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Abstract. We present several new provable algorithms for two variants of the code equivalence problem

on linear error-correcting codes, the Linear Code Equivalence Problem (LCE) and the Permutation Code
Equivalence Problem (PCE). Specifically, for arbitrary codes of block length n and dimension k over any

finite field Fq , we show:

(1) A deterministic algorithm running in 2n+o(n+q) time for LCE.

(2) A randomized algorithm running in 2n/2+o(n+q) time for LCE and PCE.

(3) A quantum algorithm running in 2n/3+o(n+q) time for LCE and PCE.

The first algorithm complements the deterministic roughly 2n-time algorithm of Babai (SODA 2011) for

PCE. The second two algorithms improve on recent work of Nowakowski (PQCrypto 2025), which gave
algorithms with similar running times, but only for code equivalence on random codes and only over fields

of order q ≥ 7.

1. introduction

Let C1, C2 be two linear codes over the finite field Fq. In this paper, we present new algorithms with
improved provable time complexity for the problem of finding a linear isometry (for the Hamming distance)
τ such that C2 = τ(C1) when such an isometry exists. This problem is (the search version of) the Linear
Code Equivalence Problem (LCE). Because isometries preserve distances, equivalent codes have the same
geometry and in particular the same weight enumerators. Deciding if two linear codes are equivalent, and if
so computing a corresponding isometry between them are longstanding computational problems.

The focus of this work is on provable algorithms for LCE and the related Permutation Code Equivalence
Problem (PCE), where τ is required to be a permutation. There are relatively few works focusing on provable
algorithms for code equivalence. The first non-trivial such algorithm is due to Babai [BCGQ11].1 It consists
of reducing an instance of PCE to

(
n
k

)
instances of the Graph Isomorphism Problem (GI), where n is the

length of the codes in the PCE instance and k is their dimension. I.e., the codes are [n, k]q codes. Combining
this reduction with the quasipolynomial-time GI algorithm of Babai [Bab16] gives an algorithm for PCE
running in

(
n
k

)
· quasipoly(n) · poly(log q) ≤ 2n+o(n+q) time. Furthermore, it is possible to use Babai’s PCE

algorithm to solve LCE by combining it with the reduction from LCE to PCE of [SS13]. However, the
reduction in [SS13] increases the length of the codes (which are over Fq) by a factor of q−1, and so this only

gives a 2(q−1)n+o(n)-time algorithm for LCE. This is substantially slower than the corresponding algorithm
for PCE, especially when q is large.

To the best of our knowledge, the other main provable algorithm for code equivalence appears in recent
work of Nowakowski [Now25]. It uses ideas due to Chou, Persichetti and Santini [CPS23] to design a
randomized algorithm to solve a special case of LCE in time and space roughly 2n/2, improving over the
roughly 2n-time algorithm in [BCGQ11] in this case. However, the algorithm in [Now25] has two substantial
restrictions:

(1) It only works on random codes rather than arbitrary codes. Specifically, it solves the search version
of LCE on the distribution of codes C1, C2, where C1 is generated by a uniformly random generator
matrix G1 ∈ Fk×n

q and C2 = τ(C1) for a uniformly random linear isometry τ .
(2) It only works when the field size q satisfies q ≥ 7.

1We note that although this paper is by four authors, the algorithm for code equivalence appears in the appendix and is
attributed solely to Babai.
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Nowakowski additionally sketched how to give a quantum version of his algorithm running in time roughly
2n/3. He also explicitly asked whether it was possible to remove the second restriction, and to solve LCE on
codes over fields of order q < 7.

1.1. Our Contribution. In this paper, we answer Nowakowski’s question in the affirmative and remove
both of the restrictions of his algorithm by giving randomized and quantum algorithms that run in time
roughly 2n/2 and 2n/3, respectively, for both PCE and LCE. That is, our algorithms work on worst-case
input codes over arbitrary finite fields Fq, including the important special cases of q ∈ {2, 3, 5} not handled
by [Now25]. Additionally, we extend the deterministic PCE algorithm of Babai [BCGQ11], which runs in
roughly

(
n
k

)
≤ 2n time, to an algorithm for LCE on codes over arbitrary fields Fq with similar running time.

This improves on the algorithm obtained by combining [BCGQ11] and the LCE to PCE reduction in [SS13],

which runs in time roughly
(
(q−1)n

k

)
(where

(
(q−1)n

k

)
≫
(
n
k

)
for large values of q). More specifically, our

results are as follows:

(1) A deterministic algorithm running in 2n+o(n+q) time for LCE (Theorem 4.2).
(2) A randomized algorithm running in 2n/2+o(n+q) time for LCE and PCE (Theorem 5.17).
(3) A quantum algorithm running in 2n/3+o(n+q) time for LCE and PCE (Theorem 6.2).

1.2. Acknowledgements. Most of this work was performed during the Research Experiences for Under-
graduates (REU-Site) program “Cryptography and Coding Theory at the University of South Florida” which
ran from May 27th to August 2nd 2024 (usf-crypto.org/reu-program/). This program is funded by the
U.S. National Science Foundation under Grant #2244488. H.B. is funded in part by NSF Grant #2432132.
H.B. would also like to thank Chinmay Nirkhe for telling him about [BHT97] and Tselil Schramm for sharing
her lecture notes on matroid basis sampling [Sch22]. J.-F. B. thanks Delaram Karobaei, Alexander May and
Benjamin Wesolowski for useful conversations about the collision problem with non-uniform distributions
that took place at the Post-Quantum Algebraic Cryptography semester at the Institut Henri Pointcaré in
Fall 2024. J.-F. B. also thanks Toshio Nakata for pointing out useful references on the collision problem.

1.3. Additional Related Work. In early work on code equivalence, Leon [Leo82] presented an algorithm
for the computation of the automorphism group of a code. Its analysis is heuristic, and its bottleneck is the
computation of a large enough set of weight-w codewords, which is typically done through the Information
Set Decoding (ISD) algorithm. The ISD algorithm was originally introduced by Prange [Pra62], and was
improved in many subsequent works including [BJMM12, BM18, DEEK24, ES24, MMT11, Pet10, Ste88].
The original approach of Leon to solve LCE with the use of ISD was further improved by Beullens [Beu20]
and by Barenghi, Biasse, Persichetti and Santini [BBPS23].

Despite the use of further heuristics, the complexity of the PCE and LCE algorithms resulting from this
line of work is exponential. Yet, as observed by Petrank and Roth [PR97], the code equivalence problem
is unlikely to be NP-hard because this would imply the collapse of the polynomial hierarchy. Petrank and
Roth also proved a reduction from GI to PCE. At the time, this reduction seemed to indicate that the code
equivalence problem could not be too easy to solve, but subsequent work of Babai [Bab16] showed that GI
could be solved in quasipolynomial time.

Other works have focused on identifying easy instances of the code equivalence problem, with a special
focus on PCE with input codes having a trivial or small hull (the hull of a code C is the intersection C ∩ C⊥
of C with its dual code C⊥). Most notably, the Support Splitting Algorithm (SSA) originally described by
Sendrier [Sen00] efficiently solves random instances of PCE. Additional work on this special case includes
the work of Bardet, Otmani and Saeed-Taha [BOS19], which leverages a reduction from PCE to GI, and
of Saeed-Taha [Sae18] who gave a reduction from the code equivalence problem to the problem of solving a
system of polynomial equations.

We also note that the hardness of the code equivalence problem is relevant to the security of code-based
cryptographic schemes. Indeed, in the McEliece [McE78] and in the Niederreiter [Nie86] schemes, the public
key is a linear code that is permutationally equivalent to a secret code where an efficient decoding algorithm
is known. More recently, Biasse, Micheli, Persichetti and Santini described a Zero-Knowledge proof protocol
whose security provably relies on the code equivalence problem [BMPS20]. Via the Fiat-Shamir heuris-
tic [FS86], this protocol gives rise to the LESS digital signature scheme, which recently moved to Round 2 of
the Additional Digital Signature Schemes NIST standardization process [BBB+23]. Cryptosystems based on
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the hardness of the code equivalence problem belong to a broader class of schemes that encompasses isomor-
phism problems: lattice isomorphism [DvW22, DPPvW22, BGPS23], matrix code equivalence [CNP+23b],
and tensor isomorphism [JQSY19]. Due to their apparent resistance to efficient quantum attacks, these
cryptosystems are promising candidates for post-quantum digital signatures, and they were submitted to the
NIST standardization process [BBB+23, BBD+23, CNP+23a].

1.4. Technical Overview. To sketch our algorithms, it is helpful to first review Babai’s algorithm for
PCE [BCGQ11], for which we first recall some terminology. A generator matrix G ∈ Fk×n

q for an [n, k]q
code C has rows whose Fq-span are equal to C. A generator matrix G is said to be in systematic form

if it is of the form G =
(
Ik G′) for some matrix G′ ∈ Fk×(n−k)

q , i.e., if its k × k prefix submatrix is

the identity matrix. Let SF be the algorithm that maps a generator matrix G =
(
G′ G′′) with G′ non-

singular to its corresponding systematic form matrix by left-multiplying by (G′)−1. I.e., SF :
(
G′ G′′) 7→

(G′)−1 ·
(
G′ G′′) = (Ik (G′)−1 ·G′′). An information set I = {i1, . . . , ik} ⊆ [n] for an [n, k]q code C with

generator matrix G ∈ Fk×n
q is a set of k coordinates such that the k × k submatrix obtained by restricting

G to columns indexed by I is non-singular.
The search version of PCE is as follows: given generator matrices G1,G2 ∈ Fk×n

q of permutationally

equivalent codes as input, find a full-rank matrix S ∈ Fk×k
q and a permutation matrix P ∈ Fn×n

q such that

SG1P = G2. Similarly, the search version of LCE is as follows: given generator matrices G1,G2 ∈ Fk×n
q

of linearly equivalent codes as input, find a full-rank matrix S ∈ Fk×k
q and a monomial matrix M ∈ Fn×n

q

such that SG1M = G2. A monomial matrix M = PD is a matrix that is the product of a permutation
matrix P and a full-rank diagonal matrix D.

Babai’s PCE algorithm. The idea of Babai’s PCE algorithm is as follows. Let G1,G2 ∈ Fk×n
q be

respective generator matrices [n, k]q codes C1, C2 such that there exists a permutation σ with σ(C1) = C2 (in
particular, C1 and C2 are permutationally equivalent). Then, σ must map every information set I1 of C1 to
some information set I2 of C2. We call a pair of information sets I1 of C1 and I2 of C2 with σ(I1) = I2 for
some permutation σ with σ(C1) = C2 matching information sets.

Suppose that matching information sets I1, I2 for permutationally equivalent codes C1, C2 with generator
matrices G1,G2 are known, and let PI1 ,PI2 be n× n permutation matrices corresponding to permutations
that map I1, I2 to {1, . . . , k}, respectively. Then there must exist a full-rank matrix S ∈ Fk×k

q , a permutation

matrix P1 ∈ Fk×k
q , and a permutation matrix P2 ∈ F(n−k)×(n−k)

q such that

(1.1) S · SF(G1) ·
(
P−1

1

P2

)
= SF(G2) .

Furthermore, SF(G1) =
(
Ik G′

1

)
and SF(G2) =

(
Ik G′

2

)
for some G′

1,G
′
2 ∈ Fk×(n−k)

q . It follows by
Equation (1.1) that S = P1, and therefore P1G

′
1P2 = G′

2.
So, by the preceding discussing, to solve PCE it suffices (1) to know a pair of matching information sets

I1, I2, and (2) to be able to find permutation matrices P1,P2 such that

(1.2) P1G
′
1P2 = G′

2 .

This latter problem is equivalent to the graph isomorphism problem (GI) on Fq-edge-labeled bipartite graphs
(where we interpret G′

1,G
′
2 as the corresponding adjacency matrices for these graphs), a problem that Babai

showed to be solvable in quasipolynomial time in another seminal paper [Bab16].2 So, Babai’s PCE algorithm
works by:

(1) Finding an arbitrary information set I1 of C1.
(2) “Guessing” an information set I2 of C2 matching I1 by enumerating all

(
n
k

)
size-k subsets of [n].

(3) Solving GI on each of the
(
n
k

)
resulting instances G′

1,G
′
2, using [Bab16].

This algorithm therefore takes
(
n
k

)
· quasipoly(n) · poly(log(q)) ≤ 2n+o(n+q) time.

From PCE to LCE. Let λ = (λ1, . . . , λq−1) where Fq = {λ1, . . . , λq−1}, and let C1, C2 be [n, k]q codes
corresponding to an instance of LCE. The reduction from LCE to PCE in [SS13] works by outputting the

2In fact, [BCGQ11] preceded [Bab16] and so Babai’s PCE algorithm uses an older subexponential-time algorithm for GI.
Despite being slower, this GI algorithm is still not the main bottleneck in the running time of [BCGQ11].
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closures C1⊗λ, C2⊗λ of the input codes, where ⊗ is the Kronecker product. These closures are [(q−1)n, k]q
codes, and so there are

(
(q−1)n

k

)
≈ 2(q−1)n·H(k/((q−1)n)) possible information sets I2 to enumerate when

running Babai’s PCE algorithm on C1 ⊗ λ, C2 ⊗ λ, which is far larger than 2n especially for large values of q
(here H is the binary entropy function).

So, we take a different approach to solving LCE. Using similar reasoning to that described above for Babai’s
PCE algorithm, to solve LCE on [n, k]q codes C1, C2, it suffices (1) to know a pair of matching information
sets I1, I2 for C1, C2, and (2) to be able to find a k × k monomial matrix M1 and an (n − k) × (n − k)
monomial matrix M2 such that

(1.3) M1G
′
1M2 = G′

2 ,

where G′
1,G

′
2 are defined as above using knowledge of I1, I2.

The problem of finding such M1,M2 was recently introduced and studied by Chou, Persichetti, and
Santini [CPS23], who named it the Left-Right Linear Equivalence Problem (LRL). Accordingly, we call
matrices G′

1,G
′
2 such that there exist monomial matrices M1,M2 satisfying Equation (1.3) LRL equivalent.

This problem was also used in Nowakowski’s work [Now25]. We note the close correspondence between
Equations (1.2) and (1.3). Indeed, the only difference is that in Equation (1.2) P1,P2 are permutation
matrices and in Equation (1.3) M1,M2 are monomial matrices.

Call the problem of finding permutation matrices P1,P2 satisfying Equation (1.2) the Left-Right Permu-
tation Equivalence Problem (LRP). We call matrices G′

1,G
′
2 such that there exist monomial matrices P1,P2

satisfying Equation (1.2) LRP equivalent. As mentioned above, LRP is equivalent to GI on Fq-edge-labeled

bipartite graphs, and is therefore solvable in quasipoly(n) time when G′
1,G

′
2 ∈ Fk×(n−k)

q for some k ≤ n.
The key to our algorithm for LCE is a reduction from LRL to LRP, which works in a similar way to the

closure-based LCE to PCE reduction of [SS13]. Given A ∈ Fm×n
q , we define the expanded matrix

Â := λT ⊗A⊗ λ ∈ F(q−1)m×(q−1)n
q ,

where λ ∈ (F∗
q)

q−1 is a vector consisting of the q − 1 distinct elements in F∗
q , as before.

Given an instance A1,A2 ∈ Fm×n
q of LRL, our reduction to LRP simply maps A1,A2 to their respective

expanded matrices, i.e., it maps A1 7→ Â1, A2 7→ Â2, where Â1, Â2 ∈ F(q−1)m×(q−1)n
q . It is clear that this

reduction is efficient (it runs in poly(m+ n+ q) time). See Corollary 3.10 for a correctness proof.

Furthermore, when A1,A2 ∈ Fm×n
q , we can solve LRP on Â1, Â2 in quasipoly(m + n + q) time, from

which it is possible to find monomial matrices M1,M2 satisfying Equation (1.3) (with A1 = G′
1, A2 = G′

2)
in quasipoly(n+ q) time. So, overall, our modification to Babai’s algorithm runs in

(
n
k

)
· quasipoly(n+ q) ≤

2n+o(n+q) time.

A faster algorithm using randomness. We next turn to describing our randomized algorithm for PCE
(which can also be adapted to LCE using ideas similar to those above). The algorithm uses the same basic
approach as in [Now25], which in turn builds on [CPS23]. However, unlike [Now25], our algorithm works for
arbitrary, worst-case instances of PCE over arbitrary finite fields Fq. Our algorithm is also provable, whereas
the algorithm in [CPS23] is heuristic, and is substantially simpler than [CPS23, Now25].

The key idea behind the algorithm in [Now25] is to reduce PCE to collision finding in a canonical form
function F .3 A canonical form for LRP is a function F : Fm×n

q → Fm×n
q such that for all A,A′ ∈ Fm×n

q , (1)
A and F (A) are LRP equivalent, and (2) F (A) = F (A′) if and only if A and A′ are LRP equivalent.

The most technical part of [Now25] is defining and analyzing an elaborate canonical form F for LRL.
Our algorithm is substantially simpler, and leverages the fact that LRP is simply a special case of (Fq-edge
labeled) GI, as noted in [BCGQ11]. It then takes advantage of yet another work of Babai: a quasipolynomial-
time computable canonical form for graphs [Bab19], which is a follow-up to his quasipolynomial-time GI
algorithm [Bab16].4

Furthermore, Equation (1.2) and the surrounding discussion shows the correspondence between matching
information sets I1, I2 and LRP-equivalent matrices G′

1,G
′
2. In particular, given knowledge of such I1, I2 it

3In fact, [Now25] studies LCE rather than PCE. The main ideas described in our work apply to both problems.
4Technically, LRP is equivalent to GI on Fq-edge-labeled bipartite graphs, whereas [Bab19] is stated “natively” for unlabeled

graphs. However, there is an efficient reduction from GI on edge-labeled graphs to GI on unlabeled graphs [ZKT85], and so

this distinction is immaterial. See Remark 2.9 for a more thorough discussion.
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is possible to efficiently compute LRP-equivalent matrices G′
1,G

′
2 corresponding to the “non-identity parts”

of systematic form generator matrices
(
Ik G′

1

)
,
(
Ik G′

2

)
of the respective input codes C1, C2. From such

G′
1,G

′
2 it is in turn possible to recover an isometry mapping C1 to C2 in quasipolynomial time using [Bab16].

We may therefore model the problem of finding matching information sets as the problem of finding values
x, y ∈ [N ] such that F1(x) = F2(y) for functions F1, F2 : [N ] → Fm×n

q , where Fi for i = 1, 2 corresponds to
a map from the information sets of Ci to the graph F (G′

i) output by Babai’s corresponding canonical form
F for graphs from [Bab19]. Such a pair (x, y) is called a claw. Furthermore, if C1, C2 are permutationally
equivalent, then they have the same number N of information sets, and there are at least N pairs of matching
information sets total. This in turn implies that F1, F2 have at least N claws (x, y).

Because of this, the probability that uniformly random x, y ∼ [N ] are such that F1(x) = F2(y) is at
least 1/N , and so if we sample m values x1, . . . , xm, y1, . . . , ym ∼ [N ] the expected number of claws (xi, yj)

we obtain is at least m2/N . Therefore, setting m = Ω(
√
N) we get at least Ω(1) claws in expectation.

Furthermore, it is possible to show using Chebyshev’s inequality that the total number of claws concentrates
around its expectation. SinceN ≤

(
n
k

)
≤ 2n, this means that it always suffices to takem ≈ 2n/2. Accordingly,

the resulting algorithm finds a claw (which is the crux for solving PCE) with high probability in 2n/2+o(n+q)

time.
There is an issue with the algorithm sketched above, however: it assumes that it is possible to efficiently

sample a (truly) uniformly random information set. On the contrary, it is not at all clear how to do this.
Because of this, [Now25] used the fact that the input codes were random to argue that a random size-k subset
of indices is an information set with high probability. However, we are able to bypass any assumptions about
the underlying codes by using an efficient algorithm for almost uniformly random matroid basis sampling
(of which information set sampling is a special case) from [ALOV19]; see Algorithm 5 and Theorem 5.8.

An even faster quantum algorithm. Finally, we sketch how to extend the previous randomized PCE

algorithm to a quantum algorithm. First, sample m =
(
n
k

)1/3 · log ((nk)1/3) many information sets from C1. If
the number of distinct information sets among those sampled is less than

(
n
k

)1/3
, then via a coupon collector

argument one can show that with good probability the number of distinct information sets is N ≤
(
n
k

)1/3
and that all N of these appear among the m total information sets sampled. In this case, any information
set of C2 will match one of the information sets sampled from C1.

Otherwise, keep
(
n
k

)1/3
distinct information sets of C1. By Grover search, it is then possible to find an

information set for C2 matching one of those kept for C1 in roughly

√(
n
k

)
/
(
n
k

)1/3
=
(
n
k

)1/3 ≤ 2n/3 quantum

time. This use of Grover search for claw finding is similar to and inspired by the quantum collision finding
algorithm of [BHT97]. We also again note that [Now25] sketched a quantum algorithm along similar lines,
although it did not provide many details.

1.5. Organization of the Paper. In Section 2, we present standard background on linear codes and the
code equivalence problem. In Section 3, we introduce our method for solving the LRL problem. In Section 4,
we apply this method to solve LCE with a modification of Babai’s algorithm. Furthermore, in Section 5, we
give a randomized algorithm using a meet-in-the-middle strategy to solve PCE and LCE, and in Section 6
we give a quantum algorithm to solve PCE and LCE.

2. Background

An [n, k, d]q code C is a k-dimensional vector space over Fn
q such that the minimum Hamming distance

between two distinct elements (codewords) is d. In particular, every [n, k, d]q code is a linear code. An [n, k]q
code is a code that is an [n, k, d]q code for some d. A matrix G ∈ Fk×n

q whose rows generate an [n, k]q code
C is called a generator matrix for C.

Definition 2.1 (Information set). Let C be an [n, k, d]q code. We say that the indices {i1, . . . , ik} ⊆ [1, . . . , n]
are an information set for C if the k × k matrix made up of columns indexed by i1, · · · , ik of a generator
matrix for C is invertible.

The coordinates of a codeword c ∈ C of indices belonging to an information set uniquely identify c.
There are up to

(
n
k

)
∼ 2nH(k/n) possible information set for an [n, k, d]q-linear code where H denotes the
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binary entropy function. When the first k columns of the matrix A =
(
A0 A1

)
∈ Fk×n

q are linearly
independent (i.e., {1, . . . , k} is an information set of C), we denote by SF(A) the systematic form defined
by SF(A) = A−1

0 A which has the shape
(
Ik A′

1

)
for A′

1 = A−1
0 A1. Working with a generator matrix in

systematic form allows us to uniquely identify codewords with their first k components.
Linear maps that preserve the Hamming distance leave certain essential properties of linear codes intact—

in particular, those related to their decoding capacities. We introduce the notion of equivalence of codes
by first defining permutations of code. We say that two [n, k, d]q codes C1, C2 are permutationally equivalent

(which we denote by C1
P
≈ C2) if there is a permutation π ∈ Sn such that π(C1) = C2, i.e., every codeword of

C2 arises as the permutation of the entries of a codeword of C1 according to π.

Definition 2.2 (Permutation matrix). Let π ∈ S. The permutation matrix P ∈ Fn×n
q satisfying Pj,i = 1 if

π(i) = j and Pi,j = 0 otherwise acts via a right multiplication by permuting columns according to π. More
specifically, if A,B ∈ Fk×n

q , and B = AP , then the column of index π(i) of B is the column of index i of
A.

With the above definition, two linear codes C1, C2 with generator matrices G1,G2 are permutationally
equivalent if and only if there exist an invertible matrix S and a permutation matrix P such that G2 =
SG1P .

Definition 2.3 (PCE). Let C1, C2 be [n, k, d]q codes. The Permutation Code Equivalence problem (PCE)
is the task of finding π ∈ Sn such that C2 = π(C1). Equivalently, if G1,G2 are generator matrices for C1 and
C2, PCE is the task of finding an invertible matrix S and a permutation matrix P such that G2 = SG1P

when C1
P
≈ C2.

The definition of PCE we give above corresponds to the search variant of this problem. In many references,
PCE is defined as a decision problem: given C1, C2, decide whether C1 and C2 are permutationally equivalent.
As shown in [BM23], search and decision are polynomially equivalent. In the scope of this paper, we focus
on the search variant.

Permutation equivalence can be extended to codes that are image of each other by a linear isometry. Two

such codes C1, C2 are said to be linearly equivalent, and this property is denoted by C1
L
≈ C2.

Proposition 2.4. All linear isometries of Fn
q can be uniquely identified by (σ,v) ∈ Sn ⋊ F∗n

q . The image
y ∈ Fn

q of x ∈ Fn
q is given by

yσ(i) = vσ(i)xi.

Hence, an isometry necessarily acts via a permutation of the columns, followed by the scaling of the
entries by non-zero scalars. From a matrix point of view, a linear isometry τ = (σ,v) ∈ Sn⋊F∗n

q acts on the

columns of A ∈ Fk×n
q via right multiplication by the permutation matrix P corresponding to σ, followed by

the right multiplication by the diagonal matrix D = diag(v1, . . . , vn): APD. A matrix of the form PD is
a monomial matrix.

Proposition 2.5 (LCE). Let C1, C2 be [n, k, d]q-linear codes. The Linear Code Equivalence problem (LCE)
is the task of finding τ ∈ Sn ⋊ F∗n

q such that C2 = τ(C1). Equivalently, if G1,G2 are generator matrices
for C1 and C2, LCE is the task of finding an invertible matrix S, a permutation matrix P , and a diagonal
matrix D such that G2 = SG1PD.

The work of Sendrier and Simos [SS13] introduced a strategy to reduce PCE to LCE through the concept of
the closure of a linear code. In a nutshell, given an [n, k, d]q-linear code C, once constructs an [n(q−1), k, d]q
code C̃ via the operation

(c1, .., cn) 7→ (c1, . . . , cn)⊗ (λ1, . . . , λq−1)

= (λ1c1, λ2c1, . . . , λq−1c1, λ1c2, λ2c2, . . . , λq−1c2, . . . , λ1cn, λ2cn, . . . , λq−1cn),

where F∗
q = {λ1, . . . , λq−1} and ⊗ denotes the Kronecker product. The following lemma is from [SS13]. See

also the stronger statement about the closure of a code and the formal proof of these statements in [BW24].

Lemma 2.6 ([SS13]). Two [n, k, d]q codes C1, C2 are linearly equivalent if and only if their closures C̃1 and

C̃2 are permutationally equivalent.
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We note that the disadvantage of the reduction in Lemma 2.6 is that it does not preserve the length of
the codes C1, C2. We now turn our attention to the deterministic PCE algorithm due to Babai. It consists
of reducing PCE to many instances of the Graph Isomorphism Problem (GI). Assume the two input codes
C1, C2 have generator matrices G1 and G2 respectively. Without loss of generality, we can assume that G1

and G2 are in systematic form: G1 =
(
Ik A1

)
, and G2 =

(
Ik A2

)
. The goal of Babai’s code equivalence

algorithm is to reduce this instance of Code Equivalence to an instance of GI on Fq-colored graphs defined
by A1,A2.

Definition 2.7 (Fq-colored bipartite graphs). A bipartite graph G is a graph whose vertices can be parti-
tioned into two subsets A and B such that each edge of G has one endpoint in A and one endpoint in B.
The graph is Fq-colored if each edge is labeled by an element of Fq. The adjacency matrix A ∈ Fm×n

q of G
has a coefficient ai,j if and only if the i-th element of A is connected to the j-th element of B via an edge of
label ai,j .

Two graphs are said to be isomorphic if their vertices can be permuted in a way that preserves edges.
From the standpoint of adjacency matrices, let G1 and G2 be Fq-colored bipartite graphs with adjacency
matrices A1,A2 ∈ Fm×n

q . G1 and G2 are isomorphic if and only if there are permutation matrices P1,P2

such that A2 = P1A1P2.
5

Theorem 2.8 ([Bab16]). There is a quasipolynomial-time algorithm that solves the graph isomorphism
problem.

Remark 2.9. A graph is called edge-labeled if its edges are each assigned a value, and two edge-labeled graphs
are isomorphic if and only if there is a vertex permutation that not only preserves adjacency but maps edges
of one graph to edges of the other graph with the same label. In particular, we will need to solve the Graph
Isomorphism problem on Fq-colored (bipartite) graphs—graphs that are edge-labeled with labels from Fq.

It is unclear if Babai’s quasipolynomial-time algorithm for GI [Bab16] (given in Theorem 2.8) and follow-
up work giving a quasipolynomial-time computable canonical form for graphs [Bab19] (given in Theorem 5.4)
work “natively” on edge-labeled graphs. (In a remark in [BCGQ11], Babai claims that edge labeling only
speeds up a prior subexponential-time algorithm for GI.) However, there is is a poly(n)-time reduction from
graph isomorphism on undirected, edge-labeled graphs to graph isomorphism on undirected, non-edge-labeled
graphs—see [ZKT85], which calls edge-labeled graphs “color-graphs”. So, using [ZKT85], Theorems 2.8
and 5.4 imply quasipoly(n)-time algorithms for GI on Fq-colored graphs. Because of this, we state Theo-
rems 2.8 and 5.4 and calls to GI algorithms without worrying about the distinction between edge-labeled
and non-edge-labeled graphs.

Finally, we remark that the size of the graphs output by the reduction in [ZKT85] applied to Fq-colored
graphs can be upper bounded by a function only of n, the number of vertices, and not q, the number of
colors. This is because, regardless of q, there are only

(
n
2

)
= O(n2) possible distinct edge labels, and n and

the number of distinct edge labels are the only things that matter for the size of the output graphs.

To proceed with the reduction from PCE to GI, assume first that one knows the image of {1, . . . , k} under
the permutation σ defined by the permutation matrix P .

Theorem 2.10 (Th. 7.1 of [BCGQ11]). Let G1 =
(
Ik A1

)
, and G2 =

(
Ik A2

)
be generating matrices

of two permutation-equivalent codes C1, C2 of dimension k and length n over Fq. Assume σ({1, . . . , k}) is
known for a secret σ ∈ Sn such that σ(C1) = C2. Then there is an efficient reduction from the problem of
computing S ∈ GLk(Fq) and a permutation matrix P with G2 = SG1P to the Graph Isomorphism problem.

Proof. Assume that P ′ is the permutation matrix corresponding to σ′ ∈ Sn such that σ′ ◦ σ({1, . . . , k}) =
{1, . . . , k}. Such a permutation can be efficiently computed from the knowledge of σ({1, . . . , k}), and we get
the identity (

Ik A2

)
P ′ = S

(
Ik A1

)
PP ′.

5Technically an undirected bipartite graph G = (V = (L⊔R), E) with m = |L|, n = |R| and Fq-labeled edges is represented

by an (m + n) × (m + n) adjacency matrix A′ of the form A′ =

(
0 A
AT 0

)
. However, throughout the paper we follow the

convention of representing G simply by the block A ∈ Fm×n
q , and refer to this as the adjacency matrix of G.

7



The permutation matrix PP ′ corresponds to σ′ ◦ σ. Hence, it fixes {1, . . . , k}. The left k × k submatrix
SPP ′ of the right-hand side is invertible. Hence, so is the left k × k submatrix of the left-hand side, and
after computation of the systematic form of the left hand side matrix, we have an identity of the form

(2.1)
(
Ik A′

2

)
= S′ (Ik A1

)
PP ′,

where S′ is invertible. Since the permutation corresponding to PP ′ fixes {1, . . . , k}, it has the form PP ′ =(
P1

P2

)
where P1 is a permutation matrix of Sk. By Equation (2.1), we obtain:

• Ik = S′P1.
• A′

2 = S′A1P2.

The first item shows that S′ = P−1
1 is a permutation matrix, and since A′

2 = S′A1P2, we can recover S′ and
P2 by solving the Graph Isomorphism problem on the Fq-colored bipartite graphs defined by interpreting
A′

2 and A1 as adjacency matrices. □

Without the knowledge of σ({1, . . . , k}), we need to enumerate the
(
n
k

)
possibilities for σ(1), . . . , σ(k).

For each possible choice, we proceed with the method outlined above and attempt to solve PCE from its
reduction to GI. The algorithm can be summed up with the pseudocode described in Algorithm 1:

Require: Generator matrices G1 =
(
Ik A1

)
,G2 =

(
Ik A2

)
of two permutationally equivalent

[n, k, d]q codes.
Ensure: S invertible and a permutation matrix P with G2 = SG1P .
1: for all size-k subsets {i1, . . . , ik} ⊆ {1, . . . , n} do
2: Compute a permutation matrix P ′ that maps i1, . . . , ik to {1, . . . , k}.
3: if the first k columns of G2P

′ are not independent then
4: break;
5: end if
6: Compute the systematic form

(
Ik A′

2

)
of G2P

′.
7: Find permutation matrices P1,P2 with A′

2 = P1A1P2 via Babai’s GI algorithm if they exist.
8: end for

9: return S = P1, P =

(
P−1

1

P2

)
.

Algorithm 1: Original Babai deterministic PCE algorithm.

Theorem 2.11. Algorithm 1 is correct, and it solves PCE using
(
n
k

)
∼ 2nH(k/n) calls to an oracle for GI.

Since the complexity to solve GI is 2log(n)
c

for a constant c, the overall complexity of Babai’s PCE
algorithm is in 2nH(k/n)(1+o(1)). Note that it is a deterministic algorithm.

3. A quasipolynomial-time algorithm for LRL

In this section, we present a quasipolynomial time algorithm to solve the so-called Left-Right Linear
equivalence problem (LRL): given two matrices A1,A2 ∈ Fn×n

q , find monomial matrices Q1,Q2 such that
A2 = Q1A1Q2. The LRL equivalence problem was introduced by Chou, Persichetti and Santini [CPS23]
who proposed a heuristic algorithm to solve it for large field sizes q. Recently, Nowakowski [Now25] described
an algorithm with proven time complexity that solves LRL equivalence on random codes when q ≥ 7. Our
approach to solve LRL equivalence relies on an efficient reduction to GI. This method for the resolution
of LRL equivalence is the key technical ingredient that enables our extension of Babai’s code equivalence
algorithm to LCE in Section 4.
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3.1. Block permutations. Here, we reuse ingredients of the reduction from LCE to PCE. Simply put, we
can solve linear code equivalence of two codes by finding a permutation between their closures. Suppose
that (σ,v) ∈ Sn × (F∗

q)
n defines a linear isometry between k-dimensional codes C1 and C2 over Fn

q . The

corresponding permutation π ∈ Sn(q−1) is such that C̃2 = π(C̃1) acts block by block, where each of the n

blocks of q − 1 coordinates in C̃1, C̃2 corresponds to a single coordinate in C1, C2. We will use this property
to solve LRL.

Definition 3.1 (Block of indices). The indices of the closure C̃ of a code C of length n over Fq are divided
into n blocks. For i ≤ n, the block Bi is defined as

Bi = {(q − 1)(i− 1) + 1, (q − 1)(i− 1) + 2, . . . , (q − 1)(i− 1) + (q − 1)}.

The indices of the block Bi are mapped to that of the block Bσ(i). Within the block, entries are also
re-ordered according to a permutation of the q− 1 entries that is defined by vσ(i). More specifically, the i-th
block (λ1ci, λ2ci, . . . , λq−1ci) first gets mapped to the σ(i)-th block, and then the following transformation
takes place:

(λ1ci, λ2ci, . . . , λq−1ci) 7→ (λ1vσ(i)ci, λ2vσ(i)ci, . . . , λq−1vσ(i)ci) = (λπvσ(i)
(1)ci, λπvσ(i)

(2)ci, . . . , λπvσ(i)
(q−1)ci),

where the permutation πv ∈ Sq−1 for v ∈ F∗
q is induced by the bijection of F∗

q given by x 7→ vx, that is:
vλl = λπv(l). This means that the permutation π ∈ Sn(q−1) corresponding to (σ,v) acts in the following way
for all i ≤ n, and l ≤ q − 1:

(q − 1)(i− 1) + l 7−→ (q − 1)(σ(i)− 1) + πvσ(i)
(l).

Definition 3.2 (Block permutation). Let π1, . . . , πn ∈ Sq−1 and σ ∈ Sn. The block permutation defined by
σ and (πi)i≤n has the n(q− 1)× n(q− 1) permutation matrix (Pσ ⊗ Iq−1) · diag(Pπ1 , . . . ,Pπn), where Pπ is
the permutation matrix corresponding to the permutation π. The block permutation performs the following
operation:

(q − 1)(i− 1) + l 7−→ (q − 1)(σ(i)− 1) + πσ(i)(l).

One can immediately check that the following holds:

Lemma 3.3. Suppose (σ,v) ∈ Sn × F∗n
q defines a linear isometry between k-dimensional codes C1 and C2

over Fn
q . The corresponding permutation π ∈ Sn(q−1) such that π(C̃1) = C̃2 satisfies

Pπ = (Pσ ⊗ Iq−1) · diag(Pπv1
, . . . ,Pπvn

)

3.2. Reducing LRL to GI. Given input matrices A1,A2 ∈ Fm×n
q , search for monomial matrices Q1,Q2

such that A2 = Q1A1Q2. We reduce this task to the Graph Isomorphism problem by expanding rows and
columns of A1,A2 in such a way that Q1,Q2 act by block permutation on the rows (resp. columns) of
the expanded matrices. This strategy directly follows the methods to produce the closure of a code [SS13].
However, we cannot directly reuse the rigorous proofs provided in [BW24] as our statements apply directly
to matrices, and include row expansion in addition the usual column expansion.

Definition 3.4 (Column-expanded matrix). LetA ∈ Fm×n
q and {λ1, . . . , λq−1} = F∗

q . The column-expanded

matrix of A (denoted Ã) is the m× n(q − 1) matrix over Fq where each coefficient ai,j of A is replaced by
the 1× (q − 1) block

(λ1ai,j , λ2ai,j , . . . , λq−1ai,j),

in other words, Ã = A⊗ (λ1, . . . , λq−1).

Clearly, if G is a generator matrix for the linear code C, then G̃ is the generator matrix for its closure C̃.
The same operation can then be performed row-wise, i.e. the matrix can be expanded by replacing each of
the rows with the block made of all its q − 1 possible scalar multiples.

Definition 3.5 (Expanded matrix). Let A ∈ Fm×n
q and {λ1, . . . , λq−1} = F∗

q . The expanded matrix of A

(denoted Â) is the m(q− 1)×n(q− 1) matrix over Fq consisting in replacing each row Ri of Ã by the block
(λ1Ri, λ2Ri, . . . , λq−1Ri). In other words:

Â =
˜̃
A

T
T

,
9



or equivalently Â = (λ1, . . . , λq−1)
T ⊗ Ã = (λ1, . . . , λq−1)

T ⊗A⊗ (λ1, . . . , λq−1).

The following lemma is a similar assertion to the fact that one can reduce LCE to PCE by taking the
closure of the input codes.

Lemma 3.6. Let A1,A2 ∈ Fm×n
q . Then there exists a monomial matrix Q such that A2 = A1Q if and

only if there exists a permutation matrix P such that Ã2 = Ã1P .

Proof. First, assume that there exists a monomial matrix Q such that A2 = A1Q. Let σ ∈ Sn and v ∈ F∗n
q

be defined by the linear isometry corresponding to Q. Then according to Lemma 3.3 the block permutation
matrix

P = (Pσ ⊗ Iq−1) · diag(Pπv1
, . . . ,Pπvn

)

satisfies Ã2 = Ã1P .
Now, assume that there exists a permutation matrix P such that Ã2 = Ã1P . This means that the

columns of Ã2 are a permutation of the columns of Ã1. Up to a reordering of the identical columns, we can
assume that P is a block permutation matrix, i.e. that it is of the form

(Pσ ⊗ Iq−1) · diag(Pπ1 , . . . ,Pπn),

where σ ∈ Sn and π1, . . . , πn ∈ Sq−1. Let C
1
1 , . . . , C

1
n be the columns of A1 and C2

1 , . . . , C
2
n be the columns

of A2. Under the block permutation, the block of columns (λ1C
1
i , . . . , λq−1C

1
i ) is mapped to the block of

columns (λ1C
2
σ(i), . . . , λq−1C

2
σ(i)). In particular, the first column of the block λ1C

1
i is mapped to λπσ(i)(1)C

2
σ(i).

Hence we necessarily have C2
σ(i) = vσ(i)C

1
i for vσ(i) := λ1λ

−1
πσ(i)(1)

. By the definition of πvσ(i)
, we have that

(λ1C
2
σ(i), . . . , λq−1C

2
σ(i)) = (vσ(i)λ1C

1
i , . . . , vσ(i)λq−1C

1
i ) = (λπvσ(i)

(1)C
1
i , . . . , λπvσ(i)

(q−1)C
1
i ).

This means that πi = πvi for all i. Hence A2 = A1Q where Q is the monomial matrix corresponding to the
linear isometry defined by (σ,v). □

Corollary 3.7. Given the column expanded matrices Ã1, Ã2 of A1,A2, and a permutation matrix P such
that Ã2 = Ã1P , there is an efficient procedure to compute a monomial matrix Q such that A2 = A1Q.

Proof. Assume that there is a permutation matrix P such that Ã2 = Ã1P . As mentioned in the proof of
Lemma 3.6, there is a block permutation matrix P ′ such that Ã2 = Ã1P

′. It can be obtained from the
re-ordering of the action of P on identical columns of Ã1. Let us show that this procedure is efficient. The
matrices Ã1 and Ã2 are made of n blocks of q − 1 columns. The columns of a given block are the scalar
multiples of a single element. To create a block permutation P ′ from P , we start with the first block B1 of
indices. The first column λ1C

1
1 of Ã1 is mapped to λlC

2
i . Since P is not necessarily a block permutation,

the rest of the columns of the first block of Ã1 are not necessarily mapped to the i-th block of Ã2. However,
if one of them λl′C

1
1 is mapped to an element of the j-th block of Ã2 for j ̸= i, we necessarily have that

the columns of Ã2 of indices in Bi are equal to the ones of index in Bj . Hence we can swap the pre-images

of the columns of index i with the columns of Ã1 of index in B1. This way, we ensure that all columns
of Ã1 of index in B1 are mapped to a column of Ã2 of index in Bi. We set σ(1) := i, and repeat the
process for the blocks of index 2, . . . , n. At the end of the procedure, we have a block permutation matrix
P ′ = (Pσ ⊗ Iq−1) · diag(Pπ1 , . . . ,Pπn). Finally, for all i, we set vσ(i) := λ1λ

−1
πσ(i)(1)

. The monomial matrix Q

corresponding to the linear isometry defined by (σ,v) satisfies A2 = A1Q. □

Lemma 3.8. Let A ∈ Fm×n
q and B ∈ Fn×l

q . Then we have

ÃB = AB̃.

Proof. This follows from the fact that (AB) ⊗ λ = (AB) ⊗ (Inλ) = (AIn) ⊗ (B ⊗ λ) = A(B ⊗ λ) for
λ = (λ1, . . . , λq−1). □

Corollary 3.9. Let A1,A2 ∈ Fm×n
q . There exist monomial matrices Q1,Q2 such that A2 = Q1A1Q2 if

and only if there exist a permutation matrix P2 and a monomial matrix Q1 such that

Ã2 = Q1Ã1P2.
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Proof. We apply Lemma 3.6 to Q̃1A1 = Q1Ã1 and Ã2. □

Corollary 3.10. Let A1,A2 ∈ Fm×n
q . There exist monomial matrices Q1,Q2 such that A2 = Q1A1Q2 if

and only if there exist permutation matrices P1,P2 with

Â2 = P1Â1P2.

Proof. By applying Corollary 3.9 a first time, we have A2 = Q1A1Q2 if and only if there is a permutation
matrix P2 and monomial matrix Q1 such that Ã2 = Q1Ã1P2. By taking the transpose on both sides, this
means that

P T
2 Ã1

T
QT

1 = Ã2
T

We apply Corollary 3.9 a second time to state that this is equivalent to the existence of a permutation matrix
P1 satisfying

P T
2

˜̃
A1

T
P1 =

˜̃
A2

T
.

We transpose again to conclude that this is equivalent to

P T
1

˜̃
A1

T
T

P2 =
˜̃
A2

T
T

,

i.e. P T
1 Â1P2 = Â2 since for all A, we have Â =

˜̃
A

T
T

. □

Algorithm 2 is correct thanks to Corollary 3.10, and it takes advantage of Corollary 3.7 to solve LRL
by reducing it to an instance of GI given by the extended matrices of the input matrices. Its runtime is

dominated by that of Babai’s GI algorithm (Step 1). Then, with P1,P2 such that Â2 = P1Â1P2, we have
that

P T
2 Â1

T
P T

1 = P T
2

˜̃
A1

T
P T

1 =
˜

P T
2 Ã1

T
P T

1 = Â2

T
=
˜̃
A2

T
.

A first use of Corollary 3.7 gives us a monomial matrix Q1 with Ã2
T
= P T

2 Ã1
T
Q1. By transposing again,

we see that

QT
1 Ã1P2 = Q̃T

1 A1P2 = Ã2.

Another use of Corollary 3.7 gives us a monomial matrix Q2 with QT
1 A1Q2 = A2.

Require: Matrices A1,A2 ∈ Fm×n
q

Ensure: Monomial matrices Q1,Q2 such that A2 = Q1A1Q2, or ⊥ if no such matrices exist.

1: Use Babai’s GI algorithm on the Fq-colored bipartite graphs G1,G2 defined by Â1 and Â2.
2: if G1 is not isomorphic to G2 then
3: return ⊥
4: else
5: Let permutation matrices P1,P2 such that Â2 = P1Â1P2.

6: Use Corollary 3.7 to compute a monomial matrix Q1 with Ã2
T
= P T

2 Ã1
T
Q1.

7: Use Corollary 3.7 to compute a monomial matrix Q2 with QT
1 A1Q2 = A2.

8: end if
9: return QT

1 ,Q2.

Algorithm 2: Resolution of LRL equivalence.

4. A variant of Babai’s algorithm for solving LCE

Assume that two input codes C1, C2 satisfy C2 = τ(C1) for a linear isometry τ defined by (σ,v) ∈ Sn⋊(F∗
q)

n.
We propose a variant of Babai’s PCE algorithm to retrieve τ . Our strategy consists in reducing the search
for τ to the resolution of an instance of LRL. First, assume we know σ({1, . . . , k}). As before, we also assume
that the input codes are given in systematic form, i.e., with generator matrices of the form G1 =

(
Ik A1

)
,

and G2 =
(
Ik A2

)
. We obtain the following result which is similar to Theorem 2.10, but for LCE instead

of PCE.
11



Lemma 4.1 (LCE to LRL reduction). Let G1 =
(
Ik A1

)
, and G2 =

(
Ik A2

)
be generator matrices of

two codes C1, C2 of dimension k and length n over Fq that are linearly equivalent under the action of the linear
isometry given by (σ,v) ∈ Sn× (F∗

q)
n. Assuming σ({1, . . . , k}) is known, there is an efficient reduction from

the problem of computing σ,v to the search for permutation matrices P1,P2 and diagonal matrices D1,D2

with non-zero entries such that
A2 = D1P1A1P2D2.

Proof. We can easily construct a permutation σ′ ∈ Sn such that σ′ ◦ σ({1, . . . , k}) = {1, . . . , k}. Let Pσ,Pσ′

be the n × n permutation matrices corresponding to σ, σ′. Solving LCE corresponds to finding Pσ and
a diagonal matrix with non-zero entries D such that G2 = SG1PσD for some invertible matrix S. We
multiply by Pσ′ on both sides to obtain

G2Pσ′ = SG1PσDPσ′ = SG1PσPσ′Dσ′ ,

where Dσ′ is the diagonal matrix whose entries are those of D under the permutation σ′. The linear
isometry defined by the monomial matrix PσPσ′Dσ′ maps the indices {1, . . . , k} to {1, . . . , k} (and scales
the corresponding entries). The two main consequences that are:

(1) PσPσ′Dσ′ =

(
P1D1

P2D2

)
where P1,P2 are permutation matrix, D1,D2 are diagonal matrices

with non zero entries, and the upper left block is of size k × k.
(2) {1, . . . , k} is an information set of G2Pσ′ .

According to Point 2, we can multiply by an invertible matrix on the left to put G2Pσ′ in systematic form.
Hence, there exist a k × k invertible matrix S′ and a k × (n− k) matrix A′

2 such that(
Ik A′

2

)
= S′ (Ik A1

)(P1D1

P2D2

)
By expanding the above product block by block, we obtain the following identities:

(1) S′P1D1 = Ik.
(2) S′A1P2D2 = A′

2.

Hence S′ = D−1
1 P−1

1 is a monomial matrix, and we have D−1
1 P−1

1 A1P2D2 = A2. □

We can use the reduction in Lemma 4.1 from LCE to LRL (when the image of an information set by
σ is known) to devise an analogue of Babai’s algorithm that solves LCE. We assume that the two input
codes C1, C2 have generator matrices G1 =

(
Ik A1

)
and G2 =

(
Ik A2

)
respectively. Assume that the

linear isometry from C1 to C2 is defined by (σ,v) ∈ Sn × (F∗
q)

n. We enumerate the
(
n
k

)
possibilities for

{σ(1), . . . , σ(k)}. For each possible choice, we proceed with the method outlined above and attempt to solve
LCE from its reduction to GI. The algorithm can be summed up with the following pseudocode:

Require: Generator matrices G1 =
(
Ik A1

)
,G2 =

(
Ik A2

)
of two linearly equivalent [n, k, d]q codes.

Ensure: S invertible and a monomial matrix Q with G2 = SG1Q.
1: for all size-k subsets {i1, . . . , ik} ⊂ {1, . . . , n} do
2: Compute a permutation matrix P ′ that maps i1, . . . , ik to {1, . . . , k}.
3: if the first k columns of G2P

′ are not independent then
4: break.
5: end if
6: Compute

(
Ik A′

2

)
= SF(G2P

′).
7: Use Algorithm 2 to look for monomial matrices Q1,Q2 with A′

2 = Q1A1Q2.
8: if Algorithm 2 does not return ⊥ then
9: break.

10: end if
11: end for

12: return S = Q1, Q =

(
Q−1

1

Q2

)
.

Algorithm 3: Variant of Babai’s algorithm for LCE.
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Theorem 4.2. Algorithm 3 is correct, and it solves LCE after
(
n
k

)
∼ 2nH(k/n) calls to an oracle that solves

GI between two Fq-colored bipartite graphs with (q − 1)n vertices.

Since from [Bab16], the complexity to solve GI on input graphs of size m is in 2log(m)c for a constant c, and
since by [ZKT85], we can reduce GI between Fq-colored bipartite graphs of size (q− 1)n to GI on a graph of

size poly(n+q), the overall time complexity of Babai’s LCE algorithm is in quasipoly(n+q)·
(
n
k

)
≤ 2n+o(n+q).

Note that it is a deterministic algorithm.

5. A meet-in-the-middle variants to solve PCE and LCE

In this section, we show how to solve the code equivalence problem using a meet-in-the-middle strategy
combined with Babai’s algorithm in time and space complexity bounded by 2n/2+o(n+q). We begin by
showing how to solve PCE, and then extend this to solve LCE.

5.1. Meet-in-the-middle approach to solve PCE. The general approach of our variant of Babai’s al-
gorithm for finding π such that π(C1) = C2 consists in attempting to find information sets I1 of C1 and I2
of C2 such that after applying a permutation mapping I1 7→ [1, . . . , k] to C1 and a permutation mapping
I2 7→ [1, . . . , k], PCE readily reduces to GI.

Lemma 5.1. Let G1 be a generator matrix for C1 and G2 be a generator matrix for C2 = π(C1). For all
information sets I1 of C1 and I2 := π(I1) of C2, and for all permutations σ1 mapping I1 to [1, . . . , k] and σ2

mapping I2 to [1, . . . k], there exist permutation matrices P1 ∈ Fk×k
q ,P2 ∈ F(n−k)×(n−k)

q , and an invertible
matrix S such that

SF(G2PI2) = S SF(G1PI1)

(
P1

P2

)
,

where PI1 is the matrix of σ1 and PI2 is the matrix of σ2.

Proof. Assume G2 = S0G1P for some invertible matrix S0 and permutation matrix P . Let I1 be an
information set for C1, and PI1 be the matrix of a permutation that maps I1 to [1, . . . , k]. Then, there is an
invertible matrix S1 such that S1G1PI1 = SF(G1PI1). This means that

G2 = S0S
−1
1 (S1G1PI1)P

−1
I1

P

= S0S
−1
1 SF(G1PI1)P

−1
I1

P .

Note that the permutation matrix P−1
I1

P corresponds to the permutation that maps [1, . . . , k] to I1, and
then to π(I1) := I2 where π(C1) = C2. Hence I2 is an information set of C2. Let PI2 be the matrix of
a permutation mapping I2 to [1, . . . , k]. In particular, the permutation corresponding to P−1

I1
PPI2 maps

[1, . . . , k] to itself and hence has the shape

P−1
I1

PPI2 =

(
P1

P2

)
.

By multiplying our previous identity by PI2 on both sides, we obtain

G2PI2 = S0S
−1
1 SF(G1PI1)

(
P1

P2

)
.

Let S2 be the invertible matrix such that S2G2PI2 = SF(G2PI2), and S := S2S0S
−1
1 . We have

S2G2PI2 = SF(G2PI2) = S SF(G1PI1)

(
P1

P2

)
.

□

The above formalizes a property of an information set I1 of C1 and its image I2 = π(I1). We denote this
by saying that I1 and π(I1) are matching information sets.

Definition 5.2 (Matching information sets). Let C1, C2 be two [n, k]q codes with generator matrices G1,G2.
We say that information sets I1, I2 for C1, C2, respectively, are matching information sets if there exists a
permutation π ∈ Sn such that π(C1) = C2 and π(I1) = I2.
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If I1 and I2 are matching information sets for C1 and C2, then there exist permutation matrices P1 ∈
Fk×k
q ,P2 ∈ F(n−k)×(n−k)

q , and an invertible matrix S such that

(5.1) SF(G2PI2) = S SF(G1PI1)

(
P1

P2

)
,

where PI1 is the permutation matrix of a σ1 that maps I1 to [1, . . . , k] and PI2 is the permutation matrix of
a σ2 that maps I2 to [1, . . . , k]. Moreover, from Equation (5.1) that if we know matching information sets
I1 and I2 for C1 and C2 then we can efficiently find A1,A2 such that SF(G1PI1) =

(
Ik A1

)
, SF(G2PI2) =(

Ik A2

)
, and (

Ik A2

)
= S

(
Ik A1

)(P1

P2

)
.

As in Babai’s algorithm for solving PCE, this yields

• S = P−1
1 ,

• P−1
1 A1P2 = A2.

This means that the knowledge of two matching information sets allows us to efficiently reduce PCE to GI,
just like in Babai’s PCE algorithm. Next, we turn our attention to the design of a method to find two
matching information sets I1 and I2. For this, we use properties of the Fq-colored bipartie graphs defined by
Ai where SF(GiPIi) =

(
Ik Ai

)
. Indeed, Babai’s strategy solves PCE when these graphs are isomorphic.

To decide if it is the case, we use the notion of canonical form of a graph for which Babai described a
quasipolynomial algorithm in [Bab19].

Definition 5.3 (Canonical form of a graph ([Bab19, Section 1])). Let C be a class of finite graphs. A
canonical form for the class C is a function F : C → C such that

(1) ∀X ∈ C, X ≃ F (X).
(2) ∀X,Y ∈ C, X ≃ Y ⇔ F (X) = F (Y ).

The main result of [Bab19] is that computing a canonical form of a graph is doable in quasipolynomial
time.

Theorem 5.4 ([Bab19, Corollary 2.3]). There is a canonical form of graphs that can be computed in
quasipolynomial time.

We can reduce the resolution of PCE to the Claw Finding Problem.

Definition 5.5 (Claw Finding Problem). Let A1, A2, B be finite sets and f1 : A1 → B, f2 : A2 → B be two
functions with the same range B. The claw finding problem consists of finding a pair (x, y) ∈ A1 ×A2 such
that f1(x) = f2(y) when it exists. Such a pair (x, y) is called a claw.

Given two input codes C1, C2 such that C2 = π(C1) and of generator matrices G1,G2, use the claw finding
problem framework by letting A1 be the set of all information sets of C1 and A2 be the set of all information
sets of C2. There is a quasipoly(n)-time computable canonical form for Fq-colored graphs (and in particular,
such bipartite graphs) by Theorem 5.4 and the reduction from GI on edge-colored graphs to non-edge-colored
graphs in [ZKT85]. Let F be such a canonical form.

In the following, we identify a graph and its adjacency matrix. We define the set B as

B := {F (A) | ∃ information set I, SF(G1PI) =
(
Ik A

)
},

where I is an information set of C1, and PI the permutation matrix of a permutation that maps I to [1, . . . , k].

Lemma 5.6. Let C1, C2 be two [n, k]q codes such that there exists π ∈ Sn with C2 = π(C1). Let G1,G2 be
generator matrices of C1, C2, respectively. We have

B := {F (A1) | ∃PI1 , SF(G1PI1) =
(
Ik A1

)
} = {F (A2) | ∃PI2 , SF(G1PI2) =

(
Ik A2

)
},

where Ij is an information set for Cj, and PIj denotes the matrix of a permutation that maps Ij to [1, . . . , k]
for j = 1, 2. Additionally, we have

|B| ≤ # {information sets of C1} = # {information sets of C2}
14



Proof. To show the first claim, notice that every information set I2 of C2 is of the form I2 = π(I1) for some
information set I1 of C1. Hence for any permutation matrices PI1 ,PI2 mapping I1 to [1, . . . , k] (resp. I2
to [1, . . . , k]), we must have F (A1) = F (A2) where SF(G1PI1) =

(
Ik A1

)
and SF(G2PI2) =

(
Ik A2

)
(because I1 and I2 are matching information sets). Hence, since all information sets of C1 can be matched
with one of C2 (and vice-versa), we must have

{F (A1) | ∃PI1 , SF(G1PI1) =
(
Ik A1

)
} = {F (A2) | ∃PI2 , SF(G1PI2) =

(
Ik A2

)
}.

Next, we need to argue that |B| is bounded by the number of information sets. Let j ∈ {1, 2}, let I be an
information set of Cj , let PI ,P

′
I be the permutation matrices of two permutations that map I to [1, . . . k] and

let A,A′ such that SF(GjPI) =
(
Ik A

)
and SF(GjP

′
I) =

(
Ik A′). We need to prove that F (A) = F (A′)

despite the fact that PI and P ′
I (and hence A and A′) may be different. Let S,S′ be invertible matrices

such that

SGjPI =
(
Ik A

)
S′GjP

′
I =

(
Ik A′) .

This means that we have the identity:

S−1
(
Ik A

)
P−1

I = S′ −1 (
Ik A′) P ′ −1

I .

It immediately follows that
(
Ik A′) = S′S−1

(
Ik A

)
P−1

I P ′
I . The matrix P−1

I P ′
I is the permutation

matrix of a permutation that maps [1, . . . , k] to itself. Hence, it must factor as

(
P1

P2

)
, where P1 is a

k × k permutation matrix and P2 is a (n− k)× (n− k) permutation matrix. In particular, this means that

S S′ −1
= P1 and A′ = P−1

1 AP2, i.e., F (A) = F (A′). □

Proposition 5.7 (Reduction of PCE to the claw finding problem). Let C1, C2 be two [n, k]q codes with
respective generator matrices G1,G2 such that C2 = π(C1) for π ∈ Sn. Let F be a canonical form for the
class of Fq-colored (k, n− k)-bipartite graphs. Let j ∈ {1, 2} and let Ij be the set of information sets for Cj,
and

B := {F (A1) | ∃PI1 , SF(G1PI1) =
(
Ik A1

)
} = {F (A2) | ∃PI2 , SF(G1PI2) =

(
Ik A2

)
},

where Ij is an information set for Cj, and PIj denotes the matrix of a permutation that maps Ij to [1, . . . , k]
for j = 1, 2. We define fj : Ij → B by the following procedure on input I ∈ Ij:

(1) Let I = {i1, . . . , ik} where i1 < i2 < . . . < ik.
(2) Let σ ∈ Sn = (1, i1)(2, i2) . . . (k, ik).
(3) Let PI be the permutation matrix corresponding to σ.
(4) fj(I) = F (A) where SF(GjPI) =

(
Ik A

)
Then solving PCE efficiently reduces to finding a claw between f1 and f2.

Proof. Assume (I1, I2) ∈ A1 ×A2 satisfies f1(I1) = f2(I2). First, compute:

SF(G1PI1) =
(
Ik A1

)
SF(G2PI2) =

(
Ik A2

)
.

Then, with Babai’s algorithm for the resolution of the graph isomorphism problem [Bab16], Compute per-
mutation matrices P1,P2 such that P1A1P2 = A2. There exist invertible matrices S1,S2 such that

S2G2PI2 =
(
Ik A2

)
=
(
Ik P1A1P2

)
= P1

(
Ik A1

)(P−1
1

P2

)
= P1S1G1PI1

(
P−1

1

P2

)
.

This means that G2 = S−1
2 P1S1G1P for

P = PI1

(
P−1

1

P2

)
P−1

I2
.

Since S := S−1
2 P1S1 is invertible, we have S,P such that G2 = SG1P , i.e., we solved PCE. □
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Following the meet-in-the-middle approach (in a similar way as Nowakowski’s work [Now25]), we solve
the claw finding problem for f1, f2 and hence solve PCE. We draw m information sets from C1 according to
a distribution D1 and store then in a list L, then we draw m information sets from C2 according to D2. For
each information set I2 of C2 we draw, we check if f2(I2) corresponds to f1(I1) for I1 ∈ L. We specify m
and DI in the following section. This procedure is formalized in Algorithm 4.

Require: Generator matrices G1,G2 of two equivalent [n, k, d]q codes C1, C2, m > 0, and distributions
D1,D2 on the information sets of C1 (resp. C2).

Ensure: A permutation matrix P satisfying SF(G2) = SF(G1P ).
1: for m iterations do
2: Sample an information set I1 of C1 from D1.
3: L← L ∪ (I1, f1(I1)).
4: end for
5: for m iterations do
6: Sample an information set I2 of C2 from D2.
7: if there is (I1, f1(I1)) ∈ L with f1(I1) = f2(I2) then
8: Compute SF(G1PI1) =

(
Ik A1

)
and SF(G2PI2) =

(
Ik A2

)
.

9: Compute permutation matrices P1,P2 such that P1A1P2 = A2 with Babai’s algorithm [Bab16].
10: break
11: end if
12: end for

13: return P = PI1

(
P−1

1

P2

)
P−1

I2

Algorithm 4: Meet-in-the-middle variant of Babai’s PCE algorithm.

5.2. Analysis of the runtime of Algorithm 4. The correctness of Algorithm 4 readily derives from
Proposition 5.7. To analyze its run time and its probability of success, we need to specify the distributions
D1,D2 andm. In a nutshell, we use the distribution output by Algorithm 5, which is very close to the uniform
distribution when T is large (in fact, it will suffice to take T = poly(n)). Then we show that m ∈ Θ(

√
N)

samples is enough to guarantee a failure probability upper bounded by a constant, where N ≤
(
n
k

)
is the

number of information sets of C1, C2.

Require: An information set I0 of G ∈ Fk×n
q and an integer T > 0.

Ensure: An information set of G.
1: for t = 1, 2, . . . , T do
2: Choose a uniformly random index i ∈ It−1.
3: Let It to be an information set chosen uniformly at random among those containing It−1 \ {i}.
4: end for
5: return IT .

Algorithm 5: Basis exchange algorithm.

The following theorem asserts that the natural “down-up random walk” sampling algorithm in Algorithm 5
converges to the uniform distribution very quickly. It is from relatively recent work of Anari, Liu, Oveis
Gharan, and Vinzant [ALOV19]; see also the lecture notes of Schramm [Sch22].

Theorem 5.8 ([ALOV19, Corollary 1.3]). Let ε > 0, N ≤
(
n
k

)
be the number of information sets, and

(pi)i≤N be the probability distribution of the output of Algorithm 5 (i.e., pi is the probability of outputting

the ith information set). Then for T ≥ k ln k
ε , we have∑
i≤N

∣∣∣∣ 1N − pi

∣∣∣∣ ≤ ε.
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For a relatively small number of steps T , the above algorithm produces an information set sampled from
a distribution close to the uniform distribution.

In the following, we show that ε < 1
N2 is sufficient to achieve the desired bound on the success probability

for some choice of m ∈ Θ(
√
N). Our success probability is lower bounded by the probability that lists

L1 of m information sets of C1 independently drawn according to D1 and L2 of m information sets of C2
independently drawn according to D2 contain (I1, π(I1)) ∈ L1 × L2. Let π be a permutation such that
C2 = π(C1). For i, j ≤ m, denote by:

Xi,j :=

{
1 if the ith element I1i of L1 and the jth element I2j of L2 satisfy I2j = π(I1i ),

0 otherwise.

The number of matching information sets is then lower bounded by X :=
∑

i,j Xi,j . The probability that

Xi,j = 1 is q :=
∑

i≤N p2i . Let εi := pi − 1
N . In particular, |εi| ≤ ε.

Lemma 5.9. Assuming ε < 1
N2 , we have q = 1

N + o
(

1
N

)
.

Proof. We have

q =
∑
i

p2i

=
∑
i

(
1

N
+ εi

)2

=
∑
i

1

N2
+
∑
i

(
2
εi
N

+ ε2i

)
=

1

N
+ o

(
1

N

)
.

□

The mean and variance of X satisfy:

E[X] = m2E[Xi,j ] = m2q,

Var[X] =
∑
i,j

Var[Xi,j ] +
∑

(i,j) ̸=(i′,j′)

Cov(Xi,j , Xi′,j′)

= m2q(1− q) +
∑

i,j,j′ ̸=j

2Cov(Xi,j , Xi,j′).

The reduction on the number of cross terms comes from the fact that if i, i′, j, j′ are all different, Xi,j and
Xi′,j′ are independent, and therefore Cov(Xi,j , Xi′,j′) = 0.

Lemma 5.10. We have the following inequality:

Pr(no pair of matching information sets is obtained) = Pr(X = 0) ≤ Var[X]

q2m4
.

Proof. Let µ = E[X], Chebyshev’s inequality tells us that for t > 0, we have

P (|X − µ| ≥ t) ≤ Var[X]

t2
.

The event {X = 0} is included in the event {|X−µ| ≥ t} for t = µ = qm2. In this case, Var[X]
t2 = Var[X]

q2m4 . □

Given the above lemma, we want to argue that Var[X] = O(m2q). To do so, we bound the term
2Cov(Xi,j , Xi,j′).

Lemma 5.11. Assume |εi| < 1
N2 for all i ≤ N , and m ≤ N . Then we have

Var[X] ≤ m2q + o(m2q).
17



Proof. First, notice that

Cov(Xi,j , Xi,j′) = E[Xi,jXi,j′ ]− E[Xi,j ]E[Xi,j′ ]

= Pr (xi = yj = yj′)− Pr(xi = yj)Pr(xi = yj′)

=
∑
i≤N

p3i − q2

Then: ∑
i≤N

p3i =
∑
i

[
1

N3
+ 3

εi
N2

+ 3
ε2i
N

+ ε3i

]
=

1

N2
+ 3

εi
N

+ 3ε2i +Nε3i

=
1

N2
+ o

(
1

N2

)
.

Additionally, since q = 1
N + o

(
1
N

)
, we have q2 = 1

N2 + o
(

1
N2

)
. Therefore, Cov(Xi,j , Xi,j′) = o

(
1

N2

)
and

Cov(Xi,j , Xi,j′) = o
(

q
N

)
. Moreover, we assumed that m ≤ N , and so this implies that Cov(Xi,j , Xi,j′) =

o
(

q
m

)
. This gives us

Var[X] = m2q(1− q) + 2
∑

i,j,j′ ̸=j

Cov(Xi,j , Xi,j′)

= m2q(1− q) + 2m2(m− 1)Cov(Xi,j , Xi,j′)

≤ m2q + 2m2(m− 1)Cov(Xi,j , Xi,j′)

= m2q + o(m2q) ,

where the last equality follows from the fact that Cov(Xi,j , Xi,j′) = o
(

q
m

)
. □

Theorem 5.12. There is m ∈ Θ(
√
N) such that if we sample m information sets in C1 and C2 using

Algorithm 5 with T > k log(kN2), we obtain a constant probability of success.

Proof. If we pick m ≈ 2
√
N , we have the probability of not drawing a collision being upper bounded by

Var[X]

qm4
≈ 2

qm2
≈ 1

2
.

□

Corollary 5.13. Assume we use the distribution D1,D2 given by Algorithm 5 on input codes C1, C2 with

parameter T =
⌈
k log(kN2)

⌉
, and the parameter m :=

⌈
2
√(

n
k

)⌉
≤ 2n/2+o(n) as inputs of Algorithm 4,

then the probability of solving PCE is bounded from below by a constant, and the running time is at most⌈
2
√(

n
k

)⌉
· quasipoly(n) · poly(log q) ≤ 2n/2+o(n+q).

5.3. Meet-in-the-middle approach to solve LCE. The above strategy readily extends to the resolution
of LCE. Lemma 5.1 can be adapted by replacing the permutation matrices P1,P2 by monomial matrices
Q1,Q2.

Lemma 5.14. Let G1 be a generator matrix for C1 and G2 be a generator matrix for C2 = τ(C1) for τ a
linear isometry defined by τ = (π,v) ∈ Sn ⋊ F∗n

q . For all information sets I1 of C1 and I2 := π(I1) of C2,
and for all permutations σ1 mapping I1 to [1, . . . , k] and σ2 mapping I2 to [1, . . . k], there exist monomial

matrices Q1 ∈ Fk×k
q ,Q2 ∈ F(n−k)×(n−k)

q , and an invertible matrix S such that

SF(G2PI2) = S SF(G1PI1)

(
Q1

Q2

)
,

where PI1 is the matrix of σ1 and PI2 is the matrix of σ2.
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Proof. Assume G2 = S0G1PD for some invertible matrix S0, permutation matrix P , and diagonal matrix
D. Let I1 be an information set for C1, and PI1 be the matrix of a permutation that maps I1 to [1, . . . , k].
Then, there is an invertible matrix S1 such that S1G1PI1 = SF(G1PI1). This means that

G2 = S0S
−1
1 (S1G1PI1)P

−1
I1

PD

= S0S
−1
1 SF(G1PI1)P

−1
I1

PD.

Note that the permutation matrix P−1
I1

P corresponds to the permutation that maps [1, . . . , k] to I1, and then
to π(I1) := I2 where τ = (π,v). Hence I2 is an information set of C2. Let PI2 be the matrix of a permutation
mapping I2 to [1, . . . , k]. In particular, the permutation corresponding to P−1

I1
PPI2 maps [1, . . . , k] to itself

and hence has the shape

P−1
I1

PPI2 =

(
P1

P2

)
.

By multiplying our previous identity by PI2 on both sides, we obtain

G2PI2 = S0S
−1
1 SF(G1PI1)P

−1
I1

PDPI2

= S0S
−1
1 SF(G1PI1)P

−1
I1

PPI2D
′

= S0S
−1
1 SF(G1PI1)

(
P1

P2

)
D′

= S0S
−1
1 SF(G1PI1)

(
Q1

Q2

)
,

where D′ is the diagonal matrix whose entries are the permutation of the entries of D by the permutation
represented by PI2 , and Q1,Q2 are the monomial matrices P1D1,P2D2 with D1 the diagonal matrix whose
entries are the first k entries of D′ and D2 is the diagonal matrix made of the last n− k entries of D′. Let
S2 be the invertible matrix such that S2G2PI2 = SF(G2PI2), and S := S2S0S

−1
1 . We have

S2G2PI2 = SF(G2PI2) = S SF(G1PI1)

(
Q1

Q2

)
.

□

We adapt Definition 5.2 to the case of matching sets for LCE:

Definition 5.15 (Monomially matching information sets). Let C1, C2 be two [n, k]q codes with generator
matrices G1,G2. We say that information sets I1, I2 for C1 (resp. C2) are monomially matching information
sets if there exists a linear isometry τ = (π,v) such that C2 = τ(C1) and I2 = π(I2).

When I1 and I2 are matching information sets, there are monomial matricesQ1 ∈ Fk×k
q ,Q2 ∈ F(n−k)×(n−k)

q ,
and an invertible matrix S such that

SF(G2PI2) = S SF(G1PI1)

(
Q1

Q2

)
,

Let A1,A2 such that SF(G1PI1) =
(
Ik A1

)
and SF(G2PI2) =

(
Ik A2

)
. We have the identity(

Ik A1

)
= S

(
Ik A2

)(Q1

Q2

)
,

and as in the original method from Babai to solve PCE, this yields

• S = Q−1
1 ,

• Q−1
1 A1Q2 = A2.

As in our variant of Babai’s algorithm (and as in the independent work [Now25]), once a collision is found,
we need to find monomial matrices Q1,Q2 such that A2 = Q1A1Q2. The main difference of our approach
with that of [Now25] is that we reduce this task to GI via matrix expansion. This procedure, summarized in

Algorithm 4, consists in finding permutation matrices P1,P2 such that Â1 = P1Â2P2 and then recovering
Q1,Q2 from P1,P2. Hence, we immediately have the following reduction of LCE to the resolution of the
claw finding problem.
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Proposition 5.16 (Reduction of LCE to the claw finding problem). Let C1, C2 be two (n, k) linear codes
over Fq with generator matrices G1,G2 such that C2 = τ(C1) for τ = (π,v) ∈ Sn ⋊ F∗n

q . Let F be an
assignment for the class of Fq-colored (qk, q(n− k))-bipartite graphs. Let j ∈ {1, 2} and let Aj be the set of
information sets for Cj, and

B := {F (Â1) | ∃PI1 , SF(G1PI1) =
(
Ik A1

)
} = {F (Â2) | ∃PI2 , SF(G1PI2) =

(
Ik A2

)
},

where Ij is an information set for Cj, and PIj denotes the matrix of a permutation that maps Ij to [1, . . . , k]
for j = 1, 2. We define gj : Aj → B by the following procedure on input I ∈ Aj:

(1) Let I = {i1, . . . , ik} where i1 < i2 < . . . < ik.
(2) Let σ ∈ Sn = (1, i1)(2, i2) . . . (k, ik).
(3) Let PI be the permutation matrix corresponding to σ.

(4) gj(I) = F (Â) where SF(GjPI) =
(
Ik A

)
Then solving LCE efficiently reduces to finding a claw between g1 and g2.

Require: Generator matrices G1,G2 of two linearly equivalent [n, k, d]q codes C1, C2, m > 0, and
distributions D1,D2 on the information sets of C1 (resp. C2).

Ensure: A monomial matrix Q satisfying SF(G2) = SF(G1Q).
1: for m iterations do
2: Sample an information set I1 of C1 from D1.
3: L← L ∪ (I1, g1(I1)).
4: end for
5: for m iterations do
6: Sample an information set I2 of C2 from D2.
7: if there is (I1, g1(I1) ∈ L with g1(I1) = g2(I2) then
8: Compute SF(G1PI1) =

(
Ik A1

)
and SF(G2PI2) =

(
Ik A2

)
.

9: Compute permutation matrices P1,P2 such that P1Â1P2 = Â2 using Babai’s algorithm [Bab16].
10: Deduce monomial matrices Q1,Q2 such that A2 = Q1A1Q1 using Algorithm 2.
11: break
12: end if
13: end for

14: return Q = PI1

(
Q−1

1

Q2

)
P−1

I2

Algorithm 6: Meet-in-the-middle variant of Babai’s LCE algorithm

Theorem 5.17. Assume we use the distribution on information sets given by Algorithm 5 with parameter

T =
⌈
k log(kN2)

⌉
, and the parameter m :=

⌈
2
√(

n
k

)⌉
≤ 2n/2+o(n) as inputs of Algorithm 6, then the

probability of solving LCE is bounded from below by a constant, and the run time is bounded by
⌈
2
√(

n
k

)⌉
·

quasipoly(n+ q) ≤ 2n/2+o(n+q).

6. A quantum variant of the meet in the middle approach

In this section, we present a quantum variant of our meet-in-the-middle strategy to solve PCE and
LCE. We adapt the quantum collision-finding algorithm of Brassard, Høyer and Tapp [BHT97] (the BHT
algorithm) to the claw-finding problem in the setting where there are many claws (as in Section 5, a claw
corresponds to a pair of matching information sets). Specifically, if two [n, k]q codes are permutationally or

linearly equivalent then there are at least N pairs of matching information sets out of N2 ≤
(
n
k

)2
pairs total.

We note that the BHT algorithm is based on the Grover search algorithm [Gro96].
We now assume that we are given two [n, k]q codes C1, C2 such that there is a linear isometry τ satisfying

C2 = τ(C1). Let G1,G2 be generator matrices of C1, C2, and g1, g2 be functions defined as in Proposition 5.16.
From a high level standpoint, we proceed as follows:
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(1) Draw a list L of
(
n
k

)1/3
distincts information sets I1 of C1.

(2) Search for an information set I2 of C2 such that there is I1 ∈ L with g2(I2) = g1(I1).
(3) Deduce a monomial matrix Q with SF(G1Q) = SF(G2) similarly to Steps 8-10 of Algorithm 6.

The main technical difficulty with this approach is that we do not know the number N of distinct information

sets of C1 (and C2). If there are more than
(
n
k

)1/3
distinct information sets, then the above method works in

quantum time bounded by
(
n
k

)1/3 · quasipoly(n+ q). If there are fewer information sets (N ≤
(
n
k

)3
of them),

we solve PCE or LCE classically in O(N) time. To do this, we construct a list L of all N pairs (I1, g1(I1))
where I1 is an information set of C1, and then for an arbitrary information set I2 of C2, classically search for
(I1, g1(I1)) ∈ L such that g1(I1) = g2(I2).

We also need a way to estimate the number of distinct information sets N in the codes. To decide whether

the quantum search or the classical enumeration method should be performed, we draw
(
n
k

)1/3
log
((

n
k

))
information sets through Algorithm 5. From the analysis of the coupon collector problem, we know that if

there are N <
(
n
k

)1/3
distinct information sets, then the list contains them all with high probability. On

the other hand, if there are N ≥
(
n
k

)1/3
distinct information sets, then the list contains at least

(
n
k

)1/3
distinct information sets with high probability. Hence, we decide whether to opt for the classical method

of the quantum search based on whether we obtain at least
(
n
k

)1/3
distinct information sets after drawing(

n
k

)1/3
log
((

n
k

))
information sets from Algorithm 5. We describe our PCE procedure in Algorithm 7 and the

LCE variant in Algorithm 8.

Require: Generator matrices G1,G2 of two permutationally equivalent [n, k, d]q codes C1, C2.
Ensure: A permutation matrix P satisfying SF(G2) = SF(G1P ).

1: for
(
n
k

)1/3
log
((

n
k

))
iterations do

2: Sample an information set I1 of C1 with Algorithm 5.
3: If (I1, f1(I1)) /∈ L; The if statement is unnecessary. L← L ∪ (I1, f1(I1)).
4: end for
5: if |L| <

(
n
k

)1/3
then

6: Choose any information set I2 of C2, and find (I1, f1(I1)) ∈ L such that f2(I2) = f1(I1).
7: If no such information set exists, return ⊥.
8: else
9: Keep exactly

(
n
k

)1/3
elements in L.

10: let f : {k − tuples of indices of columns of G2} → {0, 1} such that f(I) = 1 if I is an information
set of C2 and ∃(I1, f1(I1)) ∈ L with f2(I2) = f1(I1).

11: Using Grover’s algorithm [Gro96], find I2 such that f(I2) = 1.
12: Find (I1, f1(I1)) ∈ L such that f2(I2) = f1(I1).
13: If no I2 was found, return ⊥.
14: end if
15: Compute SF(G1PI1) =

(
Ik A1

)
and SF(G2PI2) =

(
Ik A2

)
.

16: Compute permutation matrices P1,P2 such that P1A1P2 = A2 using Babai’s algorithm [Bab16].

17: return P = PI1

(
P−1

1

P2

)
P−1

I2

Algorithm 7: Quantum Meet-in-the-middle variant of Babai’s PCE algorithm

Note that Algorithm 7 and Algorithm 8 require that the list L be stored in quantumly addressable classical
memory (QRACM). To analyze their time and memory costs, we rely on the following lemma.

Lemma 6.1. Let C be a [n, k]q code. Let N be the number of information sets of C1. We draw m :=(
n
k

)1/3
log
((

n
k

))
information sets with Algorithm 5 on input C, ε = 1

(nk)
.

(1) If N <
(
n
k

)1/3
, then P(we draw all information sets of C) = 1− o(1).

(2) If N ≥
(
n
k

)1/3
, then P

(
we draw

(
n
k

)1/3
distinct information sets of C

)
= 1− o(1).
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Require: Generator matrices G1,G2 of two linearly equivalent [n, k, d]q codes C1, C2.
Ensure: A monomial matrix Q satisfying SF(G2) = SF(G1Q).

1: for
(
n
k

)1/3
log
((

n
k

))
iterations do

2: Sample an information set I1 of C1 with Algorithm 5.
3: If (I1, g1(I1)) /∈ L; The if statement is unnecessary. L← L ∪ (I1, g1(I1)).
4: end for
5: if |L| <

(
n
k

)1/3
then

6: Choose any information set I2 of C2, and find (I1, g1(I1)) ∈ L such that g2(I2) = g1(I1).
7: If no such information set exists, return ⊥.
8: else
9: Keep exactly

(
n
k

)1/3
elements in L.

10: let f : {k − tuples of indices of columns of G2} → {0, 1} such that f(I) = 1 if I is an information
set of C2 and ∃(I1, g1(I1)) ∈ L with g2(I2) = g1(I1).

11: Using Grover’s algorithm [Gro96], find I2 such that f(I2) = 1.
12: Find (I1, g1(I1)) ∈ L such that g2(I2) = g1(I1).
13: If no I2 was found, return ⊥.
14: end if
15: Compute SF(G1PI1) =

(
Ik A1

)
and SF(G2PI2) =

(
Ik A2

)
.

16: Compute permutation matrices P1,P2 such that P1Â1P2 = Â2 using Babai’s algorithm [Bab16].
17: Deduce monomial matrices Q1,Q2 such that A2 = Q1A1Q1 using Algorithm 2.

18: return Q = PI1

(
Q−1

1

Q2

)
P−1

I2

Algorithm 8: Quantum Meet-in-the-middle variant of Babai’s LCE algorithm

Proof. Let p be the probability of drawing a particular information set I. The probability of not drawing I
after drawing m information sets is upper bounded by (1− p)m ≤ e−mp.

Case (1): Given the analysis of Algorithm 5, the probability p of drawing a given information set satisfies

p ≥ 1

N
− ε ≥ 1(

n
k

)1/3 − 1(
n
k

) := p0.

By the union bound on the probability of not obtaining a given I, the probability of obtaining all N

information sets is at least 1−Ne−p0m ≥ 1−
(
n
k

)1/3
e−mp0 . Now, given that m =

(
n
k

)1/3
log
((

n
k

))
, we get

(
n

k

)1/3

e−mp0 =

(
n

k

)1/3

e
−(nk)

1/3
log((nk))

 1

(nk)
1/3

− 1

(nk)



=

(
n

k

)1/3

e− log((nk))(1+o(1))

=

(
n

k

)−2/3+o(1)

−−−−→
n→∞

0.

Case (2): Let N be the number of information sets of C. We assume that N ≥ N ′ :=
(
n
k

)1/3
. Assume that

we draw m information sets from a distribution where the probability of drawing any individual element is
at least p > 0. To estimate the probability of drawing N ′ distinct information sets, we consider the more
restricted case of drawing at least an element within each of the N ′ sets of size at least

⌊
N
N ′

⌋
of a partition

of the N information sets. The probability of drawing an information set within any set of the partition
is at least p′ := p

⌊
N
N ′

⌋
. After drawing m information sets, the probability of not having an element of a

given element of the partition is upper bounded by e−mp′
. By the union bound, the probability of missing

of not drawing an information set from each set of the partition is less than N ′e−mp′
. Now, we assume that

m =
(
n
k

)1/3
log
((

n
k

))
= N ′ log(N ′3), and that ε = 1

(nk)
= 1

N ′3 . This means that the probability of not drawing
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at least an element in each set of the partition is less than

N ′e−mp′
= N ′e−N ′ log(N ′3)( 1

N − 1
N′3 )⌊ N

N′ ⌋

= N ′e
− log(N ′3)

(
N′
N ⌊ N

N′ ⌋+o(1)
)

≤ N ′

N ′3( 1
2+o(1))

−−−−→
n→∞

0.

Since we are less likely of not obtaining N ′ distinct information sets than to not obtain one element in each
set of the partition, our claim follows. □

Theorem 6.2. Algorithm 7 runs in classical and quantum time bounded by
(
n
k

)1/3·quasipoly(n)·poly(log q) ≤
2n/3+o(n+q) and

(
n
k

)1/3 · poly(n) ≤ 2n/3+o(n) quantumly addressable classical memory. Algorithm 8 runs in

classical and quantum time bounded by
(
n
k

)1/3 · quasipoly(n + q) ≤ 2n/3+o(n+q) and
(
n
k

)1/3 · poly(n + q) ≤
2n/3+o(n+q) quantumly addressable classical memory. Both algorithms return the correct answer with a
probability lower bounded by a constant.

Proof. The creation of L requires at most O
(
log
((

n
k

)) (
n
k

)1/3)
calls to f1, f2, g1, g2. Each call to f1, f2 costs

quasipoly(n) ·poly(log q), while a call to g1, g2 costs quasipoly(n+ q). Hence, in Algorithm 7, the creation of

L costs
(
n
k

)1/3 · quasipoly(n) · poly(log q) time, while in Algorithm 8, it costs
(
n
k

)1/3 · quasipoly(n+ q) time.
In Algorithm 7, each element of L has size poly(n) while in Algorithm 8, elements of L have size poly(n+ q).

If |L| <
(
n
k

)1/3
, the remaining classical steps are performed in Õ(|L|). If |L| ≥

(
n
k

)1/3
, the number of calls

to an oracle evaluating f (respectively g) through Grover’s search algorithm is in

O

(√
|{k − tuples of indices of columns of G2}|

|f−1(1)|

)
≤ O

√√√√ (
n
k

)(
n
k

)1/3
 = O

((
n

k

)1/3
)
.

Since the bottleneck of a call to f is the cost of f2, while the cost of g is given by that of g2, the claim on
the quantum time of Algorithm 7 and Algorithm 8 follows. □
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[BCGQ11] László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao. Code equivalence and group isomorphism.

In Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 1395–1408. SIAM, 2011. 1, 2,
3, 4, 7

[Beu20] Ward Beullens. Not enough LESS: an improved algorithm for solving code equivalence problems over Fq . In Orr
Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, Selected Areas in Cryptography - SAC 2020
- 27th International Conference, Halifax, NS, Canada (Virtual Event), October 21-23, 2020, Revised Selected

Papers, volume 12804 of Lecture Notes in Computer Science, pages 387–403. Springer, 2020. 2
[BGPS23] Huck Bennett, Atul Ganju, Pura Peetathawatchai, and Noah Stephens-Davidowitz. Just how hard are rotations

of Zn? algorithms and cryptography with the simplest lattice. In EUROCRYPT, 2023. 3

23



[BHT97] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash and claw-free functions. SIGACT
News, 28(2):14–19, 1997. 2, 5, 20

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary linear codes in 2 n/20:

How 1 + 1 = 0 improves information set decoding. In David Pointcheval and Thomas Johansson, editors, Advances
in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of

Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in

Computer Science, pages 520–536. Springer, 2012. 2
[BM18] Leif Both and Alexander May. Decoding linear codes with high error rate and its impact for LPN security. In Tanja

Lange and Rainer Steinwandt, editors, Post-Quantum Cryptography - 9th International Conference, PQCrypto
2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings, volume 10786 of Lecture Notes in Computer

Science, pages 25–46. Springer, 2018. 2

[BM23] Jean-François Biasse and Giacomo Micheli. A search-to-decision reduction for the permutation code equivalence
problem. In IEEE International Symposium on Information Theory, ISIT 2023, Taipei, Taiwan, June 25-30,

2023, pages 602–607. IEEE, 2023. 6

[BMPS20] Jean-François Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo Santini. LESS is more: Code-based
signatures without syndromes. In Abderrahmane Nitaj and Amr M. Youssef, editors, Progress in Cryptology -

AFRICACRYPT 2020 - 12th International Conference on Cryptology in Africa, Cairo, Egypt, July 20-22, 2020,

Proceedings, volume 12174 of Lecture Notes in Computer Science, pages 45–65. Springer, 2020. 2
[BOS19] Magali Bardet, Ayoub Otmani, and Mohamed Saeed-Taha. Permutation code equivalence is not harder than graph

isomorphism when hulls are trivial. In IEEE International Symposium on Information Theory, ISIT 2019, Paris,

France, July 7-12, 2019, pages 2464–2468. IEEE, 2019. 2
[BW24] Huck Bennett and Kaung Myat Htay Win. Relating code equivalence to other isomorphism problems. Cryptology

ePrint Archive, 2024. To appear in Designs, Codes, and Cryptography. 6, 9
[CNP+23a] Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Lars Ran, Tovohery Hajatiana Randrianarisoa, Krijn Rei-

jnders, Simona Samardjiska, and Monika Trimoska. Meds, 2023. Additional Digital Signature Schemes - Round 1

Submissions. 3
[CNP+23b] Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Hajatiana Randrianarisoa, Krijn Reijnders, Si-

mona Samardjiska, and Monika Trimoska. Take your MEDS: digital signatures from matrix code equivalence. In

Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne, editors, Progress in Cryptology - AFRICACRYPT 2023 -
14th International Conference on Cryptology in Africa, Sousse, Tunisia, July 19-21, 2023, Proceedings, volume

14064 of Lecture Notes in Computer Science, pages 28–52. Springer, 2023. 3

[CPS23] Tung Chou, Edoardo Persichetti, and Paolo Santini. On linear equivalence, canonical forms, and digital signatures.
IACR Cryptol. ePrint Arch., page 1533, 2023. 1, 4, 8
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