Li, di − |Gi|]

)
+
|{x ∈ Gi : gi(x) ̸= Ansi(x)}|

|Li|
> δi .

Due to Item 3b, in order for the state to become 1, it must be that gi(x) = Ansi(x) for every
x ∈ Li ∩ Gi, and so we conclude that ∆(g′i,RS[F,Li, di − |Gi|]) > δi. Recalling that δi <
min{1− B⋆(ρi), 1− ρi − 1/|Li|} and using Lemma 4.13 we deduce that

Pr
rcomb
i ←F

[
∆
(
DegCor(di, r

comb
i , g′i, di − |Gi|),RS[F,Li, di]

)
≤ δi

]
≤ err⋆(di, ρi, δi, ti−1 + s) .

26

Finally, observe that fi := DegCor(di, r
comb
i , g′i, di−|Gi|) and that if ∆(fi,RS[F,Li, di]) ≤ δi, then

by Lemma 4.9:

Pr
rfoldi ←F

[
∆(Fold(fi, ki, r

fold
i),RS[F,Lkii , di/ki]) ≤ δi

]
≤ err⋆(di/ki, ρi, δi, ki) .

Putting all of the above probabilities together we conclude that

εshifti ≤ (1− δi−1)
ti−1 + err⋆(di, ρi, δi, ti−1 + s) + err⋆(di/ki, ρi, δi, ki) .

4. Bounding εfin: At this stage the transcript holds the form tr := (rfold
0 , tr1, . . . , trM , p̂). The verifier

chooses points (rfin
1 , . . . , r

fin
tM

). Deriving fM from the transcript, we define the state function.

• State function. We set State(f, tr||(rfin
1 , . . . , r

fin
tM

)) = 1 if and only if both of the following hold:

(a) p̂(rfin
j) = Fold(fM , k, rfold

M)(rfin
j) for every j ∈ [ti].

(b) For every 0 < j ≤ M : gj(x) = Ansj(x) for every x ∈ Lj ∩ Gj where Ansj is defined as in
the verifier decision algorithm.

• Bounding the error. We show that

εfin = Pr
rfin1 ,...,rfintM

[
State(f, tr||(rfin

1 , . . . , r
fin
tM

)) = 1 State(f, tr) = 0
]
≤ (1− δM)tM .

Suppose that State(f, tr) = 0. If Item 3b does not hold, then Item 4b also does not hold, and
so the state cannot change to 1. Assuming this is not the case, it follows from Item 3a that:

∆(Fold(fM , kM , rfold
M), p̂(LkMM)) ≥ ∆(Fold(fM , kM , rfold

M),RS[F,LkMM , dM]) > δM .

Thus, for each j the probability that p̂(rfin
j) = Fold(fM , kM , rfold

M)(rfin
j) is at most 1−δM . It follows

that the probability that this occurs for every j ∈ [tM] simultaneously is at most (1− δM)tM .

5. Verifier decision. If State(f, tr) = 0 for a full transcript tr, then the verifier rejects. This is due
to the fact that the verifier checks in Item 2 that Item 4a holds, and in Item 3 that Item 4b holds.
If State(f, tr) = 0 then one of the two must not hold, and so the verifier rejects.

5.3 Recommended parameters

We provide recommended parameters for STIR for achieving round-by-round soundness error 2−λ.
These parameters use the same folding parameter k > 2 for every round, and enforce that the
evaluation domain shrinks by a multiplicative factor of 2 in every round, so that the total proof
length is linear for reasonable security parameters. We begin by describing parameter settings for
provable soundness, and then describe settings assuming a list-decoding conjecture, which allows
for smaller constants and better concrete efficiency. For ease readability, detailed derivations are
deferred to Appendix C.
Ingredients. The protocol receives the following ingredients: (a) A Reed–Solomon code RS[F,L, d]
with rate ρ := d/|L| where d ≥ 4 is a power of two, and L is a smooth domain. (b) A security
parameter λ ∈ N. (c) A stopping degree dstop ∈ N where dstop is a power of two such that d ≥ dstop ≥ 4.

27

(d) A proximity parameter δ ∈ (0, 1). (e) A folding parameter k ∈ N that is a power of two where
k ≥ 4.
Settings. We plug these parameters into Construction 5.2 and set the following: (a) M :=
⌊logk(d/dstop)⌋. (b) ki := k. (c) s := 1. (d) Li = ω · ⟨ω2⟩ where ω is the generator of Li−1.8

(e) η0 =
(
2λ·(k−1)·(d/k)2

27·|F|

)1/7
, t0 :=

⌈
λ+1

− log(1−δ′)

⌉
where δ′ := min{δ, 1 −√ρ − η0} (f) for 0 < i < M

set di := dk
i , ρi := (2/k)i,

ηi := max


(

2λ · di
8 · ρi · (|F| − |Li|)

)1/2

,

(
2λ+1 ·

(
ti−1 · d2i + (k − 1) · (di/k)2

)
27 · |F|

)1/7
 .

and ti :=
⌈

λ+1
− log(

√
ρi+ηi)

⌉
. (g) tM :=

⌈
λ

− log(
√
ρM+ηM)

⌉
.

Resulting IOPP. If the field F satisfies

|F| > 107 · (λ+ 1) · 2λ+1 · d2 · |L|3.5 ·
(
1 + max

{⌈
1

− log(1− δ′)

⌉
,

⌈
1

− log(1.05 · √ρ)

⌉})
,

then9 the IOPP for RS[F,L, d] defined as above has the following properties:

• Rounds: 2 ·M + 1.
• Length: |L|+Ok(dstop + log(d/dstop)).
• Input queries:

⌈
λ

− log(1−δ′)

⌉
where δ′ := min{δ, 1− 1.05 · √ρ}.

• Proof queries: Ok

(
log d+ λ · log

(
log d
− log ρ

))
.

• Round-by-round soundness error: 2−λ.

See Appendix C.1 for a detailed derivation of these values.
Conjectured soundness. We use the following conjecture on the list-decoding properties of
Reed–Solomon codes to improve the concrete parameters of STIR:

Conjecture 5.6 ([BGKS20; BCIKS20]). Let C := RS[F,L, d] be a Reed–Solomon code with rate
ρ := d/|L|. There exist constants c1, c2, c3 ∈ N such that for every η > 0 and 0 < δ < 1− ρ− η the
following hold:

• For functions f1 . . . , fm : L → F, if

Pr
r←F

[∆ (C,Combine(r, (f1, . . . , fm))) ≤ δ] > err⋆(d, ρ, δ,m) :=
(m− 1)c2 · dc2
ηc1 · ρc1+c2 · |F|

.

then there exists S ⊆ L with |S| ≥ (1− δ) · |L|, and

∀i ∈ [m], ∃u ∈ C, fi(S) = u(S) .

• C is (δ, ℓ)–list decodable for ℓ ≤
(

d
ρ·η

)c3
.

8Observe that, since k is a power of two, the sets Lk
i−1 := ⟨ωk⟩ and Li := ω · ⟨ω2⟩ are disjoint as required for

Remark 5.3.
9Note that this bound is not tight.

28

The ingredients are identical as in the provable setting. The parameters in Construction 5.2 are

set identically, except that s := 2, η0 :=
(
2λ·(k−1)c2 ·(d/k)c2

ρc1+c2 ·|F|

)1/c1
, and

ηi := max

{
2 · ρi
di

,
di
ρi
·
(

2λ · dsi
2 · (|F| − |Li|)s

) 1
2·c3

,

(
2λ+1 · dc2i
ρc1+c2
i · |F|

·
(
(ti−1 + s− 1)c2 +

(
k − 1

k

)c2))1/c1
}

.

Assuming Conjecture 5.6, and the above with c1 = c2 = c3 = 1, we have improved concrete
parameters, and round-by-round soundness error 2−λ when

|F| > (λ+ 1) · 2λ+2 · d · |L|3 ·
(
s+max

{⌈
1

− log(1− δ′)

⌉
,

⌈
1

− log(1.5 · ρ)

⌉})
.

As in the provable parameter regime, this bound is not tight. See Appendix C.2 for full derivations
given this parameter setting.

29

6 Implementation and experimental results

We evaluate the performance of STIR in comparison to FRI [BBHR18], with regards to: (i) argument
size; (ii) prover time; (iii) verifier time; and (iv) verifier hash complexity. Furthermore, we compare
the argument sizes of STIR and FRI when they are used to realize a SNARK for R1CS.

6.1 Implementation

We implemented FRI and STIR in Rust, by leveraging the arkworks [ark] ecosystem for developing
zkSNARKs. Our implementation and scripts are available at the repository https://github.com/
WizardOfMenlo/stir/; later they will be open-sourced and integrated as part of arkworks.
Organization. We expose a common interface for low-degree testing, which we realize via FRI and
STIR implementations. The interface is generic over the underlying (nice) field, the hash function
used for the Merkle tree, and the (sponge) hash function used for the Fiat–Shamir transformation.
Cryptographic primitives. We use arkworks [ark] for several underlying cryptographic prim-
itives. We use the crate ark-ff for field arithmetic, ark-poly for Fast Fourier Transforms, and
ark-crypto-primitives for both the Merkle trees and sponges. We use the crates sha3 and
blake3 for the hash functions used in Merkle trees and sponges. Our Poseidon parameter genera-
tion is according to the crate poseidon-paramgen, and the Poseidon implementation is again from
the crate ark-crypto-primitives.
Optimizations. Our implementations of FRI and STIR should be considered reference imple-
mentations rather than optimized ones. We implemented optimizations such as path pruning for
Merkle trees and reduced costly operations such as field inversion as much as possible. Nonetheless,
we believe that there is room for further performance gains via additional optimizations. Further,
we only performed partial parallelization of the prover algorithms.
SNARK for R1CS. We plan to implement the SNARK obtained by combining the PIOP in
Appendix B with the compiler in Section 7. For now, the sizes that we report are obtained via a
Python script.

6.2 Parameter choices

In our experiments, given a starting degree d and a rate ρ, we select parameters to instantiate both
FRI and STIR for a Reed–Solomon code RS[F,L, d]. We detail our parameter choice next.
Field and evaluation domain choice. We set F to be a 192-bit smooth prime field,10 and let
L be an arbitrary smooth domain with |L| = d/ρ.
Soundness. We target λ = 128 bits of security, by which we mean that for both STIR and FRI,
we set the round-by-round soundness error of the IOPP to be 2−128 and let the hash function output
used in the BCS transformation to have length 256 bits. To achieve round-by-round soundness error
2−128, we use a proof-of-work of 22 bits. This means that when the prover (honest and malicious)
performs the Fiat-Shamir query to derive randomness for the next round, the probability that it will
“solve” the proof of work and get the desired randomness is only 2−22. This increases the runtime of
the honest prover; however, it reduces the round-by-round soundness required from the underlying
IOP to only 2−106. The result is a smaller number of queries and, thus, a smaller argument size.
This optimization is performed in both the FRI and STIR implementations.

10We arbitrarily selected F = Fp with p = 264 · 259536638529657107390708680683681617371 + 1.

30

https://github.com/WizardOfMenlo/stir/
https://github.com/WizardOfMenlo/stir/

Repetitions. The number of repetitions in FRI and in STIR to achieve round-by-round soundness
error 2−λprot was selected by assuming Conjecture 5.6 with c1 = c2 = c3 = 1 and, in both protocols,
discounting the negligible security deficit imposed by η. For STIR we set si = 2 for every iteration
since this was more than enough to achieve 128 bits of security with the field F.
Folding parameter and stopping conditions. When selecting the folding parameter k, we
observed empirically that using a folding-factor k = 16 minimizes the argument size of STIR, while
k = 8 minimizes that of FRI. In both STIR and FRI, we stop the protocol when the final degree
dM is at most 26.
Compiling into a SNARG. When compiling the IOPP into a SNARG via the transformation
in [BCS16], we need to choose a hash function for the Merkle tree and a hash function for the
Fiat–Shamir transformation. We consider two configurations:

• Primary configuration (Native). We use BLAKE3 as the hash function for the Fiat–Shamir
transformation, and SHA3 for the Merkle trees. This is the primary configuration we measure
and discuss in this document.

• Secondary configuration (Algebraic). We use BLAKE3 as the hash function for the Fiat–Shamir
transformation and the Poseidon algebraic hash function [GKKRRS19] for the Merkle trees.

When used to instantiate a SNARK as in Appendix B, the former configuration would typically be
used for direct instantiation, while the latter would be used to construct SNARKs that are then
recursively proved and verified (due to the algebraic structure of Poseidon).

6.3 Benchmarks

We ran our benchmarks on an AWS r6a.24xlarge instance with 96 vCPU and 768 GiB of memory
(AMD EPYC 7R13 Processor @ 2.65 GHz), and compiled using rustc 1.77.0-nightly. Our
methodology is the following. We first select a degree-rate pair (d, ρ).

• Primary configuration. We select a degree d ∈ {218, 220, 222, 224, 226, 228, 230} and a rate ρ ∈
{1/2, 1/4, 1/8, 1/16}. We ignore the rate-degree pair (d, ρ) = (230, 1/16), as our instance ran out of
memory while running the argument prover.

• Secondary configuration. We select a degree d ∈ {218, 220, 222, 224, 226, 228} and rate ρ ∈ {1/2, 1/4, 1/8}.

Having chosen (d, ρ), we select parameters as detailed in Section 6.2. Given those parameters, we
benchmark both the argument prover and argument verifier, collecting: (i) argument size; (ii) prover
time; (iii) verifier time; and (iv) verifier hash complexity.

All of our experiments using the native configuration were run serially. Those using the algebraic
configuration instead generate argument strings in parallel to speed up the benchmarking process,
but, since we did not parallelize optimally our FRI prover implementation, we do not include those
measured prover times for fairness.

6.4 Results

We discuss the results of our experiments with the native configuration. Figure 2 graphically
compares STIR and FRI for rate 1/2 and varying degrees. Table 2 contains all experimental data
for the native configuration. Additional experimental results are in Appendix A. We discuss each
metric individually, arbitrarily focusing on the case of degree d = 224 and rate ρ = 1/2.

31

218 220 222 224 226 228 230

Degree

100

200

300

400

500

S
iz

e
(K

iB
)

Argument size

218 220 222 224 226 228 230

Degree

2000

4000

6000

8000

10000

H
as

h
es

Verifier hash complexity

218 220 222 224 226 228 230

Degree

22

25

28

211

T
im

e
(s

)

Prover time

218 220 222 224 226 228 230

Degree

2

3

4

5

6

T
im

e
(m

s)

Verifier time

Figure 2: Comparison of FRI and STIR for ρ = 1/2. FRI: ▲, STIR: •. Lower is better. Note that
prover time is displayed with logarithmic scaling.

Argument size. Across all degrees and rates, STIR’s arguments are significantly smaller than
FRI’s. The improvement ranges from 1.25× to 2.46×, and it is more pronounced for larger degrees
and rates. For d = 224 and rate ρ = 1/2, STIR’s argument size is 160 KiB whereas FRI’s is 306 KiB.
Verifier time and hash complexity. Across all degrees and rates, STIR’s hash complexity is
significantly smaller than FRI, with STIR’s verifier performing between 1.55× to 2.67× fewer hashes
than FRI’s. Again, this relative improvement is more evident with larger degrees and rates. As for
verifier time, relative comparison is more nuanced, with the relative difference ranging from a 0.7×
slowdown to a 1.45× speedup. For larger degrees and larger rate, STIR’s verifier performs better
than FRI’s, while for smaller degrees the added algebraic complexity results in a slowdown.

For d = 224 and rate ρ = 1/2, STIR’s verifier performs 2645 hashes and runs in 3.8ms whereas
the FRI verifier performs 5647 hashes and runs in 3.9ms.
Prover time. STIR’s prover time is slightly larger than FRI on our test set,11 with the slowdown
ranging from 0.64× to 0.95×. Concretely, for d = 224 and rate 1/2, generating a proof (serially)
takes STIR 36s and FRI 28s. This slowdown decreases when the rate decreases, as then the cost
of the initial FFT (shared between STIR and FRI) accounts for a larger portion of the prover’s
running time.
Algebraic configuration. As expected, the results of the algebraic configuration for argument
size and verifier hashes are in line with those observed in the native configuration. As is evidenced by
the experimental results described in Table 4, since the relative cost of performing hashes is higher
in this configuration, we observe that STIR’s verifier now outperforms FRI’s across all settings
tested. We measure this speedup to be between 1.48× to 2.34×.

11The table might seem to suggest that for small degrees STIR’s prover can be faster than FRI’s. In fact, this
is due to proof-of-work taking a sizable portion of the prover computational cost for small degrees, and the high
variance of this operation.

32

SNARK for R1CS. We computed the argument size for both STIR and FRI when used to
instantiate a SNARK for R1CS using an idealized Python script. We used the native configuration
for both. We detail the result in Table 5. The improvement in argument size of STIR over FRI
translates to this setting, with STIR-based SNARKs between 1.29× to 2.25× smaller than their
FRI-based counterparts. Concretely, for instances of size n = 224 with rate 1/2, STIR-based SNARKs
have size 220 KiB whereas FRI has size 422 KiB.
Discussion.

• The asymptotic improvement in query complexity of STIR over FRI translates in concrete and
significant improvements in both argument size and verifier hash complexity across all configura-
tions and parameters tested.

• As for verifier time, in the native configuration the added algebraic complexity of STIR results in a
slower verifier for small degrees and rates, while when those are large STIR’s verifier outperforms
FRI’s. In the algebraic configuration instead, STIR’s verifier is significantly faster than FRI’s
across all parameters tested, thanks to its reduced hash complexity.

• FRI maintains an edge over STIR in terms of prover time. This is mostly due to the fact that
STIR’s prover performs an FFT per round, while FRI’s prover, once the initial FFT is computed,
runs in linear time. When the cost of this initial FFT (which is shared between FRI and STIR)
increases (i.e. on larger rates), STIR’s prover compares more favorably with FRI’s.

• When used within a larger SNARK, STIR’s argument size reduction over FRI’s result in argu-
ments that are overall much smaller across all parameters that we computed.

The rate offers a trade-off between prover time and argument size: one can decrease the rate,
thus increasing prover running time while reducing argument size. Since the FRI prover is faster
than STIR, we ask whether FRI outperforms STIR in argument size when used with smaller rate.
We show that experimentally, this is not the case. Two examples are shown in Table 3.

d = 224 d = 228

STIR ρ = 1/4 FRI ρ = 1/8 Ratio STIR ρ = 1/4 FRI ρ = 1/8 Ratio
Argument size 107 KiB 134 KiB 1.25× 128 KiB 184 KiB 1.44×
Verifier time 2.4 ms 1.8 ms 0.75× 2.8 ms 2.4 ms 0.85×
Verifier hashes 1849 2720 1.47× 2401 3879 1.61×
Prover time 58 s 93 s 1.60× 1100 s 1700 s 1.54×

Table 3: Comparison of STIR and FRI on different rates.

33

ρ

d
218 220 222 224 226 228 230

Argument size
(
KiB, FRI

STIR

)
1/2 163

114 ≈ 1.44× 211
131 ≈ 1.62× 257

143 ≈ 1.8× 306
160 ≈ 1.91× 371

172 ≈ 2.15× 430
189 ≈ 2.28× 494

200 ≈ 2.46×
1/4 99

73 ≈ 1.34× 129
87 ≈ 1.48× 154

94 ≈ 1.63× 177
107 ≈ 1.66× 211

114 ≈ 1.84× 249
128 ≈ 1.95× 277

136 ≈ 2.04×
1/8 76

58 ≈ 1.32× 96
69 ≈ 1.39× 118

75 ≈ 1.57× 134
86 ≈ 1.55× 157

93 ≈ 1.7× 184
104 ≈ 1.77× 204

110 ≈ 1.85×
1/16 62

50 ≈ 1.25× 77
61 ≈ 1.27× 95

66 ≈ 1.44× 107
76 ≈ 1.41× 127

82 ≈ 1.56× 147
92 ≈ 1.6× -

Verifier time
(
ms, FRI

STIR

)
1/2 2.0

2.9 ≈ 0.7× 2.6
3.2 ≈ 0.81× 3.2

3.4 ≈ 0.94× 3.9
3.8 ≈ 1.03× 4.7

3.9 ≈ 1.21× 5.5
4.3 ≈ 1.28× 6.4

4.4 ≈ 1.45×
1/4 1.2

1.7 ≈ 0.74× 1.6
2.0 ≈ 0.8× 1.9

2.1 ≈ 0.92× 2.3
2.4 ≈ 0.97× 2.7

2.5 ≈ 1.09× 3.2
2.8 ≈ 1.17× 3.7

2.9 ≈ 1.27×
1/8 1.0

1.2 ≈ 0.78× 1.2
1.5 ≈ 0.79× 1.5

1.6 ≈ 0.93× 1.8
1.9 ≈ 0.95× 2.1

2.0 ≈ 1.06× 2.4
2.2 ≈ 1.11× 2.8

2.3 ≈ 1.22×
1/16 0.8

1.0 ≈ 0.79× 1.0
1.3 ≈ 0.76× 1.2

1.4 ≈ 0.89× 1.4
1.6 ≈ 0.89× 1.7

1.7 ≈ 1.01× 2.0
1.9 ≈ 1.04× -

Verifier hashes
(FRI

STIR

)
1/2 2490

1434 ≈ 1.74× 3466
1846 ≈ 1.88× 4494

2191 ≈ 2.05× 5647
2645 ≈ 2.13× 7100

2992 ≈ 2.37× 8479
3451 ≈ 2.46× 10107

3792 ≈ 2.67×
1/4 1658

1020 ≈ 1.63× 2270
1329 ≈ 1.71× 2821

1521 ≈ 1.85× 3459
1849 ≈ 1.87× 4220

2050 ≈ 2.06× 5072
2401 ≈ 2.11× 5885

2622 ≈ 2.24×
1/8 1374

843 ≈ 1.63× 1801
1098 ≈ 1.64× 2258

1256 ≈ 1.8× 2720
1534 ≈ 1.77× 3271

1697 ≈ 1.93× 3879
2010 ≈ 1.93× 4455

2172 ≈ 2.05×
1/16 1185

765 ≈ 1.55× 1518
1014 ≈ 1.5× 1898

1147 ≈ 1.65× 2233
1376 ≈ 1.62× 2718

1537 ≈ 1.77× 3166
1792 ≈ 1.77× -

Prover time
(
s, FRI

STIR

)
1/2 1.2

2.2 ≈ 0.56× 3.2
2.4 ≈ 1.33× 9.3

9.8 ≈ 0.95× 28
36 ≈ 0.77× 97

150 ≈ 0.65× 420
640 ≈ 0.65× 1700

2700 ≈ 0.64×
1/4 2.3

1.1 ≈ 2.11× 2.7
3.9 ≈ 0.7× 11

14 ≈ 0.81× 47
58 ≈ 0.8× 200

250 ≈ 0.8× 860
1100 ≈ 0.78× 3600

4800 ≈ 0.75×
1/8 1.4

1.9 ≈ 0.73× 5.4
6.1 ≈ 0.89× 22

26 ≈ 0.86× 93
110 ≈ 0.85× 400

480 ≈ 0.83× 1700
2100 ≈ 0.8× 7000

8900 ≈ 0.79×
1/16 2.7

2.9 ≈ 0.93× 10
11 ≈ 0.93× 44

48 ≈ 0.93× 190
210 ≈ 0.88× 780

930 ≈ 0.84× 3300
4100 ≈ 0.82× -

Table 2: Comparison of concrete costs between STIR and FRI. The numerator of the fraction is the
cost associated to FRI, while the denominator is that associated to STIR. For all metrics, lower is
better.

34

7 An efficient compiler for poly-IOPs

We describe a transformation that combines a poly-IOP and an RS-code IOPP to obtain a cor-
responding IOP. This transformation is concretely efficient, and has round-by-round knowledge
soundness related to the round-by-round knowledge soundness of the poly-IOP.

Theorem 7.1. Consider the following ingredients:

• A poly-IOPP (Ppoly,Vpoly) for a relation R with round complexity kpoly, where in round i Ppoly sends
(f̂i,j ∈ F<di,j [X])j∈[mi] and the verifier makes at most qi,j < di,j queries to f̂i,j. The poly-IOP
has round-by-round knowledge soundness errors errpoly1 , . . . , errpolykpoly

.
• An IOPP (Pprx,Vprx) for the code C := RS[F,L, d] (with rate ρ := d/|L|) with round complexity
kprx, round-by-round soundness errors errprx1 , . . . , errprxkprx, and maxi∈[kpoly],j∈[mi]{di,j} ≤ d.

• A proximity parameter δ ∈ (0, 1−max{B⋆(ρ), ρ+1/|L|}) such that, for every i ∈ [kpoly], RS[F,L, di,j]
is (δ, ℓi,j)-list decodable.

• An extractor ERS that for every i, j list-decodes a codeword of distance at most δ from RS[F,L, di,j]
in time at most etRS.

Then there is an IOPP for R with the following parameters:12

poly-IOPP for R IOPP for C → IOPP for R
Rounds kpoly kprx 2kpoly + kprx + 1
Proof length mpoly lprx lprx + 2 · qpoly,π +mpoly · (|L|+ 2)
Input queries qpoly,y qprx,f qpoly,y

Proof queries qpoly,π qprx,π mpoly · qprx,f + qprx,π + qpoly,π

Verifier time vtpoly vtprx O(vtpoly + vtprx +
∑kpoly

i=1 q
2
i,j)

Extraction time etpoly - etpoly +mpoly · etRS

The compiled IOPP has round-by-round knowledge soundness error (εout1 , εpiop1 , . . . , εoutkpoly
, εpiopkpoly

, εcom, εprx1 , . . . , εprxkprx)

where (for inputs (x,y)):

• εouti ≤
∑

j∈[mi]
di,j ·ℓ2i,j

2·|F| .
• εpiopi ≤ errpolyi (x,y).
• εcom ≤ err⋆

(
d, ρ, δ,

∑kpoly
i=1

∑mi
j=1(d− di,j + qi,j + 2)

)
.

• εprxi ≤ errprxi (δ).

Above, B⋆ and err⋆ are the proximity bound and error (respectively) described in Section 4.1.

7.1 Construction

We describe the transformation from a poly-IOPP to an IOPP, and then discuss its efficiency.

Construction 7.2. We construct an IOPP for R from the ingredients in Theorem 7.1.

0. Inputs: The honest prover receives as input (x,y,w) ∈ R, and the verifier receives x as an
explicit input and y as an oracle input.

12Note that mpoly counts the number of polynomials sent by the prover, while the proof length for the IOPPs for
Cprx and for R is counted in field elements.

35

1. Poly-IOP interaction phase:

(a) For i = 1, . . . , kpoly:
i. Poly-IOP prover message: The prover sends oracle functions (fi,j)j∈[mi] where

fi,j : L → F. In the honest case, the prover computes (f̂i,j)j∈[mi] := Ppoly(x,y,w, α1, . . . , αi−1),
and sets fi,j to be the evaluation of f̂i,j over L.

ii. Out-of-domain sample: The verifier sends xi ← F.
iii. Out-of-domain reply: The prover sends field elements (yi,j)j∈[mi]. In the honest case

yi,j := f̂i,j(xi).
iv. Poly-IOP verifier message: The verifier sends αi ← {0, 1}ri .

2. Low-degree test interaction phase:

(a) Send query results and prepare for low-degree test: The prover sends arrays of field
elements (Ai,j)i∈[kpoly],j∈[m] where |Ai,j | = qi,j , and oracle functions (wi,j)i∈[kpoly],j∈[mi] where
wi,j : [qi,j + 1]→ F.
In the honest case the prover simulates the execution of

V
y,(f̂i,j)i∈[kpoly],j∈[mi]

poly (x, α1, . . . , αkpoly) .

For every i ∈ [kpoly] and j ∈ [mi], set the following:
• set Qi,j ⊆ F to be the set of queries made by Vpoly to f̂i,j ;
• set ϕi,j : [qi,j]→ Qi,j be the mapping where ϕi,j(k) returns the k-th query made to f̂i,j ;
• set Si,j := Qi,j ∪ {xi} and f̂ ′i,j := PolyQuotient(f̂i,j ,Si,j).

Then, the prover sets Ai,j [k] := f̂i,j(ϕi,j(k)) and wi,j(k) := f̂ ′i,j(ϕi,j(k)) for k < qi,j , and
wi,j(qi,j + 1) := f̂ ′i,j(xi).

(b) Choose combination randomness: The verifier sends randomness r ← F.
(c) Low-degree test: Run the interaction phase of the low-degree test (Pprx,Vprx) for the code

RS[F,L, d]. The honest prover acts according to the polynomial ĝ ∈ F<d[X] defined as:

ĝ := Combine
(
d, r, (f̂ ′i,j , di,j − |Si,j |)i∈[kpoly],j∈[mi]

)
,

where f̂ ′i,j and Si,j are defined as in Item 2a.

3. Verifier decision phase:

(a) Poly-IOP decision: Check that V
y,(f̂i,j)i∈[kpoly],j∈[mi]

poly (x, α1, . . . , αkpoly) = 1, where the k-th
query to f̂i,j is answered by Ai,j [k] and queries to y are answered by querying y directly
(reject if Vpoly rejects).
For every i ∈ [kpoly] and j ∈ [mi], let Qi,j ⊆ F be the set of queries made by Vpoly to f̂i,j
and ϕi,j : [qi]→ Qi,j be the mapping where ϕi,j(x) returns the k-th query made to f̂i,j . Set
Si := Qi,j ∪ {xi}.

(b) Low-degree test decision: Check that Vprx accepts in its decision phase, when V answers
a query t made by Vprx to its input codeword g : L → F as follows.

36

i. For every i ∈ [kpoly] and j ∈ [mi]:
• Set Ansi,j : Si,j → F and define the virtual function Filli,j : Si,j → F as follows:

Ansi,j(q) :=

{
Ai,j [ϕ

−1
i,j (q)] q ∈ Qi,j

yi,j q = xi
Filli,j(q) :=

{
wi,j(ϕ

−1
i,j (q)) q ∈ Qi,j

wi,j(qi,j + 1) q = xi

• Define the virtual f ′i,j := Quotient(fi,j ,Si,j ,Ansi,j ,Filli,j).
ii. Define the virtual function

g := Combine
(
d, r, (f ′i,j , di,j − |Si,j |)i∈[kpoly],j∈[mi]

)
,

and answer according to this function by querying the functions fi,j or wi,j appropri-
ately (observe that by the definition of f ′i,j each query to it yields either a query to fi,j
or to wi,j but not both).

(c) Consistency with Ans: For every i ∈ [kpoly] and j ∈ [mi] query fi,j at every x ∈ Si,j ∩ L
and check that fi,j(x) = Ansi,j(x).

Complexity parameters. We analyze the complexity parameters of the new IOPP.

• Rounds. The IOPP has 2 · kpoly + kprx +1 rounds. If (Pprx,Vprx) begins with a prover message, then
the round complexity is reduced to 2 · kpoly + kprx.

• Proof length. The oracle proof length (over the alphabet F) is

lprx +

kpoly∑
i=1

mi∑
j=1

|L|+ |Si,j | ≤ lprx +

kpoly∑
i=1

mi∑
j=1

(|L|+ qi,j + 1) = lprx + qpoly,π +mpoly · (|L|+ 1) .

The prover additionally sends
∑kpoly

i=1

∑mi
j=1 |Si,j | ≤

∑kpoly
i=1

∑mi
j=1 qi,j + 1 = qpoly,π + mpoly field ele-

ments. Thus, the total proof length is

lprx + 2 · qpoly,π +mpoly · (|L|+ 2) .

• Oracle input queries. The verifier makes qpoly,y queries to its input oracle y.

• Proof queries. The verifier makes qprx,π queries to the internal messages of the proximity test,
and qprx,f queries to g. For every i, j, each query to g translates to a single query to either
fi,j of wi,j . Then, each fi,j is queried qi,j times. Thus the total proof query complexity is
mpoly · qprx,f + qprx,π + qpoly,π.

• Verifier running time. The verifier evaluates Vpoly in time vtpoly and Vprx in time vtprx. Additionally,
the verifier computes Ânsi,j for every i, j, which requires time O(q2i,j). Therefore the verifier

running time is O(vtpoly + vtprx +
∑kpoly

i=1 q2i,j).

37

7.2 Round-by-round knowledge soundness

We prove the round-by-round knowledge soundness of the IOPPP in Construction 7.2.

Lemma 7.3. Suppose that (Ppoly,Vpoly) has round-by-round knowledge soundness errors (errpoly1 , . . . , errpolykpoly
),

and that (Pprx,Vprx) has round-by-round soundness errors (errprx1 , . . . , errprxkprx). Suppose that for every
i ∈ [kpoly] and j ∈ [mi], RS[F,L, di,j] is (δ, ℓi,j)-list decodable. For every δ ∈ (0,min{1−ρ−1/|L|, 1−
B⋆(ρ)}), the IOPP described in Construction 7.2 has round-by-round knowledge soundness errors
(εout1 , εpiop1 , . . . , εoutkpoly

, εpiopkpoly
, εcom, εprx1 , . . . , εprxkprx) with extraction time O(etpoly +mpoly · etRS) where:

• εouti ≤
∑

j∈[mi]
di,j ·ℓ2i,j

2·|F| ;
• εpiopi ≤ errpolyi (x,y);
• εcom ≤ err⋆

(
d, ρ, δ,

∑kpoly
i=1

∑mi
j=1(d− di,j + qi,j + 2)

)
;

• εprxi ≤ errprxi (δ).
Above, B⋆ and err⋆ are the proximity bound and error (respectively) described in Section 4.1.

Proof. We describe the state function and prove the round-by-round knowledge soundness errors.

0. State function for empty transcript. Given an explicit input x and implicit input y, we set
State(x,y, ∅) := Statepoly(x,y, ∅).

1. Bounding εouti . At this stage, a partial transcript has the following form

tr := (((fℓ,j)j∈[mi], xℓ, (yℓ,j)j∈[mℓ])ℓ<i, (fi,j)j∈[mi]) ,

and the verifier sends xi.

• State function. We set State(x,y, tr||xi) = 1 if and only if at least one of the following holds.

(a) There exist ℓ ≤ i and j ∈ [mi], and distinct codewords uℓ,j , u′ℓ,j ∈ List(fℓ,j , dℓ,j , δ) such that
ûℓ,j(xℓ) = û′ℓ,j(xℓ).

(b) There exist codewords (uℓ,j)ℓ<i,j∈[mℓ] such that:
i. uℓ,j ∈ List(fℓ,j , dℓ,j , δ),
ii. ûℓ,j(xℓ) = yℓ,j , and
iii. Statepoly(x,y, ((ûℓ,j)j∈[mℓ], αℓ)ℓ<i) = 1.

• Extractor. The extractor E(x,y, tr) outputs ⊥.

• Bounding the error. Suppose that State(x,y, tr) = 0. We show that

Pr
xi

[State(x,y, tr||xi) = 1] ≤ εouti =

∑
j∈[mi]

di,j · ℓ2i,j
2 · |F|

.

Since the error is always below εouti , we do not need the extractor to be able to extract. We
separate to two cases, and show that the state could only change since Item 1a holds for ℓ = i:

– If i = 1 then according to the state function for the empty transcript described in Item 0,
Statepoly(x,y, ∅) = State(x,y, tr) = 0, and so Item 1b does not hold. Moreover, since i = 1
this is the only choice of ℓ in Item 1a.

38

– If i > 1 then according to the state function defined in Item 2, there do not exist codewords
(uℓ,j)ℓ<i,j∈[mℓ] such that uℓ,j ∈ List(fℓ,j , dℓ,j , δ), ûℓ,j(xℓ) = yℓ,j and,

Statepoly(x,y, (û1,j)j∈[m1], α1, . . . , (ûi−1,j)j∈[mi−1], αi−1) = 1 .

This is precisely stating that Item 1b does not hold. Moreover, by Item 2a, for every ℓ < i,
j ∈ [mi], and a pair of distinct codewords uℓ,j , u

′
ℓ,j ∈ List(fℓ,j , dℓ,j , δ) it holds that ûℓ,j(xℓ) ̸=

û′ℓ,j(xℓ). Therefore in order for Item 1a to hold, it must do so for ℓ = i.
Since RS[F,L, di,j] is (δ, ℓi,j)-list decodable, by Lemma 4.5 for every fixed j ∈ [mi] there exist a
pair of distinct codewords ui,j , u′i,j ∈ List(fi,j , di,j , δ) such that ûi,j(xi) = û′i,j(xi) with probability

at most
di,j ·ℓ2i,j
2·|F| over the choice of xi. Applying the union bound over all choices of j, the

probability that there exists a j for which this occurs is at most
∑

j∈[mi]
di,j ·ℓ2i,j

2·|F| . As a result,

Item 1a holds with probability at most
∑

j∈[mi]
di,j ·ℓ2i,j

2·|F| .

2. Bounding εpiopi . At this stage, the partial transcript has the form

tr := (((fℓ,j)j∈[mℓ], xℓ, (yℓ,j)j∈[mℓ], αℓ)ℓ<i, (fi,j)j∈[mi], xi, (yi,j)j∈[mi]) ,

and the verifier sends αi.

• State function. We set State(x,y, tr||αi) = 1 if and only if at least one of the following hold:
(a) There exist ℓ ≤ i, j ∈ [mi], and a pair of distinct codewords uℓ,j , u

′
ℓ,j ∈ List(fℓ,j , dℓ,j , δ)

such that ûℓ,j(xℓ) = û′ℓ,j(xℓ) or,
(b) There exist codewords (uℓ,j)ℓ≤i,j∈[mℓ] such that:

i. uℓ,j ∈ List(fℓ,j , dℓ,j , δ),
ii. ûℓ,j(xℓ) = yℓ,j and,
iii. Statepoly(x,y, ((ûℓ,j)j∈[mℓ], αℓ)ℓ≤i) = 1.

• Extractor. The extractor E(x,y, tr) proceeds as follows:
(a) For every ℓ < i and j ∈ [mℓ] compute List(fℓ,j , dℓ,j , δ) := ERS(fℓ,j) and let uℓ,j ∈ List(fℓ,j , dℓ,j , δ)

be a codeword such that ûℓ,j(xℓ) = yℓ,j (output ⊥ if no such codeword exists).
(b) Compute w := Epoly(y,x, ((ûℓ,j)j∈[mℓ], αℓ)ℓ<i, (ûi,j)j∈[mi]) and output w.
The extractor runs in time at most O(etpoly +

∑
ℓ<imℓ · etRS) = O(etpoly +mpoly · etRS).

• Bounding the error. Suppose that State(x,w, tr) = 0 and that

Pr
αi

[State(x,y, tr||αi) = 1] > εpiopi = errpolyi (x,y) .

We show that ((x,y),E(xy, tr)) ∈ R. Since State(x,w, tr) = 0, according to Item 1a, for
every ℓ ≤ i, j ∈ [mℓ] and pair of distinct codewords uℓ,j , u

′
ℓ,j ∈ List(fℓ,j , dℓ,j , δ), it holds that

ûℓ,j(xℓ) ̸= û′ℓ,j(xℓ). It follows that for every ℓ and j there exists at most one codeword uℓ,j ∈
List(fℓ,j , dℓ,j , δ) with ûℓ,j(xℓ) = yℓ,j . If for some j there is no such codeword, then, by definition,
State(x,y, tr||αi) = 0 for every αi, and so this cannot be the case.
Suppose, then, that for every ℓ < i and j ∈ [miℓ] there is a single such codeword uℓ,j . This
unique codeword will be found and chosen by E. Since State(x,y, tr) = 0, by Item 1b for every
(uℓ,j)ℓ<i,j∈[mi] where uℓ,j ∈ List(fℓ, dℓ,j , δ) and ûℓ,j(xℓ) = yi,j , it holds that

Statepoly(x,y, ((ûℓ,j)j∈[mℓ], αℓ)ℓ<i) = 0 .

39

Moreover, it holds that State(x,y, tr||αi) = 1 only if

Statepoly(x,y, ((ûℓ,j)j∈[mℓ], αℓ)ℓ≤i, (ûi,j)j∈[mi], αi) = 1 .

Thus, we get that

Pr
αi

[
Statepoly(x,y, ((ûℓ,j)j∈[mℓ], αℓ)ℓ<i, (ûi,j)j∈[mi], αi) = 1

]
= Pr

αi

[State(x,y, tr||αi) = 1]

> εpiopi

= errpolyi (x,y) .

It follows by knowledge soundness of the PIOP that

((x,y),E(x,y, tr)) = ((x,y),Epoly(x,y, ((ûℓ,j)j∈[mℓ], αℓ)ℓ≤i, (ûi,j)j∈[mi])) ∈ R .

3. Bounding εcom. At this stage, the partial transcript has the form

tr := (((fi,j)j∈[mi], xi, (yi,j)j∈[mℓ], αi)i∈[kpoly], (Ai,j , wi,j)i∈[kpoly],j∈[mi]) ,

and the verifier sends r. From Ai,j we derive Ansi,j and from wi,j we derive Filli,j as in Item 3b of
the verifier decision algorithm.

• State function. We set State(f, tr||r) = 1 if and only if all of the following hold:

(a) Vpoly accepts given access to w and given query answers according to Ai,j as in Item 2a of
the verifier decision algorithm.

(b) ∆(g,RS[F,L, d]) < δ.
(c) For every i ∈ [kpoly] and j ∈ [mi]: fi,j(x) = Ansi,j(x) for every x ∈ Si,j ∩ L.

• Extractor. The extractor E(x,y, tr) always outputs ⊥.

• Bounding the error. Suppose that State(x,w, tr) = 0. We show that

Pr
r
[State(x,y, tr||r) = 1] ≤ εcom = err⋆

d, ρ, δ,

kpoly∑
i=1

mi · (d− di + qi + 2)

 .

As the error is always below εcom, we do not need the extractor to be able to extract. Since
State(x,w, tr) = 0, by Item 2 there is no set of codewords (uℓ,j)ℓ∈[kpoly],j∈[mℓ] for which all of the
following hold:

(a) uℓ,j ∈ List(fℓ,j , dℓ, δ),
(b) ûℓ,j(xℓ) = yℓ,j and,
(c) Statepoly(x,y, ((ûℓ,j)j∈[mℓ], αℓ)ℓ≤kpoly) = 1.

In order for Item 3a to hold, the arrays Ai,j must be such that Vpoly accepts given their values as
oracle answers. Thus we can assume that the prover has sent such arrays. The following claim
shows that there must be some i, j such that no codeword close to fi,j agrees with Ansi,j .

Claim 7.4. There exists i∗ ∈ [kpoly] and j∗ ∈ [mi∗] such that for every ui∗,j∗ ∈ List(fi∗,j∗ , di∗,j∗ , δ)
there exists a ∈ Si∗,j∗ such that ûi∗,j∗(a) ̸= Ansi∗,j∗(a).

40

Proof. Suppose towards contradiction that for every i, j there exists ui,j ∈ List(fi,j , di,j , δ) such
that ûi,j(a) = Ansi,j(a) for every a ∈ Si,j and fix some such set of codewords. Observe that
ûi,j(a) = Ansi,j(a) = Ai,j [ϕi,j(a)] for every a ∈ Qi,j . Since Vpoly accepts given query answers
according to Ai,j and since the ûi,j polynomials are consistent with Ai,j , it follows that

Statepoly(x,y, ((ûi,j)j∈[mi], αi)i≤kpoly) = 1 .

This contradicts the assumption, coming from State(x,y, tr) being equal 0, that the following
cannot hold simultaneously:

(a) For every i, j: ui,j ∈ List(fi,j , di,j , δ),
(b) ûℓ,j(xi) = yi,j = Ansi,j(xi) and,
(c) Statepoly(x,y, ((ûi,j)j∈[mi], αi)i≤kpoly) = 1.

Fix i∗, j∗ as in Claim 7.4. Together with Lemma 4.4, it follows that

∆(f ′i∗,j∗ ,RS[F,L, di∗,j∗ − |Si∗,j∗ |]) +
|{x ∈ Si∗,j∗ : fi∗,j∗(x) ̸= Ansi∗,j∗(x)}|

|L|
> δ .

Whether Item 3c holds is independent of the verifier randomness in this round, and so it must
hold in order for the state function output to change to 1. Therefore |{x ∈ Si∗,j∗ : fi∗,j∗(x) ̸=
Ansi∗,j∗(x)}| = 0 and so

∆(f ′i∗,j∗ ,RS[F,L, di∗,j∗ − |Si∗,j∗ |]) > δ .

Therefore by recalling that

g := Combine
(
d, r, (f ′i,j , di,j − |Si,j |)i∈[kpoly],j∈[mi]

)
,

and applying Lemma 4.13, which we can do since δ ∈ (0,min{1− ρ− 1/|L|, 1− B⋆(ρ)}):

Pr
r←F

[∆(g,RS[F,L, d]) ≤ δ] = Pr
r←F

[
∆
(
Combine

(
d, r, (f ′i,j , di,j − |Si,j |)i∈[kpoly],j∈[mi]

)
, RS[F,L, d]

)
≤ δ
]

> err⋆

d, ρ, δ,

kpoly∑
i=1

mi∑
j=1

(d− di,j + |Si,j |+ 1)


≥ err⋆

d, ρ, δ,

kpoly∑
i=1

mi∑
j=1

(d− di,j + qi,j + 2)

 .

Finally,

4. Bounding εprxi . At this stage, the partial transcript has the form

tr := (((fi,j)j∈[mi], xi, (yi,j)j∈[mℓ], αi)i∈[kpoly], (Ai,j , wi,j)i∈[kpoly],j∈[mi], (πℓ, αprx,ℓ)ℓ<i, πi) ,

where πℓ and αprx,ℓ the ℓ-th prover and verifier message in the proximity test (Pprx,Vprx) respectively.
The verifier sends proximity test message αprx,i.

41

• State function. We set State(f, tr||αprx,i) = 1 if and only if both of the following hold:
(a) Vpoly accepts given access to y and given query answers according to Ai,j as in Item 2a of

the verifier decision algorithm.
(b) Either ∆(g,RS[F,L, d]) < δ or Stateprx(g, π1, αprx,1, . . . , πi, αprx,i) = 1.
(c) For every i ∈ [kpoly] and j ∈ [mi]: fi,j(x) = Ansi,j(x) for every x ∈ Si,j ∩ L.

• Extractor. The extractor E(x,y, tr) always outputs ⊥.
• Bounding the error. Suppose that State(x,y, tr) = 0. We show that

Pr
αprx,i

[State(x,y, tr||αprx,i) = 1] ≤ εprxi = errprxi (δ) .

As the error is always below εprxi , we do not need the extractor to be able to extract. If the
state is 0 this is due to the fact that there exists i ∈ [kpoly], j ∈ [mi], and x ∈ Si,j ∩ L such that
fi,j(x) ̸= Ansi,j(x) then Item 4c does not hold, in which case the state function must output 0.
Suppose, then, that this is not the case. In order for the state to become to 1, it must be that
Item 4a holds. We treat differently the cases of i = 1 and i > 1:
– If i = 1 then, since Item 4a must hold, so does Item 3a. It follows that Item 3b does

not hold, i.e., ∆(g,RS[F,L, d]) ≥ δ. By Item 4b, in order for the state to be 1 it must
be that Stateprx(g, π1, αprx,1) = 1. Moreover, since ∆(g,RS[F,L, d]) ≥ δ > 0, we have that
Stateprx(g, ∅) = 0.

– If i > 1 then both ∆(g,RS[F,L, d]) > δ and Stateprx(g, π1, αprx,1, . . . , πi−1, αprx,i−1) = 0 by the
assumption that State(x,y, tr) = 0. Since g cannot change, it must be that the state changes
to 1, i.e., Stateprx(g, π1, αprx,1, . . . , πi, αprx,i) = 1

In either cases, we have that:

εprxi = Pr
αprx,i

[State(x,y, tr||αprx,1) = 1 | State(x,y, tr) = 0]

≤ Pr
αprx,i

[Stateprx(g, π1, αprx,1, . . . , πi, αprx,i) = 1 | Stateprx(g, π1, αprx,1, . . . , πi−1, αprx,i−1) = 0]

≤ errprxi (g)

≤ errprxi (δ) .

5. Verifier decision. We show that if State(x,y, tr) = 0 for a full transcript tr, then the verifier
rejects. The transcript has the form

tr := (((fi,j)j∈[mi], xi, (yi,j)j∈[mℓ], αi)i∈[kpoly], (Ai,j , wi,j)i∈[kpoly],j∈[mi], (πℓ, αprx,ℓ)ℓ<kprx ,) ,

If State(x,y, tr) = 0 then, by Item 4 one of the following is true:

(a) Vpoly rejects given access to y and given query answers according to Ai,j as in Item 2a of the
verifier decision algorithm, or

(b) ∆(g,RS[F,L, d]) ≥ δ and Stateprx(g, π1, αprx,1, . . . , πkprx , αprx,kprx) = 0.
(c) For every i ∈ [kpoly] and j ∈ [mi]: fi,j(x) = Ansi,j(x) for every x ∈ Si,j ∩ L.

The verifier in rejects if the first and third items do not hold, as this is tested directly. By round-
by-round soundness of the proximity test, if Stateprx(g, π1, αprx,1, . . . , πkprx , αprx,kprx) = 0 then Vprx

rejects, and so if this is the case, then the verifier rejects. Thus the verifier must always reject if
State(x,y, tr) = 0.

42

A Additional experimental data

We collected additional experimental data, both in tabular and graphical forms. Figure 3 and
Figure 4 further illustrate this information in graphical form, comparing STIR and FRI on each effi-
ciency measure for various rates. Table 4 gives experimental results for the algebraic configuration.
Finally, Table 5 compares the computed argument sizes of R1CS SNARGs based on STIR and FRI.

ρ

d
218 220 222 224 226 228

Argument size
(
KiB, FRI

STIR

)
1/2 207

135 ≈ 1.54× 262
159 ≈ 1.64× 333

176 ≈ 1.89× 401
201 ≈ 1.99× 478

218 ≈ 2.19× 562
242 ≈ 2.32×

1/4 126
90 ≈ 1.4× 162

107 ≈ 1.51× 199
119 ≈ 1.68× 232

136 ≈ 1.7× 274
146 ≈ 1.88× 326

165 ≈ 1.97×
1/8 97

71 ≈ 1.37× 125
87 ≈ 1.43× 151

93 ≈ 1.61× 172
111 ≈ 1.55× 206

120 ≈ 1.72× 244
135 ≈ 1.81×

Verifier time
(
ms, FRI

STIR

)
1/2 439.4

271.3 ≈ 1.62× 580.2
343.4 ≈ 1.69× 764.2

392.2 ≈ 1.95× 952.8
470.2 ≈ 2.03× 1155.2

519.4 ≈ 2.22× 1397.0
596.6 ≈ 2.34×

1/4 283.0
190.8 ≈ 1.48× 372.9

239.5 ≈ 1.56× 470.8
272.8 ≈ 1.73× 564.8

331.6 ≈ 1.7× 684.5
353.5 ≈ 1.94× 825.2

410.2 ≈ 2.01×
1/8 227.3

153.2 ≈ 1.48× 300.6
200.3 ≈ 1.5× 366.6

217.0 ≈ 1.69× 432.1
269.6 ≈ 1.6× 527.9

296.0 ≈ 1.78× 628.8
340.5 ≈ 1.85×

Verifier hashes
(FRI

STIR

)
1/2 2562

1409 ≈ 1.82× 3427
1842 ≈ 1.86× 4547

2171 ≈ 2.09× 5718
2647 ≈ 2.16× 7005

2971 ≈ 2.36× 8483
3445 ≈ 2.46×

1/4 1680
1028 ≈ 1.63× 2223

1318 ≈ 1.69× 2841
1536 ≈ 1.85× 3445

1860 ≈ 1.85× 4171
2039 ≈ 2.05× 5069

2402 ≈ 2.11×
1/8 1369

841 ≈ 1.63× 1815
1120 ≈ 1.62× 2232

1233 ≈ 1.81× 2647
1554 ≈ 1.7× 3237

1722 ≈ 1.88× 3877
1997 ≈ 1.94×

Table 4: Comparison of concrete costs between STIR and FRI when using Poseidon. The numerator
of the fraction is the cost associated to FRI, while the denominator is that associated to STIR. For all
metrics, lower is better.

ρ

n
218 220 222 224 226 228 230

Argument size
(
KiB, FRI

STIR

)
1/2 253

155 ≈ 1.63× 312
178 ≈ 1.75× 353

196 ≈ 1.8× 422
220 ≈ 1.92× 494

238 ≈ 2.08× 548
262 ≈ 2.09× 631

280 ≈ 2.25×
1/4 145

102 ≈ 1.42× 176
117 ≈ 1.5× 201

128 ≈ 1.57× 236
144 ≈ 1.64× 274

155 ≈ 1.77× 305
171 ≈ 1.78× 347

182 ≈ 1.91×
1/8 106

79 ≈ 1.34× 128
92 ≈ 1.39× 145

100 ≈ 1.45× 170
114 ≈ 1.49× 197

122 ≈ 1.61× 218
136 ≈ 1.6× 248

144 ≈ 1.72×
1/16 90

70 ≈ 1.29× 108
82 ≈ 1.32× 121

88 ≈ 1.38× 141
100 ≈ 1.41× 163

108 ≈ 1.51× 179
120 ≈ 1.49× 203

127 ≈ 1.6×

Table 5: Comparison of argument size of a SNARK for R1CS using STIR or FRI as their low-degree
test. The numerator of the fraction is the cost associated to FRI, while the denominator is that
associated to STIR. Lower is better.

43

218 220 222 224 226 228 230

Degree

100

200

300

400

500
S

iz
e

(K
iB

)
Argument size

218 220 222 224 226 228 230

Degree

2000

4000

6000

8000

10000

H
a
sh

es

Verifier hash complexity

218 220 222 224 226 228 230

Degree

22

25

28

211

T
im

e
(s

)

Prover time

218 220 222 224 226 228 230

Degree

2

3

4

5

6

T
im

e
(m

s)

Verifier time

(a) ρ = 1/2, FRI: ▲, STIR: •.

218 220 222 224 226 228 230

Degree

100

150

200

250

S
iz

e
(K

iB
)

Argument size

218 220 222 224 226 228 230

Degree

2000

4000

6000

H
as

h
es

Verifier hash complexity

218 220 222 224 226 228 230

Degree

22

25

28

211

T
im

e
(s

)

Prover time

218 220 222 224 226 228 230

Degree

2

3

T
im

e
(m

s)

Verifier time

(b) ρ = 1/4, FRI: ▲, STIR: •.

Figure 3: Comparison of FRI and STIR. Figure 3a is for ρ = 1/2, Figure 3b for ρ = 1/4. Lower is
better.

44

218 220 222 224 226 228 230

Degree

100

150

200

S
iz

e
(K

iB
)

Argument size

218 220 222 224 226 228 230

Degree

1000

2000

3000

4000

H
a
sh

es

Verifier hash complexity

218 220 222 224 226 228 230

Degree

22

25

28

211

T
im

e
(s

)

Prover time

218 220 222 224 226 228 230

Degree

1.0

1.5

2.0

2.5

T
im

e
(m

s)

Verifier time

(a) ρ = 1/8, FRI: ▲, STIR: •.

218 220 222 224 226 228

Degree

50

75

100

125

150

S
iz

e
(K

iB
)

Argument size

218 220 222 224 226 228

Degree

1000

2000

3000

H
as

h
es

Verifier hash complexity

218 220 222 224 226 228

Degree

23

26

29

212

T
im

e
(s

)

Prover time

218 220 222 224 226 228

Degree

1.0

1.5

2.0

T
im

e
(m

s)

Verifier time

(b) ρ = 1/16, FRI: ▲, STIR: •.

Figure 4: Comparison of FRI and STIR. Figure 4a is for ρ = 1/8, Figure 4b for ρ = 1/16. Lower is
better.

45

B A poly-IOP for R1CS

We give a polynomial IOP for the R1CS relation.

Definition B.1. The relation RR1CS is the set of all pairs ((F, k, n,A,B,C, v), w) where F is a finite
field, k, n ∈ N (with k ≤ n), A,B,C are n × n matrices over F, v ∈ Fk, and w ∈ Fn−k, such that
for all i ∈ [n]:  n∑

j=0

Ai,j · zj

 ·
 n∑

j=0

Bi,j · zj

 =

n∑
j=0

Ci,j · zj ,

where z := (v, w) ∈ Fn.

Theorem B.2. There is an IOP for RR1CS with the following properties.
• Round complexity: 2.
• Number of polynomials: 5 with degree at most n, 1 with degree at most n− k, and 1 with degree

at most n− 1.
• Query complexity: 7.
• Round-by-round knowledge soundness error: (εshift, εdec) with extraction time O(n · (n− k)), where
εshift ≤ 3n

|F| and εdec ≤ 2n
|F| .

B.1 Construction

Construction B.3. Let F be a field. Consider the following ingredients and notation:

• H is a subgroup of F∗ of order n. We sometimes refer to elements of H as elements in [|H|].
Implicitly, we assume a bijection between the two and use it as appropriate to translate between
the two domains. Thus, for S ⊆ H we refer to f : S → F and f ∈ F|S| interchangeably.

• Hin ⊆ H is the subset of order |Hin| = k that corresponds to the indices {1, . . . , k}.
• V̂H ∈ F<n+1[X] and V̂Hin

∈ F<k+1[X] are the unique non-zero polynomials that are 0 on H and
Hin.

• For r ∈ F, p̂r ∈ F<n[X] is the unique polynomial such that p̂r(x) := rx for every x ∈ H.
• For matrix M and r ∈ F, q̂M,r ∈ F<n[X] is the unique univariate polynomial which satisfies:
q̂M,r(x) :=

∑
b∈H rb ·M⊤(x, b) for every x ∈ H.

The IOP proceeds as follows.

• Inputs: The honest prover is given ((F, k, n,A,B,C, v), w) ∈ RR1CS, and the verifier is given
(F, k, n,A,B,C, v).

• Interaction phase:

1. Commit to witness polynomials: The prover sends polynomials f̂A, f̂B, f̂C , f̂0 ∈ F<n[X]
and f̂w ∈ F<n−k[X]. In the honest case, the prover sets these polynomials as follows:
(a) Let z := (v, w) ∈ Fn. For every M ∈ {A,B,C}, f̂M is the unique polynomial with

f̂M (x) := (Mz)(x) for every x ∈ H.
(b) f̂0(X) := f̂A(X)·f̂B(X)−f̂C(X)

V̂H(X)
.

(c) f̂w(X) := ẑ(X)−v̂(X)

V̂Hin(X)
where ẑ ∈ F<n[X] is the unique low-degree polynomial that is equal

to z on H and v̂ ∈ F<k[X] is the unique low-degree polynomial that is equal to v on Hin.

46

2. Randomize polynomials: The verifier sends r ← F.

3. Univariate sumcheck proof: The prover sends polynomials ĝ1 ∈ F<n[X] and ĝ2 ∈ F<n−1[X].
In the honest case, the prover defines the following:
(a) f̂z(X) := f̂w(X) · V̂Hin

(X) + v̂(X).
(b)

û(X) := p̂r(X) · f̂A(X)− q̂A,r(X) · f̂z(X)

+ rn ·
(
p̂r(X) · f̂B(X)− q̂B,r(X) · f̂z(X)

)
+ r2n ·

(
p̂r(X) · f̂C(X)− q̂C,r(X) · f̂z(X)

)
Then ĝ1 and ĝ2 are the unique polynomials such that û(X) := V̂H(X) · ĝ1(X) +X · ĝ2(X).

• Verifier decision phase: Sample α ← F and query f̂A, f̂B, f̂C , f̂0, f̂w, ĝ1, ĝ2 each at α. Accept
if the following checks pass.

1. Zero test: f̂A(α) · f̂B(α)− f̂C(α) = f̂0(α) · V̂H(α).

2. Univariate sumcheck test: û(α) = ĝ1(α) · V̂H(α)+ a · ĝ2(α). Evaluating û(α) on reduces to
computing:

(a) f̂z(α) := f̂w(α) · V̂Hin
(α) + v̂(α).

(b)

û(α) := p̂r(α) · f̂A(α)− q̂A,r(α) · f̂z(α)

+ rn ·
(
p̂r(α) · f̂B(α)− q̂B,r(α) · f̂z(α)

)
+ r2n ·

(
p̂r(α) · f̂C(α)− q̂C,r(α) · f̂z(α)

)
(The verifier can compute V̂Hin

(α), v̂(α), p̂r(α), q̂A,r(α), q̂B,r(α), and q̂C,r(α) by itself.)

Complexity parameters. We analyze the complexity parameters of the poly-IOP.

• Rounds. The IOPP has 2 rounds.

• Number of polynomials. The prover sends 5 polynomials with degree less than n in the first round,
and 2 polynomials in the second round, one of which has degree less than n and the second has
degree less than n− 1.

• Proof queries. The verifier makes 7 queries in total, each to a different polynomial, and all at the
same point.

Preliminaries. In the proof of completeness and soundness we use the following fact, showing
another description of one of the polynomials described in the protocol:

Fact B.4. For every r ∈ F:

∑
a∈H

p̂r(a) · f̂M (a)− q̂M,r(a) · f̂(a) =
∑
a∈H

(
f̂M (a)−

∑
b∈H

M(a, b) · f̂z(b)

)
· ra .

47

Proof. The fact follows by opening up the expressions:∑
α∈H

p̂r(a) · f̂M (a)− q̂M,r(a) · f̂(a) =
∑
a∈H

ra · f̂M (a)−
∑
a∈H

∑
b∈H

rb ·M⊤(a, b) · f̂z(a)

=
∑
a∈H

ra · f̂M (a)−
∑
a∈H

∑
b∈H

ra ·M⊤(b, a) · f̂z(b)

=
∑
a∈H

(
f̂M (a)−

∑
b∈H

M⊤(b, a) · f̂z(b)

)
· ra

=
∑
a∈H

(
f̂M (a)−

∑
b∈H

M(a, b) · f̂z(b)

)
· ra ,

where in the second equality we have renamed the variables and switched the order of the sums.

We use the following lemma, implementing a univariate sumcheck, first shown in [BCRSVW19],
and described in the form below in [ACY23]:

Lemma B.5 ([BCRSVW19]). Let H be a multiplicative subgroup of F∗. Let f̂ ∈ F<d[X] be a
polynomial, and s ∈ F be a claimed sum. Then:

• Completeness. If
∑

a∈H f̂(a) = s then

Pr
α←F

 ĝ1 ∈ F<|H|−1[X]

∧ ĝ2 ∈ F<d−|H|+1[X]

∧ f̂(α) = ĝ1(α) · V̂H(α) + (α · ĝ2(α) + s/|H|)
f̂(X) ≡ ĝ1(X) · V̂H(X) + (X · ĝ2(X) + s/|H|)

 = 1 .

• Soundness. If
∑

a∈H f̂(a) ̸= s then for every P̃:

Pr
α←F

 ĝ1 ∈ F<|H|−1[X]

∧ ĝ2 ∈ F<d−|H|+1[X]

∧ f̂(α) = ĝ1(α) · V̂H(α) + (α · ĝ2(α) + s/|H|)
(ĝ1, ĝ2)← P̃

 ≤ d

|F|
.

The protocol has 1 message, where the prover sends 2 polynomials. The verifier queries 1 field
element from f̂ and 2 from the prover messages, uses log |F| bits of randomness, and runs in time
O(log |H|) (field operations).

B.2 Completeness

Consider an instance x := (F, k, n,A,B,C, v) and corresponding witnessw = w with (x,w) ∈ RR1CS.
First note that, for every a ∈ H,

f̂A(a) · f̂B(a)− f̂C(a) = (Az)(a) · (Bz)(a)− (Cz)(a) = 0 ,

and hence f̂A(X) · f̂B(X) − f̂C(X) is divisible by V̂H . Thus, Item 1 will always succeed, as both
sides are identical as polynomials. Next, by Fact B.4, for M ∈ {A,B,C} and r ∈ F we have that∑

a∈H
p̂r(a) · f̂M (a)− q̂M,r(a) · f̂(a) =

∑
a∈H

(
f̂M (a)−

∑
b∈H

M(a, b) · f̂z(b)

)
· ra = 0 ,

where the last equality follows since, for every a ∈ H, we have f̂M (a) = (Mz)(a) =
∑

b∈H M(a, b) ·
z(b). Thus

∑
a∈H û(a) = 0 and by Lemma B.5 the check in Item 2 succeeds with probability 1.

48

B.3 Round-by-round knowledge soundness

Lemma B.6. The poly-IOP in Construction B.3 has round-by-round knowledge soundness errors
(εshift, εdec) with extraction time O(n · (n− k)) where:

• εshift ≤ 3n
|F| .

• εdec ≤ 2n
|F| .

State function and proof. We define the state function, and prove bounds on the round-by-round
soundness error.

0. State function for empty transcript. Given an input x := (F, k, n,A,B,C, v) we set State(x, ∅) =
1 if and only if x ∈ L(RR1CS).

1. Bounding εshift. At this stage, the partial transcript has the form tr := (f̂A, f̂B, f̂C , f̂0, f̂w) and
the verifier sends r.

• State function. We set State(x, tr||r) = 1 if and only if both of the following hold:
(a) f̂A(X) · f̂B(X)− f̂C(X) ≡ f̂0(X) · V̂H(X) and
(b)

∑
a∈H û(a) = 0, where û is defined as in Item 2 of the verifier’s decision algorithm.

• Extractor. Given x and tr, the extractor computes ẑ(X) := f̂w(X) · V̂Hin
(X) + v̂(X) and then

outputs w : H \Hin → F, where w(i) = ẑ(i). The extractor runs in time O(n · (n− k)) given the
coefficients of f̂w.

• Bounding the error. Suppose that State(x,w, tr) = 0 and that

Pr
r
[State(x, tr||r) = 1] > εshift =

3n

|F|
.

We show that (x,E(x, tr)) ∈ RR1CS. Define ĥ ∈ F[X] as follows:

ĥ(X) :=
∑
a∈H

(
f̂A(a)−

∑
b∈H

A(a, b) · f̂z(b)

)
·Xa

+
∑
a∈H

(
f̂B(a)−

∑
b∈H

B(a, b) · f̂z(b)

)
·Xn+a

+
∑
a∈H

(
f̂C(a)−

∑
b∈H

C(a, b) · f̂z(b)

)
·X2n+a .

Observe that deg(ĥ) ≤ 2n + |H| = 3n, and that for r chosen by the verifier, by Fact B.4 the
evaluation ĥ(r) is equivalent to

∑
a∈H û(a). By the polynomial identity lemma, since:

Pr
r←F

[
ĥ(r) = 0

]
= Pr

r←F

[∑
a∈H

û(a) = 0

]
≥ Pr

r←F
[State(x, tr||r) = 1] > 3n ,

it holds that ĥ is the zero polynomial. Consequently, for every M ∈ {A,B,C}:

f̂M (X) =
∑
b∈H

M(X, b) · f̂z(b) =
∑
b∈H

M(X, b) ·
(
f̂w(b) · V̂Hin

(b) + v̂(b)
)

.

49

Letting w := E(x, tr), and z : H → F where z(i) = w(i) for i ∈ H \Hin and z(i) = v(i) otherwise
(while v ∈ Fn, recall that we have a one-to-one correspondence between H and [|H|], so use this
to we map v to a function FHin), for every M ∈ {A,B,C} and a ∈ H it holds that

f̂M (a) =
∑
b∈H

M(a, b) · z(b) .

In order for the prover to have State(x, tr||r) = 1, by Item 1a, it must be that f̂A(X) · f̂B(X)−
f̂C(X) ≡ f̂0(X) · V̂H(X), which implies that for every a ∈ H, f̂A(a) · f̂B(a) = f̂C(a). Therefore,
for every a ∈ H,(∑

b∈H
A(a, b) · z(b)

)
·

(∑
b∈H

B(a, b) · z(b)

)
= f̂A(a) · f̂B(a) = f̂C(a) =

(∑
b∈H

C(a, b) · z(b)

)
.

Consequently, since z = (v, w), it holds that (x, w) ∈ RR1CS.

2. Bounding εdec. At this stage, the partial transcript has the form tr := ((f̂A, f̂B, f̂C , ĥ, f̂w), r, (ĝ1, ĝ2))
and the verifier sends α.

• State function. We set State(x, tr||α) = 1 if and only if both of the following hold:

(a) f̂A(α) · f̂B(α)− f̂C(α) = f̂0(α) · V̂H(α) and
(b) û(α) = ĝ1(α) · V̂H(α) + α · ĝ2(α), where û is defined as in Item 2 of the verifier’s decision

algorithm.

(Observe that this is what the verifier checks, and so if State(x, tr||α) = 0, then the verifier
rejects.)

• Extractor. Given x and tr, the extractor outputs ⊥.

• Bounding the error. Suppose that State(x, tr) = 0. We show that

Pr
α
[State(x, tr||α) = 1] ≤ εdec =

2n

|F|
.

Since the error is always below εdec, we do not need the extractor to be able to extract. Since
State(x, tr) = 0, by Item 1, one of the following is true:

– f̂A(X) · f̂B(X) − f̂C(X) ̸= f̂0(X) · V̂H(X). If this is the case for α ← F it holds that
f̂A(α) · f̂B(α) − f̂C(α) = f̂0(α) · V̂H(α) with probability at most 2n/|F| (note that f̂A(X) ·
f̂B(X)− f̂C(X) = f̂0(X) · V̂H(X) has degree bounded by 2n). Thus in this case, by Item 2a,
State(x, tr||α) = 1 with probability at most 2n/|F|.

– If
∑

a∈H û(a) ̸= 0, then by Lemma B.5, for every ĝ1 ∈ F<n[X] and ĝ2 ∈ F<n−1[X], the
probability over the choice of α← F that û(α) = ĝ1(α) · V̂H(α) + α · ĝ2(α) is at most 2n/|F|.
Thus in this case, by Item 2b, State(x, tr||α) = 1 with probability at most 2n/|F|.

Taking both cases into consideration, we have that State(x, tr||a) = 1 with probability at most
2n/|F|.

50

C Derivations for Section 5.3

We derive bounds on the parameters of the IOPPs described in Section 5.3.

• In Appendix C.1 we give derivations for computing provable security bounds.
• In Appendix C.2 we give derivations for computing security bounds assuming Conjecture 5.6 with
c1 = c2 = c3 = 1.

The derivations in both sections use the following bound about a variant of the geometric sum:

Fact C.1.
∑M

i=1
1

i+c < log
(
M
c + 1

)
+ 1 for every c > 0.

Proof. Let s := ⌊c⌋ be the nearest integer smaller than c, and let Hm be the m-th harmonic number.
Recall that ln(m+ 1) ≤ Hm ≤ ln(m) + 1. Then

M∑
i=1

1

i+ c
≤

M∑
i=1

1

i+ s

= HM+s −Hs

≤ ln(M + s) + 1− ln(s+ 1)

≤ ln(M + c) + 1− ln(c)

= ln

(
M

c
+ 1

)
+ 1

< log

(
M

c
+ 1

)
+ 1 .

where the final inequality holds since log(x) > ln(x) for x > 1.

We additionally bound the rate of the iterations from below:

Fact C.2. ρi ≥ ρ/d.

Proof. ρi = (2/k)i · ρ ≥ ρ/kM = ρ/k⌊logk(d/dstop)⌋ ≥ ρ/d.

C.1 Provable security

We bound the properties of the IOPP for provable soundness error described in Section 5.3. We
begin by showing that ηi <

√
ρi/20, then bound the complexity parameters, and finally bound

round-by-round soundness error of the protocol. Note that these parameters are based on the
improved ones derived in Remark 5.3.
Bounds on η values. We show that since

|F| > 107 · (λ+ 1) · 2λ+1 · d2 · |L|3.5 ·
(
1 + max

{⌈
1

− log(1− δ′)

⌉
,

⌈
1

− log(1.05 · √ρ)

⌉})
,

it holds that ηi ≤
√
ρi/20 for every i. First observe that

|F| > 107 · 2λ+1 · d2 · |L|3.5 · (1 + max {t0, ti}) ,

We now bound the η parameters.

51

• i = 0:

η0 =

(
2λ · (k − 1) · (d/k)2

27 · |F|

)1/7

<

(
2λ · d2

27
· 1

107 · 2λ · d2 · |L|3.5

)1/7

=
1

20 ·
√
|L|

<

√
ρ

20
.

• i > 0:

ηi := max


(

2λ · di
8 · ρi · (|F| − |Li|)

)1/2

,

(
2λ+1 ·

(
ti−1 · d2i + (k − 1) · (di/k)2

)
27 · |F|

)1/7
 .

We show that both options are bounded by
√

ρ/d

20 ≤
√
ρi

20 .

– First option: (
2λ · di

8 · ρi · (|F| − |Li|)

)1/2

<

(
2λ · |L|

8 · (|F| − |L|)

)1/2

≤
(
2λ · |L|

8
· 1

107 · 2λ · d · |L|2

)1/2

≤
(

1

202 · d · |L|

)1/2

=

√
ρ/d

20
.

– Second option:(
2λ+1 ·

(
ti−1 · d2i + (k − 1) · (di/k)2

)
27 · |F|

)1/7

<

(
2λ+1 · (ti−1 + 1) · d2

27 · |F|

)1/7

<

(
2λ+1 · (ti−1 + 1) · d2

27
· 1

107 · 2λ+1 · d2 · |L|3.5 · (ti−1 + 1)

)1/7

<

(
1

207 · |L|3.5

)1/7

=

√
ρ/d

20
.

Complexity parameters. The complexity parameters of the protocol are as follows:

• Rounds. 2M + 1 = 2 · ⌊logk(d/dstop)⌋+ 1.

• Proof length. M · s+ d∏M
i=0 ki

+
M∑
i=1

|Li|

= 2 · ⌊logk(d/dstop)⌋+
d

k⌊logk(d/dstop)⌋
+

⌊logk d⌋∑
i=1

|L|
2i

≤ |L|+ 2 · ⌊logk(d/dstop)⌋+ k · dstop − 1 .

52

• Input query complexity. t0 ≤ λ
− log(1−δ′) .

• Proof query complexity. Observe that log(1.05·√ρ)
log(
√

k/2)
< 0 since ρ < 1. Therefore the proof query

complexity is:

M∑
i=1

ti =
M∑
i=1

⌈
λ+ 1

− log(
√
ρi + ηi)

⌉

≤M + (λ+ 1) ·
M∑
i=1

1

− log(
√
ρi +

√
ρi/20)

≤M + (λ+ 1) ·
M∑
i=1

1

− log((2/k)i/2 · 1.05 · √ρ)

≤M + (λ+ 1) ·
M∑
i=1

1

i · log(
√
k/2)− log(1.05 · √ρ)

≤M +
λ+ 1

log(
√
k/2)

·
M∑
i=1

1

i− log(1.05·√ρ)
log(
√

k/2)

< M +
λ+ 1

log(
√
k/2)

·

log

 M

− log(1.05·√ρ)
log(
√

k/2)

+ 1

+ 1


= Ok

(
log d+ λ · log

(
log d

− log
√
ρ

))
,

where the final inequality follows by applying Fact C.1.

Round-by-round soundness. We begin by confirming the requirements needed in order to apply
Lemma 5.4 using B⋆(ρ) =

√
ρ as defined in Theorem 4.1.

• δ0 ∈ (0,∆(f,RS[F,L0, d0])]∩(0, 1−
√
ρ0): this holds by the definition of δ0 := min{δ, 1−√ρ0−η0},

since δ := ∆(f,RS[F,L0, d0]) and η0 > 0.

• δi ∈
(
0, min{1− ρi − 1/|Li|, 1−

√
ρi}
)
: since δi := 1 − √ρi − ηi with ηi > 0, it holds that

δi < 1−√ρi. Since d ≥ 4, it holds that 1− ρi− 1/|Li| = 1− (1+ 1/d) · ρi < 1− 1.25 · ρi. Finally,
1.25 · ρi <

√
ρi holds since ρi ≤ 0.5, and so δi < 1−√ρi < 1− ρi − 1/|Li|.

• RS[F,Li, di] is (δi, ℓi)-list decodable: by the Johnson bound (Theorem 3.4), since δi := 1−√ρi−ηi
this holds for ℓi =

1
2·ηi·
√
ρi

.

Now we can derive the round-by-round soundness bounds, using

err⋆(d, ρ, δ,m) :=
(m− 1) · d2

|F| ·
(
2 ·min

{
1−√ρ− δ,

√
ρ

20

})7 ,

as in Theorem 4.1:

53

• εfold:

εfold ≤ err⋆(d0/k0, ρ0, δ0, k0)

=
(k − 1) · (d/k)2

|F| ·
(
2 ·min

{
1−√ρ− δ′,

√
ρ/20

})7 ≤ 2−λ

≤ (k − 1) · (d/k)2

|F| ·
(
2 ·min

{
max

{
1−√ρ− δ, η0

}
,
√
ρ/20

})7 ≤ 2−λ

≤ (k − 1) · (d/k)2

|F| ·
(
2 ·min

{
η0,
√
ρ/20

})7 ≤ 2−λ

≤ (k − 1) · (d/k)2

|F| · (2 · η0)7

≤ 2−λ ,

where the final inequality holds since η0 =
(
2λ·(k−1)·(d/k)2

27·|F|

)1/7
.

• εouti :

εouti ≤
dsi · ℓ2i

2 · (|F| − |Li|)s
≤ 1

4 · η2i · ρi
· di
2 · (|F| − |Li|)

=
1

η2i
· di
8 · ρi · (|F| − |Li|)

≤ 2−λ ,

where the final inequality holds since ηi ≥
(

2λ·di
8·ρi·(|F|−|Li|)

)1/2
.

• εshifti : we first observe that (1− δi−1)
ti−1 = (

√
ρi + ηi)

⌈
λ+1

− log(
√
ρi+ηi)

⌉
≤ 2−λ−1. Next, observe that:

err⋆(di, ρi, δi, ti−1 + s) + err⋆(di/ki, ρi, δi, ki)

=
ti−1 · d2i

|F| ·
(
2 ·min

{
ηi,
√
ρi

20

})7 +
(k − 1) · (di/k)2

|F| ·
(
2 ·min

{
ηi,
√
ρi

20

})7
=

ti−1 · d2i + (k − 1) · (di/k)2

|F| · (2 · ηi)7

= 2−λ−1 .

The final inequality holds since ηi ≥
(

2λ+1·(ti−1·d2i+(k−1)·(di/k)2)
27·|F|

)1/7

. Finally,

εshifti ≤ (1− δi−1)
ti−1 + err⋆(di, ρi, δi, ti−1 + s) + err⋆(di/ki, ρi, δi, ki)

≤ 2−λ−1 + 2−λ−1

= 2−λ .

• εfin: it holds that εfin ≤ (1− δM)tM = (
√
ρM + ηM)

⌈
λ

− log(
√
ρM+ηM)

⌉
≤ 2−λ.

54

C.2 Conjectured security

We bound the properties of the IOPP described in Section 5.3 when assuming Conjecture 5.6. We
begin by showing that ηi < ρi/2, then bound the complexity parameters, and finally bound round-
by-round soundness error of the protocol. Note that these parameters are based on the improved
ones derived in Remark 5.3.
Bounds on η values. We show that since

|F| > (λ+ 1) · 2λ+2 · d · |L|3 ·
(
s+max

{⌈
1

− log(1− δ′)

⌉
,

⌈
1

− log(1.5 · ρ)

⌉})
,

it holds that ηi ≤ ρi/2 for every i. First observe that

|F| > 2λ+2 · d · |L|3 · (s+max {t0, ti}) ,

We now bound the η parameters.

• i = 0:

η0 =

(
2λ · (k − 1)c2 · (d/k)c2

ρc1+c2 · |F|

)1/c1

=
2λ · (k − 1) · (d/k)

ρ2 · |F|
<

2λ · d
ρ2
· 1

2λ+1 · |L|3
<

ρ

2
.

• i > 0:

ηi := max

{
2 · ρi
di

,
di
ρi
·
(

2λ · dsi
2 · (|F| − |Li|)s

) 1
2·c3

,

(
2λ+1 · dc2i
ρc1+c2
i · |F|

·
(
(ti−1 + s− 1)c2 +

(
k − 1

k

)c2))1/c1
}

= max

{
2 · ρi
di

,
di
ρi
·
(

2λ · d2i
2 · (|F| − |Li|)2

) 1
2

,
2λ+1 · di
ρ2i · |F|

·
(
(ti−1 + 1) +

(
k − 1

k

))}
.

We show that each option is bounded by ρi
2 .

– First option: 2·ρi
di

< ρi
2 since 4 ≤ dstop ≤ di.

– Second option:

di
ρi
·
(

2λ · d2i
2 · (|F| − |Li|)2

) 1
2

< |L| ·
(

2λ · d2i
2 · (|F| − |L|)2

) 1
2

≤ |L| ·
(

2λ · d2

4 · 2λ · d2 · |L|6

) 1
2

<
ρ

2 · d
<

ρi
2

.

– Third option:

2λ+1 · di
ρ2i · |F|

·
(
(ti−1 + 1) +

(
k − 1

k

))
<

2λ+1 · di
ρ2i · |F|

· (ti−1 + 2)

<
2λ+1 · d · |L|2 · (ti−1 + 2)

2λ+2 · d · |L|3 · (ti−1 + 2)

=
ρ

2 · d
<

ρi
2

.

55

Complexity parameters. The complexity parameters of the protocol are as follows:

• Rounds. 2M + 1 = 2 · ⌊logk(d/dstop)⌋+ 1.

• Proof length. M · s+ d∏M
i=0 ki

+
M∑
i=1

|Li|

= 2 · s · ⌊logk(d/dstop)⌋+
d

k⌊logk(d/dstop)⌋
+

⌊logk d⌋∑
i=1

|L|
2i

≤ |L|+ 2 · s · ⌊logk(d/dstop)⌋+ k · dstop − 1 .

• Input query complexity. t0 ≤ λ
− log(1−δ′) .

• Proof query complexity. Observe that log(1.5·ρ)
log(k/2) < 0 since ρ ≤ 1/2. Therefore the proof query

complexity is:

M∑
i=1

ti =
M∑
i=1

⌈
λ+ 1

− log(ρi + ηi)

⌉

≤M + (λ+ 1) ·
M∑
i=1

1

− log(ρi + ρi/2)

≤M + (λ+ 1) ·
M∑
i=1

1

− log((2/k)i · 1.5 · ρ)

≤M + (λ+ 1) ·
M∑
i=1

1

i · log(k/2)− log(1.5 · ρ)

≤M +
λ+ 1

log(k/2)
·

M∑
i=1

1

i− log(1.5·ρ)
log(k/2)

< M +
λ+ 1

log(k/2)
·

log

 M

− log(1.5·ρ)
log(k/2)

+ 1

+ 1


= Ok

(
log d+ λ · log

(
log d

− log ρ

))
,

where the final inequality follows by applying Fact C.1.

Round-by-round soundness. We begin by confirming the requirements needed in order to apply
Lemma 5.4 using B⋆(ρ) = ρ as defined in Conjecture 5.6.

• δ0 ∈ (0,∆(f,RS[F,L0, d0])]∩ (0, 1− ρ0): this holds by the definition of δ0 := min{δ, 1− ρ0 − η0},
since δ := ∆(f,RS[F,L0, d0]) and η0 > 0.

• δi ∈ (0, min{1− ρi − 1/|Li|, 1− ρi}): this holds since δi := 1− ρi − ηi with ηi ≥ 2/|Li|.

• RS[F,Li, di] is (δi, ℓi)-list decodable: by the Conjecture 5.6, since δi := 1 − ρi − ηi this holds for
ℓi =

(
di

ρi·ηi

)c3
.

56

Now we can derive the round-by-round soundness bounds, using

err⋆(d, ρ, δ,m) :=
(m− 1)c2 · dc2
ηc1 · ρc1+c2 · |F|

,

as in Conjecture 5.6:

• εfold:

εfold ≤ err⋆(d0/k0, ρ0, δ0, k0)

=
(k − 1)c2 · (d/k)c2
ηc10 · ρc1+c2 · |F|

≤ 2−λ ,

where the final inequality holds since η0 =
(
2λ·(k−1)c2 ·(d/k)c2

ρc1+c2 ·|F|

)1/c1
.

• εouti :

εouti ≤
dsi · ℓ2i

2 · (|F| − |Li|)s
≤
(

di
ρi · ηi

)2·c3
· dsi
2 · (|F| − |Li|)s

≤ 2−λ ,

where the final inequality holds since ηi ≥ di
ρi
·
(

2λ·dsi
2·(|F|−|Li|)s

) 1
2·c3 .

• εshifti : we first observe that (1− δi−1)
ti−1 = (ρi + ηi)

⌈
λ+1

− log(ρi+ηi)

⌉
≤ 2−λ−1. Next, observe that:

err⋆(di, ρi, δi, ti−1 + s) + err⋆(di/ki, ρi, δi, ki)

=
(ti−1 + s− 1)c2 · dc2i

ηc1i · ρ
c1+c2
i · |F|

+
(k − 1)c2 · (di/k)c2

ηc1i · ρ
c1+c2
i · |F|

=
dc2i

ηc1i · ρ
c1+c2
i · |F|

·
(
(ti−1 + s− 1)c2 +

(
k − 1

k

)c2)
= 2−λ−1 .

The final inequality holds since ηi ≥
(

2λ+1·dc2i
ρ
c1+c2
i ·|F|

·
(
(ti−1 + s− 1)c2 +

(
k−1
k

)c2))1/c1

. Finally,

εshifti ≤ (1− δi−1)
ti−1 + err⋆(di, ρi, δi, ti−1 + s) + err⋆(di/ki, ρi, δi, ki)

≤ 2−λ−1 + 2−λ−1

= 2−λ .

• εfin: it holds that εfin ≤ (1− δM)tM = (ρM + ηM)

⌈
λ

− log(ρM+ηM)

⌉
≤ 2−λ.

57

Acknowledgments

We thank Ariel Gabizon, Ron Rothblum, and Justin Thaler for helpful comments on presentation,
and Marcin Górny, Francesco Intoci, Pratyush Mishra, and Andrew Zitek-Estrada for assisting with
the Merkle tree and Fast Fourier Transform implementations in arkworks.

Gal Arnon is supported in part by a grant from the Israel Science Foundation (Grant No.
2686/20), by the Simons Foundation Collaboration on the Theory of Algorithmic Fairness, and by
the Israeli Council for Higher Education (CHE) via the Weizmann Data Science Research Center.
Alessandro Chiesa and Giacomo Fenzi are supported in part by the Ethereum Foundation. Eylon
Yogev is supported by an Alon Young Faculty Fellowship, by the Israel Science Foundation (Grant
No. 2302/22).

References

[ACY23] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “IOPs with Inverse Polynomial Soundness
Error”. In: 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2023, Santa Cruz, CA, USA, November 6-9, 2023. IEEE, 2023, pp. 752–761.

[ALMSS98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. “Proof
verification and the hardness of approximation problems”. In: Journal of the ACM 45.3
(1998). Preliminary version in FOCS ’92., pp. 501–555.

[AS98] Sanjeev Arora and Shmuel Safra. “Probabilistic checking of proofs: a new characterization
of NP”. In: Journal of the ACM 45.1 (1998). Preliminary version in FOCS ’92., pp. 70–122.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed–Solomon In-
teractive Oracle Proofs of Proximity”. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming. ICALP ’18. 2018, 14:1–14:17.

[BCIKS20] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. “Prox-
imity Gaps for Reed–Solomon Codes”. In: Proceedings of the 61st Annual IEEE Symposium
on Foundations of Computer Science. FOCS ’20. 2020, pp. 900–909.

[BCRSVW19] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. “Aurora: Transparent Succinct Arguments for R1CS”. In: Proceedings of
the 38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’19. 2019, pp. 103–128.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In:
Proceedings of the 14th Theory of Cryptography Conference. TCC ’16-B. 2016, pp. 31–60.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. “Checking computa-
tions in polylogarithmic time”. In: Proceedings of the 23rd Annual ACM Symposium on
Theory of Computing. STOC ’91. 1991, pp. 21–32.

[BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. “DEEP-FRI: Sam-
pling Outside the Box Improves Soundness”. In: Proceedings of the 11th Innovations in
Theoretical Computer Science Conference. ITCS ’20. 2020, 5:1–5:32.

[BGKTRTZ23] Alexander R. Block, Albert Garreta, Jonathan Katz, Justin Thaler, Pratyush Ranjan Ti-
wari, and Michal Zajac. “Fiat-Shamir Security of FRI and Related SNARKs”. In: Advances
in Cryptology - ASIACRYPT 2023 - 29th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Guangzhou, China, December 4-8, 2023,
Proceedings, Part II. Ed. by Jian Guo and Ron Steinfeld. Vol. 14439. Lecture Notes in
Computer Science. Springer, 2023, pp. 3–40.

58

[BS08] Eli Ben-Sasson and Madhu Sudan. “Short PCPs with Polylog Query Complexity”. In: SIAM
Journal on Computing 38.2 (2008). Preliminary version appeared in STOC ’05., pp. 551–
607.

[Bab85] László Babai. “Trading group theory for randomness”. In: Proceedings of the 17th Annual
ACM Symposium on Theory of Computing. STOC ’85. 1985, pp. 421–429.

[Din07] Irit Dinur. “The PCP theorem by gap amplification”. In: Journal of the ACM 54.3 (2007),
p. 12.

[FGLSS96] Uriel Feige, Shafi Goldwasser, Laszlo Lovász, Shmuel Safra, and Mario Szegedy. “Interactive
proofs and the hardness of approximating cliques”. In: Journal of the ACM 43.2 (1996).
Preliminary version in FOCS ’91., pp. 268–292.

[GKKRRS19] Lorenzo Grassi, Daniel Kales, Dmitry Khovratovich, Arnab Roy, Christian Rechberger,
and Markus Schofnegger. Starkad and Poseidon: New Hash Functions for Zero Knowledge
Proof Systems. IACR Cryptology ePrint Archive, Report 2019/458. 2019.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. “The knowledge complexity of inter-
active proof systems”. In: SIAM Journal on Computing 18.1 (1989). Preliminary version
appeared in STOC ’85., pp. 186–208.

[Her] Hermez. https://hermez.io.

[KR08] Yael Kalai and Ran Raz. “Interactive PCP”. In: Proceedings of the 35th International Col-
loquium on Automata, Languages and Programming. ICALP ’08. 2008, pp. 536–547.

[Mid] Miden. https://github.com/0xPolygonMiden.

[Mie09] Thilo Mie. “Short PCPPs verifiable in polylogarithmic time with O(1) queries”. In: Annals
of Mathematics and Artificial Intelligence 56 (3 2009), pp. 313–338.

[Nep] Netpture. https://neptune.cash/.

[Ola] Ola. https://ola.finance. Accessed: insert date here.

[Pol] Polygon. https://polygon.technology.

[RR20] Noga Ron-Zewi and Ron Rothblum. “Local Proofs Approaching the Witness Length”. In:
Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science.
FOCS ’20. 2020, pp. 846–857.

[RR22] Noga Ron-Zewi and Ron D. Rothblum. “Proving as Fast as Computing: Succinct Arguments
with Constant Prover Overhead”. In: Proceedings of the 54th ACM Symposium on the
Theory of Computing. STOC ’22. 2022, pp. 1353–1363.

[RRR16] Omer Reingold, Ron Rothblum, and Guy Rothblum. “Constant-Round Interactive Proofs
for Delegating Computation”. In: Proceedings of the 48th ACM Symposium on the Theory
of Computing. STOC ’16. 2016, pp. 49–62.

[RS60] I. S. Reed and G. Solomon. “Polynomial Codes Over Certain Finite Fields”. In: Journal of
the Society for Industrial and Applied Mathematics 8.2 (1960), pp. 300–304.

[Ris] Risc0. https://risc0.com.

[San] Sandstorm. https://github.com/andrewmilson/sandstorm.

[Staa] StarkEx. https://starkware.co/starkex/.

[Stab] StarkNet. https://www.starknet.io/.

[Sta21] StarkWare. ethSTARK Documentation. Cryptology ePrint Archive, Paper 2021/582. https:
//eprint.iacr.org/2021/582. 2021. url: https://eprint.iacr.org/2021/582.

[Zks] zkSync. https://zksync.io.

[ark] arkworks. An ecosystem for developing and programming with zkSNARKs. arkworks.rs.

59

https://hermez.io
https://github.com/0xPolygonMiden
https://neptune.cash/
https://ola.finance
https://polygon.technology
https://risc0.com
https://github.com/andrewmilson/sandstorm
https://starkware.co/starkex/
https://www.starknet.io/
https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2021/582
https://eprint.iacr.org/2021/582
https://zksync.io
arkworks.rs

	Abstract
	Contents
	1 Introduction
	1.1 A new Reed–Solomon proximity test
	1.2 Additional result: batch degree correction

	2 Techniques
	2.1 Overview of STIR
	2.2 Anatomy of a STIR iteration
	2.3 Efficient degree correction

	3 Preliminaries
	3.1 Interactive oracle proofs of proximity and their polynomial variant
	3.2 The Reed–Solomon code

	4 Tools for Reed–Solomon codes
	4.1 Random linear combination as a proximity generator
	4.2 Univariate function quotienting
	4.3 Out of domain sampling
	4.4 Folding univariate functions
	4.5 Combining functions of varying degrees

	5 STIR
	5.1 Construction
	5.2 Round-by-round soundness
	5.3 Recommended parameters

	6 Implementation and experimental results
	6.1 Implementation
	6.2 Parameter choices
	6.3 Benchmarks
	6.4 Results

	7 An efficient compiler for poly-IOPs
	7.1 Construction
	7.2 Round-by-round knowledge soundness

	A Additional experimental data
	B A poly-IOP for R1CS
	B.1 Construction
	B.2 Completeness
	B.3 Round-by-round knowledge soundness

	C Derivations for sec:STIR-recommended-settings
	C.1 Provable security
	C.2 Conjectured security

	Acknowledgments
	References

