
SPY-PMU: Side-Channel Profiling of Your Performance
Monitoring Unit to Leak Remote User Activity

Md Kawser Bepary, Arunabho Basu, Sajeed Mohammad, Rakibul Hassan, Farimah Farahmandi, Mark Tehranipoor
Dept. of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611, USA
Email: {mdkawser.bepary, arunabhobasu, mlnu, rhassan1}@ufl.edu, {farimah, tehranipoor}@ece.ufl.edu

Abstract—The Performance Monitoring Unit (PMU), a stan-
dard feature in all modern computing systems, presents signif-
icant security risks by leaking sensitive user activities through
microarchitectural event data. This work demonstrates the fea-
sibility of remote side-channel attacks leveraging PMU data,
revealing vulnerabilities that compromise user privacy and enable
covert surveillance without physical access to the target machine.
By analyzing the PMU feature space, we create distinct micro-
architectural fingerprints for benchmark applications, which are
then utilized in machine learning (ML) models to detect the cor-
responding benchmarks. This approach allows us to build a pre-
trained model for benchmark detection using the unique micro-
architectural fingerprints derived from PMU data. Subsequently,
when an attacker remotely accesses the victim’s PMU data, the
pre-trained model enables the identification of applications used
by the victim with high accuracy. In our proof-of-concept demon-
stration, the pre-trained model successfully identifies applications
used by a victim when the attacker remotely accesses PMU
data, showcasing the potential for malicious exploitation of PMU
data. We analyze stress-ng benchmarks and build our classifiers
using logistic regression, decision tree, k-nearest neighbors, and
random forest ML models. Our proposed models achieve an
average prediction accuracy of 98%, underscoring the potential
risks associated with remote side-channel analysis using PMU
data and emphasizing the need for more robust safeguards. This
work underscores the urgent need for robust countermeasures
to protect against such vulnerabilities and provides a foundation
for future research in micro-architectural security.

Index Terms—Cybersecurity, Microarchitectural Security, Side
Channel Analysis, Performance Monitoring Unit (PMU), Appli-
cation Fingerprinting, User Activity Leakage

I. INTRODUCTION

In the past decade, side-channel attacks have emerged as
critical threats since they can leak sensitive data about security
assets or user activity [1], [2]. Unlike traditional attacks, which
exploit vulnerabilities in software or hardware, side-channel
attacks exploit information leaked in the form of timing data,
power consumption, electromagnetic emissions, etc which is
inadvertently leaked by a computing system during normal
operation. Studying the hardware behavior based on the subtle
variations from the data leaked physically to its surroundings,
attackers can infer security assets or user behavior, compro-
mising the system integrity and privacy. These attacks are
particularly insidious because they bypass traditional security
measures designed to safeguard software or network layers,
revealing a significant blind spot in modern defenses [2].

Performance Monitoring Units (PMUs), designed to provide
low-level insights into microarchitectural events, have emerged

Fig. 1: Overview of the potential risks associated with PMU
data in a side-channel attack

as a powerful source of side-channel data. PMUs are capable
of recording detailed patterns of CPU utilization, memory
access, cache behavior, and other microarchitectural activities
[3], [4]. While their intended use is to aid diagnostics and
debugging, their granularity makes them attractive for mali-
cious purposes. Studies have shown that PMU data can be
exploited to infer higher-level applications through machine
learning (ML) models trained on low-level microarchitectural
behavior [5], [6]. This highlights the dual-edged nature of
PMU functionality: beneficial for legitimate use but vulnerable
to misuse by adversaries.

A particularly concerning dimension of PMU-based attacks
is their potential for remote execution [7]. Attackers can
exploit software vulnerabilities to gain unauthorized access
to PMU data, enabling remote analysis and inference of user
activity. This risk is amplified in cloud computing and multi-
tenant environments where multiple users share the same phys-
ical hardware [8], [9]. Unlike traditional side-channel attacks
that often require physical proximity to the target, PMU-based
remote attacks can be executed covertly, leaving no forensic
trace on the victim’s system. Figure 1 provides an overview of
the potential risks associated with PMU data in a side-channel
attack, illustrating the threats posed by unauthorized access
and misuse of PMU data. Recent work, such as speculative
execution attacks [7], has demonstrated how PMU data can
serve as a foundation for extracting sensitive user information,
emphasizing the need for robust defenses against this class of
attacks.

Although prior research has explored side-channel vulnera-



bilities using PMU data [4], [8], much of the focus has been
on coarse-grained profiling or constrained environments. The
potential for leveraging PMU data to execute remote attacks in
real-world, multi-tenant settings remains underexplored. Addi-
tionally, prior works have primarily demonstrated benchmark
classification, but have not addressed more impactful applica-
tions, such as inferring cryptographic keys or user credentials
[5], [7]. Our work bridges this gap by presenting a proof of
concept that demonstrates the feasibility of remote user activity
detection using PMU profiling in practical environments.

To this end, we systematically collected PMU data across
several CPU benchmarks, representing a wide range of mi-
croarchitectural events. Through detailed analysis, we ob-
served distinctive patterns that correlate higher-level user ac-
tivities with low-level hardware behavior. By leveraging these
insights, we trained ML classifiers to detect user activities with
high accuracy, achieving up to 99% prediction accuracy. Our
contributions are as follows:

• Profiling Microarchitectural Behavior: We developed
application-specific microarchitectural profiles based on
PMU data, offering detailed insights into user activity.

• Analysis of PMU Events: We identified key PMU events
that significantly contribute to user activity classification,
providing a foundation for efficient feature selection.

• Remote Activity Classification: We demonstrated the
feasibility of using PMU data to classify user activities
remotely in shared computing environments.

• Call for Security Measures: We emphasized the urgent
need for countermeasures to mitigate PMU-based side-
channel attacks, such as access restrictions and obfusca-
tion techniques.

Our findings underscore the necessity of re-evaluating the
security risks posed by PMU functionality in modern pro-
cessors. While PMU data provides valuable diagnostic capa-
bilities, its misuse presents a critical security challenge. By
highlighting the feasibility of remote PMU-based attacks, our
work not only raises awareness but also calls for a concerted
effort to develop robust defenses that can prevent unauthorized
exploitation of PMU data.

II. BACKGROUND

A. Performance Monitoring Unit (PMU)

Performance Monitoring Units (PMUs) [9] are specialized
hardware components embedded in modern processors that
provide observability of micro-architectural events involved
during program execution [9]. They play a great role in debug-
ging, performance profiling and system optimization. PMUs
are implemented using Model Specific Registers (MSR),
which are programmable registers embedded in the CPU. They
can be programmed to perform a specific task; in this case, the
PMU is implemented by programming them to form simple
counters that increment by 1 whenever a particular micro-
architectural event is observed [10]. The processors ship with
pre-programmed PMU events called native events, but it is
possible to program our own custom events. The native events

are robust enough for achieving the goal of our proof of
concept.

Modern processors have PMUs that support recording of a
wide range of micro-architectural events indicative of system
performance, like cache misses, branch predictions, memory
accesses and CPU cycles. These allow developers to monitor
and analyze the interaction of their software with underly-
ing hardware. For example, high cache miss rates would
imply that the software is not utilizing memory hierarchies
efficiently, prompting the developer to optimize their code.
PMUs provide fine grained visibility into micro-architectural
events. However, the same granular recording of low-level
tasks, which is beneficial for developers, can be exploited
by attackers to perform side-channel attacks (SCAs) [6], [9].
By analyzing the variations in cache behavior [11], memory
accesses [12] or CPU branch patterns, an attacker can infer
user activities [13]. This capability is particularly concerning
in shared environments, such as multi-tenant cloud systems,
where attackers can eavesdrop on a victim’s workload by
analyzing PMU data [14].

In recent years, PMUs have been increasingly exploited
in SCAs where attackers analyzed the micro-architectural
behavior of the target system to infer sensitive information,
such as cryptographic keys [12] or user activity, often with
surprising accuracy [9], [15]–[17]. The ability to carry out
these attacks remotely, coupled with the difficulty of detecting
them, amplifies their threat [8]. PMU-based attacks remain
largely underexplored in terms of mitigation, underscoring the
need for robust security mechanisms.

B. Remote Side-Channel Attacks

While traditional Side Channel Attacks rely on physical
access to hardware or its proximity to be able to capture
and measure physical attributes like power consumption, elec-
tromagnetic emission or noise generation during computing
operation, remote SCA [18] involve a connected network
and software interfaces. The threat model for remote SCA
assumes that an attacker has privileged access to the target
computer. An attacker can attain elevated privileges exploiting
a multitude of vulnerabilities. Once privileged access is ob-
tained, an attacker can obtain unauthorized remote to hardware
resources like the PMUs. They can be remotely activated
using system calls or APIs like Performance-API (PAPI)
present in modern Operating Systems. Subsequently they can
record micro-architectural events and exfiltrate the data to
remote computer, achieving remote monitoring [19], [20].
These attacks are stealthy as they do not noticeably modify
any system software or hardware and PMU data collection
incurs very little performance overhead. The attacker’s process
can run in the background collecting PMU data and exfiltrate
it for remote analysis leaving no traces on the target machine.
These characteristics of a remote SCA using PMU data make
it very hard to detect and mitigate.

This problem of remote SCA is of particular concern [21]
in multi-tenant environments like cloud computing [22], [23],
where multiple users share the same underlying physical



hardware [24] and rely on virtualization to maintain isolation
between processes. However PMU data is often accessible
across Virtual Machines (VMs), which would allow an attacker
to monitor the micro-architectural behavior involved in other
tenant’s workloads [14]. This vulnerability [25] can be ex-
ploited to infer application exectuion patterns, memory access
behavior or even cryptographic operations [26], [27] occuring
in another tenant’s VM. Thus, with the increased usage of
multi-tenant environments, it is critical to address the growing
threat posed by remote SCA. Detection and mitigation of such
attacks require robust security mechanisms that can limit unau-
thorized access to PMU data, obfuscate micro-architectural
event process or its logging, insert appropriate amount of noise
into PMU data so that SCA are less effective but the data is
still usable for debugging and system optimization. Hardware
based counter-measures like restricting PMU access during
execution of sensitive operations or adopting secure processor
designs that minimize side channel leakage could be pivotal
for safeguarding against such attacks.

C. Related Work

Physical side-channel [1], [2] attacks have become a signif-
icant threat to computing systems. This is because without ex-
ploiting any complex vulnerability of the system, attackers can
extract sensitive information from various physical phenomena
[1]–[4], [13], [19] like electromagnetic radiation, power con-
sumption, and cache behavior – that are inadvertently leaked
by hardware components during normal operation. A wide
range of techniques [7]–[9] has been developed to execute
such attacks or detect and mitigate them. One of the seminal
works in this domain [19] showed that built-in sensors on
modern PCs can be used to perform physical side-channel
attacks remotely with no physical access to the victim’s
PC. They proved that the electromagnetic radiation leaked
into the surroundings is deterministic enough to accurately
profile the victim’s user activity and this can be achieved by
just exploiting the inbuilt microphone sensor on the victim’s
computer which can pick up on the electromagnetic leakage.

In parallel, major developments have been made in side-
channel analysis involving PMU counters. Prior works [8]
have shown that PMU counters can be super effective in
side channel analysis and attacks. They demonstrated that all
existing cache-side channel attacks are possible using PMUs.
As a proof of concept, they implement successful attacks using
PMU data, which exploit transient execution vulnerabilities
like ZombieLand. Using this attack, they were successfully
able to beat the Intel SGX and extract the AES encryption
key from within the SGX enclave, thus proving the efficacy
of PMUs in SCA. They also demonstrated [9] a novel side-
channel attack that uses PMU counters to record events during
transient executions without rollback. Countermeasures against
this type of attack are – 1) hardware changes to rollback PMU
counters during transient executions; and 2) disabling PMU
when Intel SGX is in use.

In a related area, thousands of non-documented PMU events
[10] were found to exist that can be used to perform side-

channel analysis or attacks. The register used to select PMU
events supports 216 unique combinations while only about 300
are documented by chip manufacturers. The authors proved
that using non-documented patterns leads to non-documented
PMUs which can be used to profile microarchitectural behav-
ior with varying degrees of success.

A novel attack, [28] combines power analysis with transient
execution attacks to enhance the extraction of sensitive data.
A multi-dimensional attack like this power side channel attack
is hard to detect and can leak sensitive data. Another novel
attack [29] demonstrated that a very lightweight framework
of just CSS and HTML can be used to execute cache-based
side channel attacks in browsers. The most significant part of
this attack is that its architecture is agnostic and it has the
capability of bypassing default security configurations. [30]
showed how power consumption data is directly related to
CPU activity and can be used to extract cryptographic keys and
other security assets through techniques like SPA and DPA.
This power consumption data could be accessed without admin
privileges at the time of the publication of this paper.

In addition to these novel attacks using side-channel anal-
ysis, there have also been major advances in detecting and
mitigating side-channel leakage. For instance, [7] developed
a framework to quantify side-channel leakage from different
cache architectures. This is done by modeling cache behavior
and identifying potential leaks. The quantified leakage across
various cache architectures would be useful to build secure
cache architectures that would be resistant to side-channel at-
tacks on cache using PMUs. [31] designed a detection system
that combines Intel Cache Monitoring Technology (CMT) and
HPCs to identify cache-based side-channel attacks. The fine
granularity of CMT data, combined with statistical methods
like Gaussian Anomaly Detection provides high accuracy with
minimal performance overhead. [32] demonstrated that thread-
level monitoring HPCs can give more granular data which can
be used to identify cache side-channel attacks with greater
precision. It complements other HPC-based detection systems
and increases their efficiency.

These studies highlight the ongoing arms race between
attackers and defenders exploiting side channel analysis at the
physical layer. The diverse approaches and ongoing challenges
call for continuous advancement in identifying new vulnera-
bilities and making roadways into detection and mitigation
mechanisms.

III. THREAT MODEL

This study examines a Performance Monitoring Unit
(PMU)-based side-channel attack in multi-tenant environ-
ments, such as cloud computing platforms, data centers, and
virtualized systems, where multiple users share the same phys-
ical hardware. These setups inherently rely on virtualization
and logical isolation between tenants, which may inadvertently
expose shared resources to side-channel exploitation [22], [24].
We consider an attacker who leverages privileged access to
monitor PMU data and deduce sensitive user activities or



Fig. 2: Threat model of a PMU-based side-channel attack in
a shared system.

extract security-critical information from co-resident victims
on the shared system. Figure 2 illustrates the attack scenario.

A. Attacker Capabilities

The attacker in this threat model is assumed to possess the
following capabilities:

• Remote Access to PMU Data: The attacker has remote
access to the PMU data of the shared system. This access
is facilitated through root or administrative privileges, al-
lowing the attacker to monitor various microarchitectural
events such as CPU utilization, memory accesses, and
cache behavior. Such elevated privileges are realistic, as
demonstrated in prior works that exploit vulnerabilities
for privilege escalation [8], [9], [33].

• No Physical Proximity: The attack is executed remotely
without the need for physical access to the victim’s
machine. The attacker executes a non-intrusive, low-
overhead process or code that interfaces with the PMU,
capturing microarchitectural event data while the victim
performs sensitive tasks, such as entering credentials or
executing cryptographic computations [34]. This capabil-
ity underscores the stealthy nature of the attack, as PMU
data collection leaves minimal traces on the victim’s
system.

• Machine Learning-Based Inference: The attacker pre-
trains a machine learning model using PMU data from
known workloads, including those involving sensitive
user activities. This model is subsequently used to classify
victim activities by correlating observed PMU traces
with specific application patterns [17]. The attacker’s
expertise in feature selection, dimensionality reduction,
and classifier training enables efficient inference despite
the challenges posed by noise or multi-user environments.

Additionally, the attacker can scale their analysis to multiple
users in a shared environment, leveraging the shared hardware
to target several victims simultaneously [25]. This capability
raises the stakes in multi-tenant setups, highlighting the insuf-
ficiency of current isolation mechanisms.

B. Attack Scenario

In this multi-tenant environment, the attacker and victim
share the same physical hardware. The victim’s tasks, such

as online banking, browsing sensitive websites, or performing
cryptographic operations, inadvertently generate distinguish-
able microarchitectural patterns captured by the PMU. The
attacker runs a malicious process that collects PMU event data,
either through APIs (e.g., Performance API or PAPI) or direct
system calls, without the victim’s awareness.

The attacker analyzes the PMU data to infer the victim’s
activities. For instance:

• By examining cache miss rates and memory access
patterns, the attacker could determine the types of ap-
plications the victim is running.

• By observing subtle variations during cryptographic oper-
ations, the attacker could infer key-dependent execution
patterns, potentially enabling cryptographic key extrac-
tion [7].

In multi-user scenarios, the attacker can utilize advanced
machine learning techniques to distinguish individual users’
activities despite noise and overlapping processes. This scal-
ability further amplifies the attack’s potential in real-world
environments [25].

C. Security Implications

The implications of such an attack extend beyond mere
activity detection and pose serious privacy and security risks:

• Privacy Violation: By classifying workloads, the attacker
can infer sensitive user activities such as specific websites
visited, keystrokes, or application usage. These insights
could facilitate secondary attacks, such as phishing or
financial fraud, compromising the victim’s personal and
financial data [34].

• Cryptographic Key Leakage: PMU-based monitoring
of cryptographic operations increases the risk of key
extraction through side-channel leakage. This is partic-
ularly dangerous in environments where encryption is
relied upon for secure communications or sensitive data
handling [7], [8].

• Increased Vulnerability in Shared Environments:
Multi-tenant environments, common in cloud computing,
exacerbate the risk by enabling attackers to observe and
exploit shared hardware resources. The attacker’s ability
to scale the attack across multiple users increases the
impact and difficulty of detection [22], [25].

• Stealth and Detectability: The benign nature of PMU
data collection makes these attacks stealthy and chal-
lenging to detect. PMU data is routinely logged for
diagnostics, and its collection incurs minimal perfor-
mance overhead, allowing the attacker to operate without
triggering suspicion [6].

This threat model emphasizes the urgency of addressing
PMU-based side-channel vulnerabilities, particularly in sce-
narios involving shared hardware and multi-user environments.
Robust countermeasures, such as restricting PMU access dur-
ing sensitive operations, introducing noise into PMU data, and
adopting secure hardware designs, are necessary to mitigate
this emerging threat.



IV. METHODOLOGY

This section outlines the methodology for demonstrating
the feasibility of a PMU-based remote side-channel attack.
By systematically collecting PMU data, extracting relevant
features, and employing machine learning classifiers, we show
how user activity can be inferred in a shared computing
environment. The methodology is organized into the follow-
ing stages: Benchmark Execution, Data Collection, Feature
Extraction, Classification Modeling, and Model Evaluation.
Figure 3 provides an overview of the process.

A. Benchmark Applications Execution

The first stage involved collecting PMU data for a set of
benchmark applications. Stress-ng benchmarking suite [35]
was chosen for our work because it has a diverse set of
benchmark applications that can cover a wide range of mi-
croarchitectural events. The benchmarks stress different parts
of CPU and memory subsystems by performing a range of
computational tasks indicative of common workloads. These
chosen benchmarks can be broadly categorized as follows :

• CPU and Memory-Intensive Benchmarks: These in-
clude cpu, cache, malloc, matrix, and bigheap. These
benchmarks stress the arithmetic logic units (ALUs),
cache hierarchies, and memory allocation processes. For
instance, cpu tests the processor’s computational capacity
by executing a series of arithmetic operations, while
cache focuses on the efficiency of the cache subsystem,
and malloc and bigheap stress memory allocation and
usage patterns.

• I/O-Related Benchmarks: Benchmarks like aio, io,
sendfile, and hdd are designed to test the system’s perfor-
mance under different I/O loads. These benchmarks sim-
ulate disk and network operations, such as asynchronous
I/O (aio) and file sending (sendfile), providing insights
into the processor’s handling of I/O operations and related
PMU events.

• Process Management and Security Benchmarks:
These include fork, exec, pthread, crypt, and sigsegv,
which focus on system call handling, process manage-
ment, and security operations. For example, fork and
exec simulate process creation and execution, critical
for understanding the overheads and efficiency of the
operating system’s process management routines. crypt
evaluates the system’s ability to handle cryptographic
operations, providing a security-focused perspective on
PMU data.

• System and Resource Management Benchmarks:
These benchmarks include context, schedpolicy, sched-
prio, and membarrier, which assess how the system man-
ages resources, context switching, and scheduling. These
tests provide insights into the performance overheads
associated with multitasking and resource contention,
revealing how these factors impact overall system per-
formance.

This diverse selection of benchmarks ensures comprehen-
sive coverage of the processor’s behavior under different types

of stress, allowing us to capture a wide array of PMU event
signatures that are crucial for accurate classification.

B. Data Collection Process

The PMU data was recorded over multiple iterations of
running the same benchmarking application for a regular
interval of time, 10 seconds. The Intel architecture supports
recording four PMU events simultaneously, and thus the PMU
events list was further broken down into batches of four
and each batch was measured multiple times for each bench-
marking application so that we can reduce noise in the data
preprocessing stage and get a more accurate representation
of the data. Additionally, the cache was flushed between two
instances of data recording to ensure consistency.

Algorithm 1 presents the PMU data collection process for
stress-ng benchmarks using the perf utility. We developed a
testing automation script involving two nested for loops to
traverse the entire list of benchmarks and list of PMU events
and record them. At first, the script goes over the list of
benchmarks, and for each benchmarking application on the
list, it creates a new directory and a new logfile for keeping
records. Considering one benchmark at a time, it goes over the
list of PMU events segregated in batches of four and selects
one batch consecutively, flushes the cache and then it runs the
benchmark and monitors the selected batch of PMU events
simultaneously for an interval of 10 seconds. After its done, it
pipes the output to a logfile and repeats the same steps for the
next batch of PMU events. After its done with all the batches
of the PMU events, it moves on to the next benchmarking
application and does the same.

Algorithm 1 PMU Data Collection for Stress-ng Benchmarks

Require: stress-ng benchmarks, perf event groups
Ensure: All benchmarks are executed and their PMU data is

logged
1: B ← list of benchmarks
2: E ← list of event group arrays
3: D ← directory for logs
4: Create directory D
5: for i = 1 to length(B) do
6: di ← directory for B[i]
7: Li ← log file for combined data of B[i]
8: Create directory di
9: for j = 1 to length(E[i]) do

10: Flush system caches
11: Gij ← event group E[i][j]
12: Run benchmark B[i] stressing system with Gij

13: Monitor and log PMU events of Gij to Li

14: end for
15: Log completion for B[i]
16: end for

C. Datasets

We systematically collected performance data across two
structured datasets:



CPU-Intensive

Memory-Intensive

I/O-Related

Process
Management

stress-ng Benchmarks PMU Events Data

Data 
Preprocessing Model Training

Dimensionality
Reduction

Feature Selection 

AUC-ROC

F-1 Score

Recall

Precision

User Activity
Prediction

Model Eval &
Optimization

Resource
Management

Security

CPU and Branch
Prediction

Cache Performance

Memory Access

System Events

Faults and
Interrupts

Security

Other

Data Collection

Power and Thermal
Management

Importance Score

PCA (Principal
Component Analysis)

Logistic
Regression

Decision Tree

K-Nearest
Neighbors (KNN)

Random Forest

Performance
Metrics

Machine Learning
Classifier

Accuracy

Confusion
Matrix

Benchmark Execution 

Fig. 3: Overview of the proposed methodology for PMU-based remote side-channel attack

• Dataset 1: Consists of 10 benchmarks and 20 PMU
events. This smaller dataset was used to refine prepro-
cessing, feature selection, and hyperparameter tuning.

• Dataset 2: Comprises 123 benchmarks and 81 PMU
events, providing a comprehensive dataset to evaluate the
scalability and robustness of our models.

Dataset 1 focused on core functionalities, such as cache and
memory performance, while Dataset 2 extended coverage to
broader system behaviors. This incremental approach allowed
us to develop and test our framework effectively. For Dataset
1, the benchmarks such as cache, vm, fork, io, clock, malloc,
and others were specifically chosen for their capacity to stress-
test subsystems like the CPU and memory, providing valuable
insights into performance characteristics vulnerable to side-
channel attacks. 20 PMU events selected for Dataset 1 were the
most relevant micro-architectural events involved in popular
computational tasks. The selection of PMU events is further
detailed in the following subsection.

D. Feature Extraction

After the PMU data was collected, the next stage involved
feature extraction and feature engineering so that machine
learning classifier models could be trained in the subsequent
stage.

• Selection of PMU Events: PMUs on modern processors
can monitor a wide range of microarchitectural events.
These events form the feature space of our machine
learning model. The intel processor we used in our test
setup has native support for recording of over 150 micro-
architectural events [36]. Majority of these events are
not involved in day to day computational tasks, which
necessitates the selection of PMU events that can record
micro-architectural events involved in the most popular
computational tasks. Accordingly, the most relevant PMU
events [37] were selected and grouped as shown in Table

I. These events also cover a wide range of microarchi-
tectural behaviors allowing us to build a comprehensive
microarchitectural behavioral profile.

TABLE I: Selected PMU Events

PMU Event Cate-
gory

PMU Events

CPU and Branch
Prediction

branches, branch-misses,
bus-cycles,
branch-instructions

Cache Performance cache-misses, cache-references,
L1-dcache-loads,
L1-dcache-load-misses,
LLC-loads, LLC-load-misses

Memory Access dTLB-loads, dTLB-load-misses,
mem-loads, mem-stores

System Events context-switches, cpu-clock,
task-clock, cpu-migrations

Faults and Inter-
rupts

alignment-faults, major-faults,
minor-faults, page-faults

Power and Thermal
Management

power/energy-cores,
power/energy-pkg,
msr/cpu_thermal_margin,
cstate_pkg/c6-residency

Uncore Events uncore_imc/data_reads,
uncore_imc/data_writes,
uncore_clock/clockticks,
l1d.replacement

• Feature Engineering : Next, the PMU data was prepro-
cessed to ensure our machine learning model achieves
high accuracy.

– Mean : The data over several iterations was averaged
to reduce noise and inconsistencies.

– Normalize : The data was also normalized to a
common scale so that the model focused on patterns
of behavior rather than the absolute numbers.

– Uniform sampling : Resampling was also done to
maintain uniform time intervals.

– Principal Component Analysis: With a high num-
ber of PMU events as input features, we ran the



risk of our classifier model overfitting the data and
performing poorly on test sample because of a lack
of generalization. So, it was necessary to reduce the
dimension of features the classifier trains on. This
was achieved using principal component analysis,
which reduced the dimensions of the data while
preserving the variance. The covariance matrix was
calculated for the entire feature space consisting of
PMU events, and it gave us the principal components
which maintained the highest amount of covariance.
The original feature space was subsequently reduced
using the principal components only [1], [38].

E. Classification Modeling

After the PMU data was extracted and preprocessed, several
machine learning classifiers were trained using this data.
Multiple classifiers were used because each of them offers
different strengths and trade-offs, thus allowing us to do a
comparative study of which classifier works best for this type
of data. The python package scikit-learn [39] was used to
implement these classifiers. The classifiers used are as follows:

• Logistic Regression : We started with Logistic Regres-
sion, a simple yet effective linear classifier that was able
to model the probability of a given application based on
input features [40]. The model computes the probability p
that a given set of features belongs to a particular category
(positive class) using the logistic function:

p =
1

1 + e−z
(1)

where z is defined as the linear combination of the input
features:

z = β0 + β1x1 + β2x2 + . . .+ βnxn (2)

Here β0, β1, . . . , βn are the coefficients and
x1, x2, . . . , xn represent the normalized PMU event
counts. It provided valuable insights into the linear
separability of PMU event data and formed the baseline
for the performance of more complex classifiers [40].

• Decision Tree Classifier: We implemented a Decision
Tree Classifier to capture the non-linear relationships
within the data. This model constructs a tree-like graph
of decisions, where each node represents a feature split
that best segregates the data into classes based on the
impurity measures. The decision at each node n is based
on a feature xi and a threshold τ , forming the rule:

xi ≤ τ (3)

This approach effectively illustrates how different PMU
events contribute to distinguishing between applications.
The interpretability of the decision tree is especially
valuable as it provides a clear visualization of feature
importance and decision paths, which is crucial for un-
derstanding the underlying mechanisms of application
detection [40].

• K-Nearest Neighbors (KNN): K-Nearest Neighbors al-
gorithm was implemented next, which classifies samples
based on the influence of their neighbors. This method
considers both the distance to the nearest k neighbors and
their respective influence on the classification decision.
The decision rule for a given sample x is determined
by the majority vote among its k nearest neighbors,
formalized as:

y = mode{yi1 , yi2 , . . . , yik} (4)

where yij represents the class of the j-th nearest neighbor
to x. This method is particularly robust in scenarios where
the decision boundary is non-linear. By manipulating the
parameter k, the number of neighbors considered, we
tailored the model’s sensitivity to accurately reflect the
diverse distributions of PMU data [40].

• Random Forest Classifier: The Random Forest classifier
combines several decision trees to form a more robust
prediction model. Each tree in the ensemble is indepen-
dently trained on a randomly selected subset of the data
and features, using the following model:

ŷ =
1

N

N∑
n=1

hn(x) (5)

where N is the number of trees, hn(x) is the prediction
of the n-th tree, and x is the input feature vector.
This methodology enhances the generalizability of the
model by averaging the predictions, which effectively
reduces the risk of overfitting typically associated with
single decision trees. The use of random subsets for
training each tree—known as bootstrap aggregating or
bagging—ensures diversity in the model, contributing to
its robust performance across various sets of PMU data
[41].

Each classifier was trained on Dataset 1 and Dataset 2, with
hyperparameters tuned for optimal performance.

F. Model Evaluation

Each of the models was evaluated using cross-validation
with a training and test split of 80/20 where the classifier was
trained on 80% of data set marked as training set and the
trained model was tested against the 20% of dataset marked
as test set. Models were evaluated using a combination of
metrics to provide a comprehensive assessment:

• Accuracy : Accuracy measures the proportion of correct
predictions out of the total predictions made. It is useful
when the classes are balanced.

• Precision : Precision indicates how many of the predicted
positive instances are actually positive. It is useful when
minimizing false positives is important.

• Recall : Recall (or sensitivity) measures how many actual
positive instances are correctly predicted. It is useful
when minimizing false negatives is crucial.



• F1-score : The F1-score is the harmonic mean of pre-
cision and recall, providing a balance between the two,
especially in cases of class imbalance.

• AUC-ROC : The Area Under the Curve of the Re-
ceiver Operating Characteristic (AUC-ROC) is a perfor-
mance measurement for classification problems at various
threshold settings. The ROC is a probability curve, and
AUC represents the degree to which the model is capable
of distinguishing between classes. An AUC of 1 repre-
sents a perfect model, while an AUC of 0.5 suggests no
discriminative ability, equivalent to random guessing.

• Confusion Matrix : The confusion matrix is a table that
describes the performance of a classification model by
showing the true positives, true negatives, false positives,
and false negatives. It provides insight into the types of
errors made by the model.

These metrics help evaluate the performance of a classifier
from different perspectives, especially in imbalanced datasets
like ours where accuracy alone may be misleading.

V. EXPERIMENTAL RESULTS

In this section, we present the results of our proof-of-
concept study demonstrating the feasibility of PMU-based
benchmark classification to infer user activity. The experiments
include data preprocessing, feature selection, dimensionality
reduction, and the evaluation of machine learning models on
two datasets of varying complexity.

A. Experimental Setup

The PMU data collection was conducted on a system
equipped with a modern multi-core Intel i7-1065G7 processor.
A modern Intel processor was selected for its widespread
use in both consumer and enterprise systems, thus making
it a relevant platform for security analysis. The Operating
system Ubuntu 22.04.4 LTS was used for its robust support,
documentation, and granularity of control, which allowed us
to fine-tune a couple of parameters to reduce noise in our data
and get consistent results. The OS was configured to allow
privileged access to PMU data, and it was recorded using
the perf tool. Additionally, perf adds negligible computational
overhead, thus reducing the noise in our measured data.

B. Data Preprocessing and Feature Analysis

1) Feature Selection and Importance: The initial step in
our data analysis process involved selecting the most relevant
features based on their importance scores derived from a Ran-
dom Forest classifier. This model provides a robust mechanism
for feature evaluation, as it computes importance based on how
much each feature decreases the impurity of a split. Features
are considered more important if they consistently improve
the model’s accuracy when included in trees. A threshold
was applied to retain only the most impactful PMU events,
reducing redundancy and improving efficiency. For Dataset
1, 17 features were selected from an initial set of 20 using
a threshold of 0.02. For Dataset 2, the threshold of 0.01
narrowed the features from 81 to 45, as shown in Figure 4.

These selected features highlighted key microarchitectural
events, such as L1-dcache-load-misses, cache-references, and
L1-dcache-loads, which played a critical role in distinguishing
benchmark behaviors.

Figure 5 illustrates the dynamic behavior of these features
through time-series and distribution plots. Time-series plots
(top row) reveal temporal variations across benchmarks, while
distribution plots (bottom row) showcase the variability and
clustering of PMU events for different benchmarks.

TABLE II: Explained Variance by Principal Components for
Dataset 1 and 2.

Principal
Component

Explained Variance (%)

Dataset 1 Dataset 2
PC1 38.3 20.6
PC2 13.3 9.9
PC3 9.3 7.3
PC4 8.3 7.0
PC5 7.0 6.4
PC6 6.4 5.7
PC7 5.0 5.1
PC8 4.4 4.3
Others 8.0 33.7

2) Dimensionality Reduction with PCA: Given the high
dimensionality of the PMU data, which includes 17 and
45 significant events per benchmark for datasets 1 and 2
respectively, Principal Component Analysis (PCA) was em-
ployed to efficiently reduce the feature space while preserving
the essential variance. The analysis was specifically aimed
at retaining at least 90% of the total variance, leading to
the reduction of dataset 1 to 8 principal components and
dataset 2 to 19 principal components. The first eight principal
components of dataset 1 alone accounted for a substantial
majority of the data variability, as detailed in Table II, with the
first principal component (PC1) capturing 38.3% and 20.6%
of the total variance in datasets 1 and 2 respectively. This
strategic reduction not only simplifies the complexity of the
classification models but also ensures that the analysis retains
critical information, emphasizing the robustness of PCA in
isolating significant features that drive the machine learning
process.

C. Classification Modeling and Results

The classification of benchmark programs based on the
extracted PMU event features was performed using several
machine learning models, including Logistic Regression, De-
cision Tree, K-Nearest Neighbors (KNN), and Random Forest.
These models were chosen for their ability to capture complex,
non-linear relationships in the data. Cross-validation was em-
ployed to evaluate the performance of each model, ensuring
the robustness and generalizability of the results.

1) Evaluation on Dataset 1: The preliminary analysis with
10 benchmarks served primarily to test and refine our data pro-
cessing and machine learning workflows. This smaller dataset
allowed for quicker iterations and optimizations, resulting in a



(a) Feature importance from Dataset 1. (b) Feature importance from Dataset 2.

Fig. 4: Feature importance derived from a Random Forest classifier, highlighting the contribution of PMU events to system
performance understanding for two datasets.

(a) Time-series for L1-dcache-load-misses (b) Time-series for cache-references (c) Time-series for L1-dcache-loads

(d) Distribution for L1-dcache-load-misses (e) Distribution for cache-references (f) Distribution for L1-dcache-loads

Fig. 5: Illustration of PMU events depicting both time-series and distribution plots for selected events and benchmarks from
dataset 1. The top row shows time-series data (a-c) and the bottom row shows distribution data (d-f) for each corresponding
event, aiding in understanding the dynamic behavior and variability across different benchmarks.

TABLE III: Performance Metrics for Benchmark Classification Models

Dataset Classifier Accuracy (%) Precision (%) Recall (%) F1 Score (%) AUC-ROC

Dataset 1
(10 Benchmarks,
20 PMU events)

Logistic Regression 94.4 94.3 94.4 94.4 0.994
Decision Tree 98.2 98.2 98.2 98.2 0.990

K-Nearest Neighbors 98.2 98.2 98.2 98.2 0.997
Random Forest 99.7 99.7 99.7 99.7 0.99998

Dataset 2
(123 Benchmarks,
81 PMU events)

Logistic Regression 93.3 93.5 93.3 93.3 0.999
Decision Tree 97.9 97.9 97.9 97.9 0.989

K-Nearest Neighbors 97.4 97.4 97.4 97.4 0.996
Random Forest 99.6 99.7 99.6 99.7 0.9997

robust methodology capable of handling more complex data.
To assess the effectiveness of PMU data in distinguishing
between different benchmarks, we employed several machine
learning algorithms, including Logistic Regression (LR), De-
cision Trees (DT), K-Nearest Neighbors (KNN), and Random
Forests (RF). Each algorithm was trained on the principal

components derived from the PCA analysis.

The performance of these classifiers, in terms of accuracy,
precision, recall, F1 score, and AUC-ROC, is summarized in
Table III. The results demonstrate that the Random Forest
algorithm achieved the highest accuracy of 99.7% for dataset
1, significantly outperforming the other models. This high



level of accuracy indicates that PMU data, when appropriately
processed and reduced using PCA, can effectively differentiate
between various benchmarks. This finding underscores the
potential of PMU data as a viable source for identifying
specific system behaviors, which can be leveraged in the
context of side-channel attacks.

Fig. 6: Confusion matrix of the Random Forest classifier
showing the high accuracy of benchmark classification across
different classes.

Figure 6 shows the confusion matrix for the Random Forest
classifier for dataset 1, highlighting its predictive accuracy
across different benchmark classes. The systematic approach
to feature analysis and reduction underscores the effectiveness
of using PMU data for detailed performance characterization
and benchmark classification.

2) Evaluation on Dataset 2: The expanded analysis in-
cluded 123 benchmarks, significantly enhancing the complex-
ity and diversity of the dataset. This scale-up was crucial for
testing the robustness and generalizability of our machine-
learning models across a wider array of system activities. Here,
the Random Forest model excelled, demonstrating superior
performance with over 99.6% accuracy, suggesting a strong
predictive capability across diverse system operations.

The transition from 10 to 123 benchmarks marked sig-
nificant progress in understanding the relationship between
PMU events and system activities. It highlighted specific
benchmarks that are particularly indicative of system behavior,
aiding in fine-tuning our models for better accuracy and effi-
ciency. The superior performance of the Random Forest classi-
fier, with an AUC-ROC of 0.9997, illustrates its robustness in
identifying even subtle differences between benchmarks based
on PMU data. This suggests that PMU data, reduced via PCA
and classified using machine learning models, holds substantial
promise for detecting and mitigating potential side-channel
vulnerabilities in modern computing systems.

D. Real-Time Activity Detection Potential

The high classification accuracy achieved with both datasets
underscores the feasibility of using PMU data for real-time

user activity detection. Such capabilities could be transforma-
tive in security contexts, enabling early detection of anomalous
behaviors, or in adaptive systems, optimizing resource alloca-
tion based on detected activities. However, real-world deploy-
ment poses challenges, including handling noise in dynamic
environments, adapting to new workloads, and ensuring real-
time processing. Future work will focus on addressing these
challenges by developing algorithms capable of real-time data
analysis and by integrating machine learning models that can
adapt to new patterns of activity without requiring frequent
retraining. The insights gained from this study pave the way
for innovative monitoring solutions that enhance both security
and operational efficiency, opening new avenues for research
and development in intelligent systems monitoring.

VI. CONCLUSION AND FUTURE WORK

This research highlights the security risks associated with
exploiting Performance Monitoring Unit (PMU) data for re-
mote side-channel attacks. We demonstrated that microarchi-
tectural fingerprints derived from PMU data could be leveraged
to accurately infer user activities in shared system environ-
ments, achieving an average prediction accuracy of 98% across
multiple machine learning models, including logistic regres-
sion, decision trees, k-nearest neighbors, and random forests.
These findings reveal latent vulnerabilities in modern comput-
ing systems, where PMU data—a tool intended for benign
diagnostics and performance optimization—can be misused
for covert surveillance. The study underscores the urgency
for robust countermeasures to mitigate these emerging threats,
such as restricting PMU access, introducing noise injection
mechanisms, and implementing hardware-level protections to
minimize side-channel leakage.

Future work will focus on expanding the scope of this
research to uncover additional vulnerabilities and enhance
detection models. Investigating a broader range of PMU events
and incorporating advanced machine learning techniques, such
as ensemble methods and deep learning, could further re-
fine accuracy and adaptability. Developing real-time detection
frameworks is another critical step, enabling instantaneous
identification and mitigation of side-channel threats. Addition-
ally, extending this work to multi-tenant cloud environments,
where shared hardware amplifies security risks, will provide
practical insights into safeguarding infrastructure against PMU
exploitation. By advancing the understanding of PMU-based
side-channel vulnerabilities and proposing actionable direc-
tions for mitigation, this study contributes to the evolving
discourse on microarchitectural security and privacy in modern
computing systems.

REFERENCES

[1] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitec-
tural timing attacks and countermeasures on contemporary hardware,”
Journal of Cryptographic Engineering, vol. 8, pp. 1–27, 2018.

[2] X. Lou, T. Zhang, J. Jiang, and Y. Zhang, “A survey of microarchitectural
side-channel vulnerabilities, attacks, and defenses in cryptography,”
ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–37, 2021.



[3] R. Azimi, D. K. Tam, L. Soares, and M. Stumm, “Enhancing operating
system support for multicore processors by using hardware performance
monitoring,” ACM SIGOPS Operating Systems Review, vol. 43, no. 2,
pp. 56–65, 2009.

[4] L. L. Woo, “Hardware performance counters (hpcs) for anomaly de-
tection,” Hardware Supply Chain Security: Threat Modelling, Emerging
Attacks and Countermeasures, pp. 147–165, 2021.

[5] J. Cho, T. Kim, S. Kim, M. Im, T. Kim, and Y. Shin, “Real-time detection
for cache side channel attack using performance counter monitor,”
Applied Sciences, vol. 10, no. 3, p. 984, 2020.

[6] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“Sok: The challenges, pitfalls, and perils of using hardware performance
counters for security,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 20–38.

[7] J. Kim, S. van Schaik, D. Genkin, and Y. Yarom, “ileakage: Browser-
based timerless speculative execution attacks on apple devices,” in
Proceedings of the 2023 ACM SIGSAC Conference on Computer and
Communications Security, 2023, pp. 2038–2052.

[8] P. Qiu, Y. Lyu, H. Wang, D. Wang, C. Liu, Q. Gao, C. Wang, R. Sun,
and G. Qu, “Pmuspill: The counters in performance monitor unit that
leak sgx-protected secrets,” arXiv preprint arXiv:2207.11689, 2022.

[9] P. Qiu, Q. Gao, D. Wang, Y. Lyu, C. Wang, C. Liu, R. Sun, and G. Qu,
“Pmu-leaker: Performance monitor unit-based realization of cache side-
channel attacks,” in Proceedings of the 28th Asia and South Pacific
Design Automation Conference, 2023, pp. 664–669.

[10] Y. Yang, P. Qiu, C. Wang, Y. Jin, Q. Gao, X. Li, D. Wang, and
G. Qu, “Exploration and exploitation of hidden pmu events,” in 2023
IEEE/ACM International Conference on Computer Aided Design (IC-
CAD). IEEE, 2023, pp. 1–9.

[11] Y. Zhang, “Cache-based side-channel attacks in multi-tenant public
clouds and their countermeasures,” 2014.

[12] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: the case of aes,” in Topics in Cryptology–CT-RSA 2006: The
Cryptographers’ Track at the RSA Conference 2006, San Jose, CA, USA,
February 13-17, 2005. Proceedings. Springer, 2006, pp. 1–20.

[13] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[14] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” in Proceedings of the
2012 ACM conference on Computer and communications security, 2012,
pp. 305–316.

[15] G. Contreras and M. Martonosi, “Power prediction for intel xscale®
processors using performance monitoring unit events,” in Proceedings
of the 2005 international symposium on Low power electronics and
design, 2005, pp. 221–226.

[16] G. Tsafack Chetsa, L. Lefèvre, J. Pierson, P. Stolf, and
G. Da Costa, “Exploiting performance counters to predict and
improve energy performance of hpc systems,” Future Generation
Computer Systems, vol. 36, pp. 287–298, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X13001556

[17] B. Hettwer, S. Gehrer, and T. Güneysu, “Applications of machine
learning techniques in side-channel attacks: a survey,” Journal of Cryp-
tographic Engineering, vol. 10, no. 2, pp. 135–162, 2020.

[18] J. Gravellier, J.-M. Dutertre, Y. Teglia, P. L. Moundi, and F. Olivier,
“Remote side-channel attacks on heterogeneous soc,” in Smart Card
Research and Advanced Applications: 18th International Conference,
CARDIS 2019, Prague, Czech Republic, November 11–13, 2019, Revised
Selected Papers 18. Springer, 2020, pp. 109–125.

[19] D. Genkin, N. Nissan, R. Schuster, and E. Tromer, “Lend me your
ear: Passive remote physical side channels on {PCs},” in 31st USENIX
Security Symposium (USENIX Security 22), 2022, pp. 4437–4454.

[20] Y. Wang, R. Paccagnella, E. T. He, H. Shacham, C. W. Fletcher, and
D. Kohlbrenner, “Hertzbleed: Turning power {Side-Channel} attacks
into remote timing attacks on x86,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 679–697.

[21] G. Sangeetha and G. Sumathi, “An optimistic technique to detect cache
based side channel attacks in cloud,” Peer-to-Peer networking and
Applications, vol. 14, no. 4, pp. 2473–2486, 2021.

[22] S. Banerjee, S. Wei, P. Ramrakhyani, and M. Tiwari, “Triton: Software-
defined threat model for secure multi-tenant ml inference accelerators,”
in Proceedings of the 12th International Workshop on Hardware and
Architectural Support for Security and Privacy, 2023, pp. 19–28.

[23] R. B. Gomes, R. D. Medina, and F. G. Moro, “Cloud aid-a cloud
computing tool for mitigating side-channel attacks,” in NOMS 2018-
2018 IEEE/IFIP Network Operations and Management Symposium.
IEEE, 2018, pp. 1–5.

[24] Microsoft, “Tenancy models for a multi-
tenant solution,” https://learn.microsoft.com/en-
us/azure/architecture/guide/multitenant/considerations/tenancy-models
(Accessed on August 26, 2024).

[25] W. J. Brown, V. Anderson, and Q. Tan, “Multitenancy-security risks and
countermeasures,” in 2012 15th International Conference on Network-
Based Information Systems. IEEE, 2012, pp. 7–13.

[26] F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger,
A. Moghimi, and Y. Yarom, “Cachequote: Efficiently recovering long-
term secrets of sgx epid via cache attacks,” 2018.

[27] W. Zheng, Y. Wu, X. Wu, C. Feng, Y. Sui, X. Luo, and Y. Zhou, “A
survey of intel sgx and its applications,” Frontiers of Computer Science,
vol. 15, pp. 1–15, 2021.

[28] A. Kogler, J. Juffinger, L. Giner, L. Gerlach, M. Schwarzl,
M. Schwarz, D. Gruss, and S. Mangard, “Collide+Power: Leaking
inaccessible data with software-based power side channels,” in 32nd
USENIX Security Symposium (USENIX Security 23). Anaheim, CA:
USENIX Association, Aug. 2023, pp. 7285–7302. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity23/presentation/kogler

[29] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin,
Y. Oren, and Y. Yarom, “Prime+Probe 1, JavaScript 0:
Overcoming browser-based Side-Channel defenses,” in 30th
USENIX Security Symposium (USENIX Security 21). USENIX
Association, Aug. 2021, pp. 2863–2880. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity21/presentation/shusterman

[30] M. Lipp, A. Kogler, D. Oswald, M. Schwarz, C. Easdon, C. Canella,
and D. Gruss, “Platypus: Software-based power side-channel attacks on
x86,” in 2021 IEEE Symposium on Security and Privacy (SP), 2021, pp.
355–371.

[31] M.-M. Bazm, T. Sautereau, M. Lacoste, M. Sudholt, and J.-M. Menaud,
“Cache-based side-channel attacks detection through intel cache moni-
toring technology and hardware performance counters,” in 2018 Third
International Conference on Fog and Mobile Edge Computing (FMEC),
2018, pp. 7–12.

[32] P. P. Bhade and S. Sinha, “Detection of cache side channel attacks using
thread level monitoring of hardware performance counters,” in 2021
IEEE 14th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip (MCSoC), 2021, pp. 210–217.

[33] U. Mandal, S. Bhattacharya, and D. Mukhopadhyay, “Cache wars: A
comparative study of umwait, umonitor, and prime-probe attacks,” in
2024 IEEE International Symposium on Hardware Oriented Security
and Trust (HOST). IEEE, 2024, pp. 86–89.

[34] A. Spence and S. Bangay, “Security beyond cybersecurity: side-channel
attacks against non-cyber systems and their countermeasures,” Interna-
tional Journal of Information Security, vol. 21, no. 3, pp. 437–453,
2022.

[35] C. I. K. Gavin, “stress-ng (stress next generation),”
https://github.com/ColinIanKing/stress-ng (Accessed on August
18, 2024).

[36] I. Corporation, “Intel 64 and ia-32 ar-
chitectures software developer’s manual,”
https://software.intel.com/content/www/us/en/develop/articles/intel-
sdm.html (Accessed on August 18, 2024), 2016.

[37] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Pro-
ceedings of the eighth IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, 2010, pp. 105–114.

[38] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and
recent developments,” Philosophical transactions of the royal society A:
Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065,
p. 20150202, 2016.

[39] Scikit-learn, “Feature extraction,” https://scikit-
learn.org/stable/modules/feature extraction.html (Accessed on August
18, 2024).

[40] DataCamp, “Classification in machine learning: An introduction,”
https://www.datacamp.com/blog/classification-machine-learning
(Accessed on August 18, 2024).

[41] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.


