
Trustless Bridges via Random Sampling
Light Clients

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart

Web3 Foundation, Switzerland
{bhargav,fateme,alistair}@web3.foundation

Abstract. The increasing number of blockchain projects introduced annually has led to
a pressing need for secure and efficient interoperability solutions. Currently, the lack
of such solutions forces end-users to rely on centralized intermediaries, contradicting
the core principle of decentralization and trust minimization in blockchain technology.
In this paper, we propose a decentralized and efficient interoperability solution (aka
Bridge Protocol) that operates without additional trust assumptions, relying solely on
the Byzantine Fault Tolerance (BFT) of the two chains being connected. In particular,
relayers (actors that exchange messages between networks) are permissionless and
decentralized, hence eliminating any single point of failure. We introduce Random
Sampling, a novel technique for on-chain light clients to efficiently follow the history of
PoS blockchains by reducing the signature verifications required. Here, the randomness
is drawn on-chain, for example, using Ethereum’s RANDAO. We analyze the security
of the bridge from a crypto- economic perspective and provide a framework to
derive the security parameters. This includes handling subtle concurrency issues and
randomness bias in strawman designs. While the protocol is applicable to various PoS
chains, we demonstrate its feasibility by instantiating a bridge between Polkadot and
Ethereum (currently deployed), and discuss some practical security challenges. We
also evaluate the efficiency (gas costs) of an on-chain light-client verifier implemented
as a smart contract on ethereum against SNARK-based approaches. Even for large
validator set sizes (up to 106), the signature verification gas costs of our light-client
verifier are a magnitude lower.
Keywords: PoS Blockchains · Trustless Bridges · Light Clients · Decentralised
Relayers · RANDAO Bias · Adaptive Security

1 Introduction
Blockchains are designed as islands, it is easy to verify that a transaction is valid within
the originating blockchain when one is following its history, but challenging otherwise.
While interoperability may be easily resolved with trusted centralized intermediaries, it
is not a desirable solution. Recent history has shown how risky this can be - centralised
entities can be compromised or even act maliciously. According to a Chainalysis report
[Cha22], failures in centralized bridges account for over 60% of all crypto hacks, resulting
in losses exceeding $2B to date. In fact, four out of the top five incidents on the rekt
leaderboard [rek24] are bridge-related hacks. The security of public blockchains hinges on
decentralization, therefore, the mantra is to avoid relying on trusted intermediaries.

Bridges are by far the most attacked components in the blockchain space [ell22b, ell22a],
because secure and efficient bridges are difficult to design and resolving attacks requires
cooperation between chains which is nearly impossible. Hence it is important that the
bridge must not have weaker security than either of the source or target chain. We
introduce the notion of crypto-economically sound bridges, where we carefully trade off

mailto:{bhargav,fateme,alistair}@web3.foundation

2 Trustless Bridges via Random Sampling Light Clients

soundness for efficiency. Assuming the honesty assumption used in the consensus of both
chains, in expectation an attack on our bridge would be as expensive as the minimum
market cap of the chains. We present an interactive Commit-Challenge-Response protocol
for interoperability between a source and target PoS blockchain. Our protocol has an
on-chain light client of the source chain deployed on the target chain (e.g., as a smart
contract). Computation on blockchain networks is expensive, particularly in the context
of verifying all signatures from Proof-of-Stake (PoS) validators on the source chain, and
hence not feasible. In the process, we also define the notion of succinct finality, designed
specifically to facilitate light clients following finality. Our approach improves the efficiency
of following the history of a chain by randomly subsampling the signatures to be checked.
Intuitively, the protocol works as follows: a set of relayers claim that 2/3 of validators
signed a message (e.g., a block’s finality). On-chain light client draws randomness from
the target chain that determines a small subset of signatures to be checked out of those
claimed. If the checks pass, we accept that the message was signed by at least one honest
validator. Our solution has three highlights:

1. Relayers are permissionless and no additional honesty assumptions are required for
bridge safety.

2. Drastically efficient in terms of on-chain computation costs for operating the bridge.

3. Scales well against large validator sets on the source chain.

We review the crypto-economic security of our solution and take into consideration
attacks such as griefing and safety violations. This includes detecting subtle concurrency
issues in the strawman designs, and fixes which rely on dynamically increasing the security
parameter only in case of an attack. We then provide a framework to derive security
parameters. Further, we apply the Fiat-Shamir heuristic to transform our interactive
protocol into a non-interactive digital signature, and explore its impact on efficiency and
interplay with crypto-economic arguments.

Finally, we instantiate our solution for a Polkadot-Ethereum bridge BEEFY, which
has been implemented recently for public use [sno24]. We discuss practical challenges like
implementing slashing and handling bias in RANDAO beacon. We perform a thorough
security analysis of RANDAO biasability, which may be of independent interest to any
protocol relying on RANDAO.

A prominent interoperability solution comparable to our work is Ethereum’s Altair
Light Client protocol [alt24] using sync-committees. In Altair, the source chain subsamples
the validators and is fixed for the whole epoch, while our solutions lets the verifier on the
target chain sample randomly. This key insight lets our solution improve over Altair along
three dimensions:

• for the same soundness gurantees, our protocol is more efficient by a factor of 20 for
large validator sets (≈ 106)

• handles adaptive corruption of validators. In Altair, an elected sync-committee
remains stagnant for a whole epoch, exposing the committee against targeted attacks.

• our protocol exposes a security parameter that allows tuning the security and
efficiency based on the application requirements.

Altair is only feasible for blockchains with extremely large validator sets. Our solution on
the other hand is feasible and secure for any of PoS chain that allows slashing of malicious
validator stake.

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart 3

2 Preliminaries and System Model
Proof of Stake consensus mechanisms for blockchains require the nodes to stake the
native cryptocurrency for a fixed period. In return, these nodes earn the opportunity to
become validators, receiving rewards for producing blocks and participating in consensus.
The security of the network is derived by the fact that the stakes of misbehaving nodes
can be slashed (forfeited).

Light-clients are blockchain nodes that run in resource constrained environments
like browsers or mobile devices to follow a decentralized consensus protocol. They do
not maintain the entire blockchain history but instead validate the most critical pieces
of information, such as block headers, to verify the integrity of the blockchain state. In
particular, light clients have direct applications in building trustless and decentralized
bridges between blockchains. Our definition of a bridge is in the broadest sense and
application-agnostic. In this work, we define bridges as protocols that let two chains
communicate and follow the finality (thru block headers) of each other. Applications like
asset-swaps can be built on top of this basic functionality.

2.1 System Model
We formalize our setting, where the objective of an on-chain light client LC on destination
chain D is to follow the finality of a source PoS blockchain S. For brevity, we model the light
client as a smart contract, however, our results hold for other computation models for updat-
ing state on D. Our setting comprises of three actors: Validators on the source chain S, trust-
less relayer R, and a light-client LC deployed on D. We make some standard assumptions
on the PoS model of S, satisfied by most PoS networks like Cosmos, Ethereum, Polkadot:

1. Consensus: The blockchain S runs a consensus mechanism with deterministic
finality, e.g., Byzantine Fault Tolerant algorithms like CasperFFG, GRANDPA,
Tendermint, PBFT, etc. [BG17, SK20, BKM18, CL99].

2. Payloads: Each block B in S contains a payload PB capturing the state of S after
executing block B. Typically, the payload is the hash of a crypto accumulator (e.g.,
Merkle Tree or Merkle Mountain Range Root [Tod16]) where its leaves are the state
of S.

3. Justifications: Oblivious of the underlying consensus mechanism, once a block B
is finalised in S, the payload PB is signed by all honest validators in the associated
validator set VB of size n. We assume at most f validators are malicious, such that
3f + 1 < n. The validator use an unforgeable signature scheme σ to attest the
payloads. Let σi be the signature of Vi on PB, which can be verified against its
public-key pki. We often identify the validator Vi by its public-key. A block B is
considered justified (or finalised when context is clear) if its payload PB has been
signed by at least 2n/3 + 1 validators in VB. The set of such valid signatures are
called justifications, denoted JB = {σi|i ∈ [1, .., n]}. We say a justification is valid
iff |JB | ≥ 2n/3 + 1 and σi’s are valid signatures from validators in VB . Assuming the
underlying consensus mechanism is safe, note that for a particular block-height h,
only a unique block B can have valid justifications.

4. Stakes: Validator Vi has a stake si locked on S. Any malicious behavior by Vi

results in partial or full slash of validator’s stake. We assume the delay in detecting
an offense and enforcing the slash and is bounded by ∆, the slashing delay.

5. Epochs: The blockchain S is divided into consecutive set of blocks called epochs,
denoted E = {E0, · · · , Ei, · · · }. For any i, the validator set VEi remains unchanged
for all blocks within an epoch Ei.

4 Trustless Bridges via Random Sampling Light Clients

6. Epoch Transitions: A commitment (e.g. Merkle Root) to the next validator
set VEi+1 is included in the payload of Ei’s last block. PoS networks provide this
functionality to facilitate light-clients to sync-up efficiently to the head of the chain
by tracking only blocks with validator set changes.

Note: Justifications are succinct proofs of finality designed to simplify the light-client’s
process for following the chain head. We require honest validators to justify a payload
only if the payload has already been finalized by the underlying finality gadget. Unlike
consensus mechanism where an honest validator may sign a non-finalized block, an honest
validator never signs justification for a block that has not already been finalized. Hence,
the justification of a block guarantees stronger properties than being finalized by the
underlying finality gadget like Grandpa or Casper-FFG. We show it is straightforward to
construct a justification layer on top of any finality gadget in Section 5.1.

Relayers (denoted R) are entities that collect justifications JB from S and interact
with the light-client LC to convince it of the newly finalised blocks. In the process, they
may collect fees for their efforts. Relayers are completely permissionless, i.e, they do not
deposit any stakes either on S or D nor there is any registration. Relayers can communicate
with D by calling transactions of the smart contract LC. The only requirement on D is:

1. Randomness: D provides a source of randomness R accessible to LC. Ideally, R
is unbiasable by the relayers, and for that matter, even by D’s validators. We model
the source of randomness as a random function R : BlocksD → N, where R(BD) ∈ N
is the randomness generated at block BD.

2.2 Attacker Model
We model the attackers as rational agents, ie., an attack is launched only if the expected
outcome of an attack is positive. Our attacker model allows collusion between the relayers
and validators on S, as well as validators on D. We tolerate adversarial faction up to
the limit determined by the underlying consensus mechanism on both S and D, without
adding new trust assumption for safety of the bridge. In particular, relayers are completely
permissionless and trustless. The relayer have no stake attached on either S nor D. The
relayer also can arbitrarily initiate and break an interactive session with the light client.
This also means relayer can spawn multiple session concurrently. However, we assume the
existence of at least one honest relayers for liveness of the bridge.

2.3 Problem Statement
We tackle the problem of building trustless bridges using light clients [XZC+22]. Typically,
a light client synchronizing block headers of the source chain is implemented as a smart
contract on the destination chain. This ensures the destination chain can verify information
about the state of S without relying on external parties. Moreover, it allows anyone to
prove the existence of transactions on S for smart contracts on D (using Merkle proofs),
paving the way for generic applications. We formally lay out the desired properties of a
light client protocol between verifier LC and prover R, with an objective to update LC’s
view of the latest finalised block on S. The R (prover) wants to convince the LC (verifier)
that at least one honest validator on S signed the payload PB of a recently finalised block
B. We introduce the notion of crypto-economic soundness for light-client protocols which
lets us trade-off negligible soundness guarantees for efficiency.

Definition 1. ϵ-Soundness Let Π be the protocol between R and LC. Assume no honest
validator in S signed PB . If the R (prover) can convince LC (verifier) of PB ’s authenticity
with probability at most ϵ, then Π is defined to be ϵ-sound. We term ϵ as the soundness
error of Π.

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart 5

Our attacker model does not make any honesty assumptions on relayers. Any safety
violation in our approach is traced back to the validators signing malicious payloads.
We require the light client protocol to be accountable, i.e, malicious validators on S can
be identified and slashed. Our goal is to design a light client protocol that is crypto-
economically sound, as defined below:

Definition 2. Crypto-economic Soundness Let Π be ϵ-Sound. If ϵ is such that the
expected outcome of an adversary attacking Π is negative, then Π is Crypto-economically
Sound.

3 Interactive Random Sampling Protocol
We describe an interactive light-client protocol ΠInt between a relayer R listening to
finalised blocks on S and light-client LC deployed on D. R wishes to convince LC of a new
finalised block B on S which succeeds the latest finalised block known to LC. Here, by
convince, we mean that the light-client is ensured that at least one honest validator signed
B.

Once a block B is finalised on S, the relayers collects the justifications JB and initiates
ΠInt. In practice, the relayer can obtain the justifications by running a full-node of S
and listening to it’s consensus gossip-network. Naively, LC can check the finality of
B by verifying f + 1 signatures (where f denotes the malicious nodes on S) in JB,
ensuring at least one honest validator signed B. Combining the above observation with
byzantine assumptions (3f + 1 < n) on S, the light-client is required to verify n/3 + 1
signatures in JB . ΠInt is a Commit-Challenge-Response [Cra96] which reduces the number
of signature verifications (sub-linear w.r.t validator-set size) performed on the verifier’s side.
In particular, ΠInt can be viewed as an instantiation of Interactive Oracle Proofs (IOP)
[BCS16] for the language of digital signatures with extensions to equip it with accountability.
We synonymously use the term Prover for the relayer R and Verifier for the light-client LC.

3.1 Description
The prover R initiates the protocol claiming to have valid justification JB = {σi|Vi ∈ VB}
for the finality of block B, where σi’s are signatures of Vi on payload PB. Instead of
sharing the whole justification (super-majority of signatures), the relayer shares its Claims,
a bitfield of length |V | (validator-set size) which represents the validator signatures claimed
to be possessed by R. For accountability reasons, the tuple in the commit phase also
includes a validator signature σj along with the claims, which we term as the backing
validator of the current claim. Note that Backing Validators is only an expository term
we use to describe the protocol and prove its security. As such, backing validators are
not special actors in the protocol. We assume the verifier knows the Merkle Root C
of the set of validators (identified by their public keys) for the epoch in which B is
finalised. 1 The verifier has access to public randomness R : BlocksD → N which it can
query at a particular block on D. In the challenge phase, it uses R to query a random
subset of the signatures. The prover responds by sending the signatures and openings
of the randomly sampled signatures in the response phase. The verifier maintains two
variables in its state: latestSyncedBlockHeight and latestSyncedPayload, denoting the
block-height and payload of the latest know block finalised on S. If the signatures and

1As outlined in section 2.1, the epoch transition mechanism on source chain comprises of a hand-over
process, where the Merkle Root of the validator set responsible for next epoch is included in the state by
the last block of the current epoch. Such hand-overs are mandatorily enforced as part of the protocol. In
unforeseen circumstances when such handovers are unsuccessful, fall-backs mechanism can designed using
on-chain governance. To bootstrap the protocol, either the genesis block or a trusted snapshot can be
used.

6 Trustless Bridges via Random Sampling Light Clients

Protocol 1 ΠInt : Interactive Random Sampling

1. Commit: Prover R sends a tuple (PB , Claims, σj , opj) to the verifier, where:

• PB : Payload for the block B.
• Claims = [b1, · · · , bn]: a bitvector of length n. An honest prover sets bi = 1 iff

they possess the signature σi on PB that verifies against pki.
• σj : signature of the backing validator vj .
• opj : opening of C to pkj (i.e., the Merkle co-path).

2. Challenge: Verifier LC checks if Claims has at least n − f indices set to 1s, else it
terminates. If the signature σj is valid and opj opens to C for pkj , then the verifier
samples m indices i1, . . . im where each ik is chosen uniformly at random (using R)
from the positions of bits in Claims set to 1s.

3. Response: Prover sends signatures σik
, the public keys pkik

and openings opik
of C

to pkik
for k ∈ [1, m] to the verifier.

4. Verify: Verifier performs the following checks and terminates if any fail:

• the openings opi1 , . . . , opim
against the corresponding public keys pki1 , . . . , pkim

and C at the randomly chosen indices {i1 . . . ik}.
• signatures σi1 , . . . , σim against the public keys pki1 , . . . , pkim and PB .
• If height(B) > latestSyncedBlockHeight, LC makes the following state up-

dates:
– latestSyncedBlockHeight := height(B)
– latestSyncedPayload := PB

Else, B is stale and state remains unchanged.

Figure 1: ΠInt: Verifier randomly samples a subset of validator signatures to be verified.

opening submitted in the response phase verifies, the payload (PB) is accepted the state is
accordingly updated.

We assume the signature scheme σ is unforgeable and the commitment scheme C is
binding. We ignore the negligible probability that the prover can find a signature that
verifies against the public key of an honest validator that did not sign the message or
that they can find an opening of C at position i to a value other than pki that verifies.
To ensure randomness is unpredictable to the prover at commit phase, verifier uses the
randomness R(d) only revealed after the commit phase as concluded. Equipped with the
above assumptions, we now present the soundness and completeness results for ΠInt.

Theorem 1. (ϵ-Soundness) Consider prover R initiates ΠInt for block B. If no honest
validator in S signed PB, then the verifier SC accepts P with probability at most 2−m, where
m is the security parameter, i.e., the number of signatures randomly sampled by the verifier.

Proof. Let’s assume no honest validator signed PB. The prover must provide a bitfield
Claims with at least n−f 1s. Consider k for some 1 ≤ k ≤ m. The public key pkik

belongs
to a dishonest validator only if ik is one of at most f possible values out of n − f 1s at
the least. Since n > 3f and R is unpredictable and uniformly random, with probability

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart 7

at least 1 − f/(n − f) > 1 − f/2f = 1/2, pkik
belongs to an honest validator. Since the

iks are each chosen independently, the probability that no pkik
for any k belongs to an

honest validator is at most 2−m.
It remains to show that if some pkik

belongs to an honest validator, then the prover cannot
convince the verifier. The prover cannot provide an opening of C at position ik to a value
other than pkik

because the commitment scheme is binding. The prover cannot provide
a signature σik

that verifies against pkik
because the signature scheme is unforgeable and

honest validators did not sign PB . Hence the prover can not convince the verifier in this
case. We note that if m > f , the the protocol is deterministically sound. If the verifier
needs to be absolutely sure, the verifier can verify m > f signatures, since at least one
of those signatures will be of an honest validator.

Theorem 2. (Completeness) ΠInt is complete. If relayer (prover) posses valid justifica-
tions JB of a valid block B, then the light clients (verifier) updates it’s state of the latest
synced block to B.

Example 1. Suppose S has 100 validators of which at most 33 are byzantine. A block
gets finalised with at least 67 signatures in its justifications. The relayer collects these
justifications and starts ΠInt to convince the verifier that the block has been finalised. If
the verifier samples m = 34 signatures in the challenge phase, it can be sure that at least
one of these signatures is from an honest validator. If the verifier only samples m = 10
signatures in challenge phase and the verify-phase goes thru, then Theorem 1 guarantees
that the probability of the light client accepting a malicious (invalid justifications) block is
at most 1/210.

3.2 Crypto-Economic Security

ΠInt guarantees probabilistic ϵ-Soundness with the soundness error 1/2m, solely dependent
on m, the number of signatures sampled in the challenge phase. This leads to a natural
question: how to set the security parameter m? We provide a crypto-economic framework
for deriving the security parameter, striking a balance between efficiency and security.

Accountability and Slashing Exposure: We specifically require R to include at
least one signature σj (i.e., backing validator Vj ’s signature) from their Claims in the
commit-phase. If the payload is malicious, then the backing validator who signed the
malicious payload can be identified and slashed on S. In absence of backing validator
signatures in the commit phase, the provers can initiate arbitrarily many instances of ΠInt
sequentially or concurrently. The relayer would then have the choice to continue only in
instances where the randomness drawn by the verifier in challenge phase is favorable. The
validators have no economic disincentive for signing malicious payloads. Consequently, the
relayers can increase the number of attempts (more turns at rolling the dice) in submitting
malicious payloads. Therefore, any attempt by validators at signing malicious blocks (i.e.,
a block not finalised on S) needs to be penalised/slashed.

We assume adversaries are rational, implying that an attack is initiated only if the
expected economic value of the attack is positive. Our model considers the economic value
of a successful attack to be the market-cap of S, denoted M . If the attack is unsuccessful,
we consider the lowest stake s of the validators on S to be the economic loss for the attackers.
We assume the stake of all validators on S are identical, however, our framework can be
extended to weighted PoS systems. The expectation of the economic value of an attack is
computed as: E(X) = (ϵ · M) − s, where X is random variable for the economic value of
the attack and ϵ is soundness error of ΠInt. Setting E(X) < 0, we derive m ≥ log2(M/s).

8 Trustless Bridges via Random Sampling Light Clients

3.3 Discussions on Safety and Liveness
If a relayer initiates the Commit phase for a canonical block but does not respond to the
Challenges by the verifier (either due to genuine or malicious reasons), there is no necessity
to slash the backing validator revealed in the commit phase. Slashing any validator that
signs a non-canonical block (i.e. with no valid justifications) suffices for the ϵ-soundness of
ΠInt. A soundness attack (i.e. relaying a malicious block) is public already at the Commit
phase and eventually the backing validator who signed a malicious payload gets slashed,
guaranteeing ϵ-soundness without any honesty assumptions on the relayers.

We assume there is one honest relayer who relays at least one block per epoch for
liveness of the bridge, i.e., the verifier is in sync with the latest finalised blocks on the
source chain. Presence of at least one honest relayer per epoch ensures that the verifier
can track the validator set changes. A subtle corner case impacting soundness arises when
there is no honest relayer for a time-period greater than the unbonding period, i.e, time
allowed for an active validator to unbond their stake and exit the network (usually 20-30
days). If no blocks are relayed and updated by the light client over such a long period, then
there is a possibility that Validators on source chain unbond their stake and hence there is
no stake to slash for ΠInt attempts after the unbonding period. However, we feel this is
unlikely for bridge applications with a clear monetary incentive to stay live. Moreover, the
lengthy unbonding period provides ample time to detect and rectify the situation.

4 Dynamic Random Sampling
ΠInt is prone to a subtle concurrency attack that increases the soundness error (ϵ) exploiting
the following observations:

• Relayers are trustless and permissionless (in-line with our design principle). Hence,
an adversary can spawn arbitrarily many relayers that initiate ΠInt.

• It takes non-negligible time ∆ for slashing a validator (on S) after detecting its
signature on a malicious payload. Moreover, it takes the duration of a full epoch (|E|)
for the light client to discover the change in validator set (i.e., malicious validator
has been ejected).

Concretely, lets assume an adversary A controls f validators on S, implying A can obtain
n/3 validators signatures on any malicious payload. The adversary proceeds by initiating
c concurrent instances I1, . . . , Ic of ΠInt for a particular block B (with malicious payload
signed by the f malicious validators) with the same backing signature σ but different
claims bitvectors {b1, . . . , bc} in the Commit phase. Since there is a delay ∆ + |E| before
the light-client is aware of the slashing and validator set change, the adversarial relayer
can reuse the same backing validators signature without increasing slashing exposure of
his instances. The adversary then proceed with the protocol only in those instances where
the random sampling of challenge indices in the Challenge phase is favorable, i.e., the
challenge indices correspond to malicious validators. Concretely, the success probability of
the attack can now be quantified as 1 − (1 − ϵ)c. However, the slashing exposure is at most
sj , as only σj , the signature of the malicious backing validator is exposed. Analogous to
the expected obtained in Section 3.2, we can compute expected outcome under the above
attack scenarios with c concurrent instance of ΠInt as:

Ec(X) = (1 − (1 − ϵ)c)M − s (1)

The expected attack value increases with c, the number of concurrent relay instances
spawned. For every ϵ, there exists a c such that Ec(X) > 0. This is a clear attack on the
crypto-economic soundness of ΠInt.

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart 9

4.1 Counter-measure: Dynamically Increasing Signature Checks
To counter the concurrency issue described above, we propose ΠDyn, an extension of ΠInt.
In ΠDyn, the security parameter (signatures sampled) dynamically increases based on the
number of relay instance backed by the same backing validator. The light client (verifier)
now keeps a counter ue,v for each backing validator v in epoch e that increments by 1
whenever there is an initial claim made by a relayer. For any further relay instances by a
relayer (or a set of relayer) using the same backing validator v, the number of signatures
sampled during challenge phase is increased by 1 + 2 ∗ ⌈log2(ue,v)⌉. If c instances of
ΠDyn are initiated concurrently using the same backing validator, the probability of attack
succeeding is summation over all the c instances:

c∑
i=1

1
2m+1+2∗⌈log2i⌉ ≤ 1

2m
(2)

This dynamic increase in the number of signature checks ensures that the probability of
successful attack is bounded irrespective of the number of concurrent ΠDyn initiated, and
the advantage gained by using the same backing validator multiple times is neutralized.

The setup for ΠDyn is very similar to ΠInt except that the verifier (LC) maintains
an additional mapping u : (Epoch, PKVB

) → N, where u(e, v) captures the number of
time a validator has been used for the backing signature in the commit-phase. Here, the
backing validator is identified by its public-key. We do not keep track of relayers as they
are permissionless and any attempt to keep track is not sybil resistant. Intuitively, the
dynamic random sampling described in Protocol 2 ensures the adversary does not increase
probability of successful attack without increasing its slashing exposure. Importantly, note
that the security parameter remains unchanged if no concurrency attack is launched.

Theorem 3. Dynamic Random Sampling Mitigates Concurrency Attacks Let
Πdyn,ϵ denote an instantiation of ΠDyn (Protocol 2) where security parameter m is set s.t
ϵ = 1/2m < s/M. For any PPT adversary A controlling at most n/3 validator on S, the
expected incentive for an attacker A is negative.

Proof. We first compute the probability of successful attack by defining the following
events:

• WA: adversary convinces the verifier an un-finalised block B without justifications,
i.e., the adversary successfully attacks ΠDyn.

• WA,v,k: the adversary succeeds and u(e, v) = k in the verifiers state.

• TA,v,k: the adversary attempts using v as the backing validator in commit phase for
the kth attempt, i.e., u(e, v) = k after the attempt.

The success probability for an adversary is computed as follows:

P(WA) =
∑
v∈V

∞∑
k=1

P(WA,v,k) (3)

=
∑
v∈V

∞∑
k=1

P(WA,v,k|TA,v,k) · P(TA,v,k) (4)

≤
∑
v∈V

P(TA,v,1) ·
∞∑

k=1

ϵ

21+2⌈logk⌉ (5)

≤ 3ϵ

4 ·
∑
v∈V

P(TA,v,1) (6)

10 Trustless Bridges via Random Sampling Light Clients

Protocol 2 ΠDyn: Dynamic Random Sampling

1. Commit: The prover R sends a tuple (PB , Claims, σj , opj) to the verifier, where:

• PB : Payload for the block B.
• Claims = [b1, · · · , bn]: a bitvector of length n. An honest prover sets bi = 1 iff

they possess the signature σi on PB that verifies against pki.
• σj : signature of the backing validator vj .
• opj : opening of C to pkj (i.e., the Merkle co-path).

2. Challenge: Verifier increments u(e, pkj) := u(e, pkj) + 1 corresponding to the
current epoch e and validator with public-key pkj . Verifier checks if Claims has at
least n − f indices set to 1s, else it terminates. If the signature opj opens to C and
σj is valid, then the verifier samples m′ = m + 1 + 2 ∗ ⌈log2(ue,v)⌉ indices i1, . . . im′

where each ik is chosen uniformly at random (using random function R) from the
positions of bits in Claims set to 1s. Here m is a statically chosen security parameter.

3. Response: Identical to ΠInt, the prover sends signatures, public keys and openings
for the m′ random indices requested in challenge-phase.

4. Verify: Identical to ΠInt, the verifier checks the signatures and validates the openings
for the response. If all checks pass, the state is updated:

• latestSyncedBlockHeight := height(B)
• latestSyncedPayload := PB

• delete entries in u for all epochs preceding B’s epoch

Else, B is stale and verifier’s state remains unchanged.

Figure 2: ΠDyn: dynamically increases the number of signature checks based on the
number of relay instances backed by the same validator.

≤ 3ϵ

4 · |{v ∈ V : A uses v as backing validator}| (7)

Hence, for any adversary A, the expected incentive is:

EA = P(WA) · M + SEA · (−s) (8)

≤ |{v ∈ V : A uses v as backing validator}|(3s

4 − s) (9)

In fact, the expectation decreases linearly w.r.t the number of backing validators used by
the adversary.

4.2 Griefing Attacks are Expensive
Since initiating ΠDyn is permissionless, an adversary can attempt to grief honest relayers by
intentionally inflating the dynamic security parameter. This results in increased network
workload and added costs, however, we show such griefing attacks are expensive and hence
impractical for a rational adversary. Assuming the mapping u(e, v) on the destination
chain is publicly observable, an honest relayer in the commit phase can always pick a

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart 11

validator with the least usage, i.e., argminv u(e, v) in the epoch e. Thus, an adversary
with objective of griefing honest relayers has to uniformly increase the usage counter (u)
across all possible backing validators for the epoch. Let Cinit be the cost for a relayer to
initiate ΠDyn and Cver be the cost of checking each additional signature in the verify phase.
O(2x−1 · |V |) need to be initiated by the adversary for increasing the security parameter
by only x. Recall that the security parameter grows by 2⌈log2u(e, v)⌉. We compute the
griefing factor GF [But18] (ratio of additional costs on victims to cost incurred by the
attacker) for the above optimal strategy.

GF (x) = x · Cver

2x−1 · Cinit · 2
3 |V |

(10)

Therefore, the griefing factor asymptotically drops exponentially for as the attack prolongs.
In most practical scenarios, Cver ≈ Cinit if not Cver ≪ Cinit, resulting in low griefing factor
for even small values of x. Moreover, the griefing attacks do not extend beyond the epoch
in which they are launched, as the usage counter u is reset every epoch.

4.3 Safety and Liveness
Theorem 1 proves that ΠInt is ϵ-sound for a single interaction and theorem 3 shows that
ΠDyn is unconditionally safe with soundness error ϵ within the same epoch. We do not make
any trust assumptions on the relayer for the safety results. However, for liveness, Theorem 2
in conjunction with one honest relayer ensures liveness. Note that, our soundness depends
on validators being slashed for signing malicious payloads. Similar to ΠInt, soundness of
ΠDyn is affected in the highly unlikely case where blocks relayed for a period longer than
the unbonding period (described in Section 3.3).

5 BEEFY: Polkadot-Ethereum Bridge
The protocol ΠDyn has been instantiated to implement a trustless and decentralized bridge
BEEFY from Polkadot to Ethereum and is currently live. We outline the key design
decisions and security considerations.

5.1 Light-weight Succinct Finality on Polkadot
The Polkadot relay chain [BCC+20] uses GRANDPA [SK20], a deterministic finality
gadget, for finalising blocks. GRANDPA is designed for secure and fast finalisation for the
network, but is not suitable for light clients. In particular, finality proofs for GRANDPA
are large (votes on forks not blocks) and light clients are required to maintain forks to
follow finality. We design BEEFY [bee23] as an additional light-weight finality layer on
GRANDPA such that:

1. BEEFY justifications satisfy the properties in Section 2.1

2. BEEFY uses the ECDSA (secp256k1 [W+14]) signature scheme which is efficiently
verifiable on-chain on Ethereum.

3. The validator sets for BEEFY and GRANDPA are identical for each epoch.

In our current design, BEEFY finality lags GRANDPA finality by a few seconds. Note
that it is not necessary for every Grandpa finalised block to be BEEFY finalised. The
payload is root of an MMR (Merkle Mountain Range) capturing the state of Polkadot,
allowing more efficient append operations as the chain and state grow [Tod16]. MMRs
also allow more efficient block inclusion and ancestry checks on the verifier side [BKLZ20].

12 Trustless Bridges via Random Sampling Light Clients

We now describe at a high-level the BEEFY protocol in a partially synchronous setting.
The protocol is designed to be modular and can be plugged into PoS chains with any
deterministic finality gadget. We extend the consensus mechanism with an extra voting
round. Each validator has a local belief of the following:

1. Highest GRANDPA finalized block number (G).

2. Highest BEEFY finalized block number (B).

3. Last block of the previous epoch n − 1 (En−1
s).

Initially, they are all set to the genesis block. We assume that GRANDPA is independently
finalising blocks and BEEFY’s objective is to produce justifications for a subset of those
blocks. Since GRANDPA does not allow forks, BEEFY validators are essentially voting
on a single chain. Hence, the crucial part of the protocol is to determine the block height
to vote on. The protocol runs in rounds. A BEEFY round is an attempt by validators
to produce a BEEFY Justification. Round number is defined as the block height of a
GRANDPA finalised block that the validators vote for. The protocol expects honest
validators to gossip their vote. From the local view of a validator, a round ends if either of
the following events occur:

1. Validator collects 2n/3 + 1 valid votes for the current round, i.e. the block obtains
BEEFY justifications.

2. Validator receives a BEEFY Justification for a block higher than the currently known
highest BEEFY block.

In both cases the validator proceeds to determine the new round number. As a
strawman approach, BEEFY validators could just pick the next GRANDPA finalised
block. However, this would be inefficient as BEEFY finality is not required for every
GRANDPA finalised block. Moreover, if for unknown reasons (e.g. network latency) the
two mechanism drift apart, then there is a risk of BEEFY significantly lagging behind
GRANDPA. To address this, we introduce a more sophisticated round selection mechanism
which ensures the gap between GRANDPA and BEEFY finalised blocks is bounded, even
if the rate at which GRANDPA finalises block is exponentially more than the rate at which
BEEFY finalises blocks.

Round Selection: We define two kinds of blocks from the perspective of the BEEFY
validators:

1. Mandatory Blocks: ones that MUST have BEEFY justification. Validators are
required to mandatorily provide BEEFY justifications for these blocks. Last block
in each epoch is defined to be a mandatory block.

2. validators are encouraged to finalize as many blocks as possible to enable lower
latency for light clients and hence end users, without significantly lagging behind
GRANDPA finalised blocks.2

The next round number r to participate is determined by BEEFY validator based on
its local view of B, G, En

s as follows:

r =(1 − M) ∗ En−1
s (11)

+ M ∗ min(En
s , (B + P((G − B + 1)/2))) (12)

where:
2Since the BEEFY authority set is the same as the GRANDPA authority set for any GRANDPA

finalized block, the epoch boundaries for BEEFY are exactly the same as the ones for GRANDPA.

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart 13

• M is 1 if the mandatory block in the previous epoch is already finalized or 0 otherwise.

• P(x) returns the smallest number greater than or equal to x that is a power of two.

• min is the minimum of its arguments.

Intuitively, the next round number selected is either the mandatory block (with least
height) without a BEEFY justification, or the highest GRANDPA-finalized block whose
block number difference with B block is a power of two. The mental model for round
selection is to first finalize the mandatory block and then to attempt to pick a block taking
into account how fast BEEFY catches up with GRANDPA. In case GRANDPA makes
progress, but BEEFY lags behind, validators are changing rounds less often to increase
the chances of BEEFY catching up with GRANDPA3.

5.2 Slashing for BEEFY misbehaviors
Slashing on-chain for BEEFY participants signing is crucial for security guarantees of
ΠInt and ΠDyn. To this end, we store recent payloads on-chain, however, a slash reporter
can always generate an MMR ancestry proof [Tod16] to show that a block (not stored
on-chain) was the prefix of a recent block. The slashing conditions are straight-forward:
validators in BEEFY are slashed for signing a block that is not in the current chain
(GRANDPA finalised). This includes blocks with height less than or equal to the head of
the current chain but are not in the chain, and blocks with a higher block number. As
long as GRANDPA is safe, validators can only be slashed for voting for blocks they do
not see as finalised by GRANDPA, which honest validators will never do. In theory the
full-stake can be slashed but the validator can go rogue until the slash is enforced. Hence,
we settle on slashing only half the stake, keeping room for slashing misbehaviors in other
subsystems of the Polkadot protocol.

5.3 Verifier Accessing RANDAO on Ethereum
We describe an implementation of a light-client verifier, specifically, the challenge phase in
ΠInt: The prover sends a transaction including the commit message to a smart contract
which stores the message and the block number ninit in which the transaction is included.
The verifier’s challenge is derived from the RANDAO randomness from some block with
number nchallenge in the range ninit + bdelay ≤ nchallenge ≤ ninit + bdelay + bwindow for some
parameters bdelay, bwindow. bdelay represents the number of slots to be waited to ensure
the RANDAO value is unpredictable, while bwindow represents the number of slots of
opportunity provided to the relayer to respond to the challenge after the delay. A smart
contract call made by the prover included in block nchallenge + 1 records this challenge.
Then the prover can send a final transaction including the response to the smart contract,
which verifies according to the interactive protocol. We note that smart contracts on
Ethereum have access to the RANDAO randomness from the previous block as well as the
block number, as well as the slot numbers since the merge of EIP-4788 [SDR+22] as part
of Dencun upgrade [PST24] on Ethereum Mainnet 4.

3Once a validator picks a new round r (and the validator casts a vote), it ends the previous one, no
matter if finality was reached (i.e. the round concluded) or not. Votes for an inactive round are not
propagated.

4The analysis is more involved if the smart contract has only access to block numbers. Block producers
are assigned to slot numbers in an epoch, not block numbers. Some slot numbers will have more adversarial
slots before them and hence more choices for the randomness. By choosing whether or not to produce
blocks in earlier slots, which do not affect the number of choices for the randomness, the adversary may
be able to ensure that the sampling block occurs at their choice of slot number.

14 Trustless Bridges via Random Sampling Light Clients

5.4 RANDAO Bias Analysis
We instantiate the random function R (used in the challenge-phase) in ΠDyn with the RAN-
DAO beacon on Ethereum. While we assumed R is uniformly random and unpredictable,
it is well-known that RANDAO is biasable [Edg23, AW24]. We focus on quantifying the
bias our specific objective: an attacker who wants to bias an interactive protocol (e.g.,
ΠDyn) that uses RANDAO. We analyze the bias and how it affects our security parameter.

In this section, we consider public-coin protocols with Commit-Challenge-Response
phases and abstract away from ΠDyn. In a public coin protocol, the verifier challenge
is chosen uniformly at random from some challenge set Sc, however if the verifier is
implemented on a blockchain, adversarial participants can introduce bias in the randomness.
We quantify this bias as follows:

Definition 3. A verifier V of a public-coin protocol is µ-biasable if for any adversary, for
any challenge c ∈ Sc, Pr[V produces c] ≤ µ/|Sc|.

Assumptions: We assume that at least 2/3rd validators are honest, and the adver-
sary cannot forge signatures or predict honest validator’s randomness contributions (for
Ethereum, both covered by the unforgeability of BLS signatures). As in the previous
analyzes, though they don’t make it explicit, we assume that an attacker is unable to
prevent an honest block producer’s block from being included in the chain. Though unlikely,
such attacks are feasible using the attack on LMD Casper outlined in [NMRP21, SNM+22]
or by performing denial of service attacks on the block producers whose identity is public,
however we exclude it from our analysis. Under the above assumptions, we derive a µ s.t
the interactive protocol ΠEth

Int (ΠInt instantiated with Ethereum as the target chain) has
a µ-biasable verifier protocol.

The key quantity is the tail length T , the number of slots with adversarial block
producers in sequence before the RANDAO value is used at the end of the epoch or the
challenge block for BEEFY. The last honest block producer before this point produces
a block that must be included, whose contribution to the randomness is random and
unknown in advance. The adversarial contributions the randomness are fixed by this point,
so the adversary has the choice of publishing a block or not. This gives them 2T choices of
randomness. We build upon the TAIL-MAX strategy described in [AW24], and modeled
as a Markov Decision Process M ′

G in [AW24].
Adversarial Strategy: The adversary can employ TAIL-MAX continuously and wait

until the current or next epoch has an exceptionally high Tn. After bdelay blocks for bdelay

longer than two epoch lengths, an adversary before committing waits until the current
epoch ncommit (or a close epoch) has many adversarial validators at the end. Then bdelay

blocks later, the current epoch nchallenge may still be biasable, allowing the adversary to
have a more than usual chance to get many adversarial blocks before the trigger block. We
can bound this bias by calculating how much the adversary can bias by running TAIL-MAX
(synonymously TM) until epoch nchallenge − 2 which gives the optimal biasability.

Analysis: We denote stcommit as the state at the time of commit and write PrA,stcommit [E]
as the probability that E happens with adversary (or a policy in the MDP) A. We denote
by T

(s)
n , the number of adversarial slots before a slot s occurs in epoch n. Maximising

this is very similar to Tn, except that the sequence of consecutive adversarially controlled
blocks may extend into the previous epoch. The optimal policy T

(s)
n -MAX for the MDP

M ′
G for maximising T

(s)
n runs TAIL-MAX until epoch n − 2.

We denote T
′(s)
n as the length of the sequence which is in epoch n so we have

T (s)
n =

{
T

′(s)
n when T

′(s)
n ≤ s − 2

s − 1 + Tn−1 when T
′(s)
n = s − 1

(13)

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart 15

The distribution of T
′(s)
n under T

(s)
n -MAX is similar to a truncated version of that of Tn

under TAIL-MAX.
Concretely, we have:

Pr
TAIL-MAX,stcommit

[Tn] ≥ k] = Pr
T

(s)
n −MAX,stcommit

[T ′(s)
n ≥ k] (14)

for k ≤ s − 1, since both require a particular k slots to be adversarially controlled. We
hence have the following bound:

EA[2T ′(s)
n] ≤ E

T
(s)
n −MAX

[2T ′(s)
n] ≤ ET AIL−MAX [2Tn] (15)

Note that for the policy T
(s)
n -MAX, Tnchallenge−1 and T ′(s) are independent because the

Markov chains for odd and even epochs are independent.
We now compute a reasonable bound on the number of slots at the end of an epoch

that it is feasible to wait for. From our simulations in [Art25], we obtained from the
stationary distribution, i.e. under the continuous attack above, tail lengths of 15, 16, 17
occur in expectation once in every 8,24.1 and 72.3 years respectively. It seems rather
expensive in terms of missed block rewards to carry out the attack for that long. Without
the continuous attack, tail lengths 15,16,17 only occur in expectation every 26.2,78.6,235.8
years respectively. We fix Tinit = 16 as the maximum feasible tail length for the adversary
to wait.

The adversary could feasibly know the block producers in epochs ncommit + 1 and
ncommit+2 if the commit slot is close to the end of epoch ncommit. We assume that both have
tail length at most Tinit. If there is a tail length of 16 in future epoch n, then the distribution
of Tn+2d is that of d transitions of the Markov chain from the state corresponding to tail
length 16. Concretely we compute that e.g. for d = 2, ETAIL-MAX[2Tn+4] is 172.8. Note
that this decreases in d.

Putting It All Together: The adversary can take T , the number of adversarially
controlled slots before the RANDAO randomness is sampled for the challenge, to be the
maximum value of T

(s)
n over bwindow slot numbers. They have 2T choices of RANDAO

samples. Each of these choices is uniformly distributed and random (though they are not
independent). Thus by a union bound for a particular challenge value c ∈ Schallenge, they
have at most EA[2T]/|Schallenge| probability of getting c as the challenge. So the verifier is
µ-biasable for µ = maxA EA[2T]. We use union bounds to bound EA[2T] over the sequence
of adversarial blocks in each epoch, detailed further in Appendix ??. Plugging in the
parameters for ΠEth

Int , we obtain that ΠEth
Int is at most 864-biasable5. This results in an

additional ⌈log2µ⌉ = 10 signature checks in the challenge phase of ΠInt to negate the bias
in RANDAO induced by adversarial validators on Ethereum in collusion with relayers.

5.5 Gas costs for Verification
Gas costs for verifying ECDSA signatures on Ethereum using the ecrecover precompile
is ≈ 3500 Gwei. We compare gas costs for verifying BEEFY finality justifications using
3 different approaches across validator set sizes (assuming Polkadot’s total stake rate of
≈ 50%, i.e., the ratio of tokens staked to total issuance):

1. ΠInt with no concurrency attack, but including the extra signatures required for
negating RANDAO bias.

2. Naive approach of verifying all signatures.

3. SNARK circuits for verifying ECDSA signatures using UltraPlonk [bar24].

16 Trustless Bridges via Random Sampling Light Clients

|V | log2(M/s) ΠInt Naive UltraPLONK
10 20 44811 24129 797216

102 2 ∗ 102 55152 230919 816107
103 2 ∗ 103 65493 2299148 811825
104 2 ∗ 104 79281 22981129 819116
106 2 ∗ 106 99963 2298001141 943720

Figure 3: Comparison of isolated gas costs (in Gwei) for verifying the ECDSA secp256k1
signatures in the three approaches. Here |V | is the validator set size of the source chain.
We only consider the signatures required for accepting BEEFY finality proofs. The gas
costs for UltraPLONK also include membership proofs. The values for Naive approach are
computed by multiplying the gas costs for verifying a single signature by 2|V |/3 + 1.

As evident from the table, the costs for random sampling logarithmically increase with
|V | and are an order of magnitude less than the SNARK verification even for |V | = 106.
For |V | ≥ 104, the gas requirement for Naive approach already exceeds the gas limit per
block in Ethereum mainnet, making it infeasible. Further, such bulk usage for verifying
signatures drives up the price of gas. As of 27/11/2024, each BEEFY consensus update on
Ethereum mainnet costs 0.014 ETH (≈ 50 USD).

6 Applying Fiat-Shamir Heuristic
As a natural extension, the Fiat-Shamir heuristic can be applied to transform the interac-
tive protocol ΠInt into a non-interactive proof of knowledge protocol ΠFS, enabling the
generation of a compact certificate that convinces the verifier that at least one honest
validator has signed the payload. Albeit in a more general setting, Compact Certificates
for Collective Knowledge introduced in [MRV+21] tackles a similar problem. Their non-
interactive protocol is in spirit similar to our work but caters to a different setting with
weighted votes and does not focus particularly on bridge applications. In the compact
certificates approach, the randomness sampled in challenge phase of ΠInt is replaced by the
prover computing a hash on all publicly know data to the verifier. ΠInt can similarly be
transformed such that the prover uses a cryptographic hash function h over C, PB , Claims,
Rσ (Merkle Root of a tree whose leaves are claimed signatures). The security parameter
(number of signatures in the certificate to be checked by verifier) in ΠFS purely depends
on the assumed hash power of the adversary to break h. Assuming that an adversary
can query Q = 2q hashes, Theorem-1 from [MRV+21], shows that m + q signatures are
required to be checked in the certificate for ΠFS to achieve a soundness error of 2−m. In
contrast, ΠInt requires only m signature checks for the same soundness error 2−m.

To ensure 256-bit security for ΠFS, m + q can be set to 256. However, can we have
a more realistic bound on the hash power of adversary? Interestingly, we can rely on the
rationality of the adversary. We assume that the amount of value gained in attacking
the bridge (ΠFS) is less than the market cap of Bitcoin. If the number of hashes in
expectation required to mine a bitcoin block, should if used to brute force ΠFS gives no
high a probability for an attack than the fraction of all bitcoin given as a mining reward
currently, it is rational to use any hash power to mine bitcoin rather than attack the bridge.
Since mining a block requires getting a 256 bit hash lower than the CurrentTarget, we
can bound the maximum hash power Q of an adversary (see Equation 16). Plugging in
parameters with the values at the time of writing, we obtain q ≤ 101, where 2q = Q.

Q ≤ 2256

CurrentTarget · CurrentBTCSupply
BlockReward (16)

5The analysis in this section is backed by numerical computations in [Art25].

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart 17

Figure 6 compares the signature checks required by verifier for Polkadot and Ethereum
for the various versions of our protocol and altair.

Network log2(M/s) ΠInt Π256
FS ΠB

FS Altair
Polkadot 576 10 256 111 201

Ethereum 3761875 21 256 122 512
Algorand 460 9 256 110 61

Binance SC 260 9 256 110 30

Figure 4: Comparison of Signature checks required in ΠInt with Fiat-Shamir versions
and Altair for PoS networks with varying M/s values. M denotes the market cap and
s denotes the minimum stake of validator. Comparison of signature checks required by
the protocols ΠInt, ΠFS with 256-bit security, and ΠB

FS with hash power bounded via
rationality assumption relative to bitcoin mining.

7 Related Work
While there has been advances in application specific (e.g. token swaps and payment chan-
nels) bridging solutions [SAB+24, MMS+19, ZHL+19, LUTZ21], we focus on approaches
supporting functionality of following finality for PoS networks. Most bridge architectures
[ron24, axe21, wor24] involve a centralised and trusted intermediary (via a multi-sig) that
run full-nodes of the bridged chains. Time and again, the trusted centralised entities have
been compromised [ABC+24] resulting in massive financial implications.

Comparison with Altair. Ethereum’s Altair upgrade [alt24] introduced a light-
client protocol based based on sync-committees [Edg22], a significantly smaller subset
of validators (currently 512) responsible for attesting the finality of blocks. The sync-
committee is randomly chosen for each epoch (≈ 27 hours) using RANDAO beacon, and
remains unchanged for a given epoch. Similar to Altair, ΠDyn does not require any custom
crypto or SNARK primitives on the prover or verifier side, hence can be integrated readily
on existing blockchains, and particularly efficient for large validator sets. We skip the
already know issues with Altair [GM23, Pre23] and focus on the advantages of ΠDyn
specifically for bridge applications which demand higher security guarantees and efficiency
requirements:

1. For the same soundness error, the signature checks required in ΠDyn are significantly
lower than Altair. The current sync-committee size of 512 guarantees soundness
error of 8 ∗ 10−54 and requires 342 signature checks, while ΠDyn requires only 172.
Detailed further in Appendix A.

2. ΠDyn is more resilient to adaptive adversaries. The sync-committee for the upcoming
epoch is known in advance, hence the adversary can use the whole epoch duration to
adaptively corrupt members. In contrast, the adversary has a much shorter duration,
the difference between the challenge and response phase (configured per scenario),
in ΠDyn to corrupt adaptively.

3. All bridges would be affected if the sync-committee is compromised, while bridges
using ΠDyn do not have a single point of failure.

4. ΠDyn lets the verifier configure the security parameter enabling it to trade-off security
and efficiency depending on the crypto-economic setting.

18 Trustless Bridges via Random Sampling Light Clients

Optimistic Techniques With Fishermen. Several bridges like Nomad [nom21]
and Near’s Rainbow [nea24] are examples of optimistic protocols (aka Claim and Chal-
lenge schemes) that leverage fraud-proofs [CRR13]. Typically, the light client optimisti-
cally accepts a state without verifying and relies on economically incentivised Fisher-
men/WatchDogs to detect invalid updates. Unlike our approach, the relayers and fishermen
need to be staked to avoid spamming and forcing all signatures being verified by making
false positive challenges. Further, the security of such bridges depend on the censorship
resistance of target chain during the challenge period. Dynamic transaction fees on the
target chain worsen the issue, resulting in high challenge rewards and stakes. Moreover,
the challenge period needs to be long trading off latency and security. In comparison, our
solution requires less data since all signatures do not need to be published on chain and
our bridge has lower confirmation latency. If the target chain is censored, our protocol
loses liveness rather than safety but optimistic protocols lose safety.

SNARK based bridges. Recently, embedding SNARK-based on-chain light-clients
has been quite popular approach for trustless bridges [BMRS20, VGS+22, XZC+22].
Accountable Light Client system introduce in [CSSV22] guarantees that a large number
(e.g.1/3rd) misbehaving validators can be identified when a light client is misled, a crucial
property for PoS blockchains. These solutions require custom SNARKs and cryptographic
primitives like aggregatable signatures which are difficult to implement in existing networks.
Our approach is simpler and secure implementation is less involved [CET+24].

Threshold Signatures. An alternative approach is using a threshold signature scheme
with a single public key for all validators, as adopted by Dfinity [Gro21]. These schemes
typically use secret sharing for the secret key, which has two main drawbacks. First,
they require a communication-intensive distributed key generation protocol for setup,
which is challenging to scale for large validator sets (even with 100 validators). Despite
recent advancements [GJM+21, Gro21, GHL21], implementing such setups across a large
peer-to-peer network remains difficult and may need repeating when the validator set
changes. Second, secret sharing-based threshold signatures do not reveal which subset
of validators signed, lacking accountability. Dfinity [Gro21] employs a re-shareable BLS
threshold signature, maintaining the same public key even with validator set changes. This
provides a constant-size proof for the verifier but fails to identify misbehaving validators or
the specific validator set responsible, as the signature remains the same for any threshold
subset.

Randomness Beacons: There is a series of work on randomness beacons for
blockchains [CMB23]. Our work directly benefits from advances in unbiasabale and
unpredictable randomness generation by blockchains. Schemes based on Publicly Verifiable
Secret Sharing [BSKN20, SJSW20] and Verifiable Delay Functions [LW15, SJH+20] are im-
mune against last-revealer attacks directly improves the efficiency of our random sampling
protocol, since we do not need to increase the security parameter to negate the bias.

8 Conclusion and Future Work

We presented an interactive light-client protocol ΠDyn for PoS blockchains using on-chain
randomness. ΠDyn leverages crypto-economic arguments to drastically improve efficiency
(on-chain computation usage) without compromising security. We demonstrated the
practicality of our protocol by instantiating a trustless and decentralized bridge between
Polkadot and Ethereum. As future work, we plan to design incentive mechanism’s for the
relayer market. We are interested in settings where the relayers are incentivised by public
good funding (DAO treasuries) [LZHZ21, VVJ23, pol24] as well as fees generated by users
of the bridge.

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart 19

Acknowledgements.

We thank Aidan Musnitzky, Alistair Singh, and Vincent Geddes from Snowfork and the
Bridge team at Parity Technologies for fruitful discussions on practical challenges in
implementation. We also thank Jeffrey Burdges, Robert Hambrock, and Syed Hosseini for
useful feedback and for reviewing drafts of this work. Lastly, we thank Alfonso Cevallos
and Handan Kilinç Alper for their involvement in the early stages of the project.

References
[ABC+24] André Augusto, Rafael Belchior, Miguel Correia, André Vasconcelos, Luyao

Zhang, and Thomas Hardjono. Sok: Security and privacy of blockchain
interoperability. In 2024 IEEE Symposium on Security and Privacy (SP),
pages 3840–3865, 2024.

[alt24] Altair light client – sync protocol. https://ethereum.github.io/
consensus-specs/specs/altair/light-client/sync-protocol/, 2024.

[Art25] Anonymised Artifact. Randao analysis. https://anonymous.4open.science/
r/ccs25-470-randao-analysis-F9F4/, 2025.

[AW24] Kaya Alpturer and S. Matthew Weinberg. Optimal randao manipulation in
ethereum, 2024.

[axe21] Axelar: Connecting applications with blockchain ecosystems. https://www.
axelar.network/whitepaper, 2021.

[bar24] Ultraplonk verifier by aztec. https://github.com/AztecProtocol/
barretenberg/tree/master/sol/src/ultra, 2024.

[BCC+20] Jeff Burdges, Alfonso Cevallos, Peter Czaban, Rob Habermeier, Syed Hosseini,
Fabio Lama, Handan Kilinç Alper, Ximin Luo, Fatemeh Shirazi, Alistair
Stewart, and Gavin Wood. Overview of polkadot and its design considerations.
CoRR, abs/2005.13456, 2020.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle
proofs. In Martin Hirt and Adam D. Smith, editors, Theory of Cryptography
- 14th International Conference, TCC 2016-B, Beijing, China, October 31
- November 3, 2016, Proceedings, Part II, volume 9986 of Lecture Notes in
Computer Science, pages 31–60, 2016.

[bee23] Polkadot specifications: Beefy. https://spec.polkadot.network/
sect-finality#sect-grandpa-beefy, 2023.

[BG17] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR,
abs/1710.09437, 2017.

[BKLZ20] Benedikt Bunz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-
light clients for cryptocurrencies. In 2020 IEEE Symposium on Security and
Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020, pages 928–946.
IEEE, 2020.

[BKM18] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT
consensus. CoRR, abs/1807.04938, 2018.

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda:
Decentralized cryptocurrency at scale. IACR Cryptol. ePrint Arch., page 352,
2020.

https://ethereum.github.io/consensus-specs/specs/altair/light-client/sync-protocol/
https://ethereum.github.io/consensus-specs/specs/altair/light-client/sync-protocol/
https://anonymous.4open.science/r/ccs25-470-randao-analysis-F9F4/
https://anonymous.4open.science/r/ccs25-470-randao-analysis-F9F4/
https://www.axelar.network/whitepaper
https://www.axelar.network/whitepaper
https://github.com/AztecProtocol/barretenberg/tree/master/sol/src/ultra
https://github.com/AztecProtocol/barretenberg/tree/master/sol/src/ultra
https://spec.polkadot.network/sect-finality#sect-grandpa-beefy
https://spec.polkadot.network/sect-finality#sect-grandpa-beefy

20 Trustless Bridges via Random Sampling Light Clients

[BSKN20] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. RandPiper –
reconfiguration-friendly random beacons with quadratic communication. Cryp-
tology ePrint Archive, Paper 2020/1590, 2020.

[But18] Vitalik Buterin. A griefing factor analysis model. https://ethresear.ch/t/
a-griefing-factor-analysis-model/2338, 2018.

[CET+24] Stefanos Chaliasos, Jens Ernstberger, David Theodore, David Wong, Moham-
mad Jahanara, and Benjamin Livshits. Sok: What don’t we know? under-
standing security vulnerabilities in snarks. CoRR, abs/2402.15293, 2024.

[Cha22] Chainalysis. Vulnerabilities in cross-chain bridge protocols
emerge as top security risk. https://www.chainalysis.com/blog/
cross-chain-bridge-hacks-2022/, 2022.

[Che52] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. The Annals of Mathematical Statistics,
23(4):493 – 507, 1952.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In
Margo I. Seltzer and Paul J. Leach, editors, Proceedings of the Third USENIX
Symposium on Operating Systems Design and Implementation (OSDI), New
Orleans, Louisiana, USA, February 22-25, 1999, pages 173–186. USENIX
Association, 1999.

[CMB23] Kevin Choi, Aathira Manoj, and Joseph Bonneau. Sok: Distributed randomness
beacons. In 2023 IEEE Symposium on Security and Privacy (SP), pages 75–92,
2023.

[Cra96] Ronald Cramer. Modular design of secure yet practical cryptographic protocols.
Ph. D.-thesis, CWI and U. of Amsterdam, 2, 1996.

[CRR13] Ran Canetti, Ben Riva, and Guy N. Rothblum. Refereed delegation of com-
putation. Information and Computation, 226:16–36, 2013. Special Issue:
Information Security as a Resource.

[CSSV22] Oana Ciobotaru, Fatemeh Shirazi, Alistair Stewart, and Sergey Vasilyev. Ac-
countable light client systems for pos blockchains. IACR Cryptol. ePrint Arch.,
page 1205, 2022.

[Edg22] Ben Edgington. One page annotated spec. https://eth2book.info/capella/
annotated-spec/, 2022.

[Edg23] Ben Edgington. Upgrading Ethereum, chapter RANDAO Biasability. Ben
Edgington, 2023.

[ell22a] Nomad loses $156 million in seventh major crypto bridge ex-
ploit of 2022, 2022. https://hub.elliptic.co/analysis/
nomad-loses-156-million-in-seventh-major-crypto-bridge-exploit-of-2022/.

[ell22b] Over $1 billion stolen from bridges so far in 2022 as harmonys horizon bridge
becomes latest victim in $100 million hack, 2022. bit.ly/3fvlIME.

[GHL21] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky. Practical non-interactive
publicly verifiable secret sharing with thousands of parties. ePrint 2021/1397,
2021.

https://ethresear.ch/t/a-griefing-factor-analysis-model/2338
https://ethresear.ch/t/a-griefing-factor-analysis-model/2338
https://www.chainalysis.com/blog/cross-chain-bridge-hacks-2022/
https://www.chainalysis.com/blog/cross-chain-bridge-hacks-2022/
https://eth2book.info/capella/annotated-spec/
https://eth2book.info/capella/annotated-spec/
https://hub.elliptic.co/analysis/nomad-loses-156-million-in-seventh-major-crypto-bridge-exploit-of-2022/
https://hub.elliptic.co/analysis/nomad-loses-156-million-in-seventh-major-crypto-bridge-exploit-of-2022/
bit.ly/3fvlIME

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart 21

[GJM+21] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, Gilad Stern,
and Alin Tomescu. Aggregatable distributed key generation. ePrint 2021/005,
2021.

[GM23] Vincent Geddes and Aidan Musnitsky. Snowfork’s analysis of
sync committee security. https://forum.polkadot.network/t/
snowforks-analysis-of-sync-committee-security/2712/10, 2023.

[Gro21] Jens Groth. Non-interactive distributed key generation and key resharing.
ePrint 2021/339, 2021.

[HB24] Mor Harchol-Balter. Introduction to probability for computing. https://www.
cs.cmu.edu/~harchol/Probability/chapters/chpt18.pdf, 2024.

[LUTZ21] Rongjian Lan, Ganesha Upadhyaya, Stephen Tse, and Mahdi Zamani. Hori-
zon: A gas-efficient, trustless bridge for cross-chain transactions. CoRR,
abs/2101.06000, 2021.

[LW15] Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn,
and trx. Cryptology ePrint Archive, Paper 2015/366, 2015.

[LZHZ21] Lu Liu, Sicong Zhou, Huawei Huang, and Zibin Zheng. From technology to
society: An overview of blockchain-based dao. IEEE Open Journal of the
Computer Society, 2:204–215, 2021.

[MMS+19] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate,
and Matteo Maffei. Anonymous multi-hop locks for blockchain scalability and
interoperability. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.
The Internet Society, 2019.

[MRV+21] Silvio Micali, Leonid Reyzin, Georgios Vlachos, Riad S. Wahby, and Nickolai
Zeldovich. Compact certificates of collective knowledge. In 42nd IEEE Sympo-
sium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021, pages 626–641. IEEE, 2021.

[nea24] What is the rainbow bridge? https://doc.aurora.dev/bridge/
introduction/, 2024.

[NMRP21] Michael Neuder, Daniel J. Moroz, Rithvik Rao, and David C. Parkes. Low-cost
attacks on ethereum 2.0 by sub-1/3 stakeholders. CoRR, abs/2102.02247, 2021.

[nom21] Nomad protocol. https://docs.nomad.xyz/the-nomad-protocol/
overview, 2021.

[pol24] Polkadot Wiki: Treasury. https://wiki.polkadot.network/docs/
learn-polkadot-opengov-treasury, 2024.

[Pre23] James Preswitch. Altair has no light client. https://prestwich.substack.
com/p/altair, 2023.

[PST24] Ethereum Foundation Protocol Support Team. Dencun main-
net announcement. https://blog.ethereum.org/2024/02/27/
dencun-mainnet-announcement, 2024.

[rek24] Rekt leaderboard. https://rekt.news/tr/leaderboard/, 2024.

[ron24] Ronin bridge documentation. https://docs.roninchain.com/apps/
ronin-bridge, 2024.

https://forum.polkadot.network/t/snowforks-analysis-of-sync-committee-security/2712/10
https://forum.polkadot.network/t/snowforks-analysis-of-sync-committee-security/2712/10
https://www.cs.cmu.edu/~harchol/Probability/chapters/chpt18.pdf
https://www.cs.cmu.edu/~harchol/Probability/chapters/chpt18.pdf
https://doc.aurora.dev/bridge/introduction/
https://doc.aurora.dev/bridge/introduction/
https://docs.nomad.xyz/the-nomad-protocol/overview
https://docs.nomad.xyz/the-nomad-protocol/overview
 https://wiki.polkadot.network/docs/learn-polkadot-opengov-treasury
 https://wiki.polkadot.network/docs/learn-polkadot-opengov-treasury
https://prestwich.substack.com/p/altair
https://prestwich.substack.com/p/altair
https://blog.ethereum.org/2024/02/27/dencun-mainnet-announcement
https://blog.ethereum.org/2024/02/27/dencun-mainnet-announcement
https://rekt.news/tr/leaderboard/
https://docs.roninchain.com/apps/ronin-bridge
https://docs.roninchain.com/apps/ronin-bridge

22 Trustless Bridges via Random Sampling Light Clients

[SAB+24] Giulia Scaffino, Lukas Aumayr, Mahsa Bastankhah, Zeta Avarikioti, and Matteo
Maffei. Alba: The dawn of scalable bridges for blockchains. IACR Cryptol.
ePrint Arch., page 197, 2024.

[SDR+22] Alex Stokes, Ansgar Dietrichs, Danny Ryan, Martin Holst Swende, and light-
client. Eip-4788: Beacon block root in the evm. https://eips.ethereum.
org/EIPS/eip-4788, 2022.

[SJH+20] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas Stifter, and
Edgar Weippl. RandRunner: Distributed randomness from trapdoor VDFs
with strong uniqueness. Cryptology ePrint Archive, Paper 2020/942, 2020.

[SJSW20] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. Hy-
drand: Efficient continuous distributed randomness. In 2020 IEEE Symposium
on Security and Privacy (SP), pages 73–89, 2020.

[SK20] Alistair Stewart and Eleftherios Kokoris-Kogia. GRANDPA: a byzantine finality
gadget. CoRR, abs/2007.01560, 2020.

[SNM+22] Caspar Schwarz-Schilling, Joachim Neu, Barnabé Monnot, Aditya Asgaonkar,
Ertem Nusret Tas, and David Tse. Three attacks on proof-of-stake ethereum.
In Ittay Eyal and Juan A. Garay, editors, Financial Cryptography and Data
Security - 26th International Conference, FC 2022, Grenada, May 2-6, 2022,
Revised Selected Papers, volume 13411 of Lecture Notes in Computer Science,
pages 560–576. Springer, 2022.

[sno24] Snowbridge: A trustless bridge between polkadot and ethereum. https:
//github.com/snowfork/snowbridge/, 2024.

[Tod16] Peter Todd. Making utxo set growth irrelevant with low-latency de-
layed txo commitments. https://lists.linuxfoundation.org/pipermail/
bitcoin-dev/2016-May/012715.html, 2016.

[VGS+22] Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon, Philipp Jovanovic,
Georgios Konstantopoulos, Asa Oines, Marek Olszewski, and Eran Tromer.
Plumo: An ultralight blockchain client. In Ittay Eyal and Juan A. Garay, editors,
Financial Cryptography and Data Security - 26th International Conference,
FC 2022, Grenada, May 2-6, 2022, Revised Selected Papers, volume 13411 of
Lecture Notes in Computer Science, pages 597–614. Springer, 2022.

[VVJ23] Paul Van Vulpen and Slinger Jansen. Decentralized autonomous organization
design for the commons and the common good. Frontiers in Blockchain,
6:1287249, 2023.

[W+14] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[wor24] Wormhole architecture overview. https://wormhole.com/docs/learn/
fundamentals/architecture/, 2024.

[XZC+22] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,
Yongzheng Jia, Dan Boneh, and Dawn Song. zkbridge: Trustless cross-chain
bridges made practical. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022, Los Angeles, CA, USA, November
7-11, 2022, pages 3003–3017. ACM, 2022.

https://eips.ethereum.org/EIPS/eip-4788
https://eips.ethereum.org/EIPS/eip-4788
https://github.com/snowfork/snowbridge/
https://github.com/snowfork/snowbridge/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-May/012715.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2016-May/012715.html
https://wormhole.com/docs/learn/fundamentals/architecture/
https://wormhole.com/docs/learn/fundamentals/architecture/

Bhargav Nagaraja Bhatt, Fatemeh Shirazi and Alistair Stewart 23

[ZHL+19] Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur
Gervais, and William J. Knottenbelt. XCLAIM: trustless, interoperable,
cryptocurrency-backed assets. In 2019 IEEE Symposium on Security and
Privacy, SP 2019, San Francisco, CA, USA, May 19-23, 2019, pages 193–210.
IEEE, 2019.

A Efficiency Comparison with Altair
Let X be the random variable denoting the number of malicious validators being picked in
the Sync-Committee. Since the validator set on Ethereum is ≥ 106, we can approximate
the hypergeometric distribution of X to X ∼ Bin(512, p), where p = 1/3 is the probability
of picking a malicious validator from byzantine assumptions. The probability that a
majority of malicious validators comprise the sync-committee can be bounded using Pretty
Chernoff’s inequality [Che52, HB24] as follows:

Pr(X − E[X] ≥ λ) ≤ e− 2λ2
n

Substituting λ = n/3 and E[X] = n/3, we obtain soundness error bound

Pr(X ≥ 2n/3) ≤ e−2n/9

Plugging the values for Ethereum, we obtain a bound on probability the a super-majority
malicious validators were elected in the sync-committee (soundness error) Pr(X ≥ 342) =
8 × 10−54. To obtain the same soundness error via ΠDyn, the number of signature checks
(security parameter) required is 176 (i.e., log2(1/Pr(X ≥ 342))). In fact, the result can
be generalised: the ratio of signature checks required in ΠDyn to Altair for achieving the
same soundness errors is (log2 e)/3.

	Introduction
	Preliminaries and System Model
	System Model
	Attacker Model
	Problem Statement

	Interactive Random Sampling Protocol
	Description
	Crypto-Economic Security
	Discussions on Safety and Liveness

	Dynamic Random Sampling
	Counter-measure: Dynamically Increasing Signature Checks
	Griefing Attacks are Expensive
	Safety and Liveness

	BEEFY: Polkadot-Ethereum Bridge
	Light-weight Succinct Finality on Polkadot
	Slashing for BEEFY misbehaviors
	Verifier Accessing RANDAO on Ethereum
	RANDAO Bias Analysis
	Gas costs for Verification

	Applying Fiat-Shamir Heuristic
	Related Work
	Conclusion and Future Work
	Efficiency Comparison with Altair

