
AUCIL: An Inclusion List Design for Rational Parties

Sarisht Wadhwa∗§, Julian Ma†, Thomas Thiery†, Barnabe Monnot†, Luca Zanolini†, Fan Zhang‡ and Kartik Nayak∗
∗Duke University

†Ethereum Research
‡Yale University

§Email ID: sarisht.wadhwa@duke.edu

Abstract—The decentralized nature of blockchains is touted to
provide censorship resistance. However, in reality, the ability
of proposers to completely control the contents of a block
makes censorship relatively fragile. To combat this, a notion of
inclusion lists has been proposed in the blockchain community.
This paper presents the first formal study of inclusion lists. Our
inclusion list design leverages multiple proposers to propose
transactions and improve censorship resistance. The design
has two key components. The first component is a utility-
maximizing input list creation mechanism that allows rational
proposers to achieve a correlated equilibrium while prioritiz-
ing high-value transactions. The second component, AUCIL
(auction-based inclusion list), is a mechanism for aggregating
the input lists from the proposers to output an inclusion list.

1. Introduction

Transaction censorship refers to refusing to process valid
transactions for an extended period. Centralized finance
services are prone to censorship because important interme-
diaries, such as banks and exchanges, can heavily influence
what transactions are allowed. This power can, and has
been, abused to suppress dissent, curb protests, and even
harm freedom of speech. For instance, In 2010, the whistle-
blower website WikiLeaks suffered an extra-legal financial
blockade [1]. In 2022, the Canadian government froze the
bank accounts of Canadian truck protestors [2]. During
the GameStop short squeeze, stock trading app Robinhood
barred traders from buying or selling shares [3], allegedly
causing millions of dollars in loss [4].

Blockchains such as Ethereum are touted as resilient to
censorship, but in reality, the resistance is rather fragile
because the creator of a block completely dictates what
transactions are allowed in that block. Censorship can be
motivated primarily by two reasons. The first reason is
regulation. Transaction censorship skyrocketed in 2022 due
to an OFAC sanction [5] and affected all users regard-
less of whether they are subject to US regulations or not.
The second reason is financial gains. Suppose T is a user
transaction that an adversary wants to censor, and T pays
a transaction fee fT ; the adversary just needs to pay the
proposer slightly more than fT to incentivize her to leave

T out of their blocks. The rise of Decentralized Finance
(DeFi) has created various avenues through which bribed
censorship can profit [6], [7], [8].

To tackle this problem, the idea of Inclusion Lists (ILs)
is proposed [9], [10], [11]. The high-level idea is to add
a new protocol (IL) and modify the blockchain protocol
so that a block creator must include transactions output by
IL, or the block is considered invalid. The key challenge,
of course, is to ensure that transactions sent to IL enjoy
stronger censorship resistance than the blockchain itself.
A promising technique, e.g., employed by COMIS [12]
and FOCIL [13], [14], is to distribute the creation of IL
outputs to a set of parties, and the final IL output is a union
of each party’s output. When properly designed, this can
significantly increase the bribery cost because the adversary
must now bribe multiple parties simultaneously.

However, we observe that these designs can be problem-
atic when composed with other validity rules of a blockchain
protocol, in particular, the block size limit. Most blockchains
enforce a block size limit so that blocks can be efficiently
processed by the network. These designs, therefore, excuse a
block creator from including anything in IL if it creates a full
block. While full blocks are not common in Ethereum (since
its transaction fee mechanism targets half-empty blocks in
expectation [15]), other blockchains still suffer from such a
scenario being common instead.

In this paper, we propose an IL design that can withstand
such adversarial conditions by requiring block creators to
add transactions in IL, similar to an unconditional inclusion
list [16]. Our design has two key components: an input
list construction phase, where parties compute what inputs
yield the highest utility, and an aggregation phase, which
combines all input lists into an inclusion list. In the first
phase of our design, multiple parties called IL proposers
independently create an input list from the mempool. This
selection is governed by a utility-maximizing algorithm to
achieve a correlated equilibrium, ensuring that IL proposers
prioritize high-value transactions without strategic deviation
or last-minute changes that could undermine the model’s
censorship-resistant properties. By coordinating input lists
based on a correlated equilibrium, our approach effectively
reduces the likelihood of timing games, where proposers
might otherwise wait for others’ input lists to maximize

1

their own utility. The correlated equilibrium approach directs
each proposer’s choices toward an optimal outcome for
censorship resistance and transaction inclusion fairness.

Following the construction of individual input lists, an
“aggregator” aggregates these lists, combining the IL pro-
posers’ submissions into a comprehensive inclusion list.
The aggregation process is reinforced by a mechanism we
call AUCIL (Auction-based Inclusion List), in which IL
proposers compete to construct the largest inclusion list
possible. This bidding process ensures that proposers are
incentivized to aggregate inclusion lists, ensuring that high-
priority transactions appear in the final block.

In summary, this paper:
1) proposes a new definition of censorship resistance for

inclusion lists (IL) schemes based on the amount of bribe
required to censor each IL output.

2) provides the first formal definition for inclusion lists
(ILs), laying the foundation for rigorous treatment of IL
proposals;

3) proposes a novel IL protocol combining correlated equi-
librium and auction-based inclusion lists (AUCIL);

4) presents a rigorous analysis and shows significant im-
provement over the state-of-the-art (e.g., FOCIL [13]).

1.1. Design Overview

AUCIL uses a two-phase inclusion list design that max-
imizes the utility for IL proposers while still guarantee-
ing strong censorship resistance. The first phase, input list
construction, ensures that each IL proposer selects trans-
actions optimally while preventing strategic manipulation.
The transaction selection process is governed by a correlated
equilibrium strategy, which ensures that the expected utility
for each IL proposer is maximized while maintaining cen-
sorship resistance. If no predefined strategy were provided,
the default behavior of rational IL proposers would be
to follow a mixed Nash equilibrium, which theoretically
increases censorship resistance but results in lower utility for
each proposer in expectation. The correlated equilibrium ap-
proach, in contrast, allows proposers to achieve a predictable
and utility-maximizing selection, ensuring that their choices
do not lead to unnecessary strategic waiting or last-minute
adjustments. Among all possible correlated equilibria, the
one employed in AUCIL is specifically designed to obtain
high censorship resistance while maintaining high proposer
utility. In theory, a better design for censorship resistance
could be achieved by making the IL Proposer ordering
private, which is discussed in Section 7.

The second phase, aggregation, introduces a competitive
bidding mechanism to determine the final inclusion list.
IL proposers submit their constructed input lists, and all
participants can aggregate these lists to form a more com-
prehensive inclusion list. The auction-based aggregation pro-
tocol ensures that the proposer submitting the largest valid
inclusion list is rewarded, directly incentivizing proposers
to maximize transaction inclusion. To prevent collusion and
discourage IL proposers from strategically withholding their
input lists, the bidding process incorporates a randomized

bias factor generated using Verifiable Random Functions
(VRFs). This ensures unpredictability in the auction out-
come, making it difficult for the proposers to determine
whether to share their input lists.

The design achieves several key properties that enhance
censorship resistance and incentive alignment - (1) Censor-
ship Resistance: If a transaction is included in the winning
inclusion list, the block proposer is required to include
it in the block, making transaction exclusion by filling
block space infeasible. (2) Bribery deterrence: Instead of
centrally controlling transaction inclusion, decision-making
is distributed across multiple rational IL proposers, forcing
an adversary to bribe multiple parties rather than a single
entity. The adversary must outbid rational participants with
incentives to maximize their rewards. (3) Verification and
enforcement: To prevent proposer manipulation, verifica-
tion mechanisms like on-chain validation ensure that the
selected inclusion list genuinely reflects (one of) the highest
bid. (4) Crash Fault Tolerance: The design tolerates crash
faults where some parties are unable to participate. (5)
Increased cost of fake crashes: The block proposer can
drop certain bids which would be indistinguishable from
the parties never submitting the bids (i.e., crashed). This
could lead to an adversary threatening to suppress a non-
compliant bid. However, the reward distribution is delayed
across multiple rounds, disrupting what could have been an
equilibrium of accepting very cheap bribes under threat of
suppression.

Combining correlated equilibrium-based selection with
auction-driven aggregation, AUCIL ensures that proposers
are incentivized to include high-value transactions while
maintaining strong censorship resistance. This synergistic
mechanism results in an inclusion list protocol that is both
rationally optimal for participants and robust against adver-
sarial censorship strategies.

1.2. Paper Outline

Section 2 formalizes censorship resistance and outlines
the motivation for using an inclusion list to improve cen-
sorship resistance for blockchain protocols. In Section 3,
we outline the two-phase protocol that would be followed
by AUCIL. In Section 4, we present the first phase of the
design, where we propose a greedy allocation of transactions
to IL proposers to achieve input lists that follow a correlated
equilibrium. The second phase is shown in Section 5, where
we use auctions to ensure that maximum input lists get used
while aggregating input lists into inclusion lists. Analysis
of adversarial censorship attack is shown in Section 6.
Section 7 discusses various open problems with the solu-
tion, and Section 8 discusses the previous related work on
censorship resistance.

2. Problem Statement

The proposed setting consists of two protocols. The first
protocol is a blockchain protocol, which realizes the ab-
straction of a state machine replication system. The central

2

…

Blockchain
protocol

Block
proposers

Inclusion
List

Protocol

Candidate
inclusion lists

Inclusion
list

Regular
transactions

Blockchain

Figure 1: The setting of an inclusion list with a blockchain
protocol. The inclusion list protocol outputs a set of inclu-
sion lists for each log position, and a block proposed in the
blockchain protocol must include one of these lists.

building block of state machine replication is multi-shot
consensus, where a set of parties (a subset of which may
be faulty) agree on a dynamically growing sequence of
log. Such a protocol provides: (i) safety: non-faulty parties
agree on each log position, and (ii) liveness: every input
that arrives at all parties is eventually recorded in the log.
Typically, the log is referred to as a blockchain, and a log
entry is referred to as a block. Each block contains a set
of transactions that external clients submit to the parties.
We refer to the transactions that are not included in the log
yet but received by the parties as their mempool. In this
paper, we assume a class of blockchain protocols where
there is a designated party that is responsible for producing
the block at a given position in the log; we refer to these
parties as proposers (or leaders).1 The second protocol is an
inclusion list protocol, which operates simultaneously with
the blockchain protocol. This protocol is run among a set
of parties (that may or may not be the same as the ones
running the blockchain protocol) that receive transactions
in their mempool, and the protocol outputs a set of lists (of
transactions). An inclusion list protocol instance is synchro-
nized with the blockchain protocol execution (e.g., running
the protocol instance for each position of the log). The key
requirement enforced on a blockchain protocol augmented
with an inclusion list is that, if an instance for a position j
outputs a set S of lists, then the proposer of position j must
include some s ∈ S.

Motivation for using an inclusion list. The key motivation
for maintaining an inclusion list is censorship resistance.
Observe that if all of the parties in the blockchain are honest,
then the mempool effectively is an inclusion list. This is
because the next proposer will include the set of pending
transactions (modulo block size constraints). However, if
the proposers are Byzantine or rational, they may not be
incentivized to include all of the pending transactions.

The inclusion list is thus used as an enforcement mech-
anism to ensure that proposers include a specific set of
transactions; looking ahead, the goal would be ensure that
the inclusion list protocol provides the desired censorship
resistance property.

1. We make this assumption for concreteness. At a high level, our result
is more generally applicable.

Definition 1 (Inclusion List). An inclusion list, denoted as
IncL, for a log position j is a set of lists of transaction
identifiers such that a proposer of log position j must
prioritize including transactions of one of the lists in a block
within the blockchain protocol.

In practice, the transaction identifiers could be the trans-
action hash or a header containing some data that identifies
the transaction, like transaction nonce and a sender’s ad-
dress. To simplify, we will assume that the output would
contain the entire transaction. We state that transactions in
one of the lists is prioritized since the list can be longer than
the block size. A related definition is that of an unconditional
inclusion list, which requires the list to be smaller than the
block size.

Definition 2 (Unconditional Inclusion List). An uncondi-
tional inclusion list for a log position j is a set of lists of
transaction identifiers such that a proposer of log position
j must include the entirety of one of the lists in the block.

This paper mainly deals with creating an unconditional
inclusion list, and any references to the inclusion list would
imply an unconditional inclusion list.

Model. All parties in the paper are assumed to be rational,
i.e., they try to maximize their utility. The parties’ utility is
defined as the amount of stake they earn via protocol rewards
and external bribes, subtracting protocol-level penalties like
slashing. To account for external bribes, we consider an
external adversary as a non-participating protocol member
with undefined utility from censoring a transaction in the
system. The adversary aims to censor a particular transac-
tion (which we will refer to as a target transaction) while
minimizing the cost incurred. This cost is incurred when the
adversary bribes a rational party into an action that otherwise
reduces the said party’s utility. In practice, the adversary
may control some consensus parties, but to simplify the
context, we can assume the controlled nodes to be rational
and bribed. Throughout the paper, we assume that all parties
are in sync, i.e., all parties have the same mempool, and the
network is also synchronous.

Censorship resistance. As described earlier, the key reason
for introducing an inclusion list in a blockchain is censorship
resistance.

Definition 3 ((B, θ, T)-Censorship Resistance). Given an
adversary with an arbitrary bribing budget b, a proto-
col running with a mempool M is said to be (B, θ, T)-
censorship resistant for a set of target transactions T (M)
if there exists a set of at least θ parties such that for all
i : ti ∈ T (M), bi ∈ B if b < bi all parties in this set
include the transaction ti in their output.

In other words, for any transaction ti ∈ T (M), the same
set of at least θ parties must include each transaction ti
in their respective outputs unless the bribe budget exceeds
the tolerated bribe limit bi. In the definition, we have three
parameters: the tolerated bribe limit array B, the number of
parties θ, and a function T of mempool for transactions. The

3

tolerated bribery budget bi ∈ B represents the maximum
amount of bribe an adversary can spend to exclude some
target transaction ti ∈ T (M). This includes the cost of brib-
ing the rational parties and alternative ways, like introducing
additional transactions to modify the mempool. θ represents
the minimum number of parties that output the same set
of transactions. This parameter is required to tolerate θ− 1
crash faults that occur among the parties in the protocol.

Example 1 (Censorship resistance on an input). Consider
the following example. There exist six transactions M =
{m1,m2,m3,m4,m5,m6} paying a fee of {10, 9, 8, 3, 2, 1}
respectively. Consider a protocol with no crash faults (θ =
1) that can output a set of at most 4 transactions. Then
a meaningful T (M) could be {m1,m2,m3,m4} which
tolerates a bribery budget of B = {10, 9, 8, 3} respectively.
An alternate T (M) could be {m1,m2,m3}, which provides
a different tolerance of bribery as B = {20, 9, 8}. Both such
designs would follow their respective definition of (B, θ, T)-
Censorship Resistance.

This paper presents a protocol design in which at least
θ different parties generate an inclusion list T (M) while
tolerating a bribery limit of B, thus providing (B, θ, T)-
censorship resistance. The aim is two-fold: to find T (M)
such that high fee-paying transactions are preferred while
maintaining high throughput and the tolerated bribe for each
of these transactions is proportional to n and fi, where fi
represents the fee paid by each transaction txi and n is the
total number of parties in the system.

Before discussing the protocol in detail, we introduce
some recurring terms in the paper. Each party chosen to add
transactions to a candidate inclusion list (in the set of output
lists) is referred to as an IL Proposer. We refer to the input
of each IL Proposer as an input list. Looking ahead, these
lists will be aggregated with other input lists from other
IL proposers to create a candidate inclusion list. Previous
research [12], [13], the term Local Inclusion List was used
to refer to the inputs of IL proposers. We deviate from
this terminology since input lists for our protocol do not
resemble the output inclusion lists in many cases. Contrary
to previous work, since this paper deals with unconditional
inclusion lists, we restrict the size of each input list as k,
such that n · k ≤ block size.

3. Protocol Outline

Consider a set of m transactions, M = {m1, . . . ,mm},
and n IL proposers, N = {P1, . . . , Pn}. The IL Proposers
are chosen through some randomized committee selection
amongst a set of staked validators. Each IL proposer Pi

proposes an input list InpLi = {mi
1, . . . ,m

i
k}, where each

mi
j ∈M . The inclusion list would be computed as a subset

of the union of all input lists. This role of computing a union
would be assigned to a set of aggregators. An aggregator
could be a single chosen party, a set of parties, or all parties.
This paper will present a design where all parties behave as
aggregators, out of which the blockchain proposer chooses

one. Thus, the design in the paper will follow the following
outline:

• All IL proposers create an input list, InpL, each from a
set of transactions in their mempool (Section 4).

• IL proposers send their InpL to the aggregators. Each
aggregator collects all the InpLs and computes a union
to create an inclusion list, IncL (Section 5).

• The block proposer of the next block in the blockchain
protocol must ensure the inclusion of all transactions in
one of the inclusion lists.

Under a rational threat model, it is important to have a robust
incentive scheme. Each transaction txi has a censorship-
resistance fee fi. We define a contribution score CSj

i for
each transaction txi and IL proposer Pj representing how
much the IL proposer contributed towards the addition of
transaction in the inclusion list created. Thus, each IL pro-
poser Pj would receive a share CSj

i ·fi for each transaction
txi included in the inclusion list. Some required properties
from contribution score allocations would be:

- No contribution score can be negative, i.e., CSj
i ≥ 0 ∀i, j.

- The sum of the contribution score for each transaction
should be 1, i.e.,

∑
j, Pj∈N CSj

i = 1
- Given two IL proposers taking the same action and con-

tributing equally (on-chain) to the inclusion of a transac-
tion, then their contribution score would be the same.

Based on this protocol outline, we present our solution
in two phases - the input deciding phase (Section 4) and
then the aggregation phase (Section 5).

4. Input List Building Protocol

This section presents a protocol for how an IL proposer
should build an input list.

4.1. A Naı̈ve Approach

Consider that the only action an IL proposer can take to
increase its contribution score for a transaction is to include
it in the input list. Thus, given the required properties of
the contribution score, the only satisfying contribution score
mechanism would be if the fee is divided equally amongst
all parties that include the transaction in their input list, and
the input list is included in the set of final inclusion lists. Let
us consider IL proposers naı̈vely choosing the transactions
that pay the highest fee independent of what other IL pro-
posers might choose. This naı̈ve scheme of greedily picking
transactions without considering other parties’ actions is not
a Nash equilibrium. Given all other IL proposers’ input lists
that consist of greedily selected transactions, the rational
choice for an IL proposer may not be to construct its
own input greedily. The example in Table 1 confirms the
stipulation.

4

Mempool Input List Building
(Section 4)

Aggregate input lists
(Section 5)

An inclusion list which
block proposer includes

Strategy Objects Picked Utility

Pick Top Paying m1,m2 7
Alternate m3,m4 15

TABLE 1: Picking top-paying objects is not a Nash equi-
librium. Consider three parties (n = 3), selecting two
transactions (k = 2) each from {m1,m2,m3,m4,m5,m6}
with utilities {11, 10, 9, 6, 4, 3} respectively. Other parties
are assumed to follow the strategy of picking the top-paying
transaction.

A natural equilibrium would be to consider mixed strate-
gies. In this, each party would choose a transaction with
some pre-defined probability. In this case, it would be
fi/
∑

(fi) for a transaction txi paying a fee fi (More
details in Appendix A) such that selecting transactions from
outside the probability distribution would result in lower
expected revenue. However, we cannot rely on a mixed Nash
equilibrium as is (without the use of commit and reveal
primitives). This is because parties may engage in a timing
game. Parties can wait for others to broadcast their input
lists before creating their own. This creates a complex game
where actions are influenced by the time taken to broadcast
the input list.

4.2. Input List Building Protocol

Can we accomplish an equilibrium where the parties can
predict what others will propose before the broadcast? To
answer this, we use the notion of correlated equilibrium
where parties are suggested (by a third party) to take a
particular action. This action corresponds to the maximum
utility that can be received by such a party, given that all
the other parties follow the suggested action.

The idea behind using a correlated equilibrium is simple.
If you know what the other parties will do, there is no point
in waiting for them to produce and declare their input. Let
us define this game more formally. Consider a setting with
m objects (transactions) and n parties (IL proposers). Each
party can select a maximum of k distinct objects. Each
object mi is associated with a utility value ui, which is
uniform across all parties. When multiple parties select an
object, the utility ui is shared (split) equally among the
selecting parties. Further, after allocation, with probability
1−γ, the allocation for each party is dropped (and given an
empty set instead). The reason for this probabilistic dropping
will beclear in the next section. The objective for each party
is to maximize its expected utility. We assume that all IL
proposers value transactions solely based on the fees they
offer, i.e., ui = fi.

Define ni as the number of parties selecting object mi

and Ni as the set of parties that have chosen mi. The
expected number of parties that select the object mi (and

don’t drop later) is γni. Let Lj denote the set of objects
allocated to party Pj , and let L = {L1, . . . , Ln} represent
an allocation satisfying the problem’s constraints. We define
U(Lj) as the utility derived by party j from selecting objects
in Lj given all other parties accept the allocation in L.

U(Lj) =
∑

mi∈Lj

ui

γ(ni − 1) + 1
(1)

Notice the denominator. The reason for using this is
that while for an external party viewing the problem, the
expected number of parties that select the object is γni, for
the party choosing it, the expected number of other parties,
apart from itself, would be γ(ni−1). Now, for this party, the
probability of whether it is dropped doesn’t affect the utility
it receives, and thus, the total number of parties, if this party
receives any utility, would be 1+γ(ni−1). For ease of no-
tation, let ñi represent the denominator (ñi = 1+γ(ni−1)).

We aim to reach a correlated equilibrium for the
above game. An external party—in this case, the proto-
col—recommends which objects to choose for each party
in a correlated equilibrium. This subsection aims to replace
this external party with an algorithm publicly known to all
parties. All parties observe their own set of objects and the
sets of all other parties’ sets of objects as recommended by
the algorithm. Given this information, the party should have
no incentive to deviate from the recommended objects.

Let us represent the constraints mathematically:
The number of times each object can be selected is limited
by the number of total parties.

∀mj ∈M : nj ≤ n (2)

Next, we constrain that each party can be allocated at most
k objects.

∀Li ∈ L : |Li| ≤ k (3)

The last constraint we want to represent is for achieving
correlated equilibrium. Suppose L is suggested to all parties.
Correlated equilibrium states that choosing any other set of
objects would lead to a utility less than or equal to the utility
from the set that the algorithm recommends. Formally, let
M [≤k] represent a subset of M = {m1, . . . ,mm} with
cardinality less than or equal to k, we require

∀L′
i = M [≤k], Li ∈ L : U(Li) ≥ U(L′

i) (4)

Let T (M) represent all the objects the protocol assigns
to at least one party T (M) =

⋃
Li. Consider the following

constraint:

∀ma ∈ T (M),mb ∈M :

∃i : (Li ∈ L, ma ∈ Li,mb /∈ Li) =⇒ ua

ña
≥ ub

ñb + γ
(5)

5

In words, this constraint says that if there exists an object
allocated to some party and another object not allocated
to the same party, then for the party, swapping the objects
cannot lead to a better utility. This is because swapping
would increase the expected number of times the object
appears by γ from the perspective of the party.

Lemma 1. If |M | < k, then Li = M .

Consider to the contrary, |Li| < |M |. In such a case, there
exists an object mj not in the allocation Li. Since Li is a
subset of M , |Li| < k, and thus the object Li can be added
to the allocation.

Lemma 2. If |M | ≥ k, the constraint (5) implies con-
straint (4).

Proof. Since |M | ≥ k, |Li| = k. This is because if |Li| < k,
then there exists an object in M , not in Li, which can be
added to increase the utility gained by the selection. Now
let’s assume, to the contrary, that constraint (5) holds but
constraint (4) does not. The negation of constraint (4) states

∃Li ∈ L,∃L′
i = M [≤k] : U(Li) < U(L′

i)

Let L′
i ̸= Li represent the allocation with the highest

utility (strictly greater than allocation Li). If multiple such
allocations exist with the highest utility, consider L′

i as the
set that differs in the least number of objects from Li. There
exists an object ma such that ma ∈ Li but ma /∈ L′

i.
(If no such object exists, then L′

i ⊇ Li. However since
|L′

i| ≤ k = |Li|, this is possible only if Li = L′
i)

Consider |L′
i| < k. Adding ma would only add to the

party’s utility; however, L′
i was considered as the maximal

such allocation, and thus such an L′
i can only exist if |L′

i| =
k. Since both L′

i and Li are of size k and there exists ma ∈
Li but ma /∈ L′

i, there must exist mb ∈ L′
i but mb /∈ Li.

Given all other allocations Lj ̸= Li remain the same,
the number of times the object mb is chosen increases by 1
in L′

i compared to Li. From(1),

U(Li) = U(Li \ma) +
ua

ña

U(L′
i) = U(L′

i \mb) +
ub

ñb + γ

From constraint(5), in this case (where ∃i : (Li ∈ L,ma ∈
Li,mb /∈ Li)),

ua

ña
≥ ub

ñb + γ

Consider the set L′′
i = (L′

i \ {mb}) ∪ {ma}. |L′′
i | = |L′

i|,
and thus satisfies M [≤k] property. The utility of this set is

U(L′′
i) = U(L′

i \mb) +
ua

ña

= U(L′
i) +

ua

ña
− ub

ñb + γ

≥ U(L′
i)

This is a contradiction since L′
i was considered as the set

with the highest utility that differed in the least elements
compared to Li; however, we show the existence of another

set with one less element differing from Li, which has a
utility greater than or equal to L′

i.

The above set of constraints forms the basis of our
problem. Any solution that satisfies the above constraints
can be used as a third party that informs the IL proposers
of the transactions to pick.

4.3. A Greedy Algorithm

If we use the above constraints as invariants in a greedy,
step-by-step selection and then allocate selected objects in
a round-robin allocation, the final allocation would satisfy
the required constraints by default.

Algorithm 1 presents a greedy algorithm that chooses
and assigns the objects to parties while satisfying the in-
variants defined in Eq (2), (3) and (5). To do so, we choose
objects one at a time, picking the object with the highest
local utility U ⊘N , where ⊘ denotes element-wise division
of the utility by the number of times the object would have
been picked if selected now (in expectation). By picking the
object, we increase the number of times it is selected by the
probability that this selection of the object is broadcast. This
updates N such that U ⊘N represents the utility when the
object is next selected. Next, if the object has been selected
n times (making N [i] = nγ+1), the utility is set as negative
to ensure that the object is not picked again (since all parties
would be assigned this object).

For each object, such that N [i] ̸= 1, i.e., the number of
times it has been selected is at least one, the invariant in
Eq (5) is maintained. The constraint Eq (2) is satisfied by
setting the object’s utility to −1 after the object is selected
n times and ensuring it is never picked again.

Having chosen a list of objects and decided the num-
ber of times they will be chosen, the second step is to
assign/allocate them to parties. Any allocation that assigns
objects uniquely to all parties and ensures that all parties
receive the same number of objects (at most k objects are
assigned per Eq (3)) would satisfy the correlated equilib-
rium since all the constraints are satisfied. However, to
allocate fairly, we use a round-robin allocation, assigning
the highest-valued object one at a time to each party. The
fairness guarantees are shown in Section D.

In the following theorem, we show that the above algo-
rithm gives a correlated equilibrium.

Theorem 1. [Correlated Equilibrium] Given the assignment
of input lists according to Algorithm 1, if every other party
follows the assignment, then no party obtains a better utility
by swapping any of the assigned objects in its input list with
any other object not on its list.

To understand the proof of the above theorem, consider
the following. Let some object oi be picked for the last time
(i.e. the utility after this pick does not decrease for oi). For
this object, the utility to whichever party it is given to is
greater than all other candidate objects. Further, the utility
of other objects could decrease, but the utility for this object
does not decrease (since we are considering the last instance

6

Algorithm 1 A 2-Step algorithm for transaction inclusion

Require: n ≥ 0, m ≥ 0, k ≥ 0, γ ≥ 0
▷ number of parties, transactions, input

list size, probability of broadcast
Ensure: Li arrays for all i ∈ P

▷ final inclusion arrays for each party
Step 1: Choose Objects

1: U ← [u1, . . . , um] ▷ Utility values for each transaction
2: N ← [1, . . . , 1] ▷ Count array (corresponding to ñi), ini-

tialized to 1 for each transaction
3: S ← {}
4: for ∈ 1 to n ∗ k do
5: Ucurr ← U ⊘N ▷ Compute current utility by element-

wise division of utility by the expected
number of times the object has been
selected

6: s← argmax(Ucurr)
▷ Find the index of the maximum value

in Ucurr

7: S ← S ∪ {s}
8: if U [s] = −1 then break

▷ if the maximum utility for objects is
−1, then all objects have been selected
n times (Line 10 sets −1 for objects
selected n times)

9: N [s]← N [s] + γ ▷ Increment the expected number for the
next time this object is selected

10: if N [s] + γ ≥ nγ + 1 then U [s]← −1
▷ Set utility of object to −1 if it has

been allocated n times

Step 2: Allocate Objects
11: U ← [u1, . . . , um] ▷ Reset utilities
12: P ← [1, . . . , n] ▷ Array of party identifiers
13: ∀i ∈ P : Li ← {} ▷ Inclusion sets for each party, initial-

ized to empty
14: Uf ← U ⊘s (N ⊖ [γ]m)

▷ ⊘s is element-wise safe division,
which returns 0 if dividing by 0.
This computes the utility for each se-
lected object, adjusting for the extra γ
added for the preparation of the next
selection

15: A← sort(S, key = (−Uf [s] for s ∈ S, s))
▷ Get indices of objects in

descending order of utilities
([Uf [A[0]], Uf [A[1]], . . .] is in
descending order)

16: for j ∈ 1 to |A| do
17: L(j mod n)+1 ← L(j mod n)+1 ∪ {A[j]}

▷ Assign objects in round-robin fashion

18: return ∀i ∈ P : Li ▷ Return the inclusion sets for all parties

Description: This algorithm iteratively selects objects with the highest
available utility. After all objects have been selected, they are assigned
to parties in a round-robin format, with the highest utility object being
assigned first. A follow-along example is shown in Appendix C.

of selection for the object). Thus, if after the assignment is
complete, any party tries to switch away from object oi to
any other object oj , the utility would be lower.

Proof. We prove the theorem by contradiction. Let U(o)
represent the from object o in the given assignment; U∗(o)
represent the utility from object o if it is chosen one extra
time; and Ū(o, l) represents the utility for selecting object o
in round l. Let some party have a positive incentive (> 0)
to switch from object oi to oj . Let’s say the object on is
selected as the final selection of the algorithm (Last round
of Step 1).

First, note the following

U∗(o) = Ū(o, n · k) ∀o ∈M \ {on}

Ū(o, l) ≥ Ū(o, n · k) ∀o ∈M

Also, choosing on in the last round implies that its utility
would be lower if it chose any object except on. In particular,

Ū(on, n · k) ≥ Ū(o;∀o, n · k) ≥ U∗(o) ∀o ∈M \ {on}

Let l be the round in which object oi was last chosen.

Ū(oi, l) ≥ Ū(o, l) ∀o ∈M

Ū(oi, l) = U(oi)

Thus,
U(oi) ≥ Ū(o, l) ≥ U∗(o) ∀o ∈M

Now, the utility to swap oi → oj is

U(swap(oi, oj)) = U∗(oj)− U(oi) ≤ 0

Thus, there is a contradiction since the utility from the
swap needed to be > 0.

5. Aggregation Protocol

In Section 4, we presented a protocol for IL proposers
to build their input list and achieve a correlated equilibrium.
The next step in the design is to aggregate these input
lists into inclusion lists, which would be used to constrain
the builder. In this section, we will present a protocol to
aggregate the input lists generated by parties such that the
overall inclusion list design outputs a set of candidate lists.

Key design challenges. There are two key challenges we
need to address. First, since the lists are being aggregated,
the adversary can censor a target transaction by somehow
ensuring that the input lists containing the target transaction
are not aggregated. This can be achieved, for example, by
bribing a party that aggregates.

Second, some of the parties in the protocol may crash,
and the protocol needs to tolerate certain absence of input
lists. Suppose the aggregator is required to include all trans-
actions. In that case, even if one IL proposer goes offline or
chooses not to broadcast, an honest aggregator cannot create
an inclusion list by including all other input lists. Thus, our
crash-tolerant protocol would only require the aggregator to
include all but a threshold θ of the input lists. However, in

7

doing so, we allow the aggregator to censor complete input
lists willfully without any penalties. Thus, in this section, we
will describe a protocol that the aggregator and IL proposers
must follow in addition to following the correlated equilib-
rium suggestion in Section 4.2. To incentivize the parties
to follow the protocol, we describe a reward distribution
mechanism that maximizes the cost for the adversary to
exclude a transaction from the inclusion list.

5.1. Outlining our Solution: AUCIL

The design we will discuss is inspired by a winner-take-
all game like an auction, where the bid submitted is the
length of the inclusion list. We name this design AUCIL.2
In AUCIL, all parties work as aggregators. All IL proposers
can aggregate the input lists created and broadcasted by IL
proposers. After aggregation, each party declares their bids
as the size (in terms of the number of input lists included) of
the inclusion list they created. A natural way of collecting
these bids is through the block proposer of the next block in
the blockchain. This block proposer would accept all bids
and add the inclusion list with the highest bid.

Algorithm 2 AUCIL outline
Participants: All IL proposers P1, P2, . . . , Pn

Step 1: IL proposers broadcast input lists
1: for all Pi do
2: Pi →B all parties : InpLi

Step 2: Parties aggregate input lists into an inclusion
list and broadcast it

3: for all Pj do
4: IncLj =

⋃n
i=1 InpLi

5: Pj →B all parties : (IncLj , ℓj = size(IncLj))

Step 3: Proposer selects the highest bid inclusion list
6: Proposer receives:

{(IncL1, ℓ1), (IncL2, ℓ2), . . . , (IncLn, ℓn)}
7: Proposer selects the highest bid where ℓi denotes the

bid for Pi.

Incentive Structure: IL Proposer of the selected bid receives uagg

As described in Algorithm 2, the outline has three major
steps – (i) InpL broadcast, (ii) bid creation and broadcast,
and (iii) collection of bids. While the second step is a
competition between bidders and is thus incentivized by
a reward for winning (uagg), the other two steps are not
incentivized. For the first step, what is the incentive for each
IL proposer to share their input list? If all parties share the
input lists and the proposer picks the inclusion list with the
highest bid, it is strictly dominant for a party not to share its
input list since it could aggregate others’ input lists with its
own and create the highest-size inclusion list, and thus win
the auction. Thus, sharing the input list is not an equilibrium
for such a party.

Moreover, even if all parties declare their input lists,
the auctions also suffer from censorship problems, as also

2. AUCIL stands for Auction-based Inclusion List.

highlighted in [8]. The next block proposer could ignore the
competitive bids in favor of an adversarial bid, which bribes
the proposer to exclude other bids. However, distinct from
on-chain auctions, this off-chain auction has the essential
property of having a fixed number of bidders, all of which
have a positive utility to bid. While some parties could crash
- or choose to feign a crash as an adversarial action - at least
a threshold n − θ would (or have the option to) broadcast
their bid, and the block proposer could be required to prove
that the bid included is greater than at least n−θ other bids.
If the proposer cannot create such a proof, then the block
generated would be invalid, and the block proposer would
be slashed. This proof would be verified on-chain (by the
consensus as a part of validity condition or by using fraud
proofs [17]).

Given this threshold, θ, of parties whose bids are not
required to create an inclusion list, the adversary could
censor some bids that include the target transaction after the
bids have been sent. To incentivize the bids to be as high
as possible, despite the censorship, the reward distribution
for aggregation (uagg) would take place some blocks after
the block for which the inclusion list is being designed. The
bids would continue to be collected in the next round(s). The
rewards would be distributed as (uagg/2) for the highest bid
(observed across multiple blocks) and the rest (uagg/2) for the
winning bid (observed during the block for the creation of
the inclusion list). This distribution of rewards is arbitrarily
chosen, and other reward distributions could exist.

To solve the first problem, let’s consider the other ex-
treme situation. If no party shares its input list, it is dominant
for most IL proposers to share it. This is because it would
not be able to create a winning bid; if the tie is broken
randomly, there is a 1/n probability of winning. Releasing
its input list thus allows the winning bid to include this input
list and thus give a transaction fee reward as described in
Section 4. This proves that the Nash equilibrium for the
above game is mixed and probabilistically lies somewhere
between sharing the input list and not sharing the input list.
The exact equilibrium would depend on the probability of
the IL proposer winning the game by not sharing the input
list.

Herein lies the solution. If the probability of winning
the auction is low for most parties in the system, then their
dominant action is to broadcast their input list. Thus, we
bias the auction results so that most parties will lose the
auction with a high probability. We introduce a local noise
value, which we call bias b, drawn uniformly at random
from the range [0, bmax] and add it to the bid; this can be
obtained using VRFs [18]. The bid now becomes the length
of the inclusion list plus the random noise. If a party draws
a low random noise, then it is highly likely that the party
would lose the auction, and thus, the party would have a high
incentive to release its input list. We use this to complete
the AUCIL design in algorithm 3.

However, this does not remove the case where parties do
not broadcast their input list; for high bias values, AUCIL
encourages them not to broadcast their input lists. In order
to separate the notion of broadcasting the input list and

8

others adding it to their bid, we introduce a metadata value
associated with the input list, which we label as flag F. If
F is set to 1, then the input list is available to all parties
and increases the bid size by 1 when included in the bid.
If F is set to 0, then even if the input list is included in
a bid, it would not increase the bid size. In return, only
those input lists that have F set to 1 would receive their
share of transaction inclusion rewards as described in the
previous section. In a rational world, setting the flag to 1 is
equivalent to broadcasting, and 0 is the same as withholding
its input list. In further sections, an input list is considered
available if it has been broadcast and F is set to 1. A more
formal analysis of the probability of a party’s releasing its
transaction follows.

5.2. Analysis

In this section, we will analyze the utility of IL proposers
in the absence of adversarial censorship. In such a case, the
proposer will select the highest bid amongst all the bids.
The first thing to observe is that not all parties may have an
incentive to broadcast, so let’s assume that η (At equilib-
rium, γ = η/n) InpLs are publicly available. Consider that
the IL proposer includes all the input lists it receives and its
own. The IL proposer has two options: broadcast its InpL
or withhold it. If the IL proposer broadcasts its block, then
the following lemma holds.

Lemma 3. Given an IL proposer P with a utility uil for
inclusion of its input list and uagg for winning the auction
for aggregation. Given η input lists are available (except
its own), and the total number of IL proposers is n. Given
P generates a bias b ≤ 1. If P chooses to make its InpL
available, its expected utility is uil + negl(n).

Proof. The bid generated by P is calculated as η + 1 + b.
All other IL proposers also receive the input list of P . There
exist two classes of other IL proposers: 1) those that made
their input list available (there exist η such IL proposers)
and those that did not (n− η− 1). Let bi represent the bias
generated through VRF for IL proposer Pi.

The bid for each IL proposer who did not make its input
list available is η + 2 + bi (η + 1 from publicly available
lists, and 1 private). Similarly, the bid for each IL proposer
who chose to make its input list available is η + 1+ bi (Its
list is included in the publicly available lists).

The probability that P wins the auction is the same as

the bid generated by P being greater than all other bids.

P(P wins) =
η∏

i=0

P(η + 1 + b ≥ η + 1 + bi)

·
n−η−1∏
i=0

P(η + 1 + b ≥ η + 2 + bi)

=

η∏
i=0

P(b ≥ bi) ·
n−η−1∏
i=0

P(b ≥ 1 + bi)

=

(
b

bmax

)η

·
n−η−1∏
i=0

{P(b ≤ 1)P(b ≥ 1 + bi|b ≤ 1)

+ P(b > 1)P(b ≥ 1 + bi|b > 1)}

=

(
b

bmax

)η

·
n−η−1∏
i=0

(P(b > 1)P(b− 1 ≥ bi|b > 1)) (6)

If b ≤ 1, the probability of winning the auction is 0,
unless all parties (η = n−1) make their input lists available.

The utility in this case is given by uil. If all parties
make their list available, then the utility would increase by
(b
bmax

)n · uagg, which is negligible in n.

Lemma 4. Given an IL proposer P with a utility uil for
inclusion of its input list and uagg for winning the auction
for aggregation. Given η input lists are available (except its
own), and the total number of IL proposers is n. Given P
generates a bias b > 1. If the IL proposer chooses to make
its InpL available, then its expected utility is uil+

(
b

bmax

)η
·(

b−1
bmax

)n−η−1

uagg

Proof. From (6), the probability of winning the auction is

P(P wins) =
(

b

bmax

)η

·
(
b− 1

bmax

)n−η−1

If P wins the auction, then it will receive both input
list inclusion and aggregation rewards, while if it loses
the auction, then the reward earned is only the input list
inclusion reward.

uP = P(P wins)(uagg + uil) + (1− P(P wins))uil

= uil +

(
b

bmax

)η

·
(
b− 1

bmax

)n−η−1

uagg (7)

Lemma 5. Given an IL proposer P with a utility uil for
inclusion of its input list and uagg for winning the auction
for aggregation. Given η input lists are available (except its
own), and the total number of IL proposers is n. Given P
generates a bias b < bmax − 1. If the IL proposer chooses
not to make its InpL available, then its expected utility is(

b+1
bmax

)η
·
(

b
bmax

)n−η−1

(uagg + uil)

Proof. The bid generated by P is η + 1 + b. All other IL
proposers can not extend their bid with the input list of

9

Algorithm 3 AUCIL for log position pos
Participants: All IL proposers P1, P2, . . . , Pn

Step 0: IL proposers generate their auction bias
1: for all Pi do
2: Pi : (bi, πi)← VRFski(pos) scaled to a range of [0, bmax] ▷

Generate the random bias (uniform dist.) between 0 and bmax to add to
the bid

Step 1: IL proposers broadcast input lists
3: for all Pi do
4: Pi : Fi ← checkAvailable(bi) ▷ Check whether Pi should make its input list available
5: Pi →B all parties : InpLi,Fi ▷ Parties broadcast their InpL while choosing to make it available or not

Step 2: Parties aggregate input lists into an inclusion list and broadcast it
6: for all Pj do
7: IncLj , yj =

⋃n
i=1 InpLi,

∑n
i=1 Fi ▷ If some IL Proposer’s value is missing take {}, 0 as InpL and F

8: Pj →B all parties : (IncLj , ℓj = (yj + bj)) ▷ Parties declare their bid with added bias

Step 3: Block proposer selects the highest bid inclusion list
9: Proposer receives: {(IncL1, ℓ1), (IncL2, ℓ2), . . . , (IncLn, ℓn)}

10: Proposer selects the highest bid and adds it to the block (IncL, ℓ).
11: Proposer verifies πi, includes proof for the bid being greater than n− θ bids.

- Block is considered verified if the proof is valid.

Description: Algorithm for aggregating input lists into an inclusion list. The basis of AUCIL is an auction design, where all parties try to compete
with the largest size input list. Even after the next block is created, the bids are still collected in case a bid higher than the winning bid is found.

Incentive Structure: IL Proposer of selected bid receives 0.5uagg. IL Proposer of highest bid across multiple slots receives 0.5uagg.

P . There exist two classes of other IL proposers - those
that made their input lists available (there exist η such IL
proposers) and those that did not (n−η−1). Let bi represent
the bias generated through VRF for IL proposer Pi.

The bid for each IL proposer who made their input list
available is η + bi. Similarly, the bid for each IL proposer
who did not is η + 1 + bi.

The probability that P wins the auction is the same as
the bid generated by P being greater than all other bids.

P(P wins) =
η∏

i=0

P(η + 1 + b ≥ η + bi)

·
n−η−1∏
i=0

P(η + 1 + b ≥ η + 1 + bi)

=

η∏
i=0

P(b+ 1 ≥ bi) ·
n−η−1∏
i=0

P(b ≥ bi)

P(b+ 1 ≥ bi) = P(b ≤ bmax − 1)P(b+ 1 ≥ bi|b ≤ bmax − 1)

+ P(b > bmax − 1)P(b+ 1 ≥ bi|b > bmax − 1)

If b > bmax − 1, then b+ 1 is always > bi. Thus,

P(b+ 1 ≥ bi) = P(b ≤ bmax − 1)P(b+ 1 ≥ bi|b ≤ bmax − 1)

+ P(b > bmax − 1) (8)

Since b < bmax − 1,

P(b+ 1 ≥ bi) = P(b+ 1 ≥ bi|b ≤ bmax − 1)

=

(
b+ 1

bmax

)
Similarly,

P(b ≥ bi) =
b

bmax

Thus, given b ≤ bmax− 1, the probability of winning the
auction is

P(P wins) =
(

b

bmax

)n−η−1

·
(
b+ 1

bmax

)η

If P wins the auction, then it will receive both input list
inclusion and aggregation rewards, while if it loses the
auction, then no reward is earned since the input list was
not available to others.

uP = P(P wins)(uagg + uil)

=

(
b+ 1

bmax

)η

·
(

b

bmax

)n−η−1

(uagg + uil)

Lemma 6. Given an IL proposer P with a utility uil for
inclusion of its input list and uagg for winning the auction
for aggregation. Given η input lists are available (except its
own), and the total number of IL proposers is n. Given P
generates a bias b ≥ bmax − 1. If the IL proposer chooses

10

not to make its InpL available, then its expected utility is(
b

bmax

)n−η−1

(uagg + uil)

Proof. Equation (8) still holds for the analysis of this
Lemma. Given b > bmax − 1, we get

P(b+ 1 ≥ bi) = 1

Thus,

P(P wins) =
(

b

bmax

)n−η−1

uP = P(P wins)(uagg + uil)

=

(
b

bmax

)n−η−1

(uagg + uil)

Theorem 2. Given an IL proposer P with a utility uil for
inclusion of its input list and uagg for winning the auction
for aggregation. Given η input lists are available (except its
own), bmax > 2 and the total number of IL proposers is n.
1) Given P generates a bias b ≤ 1. Except with a negli-

gible probability, making its input list available is the
dominant action for P .

2) Given P generates a bias 1 < b < bmax− 1. Except with
a negligible probability, making its input list available
is the dominant action for P . Consequently (from parts
1 and 2 of the theorem), at least bmax−1

bmax
of the parties

broadcast their input list in expectation.
3) Given P generates a bias b ≥ bmax − 1. The Nash

equilibrium for the game would be a mixed strategy, i.e.,
make its input list available with some probability and
withhold with some probability.

Proof. 1) From Lemma 3, the utility from making its input
list available is uil. From Lemma 5, the utility from
making its input list available is(

b+ 1

bmax

)η

·
(

b

bmax

)n−η−1

(uagg + uil)

Since bmax > 2 and b ≤ 1, this utility tends to 0. Thus,
the utility from making its input list available (uil) is
greater than that of not making its input list available
(0). Thus, all such parties would make their input list
available.

2) From Lemma 4, the utility from making its input list
available is

uil +

(
b

bmax

)η

·
(
b− 1

bmax

)n−η−1

uagg

From Lemma 5, the utility of not making its input list
available is(

b+ 1

bmax

)η

·
(

b

bmax

)n−η−1

(uagg + uil)

Consider the difference between the utilities.

uil +

(
b

bmax

)η

·
(
b− 1

bmax

)n−η−1

uagg

−
(
b+ 1

bmax

)η

·
(

b

bmax

)n−η−1

(uagg + uil)

≥ uil

(
1−

(
b+ 1

bmax

)n−1
)

+ uagg

((
b

bmax

)n−1

−
(
b+ 1

bmax

)n−1
)

≥ uil

(
1−

(
b+ 1

bmax

)n−1
)
− uagg

(
b+ 1

bmax

)n−1

= uil

(
1−

(
1 +

uagg

uil

)(
b+ 1

bmax

)n−1
)

To ensure this is ≥ 0, we require(
b+ 1

bmax

)n−1

<
uil

uil + uagg

The probability for this is given by

P =
bmax

(
uil

uil+uagg

)1/n − 1

− 1

bmax − 1

which is approximately 1 if n is large. Thus, parties
with b < bmax − 1 are incentivized to make their input
list available. This occurs with a probability of bmax−1

bmax
,

which implies that in expectation, at least bmax−1
bmax
·n parties

would make their input lists available.
3) From Lemma 4, we know that the utility from making

its input list available is

uil +

(
b

bmax

)η

·
(
b− 1

bmax

)n−η−1

uagg

From Lemma 6, the utility of not making its input list
available is (

b

bmax

)n−η−1

(uagg + uil)

From Part 2, we know that η is in expectation more than
bmax−1
bmax

n. Substituting in Lemma 6, we get(
b

bmax

) n
bmax

−1

(uagg + uil)

As b approaches bmax, the difference in utility is

uil + 0−
(
1−

(
n

bmax
− 1

)(
bmax − b

bmax

))
(uagg + uil)

=

((
n

bmax
− 1

)(
bmax − b

bmax

))
(uagg + uil)− uagg

which is negative since the first term approaches 0.

11

0 1 2 3 4 5 6
Bias

0.0

0.2

0.4

0.6

0.8

1.0

V
al
u
e

Probability of withholding p(bias)

Figure 2: An example for the probability of withholding
input list with the bias generated for IL Proposers. Example
parameters: n = 36, bmax = 6, uagg = 6uil. In this example,
the resulting value of γ turns out to be 0.946.

Thus, at least some parties are incentivized not to make
their input list available, and a mixed Nash equilibrium
follows.

The chart in Figure 2 shows the probability with which the
IL Proposer would withhold its input list at equilibrium ver-
sus the bias drawn through the VRF (not make it available
to other IL Proposers).

6. Censorship Resistance

Combining the protocols in Sections 4 and 5, we get our
complete end-to-end design for an inclusion list creation as
follows:
• All IL proposers create an input list (InpL) each from a

set of transactions as determined by Algorithm 1.
• All IL proposers create and broadcast inclusion lists try-

ing to maximize the number of available input lists as
described in Algorithm 3.

The above-described scheme works well in the absence
of any external incentives. However, an adversary trying to
censor a transaction can manipulate the incentives of the
IL proposers with the following actions (for the rest of the
paper, we would refer to the transaction the adversary wants
to exclude as a target transaction mt, and the utility IL
proposers get from including the transaction is ut, which is
suggested to a set of parties Nt, where |Nt| = nt):
1) Add transactions in the mempool to naturally manipulate

the number of parties that are suggested to include mt

(nt).
2) Bribe IL proposers to exclude the target transaction from

the suggested input list.
3) Bribe IL proposers to exclude all input lists that contain

the target transaction from the generated bid.
4) Exclude a bid containing at least one input list with the

target transaction by crashing the party creating the bid.
In the following subsections, we will look at each of

these actions. Initially, assume that Actions 1, 2 affect the

input list building scheme and Actions 3, 4 affect the aggre-
gation scheme. The two pairs of actions are exclusive and
do not affect each other; later, after looking at the results,
we will defend why this assumption is justified.

6.1. Censorship Resistance for Input-List building

We would first analyze Action 2 and then look at Ac-
tion 1 and the interplay between the two. The first thing to
note is that since some parties choose not to make their input
lists available, this reduces the number of expected parties
from the number of actual parties suggested to include the
target transaction, the adversary does not know which parties
would not broadcast. Thus, when considering the parties to
bribe, the adversary would consider all parties in the set |Nt|
as opposed to the expected number of parties that broadcast
(N [s] in algorithm 1). However, we need to consider the
expected number of broadcast input lists when considering
the utility that the IL proposers receive from transactions.
Let nt be the number of input lists suggested to include
the transaction (nt = |Nt|), nt as the expected number
of broadcast input lists that contain the target transaction
(nt = nt · γ, where γ is the probability that an IL proposer
broadcasts), ñt = 1+ γ(nt − 1) represents the denominator
as specified in Eq (5) and n̂t represents the actual number
of input lists that broadcast the transaction.

The expected utility for each IL proposer from including
the target transaction is ut

nt
and excluding it and adding

another transaction ms gives some utility us

ñs+γ . If ms is
available in the global mempool, then us

ñs+γ ≤
ut

ñt
, otherwise

the cost us would be an additional cost to the adversary (and
ns = 0). Also, consider the utility for including the input
list as suggested but without the target transaction to be u−

il ,
which is the sum of utility that each transaction in the list
provides.

Lemma 7. Given a correlated equilibrium strategy as de-
scribed in Algorithm 1, and a set Nt (|Nt| = nt) of IL pro-
posers who are suggested to include the target transaction
mt. Consider a bribe (br) from the adversary to IL proposers
in the set Nt to censor the target transaction (action 2) and
replace it with a replacement transaction ms.

i) If br ≤ ut

ñt
− us

ñs+γ , the IL proposer would reject the
bribe and propose the suggested input list.

ii) If ut

ñt
− us

ñs+γ < br < ut − us

ñs+γ , the IL proposers
would reject the bribe with some non-zero probability.

iii) If br ≥ ut− us

ñs+γ , the IL proposer would always accept
the bribe and ignore the transaction.

Proof. The utility received by including the transaction is
Ur = u−

il +
ut

n̂t
, where n̂t = ñt, if all IL proposers include

the transactions as suggested. If some IL proposers accept
the bribe and exclude the transaction from their input list,
then n̂t < ñt. The utility received for accepting the bribe is
Ua = u−

il+
us

ñs+γ+br. Thus, Ur−Ua = ut

n̂t
− us

ñs+γ−br. Since
1 ≤ n̂t ≤ nt, we have that ut

nt
− us

ñs+γ − br ≤ Ur − Ua ≤
ut − us

ñs+γ − br. We now prove each part of the lemma
separately.

12

i) If br ≤ ut

ñt
− us

ñs+γ , Ur − Ua ≥ 0. Since the utility
gained by the IL proposer from accepting the bribe is
less than rejecting the bribe, the IL proposer would
always reject the bribe.

ii) If bribe ut

ñt
− us

ñs+γ < br < ut − us

ñs+γ , then the bribe
is higher than the individual utility gained by the IL
proposer if all other IL proposers choose to include the
transaction (i.e., reject the bribe, n̂t = ñt). However,
if all IL proposers choose to accept the bribe, then the
utility received from rejecting the bribe and being the
only IL proposer to include the target transaction is ut.
Thus, it is not rational for all IL proposers to accept
or reject the bribe. A mixed Nash equilibrium would
exist since both pure strategies are not an equilibrium,
implying a non-zero probability of rejecting the bribe.

iii) If br ≥ ut − us

ñs+γ , Ur − Ua ≤ 0. Since the bribe
available is greater than the utility that the IL proposer
could receive, even if any other party does not include
the transaction, the IL proposer always chooses to
accept the bribe.

Lemma 8. Given the correlated equilibrium strategy in
Algorithm 1, the adversary must pay at least ut ∗ (nt − 1)
to ensure (with probability = 1) that the target transaction
does not appear in any input lists.

Proof. From Lemma 7, if the adversary bribes the IL pro-
posers in the set Nt in such a way that the IL proposers
always censor the transaction, then the bribe has to be at
least ut − us

ñs+γ . Now, if ms is a public transaction, i.e.,
available in mempool, then ut− us

ñs+γ ≥ ut− ut

ñt
≥ ut− ut

nt
.

Since, at least nt parties receive this bribe, the total cost to
the adversary is at least ut ∗ (nt − 1) to bribe all the IL
proposers in set Nt. However, if the transaction is private,
then the cost to the adversary is us + br = ut. This amount
must be given to all nt parties, and thus the total cost would
be utnt > ut ∗ (nt − 1)

Thus, if the adversary chooses a strategy to bribe IL
proposers to exclude the target transaction (Action 2), it
must pay a cost of at least ut ∗ (nt − 1).

Consider Action 1. The adversary may choose to add
spam transactions in such a way that the target transaction
does not appear in any input list, or it may choose to reduce
the number of nt, and then follow up with Action 2.

Before we proceed with the analysis of this action, we
need to observe the dependence of nt on the fee paid by
the transaction ut and the fee paid by other transactions. Let
T (M) represent all the transactions the input list-building
mechanism chooses. From Eq (5) for a correlated equilib-
rium, we know that,

∀mi ∈ T (M) :
ui

ñi
≥ ut

ñt + γ

Since ñi > 0 for all mi ∈ T (M), we have

∀mi ∈ T (M) : ui(ñt + γ) ≥ utñi

Taking the sum over all mi ∈ T (M), and noting that ut

ñt
>

ut

ñt+γ ∑
i∈T (M)

ui(ñt + γ) > ut

∑
i∈T (M)

ñi∑
i∈T (M)

ui(ñt + γ) > ut · n · k · γ

Let σ represent
∑

i∈T (M)

ui. Also, ñt = 1+ γ(nt − 1). Thus,

1 + γnt > γ · n · kut

σ

nt > n · kut

σ
− 1

γ
(9)

Using Action 1, the adversary can censor the target
transaction by adding transactions to the mempool. If more
transactions are to be chosen, then the algorithm would
suggest the transaction to fewer parties. If we view these
extra transactions as a sequential addition of transactions
to the mempool, we will reach a point where the target
transaction is suggested to only one IL proposer. In other
words, the following lemma compares using Action 1 to
censor completely and a hybrid of Action 1 and Action 2 to
first reduce the number of IL proposers and then bribe the
rest.

Lemma 9. Given the correlated equilibrium strategy in
Algorithm 1, if the adversary reduces the number of times
the transaction is suggested to nt = 1 (Action 1), then after
reaching this state, the cost incurred to an adversary in
bribing the IL proposer (Action 2) is lower than adding
further transactions to reduce the number of parties that
are suggested to include the transaction (Action 1).

Proof. To displace the target transaction, the adversary
would have to displace all selections of the transactions
after the target transaction is chosen for the first time in
Algorithm 1 since each of the transactions that are selected
after the target transaction gave lower utility than the first
selection of the target transaction. Thus, in the worst case
for nt = 1, the target transaction is the last transaction
chosen in Step 1 of Algorithm 1 such that there are no
other transactions to displace. To displace the last chosen
object (which in this case is mt), the adversary would need
to add a transaction ma such that ua

ña+γ ≥
ut

ñt
. Since nt = 1,

ñt = 1, this implies ua ≥ ut. Thus, Action 1 costs at least
ut.

If the adversary instead chooses to bribe the IL proposer,
then from Lemma 7 the minimum bribe it would have to
pay the IL proposers is ut − us ≤ ut ≤ ua, where us

represents the utility of some replacement transaction that
the IL proposer could include. Thus, Action 2 costs at most
ut.

Thus, bribing the IL proposer dominates the action of
displacing the transaction through added adversarial trans-
actions when the target transaction appears only once.

The above lemma proves that a hybrid of Action 1 and
Action 2, reducing the number of times the target transaction

13

appears by spamming and then bribing the remaining IL
Proposers that are suggested to include the transaction is
a dominant action over Action 1, spamming transactions
to remove the target transaction from inclusion. The next
lemma compares the hybrid of Action 1 and Action 2 with
only Action 2.

Lemma 10. Given the correlated equilibrium strategy in
Algorithm 1, if the adversary adds adversarial transactions
(Action 1) with a total fee of ua and pays a bribe br1 to
all the IL proposers which are suggested to add the target
transaction (Action 2). If ut ≤ σ√

nk
, then the cost incurred

by the adversary is greater than ut(n · k ut

σ − 1− γ)

Proof. If the adversary does not add any adversarial transac-
tion, then the cost to the adversary by only bribing is given
from Lemma 8 and Eq.(9). This cost is represented by

C = ut(n · k
ut

σ
− 1− 1

γ
)

Since no additional transactions are added, the cost to
the adversary is only the bribe. Thus, br1 + ua ≥ C in this
case.

If the adversary adds some transactions to reduce the
number of times the target transaction appears in algo-
rithm 1, and then censors the rest (hybrid of action 1 and
action 2) then the cost to the adversary is given by the fees
paid plus the bribe cost to remove the target transaction from
the reduced number of input lists.

C1 = ua + br1

From Lemma 8 and Eq.(9), we have

br1 ≥ ut(nt
′ − 1)

nt
′ ≥ n · k · ut

σ −
∑

(ul) + ua
− 1

γ

≥ n · k · ut

σ + ua
− 1

γ

, where
∑

(ul) represents the sum of any transactions re-
moved. Thus,

C1 ≥ ua + ut(n · k ·
ut

σ + ua
− 1− 1

γ
)

The difference in this cost to the adversary and the minimum
cost we claim is given by

C1 − C ≥ ua − ut(nkut) ·
(
1

σ
− 1

σ + ua

)
≥ ua − nku2

t

(
ua

σ(σ + ua)

)
If ut ≤ σ√

nk
, then u2

t ≤ σ2

nk . Thus,

C1 − C ≥ ua − σ2

(
ua

σ(σ + ua)

)
≥ 0

Thus, C1 ≥ C and the minimum cost that the adversary
must pay is ut(n · k ut

σ − 1− 1
γ).

6.2. Censorship Resistance for Aggregation Step

The next set of actions that an attacker can take to
censor a transaction is to target the aggregation algorithm
and ensure the aggregated list does not contain the target
transaction in any of the input lists. We first give the
adversary the advantage that any input list that is broadcast
but not made available (i.e., F is set to 0), then the cost to
remove such a list from the bid is 0. Let n̂t be the number
of input lists made available with the target transaction, mt.
This could be less than the number of parties suggested to
include the target transaction in the input list due to the
effect of Actions 1 and 2 by the adversary. To censor the
transaction in Algorithm 3, the adversary must ensure that
the highest bid selected by the block proposer excludes
all the input lists containing the target transaction. Let’s
parameterize the blockchain’s requirement to include a proof
that the bid is greater than n − θ other bids. We give the
adversary absolute control over which bids are dropped due
to threshold requirements. In other words, the adversary
must ensure that at least one of the bids within the top
θ + 1 bids does not contain any input lists with the target
transaction.

Verifiable Random Functions (VRFs) guarantee the pri-
vacy of the bias generated by each IL proposer. Thus, we
will assume that the adversary would not know the bias
generated by the IL proposer. This does not prevent the ad-
versary from bribing the IL proposer to get this information.

The first thing to note here is that the adversary can infer
from Theorem 2 that if a proposer has not made its input
list available, then the bias for such a party must be larger
than one less than the maximum bias, i.e., b > bmax − 1.
However, it cannot tell that if an IL proposer made its input
list available that the bias for the party is ≤ bmax−1, since an
IL proposer may still choose to make its input list available
even if the bias for it is > bmax−1 (since it is a mixed Nash
equilibrium). Next, we also note that Action 4 cannot censor
the target transaction since, under honest conditions, each
bid would contain all input lists, including those containing
the target transaction; excluding θ of them would not censor
the target. Thus, we would look at Action 4 as a sub-routine
within Action 3.

Lemma 11. Given n̂t is the number of input lists that
contain the target transaction, mt. Given an IL proposer P
which generates a bias b ≥ bmax − n̂t. If br < uagg/2, then
P would reject the bribe with some non-zero probability. If
br ≥ uagg/2, then P would accept the bribe.

Proof. In order to remove the target transaction mt, the
adversary requires the IL proposers to exclude all n̂t input
lists that contain it. This would reduce the bid the IL
proposer can send by n̂t. Let’s consider the case where
br ≤ uagg/2. At equilibrium, let the probability with which
the bribe is rejected be p. Consider the case of p = 0. If
all IL proposers decide to accept the bribe, then if P rejects
the bribe, the adversary would drop its bid amongst the θ
crash faults tolerated. However, in subsequent blocks, this
bid would be included with proof that the bid was higher

14

than the winning bid. (There is no incentive for the adversary
to censor it in later rounds). This yields a utility of uagg/2 for
P . Thus, the incentive from rejecting the bribe is at least
uagg/2. If the bribe is less than uagg/2, then all parties would
have an incentive to reject the bribe with some non-zero
probability.

For the case that br ≥ uagg/2, if the IL proposer rejects
the bribe, the maximum utility it can get is by winning the
highest bid reward of uagg/2 (while it would also have to
pay a fee to get its bid included in the later round). Thus,
it would always accept the bribe if br ≥ uagg/2.

As a consequence of Lemma 11, if the bribe offered is
< uagg/2, then the number of bids submitted by IL proposers
that do not accept bribes is (with some probability) greater
than θ. Thus, the bribery fails with some probability.

Lemma 12. Given n̂t is the number of input lists that
contain the target transaction, and η is the total number
of input lists available. If an adversary wants to censor
the target transaction (with 100% probability) by bribing
during the aggregation phase, then the total cost incurred
by the adversary is at least (n− θ) · uagg/2.

Proof. From Lemma 11, the minimum bribe required to
bribe an IL proposer who draws a bias > bmax − n̂t would
be uagg/2. However, the adversary does not know which
parties draw such a bias. The adversary can identify that
each IL proposer that did not broadcast the input list would
have (with a high probability) a bias greater than bmax − 1;
however, this does not give any information about an IL
proposer drawing a bias less than bmax − nt. This implies
that the adversary would have to bribe all but θ IL proposers
regardless of the value of bias drawn. Thus, the total bribe
the adversary has to pay is (n− θ) · uagg/2.

From Lemma 12, we observe that any bribery for parties
in the aggregation phase (hybrids of Actions 3 and 4 is
independent of the number of times the target transaction
appears in the input lists. Thus, a reduction of the number
of times the target transaction appears in input lists by
Actions 1 and 2 has no reduction in the cost to an adversary
when it takes Actions 3 and 4. Thus, the two sets of actions
are independent.

Consider the following parameterization of the protocol.
bmax =

√
n, uagg =

√
n ∗ uil. The sum of rewards for the

input list across all parties is the same as the sum of fees
paid by all transactions in the inclusion list, i.e.,

∑
j∈N uj

il =∑
i∈T (M)

fi = σ. And thus, the expected uil for each party

is σ/n. Also, by Theorem 4 in Appendix D, the reward
distribution is roughly the same across all parties, and thus,
we can say that the reward for each party does not deviate
from the expected reward by much. For this protocol, we
claim the following:

Theorem 3. Given n parties running the protocol, M rep-
resents the transactions available to all parties in the mem-
pool, fj represents the fee paid by a transaction mj ∈ M ,
θ − 1 represent the number of crash faults tolerated, and

T represent the union of all lists Lj when Algorithm 1 is
run on M . Consider B = {br1, . . . , br|T (M)|} such that
bri = max((n · k fj

σ − 1 − 1
γ)fj , (n−θ)√

n
σ). The protocol

satisfies (B, θ, T)-censorship resistance.

Proof. Consider an adversary with a bribery budget of br.
From Lemma 10, we know that if the adversary attempts to
censor a transaction mj from the input list, the least amount
of bribe it must pay is

(n · kfj
σ
− 1− 1

γ
)fj

Note that here, kfj < σ and fj ≤ σ√
nk

If the adversary
attempts to censor the transaction in the aggregation phase,
then the total cost, as governed by Lemma 12 is

(n− θ)uagg = (n− θ)
√
nuil ≥ (n− θ)

√
nσ/n

≥ (n− θ)√
n

σ

Now, let bri = max((n · k fj
σ − 1− 1

γ)fj , (n−θ)√
n

σ).
If br < bri, then at least θ parties will output the inclu-

sion list, which includes the transaction mi, implying that
the proposer will select the inclusion list with transaction
mi at least once. Thus, the protocol is (B, θ, T)–censorship
resistant.

7. Discussion

On unconditional inclusion lists. An essential property
for inclusion lists we consider is that all transactions in
the list must be included in the next block. This limits the
maximum size of the inclusion list to be less than the block
size. Since each party can choose to propose transactions
with no overlap, the maximum size of the input list needs
to be restricted to the size of the block divided by the
number of parties in the system. We consider the notion
of unconditional inclusion lists since if there is a way for
a proposer to exclude the transactions in the inclusion list,
then it creates a single point of failure that the adversary
can exploit. If the number of transactions available in the
inclusion list is greater than the size of the block, then in
such cases, the cost to censor the transaction is just the
difference in the fee paid by the target transaction to the
proposer and that for its replacement (which may not be
from the IL).

Inclusion lists with EIP 1559. In Ethereum, due to the
presence of the EIP-1559 fee mechanism [15], in expec-
tation, block sizes fluctuate around half of the limit. This
counters the previous discussion point since, in most cases,
there would be enough space for transactions in the block.
If the adversary adds spam transactions to fill the leftover
block space, the adversary will incur an additional cost
corresponding to the transaction fee (base fee in EIP 1559)
of half the block size limit. However, in doing so, the
adversary would also increase the base fee for the next
block, which may lead to censorship by raising the base

15

fee above the fee. In the absence of these, the input list-
building algorithm used could be replaced with a much
simpler rule to include all transactions (or capped to block
limit to prevent spamming like in [14]). This does not affect
the second part of the design - AUCIL, where inclusion
lists are formed by aggregation of input lists. Compared to
prior designs such as FOCIL [13], in AUCIL, we do not
rely on the honesty of the attestors to collect and aggregate
the list locally. Compared to FOCIL, where attersters need
to receive all local inclusion lists and compute a running
aggregate locally, AUCIL only requires a simple verification
of proof. If they do not correctly verify, they could be
slashed for incorrectly voting on the progress of the block.
In an alternate design where fraud-proofs [17] is used, the
proposer who adds the incorrect proof would be slashed.
In this case, the attestors are not involved in verifying the
validity of the proof either.
Common mempool assumption. In our protocol for input
list building algorithm 1, we assume that all parties have
the same view of transactions. We note that transactions
that pay a fee for obtaining censorship resistance guarantees
would necessarily be transmitted through public channels (as
opposed to transactions sent as private order flows to only
some providers). Hence, any transaction received by one
party will be received by all parties soon enough. There may
still be minor differences in the mempool of parties due to
the time for transmitting a transaction to others. Accounting
for these differences in the protocol design is an important
future work.
Practical considerations. Compared to other inclusion list
designs [12], [13], AUCIL has a lower overhead largely in
part due to the restricted size of data that each party has
to share. However, being a 2-step protocol where first input
lists are broadcast and then the inclusion lists are created
as bids, the number of communication rounds increases.
Extrapolating numbers from EIP-7805 [14] for inclusion
lists in Ethereum, the limits on the size of the input list
could be set to k = 6 average-sized transactions (or 3 kB of
data), and the number of parties in the committee is n = 20.
This would, on average, imply an inclusion list containing
120 transactions.

Since we want to be robust against bribery, we introduce
a new fee for each transaction and a reward for the aggrega-
tion of lists. Such a fee can replace the tip paid by the user
in case an inclusion list route is taken or could be introduced
in addition to the tip paid. Similarly the aggregation reward
is currently treated as an out-of-protocol reward, i.e., the
protocol would be generating rewards. However, this could
be replaced with a contribution score mechanism as well,
and the reward for aggregation could be extracted from the
fee paid by the user. This design is left as future work.
Interpreting censorship resistance of our protocol. Con-
sider Example 1 with M = {m1,m2,m3, m4,m5,m6}
paying a fee of {10, 9, 8, 3, 2, 1}. Both T1(M) =
{m1,m2,m3,m4} and T2(M) = {m1,m2,m3} are mean-
ingful inclusion lists. The first one offers censorship resis-
tance to more transactions. But the second one resists a

bribery budget of B2 = {20, 9, 8} as compared to B1 =
{10, 9, 8, 3}; thus, higher paying transactions have more
resistance to censorship. Another example could have been
T3(M) = {m1} with B3 = {40} and offers an even higher
resistance to censorship. Our inclusion list outputs T2(M)
even when the maximum possible size of the inclusion list
was 4. There could have been higher censorship resistance
for one transaction (T3), or censorship resistance could have
been provided to more transactions (T1). However, T2(M)
is the only equilibrium among the three allocations, and
unless an equilibrium allocation is considered, the analysis
of censorship resistance in the allocation is not fruitful. IL
Proposers would switch from the allocation to one with
higher utility.

Commit reveal scheme with a mixed Nash Equilibrium
for input list building. As an alternative to using a corre-
lated equilibrium scheme as described in algorithm 1, we
could use a commit reveal scheme that avoids the timing
games. This potentially could lead to better censorship
resistance. However, one of the major properties of the
inclusion list-building scheme is that no consensus needs
to be reached, and without consensus, committing to a bid
before revealing it is infeasible.

Secret Ordering of IL proposers In Section 6 for algo-
rithm 1, we assume that the adversary knows the order-
ing of IL proposers, i.e., if it simulates the algorithm, it
would know exactly which party would include the target
transaction in its input list. However, in a design where this
information is unknown to the adversary, it would have to
bribe all the parties to ensure that none of the parties in-
clude the target transaction. Making this order secret has its
challenges. All IL proposers would need to know their exact
position but not have any information about the position of
others IL proposers to avoid single-party bribery revealing
the entire sequence. This does not have to be a verifiable
method since no party has incentives to switch its position
(due to the proven correlated equilibrium). A secret ordering
mechanism would thus ensure the theoretically maximum
censorship resistance (linear in number of parties) while also
ensuring the maximum utility for each party.

8. Related Work

Bribery-based censorship attacks. Blockchains have been
known to be vulnerable to bribery-based censorship at-
tacks [7], [19], [20]. These attacks have been known to
affect the security of various applications like AMMs [21],
[22], atomic swaps [7], [23], [24], [25] and auctions [8].
Censorship resistance was formally studied in [8], where
they show the extent of the problem modeling censorship
into the consensus can bring for financial applications like
an auction.

Inclusion list designs. To our knowledge, this paper is
the first to introduce an inclusion list formally designed to
combat censorship in the literature. However, there are some

16

ideas presented in research posts of some blockchains [10],
[12], [13], [26].

In forward Inclusion List designs [10], an inclusion list is
published by the previous block’s proposer. All transactions
in the list must be considered in the next block if block space
remains underutilized. This forces builders to fill blocks,
making censorship more costly, as any unused block space
must be used to include proposer-specified transactions.
However, owing to a single proposer-based proposal, this
faces major bribery-based censorship issues in which an
adversary could bribe the proposer to remove the transaction
from the inclusion list itself.

Multi-party designs like COMIS [12] and FOCIL [13]
address the low cost of bribery by relying on a committee to
create the inclusion list. Intuitively, they argue that if more
parties include the transaction in their inclusion lists, the
amount of bribes the adversary pays increases. A practical
version of this design-FOCIL-has been pushed as EIP-
7805 [14] which limits the size of each input; however,
the total size limit is still greater than the capacity of the
block and could thus overflow. However, such designs fail to
account for how these committee members will create their
inputs to the inclusion list - with a basic assumption that
highest paying transactions would be chosen - and, thus,
fail to provide guarantees when the network is busy, i.e.,
there are enough transactions to fill the block.

In Flashbots report [26], inclusion lists protocols are
studied for censorship resistance in block-chains, albeit
under an honest and Byzantine model, where a known
threshold of parties can be Byzantine, and the rest are
considered honest. The definition of censorship resistance
used differs from our definition. They consider the time
required to include a transaction in the chain as a parameter
for censorship and try to reduce it with various protocols.
They analyze leader-based protocols with inclusion lists and
note that using a data availability layer or reliable broadcast
can help reduce censorship in their design. While they
mention the number of parties that need to be bribed in a
world where all parties are rational, they do not show what
amount of bribes is required or a formal analysis of why
the number of bribes cannot be reduced.

Multi-proposer based designs. In [8], in addition to mod-
eling bribery in auctions, they propose mitigating censorship
by adding multiple proposers to produce a block simultane-
ously. While doing so, they propose a dual fee structure in
which if the transaction is proposed only once, the tip paid
to the party that includes it is higher. This would increase
the cost of censorship for the adversary to be proportional
to the higher tip (which is rarely paid by the user) instead
of the general tip. However, in doing so, they inadvertently
prioritize solo inclusion of transactions, reducing the number
of times the transaction would be repeated in case more
transactions are pending than the size of the block and not
all proposers can add all transactions in their local block.

In Flashbots report [26], they also introduce a multi-
proposer system called Partially Ordered Dataset (POD)
to partially order the available set of transactions. Unlike

traditional consensus mechanisms that impose a strict trans-
action order, POD assigns timestamps that loosely order
transactions across replicas. Transactions can be submitted
to any replica. They will be recorded as long as they reach
a quorum of honest replicas, making it difficult for any
single entity to block or censor them entirely. Additionally,
POD includes mechanisms for detecting and documenting
censorship attempts, creating accountability for malicious
behavior. By supporting high throughput and rapid trans-
action propagation, POD reduces the window in which
censorship could occur. A formal analysis in the presence
of rational parties is not provided.

References

[1] M. Holden, “WikiLeaks says ”blockade” threatens its existence |
Reuters.” [Online]. Available: https://www.reuters.com/article/us-bri
tain-wikileaks/wikileaks-says-blockade-threatens-its-existence-idU
STRE79N46K20111024/?feedType=RSS&feedName=topNews

[2] “Canada convoy protest,” Sep. 2024, page Version ID: 1243947900.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Can
ada convoy protest&oldid=1243947900

[3] Robinhood, “Keeping Customers Informed Through Market
Volatility,” Jan. 2021. [Online]. Available: https://newsroom.aboutrobi
nhood.com/keeping-customers-informed-through-market-volatility/

[4] A. Robertson, “Robinhood is facing dozens of lawsuits over
GameStop stock freeze,” Feb. 2021. [Online]. Available: https:
//www.theverge.com/2021/2/1/22254656/robinhood-gamestop-stonk
s-trade-freeze-class-action-lawsuits

[5] U.S. Department of the Treasury, “OFAC Specially Designated
Nationals Data,” 2022. [Online]. Available: https://www.treasury.gov
/ofac/downloads

[6] A. Wahrstätter, J. Ernstberger, A. Yaish, L. Zhou, K. Qin, T. Tsuchiya,
S. Steinhorst, D. Svetinovic, N. Christin, M. Barczentewicz, and
A. Gervais, “Blockchain Censorship,” Jun. 2023, arXiv:2305.18545
[cs]. [Online]. Available: http://arxiv.org/abs/2305.18545

[7] F. Winzer, B. Herd, and S. Faust, “Temporary censorship attacks in
the presence of rational miners,” in 2019 IEEE European Symposium
on Security and Privacy Workshops (EuroS&PW). IEEE, 2019, pp.
357–366.

[8] E. Fox, M. Pai, and M. Resnick, “Censorship resistance in on-chain
auctions,” 2023. [Online]. Available: https://arxiv.org/abs/2301.13321

[9] V. Buterin, “State of research: increasing censorship resistance of
transactions under proposer/builder separation (pbs),” 2021. [Online].
Available: https://notes.ethereum.org/s3JToeApTx6CKLJt8AbhFQ#
Hybrid-PBS-can-we-use-proposers-only-for-inclusion-of-last-resort

[10] Francesco. [Online]. Available: https://notes.ethereum.org/@fradamt/
forward-inclusion-lists

[11] Michael, Vitalik, Francesco, Terence, potuz, and Manav, “Eip-
7547: Inclusion lists,” Oct 2023. [Online]. Available: https:
//eips.ethereum.org/EIPS/eip-7547

[12] Thomas, Francesco, and Barnabe, “The more, the less censored:
Introducing committee-enforced inclusion sets (comis) on ethereum,”
Feb. 2024. [Online]. Available: https://ethresear.ch/t/the-more-the-l
ess-censored-introducing-committee-enforced-inclusion-sets-comis
-on-ethereum/18835

[13] “Fork choice enforced inclusion lists,” Jun. 2024. [Online]. Available:
https://ethresear.ch/t/fork-choice-enforced-inclusion-lists-focil-a-sim
ple-committee-based-inclusion-list-proposal/19870

[14] E. I. Proposals, “Eip-7805: Fork-choice enforced inclusion lists
(focil) [draft],” Nov. 2024. [Online]. Available: https://eips.ethereum.
org/EIPS/eip-7805

17

[15] Vitalik, Eric, Rick, Matthew, Ian, and Abdelhamid, “Eip-1559,” Apr
2019. [Online]. Available: https://eips.ethereum.org/EIPS/eip-1559

[16] “Unconditional inclusion lists,” Jan. 2024. [Online]. Available:
https://ethresear.ch/t/unconditional-inclusion-lists/18500

[17] M. Al-Bassam, A. Sonnino, and V. Buterin, “Fraud proofs: Max-
imising light client security and scaling blockchains with dishonest
majorities,” arXiv preprint arXiv:1809.09044, vol. 160, 2018.

[18] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,”
in 40th annual symposium on foundations of computer science (cat.
No. 99CB37039). IEEE, 1999, pp. 120–130.

[19] J. Bonneau, “Why buy when you can rent? bribery attacks on bitcoin-
style consensus,” in International Conference on Financial Cryptog-
raphy and Data Security. Springer, 2016, pp. 19–26.

[20] P. McCorry, A. Hicks, and S. Meiklejohn, “Smart contracts for bribing
miners,” in Financial Cryptography and Data Security: FC 2018 In-
ternational Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort,
Curaçao, March 2, 2018, Revised Selected Papers 22. Springer,
2019, pp. 3–18.

[21] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Brei-
denbach, and A. Juels, “Flash boys 2.0: Frontrunning, transaction
reordering, and consensus instability in decentralized exchanges,”
arXiv preprint arXiv:1904.05234, 2019.

[22] C. F. Torres, R. Camino, and R. State, “Frontrunner jones and
the raiders of the dark forest: An empirical study of frontrunning
on the ethereum blockchain,” in 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp.
1343–1359. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity21/presentation/torres

[23] S. Wadhwa, J. Stoeter, F. Zhang, and K. Nayak, “He-htlc: Revisiting
incentives in htlc,” Cryptology ePrint Archive, 2022.

[24] H. Chung, E. Masserova, E. Shi, and S. A. Thyagarajan, “Rapi-
dash: Foundations of side-contract-resilient fair exchange,” Cryptol-
ogy ePrint Archive, 2022.

[25] I. Tsabary, M. Yechieli, A. Manuskin, and I. Eyal, “Mad-htlc: because
htlc is crazy-cheap to attack,” in 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 2021, pp. 1230–1248.

[26] O. Alpos, B. David, N. Kamarinakis, and D. Zindros, “Flashbots
report: System requirements, existing and new solutions, and their
efficiency.”

[27] E. Budish, “The combinatorial assignment problem: Approximate
competitive equilibrium from equal incomes,” Journal of Political
Economy, vol. 119, no. 6, pp. 1061–1103, 2011.

[28] I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah,
and J. Wang, “The unreasonable fairness of maximum nash welfare,”
ACM Transactions on Economics and Computation (TEAC), vol. 7,
no. 3, pp. 1–32, 2019.

Appendix A.
Nash Equilibrium

To compute the Nash Equilibrium for the input list-
building scheme (with γ = 1), consider the following:

Let pi represent the probability of choosing object mi

in a Nash equilibrium. In a Nash equilibrium, all parties
follow the same probability distribution of choosing the
object. Given this information, let party nj be the decision-
making party when picking objects and try to deviate from
the given Nash Equilibrium Probability. For this party, let

xpi
represent the probability of choosing an object mi. The

utility for such a party is given by

uj =

m∑
i=1

xpi
fi

n−1∑
k=0

(
n−1
k

)
(pi)

k(1− pi)
n−k−1

k + 1

=

m∑
i=1

xpi
fi(1− pi)

n−1
n−1∑
k=0

1

k + 1

(
n− 1

k

)(
pi

1− pi

)k

Let c = pi

1−pi

uj =

m∑
i=1

xpi
fi(1− pi)

n−1
n−1∑
k=0

(
n− 1

k

)
ck

k + 1

=

m∑
i=1

xpi
fi(1− pi)

n−1 · 1
c
·
n−1∑
k=0

(
n− 1

k

)
ck+1

k + 1

Now, from the integral of binomial expansion of (1 +
c)n−1(by parts from 0 to c)

n−1∑
k=0

(
n− 1

k

)
ck+1

k + 1
=

(1 + c)n − 1

n

From this and substituting c = pi

(1−pi)
,

uj =

m∑
i=1

xpifi(1− pi)
n−1 · 1

c
·
(
(1 + c)n − 1

n

)
=

m∑
i=1

xpi

n · pi
fi(1− pi)

n ·
(
(

1

1− pi
)n − 1

)
=

m∑
i=1

xpi

n · pi
fi · (1− (1− pi)

n)

We can ignore the higher order term for any 0 < pi < 1.
Thus,

uj =

m∑
i=1

xpi

npi
fi

For the Nash equilibrium to exist at values xpi = pi,∀i ∈ m,
all terms should be individually equal (so that multiplying
by xpi

yields the same value across all m terms). Thus, fi
pi

=
fj
pj

. Since each party selects k objects, we have
∑

pi = k,
this gives us

pi =
kfi∑
i fi

(10)

However, some pi can also be 0. For this to be the case, we
require that the utility term corresponding to i should be less

than the utility of all other utility terms. Thus, fi ≤
fj
npj

for all j such that pj ̸= 0. This implies if fi ≤
∑

fj
nk

then
pi = 0.

Some pi can exceed 1 as well, given the calculation
needed to find the value. In such a case, the probability will
be capped at 1, and all parties will choose that object.

18

The expected utility for the input list proposer would

be less than or equal to

∑
i:pi ̸=0

fi

n
(in cases where due to

randomness, one or more mi with pi > 0 did not get
selected). As an example, if there exist two objects with
values 3 each, and two parties select one object each. In
this case, if both parties select the same object (occurs with
probability 0.5), the utility for both parties is 1.5. In this
case, the expected utility for both parties is 2.25, which is
< 3.

Appendix B.
Allocation Examples

To look at various allocations, consider the following
example: 15 transactions exist with utilities 15, 14, 13, 11,
6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 1. Let there be 5 IL proposers,
choosing three transactions each.

Let’s consider 5 different allocations as shown in Ta-
ble 2. A1, A2, A3, and A4 represent the correlated equilib-
rium at various

Party Index Utility
U100 U70 U50 U0

A0

Party 1 [0, 5, 10] 21 21 21 21
Party 2 [1, 6, 11] 19 19 19 19
Party 3 [2, 7, 12] 17 17 17 17
Party 4 [3, 8, 13] 14 14 14 14
Party 5 [4, 9, 14] 8 8 8 8

A1

Party 1 [1, 4, 6] 14.6667 15.8333 17 24
Party 2 [0, 1, 3] 13.9167 17.1426 20.3333 40
Party 3 [0, 2, 3] 13.5833 16.726 19.8333 39
Party 4 [0, 2, 5] 13.0833 15.2554 17.5 33
Party 5 [0, 1, 2] 12.75 16.0887 19.5 42

A2

Party 1 [0, 2, 4] 14.0833 16.2554 18.5 34
Party 2 [0, 1, 2] 12.75 16.0887 19.5 42
Party 3 [1, 3, 5] 13.3333 15.4167 17.5 30
Party 4 [0, 1, 3] 12.0833 15.2554 18.5 40
Party 5 [0, 2, 3] 11.75 14.8387 18 39

A3

Party 1 [0, 1, 2] 11.5833 14.7715 18.1 42
Party 2 [0, 1, 2] 11.5833 14.7715 18.1 42
Party 3 [2, 3, 4] 14 16 18 30
Party 4 [0, 1, 3] 10.9167 13.9382 17.1 40
Party 5 [0, 1, 3] 10.9167 13.9382 17.1 40

A4

Party 1 [0, 1, 2] 8.4 11.0526 14 42
Party 2 [0, 1, 2] 8.4 11.0526 14 42
Party 3 [0, 1, 2] 8.4 11.0526 14 42
Party 4 [0, 1, 2] 8.4 11.0526 14 42
Party 5 [0, 1, 2] 8.4 11.0526 14 42

TABLE 2: Utility Received by Each Party for Different
Allocations. Up represents the utility of broadcasting the
list if the probability of broadcasting is p%

Appendix C.
Example for Algorithm 1

This example demonstrates the operation of algorithm 1
with n = 3 parties, m = 5 objects, k = 2 size of inclusion
list and U = [8, 6, 5, 3, 1] utility values of the objects.

In Step 1, the algorithm iteratively selects the highest-
value objects from U , dynamically adjusting selection
counts in N . This process continues until n · k selections
are made or all objects are fully allocated.

In Step 2, the algorithm distributes the selected objects
among the players. The objects are allocated based on their
adjusted utilities Uf and assigned in decreasing order of Uf .
Each round assigns objects in order, updating the players’
inclusion arrays Li. Step 2 starts with U = [8, 6, 5, 3, 1,
N = [2, 2, 1, 1, 0], Uf = [4, 3, 5, 3, 0] and A = [2, 0, 1, 3, 4]

Appendix D.
Fairness for Algorithm 1

Randomness has its limitations. On-chain randomness is
prone to grinding attacks and thus is not enough to guarantee
that the rewards from the input list-building scheme are
equally distributed. Thus, we prove that the round-robin
allocation of objects through algorithm 1 with γ = 1 follows
multiple definitions of fairness known in the literature. The
definition as proposed by [27]

Lemma 13. (EF1-Fairness) The allocation achieved in al-
gorithm 1 is 1-Envy Free.

Proof. The proof for the algorithm is simple. During Step
2, objects are allocated in a round-robin after sorting. Let
ori be allocated to party i in round r. The following two
properties hold due to sorted allocation.

U(ori) ≤ U(orj) ∀r; i < j

U(ori) ≤ U(okj) ∀j; k < r

where, U(ori) =
uori

nori

Let party j envy party i. If j < i, then in each round, the
utility gained by party j is greater than party i, and thus,
there is no envy. For j > i, let’s remove the first object
party i received. Thus, for each object received by party i
in round r, there exists an object in round r − 1 that party
j receives. Since the utility gained from an earlier round
is always more than that gained in the previous round, the
utility of party j is greater than that of party i if the last
object allocated to party i is removed.

However, the property of EF1 does not determine any
bound on the difference in utilities for all parties. In our al-
location, since a correlated equilibrium is maintained while
choosing the objects, we can also prove an absolute bound
on the utility difference between parties.

Lemma 14. (Bounded Envy) In Algorithm 1, the utility for
each party is at least half the utility of all other parties.

19

Loop Ucurr s N U after update

1 [8, 6, 5, 3, 1] 0 [1, 0, 0, 0, 0] [8, 6, 5, 3, 1]
2 [4, 6, 5, 3, 1] 1 [1, 1, 0, 0, 0] [8, 6, 5, 3, 1]
3 [4, 3, 5, 3, 1] 2 [1, 1, 1, 0, 0] [8, 6, 5, 3, 1]
4 [4, 3, 2.5, 3, 1] 0 [2, 1, 1, 0, 0] [8, 6, 5, 3, 1]
5 [2.66, 3, 2.5, 3, 1] 1 [2, 2, 1, 0, 0] [8, 6, 5, 3, 1]
6 [2.66, 1.5, 2.5, 3, 1] 3 [2, 2, 1, 1, 0] [8, 6, 5, 3, 1]

Round Description Variable State

1 Assign A[0] once,
A[1] twice

L = [[0, 0, 1, 0, 0], [1, 0, 0, 0, 0],
[1, 0, 0, 0, 0]]

2 Assign A[2] twice,
A[3] once

L = [[0, 1, 1, 0, 0], [1, 1, 0, 0, 0],
[1, 0, 0, 1, 0]]

Proof. We maintain the following invariant while selecting
objects in algorithm 1, except when nj = n.

ui

ni
≥ uj

nj + 1

If nj = n, then the object would be allocated to all n
parties since all parties are allocated an object only once.
Let’s say some party that picks object oi in the last round
envies the party that picked oj in the first round.

uoi

noi

≥
uoj

noj + 1

uoj

noj

≥ uoi

noi

In the proof for Lemma 13, we have that utility for a
party with object oj is lower than the utility for a party with
object oi if both oj and oi are removed.

U(Li \ {oi}) ≥ U(Lj \ {oj})

The difference for the party with object oi who envies
the party with object oj is given by,

U(Lj)− U(Li)

U(Lj \ {oj}) +
uoj

noj

− U(Li \ {oi})−
uoi

noi

≤ U(Lj \ {oj}) +
uoj

noj

− U(Li \ {oi})−
uoj

noj + 1

≤
uoj

noj

−
uoj

noj + 1
≤

uoj

noj · (noj + 1)
≤

uoj

noj · 2
≤ U(Lj)

2

Now that we have bounded the envy, can we do better?
In another definition of Envy Freeness in [28], we have

Lemma 15. (EFx-Fairness) The allocation achieved in Al-
gorithm 1 is EFx Fair.

Proof. Consider party j envies party i, i.e. U(Li) ≥ U(Lj).
Let ur

p be the utility from rth object allocated to party p ∈
{i, j}. We know that

ur
i

nr
i

≥
ur
j

nr
j

∀r

ur−1
p

nr−1
p

≥
ur
p′

nr
p′
∀p, p′ ∈ {i, j},∀r

Consider all objects allocated to party i in rounds 2, . . . , k−
1.

ur−1
j

nr−1
j

≥ ur
i

nr
i

∀r ∈ {2, . . . , k − 1}

∑
r∈{1,...,k−2}

ur
j

nr
j

≥
∑

r∈{2,...,k−1}

ur
i

nr
i

(11)

Further,

u1
i

n1
i

≥
uk
j

nk
j

uk
j

nk
j

≥ u1
i

n1
i + 1

≥ u1
i

2n1
i

uk−1
j

nk−1
j

≥
uk
j

nk
j

≥ u1
i

2n1
i

uk−1
j

nk−1
j

+
uk
j

nk
j

≥ u1
i

n1
i

(12)

Adding (11) and (12),∑
r∈{1,...,k}

ur
j

nr
j

≥
∑

r∈{1,...,k−1}

ur
i

nr
i

(13)

Which implies U(Lj) ≥ U(Li \ oki) where oki is the
lowest utility item in Li, and thus proving the algorithm
satisfies EFx Fairness.

Thus, we achieve the following fairness definition.

Theorem 4. (Fairness) Algorithm 1 achieves an EFx fair
allocation with the utility of each party being at least half
of any other party participating in the allocation.

Allocation Bribery Budgets
Fee tx 15 14 13 11 6 5 4 3,2,1,1,1,1,1,1

A0 8 6.5 5.5 3.5 0 0 0 0
A1 46.583 32.083 28.833 15.25 2.333 1.333 0.333 0
A2 46.25 31.75 28.5 22.25 2 1 0 0
A3 44.75 40.75 27 20.75 1 0 0 0
A4 49 44 39 0 0 0 0 0

TABLE 3: Censorship Resistance provided by each allocation.

20

The proof follows from Lemma 14 and Lemma 15.

21

