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Abstract
Threshold fully homomorphic encryption (ThFHE) enables
multiple parties to compute functions over their sensitive
data without leaking data privacy. Most of existing ThFHE
schemes are restricted to full threshold and require the partic-
ipation of all parties to output computing results. Compared
with these full-threshold schemes, arbitrary threshold (ATh)-
FHE schemes are robust to non-participants and can be a
promising solution to many real-world applications. How-
ever, existing AThFHE schemes are either inefficient to be
applied with a large number of parties N and a large data
size K, or insufficient to tolerate all types of non-participants.
In this paper, we propose an AThFHE scheme to handle all
types of non-participants with lower complexity over existing
schemes. At the core of our scheme is the reduction from
AThFHE construction to the design of a new primitive called
approximate secret sharing (ApproxSS). Particularly, we for-
mulate ApproxSS and prove the correctness and security of
AThFHE on top of arbitrary-threshold (ATh)-ApproxSS’s
properties. Such a reduction reveals that existing AThFHE
schemes implicitly design ATh-ApproxSS following a similar
idea called “noisy share”. Nonetheless, their ATh-ApproxSS
design has high complexity and become the performance bot-
tleneck. By developing ATASSES, an ATh-ApproxSS scheme
based on a novel “encrypted share” idea, we reduce the com-
putation (resp. communication) complexity from O(N2K) to
O(N2+K) (resp. from O(NK) to O(N+K)). We not only the-
oretically prove the (approximate) correctness and security of
ATASSES, but also empirically evaluate its efficiency against
existing baselines. Particularly, when applying to a system
with one thousand parties, ATASSES achieves a speedup of
3.83× – 15.4× over baselines.

1 Introduction

Threshold fully homomorphic encryption (ThFHE) allows
arbitrary computations over encrypted data from multiple par-
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ties, without decrypting them [3, 7, 22, 35, 37, 42]. Different
from traditional single-party FHE, threshold FHE supports
to distribute the data-controlling authority to multiple par-
ties, i.e., the decryption can not succeed unless enough par-
ties participate. This provides more flexibility and induces
a family of privacy-preserving computing schemes in the
secure multiparty computation (MPC) setting, where multi-
ple parties wish to evaluate a function over their joint inputs
while ensuring the privacy of inputs [35]. Compared with
classical MPC methods, these ThFHE-based solutions are
distinguished by their low communication complexity [3] and
compatibility with cloud-assisted setting such as multiple-
client-single-server architecture [37]. To date, ThFHE has
been implemented by open-source libraries [1, 4] and shown
various promising real-world applications, including privacy-
preserving machine learning [28, 29, 32, 39, 42] and medical
analytics [14, 19, 21, 30, 38].

Along with the flexible controlling authority comes a new
factor that should be taken into consideration: that is, how to
set the threshold of participants required for decryption. Let
N denote the number of parties and T denote such a thresh-
old (T ≤ N). Most of existing ThFHE schemes [3, 22, 37]
are designed in the full-threshold case with T = N, i.e., the
decryption can succeed only if all parties participate. Nonethe-
less, achieving full-threshold is often challenging in practice
due to the following reasons.

• Uninterested Parties. The decryption process would in-
cur high computation and communication costs of partic-
ipants. Faced with these costs, a party may lose interest
in the decryption result and quit the decryption process,
because the result is less valuable than those costs or this
party needs to handle tasks with higher priority.

• Dropout Devices. In practice, parties are usually some
devices (e.g., smart phones and sensors) that are inter-
connected as a network. These devices may drop out of
network due to unexpected random factors (e.g., device
powering-off and loss of network connectivity) and are
unable to participate in the decryption.
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• Denial-of-Service Attacks. The aim of denial-of-service
(DoS) attack is to make some “service” unavailable to
its intended users. For ThFHE, a common goal of DoS
attack is to thwart parties from obtaining decryption
results. To launch DoS attack against full-threshold FHE
schemes, an attacker needs to invade only one party and
prevent it from participating in the decryption process.

These reasons result in various types of non-participating
parties, which may fail the decryption process and degrade
the practicality of full-threshold FHE schemes [7, 35]. To
improve the practicality of full-threshold FHE, a natural idea
is to design arbitrary-threshold FHE (AThFHE) that allows
elastic choices of threshold T from 1 to N− 1. In this way,
AThFHE can still guarantee the output delivery of decryption
protocol even when N−T parties do not participate.

To this end, recent works have proposed several AThFHE
schemes [7,21,23,35,42] based on linear secret sharing (LSS).
Notably, all of them follow the same idea called “noisy share”
when devising the decryption protocols. Specifically, to pre-
vent the secret key from leakage during the decryption pro-
cess, each party needs to compute a decryption share and add
a small noise to it. However, to guarantee that the aggregation
of these noisy decryption shares leads to correct decryption re-
sults, the decryption requires well-crafted design that usually
incurs high complexity. For example, Boneh et al. use LSS
with small recovery coefficients [7, 21] to devise a AThFHE.
Nonetheless, compared with single-party FHE, the decryption
key share has the size of order O(N4.2) on average. They also
construct another AThFHE based on Shamir LSS, which has
the optimal share-size. Still, this scheme has a huge ciphertext
space with modulus O(N ·(N!)3) [7], incurring high complex-
ity and difficulty for parameter instantiation. To improve the
efficiency, some works propose decryption protocols with
two rounds [23, 42]. The computation (resp. communication)
complexity of decryption protocol is optimized to O(N2 ·K)
(resp. O(N ·K)), where K is the size of decrypted message.
Still, such a complexity is relatively high, especially when the
number of parties and the length of message are both large.
Mouchet et al. propose an idea to further reduce the complex-
ity in [35] and extend this idea in Helium framework [36].
Nonetheless, this idea assumes that the set of participants
is known prior to decryption, which may not hold when the
non-participants are caused by random dropout devices or
denial-of-service attacks.

In a word, following the “noisy share” idea, existing
AThFHE schemes are either inefficient to be applied on large
systems and large data size, or insufficient to handle all types
of non-participants. These deficiencies severely restrict the
application of AThFHE in the real world. Based on the above
investigation, we are motivated to ask the questions: Is this

“noisy share” idea the only and the optimal way to design
AThFHE? If not, how can we further reduce its complexity?

In this work, we answer these questions by reducing the
AThFHE design to the construction of approximate secret

Existing Works: A Bottom-Up Approach
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Figure 1: An overview of our main results.

sharing (ApproxSS), a novel cryptographic primitive formu-
lated in this paper. The “noisy share” idea followed by exist-
ing AThFHE schemes can be regarded as a specific type of
construction for ApproxSS. We propose a novel idea called
“encrypted share” to construct ApproxSS with computation
complexity of O(N2 +NK) and communication complexity
of O(N +K), which achieves order-wise improvements over
existing AThFHE schemes. Below we summarize our main
results and key contributions, and illustrate them in Figure 1.

• Formulation of Approximate Secret Sharing. Beyond
vanilla secret sharing, a T -out-of-N ApproxSS has an ad-
ditional operation called approximate recovery, through
which any T shares can recover an approximation of the
secret (a.k.a., approximate correctness), while the adversary
corrupting up to T−1 parties can NOT learn the exact value
of secret through approximate recovery (a.k.a., approximate
security). Although existing works implicitly construct sev-
eral ApproxSS schemes, to the best of our knowledge, this
is the first work to formulate its definition and security.
We believe this primitive can be of independent interest
for other applications, such as the intersection of secure
multi-party computation and differential privacy.

• Reduction from RLWE-Based ThFHE to ApproxSS.
We propose a generic construction of ring-learning-with-
errors (RLWE)-based ThFHE on top of ApproxSS and
prove its security and correctness based on ApproxSS’s
properties. Particularly, on input decryption shares from
any T parties, the approximate recovery in ApproxSS can
output an approximate message. This approximate mes-
sage can not only yield the correct plaintext by the feature
of RLWE-based HE, but also protect the secret keys with
the well-known smudging technique [3]. Notably, existing
AThFHE schemes are special cases of this generic construc-
tion. Nonetheless, their ApproxSS design is less efficient
and becomes the performance bottleneck of ThFHE.

• An Efficient Arbitrary-Threshold ApproxSS. In light of
the above generic construction, we propose ATASSES, an
Arbitrary-Threshold ApproxSS based on the idea of “En-
crypted Share”. This idea protects decryption shares using
crafted encryption methods rather than adding noise, which
helps to boost Shamir SS to ApproxSS in an efficient man-
ner. We prove the approximate correctness and security of
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ATASSES, and show that ATASSES achieves the compu-
tation complexity of O(N2 +NK) and the communication
complexity of O(N +K).

• Performance Evaluation through Experiments. We im-
plement ATASSES and existing baselines on top of Lattigo
library [1]. Experimental results validate the superior per-
formance of ATASSES. Particularly, when applying to a
system with one thousand parties, ATASSES achieves a
speedup of 3.83× – 15.4× than state-of-the-art ApproxSS.
Such a speedup can be even more significant with more
parties or larger data size.

The rest of this paper is organized as follows. We describe our
system and threat models in Section 2. Then we provide our
technical intuition in Section 3 and necessary preliminaries in
Section 4. Based on these knowledge, Section 5 formulates
ApproxSS and shows the generic construction of ThFHE on
top of ApproxSS. Next, Section 6 proposes ATASSES and
Section 7 empirically evaluates its efficiency. At last, Section
8 reviews related work and Section 9 concludes this paper.

2 System and Threat Model

System Model. As illustrated in Figure 2, we consider a group
of N parties who wish to employ threshold FHE to jointly
compute a function f (·) over their sensitive data. To facilitate
the execution of threshold FHE, we assume an aggregator
who combines cryptographic transcripts from parties and ho-
momorphically evaluates the function f (·) over ciphertexts.
This role can be played by any of available parties or an exter-
nal server, such as the cloud. The parties (and the aggregator)
are interconnected via authenticated channels. The aggregator
would output one or more FHE ciphertexts, so that decrypting
them leads to the desired output of function f (·). Throughout
this paper, we use K to denote the length of function f (·)’s out-
put. We also assume the setting of common reference string
(CRS), where parties can generate the same random value a
from some distribution. We use a←$ CRS to denote this case.

In practice, some parties may fail to participate in the de-
cryption protocol due to losing interests, dropout devices,
and/or denial-of-service attacks. We call these parties “non-
participants” and other parties “participants”. Nonetheless,
we assume that there are at least T participants at the same
time. More formally, when the decryption protocol asks par-
ties to send some message to other parties, there are at least T
parties who can upload the message within the required time.
In addition, we require that a party can NOT know the set
of participants until it receives the demanded messages from
participants. The reason is that the non-participants may be
unable to inform other parties due to random factors or even
intentional attacks. In these cases, no one can assure which
parties will succeed to upload the demanded messages. We
remark that this is one key difference between our setting and
existing work [35], which makes our work more practical.

System
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Figure 2: System model with three types of parties.

Threat Model. We consider a static semi-honest adversary
who can corrupt a fixed set of up to T −1 parties, i.e., these
T − 1 parties faithfully run the algorithms and protocols in
ThFHE schemes, but the adversary can see their internal states
to infer private messages. Such a setting implies that there
exists at least one honest participant. In addition, we do not
assume a trustworthy aggregator, i.e., the aggregator is cor-
rupted by the adversary.

We note that our threat model, combined with the non-
participants setting in the system model, is in fact a mixed
adversary setting. Particularly, those non-participants can be
regarded as being corrupted by a partly-malicious adversary,
who can only abort at most N−T parties simultaneously. We
also note that recent work [13] makes the first move to shield
the ThFHE schemes against malicious adversaries. Despite of
its great success, they assume that the parties do not refuse to
participate in the protocol execution. Since our work considers
the non-participant problem, we believe our work can help
to remove this assumption and boost ThFHE schemes with
fully-malicious security. We provide a discussion on how to
extend our scheme to fully-malicious security in Appendix E.

3 Technical Intuition

This section introduces the intuition behind our techniques
on a high level. For brevity’s sake, the notation in this section
are highly intuitive but somewhat informal.
Problem Description. At the core of T -out-of-N ThFHE
construction is to design a decryption protocol that allows any
T participants to decrypt without disclosing the secret key.
Suppose that the secret key is sk and the ciphertext is ct, the
decryption algorithm in existing FHE schemes is usually to
compute a linear function b = ct · sk. In current lattice-based
FHE schemes, the ct contains an error ect . The plaintext can
be successfully decoded from b by rounding and/or modular
reduction if the value of ect is less than some bound B.
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Since the decryption is to compute a linear operation, exist-
ing ThFHE construction usually applies linear secret sharing
technique to sk. This will generate N key shares sk1, . . . ,skN ,
one for each party. To decrypt ct, each party i computes a de-
cryption share bi = ct · ski. By the linearity of secret sharing,
decryption shares bis are the shares of b, and the aggregator
can recover b from any T decryption shares. For example, the
full-threshold ThFHE adopts additive secret sharing so that
sk= ∑

N
i=1 ski. After receiving N decryption shares (T = N),

the aggregator can compute ∑
N
i=1 bi = ct ·∑N

i=1 ski = ct ·sk= b.
However, this construction is insecure, as b leaks information
of sk to the aggregator. To solve this issue, a common solution
is noise smudging technique [3]. Specifically, the decryption
protocol can recover b′ = b+nsm for some random smudging
noise nsm rather than b. As long as the value of nsm + ect is
bounded by B, the decryption can still succeed.

To do so, existing ThFHE constructions ask each party i
to sample a local noise nsm,i and compute a noisy share b′i =
bi +nsm,i. We call this idea “noisy share”. By the linearity of
secret sharing, noisy shares b′i = bi +nsm,i can be regarded as
the shares of b+nsm for some nsm that is determined by nsm,is.
In existing ThFHE constructions, the aggregator recovers
b+ nsm as b′ from any T noisy shares. For example, in the
full-threshold case, the recovery algorithm is simply summing
all shares up. Then the aggregator will compute b′=∑

N
i=1 b′i =

b+∑
N
i=1 nsm,i = b+nsm, where nsm = ∑

N
i=1 nsm,i.

Still, this “noisy share” idea faces a challenge. Recall that
the value of nsm + ect should be bounded by B for success-
ful decryption. Hence, this idea needs to guarantee that the
value of nsm is bounded by Bsm with Bsm+∥ect∥< B. For full-
threshold FHE, this challenge can be easily tackled by setting
the value of each local noise nsm,i bounded by Bsm/N. Under
this setting, we have ∥nsm∥ < ∑

N
i=1∥nsm,i∥ < Bsm. Nonethe-

less, this challenge becomes particularly hard for arbitrary-
threshold FHE. Note that nsm,is are locally sampled by each
party i and have no natural correlation. Without crafted de-
sign on nsm,is, the corresponding nsm may have random val-
ues without bound. For example, when using the well-known
Shamir secret sharing, we have nsm = ∑i∈T L(T )

i nsm,i, where
T is a set of at least T parties and L(T )

i s are Lagrange coef-
ficients associated with set T . Since Lagrange coefficients
have arbitrarily-large value, they may blow the noise nsm up
and fail the decryption.

Following the “noisy share” idea, existing ThFHE schemes
try to solve this “blown-up noise” problem by restricting the
value of nsm,i in various ways. Unfortunately, these solutions
either suffer from high complexity or rely on an additional as-
sumption. Particularly, without assuming that the knowledge
of participant set T is available before decryption, the state-
of-the-art solution [23,42] has the computation complexity of
O(N2K) and communication complexity of O(NK). Readers
can find more detailed discussion in Section 6.1.
Our Solution. Our first observation is that “noisy share” is

not the only way to apply the noise smudging technique for
ThFHE construction. Basically, the noise smudging technique
inspires us that recovering the exact value of b is neither
secure nor necessary. Instead, the aggregator only needs to
recover an approximate value b′ = b+nsm so that 1) nsm has a
bounded value and 2) nsm is random that cannot be determined
by less than T parties. We realize that vanilla secret sharing is
insufficient to meet these two requirements and thus call for a
novel cryptographgic primitive. As shown in Figure 3, vanilla
SS only enables the trustworthy dealer to exactly recover the
secret (i.e., b), while now an untrusted aggregator needs to
recover the secret in an approximate manner (i.e., b′).
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Hence, beyond the original functions of vanilla secret shar-
ing, the new primitive should support a novel function called
“approximate recovery”. This function should enable the ag-
gregator to learn the value of b′ from any T shares of b, such
that 1) b′ is “close” to b in the sense that ∥b′−b∥ is bounded
and 2) the adversary corrupting less than T parties cannot
determine the value of b′−b. We term this primitive approxi-
mate secret sharing (ApproxSS) and formulate it in Section
5.1. We further show that a T -out-of-N ThFHE scheme can be
constructed based on a T -out-of-N ApproxSS scheme in Sec-
tion 5.2. Notably, the noisy share idea is an implicit construc-
tion of this primitive. However, their ApproxSS constructions
has become the performance bottleneck of ThFHE scheme
due to the high complexity. This inspires us to study more
efficient ApproxSS construction.

Our second observation is another way to boost Shamir
secret sharing to ApproxSS. This idea relies on an encryption
scheme that can enable the following three steps.
Step 1: Each party i locally encrypts bi and nsm,i, respectively,
and sends the ciphertexts to the aggregator.
Step 2: After receiving the ciphertexts of bis and nsm,is from
at least T parties in T , the aggregator will learn the set
T and further compute the corresponding L(T )

i s. The en-
cryption scheme should be somewhat linearly-homomorphic,
so that the aggregator can obtain a new ciphertext of b′ =
∑i∈T (L

(T )
i bi +nsm,i) from the ciphertexts of bis and nsm,is.

Step 3: Any T parties collaboratively decrypt the ciphertext
of b′, without leaking individual bi or nsm,i. Notably, these T
parties can be totally different from the set T in the first step.

We call this idea “encrypted share” and provide a specific
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construction based on BFV secret-key encryption in Section
6. We argue that this idea has at least the following three
advantages, especially against the noisy share idea.

• Our idea avoids the “blown-up noise”. By encrypting bi and
nsm,i, respectively, the aggregator can compute their linear
combination with different coefficients, e.g., L(T )

i ·bi+nsm,i.
For comparison, in the noisy share idea, the bi + nsm,i is
uploaded to the aggregator as a whole. If the aggregator
multiplies it with L(T )

i to recover b, the nsm,i is also multi-
plied by L(T )

i , resulting in the blown-up noise. In addition,
we note that in our idea, the Lagrange coefficients will blow
up the errors in BFV ciphertexts. If the error exceeds some
bound, the decryption also fails. Nonetheless, as we will
show in Section 6.2, this problem can be solved by selecting
a slightly larger ciphertext space with modulus O(N).

• Although our idea also requires to share and recover (en-
cryption and decryption) keys with O(N2) computation
complexity and O(N) communication complexity, these
expensive operations only involve the keys whose size is
a constant independent from the length of ciphertexts K.
As a result, the total computation (resp. communication)
complexity is O(N2 +NK) (resp. O(N +K)). For compari-
son, the state-of-the-art solution [23,42] following the noisy
share idea requires to share and recover noises whose length
is the same as ciphertexts and thus its computation (resp.
communication) complexity is O(N2K) (resp. O(NK)).

• Our idea does not require to learn the set of participants in
advance. In Step 2, only after the aggregator has received
the ciphertexts from the parties in T , the aggregator needs
to know the set T and L(T )

i s. Moreover, the participants in
Step 1 are allowed not to participate Step 3. These settings
match our system model on (non)-participants. Despite an
existing work [35, 36] based on the noisy share idea has
lower complexity, it relies on an extra assumption than our
idea, i.e., the prior knowledge of participant set is available.

By the theoretical analysis in Section 6.3 and empirical
evaluation in Section 7, we verify the superior performance
of our BFV-based construction. Still, our construction may
not be the optimal one following the encrypted share idea. We
expect future works to continuously improve its efficiency by
using more ingenious encryption scheme.

4 Preliminaries

4.1 Notation
For a number M of two-power, this paper considers poly-
nomial rings RM = Z[x]/(xM + 1) and RM,Q = RM/QRM ,
and adopts bold letters to denote polynomials (e.g., s). For a
polynomial s, its coefficient is denoted by si and its infinity

norm is defined as ∥s∥ = maxi |si|. The sets are denoted by
calligraphic letters (e.g., S ) except two exceptions. One is
[N] = {1, · · · ,N} for integer N. The other is negl that denotes
the set of negligible functions (with respect to some security
parameter). In addition, a←$ χ and a←$ M denote that a is
sampled from a distribution χ or the uniform distribution over
the set M , respectively. We also use Uniform(M ) to denote
the uniform distribution over the set M .

4.2 Vanilla Secret Sharing
Secret sharing (SS) enables a dealer to distribute its secret
message m to other parties in a secure manner [41]. In this
work, we consider T -out-of-N secret sharing. Its goal is to
enable any set of at least T shares to recover the message m
(i.e., correctness), while prevent the set of less than T shares
from leaking anything about m (i.e., security). The definition
of secret sharing is provided as follows.

Definition 1 (Vanilla Secret Sharing) Given a message
space M , a T -out-of-N secret sharing scheme is a pair of
PPT algorithms (Share,Rec) defined as follows:
Share: {si}i∈[N]←Share(m). On input a message m ∈M ,
this algorithm outputs N shares {si}i∈[N];
Recovery: m← Rec({si}i∈T ). On input shares {si}i∈T from
a set T , this algorithm outputs a message m ∈M .

In addition, some SS schemes satisfy a special property
called linearity [24]. This property allows each share to con-
tain multiple pieces and enables the message to be recov-
ered as the linear combination of pieces from at least T
shares. More formally, the recovery of message m is done
as m = ∑i∈T ∑l∈Li wi,l · si,l , where T is the set of at least
T shares, Li is the set of pieces in si, si,l is the l-th piece
of si, and wi,l is called the recovery coefficients. Linearity
enables a convenient method to compute the share of the
linear combination of messages. Particularly, given that the
i-th share of messages {m1, . . . ,mK} is {s1,i, . . . ,sK,i}, the i-th
share of another message m′ = ∑k∈[K] bkmk can be computed
as s′i = ∑k∈[K] bksk,i.

This work mainly uses Shamir SS [41], in which each
share has only one piece. Suppose that each party i owns
a share si, then the message m is recovered as m = ∑i∈T Li · si.
Here, T can be any set of at least T parties and L(T )

i s are
called Lagrange coefficients that are computed as L(T )

i =

∏ j∈T , j ̸=i[x j/(x j− xi)], where xi is a number corresponding
to party i.

4.3 RLWE-Based Homomorphic Encryption
Homomorphic encryption (HE) is a special type of encryption
that permits computations over ciphertexts without decryption.
In this work, we focus on the HE schemes whose security is
based on the hardness of ring-learning-with-errors (RLWE)
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problem, such as BGV [10], BFV [27], and CKKS [15–17].
These schemes can support additions and a bounded number
of multiplications with high parallelized efficiency. By using
the bootstrapping technique, these schemes can even evaluate
an unbounded number of multiplications. Below we present
BFV scheme. This scheme will be used as a concrete instance
throughout this paper to introduce our scheme. Nonetheless,
our work can be applied to other RLWE-based schemes, or
even be naturally extended to other lattice-based HE schemes,
such as Torus-FHE [18] and FHEW [25].

In practice, the plaintext space and ciphertext space of BFV
are polynomial rings RM,P and RM,Q, respectively. BFV in-
volves an error distribution χe,B, which is usually a discretized
Gaussian distribution with norm bounded by B. Next, we de-
scribe the concrete algorithms of BFV scheme.
Key Generation: sk,pk,evk← KGen(). This algorithm out-
puts secret key sk, public key pk, and evaluation key evk.
Secret-Key Encryption: CT← SKEnc(sk,m,a). On input
sk, a message m ∈ RM,P, and a random polynomial a ←$

RM,Q, this algorithm outputs a pair CT = (CT[0],CT[1]) as
the ciphertext.
Public-Key Encryption: CT← PKEnc(pk,m). On input pk
and a message m ∈ RM,P, this algorithm outputs a pair CT=
(CT[0], CT[1]) as the ciphertext.
Homomorphic Evaluation: CT′ ← Eval(evk,{CTi}i∈[N],
f (·)). On input evk, N ciphertexts {CTi}i∈[N], and an N-input
function f (·), this algorithm outputs a new ciphertext CT′.
Decryption: m← Dec(sk,CT). On input sk and ciphertext
CT ∈ RM,Q, this algorithm outputs a message m ∈ RM,P.

In the BFV scheme, the ciphertext CT= (CT[0],CT[1]) of
a message m under secret key sk has the structure of CT[0]+
CT[1] · sk = ∆ ·m+ eCT, where ∆ = ⌊Q/P⌋ and eCT is the
error in ciphertext. For example, the secret key encryption
SKEnc(sk,m,a) is performed by sampling an error e←$ χe,B
and computing CT[0] = a · sk+∆ ·m+ e and CT[1] =−a.
Decryption and Its Requirement. By the ciphertext struc-
ture, the decryption is done in two steps. The first step is to
compute b =CT[0]+CT[1] ·sk, which is equal to ∆ ·m+eCT.
The second step is to decode m from b by rounding and mod-
ular reduction. Notably, the decryption, and in particular, the
second step, can succeed if and only if the error has a bounded
value, i.e., ∥eCT∥< ∆/2.

4.4 (Public-Key) Threshold FHE
Traditional FHE is typically used in the single-server-single-
client architecture. The client is the owner of private data
and the server is used to evaluate some function over the ci-
phertexts of private data. In this architecture, the client owns
the secret key, along with the full authority to decrypt all
data. Nonetheless, in some scenario, the data may come from
multiple clients and the decryption authority should be dis-
tributed among them. Threshold fully homomorphic encryp-
tion (ThFHE) is proposed for such a scenario. Particularly,

almost all ThFHE schemes require public-key encryption, as
the clients are not allowed to own the secret key and can only
use public key for encryption. Although ThFHE has the same
pipeline as traditional FHE (i.e., secret/public/evaluation key
generation, encryption, homomorphic evaluation, and decryp-
tion), these operations are modified as follows to distribute
the decryption authority.

For key generation, ThFHE asks each party to sample a
local secret key and the (implicit) global secret key is the
summation of all local secret keys. In addition, to support
public-key encryption and evaluation, all parties need to co-
operate to generate global public/evaluation keys from their
local secret keys. To this end, the key generation algorithms
are modified to multi-party protocols. These key generation
protocols are executed only once in the setup stage. Once
these global public encryption and evaluation keys are gen-
erated, they are fixed and will be reused for encryption and
evaluation in the subsequent computation stage. Since then,
we follow the setting of existing work [7, 37] and assume that
all parties remain available in the setup stage. For decryption,
ThFHE also modifies it to a multi-party protocol. This proto-
col involves a threshold parameter T (T ≤ N): the decryption
can succeed if and only if at least T parties participate. We
call such a scheme T -out-of-N ThFHE. Correspondingly, the
ThFHE schemes whose decryption relies on the participation
of all parties are called full-threshold schemes with T = N.

We note that the decryption protocol can be re-executed
to decrypt multiple ciphertexts. When decrypting, the parties
who participate in the key generation protocol may fail to
participate in decryption. Hence, we prefer those ThFHE
schemes who can successfully decrypt even if only part of
parties participate. These preferred schemes should allow the
elastic choice of T according to the system’s characteristics.
Particularly, if there are at most N′ non-participants in the
system, then the setting of T = N−N′ can support to decrypt.
We call such a scheme arbitrary-threshold FHE (AThFHE).
How to design AThFHE, and, in particular, its decryption
protocol, is the core problem studied in this paper.

5 ThFHE via ApproxSS

In this section, we formulate approximate secret sharing (Ap-
proxSS) in Section 5.1 and establish a reduction from ThFHE
construction to the design of ApproxSS in Section 5.2.

5.1 Formulation of ApproxSS
Below we formalize a novel primitive called approximate
secret sharing (ApproxSS). Compared with vanilla SS, a T -
out-of-N ApproxSS has an additional operation called ap-
proximate recovery. Informally, this operation recovers an
approximate message from any T shares of the message, such
that 1) the approximate message is “close” to the original
message and 2) the adversary corrupting T − 1 parties can
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not learn “too much information” about the original message
via this operation. To formulate this operation, a direct way
is to restrict it as a one-shot algorithm like Share and Rec

in vanilla SS. Still, to thoroughly explore all possible con-
structions, we allow this operation to take multiple rounds,
during which parties can interact with each other. Hence, we
formulate the approximate recovery as a multi-party protocol
and define ApproxSS as follows.

Definition 2 (Approximate Secret Sharing) Given a mes-
sage space M , a T -out-of-N approximate secret sharing
scheme is a pair (Share,ΠApproxRec) defined as follows:
Share: {si}i∈[N]←Share(m). On input a message m ∈M ,
this algorithm outputs N shares {si}i∈[N];
Approximate Recovery: m′←ΠApproxRec({si}i∈T ,χ). On in-
put shares {si}i∈T from a set T and a distribution χ on M ,
this multi-party protocol outputs a common approximate mes-
sage m′ ∈M to all parties.

In the above definition, the distribution χ is used to charac-
terize how much information about m is allowed to be leaked
via the execution of approximate recovery. In other words, an
adversary who corrupts T −1 parties cannot learn anything
about m other than a random value mχ = m+ x with x←$ χ

and what is implied by this value. For example, if m = 8 and
χ is a uniform distribution over {−1,0,1}, then the adversary
could learn mχ = 9 and further infer m = 8,9,10 with equal
probability, but nothing else. We term this property of Ap-
proxSS approximate security. To formulate this property, we
introduce two experiments ExptA ,Real(χ) and ExptA ,Ideal(χ),
as described in Figure 4. Particularly, the ExptA ,Ideal(χ) is the
execution of ApproxSS over message m and distribution χ. In
contrast, the view of adversary in ExptA ,Ideal(χ) is simulated
from either public parameters (i.e., N,T,M ,Tr), the internal
states of corrupted parties (i.e., {si}i∈NA

), or a random value
mχ = m+ x with x←$ χ. Hence, if the adversary fails to dis-
tinguish between two experiments, then it can learn nothing
about m except that m can be a random value mχ− x with
x←$ χ, implying the approximate security of ApproxSS. We
formalize the above discussion as follows.

Definition 3 (Approximate Security) For an ApproxSS
whose ΠApproxRec consists of R rounds, it satisfies χ-
approximate security if the following claim holds: There
exists R+ 1 PPT simulator algorithms (S0,S1, . . . ,SR) such
that for any PPT adversary A , the experiments ExptA ,Real(χ)
and ExptA ,Ideal(χ) in Figure 4 are indistinguishable.

We note that there exists a trivial solution for approximate
recovery construction: a party directly outputs the approxi-
mate message as a uniformly-random value over M . In this
way, no information about message m is leaked. Nonethe-
less, this construction is also somewhat meaningless. When
applying ApproxSS in the real-world applications (e.g., the
ThFHE construction in this work), we usually need the ap-
proximate message to be “close” to the original message.

ExptA ,Real(χ): Real-World Experiment

1 : A outputs N,T,M , a message m ∈M , and a set NA of

T −1 corrupted clients

2 : The challenger runs {si}i∈[N]← Share(m) and sends

{si}i∈NA
to A

3 : The ΠApproxRec protocol is performed as follows:

In each round r, A selects a set Tr consisting of T participants,

then the challenger runs the r-th round of the protocol for parties

in Tr and provides the transcript Transr that can be observed by

parties in NA to A
4 : At the end, A outputs a distinguishing bit b

ExptA ,Ideal(χ): Ideal-World Experiment

1 : A outputs N,T,M , a message m ∈M , and a set NA of

T −1 corrupted clients

2 : The challenger runs {si}i∈NA
← S0(N,T,M ) and sends

{si}i∈NA
to A

3 : The challenger samples mχ← m+ x with x←$ χ and then

simulates the ΠApproxRec protocol as follows:

In each round r, A selects a set Tr consisting of T participants,

then the challenger generates transcript Trans′r by running

Trans′r← Sr(mχ,{si}i∈NA
,Tr) and sends Trans′r to A

4 : At the end, A outputs a distinguishing bit b′

Figure 4: Description of ExptA ,Real(χ) and ExptA ,Ideal(χ).
Their differences are highlighted by red, underlined parts.

This property is called approximate correctness. To formulate
this property, we use a subset MB ⫋ M to denote the range
of allowed difference between approximate message m′ and
original message m. The common setting of MB contains the
elements whose value is less than or equal to a given number
B. For example, if m = 8 and B = 1, then MB = {−1,0,1}
and m′ should belong to {7,8,9}. With the notion of MB, the
approximate correctness is formally defined as follows.

Definition 4 (Approximate Correctness) An ApproxSS sat-
isfies MB-approximate correctness if and only if for the
shares of any message {s1, . . . ,sN} ← Share(m) and any
set T of at least T parties, the approximate message m′←
ΠApproxRec({si}i∈T ,χ) satisfies m′−m ∈MB.

Notably, the support1 of distribution χ is not necessarily the
same as the set MB. For example, when χ is the distribution

1Roughly speaking, for a random variable, the support of its distribution
is the set of its possible values with non-zero probability. In this paper, we
mainly consider a discrete random variable x ∈M . In this case, the support
of its distribution χ is defined as the set {x̃ ∈M | P(x = x̃)> 0}.
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over {0} with P(x = 0) = 1, we can construct an ApproxSS
scheme whose ΠApproxRec protocol outputs m+ 1 by modi-
fying a vanilla SS scheme: after the aggregator recovers m
via the recovery algorithm, it randomly outputs m, m + 1,
and m−1 instead of m. This protocol can only satisfies MB-
approximate security with MB = {−1,0,1}, while this MB
is not equal to the support of χ (i.e., {0}). Nonetheless, we
also note that there could exist some relations between the
support of χ and the set MB. For example, when MB = {0},
the approximate recovery protocol must output m. In this
case, the adversary can learn the exact value of m and the best
we can expect for χ-approximate security is χ over {0} with
P(x = 0) = 1. Since this paper focuses on the ApproxSS’s
efficient construction and application for ThFHE, we left the
studies on relations between χ and MB as an interesting prob-
lem for future research.

5.2 ApproxSS-Based ThFHE Construction

Next, we show that a T -out-of-N ThFHE scheme can be
constructed based on a T -out-of-N ApproxSS scheme. Such
a construction includes two modifications on existing full-
threshold FHE schemes. One is to add a step called secret
key sharing to the key generation protocol and the other is
to re-devise the decryption protocol. Below we present these
two modifications and illustrate them in Figure 5.
Key Generation Protocol. In this work, we consider the
public-key ThFHE construction, in which the key generation
protocol consists of two parts: local secret key sampling and
global public key generation. For local secret key sampling,
each party i produces its secret key ski← BFV.SKGen(). For
global public key generation, parties collaborate to generate a
global public/evaluation key. These keys are published to all
parties and will be used for encryption/evaluation later.

Recall that we assume all parties are available for key gen-
eration. Under this setting, we can employ the key generation
protocol of existing full-threshold schemes in our construc-
tion, without requiring many modifications. In these schemes,
by well-crafted design, the global public keys are almost
equivalent to the output of single-party FHE’s key genera-
tion algorithm, with the corresponding global secret key sk
being the summation of local secret keys from all parties, i.e.,
sk= ∑i∈[N] ski. Under this design, the encryption and evalua-
tion algorithms are just the same as those of the single-party
FHE. Meanwhile, the decryption protocol will rely on the
local secret keys from all parties. If a local secret key is only
known by its owner (say party i), then the decryption protocol
can not decrypt once party i does not participate. To avoid
this situation, we add a new step called SKShare as the third
part of key generation protocol.

As specified in Figure 5, this step is executed by every party
i after its local secret key ski is generated. Through SKShare,
party i invokes the Share algorithms of the ApproxSS scheme
to generate T -out-of-N shares of its local secret key ski (Line

1). We particularly note that the message space of ApproxSS
should be the ciphertext space of BFV, as the secret key lies
in this space. Then the party i sends its generated shares to
other parties and receives the shares of local secret keys from
other parties (Line 2-4). By the linearity of ApproxSS, the
summation of the i-th share of local secret keys is the i-th
share of the summation of local secret keys. Recall that the
global secret key is exactly the summation of local secret
keys. By summing all received shares up, party i generates
its T -out-of-N share of global secret key (Line 5-6). Notably,
any T shares contain enough information of global secret key
and can enable the decryption to succeed. Therefore, through
this secret key sharing step, the decryption protocol will not
require all parties to participate.
Decryption Protocol. The decryption protocol can be used
to decrypt a long message from multiple ciphertexts. To high-
light our key idea, we only discuss the case with one ciphertext
CT = (c0,c1) and put the full description with multiple ci-
phertexts in Figure 5. Besides the ciphertext, the decryption
protocol needs two public parameters as input: the BFV pa-
rameter ∆ and the norm bound of smudging noises Bsm. For
ease of description, we decompose the decryption into three
successive phases. Phases 1 and 3 are locally executed by
every party and the aggregator, respectively, while Phase 2 is
an interactive protocol between them.
Phase 1: Computation of Decryption Share. Recall that
by the SKShare step in key generation protocol, each party
i has learned a T -out-of-N share skSharei of global secret
key sk. With the ciphertext CT= (c0,c1), the knowledge of
this share enables party i to compute bi = c0 + c1 · skSharei.
By the linearity of ApproxSS, bi is a T -out-of-N share of
b = c0+c1 ·sk. Since b is a desired value for BFV decryption,
we call bi the decryption share of party i.
Phase 2: Recovery of Approximate Decryption. A natural
idea for decryption is to recover b from its shares computed
in Phase 1 and further decode message m from b. However,
such a recovery process may result in the leakage of secret
key: since b = ∆ ·m+eCT, the knowledge of b and decryption
result m will leak the ciphertext noise eCT, which helps to
further reveal the secret key. To avoid the leakage, existing
works [3, 22] propose noise smudging technique to “smudges
out” any small noise eCT by adding a large noise. Formally,
they prove the following lemma.

Lemma 1 (Noise Smudging) Let B1 and B2 be positive in-
tegers, and let e1 ∈ [−B1,B1] be a fixed integer. Let e2 ←$

[−B2,B2] be chosen uniformly at random. Then the distribu-
tion of e2 is statistically indistinguishable from that of e2 +e1
as long as B1/B2 ∈ negl.

Suppose that the error in ciphertext CT is bounded by BCT,
i.e., ∥eCT∥ ≤ BCT. Then for some “sufficiently large” Bsm
with BCT/Bsm ∈ negl, we can use this lemma to prove that
the value of b+ esm = ∆ ·m+ eCT+ esm can be simulated as
∆ ·m+ esm, where esm←$ [−Bsm,Bsm]. This further indicates
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ThFHE Construction via ApproxSS

SKShare(ski)// Executed after ski← BFV.SKGen()

1 : {skShare j,i} j∈[N]← ApproxSS.Share(ski)

2 : For j = 1, . . . ,N, do
3 : Send skShare j,i to party j

4 : Receive skSharei, j from party j

5 : skSharei← ∑
j∈[N]

skShare j,i

6 : Output skSharei

. . . . . . . . . . . . . . . Decryption Protocol ΠDec . . . . . . . . . . . . . . .

Private Input of Party i: global secret key share skSharei

Public Input: C ciphertexts and parameters ∆,Bsm

Aggregator Output: C plaintexts by decrypting ciphertexts

Phase 1 // Executed by Party i ∈ T
7 : For the c-th ciphertext CTc = (cc,0,cc,1), do
8 : bc,i← cc,1 · skSharei + cc,0

9 : Concatenate {b1,i, . . . ,bC,i} as bi

Phase 2 // Interaction between parties and the aggregator

10 : χ← Uniform({n | ∥n∥ ≤ Bsm})
11 : b′← ApproxSS.ΠApproxRec({bi}i∈T ,χ)

12 : Parse b′ as {b′1, . . . ,b′C}
Phase 3 // Executed by the aggregator

13 : For the c-th ciphertext CTc = (cc,0,cc,1), do
14 : m′c← b′c + cc,0

15 : Decode mc ∈ RM,P from m′c ∈ RM,Q

16 : Output m1, . . . ,mC

Figure 5: Illustration of Our ThFHE construction

that the value of b+esm is safe to be learned by the adversary,
as the adversary can also generates the ∆ ·m+ esm by itself
without using any secret information.

Inspired by this technique, we ask parties and the aggrega-
tor to conduct the approximate recovery protocol, with its in-
put χ being the uniform distribution over [−Bsm,Bsm]. Based
on the approximate security of ApproxSS, we can guarantee
that the adversary cannot learn anything about b via the ex-
ecution of approximate recovery protocol, except a random
value b+ esm that is already safe to be disclosed according
to the noise smudging technique. Therefore, we can further
prove the security of our ThFHE construction.

Notably, researchers [9, 21, 33] further show that the noise
smudging technique still works well with the Bsm in the poly-
nomial order rather than BCT/Bsm ∈ negl. We note that our
construction on ThFHE as well as the ApproxSS scheme is
compatible with this new conclusion. In fact, we just need to

switch the parameter Bsm from exponential order to polyno-
mial order, while the other parts can remain unchangeable.
Phase 3: Output of Final Plaintext. At the end of Phase
2, the aggregator learn an approximate message b′ that is
close to the original message b. Suppose that the ApproxSS
scheme satisfies the MB-approximate correctness for some
MB = [−B,B], then the norm of total error in b′ is bounded
by BCT+B. As long as B < ∆/2−BCT, the aggregator can
successfully decode plaintext m from b′.

The following theorems state the correctness and secu-
rity of our ThFHE construction. Although the description of
Phases 1 – 3 has provided some reasoning, we formally prove
them in Appendix A and Appendix B, respectively.

Theorem 1 (Correctness of ThFHE) Given a T -out-of-N
ApproxSS scheme with linearity and MB-approximate cor-
rectness, the ThFHE construction in Figure 5 is a correct
T -out-of-N scheme with guaranteed output delivery if B <
∆/2−BCT.

Theorem 2 (Security of ThFHE) Given a T -out-of-N Ap-
proxSS scheme with vanilla security and χ-approximate secu-
rity, the ThFHE construction in Figure 5 satisfies simulation-
based security if BCT/Bsm ∈ negl.

In addition, we note that the decryption protocol consists
of the approximate recovery protocol (in Phase 2) and sim-
ple operations (in Phases 1 and 3) with complexity O(K),
which is linear with respect to the length of ciphertext K
but keeps constant with respect to the number of parties N.
Hence, the efficiency of decryption protocol is dominated
by the efficiency of approximate recovery protocol, unless
the approximate recovery protocol has less complexity than
O(K), which is unlikely to happen. This inspires us to design
efficient ApproxSS, especially under arbitrary threshold.

6 ATASSES: Construction and Analysis

This section starts with the challenges of ApproxSS construc-
tions and the shortcomings of existing solutions in Section
6.1 and then presents how we address them in Section 6.2.

6.1 Challenges and Existing Solutions
Existing works design several arbitrary-threshold (ATh)-
ApproxSS schemes based on two types of linear SS. One
is linear SS with small recovery coefficients, and the other
is Shamir SS. Below we describe the challenges of ATh-
ApproxSS design under these two types of SS and highlight
the shortcomings of existing solutions.
ApproxSS with Small Recovery Coefficients. Recall that
for T -out-of-N linear SS, each share consists of L pieces and
the message m can be recovered as a linear combination m =

∑i∈T ,l∈[L] w
(T )
i,l ·si,l , where T is a set of at least T parties, si,l is
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the l-th piece of the share of party i, and w(T )
i,l is the recovery

coefficients. An existing ApproxSS adopts linear SS with
w(T )

i,l being a small value like 0,1, a.k.a, {0,1}-linear SS [7].
This type of SS can be easily boosted to ApproxSS and

is thus friendly to ThFHE design. To do so, the approximate
recovery protocol only needs one round. In this round, every
party i adds each of its piece si,l (l = 1, . . . ,L) a noise ni,l ←$

χB. After collecting these noisy shares from any T parties, the
aggregator can recover the approximate message as follows

m′ = ∑
i∈T ,l∈[L]

w(T )
i,l · (si,l +ni,l) = m+ ∑

i∈T ,l∈[L]
w(T )

i,l ·ni,l . (1)

Since w(T )
i,l and ni,l both have bounded values, the difference

between original message and approximate message also has
a bounded value. Readers can easily check its approximate
correctness and prove its approximate security.

However, this type of SS suffers from an extremely large
size of each share in the arbitrary-threshold case. For example,
in a T -out-of-N replicated SS, each share consists of

(N−1
T−1

)
pieces, which may increase exponentially with the number
of parties N. Hence, this type of ApproxSS and its induced
ThFHE can only be used in some special cases with

(N−1
T−1

)
being a small value, such as in the full-threshold case (N = T )
or in a small system (e.g., N = 2 or N = 3) [23].
Shamir ApproxSS. Shamir SS enjoys an advantage that its
share has the same size as the message. Suppose that each
party i owns a share si, then the message m is recovered as
m=∑i∈T L(T )

i ·si, where T can be any set of at least T parties
and L(T )

i s are the Lagrange coefficients.
Although Shamir SS has the efficiency advantage, the La-

grange coefficients have two properties that make the design
of Shamir ApproxSS very challenging. One is unbounded
value, i.e., the Lagrange coefficients can be arbitrarily large
in the message space. Another is unpredictablity. Lagrange
coefficients are associated with the set T and their values can
not be learned until the set T is determined. These two fea-
tures imply that Lagrange coefficients can be arbitrarily-large
unknown numbers. If each party i adds a noise ni to its share
si for approximate security, then the recovered approximate
message will be

m′ = ∑
i∈T

L(T )
i · (si +ni) = m+ ∑

i∈T
L(T )

i ·ni. (2)

The difference between original message and approximate
message is ∑i∈T L(T )

i ·ni, which may be blown up by L(T )
i s

and fail the approximate correctness. To overcome the “blown-
up noise” challenge, existing works propose three ideas.

• Type-I. One idea is to adopt the “clearing out the denom-
inators” technique [2] to scale ni so that L(T )

i · ni has
a value bounded by (N!)3 [7]. However, this bound is
extremely loose and grows rapidly with the number of

parties N. Recall that the ApproxSS requires the bound
of ∑i∈T Li · ni to be smaller than the modulus of mes-
sage space (MB ⫋ M ). Hence, this idea results in a
large message space of ApproxSS with modulus being
O(N · (N!)3). This huge message space incurs high com-
plexity and difficulty for parameter instantiation.

• Type-II. The second idea is to coordinate the noise
nis from all parties so that nis are the shares of some
bounded value n [42]. In other words, we have n =

∑i∈T L(T )
i ·ni for any set T . By this way, the difference

between original and approximate messages is in fact
n, whose value is bounded. However, the noise coordi-
nation asks each party to share a random noise with the
same length as message (say K) to all of other parties.
This may result in relatively high cost, especially when
the values of N and K are both large.

• Type-III. Another idea is to assume that the set of partici-
pants T can be known in advance [35, 36]. In this way,
the set T as well as its associated Lagrange coefficients,
can be learned and be used to generate a T -out-of-T de-
cryption share. Then the design of approximate recovery
protocol is reduced to its counterpart in the full-threshold
case, which can be fairly easy and efficient. Nonetheless,
the set T of participants can be determined by random
factors or even the adversary in the real world. Hence, it
is impractical to assume the knowledge of T in advance.

In a word, existing Shamir-based constructions are either inap-
plicable in the real world or inefficient with high complexity.

6.2 ATASSES for Efficient AThFHE
Faced with the above deficiencies, we use a novel idea
called “encrypted share” and propose ATASSES, an Arbitrary-
Threshold ApproxSS scheme based on Encrypted Share idea.
Next, we first introduce this idea, then describe a concrete
construction, and discuss its application for AThFHE at last.
Main Idea. Our goal is to build a Shamir ApproxSS with
lower complexity. Suppose that the shares sis have been gen-
erated from the message m by Shamir secret sharing, i.e.,
m = ∑i∈T L(T )

i · si for any set T of at least T parties. The key
problem is how to devise the approximate recovery proto-
col. We note that the shares can not be sent to the aggregator
without any protection. Otherwise, the aggregator can exactly
recover the message and break the approximate security. Cor-
respondingly, we rely on a novel idea to protect the shares.
Part 1: Share Protection. Different from existing construc-
tions who directly add some noise to the share, we employ
BFV secret-key encryption to protect shares. To distinguish
from ThFHE’s parameters, we use the superscript to denote
the parameters of BFV secret-key encryption here. For exam-
ple, the moduli for the plaintext space and ciphertext space are
denoted by P′ and Q′, respectively, and the degree of BFV’s
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secret key is M′. In this case, one ciphertext can only encrypt
a degree-M′ polynomial. Nonetheless, the share si can be a
long vector with length K≫M′. In this case, party i breaks
si down into C′ sub-vectors with length M′ so that K ≤C′M′

and encrypts each sub-vector, respectively. Formally, the k-th
sub-vector si,k is encrypted to CTsi,k as

CTsi,k = (ak · eki,1 + ei,1,k +∆
′ · si,k,−ak), (3)

where ak is a uniformly-random polynomial, eki,1 is the (se-
cret) encryption key of party i, ei,1,k is an error polynomial
with norm bounded by B′, and ∆′ = ⌊Q′/P′⌋.
Part 2: Message Recovery. Our first observation is that BFV
secret-key encryption is linearly-homomorphic in the key.
Specifically, given CTsi,ks from multiple parties i ∈ T and
Lagrange coefficients {L(T )

i }i∈T , if CTsi,k[1] =−ak for any
i, the aggregator can compute a new ciphertext CTsk as

CTsk = (∑
i∈T

L(T )
i ·CTsi,k[0],−ak). (4)

Substituting Eq.(3) into Eq.(4) leads to the following:

CTsk[0] = ∑
i∈T

L(T )
i ·CTsi,k[0] = ak ·∑

i∈T
(L(T )

i · eki,1)

+ ∑
i∈T

L(T )
i · ei,1,k +∆

′ · (∑
i∈T

L(T )
i · si,k).

(5)

By observing Eq.(5), we can tell that CTsk is the encryption
of ∑i∈T L(T )

i ·si,k =mk, with the key being L(T )
i ·eki,1. In other

words, the aggregator can decrypt the original message mk

from CTsk if it learns decryption key dk = ∑i∈T L(T )
i · eki,1.

Nonetheless, ApproxSS requires to recover an approximate
message rather than the original message. To solve this prob-
lem, we simply ask each party i to encrypt a Bsm-bounded
noise ni,k using another key eki,2 but the same ak, i.e.,

CTni,k = (ak · eki,2 + ei,2,k +∆
′ ·ni,k,−ak), (6)

By using the linearly key-homomorphic property again, the
aggregator combines CTni,ks and CTsi,ks into an overall ci-
phertext CTallk as following.

CTallk = (∑
i∈T

L(T )
i ·CTsi,k[0]+CTni,k[0],−ak). (7)

With the similar reasoning process, we can come to the con-
clusion: CTallk is the encryption of ∑i∈T (L

(T )
i · si,k + ni,k),

with decryption key being dk=∑i∈T L(T )
i ·eki,1+eki,2. Since

∑i∈T (L
(T )
i · si,k + ni,k) = mk + ∑i∈T ni,k, the decryption of

CTallk with dk is exactly the desired approximate message.
Recall that the value of ni,k is bounded by Bsm. The difference
between original and approximate messages is bounded by
N ·Bsm, which satisfies approximate correctness.

Before presenting how the aggregator learns dk, we note
that the decryption of overall ciphertext CTallk may fail if

its error exceeds ∆′/2. Nonetheless, we only need to select
a slightly larger ciphertext space to fix this problem. Partic-
ularly, the error in CTallk is ∑i∈T (L

(T )
i ei,1,k + ei,2,k). Since

L(T )
i s are in the message space of Shamir SS as si, which is

also the plaintext space of BFV secret-key encryption, their
values are bounded by P′−1. Recall that the values of original
errors ei,1,k and ei,2,k are bounded by B′. Then the overall error
is bounded by N ·P′ ·B′. Hence, although Lagrange coeffi-
cients L(T )

i s also blow the error up, if we set N ·P′ ·B′ < ∆′/2
or more strictly Q′ > 2(P′)2B′N + 2P′ = O(N), the decryp-
tion will succeed to output correct approximate message. In
other words, our scheme only requires Q′ = O(N) and has no
requirement on P′. In contrast, Type-I Shamir ApproxSS [7]
requires the message space with P′ = O(N · (N!)3) that is
much larger than the ciphertext space of our scheme. This is
one reason why our “encrypted share” idea performs better.
Part 3: Secure Computation of Decryption Key. Now, the only
step left is to obtain the decryption key dk=∑i∈T L(T )

i ·eki,1+
eki,2. We first note that dk is safe to disclose: following the
security proof in [5], the ciphertexts are still indistinguishable
from random values even when dk is revealed. Readers can
find more details in Appendix C. To see how to compute the
decryption key, we recall that L(T )

i s are associated with the
set T and can NOT be revealed before the set T is known.
Since L(T )

i s are necessary for computing dk, the aggregator
needs an extra round after the set T is known. Nonetheless,
the party i ∈ T who encrypts si and ni may not participate
in this extra round. If so, no one knows its encryption keys
eki,1,eki,2 that are also necessary for the dk computation.

Our solution to this problem consists of two rounds. In
the first round, each participant i ∈ T not only encrypts si
and ni, but also shares its encryption keys with other parties
using T -out-of-N Shamir SS. At the end of the first round,
the knowledge of the set T becomes available, as well as its
associated L(T )

i s. With the knowledge of L(T )
i s, in the second

round, each party j computes one decryption key share from
its received shares of eki,1 and eki,2 by the linear property of
Shamir SS. Suppose that the set of participants in the second
round is T2. After collecting the shares of dk from T2, the
aggregator recovers dk and further obtains the approximate
message by decrypting CTallk. Here, the set of participants
T and T2 can be different. Therefore, our scheme does not
require to learn the set of participants in advance, which is a
key difference from the Type-III Shamir ApproxSS [35].

We note that our solution also asks each party i to share its
encryption keys with other parties, which leads to quadratic
computation complexity O(N2) with respect to the number
of parties N. Nonetheless, the length of encryption key is
the intrinsic parameter of BFV, which remains constant with
respect to the length of message. Therefore, in our solution,
the complexity of sharing does not grow with the message’s
length K. For comparison, the complexity of Type-II Shamir
ApproxSS asks to share a noise whose length is the same
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ATASSES Construction: ΠApproxRec

Private Input of Party i: a share si of message m

Public Input: χ = Uniform({n | ∥n∥ ≤ Bsm})
Aggregator Output: an approximate message m′

PartyR1(si)

1 : eki,1← BFV.SKGen(), eki,2← BFV.SKGen()

2 : {ekShare j,i,1} j∈[N]← ShamirSS.Share(eki,1)

3 : {ekShare j,i,2} j∈[N]← ShamirSS.Share(eki,2)

4 : Sends ekShare j,i,1,ekShare j,i,2 to party j

5 : Breaks si down into length-M′ sub-vectors

6 : For the k-th length-M′ sub-vector si,k, do
7 : ak←$ CRS, ni,k←$ χ

8 : CTsi,k← BFV.SKEnc(eki,1,si,k,ak)

9 : CTni,k← BFV.SKEnc(eki,2,ni,k,ak)

10 : Sends CTsi,k,CTni,k to the aggregator

AggregatorR1()

// Executed after collecting CTsi,k,CTni,k for all ks from set T

11 : Computes {L(T )
i }i∈T and sends {L(T )

i }i∈T to all parties

PartyR2({L(T )
i }i∈T ,{ekSharei, j,1,ekSharei, j,2} j∈[N])

12 : dkShare j = ∑
i∈T

(L(T )
i · ekSharei, j,1 + ekSharei, j,2)

13 : Sends dkShare j to the aggregator

AggregatorR2({CTsi,k,CTni,k}i∈T ,{dkShare j} j∈T2
)

// Executed after collecting dkShare j from set T2

14 : dk← ShamirSS.Rec({dkShare j} j∈T2
)

15 : For the k-th ciphertext (CTsi,k,CTni,k), do

16 : CTallk← (∑
i∈T

(L(T )
i ·CTsi,k[0]+CTni,k[0]),−ak)

17 : m′k← BFV.Dec(dk,CTallk)

18 : Concatenate all m′ks as m′

Figure 6: The approximate recovery protocol of ATASSES.

as that of message. As a result, its complexity of sharing is
O(N2K) and grows with message’s length. This is another
reason why our solution performs better.
Concrete Construction. As an implementation of the above
idea, the ΠApproxRec protocol of ATASSES consists of two
rounds, as illustrated in Figure 6.

• Round 1: Encryption of Share and Noise. Each party i exe-
cutes algorithm PartyR1 for two tasks. One is to generate
and share two encryption keys with other parties (Line 1-4).
The other is to encrypt its share si and noise ni using BFV
secret-key encryption and sends the ciphertexts to the ag-

gregator (Line 5-10). After collecting at least T groups of
ciphertexts of si and ni from set T , the aggregator executes
AggregatorR1 to compute the Lagrange coefficients asso-
ciated with set T and send them to all parties. We note that
the successful decryption of ATASSES relies on a condition,
namely, the set of parties who send the ciphertexts should
be identical to the set of parties who send the shares of
encryption keys, which is both denoted by symbol T . Our
system model in Section 2.2 assumes that this condition
is met for at least T parties. In practice, we can take the
aggregator as the communication relay between parties, so
that the aggregator can monitor the party-to-party message
delivery and guarantee to satisfy this condition.

• Round 2: Decryption of Approximate Message. Each party
j executes PartyR2 to compute its decryption key share
dkShare j. After collecting at least T shares from set T2,
the aggregator executes AggregatorR2 to recover the de-
cryption key dk from {dkShare j} j∈T2 (Line 14) and further
decrypt every overall ciphertexts CTallks (Line 15-17). The
concatenation of decryption results is the desired output m′.

Application to ThFHE. To construct ThFHE based on
ATASSES, the ciphertext space of ThFHE should be set as
the message space of ATASSES, so that b in ThFHE can be
regarded as m in ATASSES. In addition, as we will show later,
the ATASSES can achieve MB-approximate correctness with
B = T ·Bsm. Recall that the correctness of ThFHE requires
B < ∆/2−BCT. Hence, when applying ATASSES for ThFHE
construction, we need to set T ·Bsm < ∆/2−BCT.

6.3 Performance Analysis of ATASSES
We analyze ATASSES in terms of its correctness, security,
and efficiency. The approximate correctness and security are
given by Theorem 3. The complexity of ΠApproxRec protocol
of ATASSES along with other ApproxSS schemes is listed in
Table 1. Due to the page limit, the proof and analysis details
is deferred to Appendix C and Appendix D, respectively. We
note that Type-III Shamir ApproxSS has a different assump-
tion with other schemes, i.e., the knowledge of participant set
is known in advance. Compared with existing schemes that
do not rely on this assumption, ATASSES reduces the compu-
tation (resp. communication) complexity from O(N2 ·K) to
O(N2+NK) (resp. O(N ·K) to O(N+K)). Although Type-III
scheme shows lower complexity, it may lose superiority when
the knowledge of participant set is fault or even unavailable.
In this case, Type-III scheme can only randomly search from(N

T

)
possibilities until finding the correct set T , which may

yield a significantly higher (average) cost than ATASSES.

Theorem 3 (ATASSES’s Properties) ATASSES satisfies χ-
approximate correctness and MB-approximate security un-
der RLWE-hardness assumption for χ = Uniform({n | ∥n∥ ≤
Bsm}) and MB = {n | ∥n∥ ≤ T ·Bsm}.
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Table 1: Comparison between ATASSES and existing Ap-
proxSS schemes in terms of ΠApproxRec protocol’s communica-
tion complexity (Comm.), computation complexity (Comp.),
and round number.

{0,1}-
ApproxSS

Shamir-based ApproxSS
Type-I [7] Type-II [42] Type-III [35, 36] ATASSES

Comm. O(N4.2K) O(NK) O(NK) O(K) O(N +K)

Comp. O(N5.2K) O(N2K) O(N2K) O(NK) O(N2 +NK)
Round

Number 1 1 2 1 2

7 Experiment Evaluation

We empirically evaluate ATASSES’s efficiency with code in
https://zenodo.org/records/14644655.
Setup. We implement the proposed ATASSES as well as three
existing ApproxSS schemes for comparison, including two
one-round schemes (i.e., replicated ApproxSS as a specific
instance of {0,1}-ApproxSS and Type-I Shamir ApproxSS)
and a two-round scheme (i.e., Type-II Shamir ApproxSS). Par-
ticularly, ATASSES relies on the BFV secret-key encryption
and is hence implemented on top of Lattigo library [1]. We
note that Type-III Shamir ApproxSS has a different setting
with others, i.e., it allows the knowledge of participant set in
advance. With this setting, Type-III Shamir ApproxSS has
unfair advantage and is thus excluded from comparison. All
experiments in this part are performed in a 14-inch MacBook
with Apple M2 Pro CPU.

When implementing these ApproxSS schemes, we adopt
the common parameter setting to make a fair compari-
son. Since ATASSES adopts the default parameter setting
PN12QP109 provided by Lattigo library, we set the message
space of almost all ApproxSS schemes to be the polyno-
mial ring with degree 4096 and modulus 65537. The only
exception is Type-I Shamir ApproxSS. Since Type-I Shamir
ApproxSS requires a much larger message space, we use
Golang’s “math/big” package to search the smallest modulus
that can meet its requirement. As for the norm bound of noises
Bsm, we set it to be 216 for all schemes.2

In addition, we adopt multiple values of T , N, and K to
observe their impacts on performance. Specifically, we set
T ∈ {0.5N,0.7N,0.9N}. The value of N ranges from 10 to
100 in existing one-round schemes, while ranges from 100 to
1000 in existing two-round schemes. The reason behind such
a difference is that those one-round schemes are not efficient
enough to support a large number of parties. As for the value
of K, we set it to be the multiples of key’s size. Let M′ denote
the size of key used in ATASSES’s encryption scheme, we
consider K ∈ {5M′,10M′,15M′,20M′}.
Results. We measure the running time of approximate recov-

2We note that in practice, this value should be set according to the require-
ments of applications. For example, the ThFHE may require the value of Bsm
to be in the polynomial order or even super-polynomial order with respect to
some security parameter. In the experiments, we fix the value of Bsm for all
schemes to make a fair comparison.

ery protocols as the performance metric. The running time in-
cludes communication time and computation time. The com-
munication time is set to be the size of transferred data divided
by the network bandwidth Band. We set Band = 98Mbps,
which emulates the realistic bandwidth of 4G cellular net-
works [34, 40]. The experiment results are shown in Figure 7,
from which we can come to the following conclusions.

Regarding the growth of running time with N, we can ob-
serve a slow growth trend of ATASSES. This aligns with our
theoretical analysis and demonstrates that ATASSES can be
applied to large-scale systems. In contrast, existing ApproxSS
schemes have much longer time that grows rapidly with
N. Particularly, those one-round ApproxSS schemes, despite
their lower round-complexity, suffers from extremely-large
running time when N exceeds 30. The two-round ApproxSS
scheme performs better, but still worse than ATASSES. More
specifically, ATASSES has comparable running time as Type-
II Shamir ApproxSS when there are a small number of parties,
while provides a speedup of 3.83× – 15.4× when N = 1000.
Meanwhile, the above observations on comparison between
different ApproxSS schemes hold for different values of T .

In addition, by observing the same row of sub-figures, the
running time of ATASSES hardly changes with the growth
of K. The reason is that the running time is dominated by the
operations whose running time is independent with K. In con-
trast, the running time of existing ApproxSS schemes grows
rapidly with different values of K. Hence, ATASSES’s per-
formance advantage becomes more significant with a larger
value of K. This demonstrates that ATASSES has the advan-
tage to be applied when the data size is large. Meanwhile, we
also observe that ATASSES may lack superiority when K is
smaller than the length of BFV’s secret key M′. Nonetheless,
this can be mitigated by choosing an adequate value of M′.

8 Related Work

In the interest of space, this section reviews related work
solely on arbitrary-threshold FHE schemes that try to reduce
the complexity. Particularly, we divide these schemes into the
synchronous and asynchronous settings.

Most of existing schemes are designed in the asynchronous
setting, as it can cover more real-world situations. In this
setting, the set of participants can vary at any time, and a
participant can NOT learn the set of other participants until
receiving some message from them. Asharov et al. proposed
a secret key resharing idea to extend a full-threshold ThHE to
arbitrary-threshold ThHE [3]. Nonetheless, their idea would
reveal the secret key of non-participants, resulting in a security
vulnerability. Boneh et al. proposed two arbitrary-threshold
ThHE schemes based on {0,1}-linear SS and Shamir SS,
respectively [7]. Although these two schemes avoid the secret
key leakage and only require one-round communication for
decryption, they both suffer from significant overhead that
grows rapidly with the number of parties N. Concurrently
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(a) One-round (K = 5M′) (b) One-round (K = 10M′) (c) One-round (K = 15M′) (d) One-round (K = 20M′)

(e) Two-rounds (K = 5M′) (f) Two-rounds (K = 10M′) (g) Two-rounds (K = 15M′) (h) Two-rounds (K = 20M′)

Figure 7: Running time of ATASSES and existing (one-round and two-rounds) ApproxSS with different values of K, N, and T .

to these one-round schemes, Tian et al. design a two-round
scheme based on Shamir secret sharing and apply them in the
scenario of federated learning [42], which also occurs in [23].
This scheme asks each party to share a secret noise with every
parties, resulting in relatively high complexity.

Different from the above work, Mouchet et al. note that
the asynchronous setting might be an overkill for many ap-
plications and consider to design an efficient scheme in the
synchronous setting [35]. In this setting, the participant set
can be known to every parties as a prior knowledge. By uti-
lizing this knowledge, they devise a decryption protocol with
O(NK) computation complexity and O(K) communication
complexity. Considering that parties in the expected partici-
pant set may also crash, Helium framework [36] extends [35]
with a concrete retry mechanism. Specifically, if the expected
participant set does not fully match the physical truth, Helium
allows the parties to re-execute the decryption protocol with
a modified set of expected participants. Once the modified
set matches the physical truth of participant set, the decryp-
tion protocol can output the correct result. Nonetheless, the
successful decryption still requires that the T participants be
exactly as expected. Although this condition can be met when
those non-participants become unavailable following random
process as modeled in Helium’s churn model, these works
may fail to handle all types of non-participants. For example,
a denial-of-service adversary may deliberately switch a party
to non-participant once this party is identified as an expected
participant. In this case, the decryption protocol cannot output
the correct result even after multiple retries, because the set
of expected participants will never match the physical truth.

In summary, existing schemes in the asynchronous set-
ting suffer from low efficiency and existing schemes in the
synchronous setting may fail to handle all types of non-
participants. In this work, we aim to propose an AThFHE
scheme with lower complexity that can successfully decrypt
as long as there are at least T participants (could be any

T parties) at the same time. Meanwhile, we note that some
works also try to optimize AThFHE along two other lines.
Along one line, recent work [13] considers maliciously-secure
ThFHE design. Still, this work assume that there are no non-
participants. Our work can help to remove this assumption
and advance this work to fully-malicious security. Along the
other line, a series of works [9, 21, 33] improve the efficiency
by reducing the value of noises. Particularly, they show that
the noise smudging technique can also be applied when the
noise is in the polynomial order rather than exponential or-
der. Since the ciphertext modulus needs to grow with a larger
value of noises, a lower-order noise can reduce the cipher-
text modulus from exponential order to polynomial order,
which helps to decrease the communication and computation
complexity. Notably, our work is compatible with noises of
any order and thus can employ these works to reduce the
ciphertext modulus.

9 Conclusion

We formulate a novel primitive called approximate secret
sharing (ApproxSS), and establish the reduction of construct-
ing ThFHE schemes to ApproxSS designs. We develop
ATASSES, a Shamir-based ApproxSS scheme in the arbitrary-
threshold case with lower complexity. We theoretically prove
its security and correctness with guaranteed output delivery,
and then empirically demonstrate its substantial efficiency ad-
vantages over baselines. ATASSES helps to induce an efficient
arbitrary-threshold ThFHE scheme that outperforms existing
schemes for higher efficiency, by which ThFHE can be truly
applied in the real world, such as the secure aggregation in
federated learning. Overall, we believe that the proposed prim-
itive can not only improve the efficiency of ThFHE, but also
be of independent interest with more applications.
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10 Ethics Considerations and Compliance
with Open Science Policy

We have carefully considered the ethics following the confer-
ence guideline. Our research aims to reduce the complexity
of cryptographic primitives by proposing novel techniques.
The involved stakeholders could include the designers of se-
cure multi-party protocols and the participants of computing
services. Our work will have positive effects on 1) facilitating
the designers with more tools and 2) protecting the privacy of
participants. Meanwhile, both of the research process and our
contributions have no negative impacts, including but not lim-
ited to breaking the security of computer systems, collecting
private information, and violating human rights.

Regarding the open science policy, we fully obey it and
have published our code via anonymous link (see Section 7).
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A Proof of Theorem 1

Theorem 1 (Correctness of ThFHE, Restated) Given
a T -out-of-N ApproxSS scheme with linearity and MB-
approximate correctness, the ThFHE construction in Figure
5 is a correct T -out-of-N scheme with guaranteed output
delivery if B < ∆/2−BCT.

Proof: To prove the correctness of ThFHE with guaran-
teed output delivery, we must show that given a ciphertext
CT = (c0,c1) as the encryption of m under the global pub-
lic key sk, the decryption protocol ΠDec will output m with
overwhelming probability.

In the Phase 1 of decryption protocol, we have bi = c1 ·
skSharei + c0. By the linearity of ApproxSS, since skSharei
is a share of global secret key sk, bi is a share of c1 · sk+ c0.
According to the definition of BFV encryption, the ciphertext
has the structure c0 + c1 · sk= ∆m+ eCT, with ∥eCT∥< BCT.
Hence, we can learn that bi is a share of ∆m+ eCT. Let b
denote the ∆m+ eCT.

In the Phase 2 of decryption protocol, the approximate
recovery protocol is executed to output b′ with only T par-
ticipants. By the MB-approximate correctness of ApproxSS,
we have b′−b ∈MB and thus ∥b′−b∥< ∆/2−BCT. Recall
that b = ∆m+ eCT from the conclusion of Phase 1. Hence,
we have b′ = ∆m+ eCT+n for some ∥n∥< ∆/2−BCT.

In the Phase 3 of decryption protocol, the plaintext m is de-
coded from b′. By the decryption requirement of BFV, the de-
cryption will succeed to output m if and only if ∥eCT+n∥<

∆/2. Recall that ∥eCT∥< BCT and ∥n∥< ∆

2 −BCT from the
parameter setting and the conclusion of Phase 2. By trian-
gle inequality ∥a+b∥ < ∥a∥+ ∥b∥, we have ∥eCT+n∥ <
∥eCT∥+ ∥n∥ < BCT+(∆/2−BCT) = ∆/2. since the condi-
tion ∥eCT+n∥< ∆/2 holds, the decryption protocol will suc-
cessfully output m, which concludes this proof. ■

B Proof of Theorem 2

Theorem 2 (Security of ThFHE, Restated) Given a T -out-
of-N ApproxSS scheme with vanilla security and χ-
approximate security, the ThFHE construction in Figure 5
satisfies simulation-based security if BCT/Bsm ∈ negl.

Proof: The proof is conducted via a sequence of hybrid exper-
iments between an adversary A and a challenger.
H0. This is the real-world execution of ThFHE protocols
and algorithms. Specifically, the challenger executes the key
generation protocol (including the full-threshold FHE’s key
generation protocol and our SKShare protocol). Then the
challenger encrypts the data of participated parties and send
the ciphertexts to the aggregator. Next, the challenger homo-
morphically evaluates over the ciphertexts from parties and
outputs the ciphertext of computation result. Finally, the chal-
lenger runs the decryption protocol for parties and aggregator
to output the computation result. During this process, the ad-
versary can see the transcripts of every corrupted parties (and
in particular, the aggregator) and assign the set of participants
in each round.
H1. This experiment is the same as H0, except that the
SKShare in key generation and approximate recovery pro-
tocol in decryption are simulated as specified in ExptA ,Ideal.
Specifically, the challenger samples a random value mχ from
χ and then runs several simulator algorithms to output the tran-
scripts that can be seen by the adversary. By the approximate
security of ApproxSS, H1 and H0 are indistinguishable.
H2. This experiment is the same as H1, except that the ran-
dom value mχ is simulated by sampling e′←$ {e | ∥e∥< Bsm}
and computing mχ = ∆ ·m− c0 + e′, rather than sampling as
b+x with x←$ χ. Recall that we set χ = Uniform(MBsm =
{e | ∥e∥< Bsm}). To demonstrate that H1 and H2 are indistin-
guishable, it suffices to show that b+x is indistinguishable
from ∆ ·m− c0 + e′ with e′ ←$ {e | ∥e∥ < Bsm}. Note that
b = c1 · sk and thus b+ e = c1 · sk+ e = ∆ ·m− c0 + eCT+ e.
When BCT/Bsm ∈ negl, we have that eCT+ e is indistinguish-
able with e′ by the smudging lemma [3]. Hence, χ is indis-
tinguishable from ∆ ·m− c0 + e′ with e′←$ {e | ∥e∥< Bsm}
and thus H1 and H2 are indistinguishable.
H3. This experiment is the same as H2, except that the chal-
lenger does not generate the parties’ ciphertext by encrypting
their data. Instead, the challenger generates them by encrypt-
ing 0. By the CPA security of BFV encryption, H3 is indistin-
guishable with H2.
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We note that H3 is the ideal-world experiment. The reason
is that H3 simulates the view of adversary without using the
private data of parties. Instead, the only used data is public
parameters and the final output m.

By the above arguments, the real-world experiment H0 is
indistinguishable from the ideal-world experiment H3. Hence,
ThFHE satisfies the simulation-based security. ■

C Proof of Theorem 3

Theorem 3 (Properties of ATASSES, Restated)
ATASSES satisfies χ-approximate correctness and MB-
approximate security under RLWE-hardness assumption for
χ=Uniform({n | ∥n∥≤ Bsm}) and MB = {n | ∥n∥≤ T ·Bsm}.

Proof: This proof consists of two parts, which prove the
approximate correctness and the approximate security of
ATASSES, respectively.
Approximate Correctness: We first prove the approximate
correctness of ATASSES. By Definition 4, the approximate
correctness says that the output of ΠApproxRec, i.e., m′, should
satisfy m′ = m+ n for some n ∈MB. Since ATASSES sets
MB = {n | ∥n∥ ≤ T · Bsm}, we just need to prove m′ =
m+∑i∈T ni with ∥ni∥ ≤ Bsm,∀i. Since m′ is obtained by de-
crypting CTall with key dk, it suffices to prove that CTall is
truly the encryption of m+∑i∈T ni using dk. Next, we prove
this conclusion by proving two intermediate conclusions:
1) the CTall can be decrypted to m+∑i∈T ni using the key

∑i∈T L(Ti)
i · eki,1 + eki,2 and 2) dk= ∑i∈T L(Ti)

i · eki,1 + eki,2.
Proof for intermediate conclusion 1. By the algorithm

PartyR1, the ciphertexts are obtained as

CTsi = (a · eki,1 + ei,1 +∆
′ · si,−a); (8)

CTni = (a · eki,2 + ei,2 +∆
′ ·ni,−a); (9)

CTall = (∑
i∈T

(Li ·CTsi[0]+CTni[0]),−a). (10)

By substituting Eq.(8) and Eq.(9) to Eq.(10), decrypting CTall

using ∑i∈T L(Ti)
i · eki,1 + eki,2 leads to

BFV.Dec(∑
i∈T

L(Ti)
i · eki,1 + eki,2,CTall) (11)

= ∑
i∈T

(Li ·CTsi[0]+CTni[0])−a · (∑
i∈T

L(Ti)
i · eki,1 + eki,2)

(12)

= ∑
i∈T

[∆′ · (Lisi +ni)+(Liei,1 + ei,2)] (13)

=∆
′ · (m+ ∑

i∈T
ni)+ ∑

i∈T
(Liei,1 + ei,2). (14)

Recall that we set ∆′/2 > N ·P′ ·B′. Hence, the norm of total
error ∑i∈T (Liei,1+ei,2) must be bounded by N ·P′ ·B′ as well
as ∆′/2. This aligns with the requirement of successful BFV
decryption. Hence, decrypting CTall using ∑i∈T L(Ti)

i · eki,1 +

eki,2 leads to m+∑i∈T ni. The first intermediate conclusion
is proved.

Proof for intermediate conclusion 2. Note that dk is gen-
erated by running the recovery algorithm of Shamir secret
sharing over shares {dkShare j} j∈T2 . Each decryption key

share is generated by dkShare j = ∑i∈T L(T )
i · ekSharei, j,1 +

ekSharei, j,2. By the linearity of Shamir secret sharing, dk is
equal to ∑i∈T L(T )

i ·eki,1+eki,2. The second intermediate con-
clusion is proved.

Based on the above two intermediate conclusions, CTall is
truly the encryption of m+∑i∈T ni using dk. Hence, m′ = m+
n for some n ∈MB = {n | ∥n∥ ≤ T ·Bsm}. The approximate
correctness of ATASSES holds.
Approximate Security: Below, we first prove a property of
RLWE secret-key encryption and then use it to prove the
semi-honest security of ATASSES. Our proof relies on the
following lemma from the full version of [5].

Lemma 2 (Lemma 4, Appendix A in [5]) For any σ1 > 0,
for any m,K,Q,P,∆, l ≥ 1, let k = l/K and x1, . . . ,xm ∈ Zl

P ≡
R k

P . Assume RLWEK,q,σ is hard for σ = 1/
√

2σ1. Then, the
following two distributions D0 and D1 are indistinguishable.

D0 =



(A,As1 +(e1 + f1)+∆x1, . . . ,

Asm−1 +(em−1 + fm−1)+∆xm−1,

−A
m−1

∑
i=1

si +(em + fm)+∆xm) mod Q :

A←R k
Q ,s1, . . . ,sm−1←$ χs,ei, fi←$ Dk

σ1
,∀i



D1 =


(A,u1, . . . ,um−1,

−
m−1

∑
i=1

ui +
m

∑
i=1

(ei + fi)+∆

m

∑
i=1

xi) mod Q :

A←R k
Q ,u1, . . . ,um−1←$ R k

Q ,ei, fi←$ Dk
σ1
,∀i


Intuitively, this lemma demonstrates that the joint distribu-

tion of the ciphertexts of xis (D0) is indistinguishable from
that of random values (D1), conditioned on the sum of these
ciphertexts is the same as the sum of random values. To apply
this lemma to our proof, we slightly modify it by consider-
ing the indistinguishability between two new distributions D′0
and D′1. The differences between D0 and D′0, as well as D1
and D′1, are highlighted in red color. Basically, D′0 (resp. D′1)
contains an extra random value As and this As is added to the
last ciphertext in D′0 (resp. the last random value in D′1). By
Lemma 2, D′0 and D′1 are also indistinguishable.
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D′0 =



(A,As,As1 +(e1 + f1)+∆x1, . . . ,

Asm−1 +(em−1 + fm−1)+∆xm−1,

As−A
m−1

∑
i=1

si +(em + fm)+∆xm) mod Q :

A←$R k
Q ,s,s1, . . . ,sm−1←$ χs,ei, fi←$ Dk

σ1
,∀i



D′1 =


(A,As,u1, . . . ,um−1,

As−
m−1

∑
i=1

ui +
m

∑
i=1

(ei + fi)+∆

m

∑
i=1

xi) mod Q :

A←$R k
Q ,s←$ χs,u1, . . . ,um−1←$ R k

Q ,ei, fi←$ Dk
σ1
,∀i


Intuitively, the indistinguishability between D′0 and

D′1 states that the joint distribution of the ciphertexts
of x1, . . . ,xms encrypted by different encryption keys
s1, . . . ,sm−1,s−∑i∈[m−1] si is indistinguishable from that of
random values, conditioned on 1) the sum of these ciphertexts
is the same as the sum of random values and 2) the sum of
encryption keys s is publicly known. In other words, the sum
of encryption keys is safe to disclose without revealing the
encryption keys and the encrypted messages.

Next, we prove the approximate security of ApproxSS
based on this conclusion. Note that ATASSES consists of
two rounds. By Definition 3, to prove the approximate se-
curity of ATASSES, we need to prove the existence of sim-
ulator algorithms {S0,S1,S2}, so that the real-world experi-
ment ExptA ,Real and ideal-world experiment ExptA ,Ideal are
indistinguishable. Next, the proof proceeds by first describ-
ing the simulator algorithms {S0,S1,S2} and then construct-
ing successive hybrid experiments between ExptA ,Real and
ExptA ,Ideal.

Before describing the simulator algorithms, we give some
notations. Let Ar and Hr denote the set of corrupted partic-
ipants and the set of honest participants in round r, respec-
tively. Hence, the set Tr of participants in round r satisfies
Tr = Ar∪Hr. Note that there exists at least one honest partici-
pant by our system model. We use hr to denote this participant
in round r. In addition, we use the same notation as Section
2.3 in [5] and rewrite an RLWE sample from a · sk+ e to
A · sk+ e, where A,sk,e are matrices and vectors generated
from the coefficient embedding of polynomials a,sk,e. Such a
rewritting helps to simplify the description with long message.
Recall that in ATASSES, the message mi can be too long to be
encrypted into one ciphertext. Hence, party i needs to break
down mi into C′ sub-vectors and encrypt each sub-vector mi,k
using ak and ek, respectively. By using the matrix-vector no-
tation, we can rewrite the encryption of long message mi
as A · s+ e+∆mi, where A and e are the concatenation of
A1, . . . ,AC′ and e1, . . . ,eC′ , respectively.
Simulator algorithm S0(N,T,M ): This algorithm outputs
{si}i∈A by sampling sis from Uniform(M ).

Simulator algorithm S1(mχ,T1): Recall that algorithm
PartyR1 of ATASSES asks each party i ∈ T1 to generate
two things: 1) the shares of encryption keys ekShare j,i,1 and
ekShare j,i,2 and 2) the ciphertexts CTsi,k and CTni,k. The S1
simulates these outputs as follows:

• If i ∈ A1, S1 follows algorithm PartyR1() in the real
world to generate those outputs.

• If i ∈ H1 \ {h1}, S1 samples its encryption key shares
ekShare j,i,1 and ekShare j,i,2 for all j ∈ [N] from the
uniform distribution over the ciphertext space. As for
the ciphertexts, S1 uses the same A←$ CRS as CTsi[1]
and CTni[1] for all i, but samples uniformly-random ele-
ments from ciphertext space as CTsi[0] and CTni[0].

• If i = h1, S1 samples its encryption key shares
ekShare j,h1,1 and ekShare j,h1,2 for all j ∈ [N] from the
uniform distribution over the ciphertext space. As for
the ciphertexts, S1 uses the same A←$ CRS as CTsh1 [1]
and CTnh1 [1] and samples uniformly-random elements
from ciphertext space as CTsh1 [0]. As for CTnh1 [0], S1
generates it as follows:

CTnh1 [0] = A · s+ ∑
i∈T1

L(T1)
i ei,1 + ∑

i∈H1

ei,2

+∆
′ · (mχ− ∑

i∈A1

L(T1)
i si + ∑

i∈H1\{h1}
ni)

− ∑
i∈T1

L(T1)
i ·CTsi[0]− ∑

i∈H1\{h1}
CTni[0]

(15)

where s is sampled from the key distribution, ei,1, ei,2
are the random errors sampled from the distribution as
ei + fi, and nis are the random noises sampled from {n |
∥n∥< Bsm}.

Simulator algorithm S2(mχ,T2): Recall that algorithm
PartyR2 of ATASSES asks each party j ∈ T2 to generate a
decryption share dkShare j. The S2 simulates {dkShare j} j∈T2
as follows:

• If j ∈ A2, S2 follows algorithm PartyR2() in the real
world to output dkShare j.

• If j ∈H2 \{h2}, S2 samples dkShare j from the uniform
distribution over the ciphertext space.

• If j = h2, S2 generates dkShareh2 as

(L(T2)
h2

)−1 · (s+ ∑
i∈A1

eki,2− ∑
j∈T2\{h2}

L(T2)
j dkShare j).

(16)

Based on the above simulator algorithms, we construct
the following hybrid experiments by gradually replacing the
real-world algorithms by the simulator algorithms.
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H1: this is same as ExptA ,Real, except that the generation
of ciphertexts in algorithm PartyR1 and algorithm PartyR2
are replaced by simulator algorithms S1 and S2. Notably, the
encryption key shares in algorithm PartyR1 remain the same
as in ExptA ,Real.

The difference between ExptA ,Real and H1 can be summa-
rized in the form of D′0 and D′1.

• For H1: In S1, we remark that {LT1
i · CTsi,k[0]}i∈T1 ∪

{CTni,k[0]}i∈H1\{h1} plays the role of the former m−1
random values u1, . . . ,um−1 in distribution D′1. The
CTnh1 [0] corresponds to the last random value in D′1.
Particularly, (mχ−∑i∈A1 L(T1)

i si +∑i∈H1\{h1} ni) corre-

sponds to ∑i∈[m] xi, and ∑i∈T1 L(T1)
i ei,1 +∑i∈H1

ei,2 corre-

sponds to ∑i∈[m](ei + fi). In S2, ∑ j∈T2 L(T2)
j ·dkShare j−

∑i∈A1 eki,2 corresponds to s, and thus, A · (∑ j∈T2 L(T2)
j ·

dkShare j−∑i∈A1 eki,2) corresponds to As.

• For ExptA ,Real, we remark that {LT1
i ·CTsi,k[0]}i∈T1 ∪

{CTni,k[0]}i∈H1\{h1} plays the role of the former
m− 1 ciphertexts. By the proof of approximate cor-
rectness, we have dk = ∑i∈T1 L(T1)

i · eki,1 + eki,2 and

dk = ∑ j∈T2 L(T2)
j · dkShare j. By combining these two

equations, we have ekh2,2 = ∑ j∈T2 L(T2)
j · dkShare j −

∑i∈T1 L(T1)
i · eki,1−∑i∈T1\{h1} eki,2, which corresponds

to s−∑i∈T1 L(T1)
i · eki,1−∑i∈H1\{h1} eki,2 in D′0. Hence,

∑ j∈T2 L(T2)
j · dkShare j − ∑i∈A1 eki,2 corresponds to s,

and thus, A · (∑ j∈T2 L(T2)
j · dkShare j −∑i∈A1 eki,2) cor-

responds to As.

By the above arguments on differences, to distinguish be-
tween ExptA ,Real and H1, the adversary is in fact to distinguish
two distributions in the form of D′0 and D′1. Nonetheless, D′0
and D′1 are indistinguishable under RLWE-hardness assump-
tion. Hence, ExptA ,Real and H1 are indistinguishable.
H2: this is same as H1, except that the encryption key shares
is generated by simulator algorithm S0 instead of PartyR1.

The only difference between H2 and H1 is the encryption
key shares of parties corrupted by A . We note that by the
security of Shamir secret sharing, the T -out-of-N shares from
T −1 parties are indistinguishable from uniformly-random
values. Since A can corrupt at most T−1 parties by our threat
model, H1 and H2 are indistinguishable.
H3: this is same as H2, except that the algorithm Share is
replaced by simulator algorithm S0. We note that H3 is equiv-
alent to ExptA ,Ideal.

The only difference between H3 and H2 is the shares of
parties corrupted by A . We note that by the security of Shamir
secret sharing, the T -out-of-N shares from T −1 parties are
indistinguishable from uniformly-random values. Since A
can corrupt at most T −1 parties by our threat model, H1 and
H2 are indistinguishable.

Based on the above arguments, ExptA ,Real and ExptA ,Ideal

are indistinguishable and thus ATASSES satisfies approxi-
mate security. ■

D Complexity Analysis

Below we analyze the computation and communication com-
plexity of four ApproxSS schemes, namely {0,1}-ApproxSS,
Type-I Shamir ApproxSS, Type-II Shamir ApproxSS, and
ATASSES. In the analysis, we set T as the order of O(N),
as T is usually set to be the proportion of N, say 0.5N or
0.9N. The computation complexity is set to be the summation
of computation complexity of the aggregator and a single
party. The reason is that the parties execute their algorithms
in parallel. Hence, the computation time should be counted
as the computation time of the slowest party, rather than the
summation of all parties. The communication complexity is
set to be the size of transferred message between a pair of
parties (or between a party and an aggregator), rather than the
size of transferred message between a party and every parties.
The reason is that we assume a party has the communication
channel with every parties (and the aggregator). Hence, the
messages to N parties can be transferred in parallel, rather
than to each party one by one.
{0,1}-ApproxSS: Existing work [7] shows that the size of
each share of {0,1}-ApproxSS is O(N4.2) on average. When
the data has the size of K, the share size is O(N4.2 ·K). The
computation workload of each party is to sample a noise
whose size is O(N4.2 ·K) and to add the share and the noise
together. Hence, the computation complexity of each party is
O(N4.2 ·K). The computation workload of the aggregator is to
recover the approximate message from T noisy shares. Hence,
the computation complexity of the party is T ·O(N4.2 ·K) =
O(N5.2 ·K). Therefore, the overall computation complexity
is O(N5.2 ·K). As for the communication complexity, each
party needs to send the noisy share to the aggregator, with
the complexity being O(N4.2 ·K). Hence, the communication
complexity is O(N4.2 ·K).
Type-I Shamir ApproxSS: When applying Type-I Shamir
ApproxSS, the message space has a modulus O(N · (N!)3).
Hence, the size of each element is O(log(N · (N!)3)). By Stir-
ling’s formula, the element’s size can be approximated to
O(N logN), which is O(N) times the element’s size of other
ApproxSS schemes. Hence, the size of each share is regarded
as O(NK). The computation workload is dominated by the
aggregator, who needs to compute Lagrange coefficients with
complexity O(N2) and compute the linear combination of
T shares with complexity T ·O(NK) = O(N2K). Hence, the
computation complexity is O(N2K). As for the communica-
tion complexity, each party needs to send the noisy share to
the aggregator, with the complexity being O(NK). Hence, the
communication complexity is O(NK).
Type-II Shamir ApproxSS: Type-II Shamir ApproxSS con-
sists of two rounds. In the first round, each party generates
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the shares of a length-K noise and sends a share to each
party with computation complexity O(N2K) and communi-
cation complexity O(NK). In the second round, each party
adds T noises and the share together and sends the noisy
share to the aggregator, resulting in computation complex-
ity O(N2K) and communication complexity O(NK). For the
aggregator, to recover the approximate message, it needs to
compute Lagrange coefficients with complexity O(N2) and
compute the linear combination of T shares with complexity
T ·O(NK) = O(N2K). Hence, the computation complexity
is O(N2K). In total, the computation complexity is O(N2K)
and the communication complexity is O(NK).
Type-III Shamir ApproxSS: Type-III Shamir ApproxSS re-
quires only one round. Each party computes a T -out-of-T
secret key share with computation complexity O(N) and then
generates a decryption share using this secret key share with
computation complexity O(K). Hence, the total computation
complexity is O(N +K). Then the party needs to send this
decryption share to the aggregator with communication com-
plexity O(K). Next, the aggregator can recover the message by
aggregating T decryption shares with computation complex-
ity O(NK). In total, the computation complexity is O(NK)
and the communication complexity is O(K).
ATASSES: ATASSES also consists of two rounds. In the first
round, each party generates the shares of encryption keys and
sends each share to each party with computation complex-
ity O(N2) and communication complexity O(N). In addition,
each party also needs to encrypt the message’s shares and
noises and sends the ciphertexts to the aggregator. The com-
putation complexity is O(K) and communication complexity
is O(K). The aggregator needs to compute Lagrange coeffi-
cients with communication complexity O(N2) and computa-
tion complexity O(N). In the second round, each party adds
2T encryption key shares together and sends the decryption
key share to the aggregator, resulting in computation com-
plexity O(N2) and communication complexity O(N). For the
aggregator, to recover the decryption key, it needs to com-
pute the linear combination of T decryption key shares with
complexity T ·O(N) = O(N2). Then it needs to compute the
overall ciphertext by summing T ciphertexts up with compu-
tation complexity O(NK) and decrypting it with computation
complexity O(K). In total, the computation complexity is
O(N2+NK) and the communication complexity is O(N+K).

E Extension to Fully-Malicious Security

Below we provide a brief discussion on how to extend our pro-
tocol from semi-honest security to malicious security. Note
that the key difference between semi-honest security and ma-
licious security is the adversary’s capability. The semi-honest
adversary must follow the protocol, while the malicious ad-
versary can operate arbitrarily. Particularly, the actions of
malicious adversary can be divided into two categories: one
is to abort its corrupted parties and the other is to ask its cor-

rupted parties to mistakenly execute the operations. Our work
mainly discuss how to deal with the first category. Hence, to
extend to fully-malicious security, we need to further enable
parties to prove the correctness of operations they execute.
Thanks to the previous work on maliciously secure ThFHE
(e.g., PELTA [13]) and verifiable secret sharing [11, 31], we
can adopt their techniques to achieve this goal. Next, we first
recap the key techniques in existing works and then discuss
how to apply their techniques in our work.
Recap. Below we recap the PELTA framework and verifiable
secret sharing, respectively.

PELTA first categorizes the operations in ThFHE schemes
into non-interactive operations and interactive operations. For
non-interactive operations such as encryption and homomor-
phic evaluation, PELTA pointed out that their correctness
verification has been addressed by previous works includ-
ing [6, 8, 12, 26]. Hence, PELTA put the focus on those in-
teraction operations and identify that these operations share
common functionalities. Namely, the interactive operations
in ThFHE schemes can be decomposed into multiple 2-step
interactions. Each interaction consists of the following two
steps.
Step 1: In this step, every party i uses its local secret si to
locally generate a share that can be publicly disclosed. These
shares have a common structure. Particularly, a share bi is
computed as a linear equation of the form:

bi = a · si +X + ei, (17)

where a is a publicly known value, si is the secret value of
party i, ei is a newly sampled error term from some distri-
bution, and X is a placeholder that takes different forms in
different operations.
Step 2: In this step, the aggregator computes the (weighted)
summation of the shares from parties up and outputs a collec-
tive value b.

For such 2-step interactions, they further show how to
verify the correctness of these 2-step interactions via zero-
knowledge proof techniques, which can be used for the exten-
sion of our work.

Verifiable secret sharing (VSS), introduced by Chor et
al. [20], aims to make the (vanilla) secret sharing technique
robust against malicious parties. Particularly, it not only pre-
vents a malicious dealer from distributing incorrect shares,
but also prevents malicious shareholders from submitting in-
correct shares in the reconstruction protocol. VSS will be
used when our work relies on secret sharing techniques.
Main Idea. Recall that the ATASSES construction (see Figure
6) mainly consists of two parts: one is ciphertext generation
and the other is decryption key generation. The first part
involves the BFV encryption (Lines 5–10) executed by each
party and the ciphertext summation (Lines 15–16) by the
aggregator. We note that these two steps exactly match the
above 2-step interaction and thus can be verified by PELTA’s
techniques. The second part includes the secret key sharing
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(Lines 2–4), combination (Lines 12-13), and recovery (Line
14). This part is executed by Shamir secret sharing in our
semi-honest version and can be boosted to maliciously-secure
construction by verifiable secret sharing such as [11, 31].

Besides these two parts of ATASSES, there are still several
simple operations in ATASSES, including BFV secret key
generation (Line 1), Lagrange coefficients computation (Line
11), and BFV decryption (Line 17). The BFV secret key gen-
eration is a non-interactive operation and its verification has
been discussed in PELTA. As for the Lagrange coefficients
computation and BFV decryption, these operations do not
involve any secret information and thus every party can check
its correctness by simply re-executing these operations.

In addition, our ThFHE construction has several extra oper-
ations beyond the ATASSES. One is secret key sharing (Lines
1–6) in the key generation stage. Similarly, it can be verified
by verifiable secret sharing. The other is Phase 1 and Phase
3 in the decryption stage. The Phase 1 asks each party i to
output a share bi = c1 · skSharei + c0, which is exactly the
Step 1 in the above 2-step interaction and can be verified by
utilizing PELTA’s techniques. The Phase 3 is to decode the
plaintext m from b′. This phase also does not involve any
secret information. Hence, it can be verified by asking every
party to re-execute this phase.
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