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Abstract. Vector commitment schemes are compressing commitments
to vectors that make it possible to succinctly open a commitment for
individual vector positions without revealing anything about other po-
sitions. We describe vector commitments enabling constant-size proofs
that the committed vector is small (i.e., binary, ternary, or of small
norm). As a special case, we obtain range proofs featuring the short-
est proof length in the literature with only 3 group elements per proof.
As another application, we obtain short pairing-based NIZK arguments
for lattice-related statements. In particular, we obtain short proofs (com-
prised of 3 group elements) showing the validity of ring LWE ciphertexts
and public keys. Our constructions are proven simulation-extractable in
the algebraic group model and the random oracle model.
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1 Introduction

Vector commitments (VCs) [83127] allow a user to commit to a vector m € D"
over some domain D by generating a short commitment. Later, the commit-
ter can succinctly open individual entries of m. Here, “succinctly” means that
the partial opening information (called “proof”) should have constant size, no
matter how large the committed vector is. As in standard commitments, a vec-
tor commitment scheme should satisfy two security properties: (i) The binding
property, which ensures that no efficient adversary can open a commitment to
two different values at the same position ¢ € [n]; (ii) The hiding property, which
guarantees that revealing a subset of components does not reveal any informa-
tion about messages at remaining positions.

Vector commitments found a number of applications in the context of zero-
knowledge databases [83], verifiable data streaming [79], authenticated dictionar-
ies [101], de-centralized storage [25], succinet arguments [9)80], cryptocurrencies
[100] and blockchain transactions [9I62].

In this paper, we consider the problem of extending vector commitments
with optimally short proofs that the committed vector m has small entries. A
straightforward solution is to generically use a general-purpose succinct non-
interactive argument (SNARK) for all NP languages [90]. While the SNARKSs of
[66/56168] would give constant-size proofs, they would require to represent the
statement as an arithmetic circuit. Then, the latter would have to compute the



opening algorithm (including exponentiations in a group) of the commitment
scheme, which would result in a complex circuit. In turn, this would require a
large structured common reference string (CRS) and make the proof generation
very expensive since, in pairing-based SNARKSs with very short proofs [56/68/52],
the CRS size grows linearly with the number of multiplication gates in the arith-
metic circuit. Inevitably, the computational cost of the prover grows (at least)
linearly with the circuit size as well. In this paper, we aim at proving smallness
more efficiently than by generically using a SNARK for all NP statements.

1.1 Owur Contributions

We revisit the vector commitment scheme of Libert and Yung [83] and propose a
technique allowing to argue the smallness of committed vectors without chang-
ing the scheme. Using a very small number of group elements (typically 2 or
3), we can prove that a committed vector is binary, ternary or that it has small
infinity norm. By slightly increasing the proof length, we can also prove that a
committed vector has small Euclidean norm or a small Hamming weight.

As a key building block, we describe a technique of generating a short proof
that a committed m has binary entries using only two group elements. This ar-
gument of binarity is proven knowledge-sound in the combined algebraic group
model (AGM) [49] and random oracle model. In addition, the scheme retains
the useful properties of the original vector commitment [83]. In particular, its
CRS size remains linear in the dimension n of committed vectors and it remains
possible to succinctly open the commitment for individual vector positions. As
in [82], it is also possible to prove that a committed (binary) m € Z, satisfies
a linear equation (m,t) = x for a public t € Z; and a public x € Z,,. Finally,
it retains the aggregation properties [82J62] that make it possible to generate a
constant-size proof for a sub-vector opening.

As a first application of our arguments of binarity, we obtain a new con-
struction of range proof featuring very short proofs. Regardless of the range
magnitude, each proof consists of only 3 group elements, which matches the
proof size of Groth’s SNARK [68] and improves upon the short range proof due
to Boneh et al. [12]. The construction extends to simultaneously prove possibly
distinct ranges for the individual entries of a vector & = (x1,...,x,,) without
affecting the proof size. As a special case, it implies very short proofs that a
committed x € Z™ has small infinity norm.

As a second main application, we provide short pairing-based non-interactive
zero-knowledge (NIZK) arguments for many natural statements appearing in
lattice-based cryptography. Specifically, we can argue knowledge of small-norm
elements sy, ..., s, of a cyclotomic ring R = Z[X]/(X? + 1) that satisfy a linear
relation Zf\il a;-s; = t, for public vectors of ring elements a1,...,ay;,t € R(]IV,
where Ry = R/(qR). Using only 3 group elements, we can prove the validity of a
ring LWE (RLWE) ciphertext [87], an RLWE public key, or even FHE ciphertexts
[18133]. We can also prove that a committed vector is a solution to an instance of
the subset sum problem, which is useful for all the applications considered in [40].



For the specific task of proving the validity of a ciphertext in the Lyubashevsky-
Peikert-Regev cryptosystem [87], we provide efficiency comparisons with Groth’s
SNARK [68], which is the state-of-the art construction featuring the same proof
size. We estimate that the size of the common reference string is reduced by a
factor 2. While slower on the verifier’s side, our scheme decreases the number of
exponentiations at the prover by a factor 4. The reason is that, on the prover
and verifier sides, the number of exponentiations only depends on the length of
the witness and not on the size of the arithmetic circuit describing the relation.
We also provide a variant where the verifier computes a constant number of
exponentiations. Our constructions thus provide more balanced tradeoffs than
SNARKSs between the complexities of the prover and the verifier. As such, they
can be useful in cloud or blockchain applications where it is desirable to min-
imize the overhead of the client even at the cost of increasing the workload of
the server. For example, in FHE-based private smart contracts [3898] (which
explicitly require ZK proofs of input awareness), a resource-constrained client
has to prove the validity of its input FHE ciphertexts before sending them to a
computationally powerful server performing homomorphic operations.

As another advantage over SNARKSs enabling similarly short proofs, our con-
structions can be used to prove other relations about encrypted data (like equal-
ities or inequalities between plaintexts) without any change in the CRS and
without a relation-dependent pre-processing phase.

Our NIZK arguments of range membership and ciphertext validity can be
proven simulation-extractable in the algebraic group model [49] and the random
oracle model (recall that all such succinct arguments have to rely on an ideal-
ized model [58]). Simulation-extractability guarantees knowledge-soundness even
when the adversary can observe proofs generated by honest parties. It thus pro-
vides non-malleability [43] guarantees against a malicious prover attempting to
create a proof of its own by mauling honestly generated proofs. As pointed out
in, e.g., [(AGY], it is an important security property in all applications where
succinct arguments are easily observable in the wild. For example, if a malleable
range proof is used to demonstrate the validity of confidential transactions (as
in the use case of [20]), it may fail to ensure transaction independence.

Fortunately, we can prove simulation-extractability without increasing the
proof length while even the random-oracle-optimized variants [I7/4] of Groth’s
SNARK have longer proofs. For the optimal proof length, existing SNARKSs
either provide a relaxed flavor of simulation-extractability [3] or they are signif-
icantly more demanding [69] than [68] in terms of CRS size and proving time.

1.2 Technical Overview

In asymmetric pairings e : G X G — G, the scheme of [83] uses a CRS containing
group elements (ga {gl = g(al)}iE[Qn]\{n-i-l}) and (ga {gl = g(at)}?:l)' The sender
commits to m = (mq,...,my) € Z,, by choosing y & Z, and computing
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To open a position i € [n] of m, the committer reveals a proof

O/l+1*’l
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which is verified by checking that e(C, gn1+1-i) = e(m;, §) - e(g1, Gn)™

To aggregate multiple proofs, PointProofs [62] uses the observation [82] that
the commitment of [83] allows proving that a committed m € Z,, satisfies an
inner product relation (m,t) = = for public t = (t1,...,t,) € Z; and = € Z,.
By raising the verification equation to the power ¢; € Z, and taking the product
over all ¢ € [n], we obtain

CHg”“ i Hﬂz 19) - (g1, gn) ==t (1)

PointProofs [62] aggregates proofs {m;}ics for a sub-vector S C [n] by deriving
aggregation coefficients {¢; };cs from arandom oracle and defining the aggregated

proof as the product mg = [],.g7;*. Verification then proceeds by testing the

equality e(C, §n+1_i)ziesti = 6(71'5,9) -e(g1, Gn)2=ies ™'t In the following, we
further exploit the aggregation properties of PointProofs.

PROVING BINARITY. Let a commitment C' = §7 - [/, 4% to @ € {0,1}" I
Using its proof aggregation properties, we prove that, for each i € [n], we have
x; (x;—1) = 0. To this end, we use a similar batching technique to BulletProofs
[20] and show that Y " y; - @; - (#; — 1) = 0, where y = (y1,...,¥yn) € Zy is a
vector of random aggregation coefficients obtained by hashing y = H (C’) using
a random oracle H : {0,1}* — Z. As long as y € Z; is chosen uniformly after
{z;}"_,, the probability to have Z 1Y ;- (x; —1) = 01is only 1/p if there
exists ¢ € [n] such that x; ¢ {0,1}.

In order to prove the statement using a constant number of group elements,
we first choose 7, & 7, and generate an auxiliary commitment

n
to the Hadamard product y o @ = (y1 - 1,...,Yn - ©5) (in the reversed order).

Then, we proceed in two steps.
In a first step, our prover has to demonstrate that it really computed C, as

a commitment to (Y, - Tn,...,y1 - 1). Since the commitment satisfies
e(Cy, §i) = . H 9y v ) -e(gr,ga)V T Mien]  (3)
J=1,5#i

! For our applications, we will assume that the commitment is in G rather than G in
order for the proof of knowledge-soundness to work out.



and the initial commitment C' = g7 - H;LZI Q;Ej satisfies
e(gn+1-i,C) =e gn+1 i H gn+1 z+J’g) (g1, gn)" Vie[n], (4)
J=L13#i

we can choose random exponents t = (t1,...,t,) <~ Z, and use them to raise
to the power t; - y; and to the power t;, respectively. If we then take the
products over all indices ¢ € [n] and divide them, we find that

n x; ti-yi
| (934—1—1‘ ) Hje[n]\{i} gn+1—i+j>

t;
n Ty Y Tj
T (97" - Thego gy 95557 10)

7Teq S

satisfies
tb 7 A
e(Hz 1gn+y1 z’C)
e( y7Hi:1 91‘ )

The reason why ., is a convincing proof that the prover computed C, as

= e(Teq, 9), ()

a commitment to (y, - Zpn,...,y1 - x1) is the following. Suppose that C, is a
commitment C, = g - [[/_; g,\}""] to some (21, ...,2,). Then, (3) becomes
e(Cy,9:) = e(m2,i, ) - e(g1, gn) >+ Vi € [n], (6)

Zn+1
where 7, ; =[] ie1,ji Inr 1 ; 4 1s the proof that a prover can compute to open

the (n + 1 — i)-th position of Cy,. Now, if we raise () to the power ¢; and divide
it from (4)) raised to the power ¢; - y;, we obtain
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where 7 = [ i 4} QZZH%‘H is the computable proof that allows opening the

i-th position of C' in . If ¢ is chosen uniformly after (z1,...,2n), (Y1,---,Yn)
and (z1,...,x,), then the probability to have > i t; - (y; - ; — zZp41-i) = 0
is 1/p if there exists ¢ € [n] such that z,41—; # v; - ;. In the construction, we
derive t = (t1,...,t,) = H(y, C, Cy) € Z,, from a random oracle to make sure
that ¢ is computed after y, (z1,...,2,) and (21,...,25,).

The proof 7., of the first step implies that C,, - H;-lzl g:ﬁ_ ; is a commitment
to the vector (yn - (xn — 1),...,91 - (x1 — 1)), where (z1,...,2,) is the vector
committed in C. In a second step, we prove that (Yn (xn—1),...,y1- (1= 1))
is orthogonal to (2, ...,21): i.e., Yi y; - @; - (x; — 1) = 0. From (1)), it can be
shown that such a proof is computable as

n
Y ( _1) i
my = (Cy - H9n+1 —j )7 H(QW' H gzj-i-lw—Jj-ﬁ-i)

je[n]\{i}



and satisfies
O H gn+1 j’ - e(ﬂ-y?g)'e(glagn)Z?:l y1I7(11—1) = 8(7Ty7g) (7)

In order to minimize the proof size, we will exploit the linearity of verifica-
tion equations (b)) and @ to aggregate m., and m, into a single group element

T = Teq' - m,” using random aggregation coefficients (Jeq, ) € Z3.
Eventually, the proof m = (Cy,7) € G? that C' commits to a binary vector
consists of the commitment Cy to (Y, - Zn,...,y1 - x1) and 7 € G.

PrROVING RANGE MEMBERSHIP. To obtain a constant-size range proof, we use
the fact that the commitment scheme of [83] is also an inner product functional
commitment. The prover has a Pedersen commitment [93] V' = §" - §7 in the
group G. In order to prove the statement 2 € [0,2¢ — 1], the prover considers
the bit representation (z1,...,27) € {0,1} of 2 and computes a commitment
C = g7 - Hf 1 gj , for a random v € Z,. Using the aggregation properties of
the commitment, it will prove that the committed x = (21,...,2, | 0" %) € Ly
satisfies: (i) Zf L@ - 27 =g (ii) @; € {0,1} for each i € [n].

In order to prove (i), the prover can adapt and generate a short proof
[T, 72" € G such that

Hgi;f D) =e([[72 " 9) - elgr, gu) == =2 (8)

and show that the exponent above e(gl, Jn) in is equal to the committed x
in V=g g% Since V satlsﬁes e(ng) = e(g1,9n)" - e(gh, ), the prover can

actually compute m, = Hf |2 " /g% such that

e(He 1 g?ll—l-ll 79 CA’)
e(gn, V)

Proving (ii) is addressed as explained earlier. Note that we do not need to prove
that the n — £ last positions of & are zeroes since the inner product in the right-
hand-side member of only involves the first £ positions of x.

In order to minimize the proof size, we will exploit the linearity of verification
equations @D, and @ to aggregate 7, m.q and my into a single group element.
In order to ensure knowledge soundness in the algebraic group model, we also
need to aggregate a proof element 7, showing that V is a commitment to a vector
of the form (z,0,...,0). The entire proof = = (C’, Cy,m) € G x G? eventually
consists of the commitment C' to the bits of z, the auxiliary commitment C,, to
(Yn * Tny---,y1 - 1) and the aggregated proof 7 € G.

= 6<7Tx, []) . 9)

BATcHING RANGE PROOFS. The above technique extends to prove multiple
range membership statements at once about the entries of a committed vector.



For a commitment V = §" - [T, 5%, the prover will convince the verifier that
xy € 0,2 — 1] for each k € [m] using only 3 group elements (we assume for now
that the same range is proven for each xj but distinct ranges can be handled).

To this end, we can use the same aggregation technique as BulletProofs
[20, Section 4.3] and compute C as a commitment to a vector of dimension
n = £ -m (where £ is an upper bound for ¢) obtained by appending the binary
expansions of all {zx}7 . Then, we can use a single group element to prove
that, for each k € [m], the k-th sub-vector & = (z.1,..., %k, 0,...,0) hidden
by the commitment C is a binary vector satisfying zj, = Zle T, - 2070

PROVING RELATIONS IN LATTICES. Here, we build on an approach considered
by del Pino, Lyubashevsky and Seiler [42] to prove lattice-related statements
assuming the hardness of computing discrete logarithms. The difference that
we replace the BulletProofs component [20] by our more compact proof that a
committed vector is binary. We also exploit the fact that the underlying vector
commitment [83] allows proving inner-product relations as in .

Let the polynomial rings R = Z[X]/(®), for some cyclotomic polynomial ¢ of
degree d, and R, = R/(qR). As in [42], we aim at proving the existence of small-

norm ring elements s = (sy,...,sy) € RM such that Zf\il a;-s; =t mod (¢, ?),
for public t € Rév and ay,...,ap € R(J]V. To this end, we proceed as in [42] and
re-write the relation as the following equality over Z[X]/(P)

M

Zai-si:t—l—rqmod(@), (10)

i=1

where » € RY is a vector of polynomials of degree < d — 1 and the compo-
nents of {a;};%; and t are interpreted as polynomials with integer coefficients in
{=1a/2],-..,1q/2] —1}. If ||si]lcc < B; for each i € [M], r contains polynomials
with coefficients of magnitude ||7[|cc < dM - max;c(ar(Bi)/2.

If we denote by ¢ : R — Z? the coefficient embedding that maps s; =
Z?zl Sij - X971 to its coefficient vector ¢(s;) = (si1,...,8:.4) € Z%, we can
re-write as a matrix-vector product over Z

(A | | Ay | —q-Ina]-[6(s1) | ... [ d(sm) | B(r)]T = o(t)  (11)

L

xT

for structured matrices Aq,..., Ay € Zfl\' dxd interpreted as integer matrices
over {—[q/2],...,|q/2]}. In order to prove (LI), the prover can commit to the
vector & € ZMaTNd ysing a vector commitment. Then, it can generate short
proof that ||¢(s;)||c < B; for each i € [M] and ||¢(7)||co < dM -max;cip(B;)/2.
Finally, it can prove that holds over Z,, where p is the order of pairing-
friendly groups. If p > 2Mgd max;(B;), this ensures that also holds over the
integers. In order to optimize the proof size, we commit to the binary decompo-
sition of (¢(s1),...,¢(sa), ¢(r)) and prove a relation that implies (LT)).

In order to minimize the number of exponentiations, we apply the Schwartz-
Zippel lemma in a different way than [42]: Instead of proving by considering



evaluations of degree-2d polynomialsﬂ we compress by left-multiplying both
members with a random vector 8 € Z[I)V 4 which allows processing all the rows
of using a short proof for a single inner product relation.

Just like [42], our protocol does not preserve soundness against quantum ad-
versaries. However, both protocols still provide viable solutions in applications
that only need to guarantee soundness at the moment of the protocol execution
(i.e., today and assuming that the adversary is not quantum). In particular,
they do not affect the post-quantum security of the encryption scheme as their
zero-knowledge property does not rely on any assumption.

ACHIEVING SIMULATION-EXTRACTABILITY. In our security proofs, one of the
main difficulties is to properly simulate proofs for adversarially-chosen state-
ments while remaining able to extract a witness (or break some assumption)
from a proof generated by the adversary. As noticed in, e.g. [53], the simulator
cannot use the trapdoor a € Z,, of the CRS since it would be incompatible with
a reduction from a g-type assumption in the AGM.

To address this problem, we build a trapdoor-less simulator [53] that can
simulate proofs for adversarially-chosen statements by programming the random
oracles and without using «. To do this, we exploit the fact that our range proofs
and our proof of valid RLWE encryption are obtained by aggregating various
sub-proofs satisfying verifications of the form , or . In each simulated
proof w = (C,Cy, ), we compute C and C, as commitments to vectors which
are programmed (as functions of previously chosen aggregation coefficients) in
such a way that the unique corresponding valid proof « is computable without
knowing the missing element g("‘nH) of the CRS. At the same time, we can argue
that the adversary cannot fake a proof using the simulator’s strategy. We show
that, with overwhelming probability, it can only come up with a proof m whose
representation depends on g(”‘"+1) if knowledge extraction fails.

1.3 Related Work

Vector commitments with logarithmic-size proofs are known since the Merkle-
tree-based construction [89]. In the last decade, several number-theoretic real-
izations were put forth and offered useful advantages such as additive homomor-
phism, very short proofs [83], stateless updatability [27], or sub-vector openings
[ROQITO0]. The first candidate with constant-size proofs was proposed by Libert
and Yung [83] under a g-type assumption. Constructions based on the standard
Diffie-Hellman assumption (in pairing-friendly groups) and the RSA assump-
tion appeared in the work of Catalano and Fiore [27]. Lattice-based schemes
were suggested by Peikert et al. [94]. While more versatile than their hash-based
counterparts, algebraic VCs also seem to require more fancy mathematical tools.
Indeed, Catalano et al. [28] recently proved negative results on the possibility of
discrete-log-based vector commitments without pairings.

2 More precisely, [42] proceeds by proving a relation Zfil a;-S;i—r1-q—7r2-® =1t over
Z[X], where r; and r2 contain polynomials of degree 2(d— 1) and d — 2, respectively.



POLYNOMIAL AND FUNCTIONAL COMMITMENTS. Polynomial commitments [75]
allow one to commit to a polynomial and subsequently prove evaluations of this
polynomial on specific inputs via a short proof (i.e., of length sub-linear in the
degree of the committed polynomial). Succinct polynomial commitments were
used in a number of SNARKS realizations (see, e.g., [88522TITT]). As shown in,
e.g. [24, Section 3.1], polynomial commitments imply vector commitments.

Functional commitments (FC) for inner products [72I82] generalize both vec-
tor commitments and polynomial commitments by allowing the sender to com-
mit to a vector m and succinctly prove linear functions of the committed vector.
The first flavor of inner product functional commitment was considered in the
interactive setting [72] while non-interactive solutions with constant-size proofs
are enabled by SNARKs. Libert, Ramanna and Yung [82] generalized the vec-
tor commitment of [83] into a non-interactive inner product FC in the standard
model while preserving its short proof size. Constructions with short public pa-
rameters in hidden-order groups were put forth in [34J2]. Lai and Malavolta [30]
proposed the notion of linear map commitments that allows a prover to reveal
a linear map evaluation, instead of just an inner product. At the expense of
losing the homomorphic property, Lipmaa and Pavlyk [85] provided an FC can-
didate for sparse polynomials. Boneh et al. [14] considered the dual notion of
function-hiding FC schemes (where the committer commits to a function instead
of a message) for arithmetic circuits, which generalizes vector commitments and
other flavors of commitments.

Among lattice-based realizations, Gorbunov et al. [63] implicitly described
non-succinct functional commitments for bounded-depth circuits. Peikert et al.
[94] proposed a succinct realization while relying on an online trusted authority
to generate proofs. Albrecht et al. obtained [I] a construction for constant-degree
polynomials over the integers as a building block for lattice-based SNARKSs. Suc-
cinct FC candidates for circuits recently appeared in the work of Wee and Wu
[102]. Independently, de Casto and Peikert [41] proposed a lattice-based function-
hiding FC for circuits, but without fully succinct evaluation proofs.

Vector commitments with succinct proofs of smallness can be seen as a spe-
cial case of functional commitments for Boolean predicates, where the smallness
bound is hard-wired in the circuit. However, functional commitments for general
circuits [4IJI02] seem ill-suited to our purposes since we aim at computationally
efficient schemes with very short proofs. Indeed, the function-hiding FC scheme
proposed by de Castro and Peikert [41] does not provide succinct openings (i.e.,
the opening size grows with the input length). While succinct, the construction
of Wee and Wu [102] would not compete with ours in terms of proof length and
CRS size (which is quadratic in the dimension of committed vectors in [102]).
Moreover, in our application to NIZK arguments, the scheme of [102] would
require the use of ad hoc knowledge assumptions in lattices for lack of a well-
defined lattice analogue of the algebraic group model. Balbés et al. [5] suggested
an alternative realization of FC for arithmetic circuits. However, its proof length
grows at least linearly with the depth of the arithmetic circuit, which would
translate into much longer proofs than ours.



In an earlier work, Catalano, Fiore and Tucker [29] proposed additively ho-
momorphic FCs for constant-degree polynomials and monotone span programs.
While their construction for polynomials and the Lipmaa-Pavlyk construction
[85] are both amenable to proving smallness statements, they would be less
efficient than our constructions, as discussed in Supplementary Material [A]
Moreover, their more complex CRS structure would make it harder to prove
knowledge-soundness in our setting, where the evaluation-binding property con-
sidered in [8529] would not suffice.

AGGREGATION AND SUB-VECTOR OPENINGS. On several occasions, we rely on
sub-vector openings and proof aggregation in the vector commitment of [83].
The notion of sub-vector openings was independently introduced and real-
ized by Lai and Malavolta [80] and by Boneh, Biinz and Fisch [9]. It allows a
sender to generate a short proof mg that opens a sub-vector mg of m, for a
subset S C [n]. Sub-vector openings are implied by the proof aggregation prop-
erty considered in [QITOTITO0/25]62I99], which allows anyone (and not only the
committer) to aggregate n individual proofs {m; };cs for a committed sub-vector
mg into a constant-size proof mg. Boneh, Biinz and Fisch [9] and Tomescu et
al. [100] realized same-commitment aggregation in hidden-order groups and un-
der g-type assumptions in pairing-friendly groups, respectively. Campanelli et
al. [25] introduced incrementally aggregatable vector commitments, which allow
different sub-vector openings to be merged into a shorter opening for the union
of their sub-vectors. Moreover, aggregated proofs support further aggregation.
By leveraging the linearity properties of the vector commitment from [83],
Gorbunov et al. [62] obtained a VC scheme enabling cross-commitment aggrega-
tion, which is useful in blockchain applications. The same-commitment variant
of their aggregation method is obtained by introducing a random oracle in the
inner product functional commitment of [82]. Our technique of proving that a
committed vector is a reversed Hadamard product of another committed vector
x and a public vector y is inspired by the randomized aggregation technique
of PointProofs [62]. The difference is that, while [62] uses proof aggregation to
succinctly prove sub-vector openings, we use it to prove linear relations between
related positions in distinct committed vectors.
Using aggregation techniques, Campanelli et al. [26] described a compiler
building linear map commitments from inner product functional commitments.
By instantiating vector commitments from polynomial commitments, Boneh
et al. [I0/T1] obtained an alternative VC system supporting cross-commitment
aggregation. Hyperproofs et al. [99] is yet another VC scheme allowing cross-
commitment aggregation with the additional feature that all proofs can be up-
dated in sub-linear time when the vector changes.

OTHER PROOFS OF BINARITY. Prior works on pairing-based commitments
[60U59] considered the problem of constructing constant-size proofs that a com-
mitted string is binary. However, these techniques apply to variants of Groth-
Sahai commitments [70] that are not succinct vector commitments: i.e., either
the commitment or partial openings (or both) do not have constant size. The

10



first candidate [60] was designed for perfectly-binding commitments, where the
commitment is longer than the committed message. The case of perfectly hiding
(compressing) commitments was considered in [59 Section 4.2] but the under-
lying commitments do not natively support constant-size partial openings. As
briefly alluded to in [59] Section 4.2.1], it is actually possible to build a succinct
vector commitment to bitstrings on top of the perfectly hiding commitments
from [59] Chapter 4]. However, the resulting construction has several limita-
tions: (i) The CRS has quadratic size in the dimension of committed vectors
(like the Diffie-Hellman-based vector commitment of [27]); (ii) It does not seem
to support constant-size proofs that the committed m € Zj satisfies inner prod-
uct relations (m,t) = x for public t € Z); and = € Z,; (iii) Proofs are somewhat
long and contain more than 20 group elements (according to Table 4.1 in [59]).

Das et al. [40] recently proposed another constant-size argument showing
that a committed vector is binary. While their construction can be modified to
build an alternative range proof to ours, it would result in longer proofs.

RANGE PROOFS. Range proofs were introduced by Brickell et al. [I9] and inves-
tigated in a large body of work [BII23|T6IRAGTIS0I37IGT] since then.

A standard approach [T9123I67I6TI20] consists in breaking integers into bits
and committing to these bits using homomorphic commitments. When it comes
to proving membership of a range [0, 2°—1], the resulting proofs generally contain
O(¥) group elements (and thus O(\ - £) bits, where X is the security parameter)
although somewhat shorter proofs [2367J61] are achievable using pairings. Using
a clever recursive folding technique, Bulletproofs [20] decreased the communi-
cation complexity to O(log{) group elements (i.e., O(X - log¢) bits) in general
discrete-logarithm-hard groups without a bilinear map.

Another approach [T6I84I6437] relies on integer commitments in hidden-
order groups, by decomposing positive integers as a sum of squares. The sum-
of-squares method was transposed [36I35] to groups of (sufficiently large) public
prime order. It was also adapted to class groups and lattices. For some parame-
ters in the standard discrete logarithm setting, the constructions of [36/35] were
shown to compare favorably with BulletProofs.

For some applications where the proof size is the primary concern (e.g., con-
fidential transactions in the blockchain [20]), it may be desirable to have even
shorter proofs than [20/36/35], even at the expense of losing the transparent setup
property. Using polynomial commitments, Boneh et al. [I2] suggested another
range proof inspired by SNARK arithmetization techniques [62]. Their construc-
tion can be realized from a variety of polynomial commitments [752TJ8T]. In in-
stantiations from pairing-based polynomial commitments [7582], it provides the
smallest communication cost to date, with proofs as short as 3 group elements
and 3 scalars. In our range proof construction, we further decrease the proof
length to that of the shortest known SNARKSs [68]. A detailed comparison with
[12] is given in Section

DISCRETE-LOG-BASED PROOFS FOR LATTICE RELATIONS. The use of special-
ized pairing-based arguments to prove lattice relations was considered to prove
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the correct evaluation of FHE ciphertexts [48]. However, the modulus of the lev-
eled FHE scheme had to match the group order of the pairing. This limitation
does not appear in the del Pino et al. approach [42] nor in our construction. We
note that the motivation of [48] was different since, in their setting, the prover
was the server while the verifier was a computationally constrained client. Here,
we consider use cases like [98] where the prover is the client (generating the proof
on its browser using a single thread) and the verifier runs on a computationally
powerful machine that can afford the use of multiple threads.

In applications to private FHE-based private smart contracts [98], the pro-
tocol of [42] was actually preferred to SNARKSs in order to obtain faster prover.
Our system can offer a similarly fast prover with the benefit of shorter proofs.

1.4 Organization

We first present our argument of binarity in Section [3| Our constant-size range
proof is described in Section [ Its batched multi-range extension is detailed in
Supplementary Material[D] Due to space limitation, our NIZK argument for ring
LWE ciphertexts is deferred to Supplementary Material [G]

2 Background and Definitions

2.1 Hardness Assumptions

Let groups (G, G, Gr) of prime order p with a bilinear map e : G X G — Gr.

We rely on the hardness of computing a discrete logarithm o € Z, given
{go‘i}ie[zn] and {ga"'}ie[n]. This assumption is similar to the m-discrete loga-
rithm assumption considered in, e.g. [49], except that powers o' are given in the
exponents in both groups G and G.

Definition 1 ([49]). Let (G,G,Gr) be asymmetric bilinear groups of prime
order p. For integers m,n, the (m,n)-Discrete Logarithm ((m,n)-DLOG)
problem is, given (g, go‘,g(““z), g g g%, 9 ), where o & Zyp, g ¢ G,
G & G, to compute o € Z.

2.2 Non-interactive Arguments

Let {Rx}x a family of NP relations. A NIZK argument for {R}, consists of
algorithms II = (CRS-Gen, Prove, Verify) with the following specifications. On
input of a security parameter A € N and, optionally, language-dependent pa-
rameters Ipp, algorithm CRS-Gen generates a common reference string pp and a
simulation trapdoor 7. We allow pp to parameterize the proven relation (when it
specifies the public parameters of a commitment scheme), which then becomes
Rep € {Rr}r. Algorithm Prove takes as input the common reference string pp,
a statement = and a witness w and outputs a proof @ when (x,w) € Rpp. Verify
takes in pp, a statement = and a proof 7w and returns 0 or 1. Correctness requires
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that, for any R € {Ra}x and any (z,w) € Rpp, honestly generated proofs are
always (or at least with overwhelming probability) accepted by the verifier.

NIZK arguments should satisfy two security properties. The zero-knowledge
property requires that proofs leak no information about the witness. Knowledge-
soundness property requires that there exists an extractor that can compute a
witness whenever the adversary generates a valid proof. The extractor has access
to the adversary’s internal state, including its random coins. Let the universal
relation R* for {R,} that inputs (Rpp,z, w) and outputs 1 iff Ry, € {Ra}a
and (z,w) € Rpp. We say that I = (CRS-Gen, Prove, Verify) is a NIZK argument
for R* if it satisfies the properties defined as follows.

Completeness: For any A € N, any (not necessarily efficient) adversary A,
there is a negligible function negl : N — N such that
Pr [Verifypp(x,w) =1 A (z,w) € Rpp | (pp,7) ¢ CRS-Gen(1*,Ipp),
(z,w) < A(pp) , 7 < Proveyy(z,w)] =1 — negl().
Knowledge-soundness: For any PPT adversary A, there is a PPT extractor
& 4 that has access to A’s internal state and random coins p such that
Pr [Verify (z,7) =1 A (z,w) & Rpp | (PP, 7) < CRS-Gen(1*, Ipp),
(z,m) < A(pp; p), w < Ealpp, (z,7), p)] = negl(N).

(Statistical) Zero-knowledge: There is a PPT simulator Sim such that, for
any A € N and any (not necessarily efficient) adversary A and any b € {0, 1},

Pr b« A% (pp) | (pp, T) + CRS-Gen(1*, Ipp)] = 1/2 + negl(X).

where O; is an oracle that inputs (z,w) and returns 7 <— Provey,(z, w) if
(x,w) € Rpp and L otherwise; O is oracle that inputs (z,w) and returns
7+ Sim(pp, 7, 2) if (z,w) € Rpp and L otherwise.

For many applications, it is desirable to strengthen knowledge-soundness by
considering an adversary that can observe simulated proofs (for possibly false
statements) and exploit some malleability of these proofs to generate a fake proof
of its own. The notion of simulation-extractability prevent such attacks.

Simulation-Extractability: For any PPT adversary A, there is a PPT ex-
tractor €4 that has access to A’s internal state/randomness p such that
Pr [Verifypp<x?7r) =1A (‘T5w) g RPP A (.1?,7'(') ¢ Q ‘ (pp77-) — CRS—Gen(lA, Ipp)a
(,m) &= ASMF (pps p), w <= Ealpp, (2, 7), p, Q)] = negl(A),

where SimProve(pp, ,-) is an oracle that returns a simulated proof m <+
Sim(pp, 7, z) for a given statement = and @ = {(x;,m;)}; denotes the set of
queried statements and the simulated proofs returned by SimProve.

In the following sections, we extend the syntax with an algorithm Com that
inputs a vector & € D" over a domain D and outputs a commitment C. This
commitment will be incorporated in the specific relation R, defined by CRS-Gen.
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2.3 Algebraic Group Model

The algebraic group model (AGM) [49] is an idealized model, where all algo-
rithms are assumed to be algebraic. Algebraic algorithms [T5[92] generalize the
notion of a generic algorithm [97] in that, whenever they compute a group el-
ement, they do it using generic operations, by taking linear combinations of
available group elements so far. Hence, whenever they output a group element
X € G, they also output a representation {c;}¥; of X = Hiv=1 g7 as a function
of previously observed group elements (g1, ...,gx) € GV in the same group.

In contrast with generic algorithms, algebraic algorithms can exploit the
structure of the group and obtain more information than they would in the
generic group model. Although its relation with the generic group model is un-
clear [76], the AGM provides a powerful framework to analyze the security of
efficient protocols via reductions. In particular, it has been widely used in the
context of SNARKs [49I88/52TTI55153].

3 Short Proofs That a Committed Vector is Binary

Our construction for binary strings is defined for the relation

Rop = {(x,w) — (V:gwngf’ € G, (v, (@1,...,2n)) € Zp X {0,1}")}

where pp denotes the CRS containing the commitment key (g, {g;}7,) and the
description of groups (G, G, Gr). Since the commitment is perfectly-hiding, the
proven relation is trivially satisfied because, for any group element V, there exists
a string @ € {0,1}" and a corresponding 7y € Z, such that V=g [T, g7
However, we can prove that the scheme is an argument of knowledge.

CRS-Gen(1*,1™): On input of a security parameter A and the maximal dimen-
sion n € poly(\) of committed vectors, do the following:

1. Choose asymmetric bilinear groups (G, (@, Gr) of prime order p > 2L
for some function [ : N = N, and ¢ &£ G, § & G.

2. Pick a ¢~ Z,. Compute g1, ..., 9n,gn+2:---,92n € G and g1,...,Gn € G,
where g; = g(@") for each i € [2n]\ {n+1} and g; = §(*") for each i € [n].

3. Choose hash functions H, Hy : {0,1}* — Z7 and H,gg : {0,1}* — Z2.

The public parameters are

pp = ((Ga Ga GT)y 9, gv {gi}iE[Qn]\{nJrl}a {gz}ze[n]a H= {H7 Hta Hagg}> :

Comp,(xz): To commit to a vector & = (21,...,2,) € Z7, choose a random

p7
v & Z, and compute C' = §7 - H?Zl gj’f. Return C € G and the opening

information aux =y € Z,,.
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Proveg, (C’, (x, aux)): given a commitment C and witnesses (sc; aux) consisting
of a vector @ = (z1,...,x,) € Z,, and randomness aux =y € Z, return L
if (x1,...,2,) € {0,1}". Otherwise, do the following:

1. Compute y = (y1,--.,Yn) = H(C’) € Z,,. Choose v, & 7, and compute
C — g’yy H g’n,—',—l“ 7

Then, compute t = (t1,...,t,) = H(y, C, Cy) €Zy.
2. Generate a proof

| (QZ+1—1: : Hje[n]\{i} 9ni1—i+j>
Teq = - . . o (12)
ILi= (giy TLiemp gnj-i-lj—j-‘ri)
which satisfies . .
e(TT" Vi ,C’
Y] 13

e(Cy. [Tz, 9 3i')
and argues that C,, commits to (Y - Tp,...,y1 - 71) € Zj.
3. Compute a proof

n

n
my=0" Lo - TI [I oo™ 4
j=1

i=1 jem\{i}

showing that > | y; - @; - (z; — 1) = 0 and satisfying

Cy Hgn+1 37 = e(my,9) (15)
4. Compute (3eq,dy) = Hagg(C, Cy) € Z2 and then 7 = moeT o,
Output the final proof 7 := (C,,7) € G
Verify,, (C’, 7r): Given C' € G and a purported proof m = (Cy, 7r) € G?,
1. Compute y = H(C) € Ly, (beqs0y) = Hoee(C,C,) € 72 and t =

Hy(y,C,C,) € 2.
2. Return 1 if the following equations is satisfied and 0 otherwise:

eq ti— y)U'L A
(o (lgl ll_I"HAaiq m -©) = e(r, ). (16)
Y i=19i

Correctness follows from the observation that equation is obtained by
aggregating -, for which a detailed proof of correctness can be found in
Supplementary Material
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We note that the prover can compute the entire proof using O(n) exponen-
tiations instead of computing m., and , using O(n?) exponentiations. To do
this, we note that the left-hand-side member of can be written e(g, §)F(®),
where P,[X] is a degree-2n polynomial obtained as

PolX) = (87 D000yt (g 1= 8,) ) XY - (30 Yy X9)
i=1 =1

n

n 2n
- (Wy—i-zyi'xi LX) (Z5eq'ti - X" ZZVi'Xi,
i=0

i=1 i=1

where the degree-(n + 1) coefficient is vy, 41 = &, - > 1y ¥i - (27 — ;) = 0. From
{Vi}?goﬂ-#n_H, the prover can compute m = ¢g*° - HZL#"H g;*, which is the
unique m € G such that e(g, §)7+(®) = e(x, §).

In the algebraic group model, the construction can be proven zero-knowledge
and knowledge-sound (the zero-knowledge simulator actually needs an algebraic
representation of the adversarially-chosen commitment C but this requirement
can be removed by swapping the groups where C and C, live). The proof of
knowledge-soundness can be inferred from the proof of Theorem [2| (in Section
, of which it is a sub-case. In the upcoming sections, we will combine the system
with other components in such a way that the combined arguments satisfy the
stronger notion of simulation-extractability.

In Supplementary Material [B] we provide a detailed comparison with the
construction of Das et al. [40] and show that our scheme yields more compact
range proofs. In Supplementary Material we also explain how to prove the
exact Hamming weight (or an upper bound thereof) of committed binary/ternary
vectors using 4 group elements.

4 A Range Proof With Very Short Proofs

Using the non-interactive argument for binary vectors from Section [3] we can
build range arguments made of a constant number of group elements.

In the description below, we assume ranges [0, B] such that B+ 1 is a power
of 2 but the approach easily extends to general ranges. The standard approach to
this problem is to consider the integer ¢ € N such that 2°~! < B < 2¢ and gener-
ate two range proofs showing that = € [0,2¢—1] and x+ (2 —1—B) € [0,2° 1],
where the second part is proven by leveraging the additive homomorphic prop-
erty of the commitment. Instead of generating two independent range proofs, we
can double the size of the CRS (by setting n = 2/, where £ > £ is the maximal
bitlength of the range) and avoid increasing the proof size. In Supplementary
Material [D.4] we provide more details on the treatment of general ranges.
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4.1 Description

We assume that the initial Pedersen commitment V = g" - gf to the witness
x € [0,2¢ — 1] lives in the second source group G of the pairing
The range membership relation is formally defined as

Rep = {(x,w) = (V = 5"+ 37,0) € G x N, (r,2) €2, x [0,2° = 1]) }

where the CRS pp specifies the commitment key (§, g1) and the groups (G, G, Gr).

CRS-Gen(1*,1™): On input of a security parameter A and the maximal bitlength
n € poly(A) of ranges, do the following:

1. Choose asymmetric bilinear groups (G, G, Gr) of prime order p > 2L,
for some polynomial function [ : N = N, and ¢ & G, § & G.

2. Pick a random o & Z, and compute 1y s Gns Int2,-- -, 92n € G as
well as §1,...,9n € G, where g; = ¢(®) for cach i € [2n] \ {n + 1} and
3 = ¢ for each i € [n].

3. Choose hash functions H, H; : {0,1}* — Zj, : {0,1}* — Z, and
H,g : {0,1}* — Z3 that will be modeled as random oracles.

The public parameters are defined to be
pp = ((Ga Ga GT)a 9, g7 {gi}ie[Qn]\{n+l}7 {gi}ie[n]v H= {H7 HSa Ht7 Hagg})

Com,p(z): To commit to an integer # € Z, choose a random r <~ Z, and
compute a Pedersen commitment V= g - g7 € G. Return com =V € G
and the opening information aux = r € Z,,.

Prove, (com, (, aux)): given com = V and witnesses (x; aux) consisting of an
integer x € [0,2¢ — 1] with binary expansion (x1,...,z,) € {0,1}, where
¢ <n, and aux = r € Z, such that V= g" - gf, do the following:

1. Set (z¢41,-..,o,) = 0"~% Choose v < Z, and compute

4
A AL 4
. I | gjj
j=1

together with a proof 7, € G that C' commits to (z1,...,2n) € Zy such
that Zle x; - 2271 = 2. This proof 7, satisfies

e(ITi_, 9211, C)
(gn, V)

3 Committing x to a different, pairing-free, group G would not strengthen security
since an adversary that would be able to compute a from pp would still break
knowledge-soundness. The construction of [12] similarly assumes that the integer x
is committed as a polynomial f[X] such that f(1) =z

= e(m2, ) (17)
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and is obtained as
2i—1
Ty = g;T : H (ngrlfi ' H gn+1 z+]) .
i=1 JEN{i}

2. Compute y = (Y1,--.,Yn) = H(V, C’) € Z,. Pick v, & 7, and compute

£
— Yy . Yjxj
Cy=g" - [[ o,

Then, compute t = (t1,...,t,) = Hi(y, V,C, Cy) €Zy.
3. Prove that Cy commits to (y1-21,...,yn Tn) € Z by computing a short
Teq € G (as specified in (12)) satisfying

e(Hz 1 gnb+ylb z’é)
e(Cy, Hi:l gi )

4. Prove that >."" ,y; - z; - (z; — 1) = 0 by computing 7, € G via ,
which satisfies

= e(Teq, 9)- (18)

Hgn+l _»C0) = = e(my, ) (19)

5. Generate an aggregated proof that V= g" - g7 is a commitment to a
vector that contains 0 in its last n — 1 coordinates. Namely, compute

Ty = H?:z (g:H»lfi : g,hg,i) i € G such that
e([Tonaoin V) = elmo, 9)- (20)

where s; = H,(i,[2,n],V,C,C,) € Z, for each i € [2,n].
6. Compute (05, bcq, 0y, 6y) = agg(V, C, Cy) € Zg and an aggregated proof

1 1 1
yy . Weéq ST

Output the final range argument which consists of

7= (C,Cy, 7). (21)

Verify,, (com7 71'): Given com =V € G and a purported proof 7 = (C’, Cy, 7r),

1. Compute y = H(V,C) € Z, (6,0eq,0y,00) = Hage(V,C.C,) € Z2,
t= Ht(y,V,C’,Cy) € Zy. Set 51 = 0 and s; = H,(i, [2,n],V,C’,Cy) for
all indices i € [2,n].
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2. Return 1 if and only if

i—

(C Hz 1 n+1 [ 1+(5Cq.ti76y).yi é) _
e(gff o g;ﬁi“i % V) (Cya | P A?eq t1)

where 0, ; =0, if i € [¢{] and 6,,; =0if i € [( + 1,n].

CORRECTNESS. The verification equation is obtained by raising equalities
, , and to the powers &, 0cq, 0y, and d,, respectively, and
multiplying the results together. In Supplementary Material we provide
detailed proofs of correctness for individual verification equations -.

EFFICIENCY. The cost of the prover is dominated by 3n exponentiations in G and
two exponentiations in G. Indeed, computing C at step 1 only requires one expo-
nentiation and a subset product (which is cheaper than an exponentiation) in G.
Step 2 requires n+ 1 exponentiations in G. Instead of individually computing the
proof elements (7, Teq, Ty, Ty), the prover can directly compute the entire prod-
uct 7 at step 6 using only 2n exponentiations since the aggregation coefficients
(02, 0eq, 0y, dy), y and t only depend on the commitments (V, C, Cy). This allows
the prover to obtain the coefficients allowing to compute 7 from {g;};xn4+1 via
3 polynomial products by proceeding in the same way as in Section [3| Overall,
the prover’s overhead amounts to 3n exponentiations in G, 2 exponentiations in
G, and O(nlogn) multiplications over Z,. The verifier’s work is dominated by
2n + 1 exponentiations in G, n exponentiations in G and 4 pairings.

In terms of proof length, 7 only requires one element of G, and 2 element
of G, which matches the optimal size of simulation-extractable pairing-based
SNARKs [69]. Using the KSS18 family of pairing-friendly curves suggested by
Kachisa et al. [74], each element of G (resp. G) can have a 348-bit (resp. 1044-
bit) representation at the 128-bit security level according to [45]. Assuming that
clements of G are three times as large as those of G, the overall proof length
does not exceed the equivalent of 5 elements of G, which amounts to 1740 bits.

In Section we give a detailed comparison among existing constant-size
range proofs. As shown in Table[I] our scheme provides the shortest proof length
and the smallest computational cost at the prover.

4.2 Security in the AGM & ROM

We first prove the zero-knowledge property in the random oracle model.

Theorem 1. The construction provides statistical zero-knowledge in the ROM.
(The proof is given in Supplementary Material [C.2])

The simulator in the proof of Theorem [I] proceeds by programming the ran-
dom oracles and also uses the trapdoor of the CRS. On the other hand, it works
for any given V € G without knowing an algebraic representation of V. If we
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restrict V' to be chosen by an algebraic adversary, it is possible to build an
algebraic simulator that does not rely on random oracles.

In the proof of simulation-extractability, we need to build a trapdoor-less
simulator, which does not use the trapdoor « of the common reference string.

Theorem 2. Under the (2n,n)-DLOG assumption, the scheme is simulation-
extractable in the algebraic group model and in the random oracle model.

Proof. In the AGM+ROM model, we show that, unless the (2n,n)-DLOG as-
sumption is false, there exists an extractor that can extract a witness from
any adversarially-generated proof w = (C’, Cy, 7r) and statement (V, [0,2¢ —1]).
Specifically, we give an algorithm B that can either extract a witness (z,7) with
z € [0,2° — 1] or solve an (2n,n)-DLOG instance by computing o € Z, from
{(gvglv s 79271)) (gla s agn)}v where 9i = g(al) and gl = g(al) for all i.

The given problem instance {(g,g1,---,,92n); (G1,---,Gn)} is used to define
the CRS pp. Note that g,11 = g("nﬂ) is not included in pp and will never be
used by B. Our reduction/extractor B then interacts with A as follows.

Queries: At each random oracle query, BB returns a random element in the ap-
propriate range. When A queries a hash value Hagg(f/, C ,Cy), B makes the cor-
responding queries y = H(V, C’), t = Hy(y, V.,C, Cy), {s; = Hs(3, v, 2,n])},
for itself before returning a tuple (dz, deq, 0y, 0,). At the first query involving a
group element, A provides a representation of this group element as a linear
combination of all the group elements that it observed so far in the same group.

At any time, A can choose a commitment com = V and ask for a sim-
ulated proof that V is a commitment to some integer in [0,2¢ — 1] for some
¢ < n of its choice. Since A is algebraic, it provides a representation of V w.r.t.
{Gi}icjo,n) and the commitments C' contained in earlier simulated proofs. How-
ever, the simulator used by B is itself algebraic and always simulates proofs by
computing C' as a linear combination of {Gi}icjo,n for coefficients of its choice.
Hence, for any V chosen by A, B can always compute a representation {v;}?"
such that V = gvo - [T, 47" We assume w.l.o.g. that either v; ¢ [0,2° — 1]
or (va,...,v,) # 0 since, otherwise, B can generate a real proof using (v, vg).
Then, B simulates a proof as follows without using g, +1:

1. Choose random vectors & = (0z,8eq, 0y, 0u) <= Zg, Yy = (y1,--.,yn) < 77,
t=(t1,...,tn) & Zj.
2. Let fn41 = 2?22 v; - 8; for random so, ..., s, & Zy. Define z, = y; and

(S'U' n .
alzvl—% Viel2,n] : a;=0

Note that a; ¢ {0,1} w.h.p. if v; & [0,2° — 1] or (va,...,v,) # 0. Then,
compute an arbitrary vector (z1,...,2n,-1) € Zg_l satisfying the equality
St oti Znr1—i =t1 - (a1 y1 — y1).

20



3. Choose random ag, zg <~ Z, and compute simulated commitments

n n
Azgao_Hg;}i:gao.gm’ Cy:gzo_HgiZzz.
=1 i=1

4. Tf one of the random oracle values H,eq(V,C,C,), H(V,C), Hi(y,V,C,C,)
or {H,(i,[2,n],V,C,C,)}" o was already defined, then abort and report fail-
ure. Otherwise, set y = H(V,0), t = Hi(y,V,C,C,), § = Haee(V,C, C,)
and s; = H,(i,[2,n],V,C, C,) for each i € [2,7].

5. Define the polynomials

n+¢

(Zal Xz) <Z2z 1 Xn+1 z) _ (;vl . Xz-i—n) _ ;qz . Xi7
n n n 2n
_ (Zzi.Xi_Zyi.Xn+17i> ) (Z%"Xi) :Zo,i.Xi
1=0 =1 =0 1=0

QeqlX (Zal Xl) ) (itl % ,Xn-i-l—i)
i=1
n n 27l
_ (gzlxl) . (Zti-X’> :;ej X0,

i=1
n n 2n
= (L x) (s ) =g
i=0 i=2 7=0
Their degree-(n + 1) coefficients are f,41 = ., v; - s; and

. ) B
Q7L+1:—U1+Zai'2l 1:_Ul+a1:_%a

On+1 = Zaz A\ Zn41—i yz) =aj - ( yl) 0

n

€nt1 = Zti (@i Yi — Zng1-i) =t (a1 -y1 — 1) — Zti “Zny1-i =0

i=2
due to the definition of a = (ay,...,a,) and z = (z1,..., z,). Note that
Oz * Gnt1 + 56(1 “eng1t 574 “Op41 0y fop1 =0 (23)
6. Define the polynomial
QagglX] = b2 - Qu[X] + beg - Qeq[X] + 6y - Qy[X] + 0y - Qu[X Zm X

1=0

for which 7,41 = 0 by construction. Compute ©m = H?217i¢n+1 g using
(9, {9i}iepzn)\{n+1}) and return the simulated proof = = (C', C,, 7).
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Note that the simulated 7 satisfies the verification equation

) l 85287 4 (Beqti—0y) -y (Oeqti—0dy)yi A
B(ny iz 9nvii ! ’ 'H;L:LH Iniii 70)
0z —8p+8i T ~Oeq-ti
e(gn Tl 91175 V) - e(Cy, T2y 3°)
and 7 has the same distribution as a proof generated by the zero-knowledge
simulator in the proof of Theorem [I] Indeed, 7 is uniquely determined by the

commitments (C’, v, Cy) and the Z,-elements y,t, {s;}7_,, and d in . Also,
while the committed vectors a,z € Z;; are programmed in a special way, they

=e(mg). (24)

are perfectly hidden by the randomness ag and zj in C and Cy.

Consequently, the simulation is perfect, unless a collision occurs when ran-
dom oracles are programmed in one of the simulation queries. If Qg (reps. Qg)
denotes the number of queries made by A to the simulator (resp. to random
oracles), this happens with probability at most (Qs + Q) - Qu/p-

Output: When A halts, it outputs a statement (V, [0,2¢71]), for some ¢ € [1,n],
together with a verifying proof « = (C, Cy, 7r).

Any malicious algebraic prover that comes up with a commitment com = 1%
and a proof w = (C, Cy, 71') also gives a representation of each group element
w.r.t. the group elements that have been observed so farE| In particular, A must
provide a representation of C, w.r.t to (g,{g:}ie[2n)\{n+1}) and the group ele-
ments {ngi),ﬂ(i)}ie[QS] contained in simulated proofs {r(V};c(qq. Likewise, A
must provide a representation of C' w.r.t (9,{9i}iem)) and the commitments
{O(i)}ie[Qs] contained in {’R’(i)}ie[QS]. However, for each i € [Qg], B knows
a representation of C) w.r.t. (g, {Gi}iem)) and a representation of C, w.r.t.
(9,{g:}7—,). Tt also knows a representation of each 7(") w.r.t (g, {9i}ticizn)\{n+1})-
From A’s output and the random coins of the simulation, 5 can compute scalars
{(91', Zl> S Z?y}ie[(),2n]\{n+1}7 {(ai, Ui> S Z?)}ie[o,n] such that

n 2n n 2n
A ~AQ; _ 2z o AVi — 0
c=1lar o= 11 o  Vv=Ilar. == 11 o~
i=0 1=0,i#n+1 i=0 i=0,i#n+1

where we define go = g and §g = ¢ for convenience.

If the representation (v, v1,...,v,) € Z3 of V is such that v; € [0,2¢ — 1]
and v; = 0 for all ¢ € [2,n], then B is done as it can simply output (v1,vg) € ZIZ,
as a valid opening of the Pedersen commitment V to an integer vy in the proper
range. We now assume that either vy & [0,2¢ — 1] or (vg,...,v,) # 0"~ L.

Solving (2n,n)-DLOG: By hypothesis, A’s statement (com = v, [0,2¢71]) and
proof w = (C’, Cy,w) satisfy , where y = H(V, C‘), t = Hy(y, V.,C, Cy), so =
0, 8i = Hy(i,[2,n],V,C, Cy) for i € [2,n], and (8, deq, by, 6y) = Hage(V,C, Cy).

We first note that a non-trivial valid 7 cannot recycle (V, C, C,) obtained

4 These representations are supplied by A at the first query involving the correspond-
ing group elements.
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from the simulation oracle (namely, we must have (V,C,C,) # (V®,C® . C,)
for all i € [Qg]) since the left-hand-side member of is uniquely determined
by (V@,C0), C’?Si)) and it in turn determines a unique valid 7(?). Consequently,
the hash values Hage(V,C,Cy), Hi(y,V,C,C,) and {H,(i,[2,n],V,C,Cy)} iy
were not programmed by the simulator in a simulation query.

We also note that the left-hand-side member of is obtained by rais-
ing those of — to the powers (g, deq, 0y, 0) and multiplying the results
together. Hence, it can be written e(g, §)7»#(®), where P,g4[X] is the polynomial

Pagg[X] = 51'Px[X] +5y ’ Py[X} +5eq'Peq[X] + 0y 'PU[X]

obtained as a linear combination of the polynomials

n V4 n n++t
P,[X] = (ZarXi) ) (Z2i—1 .Xn-‘rl—i) _ (sz _Xn+i) _ Zwi X1,
=0 . =1 . =0 § 1=0 o
P,[X] = (Zo +Z (Zng1—i —yi) - X" Z 2 -Xi) . (Z%"Xi) — Z% . X
=1 1=n-+2 1=0 1=0
qu[X] — ( - a; XZ) . (iti'yi ,Xn+1fi)
= Z:2171 n 3n
_< Z Zi_Xi).(Zti.Xi):Zﬁj.Xj,
i=0,i#n+1 i=1 =0

1=0 =2 =0

for which the left-hand-side members of (I7)-(20) can be written e(g, §)"=(),
e(g, §) (¥ e(g, )" and e(g, §)"(®), respectively.
Letting Page[X] = E?ﬁo v; - X%, the coefficient of its degree-(n + 1) term is

4 n
Vpt1 = 0g - (Z a; - 271 — v1) + dy - Z (Zn+1—i - yz) Qg
i=1 i=1

Ay A
= Wn41 = TYn+1
n n
+ Oeq - E ti - (@i Yi — 2ny1-i) + 0y - E Vi - i,
=1 =2
——
£ Bui1 £ fnt1

where (Wn41, Yn+1, Bnt1, Unt+1) are the coefficients of the degree-(n+1) terms of
(P:[X], P,[X], Pey[X], P,[X]), respectively. We argue that, if v; & [0,2¢ — 1] or
(va,...,v,) # 0" we cannot have v, 11 = 0, except with negligible probability.
This follows from the following two arguments:
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- The probability that p £ (Wni1, Yatt1, Bnst, ns1) = O is negligible if v, &
[0,2¢ — 1] or (va,...,v,) # 0" L Indeed, when (v,...,v,) # 0", we
have p,11 = 0, with probability 1/p over the random choice of {s;}?_, since
{s; = H,(i, [2,n],V,C’, Cy)}t_y are derived uniformly after the choice of
{vi}_5. Likewise, when z,11_; # a; - y; for some ¢ € [n], we have 5,41 =0
with probability 1/p since t = Hy(y, V,C, Cy) is derived after the choice of
Y, {ai}i—o and {zi}icjo,2n)\(n+1}- Then, if 2, 11-; = a; - y; for all i € [n], we
have y,41 = >, ¥i - (a; — 1) - a;, which cancels with probability 1/p if there
exists i € [n] such that a; & {0,1}. To see this, we distinguish two cases:

a. Ify=H (V, C’) was programmed in a simulation query, we only have
Yn+1 = 0 with probability 1/p since B chose (ay,...,ay) so as to have
Yn+1 = Z:-L:l yi-ai-(ai—l) e yl-a1~(a1—1) withy, €g Zp and a; ¢ {0, 1}
This covers the case of A attempting to recycle (V,C) = (V@ C®) from
a simulated () = (C®), C?Si), 7)), with a modified C,, # Cy).

b. If H(V,C) was not programmed by the simulator, then y = H(V,C)
was defined after B obtained the representation {a;}?, of C.. Over the
choice of y, we have >, y; - (a; — 1) - a; = 0 with probability 1/p.

If none of the above events occurs and w;,,+1 = 0, we have v; = Zle a;-2t71
and a; € {0, 1} for all i € [¢], which contradicts the hypothesis v; ¢ [0,2¢—1].

- If p # 0, then v, 1 # 0 with probability 1 — 1/p since § = Hoz(V,C,C,)
is derived after the choice of {(as,v:)}7—g, and {2i}ic(o,2n)\{n+1}, Which de-
termine p. So, a random § € Zf) satisfies (4, p) = 0 with probability 1/p.

If vp4+1 # 0, B can compute « € Z,, by observing that the aggregated verifi-
cation equation implies

r=gnt I 9 (25)
1€[0,3n]\{n+1}
_ (a2n+1) . (a?ﬂl) .
where gont1 = ¢ ey G3n = g are not available. However, B knows

{v;}3n,. Since v,11 # 0, we are guaranteed that the representation of 7

differs from its representation m = H?;LO i1 gf" revealed by A as part of its

output. This means that o € Z,, can be found among the roots of the non-zero

3n
RX]= ) (i=0)- X' 4vap- X" Y
1€[0,2n]\{n+1} i=2n+1

4.3 Batched Range Proofs and Proving the Smallness of Vectors

As detailed in Supplementary Material D] the construction extends to prove mul-
tiple ranges at once for a committed vector V = ¢"-[[;-, gi* of integers. Namely,
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C commits to concatenation of the binary decompositions of all {x}7",. Then,
a single group element allows proving that, for each k € [m], the k-th sub-
vector ¢ = (Tg,1,-..,%ke,0,...,0) hidden by C is a binary vector satisfying
Tp = Zle xk,; - 271 For the k-th slot, the prover computes 73, € G such that

¢
i1 N I R
e(HgZ+1—((k—1)l7+i)’C) = e(g1,9n)™ - e(Tx, 9) (26)
=1

Since V is itself a vector commitment, the prover can compute m, ; such that

e(gka V) = e(gla gn)xk ' e(ﬂv,ka g) (27)

Then, by dividing from , raising the result to a random power &, € Z,
and taking the product over all indices k € [m], we find that the prover is able
to compute a short m = [}, (7 /7y )5 such that

i- 3
(1Tt (Hf:l 972L+11—((k—1)l7+i)) *.0)
e(ITis, gifck7v)

= e(m 9), (28)

which argues that xp = Zle zp,; - 271 for all k € [m]. Indeed, otherwise, we
have Y 0, &k - (zp — Zle zg,;-271) = 0 with negligible probability 1/p as long
as (£1,...,&n) are chosen uniformly after the commitments V and C.

The remaining proof elements are computed exactly as in the single-slot
setting, so that the final proof 7 still lives in G x G2. This immediately provides
a short proof that a committed vector has small infinity norm. By introducing a
few more group elements in the proof, we can also prove small Euclidean norms,
as explained in Supplementary Material [E]

4.4 Comparisons

Our construction assumes that the witness x is committed using a Pedersen
commitment in the pairing-friendly group specified by the CRS of the range
proof. The range proof of [12] similarly requires x to be committed as a constant
polynomial using the CRS of a polynomial commitment scheme.

The BFGW range proofs [I2] were the shortest ones so far and they also
feature constant verification time (whereas our verifier computes O(n) expo-
nentiations, where n is the maximal bitlength of the range, as in BulletProofs).
When instantiated with KZG commitments [75] and the cross-commitment eval-
uation techniques of [I1, Section 4.1], BEFGW proofs consist of 2 commitments
to polynomials (each of which takes an element of G), 3 elements of Z, repre-
senting evaluations of committed polynomials, and a batched evaluation proof
comprised of a group element and at least one scalar If their construction is in-

® In randomized versions of the KZG commitment (described in [75} Section 3.3], [IT}
Appendix B.2] and [104]), each evaluation proof consists of an element of G and at
least one scalar or an additional element of G.
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stantiated with the polynomial commitment of [82, Section 4.1}@ and the batched
evaluation protocol of [IT] Section 4.1], the communication cost decreases to 2
elements of G (which commit to polynomials), 3 scalars (for polynomial evalua-
tions) and a single element of G for the batched evaluation proof. In the latter
case, the range proof of [12] only requires 3 elements of G and 3 elements of
Z,. On the downside, combining [I2I82] induces 2n exponentiations in G at the
verifier (instead of O(1) using KZG commitments) and increases the prover’s
overhead to 7n exponentiations in G.

Not only does our construction ensure simulation-extractability in the AGM,
it also features the smallest number of exponentiations at the prover (which is
reduced by at least 40%) while matching the shortest proof length of SNARKs.

Table 1. Efficiency comparisons between constant-size range proofs

Schemes Proof size CRS size  Prover cost Verifier cost
BFGW [12] 3 x |G| (4n+2) x |G| b5n expg 3P + dexpg
+ KZG [75), Section 3.3] 4 X |Z,| 4 x |G| 1expg
BFGW 4 x |G| (2n+1) x |G| 5n expg 3P + 4expg
+ Zhang et al. [104] 3 X |Zy| 3 x |G| 1expg
BFGW 3 x |G| 4n x |G| ™ expg 3P + 2nexpg
+ LRY [82] 3 X |Zy| 2n x |G| 2 expg
Groth16 [68] 1 x |G| 3IC| x |G| 4/C| expe 3P + O(1) expg

2 x |G| ICI < |G| |C] expg
New construction 1x |G 2n x |G| 3n expg 4P + 2nexpg
(Section 2 x |G| n x |G| 1expg nexpg

n multg

expg and expg denote exponentiations in G and G while multg denotes a multiplication in G;
n denotes the bitlength of the range; P stands for a pairing computation; |C| is the size of the
arithmetic circuit verifying a commitment opening.

In terms of space, our construction also improves upon BulletProofs [20], which
requires the prover to send 2[log¢| + 4 group elements and 5 elements of Z,.
If we compare with SNARKS, we obtain the same proof size as optimally short
candidates [68J69] with the advantage that our CRS size is much shorter: It only
depends on the maximal bitlength n of a range rather than the size of a circuit
representation of the statement. Also, our prover only needs to compute O(n)
exponentiations instead of a number of exponentiations growing with the size
of an arithmetic circuit that computes a commitment opening (which would be
very large as the circuit would have to compute modular exponentiations).

5 In order to prove the knowledge soundness of the range proof of [I2] when the poly-
nomial commitment of [82] is used, it is necessary to rely on the latter’s knowledge
soundness in the AGM (as defined in [1I, Appendix C.1.3]) but we believe this
property holds under the (2n,n)-DLOG assumption.
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In Table [I} we compare our constant-size range proofs with existing pairing-
based solutions featuring similarly short proofs. Several instantiations of [12] are
considered for different polynomial commitment schemes that are known to pro-
vide constant-size evaluation proofs. Among schemes that do not generically rely
on SNARKS, we only consider those where the CRS size is at most logarithmic
in the maximal range magnitude N = 2™ (i.e., linear in n). For example, Table
does not include range proofs based on lookup arguments [SIT03] as they would
require a CRS of size O(N) = O(2"). For a range [0, 23], this would translate
into a CRS of about 30 GB instead of 6 KB in our construction.
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Supplementary Material

A On Proving Smallness via Functional Commitments
for Constant-Degree Polynomials

Catalano, Fiore and Tucker [29] recently built additively homomorphic FCs for
constant-degree multivariate polynomials and monotone span programs. The for-
mer could be used to build short proofs of binarity by showing that the degree-2
polynomial f(z1,...,2,) = > i, yi - ; - (z; — 1) evaluates to 0 for random co-
efficients {y;}7 ;. Nevertheless, their construction for degree-d polynomials has
a CRS size O(n?). If we were to use it as is to prove that a committed vector is
binary, we would end up with a quadratic-size CRS (instead of linear in our con-
struction) and longer commitments containing two group elements. Moreover,
the shape of the CRS would make it harder to prove knowledge-soundness in the
algebraic group model (note that their notion of evaluation—bindingﬂ would not
suffice for our purposes). The reason is that their CRS contains elements of the

form (go‘] g )jcn?], for some secret 3, a € Zj,, while some components of hon-

estly generated commitments are of the form 92?11 i*(@") and only depend on
{g* }jem)- Hence, it is not clear how the AGM would enable knowledge extrac-
tion from an adversarially-generated commitment/proof since the commitment
can depend on all generators contained in the CRS, including {g” o }iema)-

To avoid these difficulties and decrease the CRS size to O(n) group elements,
it is tempting to exploit the sparsity of the polynomial ), y; - 2; - (x; —1). Then,
in the closest adaptation of the technique from [29, Section 4] that we can think
of, either the commitment or the opening is longer than ours by at least one
group element: The prover would include a commitment C' € G to the product
xox = (22,...,22) in the opening before proving that & o  — z satisfies an
inner product relation (xox —x,y) = 0 and that C is consistent with the initial
commitment C' = g7 H?=1 gjj to x, which is part of the statement. To do this,
the prover would have to include at least one additional group element (typi-
cally, an auxiliary commitment C to a reversed version of yox in G if the initial
commitment C lives in G) either in the commitment or in the opening. Then, it
would have to prove that C, and C and C are consistent with one another by
computing a pairing e(C, C ) and a pairing of C' with some public encoding of y.
Hence, the auxiliary commitment C' would have to be part of either the initial
commitment or the opening, thus increasing the global communication overhead
(besides the main commitment C) to 3 group elements (C, C,7) if 7 is an aggre-
gated proof showing the consistency of all commitments. In our applications to
range proofs and short proofs for ring LWE ciphertexts, this would increase the
proof length by at least one group element. Our approach avoids this overhead

" In short, evaluation-binding means that no PPT adversary can prove distinct eval-
uations for a given function of the committed vector.
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since, instead of including a commitment to (z%,...,22) in the proof, we include
a commitment to the reversed Hadamard product (y,, - @, ..., y1-21) so that we

only need two group elements to argue that . y; - z; - (x; — 1) = 0. This allows
us to reach the smallest proof length of SNARKSs [68] in our proofs of smallness
and valid ring LWE encryption.

We also note that the technique of [29] Section 4.1] could be used to prove
that a committed vector has infinity norm < B by showing that the polyno-
mial Py(x1,...,2Zn) = > ;1 Yi- Hje[—B,B] (z; — j) evaluates to 0 for a random
y € Z,,. However, the commitment size would grow with B (since it grows with
the degree of the polynomial) while the proof length would grow with log B. In
contrast, both sizes are constant in our construction of Section

In an earlier work [85], Lipmaa and Pavlyk used the arithmetization of
SNARKs [56] to construct succinct FC for sparse polynomials, where the num-
ber monomials is small w.r.t. the number n of variables. Their construction
could be used as well to prove that a committed vector (x1,...,xz,) satisfies
Sy xi - (z; — 1) =0, for a random y € Z,, derived from a random oracle.
While their openings only consist of one group element, their scheme is more
complex and using it in our setting would be significantly less efficient than our
construction from Section [3]in other metrics. First, their commitments are larger
and contain element of both sources groups G and G (concretely, 2 elements of
G and one element of G) In our applications of sections |§| and (G| this would
lengthen the proofs by at least one element of G. Also, their CRS is more complex
and contains 2v + u elements of G and v elements of G, where v is the number
of multiplication gates in the arithmetic circuit that computes the polynomial
(which would be ¥ = 2n in our setting) and p is the number of wires (here,
we would have p > 2n). Their prover is more expensive as well and computes
more than v + 1+ p1 + 2413 exponentiations in G, where 1, and p, denote the
lengths of private and public inputs (in our setting, this would amount to at
least 7n exponentiations in G). Moreover, their verification algorithm computes
a product of 5 pairings (instead of 3 in Section [3) and ppg = n exponentiations
in both source groups.

Finally, the complex structure of their CRS would make it harder to prove
knowledge-soundness in our context as it contains multiple monomials oy’ in
the exponent (with j > 1), while “valid” commitments have components that
only depend on monomials o'y, which have degree one in 7. In the AGM, this
would complicate the task of the knowledge extractor since maliciously gener-
ated commitments come with a representation that possibly depends on all group
elements contained in the CRS.

B Das et al.’s Binarity Argument

Das et al. [40, Section 4.2] recently described a constant-size argument showing
that a committed vector is binary. Their construction builds on KZG commit-
ments and inherits their constant verification time. We consider the problem of
building an alternative constant-size range proof using their binarity argument.
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In [40, Section 4.2], a commitment to a vector x = (z1,...,2,) € {0,1}"
is obtained by committing to a polynomial b[X] such that b(w?) = z; for each
i € [n], where w is a primitive n-th root of unity. In asymmetric pairings, the
CRS contains (g, g, {g*", §*)}7,) and a commitment is of the form C = g,
In order to show that b(w?) € {0,1} for each i € [n], the prover shows that the
product b[X] - (1 — b[X]) vanishes everywhere on the domain H = {w,...,w"},
which is equivalent to showing that it is divisible by the vanishing polynomial
Zg =l (X —w).

To prove the statement, the prover has to reveal w = (C = g ) € G2
such that e(C, §/C) = e(my, §7#(*)). As described in [40], the construction has
the same proof size as our argument system of Section [3] However, it is not
zero-knowledge since the underlying KZG commitment is deterministic.

A standard trick (used in, e.g., [52]) to achieve zero-knowledge is to add a ran-
dom multiple of the vanishing polynomial to the committed b[X] as it does not
change its evaluations on H. One can compute the initial commitment to b[X]
(which has degree n—1 since b(w*) = ; for each i € [n]) as C' = gb(@)+7Zu(e) for
a random 7 ¢~ Zp In order to generate a proof that z; € {0,1} for each i € [n],
the prover can compute C' = g?(@)+sZ1(@) for 4 random s & Z,, and , such that
e(C,5/C) = e(my, §%7 (@) since (b[X]+s-Zg[X])-(1—b[X]+r-Zg[X]) is divisible
by Zg[X]. However, the prover has to additionally prove that C and C commit
to the same b[X]. This can be done by introducing an additional proof compo-
nent m,, = ¢"~* that satisfies e(C,§)/e(g,C) = e(meq, §77(*)) and shows that
C and C are deterministic KZG commitments to polynomials b[X] 4 r - Zz[X]
and b[X] + s - Zy[X] that differ by a multiple of Zy[X]. If the commitment
of the statement is C' and the simulator knows an algebraic representation of
C, it can simulate a proof using o as a trapdoor In this version, each proof
requires 3 elements of G. This can be reduced to 2 elements of G by computing
an aggregated proof my = 7 - qu satisfying

146 4
NG _ oy, g71() (29)
e(C- g% C)
where § is obtained by hashing C' and C.

In order to obtain a range proof, the argument of binarity should be combined
with an inner product argument showing that > ., z; - 2i=1 is equal to the
committed integer . In [40], Das et al. use the observation from [8] that, if a[X]
and b[X] are polynomials such that a(w’) = a; and b(w®) = b; for each i € [n],

8 In the proof of knowledge-soundness, the AGM-enabled knowledge extractor can
recover b[X] from the algebraic representation of C by performing an Euclidean
division (of which b[X] can be interpreted as the remainder since it has degree n —1
while the divisor Zg[X] has degree n).

9 If the commitment of the statement is C' € G and the second commitment C is part
of the proof, the simulator can even simulate a proof for a given C' without knowing
an algebraic representation of it.
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then we have
alX] - b[X] = q[X] - Zu[X] + X - r[X] + (a,b) - n"!

for unique polynomials ¢[X], r[X] of degree n — 2. Therefore, if a(w?) = 2¢~! for
each i € [n], the prover can compute proof elements m, = g1 7. = g"(®) such
that

e(C, §"V) = e(mq, 1)) - e(mr, §%) - (g™, §)" (30)

While e(g'/™, §)* cannot be revealed (as it would not be zero-knowledge), the
prover can compute its initial commitment to the integer x € [0,2" — 1] as
V = gottZu(@) for a random t & 7Z,, which satisfies

e(V,g"™) = e(g,§)"/™ - e(g"/™, g% ().

If we divide the latter equation out of , we obtain

e(CVga(oz)) _ t/n ~Zp(a) Py’
W = e(ﬂ'q/g g ) e(mr, §%) (31)

If we now aggregate the verification equations and 7 it is then possible

. 82
to obtain a compressed proof m = m, - @), - m° satisfying

e(c’ g1+5+62~a(a))

~Z (o) ~6%.a
6(V627§]1/n) .e(C‘géaC’) )

=e(mg ) -e(mr, g

where 6 = H(V,C,C) € Z,. The final proof that V = ¢g*+*Z#(®) commits to an
integer x € [0,2™ — 1] should contain at least the group elements (C’, C,m,m)
(which is already longer than our proofs) and cost at least 5 pairings to verify.

Moreover, in order to ensure knowledge-soundness in the AGM, the prover
should also convince the verifier that V' was really computed as a commitment
of the form ¢g®t*%#(®) (ie., it commits to a constant polynomial ). Since the
commitment V is randomized by adding a random multiple of Zy(«) in the
exponent, it is not clear how this can be done using the degree check techniques
of [88]. One option is to use a Schnorr-like X-protocol proving knowledge of the
underlying (z,t), which introduces two scalars in the proof.
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C Deferred Material for the Range Proof of Section

C.1 Proof of Correctness

The first verification equation (|17)) is satisfied because
n
2i71 A 27, 1
e(HgnJrlfw H€ gn+1 Za
i=1
Ax 21 1 21 1
:He Int1-,9" - H 7) H ng sgnt1-i)
i=1
21 1
:He gn—&-l % Hgn-',-l-',-] ug

n
. n 2171 )
26(9179n) (H gn+1 i H gn+1 7,+] 79)
=1

jem\{s}

and e(gn, V) = e(gl,gn) e(gr, §), so that dividing out the two equations yields
e(I1;- 19n+1 i C)/e(gn, V) = e(my, §) when z = Z@ i 27

Similarly, the second verification equation follows by dlviding the fol-
lowing two equalities:

n

tiys
B(H n+1 z’ Hegn—i-l za
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I

\ "

—= ]
I
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-

. ) R 3 tiYi
(e(gl’gn)xl “e(9: G H Int145—i )
j€[n]\{i}

(e(glagn) 9n+1 i H 9n+1+j—i7§))ti.yi
jen)\{i}
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Il
-

= e(glv gn)z?zl Yili-T;

n
tiyi
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i=1 Jeln\{i}
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e(Cy,Hgfi) N H (Cy. 30)" = H g Hgnﬁ; J’gz

=1 i=1 =1

n
H Hgn+1/ J+Zag
n
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As for equation , we have

n

( A A%
e(Cy - HgnH =k *e( S Hggzj-irlxjj g ”Hg;‘)
i=1
n n
( '—1) T
e(Cy - Hgn+1 #97 He( o) ’g)
=1 j=1

n
~ n . — 1)
= 6(917977,)21:1 vi-wi(@i—1) g’ - H gli’i (jj )79)

n
Te(r TTsiiiad)™ o)
i=1

n]\{i}
—e(g7- Hglfi R | (LR | R )
i=1 j€mI\{3}

where the last equality holds because x;(z; — 1) = 0 for each i € [n].
Equation is satisfied by m, = [T\, (g5, 1_; ~gf§+2_i)s’ € G since

n n
e([Jo51 V) H e(gns1-i:9" - §7)"
1=2

I
:]: i

s
||
N

n
(gr -gf,§n+1_i)si = He(g:prl,i 'gf7,+27iag)8i = @(Wv7g)~
=2

C.2 Proof of Theorem [i]

Proof. We describe a simulator that perfectly simulates proofs using a trapdoor
tk = a € Z, and by programming the random oracles. Given a commitment Ve
G, the simulator computes C,, = g% € G for a randomly chosen 6, & Z,. Next,
it obtains s; = H,(i,[2,n],V,C,C,) for each index i € [2,n]. It then uniformly
chooses Yy = (y1,...,yn) €= Zi, t = (t1, ..., tn) €= Z2, & = (64, 0cq, 0y, 60) < Zj,
sets so = 0, and computes

B, (@) = S0y 0y 51 (")
Oy Oy + 2201 (0ai - 2071 + (Oeg - ti — Oy) - i + 0o - wi) - (amT177)’

where 6,; =9, if i € [¢{] and d,,; =0 for all i € [¢ + 1,n].

Note that the denominator is uniformly distributed over Z, and non-zero
with probability 1 — 1/p. Then, it chooses v <~ Z,, and computes a commitment
C =V>.§7. It aborts if y = H(V, C‘), or Hagg(V, C, Cy) or Hy(y, V,C, Cy) was
already defined. If the simulator does not fail, it computes

b — N\ Y n .\
= (C(s Hgn+1 2 Seq-ti 5y)y1,) . (Hg?eq tz) ) (32)

i=1

)\:
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Then, it programs the random oracles to have Hagg(V, C, Cy) = (03, 0eq, Oy, 0p),
y= (V 0), t = Ht(y,V C,C,) for each i € [n]. This provides a valid proof
7 = (C,Cy,7), where C' and C, are uniformly dlstrlbuted over G and G, re-
spectively. Moreover, m satisfies the verification equation (22)) since we have

- 60 2 (Bugti—8y)s \
Sz —8y-8i 8 2,27 "+ (0eqti—0y)Yi
9n" HgnJrlfi - (ny 'Hgn+17i s
1=2 i=1
which implies

i

(C’ I, n+1 ;1+(5eq‘ti—5y)~y7: Cv)
e(gfﬁ 'Hl 29n+181 V) (0971_[7, 1Afeq )

O T O, )

(gn 115 29n+1sl V) (Cy’H?zlflf”"ti)

I s
(g - TTa 90575 1)
(R Y R WY

(T )3

D Short Proofs that a Committed Vector is Small

We now show that the range proof of Section [ can be batched in order to si-
multaneously prove possibly distinct ranges for the different slots of a multi-base
Pedersen commitment. In particular, we can prove that a vector commitment
commits to a vector of small infinity norm.

As explained in Supplementary Material [E] the construction can be used to
prove that a committed vector has small Euclidean norm.

D.1 Description

Given a commitment V = g - H;nzl G.*, the prover will convince the verifier
that zy € [0,2% — 1] for each k € [m] using only 3 group elements. The relation
is now defined as

Rpp:{(x,w):< ﬁ% (bry-- - b)) € G x N™,

(ryx1,..., Tm) € Ly X ﬁ[O,sz —1])}

k=1

and the construction proceeds as follows.
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CRS-Gen(1*, 1™, {1™}™ : On input of a security parameter A, a number of
slots m € poly()), and the maximal bitlength nj € poly(X) of ranges for each
slot k € [m], set n = >"}" | nj and do the following:

1. Choose asymmetric bilinear groups (G, G, Gr) of prime order p > 2,
where ¢, = max(l(\),n1,...,ny,) for some polynomial [ : N — N, and

generators g & G, § & G.

2. Pick a random o & Z, and compute gi,...,9n,9n+2,---,92n € G as
well as §1,...,9n € G, where g; = g(*") for each i € [2n] \ {n + 1} and
Gi = 9@ for each i € [n].

3. Choose hash functions H, Hy : {0,1}* — Zy, Hs : {0,1}* — Zp, Hagg -
{0,1}* — Z; and H¢ : {0,1}* — Z" modeled as random oracles.

The public parameters are defined to be

pp = ((G7 Ga GT)) n, 9, ga {gi}iE[Qn]\{n+l}7 {gz}ze[n] ) H)
where H = {H, H,, H;, H,gy, He } are hash functions.

Comp,(z) To commit to a vector of integers = (z1,...,2m,) € Z™, choose a
random r & Zp a{ld compute V = §" - [/, 9¢* € G. Return the commit-
ment com =V € G and the opening information aux = r € Z,,.

Prove,, ((com, {14} ), (z,aux)): given a commitment com = V and witnesses
(:r,;aux) consisting of an integer vector = (z1,...,Z;,) € Z™ such that
zp, € [0,2% — 1] for each k € [m], where £, < ny, and aux = r € Z,, is the
randomness such that V' = ¢" - [T/, 9¢*, do the following:

1. Foreach k € [m—1], set jp = n1+- - -+np_1 with j; = 0. For each k € [m],
let the binary expansion (zj1,...,%k,) € {0,1}% of xx. Set x4, = 0
for each i € [{ + 1,ny] and define &y, = (zk1,..., Tk n,) € {0,117,

2. Choose v ¢~ Z, and compute

m L

N A ATk, j
=3 H Iju+j
k=1j=1

Compute y = (y1,...,yn) = H(V,C) € Zj. Then, choose v, ¢~ Z, and

compute
m
vy Yipti Thij
Cy=g" H Int1- G td)
k=1j=1
3. Compute & = (&1,...,&m) = HE(V, C, Cy) and generate a proof 7, that
C commits to (& | ... | &) € Zy such that Zf’;l Tk, - 271 = xy, for

each k € [m]. This proof 7, € G satisfies

m L 9i—1 &k
e( | ( | | gn+17(jk+i)) ) C)
e(ITts gii—l—k’ V)
and is obtained as per formula in Supplementary Material

= e(m2, 9) (33)
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4. Compute t = (tl, oo tn) = Hy(y, Vv,C,C y) € Z,. Generate a proof me,
(as per formula in Supplementary Materlal D.2)) satisfying

t Y A
(Tt 12 9,52 1) ©)
(Cy7Hk IH?kl Ajik—:ll)

which shows that C, is consistent with y and C.

= e(ﬂ—emg)? (34)

5. Prove that >" D"y 4i - @k, - (kg — 1) = 0 by computing 7, € G
(as specified by in Supplementary Material [D.2|) satisfying

m mng

H HgniJlkﬂ]k-‘rl ) e(ﬂ-y?g)' (35)

k=11i=1

6. Generate an aggregated proof that V= §"-TTi, gp* is a commitment to
a vector that contains 0 in its last n — m coordinates. Namely, compute

) 85
o = i1 (Gha1—s - Tlies gsz:-Q—i+k) € G such that

H gn+1 i) _e(ﬂ-vvg)- (36)
i=m-+1

where s; = H; (i, [m + 1,n], ) € Zy for each i € [m + 1,n].

V.C.C,)
7. Compute (8, 0eq; 0y, 0s) = Hage(V,C,C,) € Zj and compute an aggre-

gated proof

o be . by 8 B
T=T" Ty Teg®  T,°

Output the final range argument which consists of
7= (C,Cy, 7). (37)

Verify,, (com, 71'): Given a commitment com = V € G and a candidate proof 7,
parse the latter as in .
1. Compute (0y,0eq,0y,0,) = Hage(V,C,C,) € Ly, y = HWV,C) e Zy,
£ = (glvu'agm) - Hf(vacacy) € Z;n, t = Ht(y,V,C,C’y) € ZZ? and
s;i = Hs(i,[m + 1,n],V,C,C) for all indices i € [m + 1,n]. Define the
vector (81,...,8n) = (0™, Syt .-, 8n)-
2. For each k € [m], define 0, 1; = 0, if @ € [¢x] and Jp; = 0 if ¢ €
[0k + 1,ng]. Return 1 if

T a2 (Bug t 5,)
5y H kO, ki’ eqlip+i=0y) Yjp+i A
¢ (Cy gnJrlf(ijri) e
k=1i=1
m  ng
—04°8; Oeq-tjp+i _ ~
(Hgn+1 k H Int1- 1’V) '6( y’HH jk—‘r'L ) —6(71’,9)
i=m-+1 k=1:=1

and 0 otherwise.
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The correctness of the scheme can be proven in the same way as in the base
scheme of Section [f] and details are given in Supplementary Material [D.2]

EFFICIENCY. The proof size remains the same as in Section [4 If m denotes the
number of simultaneously performed range proofs, the computational cost of the
prover is now dominated by 3n exponentlatlons in G and m + 1 exponentiations

in G since each subset product H -1 Q;’“ _ﬁ ; 1s cheaper to compute than an expo-

nentiation in G (recall that ny < logp).
The verifier’s workload amounts to 2n + 1 exponentiations in G, n exponen-
tiations in G and 4 pairings.

D.2 Correctness of Aggregated Range Proofs

The verification equation is obtained by raising equalities , ,
and to the powers 0z, deq, 0y and J,, and multiplying them together. We now
consider the generation of proofs for individual verification equations —.

The prover can compute m, € G satisfying equation because, for each
k € [m], we have

Ly )
R Ay 9i—l
(H9n+1 (Gr+i) C) = H e(gn+1-Giri): C)
i=1
Zk m @,.; 21—1
~ AT,
= (gnJrl (j;chi)ag’y . H gjﬁ_ﬁj)
i=1 r=1j=1
m ,Q 2i71
H ( H ngii; agn-‘rl (]k-‘rz)) ;
V7% m Ll gi—1
- ( In+1-(jr+i) H Hgn+1+(1~+1) Grti)' 9 )
=1 rk=1j=1
N i—1
= e(g1, Gn)=i=1 o0
Ly gi—1
Ty j N
(H (9n Int1-(j+i) H H gnﬁlf(jkﬂ)ﬂjﬁj)) ,g)
=t VTske s

and thus

1 A 5 T i i—1
H Hgn+1 (Jk+Z)7c) k (gl gn)zk 18k (Zl | Tk, i2 )
k=1 i=1

m - i—1\ & .
(H (H In+1—(jr+1) H H gn4:if(jk+i)+(jn+j))2 ) k’g)'

k=1 =1 J€lk
(V J)#(k i)

(39)
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We also have

m m
6(H9§L’l1—k» =e(91,0n (H Ini1k - H Intrriok) »9>7
k=1 k=1

i=1,i#k

so that dividing the latter from yields when = >0 wg 2—1 for
each k € [m] and

9i—1\ &k
Hk 1 (Hz 1(gn+1 (Fr+1) Hn 1H]€E 1,(k,5)#(k,7) gn+1 (Jk+l)+(jh+J)) )

Tz = m m &k
(gn+1 k Hz 1z7ékgn+1+z k)

(40)

The prover can also compute 7, satisfying the second verification equation
by observing that, for each k € [m], we have

ng,
Jr+i Yip+i A ANty i Y4
e(Hgn+1 (Jr+i)? Heg"+1 (Fr+1)> C) KRR <41>
=1
m  Ng
AT, tjk+'i‘yjk+i
—He gnsi-Gers 9 [T 119508
k=1 j=1
= T CjptiYig+i
:H<e(gl7g”) ~e(9: 9011 Gt H Il oG- (yk+z‘>))
=1 j€lnk]
(nﬂ#(k i)
. i'Yjp+i
— a8 Tk, . Tr,j A Tet? ik
—H(e(gl,gn) e(Ins1- Gt H II gn+1+(jn+j)f(jk+z‘)vg))
=1 k=1 j€[ngk]
(r,3)#(k, )

-t T
(gl’gn)z =1 Yip+ilip+iTk,i

Tk Tr s LjptiYip+i
(H( In+1—(jr+i) H H gn+1+(jm+j)*(jk+i)) ’g>'

i=1 J€lnkl]
(N ) #(k,i)
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We also have

m  ng m  ng
tyk+1 ~ ti, +i
Cyv H H gk+z = H H (Oy7gjk+i) et (42)
k=11=1 k=11:=1
m  ng m  Ng
_ ’yy . Yir+iTr,j Lig+i
=11 I 1L o026 dns)
k=11i=1 r=1j=1
m ng mo n
_ Yir+iTr,j A\t +i
=TT etoe TLIT 022Gt v 9)
k=11i=1 k=1 j=1
= e(g1, dn )ZL’Ll S Uit T
m Nk
) Yjn+iTr,j Ligti 4
e( ITII (e H II I G i+ ) ’g)‘
k=11i1=1 j€lnkl

('» $#(k,1)

By taking the product of for all k € [m] and dividing out of the result,
we obtain when 74 is computed as

m n ¥ m T tgti Yip+i
[Tie=1 [Ti5 (gn+1*(jk+i) gyt Hje{nnl,(n,j)#(k,i) gn+1+(jm+j)f(jk+i))

m Yin+i T, Ljgti
I TE2 (g5 T T may. ey ity a2 Gy i) ](k |
43

Teq =

As for equation , the prover can compute

m Nk

AV Y Yip+i(Tr,i—1)
my =g [T om0
k=11i=1

m Ny

T 52 H [T oG ™ @

k=1j=1 iclny]
(k i)#(r,7)
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which satisfies because we have

m ng m ng ( ) m  Ng
' G O =TT oG - T T a5y
e(Cy H H9n+1—(jk+z‘)’0) = e(g ! Int1-(ir+i) Y Ijuti
k=1i=1 k=1i=1 r=1j=1
T T (@ri—1)
A/ Yip+i(Tr,i=1) ~\y
o1 H9n+1 Gati) +9)
k=11i=1
m Nk m ngk ( )
) Yu oo H Yjp+i(Tr,i—1 Trg
IT1I e<(9j~+j It Gt o)) o9
k=1 j=1 k=1i=1
T T (whi—1)
_ o m SR s i@ (TR —1 . Yyjp+i-(Tr,i—1) .
= e(g1, gn) k=1 Zeima ari P (=D (g7 T Ini1— Gty +9)
k=11i=1
) Yip+i(Tr,i—1 Twj o
H H ( i+ H H 91 Gty 4 Gt ) ’g)
k=1j=1 i€[ng]
(k ) #(K,5)
T T (@ki—1)
_ vy VYjp+it(Tr,i—1
6(9 11 In1-(ji+i)
k=11i=1
T (@ri—1)
Yjp+i(Tr,i—1 Tr,j
H H gJ»<+J H H 9n+1—(jk+i)+(jn+j)) ,g),
K= 1_] 1 i€ “k
(k ) #(K,7)

where the last equality holds since xy, ; - (zx; — 1) = 0 for all indices k € [m] and
1€ [nk] .
Equation is satisfied by m, = [T, 1 (9hs1—i - TThet 9nio_iyr)  since

n A
H g:LiJrlfﬂV) =

1=m-+1

m

Sq
e<9n+1—z‘7ﬁr : H QZ")
k=1
m S5
6( H ,gn+1—i>

S
e<9;+17i : H gzil—z‘-s-kvg) = e(m, 9).
k=1

<.
=

<.
—

Il
[ [ [
el

~.
—

D.3 Security
Theorem 3. The construction provides zero-knowledge in the ROM.
Proof. The proof is identical to that of Theorem [I] and omitted. O

Theorem 4. Under the (2n,n)-DLOG assumption, the scheme is simulation-
extractable in the algebraic group model and in the random oracle model.

Proof. The proof is similar to that of Theorem [2|and we only detail the changes
in the interaction between the reduction/extractor B and the adversary A.
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Queries: At any time, A can choose a commitment com = V and ask for a sim-
ulated proof that V' commits to an integer vector (x1,...,x,,) € Z™ such that
), € [0,2% —1] for some integers {£j } ke[ of its choice such that ¢ < ny. Since

A is algebraic, it must provide a representation of V with respect to the genera-
tors {gi}icjo,n) and the commitments C' contained in previous simulated proofs.

Since the simulator B is itself algebraic, for any V chosen by A, B can always find
a representation {v;}?, such that V = gvo 1, §7°. We assume w.l.o.g. that ei-
ther: (i) There exists k € [m] such that vy & [0,2°% —1]; or (ii) (vmt1,.-.,vn) # 0.
Otherwise, B can faithfully generate a proof using (vg, v1,. .., V) as witnesses.
Then, B proceeds as follows to simulate a proof without using g, 41:

1. Choose random vectors & = (£1,...,&m) €= Z7, & = (8, 0cq, 6y, 00) <= Zj,
y:(yl,,yn)&ZZ,t:(tl,,tn)&Zgj

2. Let foy1 = Y041 Vi - S, for randomly chosen s; ¢~ Z, for all indices
i € [m+ 1,n]. Let an arbitrary k € [m] such that

1 51} “Jn
Aj+1 = Uk + ? ( - % + Z fn%ﬁ) ¢ {Oa 1}
g v relm]\{k}

Such a k € [m] must exist w.h.p. since we assumed that (vy41,...,0,) # 0
or there exists k € [m] such that vy & [0,2% — 1]. Then, set

a; =0 Vi€ [n)\ {jr +1}
Zn—jr = Yjp+1
Then, find arbitrary scalars {2;} ;e\ {n—j,.} such that

mo Mg

k=1 =1
ktk
=tjr1 - (@1 Vi1 = Yjrr1)-

3. Choose random ag, zg <~ Z, and compute simulated commitments
n
A ~ AQ; ~ AQj,
C:gao.Hg?L:gao.ng’_fil, Cy=g* Hg

4. Tf one of the hashes He(V,C,C,), Hage(V,C,C,), H(V,C), Hi(y,V,C,C,)
or {s; = Hs(i,[m + 1,n],V, v) Y iem41 Was already defined, abort. Oth-
erwise, set § = Hagg(V, A,C’y),

Q

¢=H(V,C,0,), y=H(V,0), t=H,(y,V,C,C,),

and s; = H,(i,[m +1,n],V,C,C,) for each i € [m 4 1,n).
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5. Define the polynomials

m Al

X] = (iai-Xi) : (ZZzi—l &k - X”+1_(jk+i))

k=11i=1

(jw.xz—).(igk.xmk)iqi-xf,
- N1 (i +i) ~ . xi
= (3wt 3P s o 0) (Y )

k=1 i=1

m o Nk

k=1 i=1

2n
Qeq[X (Za” XZ) ' (ii%m “Yjuti X"+1—(jn+i))
r=11=1

m Nk

- (ZO + 0 (Fat1—Goti) = Yjuti) 'XnH_(jﬁH)) ' (Zn:“i X7)
=0

— (zo + Z Z Zpp1—(ju+i) Xn+1—(jﬁ+z‘>) ) ( Z Z tjrti - XJ‘~+Z‘)
k=1 =1 k=1 =1

:iej'Xj,
§=0
Qu[X] = (ivz 'Xi) . ( i sle”H*i) — ifj 'l
— =

1= 1=m-+1

Their degree-(n + 1) coefficients are f,41 = ;. 41 Vi - s and

m ym
In+1 = Z &r <—vn + Zajnﬂ . 21_1)
k=1

=1

0y« fn
:gk'ajk-&-l Z En Vg = — erla

é
KE[m] *
m Nk
Tni1 = D Gjutit (i1 (eti) = Yjuts) = Gyt~ (Zagy — Y1) =0
k=1 1i=1
m rs
€nt1l = Z thﬁ-i i - Yjoti = Zng1—(oti))
k=1 i=1
Nk
=ttt (@t 1 Yjpb1 = Yib1) = D Bk * Znt1—(juti)
1=2
m Mg
- Z Z jti = Zn1—(joti) = 0
R=1 =1
e
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due to the definition of committed a = (ai,...,a,) and z = (z1,...,2,).
Observe that

6x *Qn+1 + 6eq *Cn41 + 67; *Op+1 + 611 . fn+1 =0 (45)

6. Define the polynomial
2n )
QagglX] = 02 - Qu[X] + beg - QeqX] + 0y - Qy[X] + 6y - Qu[X] = Zm X
i=0

for which 7,41 = 0 by construction. Compute

2n

= I o (46)

i=1,i#n+1

using (g, {i}ic2n]\ {n+1}) and return the simulated proof m = (6’7 Cy, ).

We remark that the simulated 7 from satisfies the verification equation
by construction. Moreover, the proof 7 has the same distribution as a proof
generated by the zero-knowledge simulator. Indeed, 7 is uniquely determined by
the commitments (C’, v, Cy) and the aggregation coefficients &, y,t, {s;};_,, .1
and 4 in . Also, the committed vectors a,z € Z; are perfectly hidden by
the randomness ag and zo in C' and Cy, respectively.

Therefore the simulation is perfect, unless a collision occurs when random
oracles are programmed in the simulation queries. If Qg (reps. @) is the number
of queries made by A to the simulator (resp. to random oracles), this happens

with probability < (Qs + Qu) - Qu/p.

Output: When A terminates, it outputs a statement (V, {1%}m ), for some
integers ¢1 € [n1],...,4m € [nm], together with a valid proof = = (C’, Cy, 71').
Since we are in the AGM, A must provide a representation of C, w.r.t to
(9,{9i}iepzn)\{n+1}) and the group elements {Cy),ﬂ(i)}ie[QS] contained in re-
sponses {W(i)}ie[Qs] to simulation queries. Likewise, it must provide a represen-
tation of C' w.r.t (g, {Gi}iemm)) and the commitments {C(i)}ie[QS] contained in
simulated proofs {W(i)}ie[Qs]. Also, for each i € [Qg], B knows a representa-
tion of C w.r.t. (g, {Gi}iem)) and a representation of C, w.r.t. (g,{gi}i=1)-
It also knows a representation of each simulated 7() w.r.t (g, {9iYicn)\{n+1})-
From A’s output and the randomness of the simulation, B can infer scalars

{(03, 2:) € Z2}ic,2n0)\{n+1}> {(ai,vi) € Z2}icpo,n) such that

n 2n n 2n
A ~a; i Y AU; 0;
C:Hg?7 C1y: H gfv V:Hgfa ™= H g;
i=0 i=0,i#n+1 i=0 i=0,i#n+1
where we define go = g and go = g for convenience.
If the representation (vg,v1,...,v,) € Zi of V is such that vy € [0,2% — 1]
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for all k£ € [m] and v; = 0 for all ¢ € [m + 1,n], then B can simply output
(Vo,V1,...,Um) € Z;”H as a valid witness. We henceforth assume that either
(Vma1s- -, Un) 7 O™ or there exists k € [m] such that vy, & [0,2% — 1].

Solving (2n,n)-DLOG: We first note that a non-trivial valid proof m cannot
recycle (V,C’,Cy) from an output of the simulation oracle (namely, we must
have (V, C, C,) # (V(i), c), C,) for all i € [Qs]) since the left-hand-side mem-
ber of is uniquely determined by (V(i),é(i),C_,(,z)) and it in turn deter-
mines a unique valid 7 € G. As a consequence, Hagg(f/, C, Cy), Hg(f/, C, Cy),
H(y, V,C, Cy) and {H,(i,[m + 1,n], V,C, Cy)}iyny1 are not part of the ran-
dom oracle values that have been programmed by the simulator.

Since the left-hand-side member of is obtained by raising the right-
hand-side members of (B3)-(36) to the powers (85, deq,dy,d,) and multiplying
the results, it can be written e(g, §)7=s(*), where P,z[X] is the polynomial

Pagg[X] = 0z - Pu[X] + Oy - Py[X] + Oeq - Peq[X] + 0y - Py[X]
obtained as a linear combination of the polynomials

P.[X] = (Xn:ai . Xl') . (iigil & .X"+17(jk+i)>
i=0

k=11=1

_ (gvi.xi) . (égk.xnﬂ—k) :iwi.Xi’

2n mo Mg n
P,[X] = ( S x-S ,Xn+1—(j»e+i)) _ (ZGX)
i=0,i£n+1 =1 i=1 i=0
mo Nk 2n
= (ZO 4+ Z Z (ZnJrl*(j,{Jri) _ yjeri) . Xn+1—(jm+i) + Z 2 Xz)
k=1 1=1 1=n-+2
n 3n
. (Zai .Xi) :Z% X
=0 =0
n m Nk
P [X] = (Zai . Xi) . (ZZ%H _ .Xn+1—<jn+i>)
i=0 o k=11=1 . .
—( Z zi-Xi>-(Zthm+i-Xj‘+i>ZZﬂj-Xj7
i=0,i#n+1 k=1 i=1 =0
n n 2n
PX] = (Zvi X) : ( > si-X"H_i) = - X
i=0 i=m+1 Jj=0

for which the left-hand-side members of (33)-(36) can be written e(g, §)"=(),
e(g,9)"11), e(g,3)"*) and e(g,§)™ ), respectively.
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If we write Poge[X] = E?ZO v; - X', the coefficient v, of its degree-(n + 1)
term can be written

m Ly m  Ng
—1
Vnt1 = Oy § &k - E Qjoti =27 =g |+ 0y g E (Znt1—(oti) = Yinti) * Cjoti
k=1 i=1 k=1 i=1
A A
= Wn+41 = Tn+1
m nk n
+ Oeq s DD ki (@i Yjuti = Zng1—Gtd) + 00 D Vi s,
k=1 1=1 i=m+1
£ Bt £ tntr

where (Wpt1,Yn+1, Bnt1, nt1) are the coefficients of the degree-(n + 1) terms
of (P,[X], P,[X], Poy | X], Po[X]).

We now argue that, if there exists k& € [m] such that v, & [0,2% — 1] or
if (Vmt1y-.-,0n) # 0™, then we can only have v,11 = 0 with negligible
probability. This follows from the following arguments:

- The probability to have p = (Wnt1,Ynt1, Brtts fnit,Car1) = O is negligi-
ble. Indeed, when (vy,41,...,v,) # 0"~ ™ we have pu,+1 = 0, with proba-
bility 1/p over the choice of {s; = H,(i,[m + 1,n],V,C,C,) i1 When
Zn 41— (juti) 7 Qjuti * Yj.ti for some k € [m] and i € [n.], we have 11 =0
with probability 1/p since t = Hy(y, v,C, Cy) is derived after the choice of
Y, {ai}izo and {z;}icpo,2n)\{n+1}- Then, if 2,115 44) = @, 44 - Y, +i for all
K € [m], i € [ny], we have v 41 = > ne S ) viv (aj.4+i—1)-aj, 44, which
cancels with probability 1/p if there exists k € [m] and i € [£,] such that
aj.+i ¢ {0,1}. This can be seen by distinguishing two cases:

a. fy=H (V, C’) was programmed when answering a simulation query,
we can only have ~,4+; = 0 with probability 1/p since the simulator
programmed (ay,...,a,) to have

Yol = j41 - (Zn—jp = Yjr+1) = Yjr+1 - Gjr1 - (5,41 — 1)

for some index ji € [n] such that aj,+1 ¢ {0,1} and y,,+1 €r Z,.
This captures the case of A attempting to re-use (V,C) = (V@ C®)
contained in an output 7 = (C'®), Céi),ﬂ(i)) of the simulator, with a
different C, # Cl(,i).

b. If H(V,C) was not programmed by the simulator, then y = H(V,Q’)
was defined after B obtained the algebraic representation {a;}?, of C.
Over the choice of y, we have Y7 | S i 4i - (aj 45 — 1) -aj,4i =0
with probability 1/p.

If there exists k € [m] such that vy # Zfil ajpti - 271, the probability to
have w,y1 = 0 is only 1/p since & = Hg(V,C’,Cy) are chosen uniformly
after {vy}7, and {a;}}_. If none of the above events occurs, then we have
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v = Zfil aj,+i- 2071 for each k € [m] and a;,4+; € {0,1} for each i € [¢x].
This contradicts the hypothesis that v, ¢ [0,2% — 1] for some k € [m)].

- If p # 0, then we have v, 11 # 0 with probability 1—1/p since the aggregation
coefficients & 2 (8, 0eg, 0y, 0y) = Haga(V, C, C,) are derived after the choice
of {(ai,vs)}i—g, and {zi}icpo,2n)\{n+1}, Which determine the coordinates of
p- Hence, a random independent § € ZJ can only satisfy (d,p) = 0 with
probability 1/p.

If v,,11 # 0, then B can compute a € Z, by factoring a non-zero polynomial
as in the proof of Theorem [2} O

D.4 Range Proofs for Non-Power-of-Two Ranges

In order to prove membership of a range [0, B] where B + 1 is not a power of
2, a common approach to to use an additively homomorphic commitment and
consider the integer ¢ € N such that 2°=! < B < 2°. Then, we generate two
range proofs showing that = € [0,2° — 1] and = + (2 — 1 — B) € [0,2¢ — 1].

To do this without increasing the proof size, we can commit to vectors of
dimension n = 2¢ (where / is an upper bound on /) containing a concate-
nation (x | «’) of the binary decompositions = (z1,...,2¢0,...,0) and
' = (2f,...,2,,0,...,0) of z and x + (2° — 1 — B), respectively. Then, the
prover can compute 7,7, € G

e(Hf:l 91211{11—1" C) _ e(ﬂ'z g)
e(gn, V) ’ e

n gi—f—1 A

e(]],_ _,C

(Hzf 1gn+1 7 ) _ 6(7’(’;,@),
(9n

+
7V : g2Z717B)

where V = §”- 7. In the above equalities, 7, and 7/, show that = = Zf;l x;-2071
and z + (2 —1 - B) = Ele x - 2071, The rest of the proof follows the basic
construction of Section 4l The two proofs 7, and 7, can be aggregated (using
additional randomization components derived from a random oracle) with other

proof components to obtain a proof of the same form as in Section

E Proving Small Euclidean Norms

In this section, we extend the construction of Section [D|to prove that a com-
mitment V = ¢ - [[}, §;* is a commitment to some & = (z1,...,2,) € Z™
such that ||| < B. In order to preserve the zero-knowledge property, we need
to choose the group order p so that \/p/m > B for any proven norm bound B.
When the CRS is generated, we thus assume a maximal value B for the norm
bounds to be proven and choose p so that B, £ \/p/m > B. For simplicity, we
assume that B2+ 1 is a power of two but this restriction can be lifted using the
observations in Section[D.4] In the setup phase, we also need parameters allowing
commitments to vectors of dimension n = max(m - (1+ [log B ), [log(B%+1)])
in order to use the scheme of Section [D.1l
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The prover has a commitment V= g - Hkm:1 gy € G to an integer vec-
tor = (x1,...,%m) € Z™ and wishes to convince the verifier that ||z| < B
without revealing anything else. To this end, it chooses r <~ Z,, and computes
V =yg" Tl 95" 1, which commits to & = (0"~ | (., ..., 1)) in the first
source group G. Then, the prover generates a proof showing that V' € G commits
to the same vector as V, but in the reversed order. This is done by computing
0= (01,...,0,)=Hy(V,V) e Zy' using a random oracle Hy and computing a
proof

m 7 T 05
Hj:l (gn-i-l—j ’ er[m]\{j} gn}-ci-1+k—j)

T = ’

0;
JJEi (95 Meeranis gﬁil_kﬂ)
satisfying
m 6, >
e( Hj:l gnj—i-l—j ) V)
e(V, H;nzl gﬁj)
By itself, only argues that the first m entries of @ € Zj coincide with the
last n — m entries of @ in the reversed order. To ensure knowledge soundness,
we also need to prove that the last n — m positions of & are zeroes, but this will
be addressed at a later step.

Next, assuming that V and V were indeed computed by the prover as com-
mitments to ((z1,...,Zm) | 0"7™) and ((*,...,%) | (Tm,...,21)), respectively,
we observe that the pairing e(V, V) computes a product of polynomials in the
exponent, where the coefficient of a"*! is ||x|*> = (z, ). This allows the prover
1 T sk 91— o)™ such that

the compute 75 = [}, (g
e(‘/: V) - e(ghgn)( ) (ﬂ-ng)' (48)

However, 7g is not disclosed. Instead, the prover computes the £g-bit represen-
tation of ||z||? = >"/L, #} (where {5 = log(B* + 1)) and commits to the vector
w = (w1,...,we,,0,...,0) € {0,1}" by choosing v & Z,, computing

= e(mp, ). (47)

Cow=9"-1]39" (49)

and proving that the committed w is a binary vector. This is done by generating
a proof my, = (Cy 4, Tyw) € G? as in Section [3| Now, we observe that the prover

I _TT¢B ‘B wj 2!
can compute 7 = [T, (90,1, - IT21 54 Int1irj) such that

i—1 A . N
Hg721+1 m - e(glagn)h}’m) : 6(7‘(:13,9). (50)

By dividing from , we see that the prover is able to compute a short
g = mp/my € G such that
e(V,V)

= e(TB. g)- (51)
e( IT:2 9721+1—i7 Cw)
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Together with the proof my satisfying and 7, 7T shows that V commits to
avector ((z1,...,2y) | 0"7™) € Zj (we still assume that its last n—m positions
are proven to be 0) such that ;" , #2 mod p is at most 2% — 1.

However, we also need to prove that >, 27 mod p is actually > ;" %
over Z, in which case we have ||z| < B. To this end, the prover uses the
construction of Section to prove that ||&||cc < \/p/m, which ensures that
Yoy x% does not wrap around modulo p. We note that this additional proof
component does not affect the zero-knowledge property because the proven
statement ||z| < B already implies ||z < +/p/m (recall that we assumed
B < y/p/m and we always have |||« < ||z||). The prover thus generates
a proof mo, = (C,Cy,7s) € G x G? that ||&]se < Boo by proving that
0 <z + y/p/m < 24/p/m for each k € [m] using the construction of Sec-

tion @ which also demonstrates that V' commits to a vector containing zeroes
in its last n — m entries.

The entire proof w = (V, Woo7éw777w,7rg,’7r3) is eventually comprised of
Moo = (O,Cy,ﬂ'oo) € G x G2, the commitment C,, and its proof of binarity
T = (Cyw, Tw) € G, the commitment V and the proof 7y satisfying , and
the proof 7p satisfying .

From a security standpoint, the knowledge-soundness property follows from
that of underlying proof components. Simulation-extractability is also preserved
as long as these components are bound together in a non-malleable way. To
do this, one option is to use a short one-time signature (such as the one from
[65, Section 5.4]) whose verification key is included in all random oracle inputs.
However, more efficient solutions are possible by suitably combining the various
sub-proofs together and including previously computed commitments in each
random oracle input.

In terms of efficiency, it is also possible to exploit the linearity of verification
equations and compress (7o, Tg, Tw, 75) € G* into a single group element m =
o . ﬂge -l 7’7635 using aggregation coefficients (0o, dg, 4y, dp) derived from
a random oracle. This shrinks the proof to 2 elements of G and 4 elements of G

while verification boils down to a product of 8 pairings.

F Proving Small Hamming Weights

In this section, we show that our argument of Section [3|can be extended to prove
that committed vectors have small Hamming weights.

Compact proofs of small Hamming weights were previously considered by
Damgard et al. [39] in the context of perfectly binding commitments. To our
knowledge, no efficient solution to this problem has been reported in the case
of perfectly hiding commitments if we aim at constant-size proofs. The only
solution we are aware of is to rely on SNARKSs for general NP relations via an
expensive Karp reduction.
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F.1 Proving Exact Hamming Weights for Binary Vectors

For a commitment C' = §7 - H?Zl gjf to a binary * € {0,1}", we can also
prove that  has a fixed Hamming weight. This is useful in the context of FHE,
where secret keys are sometimes chosen with a special structure for efficiency
reasons. To prove that a committed x is a binary vector of Hamming weight k,
we can prove that: (i) « is binary; (ii) Its inner product with the all-one vector
(1,1,...,1) is exactly k. Our technique from Section 3| allows handling (i). In
order to prove (ii), the prover can generate a short 7y, € G such that

€(H In+1—is é) = e(glvgn)k : 6(”’%@)7 (52)

which is possible as in . Again, we can aggregate mp with other proof compo-
nents to obtain a proof comprised of one element of G and two elements of G.

If we combine the above idea with the range proof construction, it is also
possible to prove that the Hamming weight HW () of the committed x is such
that HW () < B, for some bound B, without revealing the exact weight. In Ap-
pendix [F.2] we provide a more efficient way to prove the inequality HW (z) < B
for arbitrary (i.e., not necessarily binary) vectors.

F.2 Proving Bounded Hamming Weights for Arbitrary Vectors

We now consider the problem of proving small Hamming weights for an arbitrary
vector € = (71, ...,2,) € Zy committed as C= g%]‘[g‘:l gjf. Using the additive
homomorphic property of the commitment scheme, this also allows proving that
two committed vectors are close in terms of Hamming distance.

In order to prove that & has at most B non-zero positions, we first generate
a commitment Cy, to a random vector w = (w1,...,wy) € {0,1}" of Hamming
weight HW (w) = B for which w; = 1 for all ¢ € [n] such that z; # 0. We can
then prove that: (i) w is binary and has Hamming weight B; (ii) For each i € [n],
w; = 1 whenever z; # 0, which implies HW (z) < HW (w).

We can prove (i) as explained in Section In order to prove (ii), we will
prove that > ; y; - (1 —w;)-2; = 0 for a random vector y = (y1, . .., yy), which
ensures that Vi € [n] : (x; # 0) = (w; = 1) with probability 1 — 1/p. Indeed, if
there exists i € [n] such that z; # 0 and w; = 0, we have >\ | y;- (1—w;)-z; =0
with probability 1/p since y is computed after w and .

In more details, the prover computes a commitment C,, = §7» - H;—;l 3% to
w € {0,1}", for some random 7,, ¢ Z,, and proves that C, is a commitment to
a binary vector using a short proof m,, = (Cy w, Tw) € G?. Then, the prover gen-
erates another commitment Cy, = ¢ - [}, 92-&—1 and proves that it commits

t0 (Yn * Wny. .., y1 - w1), where (y1,...,yn) = H(C’, C’w), by proceeding exactly
as in Section @ Next, the prover can generate a short 7, € G such that

e([[94i1 i Cyt C) = e(my, ) - elgr, gn) == v (o=t = e(my, ), (53)
=1
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which is possible since [T'_, g%, _;-C,' = g™ -], g%ﬁr(ll:iwi), so that the sum

St yi- (1 —w;) - xy; is the coefficient of ot when we see the left-hand-side
member of as a product of polynomials in the exponent.

The final proof then consists of C,, € G, Cyw,Cy € G, and a short m € G
obtained by aggregating the various proof components (including 7., m,, the
proof mp that C,, satisfies , and the proof that C,, is correctly formed).

G Shorter Proofs for Ring LWE Ciphertexts

We show that the techniques of previous sections can be used to obtain very
short proofs for natural statements that arise in lattice-based cryptography. For
example, they can be used for all the applications described in [46]. It includes
proving the validity of an LPR ciphertext [87], a BGV ciphertext [18], a ring
GSW ciphertext [57], a TFHE ciphertext [33], or a ring LWE public key.

We adapt the approach of del Pino et al. [42] with the difference that we
replace the BulletProofs range proof by our more compact proofs of smallness.
We also exploit the fact that the underlying vector commitment [83] allows
proving inner-product relations as in [82].

Let the polynomial rings R = Z[X]/(X? + 1) and R, = R/(qR), where
d is a power of two. As in [42], we aim at proving the existence of a witness

s =(s1,...,8u) € RM comprised of small-norm ring elements such that
M
Zai~si:cmod (¢, X4 1) (54)
i=1

for public ¢,a1,...,ay € R(JIV. The relation is defined as the set of pairs

(x,w) = ((c,al,...,aM) € (RéV)MH,(sl,...,sM) € RM)

satisfying . To prove this relation, we proceed as in [42] and re-write as
the following equality over Z[X /(X9 + 1)

M
Za¢~si:c+r~qmod(Xd+1), (55)
i=1

where r = (rq,. .. ,TN)T € RY is a vector of polynomials of degree < d — 1 and

the components of {a;}£, and c are interpreted as polynomials with coefficients
in {—1]q/2],...,q/2]}. If |si]|cc < B; for each i € [M], r contains polynomials
with coefficients of magnitude smaller than ||7||e < B, £ dM - max;e(ar(B;)/2.

Let us parse a; = (a; 1, ..., aivN)T S Rév. Let the coefficient embedding ¢ :
R — Z% that maps s; to its coefficient vector ¢(s;) € Z<. Let rot(a; ;) € Z4*? the
anti-circulant matrix such that ¢(a; ;- s; mod (X% +1)) = rot(a; ;) - ¢(s;) € Z°.
If we re-write as a matrix-vector product over Z, we obtain the relation

M
(AT Au] - [o(s1) |- o(san)] | = 30 A= dls0) = ble) +0(r) g
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where A; = [rot(a;1) " | ... | rot(a; n) "] € ZY4 for all i € [M], ¢(c) € Z)',
and ¢(r) € ZN9. Equivalently, this can be written

[Ar ] A | —q-Inal-[0(s1) |- | dsar) | 6(7)] " = g(e)  (56)

L

w

In order to prove 7 a natural idea is to have the prover commit to the vector
w € ZMI+tNd ysing a vector commitment over G. Then, using the batched range
proof of Section it can generate short range proof that |¢(s;)|lec < B
for each i € [M] and [|¢(7)||oc < dM - max;ec(p(B;)/2. Using the approach of
[42], it can then prove that holds over Zp where p is the order of G. If
p > 2Mgd max;(B;), this ensures that also holds over the integers. Instead
of using the batched range proof of Section we can make the proof shorter
(and spare one commitment in G) by directly committing to the bits of w.

For any integer z € Z, we define g. = (1,2,4,...,2°72, —2*71)T € Z1*# and
G.=1,®g,] € Z¥%. We also define G, !(v) as the decomposition function
that inputs an integer vector v € [~27~! 2?71 —1]? and outputs a decomposition
G '(v) € {0,1}%* such that G, -G;'(v) = v. Then, for each i € [M], we define

- T A
Ai 2 [GlT—Hog B; "’ rOt(aiJ)T | ce | Gir-i-log B; rOt(a’in)T] € ZéVdXd(lJrlong)
and we prove that

S1

[Al ... A]u | —q - (IN ® G1+logB,,.) ] : ij\l/[ = gzﬁ(c), <57)

£ A

TN

——

£
where we set s; = Gl_jlogBiW(si)) e {0,1}# (418 Bi) for each i € [M], and
= G;Jilog g, (o(ri)) € {0, 1}4-(+log Br) for each i € [V].

The prover will thus commit to the bit-decomposition w € {0,1}? of the
witness, where D = d - (Zi\il(l + log B;) + N(1 + log B,)). In order to prove
that relation holds modulo p (and thus also over Z since both members
have infinity norm smaller than p/2), the prover will use a random 6 € ZZJ)V d
(derived from a random oracle) and prove that the committed w € {0,1}"
satisfies 07 - A - = 07 - ¢(c) mod p. If A - # ¢(c) mod p, then we have
07 - (A-w—¢(c)) = 0 mod p with probability 1/p. Proving 87 - A -1 = 0" - ¢(c)
is doable using one element of G as explained in the introduction

9 Here, = mod p is defined as the value y € (—p/2,p/2) such that y = = (mod p)
11 We actually prove using the linear map commitment of Lai and Malavolta
[80, Appendix D.2]. While their scheme is only proven weakly function-binding (as
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G.1 Description

In the description below, the CRS does not depend on a specific public key, but
we allow it to depend on upper bounds on the RLWE dimension d, the modulus
q of and the infinity norms {B;}},. The reason is that they impact the
dimension n of committed vectors and/or the order of the pairing-friendly group.
Therefore the CRS-Gen algorithm inputs an upper bound d for the dimension,
an upper bound ¢ for the modulus and maximal values B; for the infinity norm
bounds B; to be proven. The prover is allowed to choose a different dimension
d < d, a different noise bound B; < B;, and a different modulus ¢ < ¢ in each
proof. For simplicity, we assume that each norm bound B; is a power of two.

CRS-Gen(1*,1%,19, 1M 1N {1Bi1N ): Given a security parameter \, a maxi-
mal d1mens1on d gipoly(/\), 1ntegers N,M € poly(\), § € poly()\), B; €
poly()), set B, £ dM - max;e [ (B;)/2 and do the following.

1. Generate asymmetric pairing-friendly groups (G, G, Gr) of prime order
p > max(2'™), 2Mgd max;(B;)), for some polynomial [ : N — N. Let
n>d- (XN, (1+1logB;) + N(1 +log B,)).

2. Pick a random « < Z, and compute gi, ..., Gn,gn+2,---,92n € G as
well as g1,...,0n € G, where g; = g(®) for each i € [2n] \ {n + 1} and
Gi = ') for each i € [n].

3. Choose hash functions H, H; : {0,1}* — Z}, Hage : {0,1}* — Z2 and
Himap : {0,1}* — Zi,vd“ that will be modeled as random oracles.

Output the CRS
pp = ((G,@,GT),Q,Q, {gi}ie[?n]\{n+1}; {gz}ze[n]>H = {Ha Ht7Hagg7H|map}) .

Prove,, (x,w): Given a statement x = (g,d, M, N,{B;}}_,,{a;}},, c) consist-
ing of dimensions d < d, M < M, N < N, a modulus ¢ < g, vectors of ring
elements {a; € RY}M, ¢ € RN7 and norm bounds B; < B;, as well as a
witness w = (s1,...,8Mm) € RM such that (54)) holds with Hsz||OO < B for
each i € [M], do the following.

1. Compute polynomials (71,...,7x) € RN such that ||7;||c < B, for each
i € [N] and satisfying (55)). Encode (s1,...,sa) and (r1,...,7n) as

~ T
w:[si|—| |SM|T1 | |T]—\r/'] 6{071}Da

using bit decompositions s; = GlilogB(qﬁ(si)) € {0, 1}40(+1og Bi) for each
i€ [M]and r; = G} ,(¢(r:)) € {0,134 0198 B for each i € [N], where

D=d- (XN, (1+logB;) + N(1 +log B,)).

defined in [80]) in the random oracle model, it can be proven strongly function-
binding in the AGM+ROM and it still allows us to prove simulation-extractability
in the AGM+ROM.
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2. Commit tow = (w | 0"~ L) = (wy,...,wp,0,...,0) € {0,1}" and prove
that w is binary. Namely,

AW

a. Choose v & Z,, and compute C' = §7 H _19;"

b. Compute y = (y1,...,Yn) = (X, C) € Zy. Next, choose v, & Zy
and compute

_g'Yy .Hgn-‘rl‘j

Then, compute t = (¢1,...,t,) = H(y, %, C, Cy) €Zy.
c. Using 7 compute 7., € G such that

e(Hz 1gnl+yf NC)

= e('ﬂe ,g) (58)
(Cya H1 19i ) !
which shows that C, commits to the (reversed) product yow € Zj.
d. Compute m, = Cy - [Ti_, (g:y TLieppn g }gni(leﬂ)) " such that

C H9n+1 37 = e(my, 9) (59)

which shows that Y7 | y; - w; - (w; — 1) = 0.

3. Compute 6 = Hlmap(x,é,cy) € chprl and define A € ZN4XD and
¢(c) € ZN* as in (57). Let 0 € ZF the first Nd 4 1 entries of 6.

4. Parse @ as 6 = (6 | 69)T, with 6y € Z)¢. Let tg = 6 - ¢(c) mod p and
a, =04 - A mod p. Generate a proof mg € G satisfying

D
i (H gLy C) ~e(g1,9n) 7" = (7, 3) (60)

k=1

by computing mg = ] 1(9n+1 v Tlieopim nt1—nss) ™.
5. Compute (deq, 0y) = Hagg (X, C,C,) e Z2 and an aggregated proof

Output the final proof @ = (C’, Cy, 77).

Verify,, (x,7): Given a statement x = (¢,d, M, N, {B;}}*;,{a;}},,c) and a
candidate 7, return 0 if v does not parse properly. Otherwise,
1. Compute (Jeq,0y) = Hagg(x,C,Cy) € Zf,, y = Hx,C) e Zy, t =
H,(y,x,C, Cy) €Zy.
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2. Compute 6 = Himap (X, C, Cy) € ny‘ﬂl and let 0 = (6 | 59)T € Z;,Vdﬂ
the first Nd + 1 coordinates of 8. Compute ty = 6, - ¢(c) € Z, and
a; =0 - A € ZD. Define a) = (a4 | 0" P) € Z7.

3. Return 1 if the following equality holds and 0 otherwise:

Yy n+l—i
i=1

e(m,g) = e(Cpr - [Lotlsytovrveroredti ¢)

n

(e ITa") elong ™ 61)

=1

CORRECTNESS. Equation is obtained by aggregating , , and
using randomness (deq, 0y, d9). The correctness of - can be shown as in
Section M| while is a special case of the verification equation of the inner
product functional commitment of [82] (recalled in the introduction, cf. (T])).

EFFICIENCY. We note that a 256-bit p is more than enough to satisfy the con-
straint p > 2M - qd max;(B;) since d is typically 1024 or 2048, q ~ 254 and M is
a small constant (concrete numbers are given in Supplementary Material .

The CRS is comprised of 2n elements of G and n elements of G. As in
PointProofs [62], the verifier does not need {g;}?2,, 5, which are only used by

the prover. The proof only consists of one element of G and two elements of
G. Compared to the most efficient simulation-extractable variant [4] of Groth’s
SNARK [68], our proofs are shorter by one element of G. This matches the op-
timal proof size of the simulation-extractable SNARK of Groth and Maller [69],
which is significantly more expensive than [68] in terms of prover time and CRS
size (see, e.g., [4] for detailed comparisons among them).

In terms of computation, 7 = Wzy -71'22‘7 ~7Tg" can be computed using 2n expo-
nentiations. At first, computing the corresponding exponents seems to require
O(n?) multiplications over Z,, which can be quite expensive for a very large
n. Fortunately, these exponents can be obtained via two products of degree-n
polynomials, using only O(n - logn) Z,-multiplications for a suitable prime p.
Namely, the right-hand-side member of can be written e(g, §)"*(®) where

Pr[X] = (5y Ay Y Oy yi - wi + (eq -t — 8y) - ys + 50 - agli]) - X"“—i)
i=1
D .
Y wi- XY
=1

n

D
(Y + Dy wi XM (D beq b XT) —tg - 0 - X
=1 =1
2n
=0
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where (wp1,...,7,) = 0""P_If the prover is honest, we have
Unt1 = Oy - (Zyz (wi —w;)) +0- (—to +Zae[i] w;) =0,
i=1 i=1

so that it can compute ™ = g*° - Hfil g7t from {1/1-}5207#”4_1.

At step 4, the prover computes a product ag =0 - A mod p, which takes
time O(Nd - D) in general. When it comes to proving many natural statements
in structured lattices, the matrix A has a special structure allowing to compute
0, - A using only O(d - log d) multiplications in Zy, as explained in Supplemen-
tary Material The prover’s cost is thus dominated by 3n exponentiations in
G and a product of D = d - (32N, (1 + log B;) + N(1 + log B,.)) elements in G.
The verifier computes 3 pairings and n exponentiations in each source group.

The scheme is not fully succinct since the number of exponentiations at the
verifier grows with the length of the witness. On the prover side, however, it
enables significant savings compared to R1CS-based SNARKSs as the number of
exponentiations only grows with the size of the witness, rather than the size of
the arithmetic circuit that computes the encryption function. Indeed, the num-
ber of ring operations in the encryption algorithm does not affect the number of
exponentiations in the argument system.

In Supplementary Material we provide concrete proof/CRS sizes to-
gether with an estimation of the prover’s complexity when it comes to proving
the validity of a ciphertext in the LPR cryptosystem [87]. For such a statement,
we provide a detailed comparison with SNARKs [68] providing similarly short
proofs. Our construction is shown advantageous in applications (e.g., [98]) that
seek to decrease the prover’s computational effort, even at the cost of increasing
the verifier’s. We also provide a comparison with [42].

In Supplementary Material we describe a variant where the verifier com-
putes a constant number of exponentiations and the task computing the expen-
sive multi-exponentiations is shifted from the verifier to the prover.

In Supplementary Material [G.7] we further show that it is possible to prove
other statements about encrypted messages without changing the common ref-
erence string. For example, we can prove that an encrypted unsigned integer is
smaller than another unsigned encrypted integers using 3 more group elements.

G.2 Security

We first describe a simple zero-knowledge simulator.

Theorem 5. The above non-interactive argument is perfectly zero-knowledge.
Proof. To simulate a proof for a statement x = (¢,d, M, N, {B;}¥.;,{a;}}%,, ¢c),

we can use the trapdoor o € Z, of the CRS as follows. First, the simulator
samples v, 7,7, ¢~ Z, and computes C' = g7 and C, = ¢g"v as commitments to
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the all-zeroes vector. Next, it computes the polynomial

PIX] =77y 0y +V'Z((5eq'ti—5y)'yi+5e'ae[i]) X

i=1

n
—Wy‘5eq'zti'Xi—t9'5e'X"+1
i=1

for which the right-hand-side member of can be written e(g, §)7(®). Using
the secret exponent o € Zj,, the simulator can then simulate a proof by com-
puting 7 = g¥(®). It is easy to see that the resulting tuple = = (C’,Cy,w) is
distributed as a real proof since the commitments C and Cy are uniformly dis-
tributed in their group and m € G is uniquely determined by (C‘, Cy) and the
aggregation coefficients. a

We note that the zero-knowledge simulator of Theorem [5] is not trapdoor-
less [53] as it relies on the trapdoor of the CRS to simulate proofs. On the other
hand, it works in the standard model, without relying on random oracles. In the
proof of Theorem [6] we describe a trapdoor-less simulator that does not use the
trapdoor of the CRS, but rather proceeds by programming the random oracles.

Theorem 6. If the (2n,n)-DLOG assumption holds, the above non-interactive
argument provides simulation-extractability in the algebraic group model and in
the random oracle model.

Proof. In the AGM+ROM model, we show that, under the (2n,n)-DLOG as-
sumption, there is an extractor that can extract a witness from any adversarially-
generated proof 7 and statement x = (¢,d, M, N,{B;}¥,,{a;}}%,,c). Con-
cretely, we show an algorithm B that either extracts a witness or solves an (2n, n)-
DLOG instance by computing a € Z,, from {(g,91,.-.,92n), (1, ---,Gn)}, where
gi = g'*) and g; = g(*") for all 7.

The problem instance {(g,91,--.,,92n),(g1,--.,dn)} is used to define pp.
Note that gp+1 = g(o‘nﬂ) is not included in pp although it is part of B’s input.
Our reduction/extractor B interacts with A as follows.

Queries: At any time, A can provide x = (¢,d, M, N,{B;}¥,,{a;}£,,c) and
ask for a simulated proof that ¢ € Rf]\' is a valid ciphertext for the public key
(ai,...,an). To generate such a proof, the reduction B defines the public-key-
dependent matrix A € ZN%*D and the ciphertext-dependent vector #(c) € ZN?
as in (57). It chooses By <~ ZI'® and 8y - Z,, and computes a,; = 6 - A mod p
and ty = 6] - ¢(c) mod p. We note that the first component ag[l] € Z, of
ap € ZE is non-zero with overwhelming probability (as we may assume that
the first column A[1] of A € ZN4*P is non-zero). If 8] - A[1] = 6 - ¢(c), B
can generate a real proof using the witness w = (1,0,...,0). We thus assume
6y -A[1] # 6] - ¢(c), so that B can compute a non-binary w = (w; | 0"~ 1) € Zy
satisfying the equation
ag-w:tg mod p,
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where a, = (aj | 0"~ P). It commits to w by computing C =g g™ for a
random v <= Z,,. Next, B simulates other proof elements as follows.
1. Choose random & = (0eq,0y) ¢~ Z2, 8 ¢~ Zp, Yy = (Y1,---,yn) < L7,
t=(t1,...,tn) & Zj.
2. Set z, =y and find an arbitrary (21,...,2,-1) € Zg_l such that

n

Zti “Zpti—i =11 -y1 - (wr —1).
i=2

3. Choose a random 2 ¢- Z, and compute a simulated commitment
n
Cy=g*- ngz,
i=1

4. If one of the random oracle values Hagq (X, C, Cy), H(x, C’), Himap (x, C, C'y)
or Hy(y,x, C, Cy) was already defined, then abort and report failure. Oth-
erwise, set y = H(x, C’), t = H(y,x, C, Cy), 6 = Hagg(x,é’,Cy) and
0= H|map(x,é',0y) € ng_“‘l for a random vector @ € ZI],V‘ZH whose first
Nd + 1 components are (6 | dg).

5. Define the polynomials

n n
Q,[X] = (ZZZ X =Y w ,Xn+1—i) , <7+w1 ~X)
1=0 =1
n+1

= (Zo+zn: (Zn+1-i — ¥i) 'Xn+17i) : <7+w1 'X) = Z(fi X
i=0

i=1

Qeq[X] = (’Y+w1 .X) . (Zn:ti'yyX"*l*i)

i=1
n n 2n
—<;Zi'Xi) . (;LEXI) :jgoej - X7

D n+1
QolX] = (Zag[k] ,Xn+17k) ) (,y+w1 ~X) S ZC" X,
k=1 i=0
Their degree-(n + 1) coefficients are

Ont1 =w1 - (2 —41) =0

n
ent+1 = Wili1y1 — Zti S =ty (wr — 1) = Zti “Zny1-i =0
i=1 =2

Cnt1=ap[l]- w1 —tg =0

due to the definition of committed w = (w1, ...,w,) and z = (21,...,2p).
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6. Define the polynomial

2n
QagglX] = deq - Qeq[X] + 0y - Qy[X] + dp - Qo[ X] = Zﬂi X!
i=0

for which 7,,4+1 = 0 by construction. Compute

2n

= I o (62)

i=1,i#n+1
using (g, {gi }iej2n]\ {n+1}) and return the simulated proof m = (C, Cy,m).

The proof 7 has the same distribution as an output of the simulator in the
proof of Theorem |5l Indeed, 7 is uniquely determined by x, (C’,Cy) and the
Zy,-elements y,t, and § in the right-hand-side member . Moreover, while the
committed w,z € Z; are programmed in a special way, they are completely
independent of A’s view due to the randomness v and z in (C, C,).

Consequently, the simulation is perfect, unless one of the random oracles has
to be programmed on an input where it was previously defined. If Qs (reps. Qp)
is the number of queries made by A to the simulator (resp. to random oracles),
this happens with probability < (Qs + Qu) - Qu/p-

Output: When A halts, it outputs x = (¢,d, M, N, {B;}¥;,{a;},,¢) and a
valid proof 7w = (C’, C’y,7r). Let A € ZN9%D the matrix obtained by encoding
{ai S Rév}i\il in .

Since we are in the AGM, A must provide representations of C w.r.t to the
set of all G-elements that it could observe during the game. It also has to provide
representations of Cy, and m w.r.t to all G-elements that it was allowed to see.
Since the simulator used by B is algebraic, it also knows a representation of each
simulated Cgsi) and 7 w.r.t (g, {gi}icizn)\ {nt1})- It also knows a representation
of each simulated C) w.r.t (g, {Gi}icin))- From A’s output and the randomness
of the simulation, B can therefore compute scalars {(¢;,2;) € Zi}ie[oﬁgn]\{n‘;rl}
and {w; € Zyp}ie[o,n) such that

2n 2n

n
¢=1la. = 11 e == II o
i=0 i=0,i#n+1 i=0,i%n+1

where gy = g and gg = g. .
If the representation w = (wog, w1, ..., w,) € Zy, of the commitment C' satis-
fies the conditions

(i) wy € {0,1} for all k € [1, DJ;
(ii) A - w = ¢(c) mod p, where w = (w1, ..., wp) € sz?;

then B can use the bits (wg,wr,...,wp) € {0,1}” to reconstruct witnesses
$1,...,80 € Z[X]/(X? + 1) such that ||s;|lcc < B; for all i € [M] and
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holds, meaning that {s;}}, are valid outputs for the knowledge extractor. We

now assume that at least one of the conditions (i)-(ii) does not hold.

Solving (2n,n)-DLOG: We remark that a non-trivial valid proof 7 cannot re-
cycle (X,C,Cy) from a a simulated proof: That is, for all i € [Qg], we must
have (x,C,C,) # (x¥,C0), C?SZ)) since the right-hand-side member of
is uniquely determined by (x(*), c, C’éi)) and it in turn determines a unique
valid 7V € G in the left-hand-side member. This implies that the hash value
(0y, 6eq) = Hagg(x, C, Cy) is not one of those programmed by the simulator and
neither are t = H;(y, x, C, Cy), and 6 = H.map(x, C, Cy).

Let the vector aj = (a; | 0"~ P) € Z7 defined in the Verify algorithm. From
the algebraic representations of A’s commitments and proof m, B can compute

D n n+D
PQ[X] = (Zag[k‘} -Xn+1_k) . (sz . XZ) —1p - Xn+1 = Z Wi -+ Xi
k=1 i=0 i=0
as well as the polynomials
2n ) n . n )
A= (5 X e X (e x)
i=0,i#n+1 i=1 i=0
n 2n n
= (204 Y Gare =) X 3w X)) (Y X)
i=1 i=n+2 i=0

3n
= Z%"Xi
=0
Peq[X] = (sz Xl) . (Ztl s .X"+1—i)
=0

i=1
2n n 3n
_( Z Zi'Xi)'(Zti'Xi)225j'Xj,
1=0,i#n+1 i=1 j=0

for which the left-hand-side members of (58)-(60) can be written e(g,g)Feale),
e(g,§)7 (@), and e(g, §)7°(®), respectively.

The right-hand-side member of can be written e(g, )" as2(2) - where
P,ge[X] is the polynomial

3n
Pagg[X] = 0, - Py[X] + 0eq - PogX] + 09 - Po[X] =Y v - X'
=0
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In P,g[X], the coefficient v, 41 of the degree-(n + 1) term can be written

n n

Vni1 =0y Y (Zng1oi — i) - Wi + Oeq - D ti (Wi Yi — Zng1i)
i—1 i=1

é Yn+41 é Bn+1
D
oo - (Za[/ﬂ - Wy —te),
k=1

A
= Wn+1

where p £ (Yn+1s Brnt1,wnt1) is the vector containing the coefficients of the
degree-(n + 1) terms of (P,[X], P.y[X], Py[X]).

We now argue that, if one of the conditions (i)-(ii) does not hold, the proba-
bility to have v,,41 = 0 is negligible. This follows from the following observations:

- The probability to have p = 0 is negligible. First, if z,,41_; # w;-y; for some
i € [n], we have B,41 = 0 with probability 1/p since t = Ht(y,x,é,Cy)
is derived after the choice of y, {w;}i_q and {2;}ic(0,20)\{n+1}- Now, if we
assume that z,41-; = w; - y; for all i € [n], then we have

n
V1 = Zyz (w; — 1) - w,
i—1

which vanishes with probability 1/p if there exists ¢ € [n] such that w; ¢
{0,1}. This can be seen by distinguishing two cases:

a. If y = H(x, C') was programmed when answering a simulation query,
we can only have v,41 = 0 with probability 1/p since the simulator
programmed (wr, ..., w,) so has to have

"/n+1:Zyi'wi'(wi_l):yl‘wl'(wl_l)
i=1

where wy & {0,1} and y1 €r Z,. This captures the case of an adversary
attempting to re-use the components (x, C') = (x, C’(i)) of a simulated
proof () = (C), Clsi),’f((i)) with a modified Cy # C?(,i).

b. If H(x,C) was not programmed by the simulator, then y = H(x, C)
was defined after B obtained the scalars {w;}?_, underlying C'. We then
have the equality Y1 ; y; - (w; — 1) - w; = 0 with probability 1/p over
the random choice of {y;}™ ;.

If none of the previous events occurs, we have w; € {0,1} for all ¢ € [D].
Then, we are left with bounding the probability that w, 11 = 0 when condi-
tion (ii) does not hold. In this case, we have 8] - (A - @ — ¢(c)) = 0 mod p
with probability 1/p since 8 = Himap (x, C, Cy) is defined after A and o(c).
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- If p # 0, then v, # 0 with probability 1 — 1/p since the coefficients
(8eg>0y) = Hagg(x,C,C,) and (g | dp) = Himap (%, C, Cy) are chosen uni-
formly after the choice of {w;}i_q, {2i}ic[0,2n)\{n+1} and x, which determine
p. Therefore, the probability to have ((deq, by, 90), p) = 0 mod p is 1/p.

If vj41 # 0, B can compute « € Z, using the algebraic representation of 7
as in the proof of Theorem ad

G.3 Efficiency Comparisons for Proving the Validity of Ring LWE
Ciphertexts

We consider a special case of the statement in which corresponds to a proof
of validity of an LPR ciphertext [87]. For this specific concrete statement, we
compare our approach with a generic use of SNARKSs for arithmetic circuits.

Let a statement consisting of a public key (a,b) € Rg and an LPR ciphertext
(c1,¢2) = (a-r+e1,b-r+ea+A-m) € R, where A = |¢/2] and m € R/(2R) is the
plaintextE We consider a prover willing to show that there exist m € R/(2R),
r € R/(2R), and noise terms e, ez € R of norm |le1]/co, ||€2]cc < B such that

r

a 1 m| |

|:b A 1:| €1 _|:CQ:| mOdq (63)
€2

Following [42], we will prove the above statement by showing the existence of
small polynomials r,m € R/(2R), e1,e2 € R, and 71,79 € R such that

_ {Cl(X )] mod (X4 +1)  (64)

with ||e1]|oos [l€2]loc < B, and ||71 /oo, |72]lcc < (d + 1)/2. Over Z, this can be
written

¢(m)
rot(a) I —q-1 pler)| _ [d(er)
rot(h) A-Iy ’ I, ’ —q-1y } d(e2) _[é(cfz)]’ (65)
o(r1)
o(r2)

B

12 We consider a parameter setting where the secret r is chosen so that ||7|« = 1 an
the noise is sampled from a Gaussian with larger standard deviation.
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where A is interpreted as a 2dx6d matrix with coefficients in {—[q/2],..., [¢/2]}.
The prover commits to the bits of w and proves that

¢(r)
¢(m)
rot(a) Gitlog B —q - Grogd } e | [¢(C1)}
I’Ot(b) A - I, G1+10g3 —q - Glogd () B (25(02) ’
- r ——
L2 A ¢ 72dxD T 2 (e)
A o
(66)

where €1 = Gli%}logB(qﬁ(el))’ €2 = G;JilogB((b(eQ))’ rr= Gl;éd((b(rl)) and T2 =
Glzéd(qﬁ(rg)). We note that there is no need to decompose m,r € R/(2R) since
they are natively binary. The prover will thus commit to the decomposition of

the witness w € {0,1}”, where D = 2d(2 + log B + log d).

It is also interesting to consider proofs of validity in an encryption scheme
proposed by Joye [73], which was designed to be used as a component of the
TFHE [33] homomorphic encryption scheme. The scheme of [73] can be seen
as a variant of the LPR cryptosystem where the second ciphertext component
computes an inner product over Z, instead of a multiplication over R,. For a
plaintext m € Z; and a noise es € Z, ciphertexts are of the form

(c1,62) = (a-7+e1,(p(b), ¢(r)) +ea+ A-m) € Ry x Zg

where A = |g/t] (for a plaintext modulus t) and ¢(b) = (bp—1,...,bo) € Z7
contains the coefficients of the polynomial b(z) = bo+b1 X +- - -+b,_1 X"~ ' € R,
in reversed order. Note that cp € Z, can be seen as the extraction of the last slot
from the second component b -r + A - m + noise of an LPR ciphertext since the

degree-(n — 1) coefficient of the polynomial product b-r € R, is (¢(b), ¢(r)). In
this case, relation simplifies as
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while becomes

rot(_a) G1+logB —-q- C*Ylog;d :|
¢(b) A- Glogt 9i+log B —q * Glogd
2 A ¢ 7Z(d+1)xD
o(r)
m
€1 (b(cl) (68)
€2 C2 ’
1 R
Ty 2 4(c)
—_——

with m = gfoét(m) € {0,1}o8t ey = gf_&logB(eg) € {0,1}!*1e B and ry =
glgéd(rg) € {0,1}°24, The prover then commits to the decomposition of the

witness w € {0,1}”, where D = d +logt + (d + 1)(1 + log B + log d), where ¢ is
the plaintext modulus.

G.4 Efficiency Estimations

Application to the LPR cryptosystem. In an instantiation of LPR for
A = 128, a common choice of parameters is d = 1024, ¢ ~ 254, with binary uni-
form r € R/(2R) while e;, e5 are sampled from a discrete Gaussian distribution
with standard deviation ag = 23°. In this case, a given noise vector e; ~ Dya
has infinity norm |le;]lcc < B = agv/A < 2% with overwhelming probability
by [86l Lemma 4.4]. The computational complexity and the CRS size are then
determined by n = D = 112640.

In order to obtain the coefficients allowing to compute 7 from the generators
{gi}ic an)\{n+1}, the prover has to evaluate two products of degree-n polyno-
mialsh which can be done using O(n - logn) multiplications. The prover also
has to compute the product a; = 67 - A mod p. In (66), each block of A
has a special structure allowing to compute the matrix-vector product using
O(d - log d) multiplications over Z,. Indeed, computing 6] - [rot(a)" | rot(b) "]
takes O(d - logd) multiplications while computing 8] - (I ® G) can be done
using 2d multiplications and 2dz additions over Z, since G is of the form
I, ®(1,2,4,...,2°72 —2=1),

Eventually, the prover’s cost is dominated by 337920 exponentiations in G
and D + 1 multiplications, which are used to compute C. If we assume that
exponentiations in G are three times as expensive as in G, the overall workload
of the prover is roughly equivalent to 339150 exponentiations in G.

Given the relatively large value of n ~ 2!7, we need to increase the group

13 The first product is cheaper since one of the factors is of the form -y + Zle w; - X°
for binary w; € {0,1}
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order p by about 20 bits in order to obtain a sufficient security margin against
Cheon’s algorithm [32]. If we use a 275-bit group order, elements of G (resp.

G) can have a 374-bit (resp. 1122-bit) representation using KSS18 curves. With
these parameters, the CRS size amounts to 25712 KB and proofs fit in 1870 bits.

Application to Joye’s scheme. We now consider an instantiation of the
scheme in [73] for parameters of interest where d = 1024, ¢ ~ 2°% and when
the noise has magnitude B < 2*2. We assume that the plaintext modulus t
has 8 bits due to compatibility constraints with the bootstrapping of TFHE. In
order to encrypt 256-bit messages, we consider a packed version of the scheme
allowing to encrypt k = 32 slots of 8-bit messages each and where all slots
{ea; = (#(b;), o(r)) + eai + A - m;}F | share the same secret 7 € R/(2R) but
use independent noise terms ey ; such that |leg ;oo < BE To prove a packed
version of relation , the prover commits to a vector w of dimension

n>D = (d+ klogt)+ (d+ k)(1 + log B + log d) = 57248.

Using KSS18 or BLS24 curves, this requires a CRS of 13068 KB or 14340 KB,
respectively. The prover computes at most 171744 exponentiations in G (143000
on average if the noise is sampled from a uniform distribution over [—B, B])
besides 57248 multiplications in G.

The prover also computes 2 multiplications of polynomials with degree 57248
over a 275-bit field Z,, and a matrix-vector product over Z, (which can be fast
since the matrix is structured). For a prime p such that p — 1 is divisible by the
smallest power of 2 above n, all Z,-operations can be optimized using the FFT.

Verification requires 57248 exponentiations in each source group of the pair-
ingE Assuming multiple threads at the verifier, we can speed up its computation
by splitting exponentiations in smaller batches to be processed in parallel. Also,
we can reduce the cost of G—exponentiations by observing that the exponents
t = (t1,...,tn) do not need to be uniformly distributed over Z, since they are
only used to perform a batch verification in the proof of Theorem |§| (i.e., to
guarantee that 8,11 # 0 w.h.p. in the expression of v,,41). By [47, Theorem
3.2], we can choose each ¢; uniformly in a 128-bit interval (instead of a 275-bit
one) and change the verification equation into

e(ﬂ-’ g) = € (ng . H gfqulfii*éy)'yi+5e~a9 [1]7 é)

=1
b -1
e(cgJLat) - elongn o
i=1

14 In this case, the matrix A in is modified to have d + k rows, where the last k
rows encode public keys components {qﬁ(l_)i)}le in the lower block.

15 We note that, in applications to private smart contracts [98], this is acceptable since
transaction validators can proceed in parallel, regardless of the number of validators.
Moreover, a transaction is often considered valid when 2/N/3 out of N validators have
verified the proof.
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which makes it faster to compute [];_, g;* for 128-bit exponents {t;};.

We note that, in both schemes [87I73], the NIZK argument of ciphertext
validity does not impose any constraint on the modulus ¢ of the encryption
scheme (so that any NTT-friendly ring can be used). We only need to choose a
sufficiently large group order p to make sure that no implicit modular reduction
occurs when we want to prove relations (65) and over the integers.

Possible choices of elliptic curve. In order to optimize the prover’s cost,
one may prefer using pairing-friendly curves enabling faster exponentiations in
the first source group G. One option is to choose G as a subgroup of a curve
E(F,.), for which the base prime field I, is as small as possible. In this case, the
BLS24 curves [7] are good candidates as they offer the fastest exponentiations
in G (but slower exponentiations in G). In order to obtain a sufficient security
margin against Cheon’s attack, we can choose p = |G| > 2275, in which case r
has 1.25-275 = 342 bits. By keeping r small, we also have a short representation
for group elements in G while elements of G are typically 4 times as long as
those of G (when they live in the twisted curve E’(F,4)). This yields a proof size
of 2052 bits and a CRS size of 14340 KB.

One disadvantage of BLS24 curves is their slower arithmetic in G. In order
to obtain a more balanced tradeoff between the costs of multi-exponentiations in
G and G, one may prefer using BLS12 curves. Using BLS12-379 curves, a multi-
exponentiation in G with 57248 elements is computable in less than a second
according to the timings given in [44], Figure 4.2] for a 256-bit group order. In
order to obtain 128 bits of security and taking Cheon’s attack, one may use the
BLS12-446 curve from [71”E|Which yields a group order p =~ 229 (such that 21°
divides p — 1) whereas elements of G (resp. G) fit within 446 (resp. 892) bits.

G.5 Comparisons

For the above choice of parameters in the LPR cryptosystem, we commit to
vectors of dimension n = 112640, which translates into a prover computing
337920 exponentiations in G and 8196 exponentiations in G. In general, expo-
nentiations in G are at least 3 times as expensive as in G using KSS18 curves
(see, e.g., [6, Table 12]). In our setting, the prover computes the equivalent of
~ 339150 exponentiations in G. In the example given in [42 Section 5.3] for
a smaller modulus ¢, del Pino et al. need about 724986 exponentiations at the
prover (and 200667 at the verifier). In general, their construction [42], Section
5.2] incurs up to 10n + 6logn exponentiations at the prover (and 2n + 4logn
exponentiations at the verifier) in order to generate a proof for a vector of di-
mension n. Here, we only need 3n exponentiations in G (and n multiplications
in (@) at the prover and the equivalent of 4n G-exponentiations at the verifier.
Although we need a slightly larger group order than theirs (i.e., 275 bits vs 256),
we expect our prover to be faster and our verification algorithm to be slower.

6 See also https://neuromancer.sk/std/bls/BLS12-446|
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On the other hand, we lose the transparent setup property of BulletProofs and
we need to rely on the algebraic group model.

If we want to prove the same statement using Groth’s SNARK [68] in order
to obtain a similar proof size, we have to express the statement in the language
of Quadratic Arithmetic Programs (QAPs) [56] and obtain a CRS size grow-
ing with the number of arithmetic constraints. Then, we run into an issue since
constant-size SNARKs like [68/50] are designed to handle arithmetic circuits over
a large prime field F,, (where p > 227 is the order of the pairing-friendly group),
whereas we need to prove a statement over a ring R, where ¢ ~ 264, As observed
in [54], using finite field arithmetic to emulate arithmetic over rings induces some
overhead. For example, additions in R, may no longer be for free since adding
two log g-bit integers over F,, may result in a (1+log ¢)-bit sum to be reduced in
R,. In [78], short-integer arithmetic is emulated over F,, by reducing intermedi-
ate computation values modulo ¢ on carefully chosen occasions. In order to prove
that a modular reduction z mod ¢ is performed correctly (when ¢ is not a power
of 2), the prover is required to provide wires 2+ ¢ and « mod ¢, allowing the cir-
cuit to check that z = ¢-(z+¢)+ (2 mod ¢) and (x mod ¢q) < g. In turn, the latter
comparison requires access to the bits of x mod ¢, which introduces log g arith-
metic constraints. Using a greedy approach that only performs one reduction
modulo g per component of (¢i,c2) = (a-r+e1,b-r+ex+ A-m), the remainder
checking technique of [78] would require 2d - logg = 131072 constraints, thus
leading to an arithmetic circuit with more than 250000 multiplication gates. To
improve this, we can instead prove relation modulo p (which implies that
it holds over Z if the witness is sufficiently small) using an arithmetic over Z,.

As part of the statement, the prover has to demonstrate the smallness of noise
terms, and the binarity of  and m. This boils down to proving the smallness of
w in , which requires to prove that the components of w are all binary in
(66). This requires D = 2d(2 + log B + logd) = 112640 as in our construction.
Then, we need 3dlogd+ 4d = O(d - log d) additional constraints to compute the
products a -7 and b-r over Z,[X]/(X¢+ 1) (which requires two FFTs and their
inverses) and another 2d multiplications to compute ¢ - 71 and g - rs.

Overall, we estimate that the process would cost n,, = D + 6d + 3d - logd =
149504 arithmetic constraints to prove the global statement. While the number
Ny, = 149504 of multiplication gates might appear only slightly larger than our
vector dimension n = 112640, it has a significant impact. In the SNARK, the
prover has to compute n,, = 149504 exponentiations in G (with possibly large
exponents over Z,) besides 3n,, + (n,, — {s) ~ 897000 G-exponentiations, where
Ny > 452000 is the number of wireﬂ and /5 = 4d = 4096 is the number of field
elements describing the statement. In comparison, we only need 337920 exponen-
tiations in G and only 410 exponentiations in G. If we count each exponentiation
over G as 3 exponentiations in G, the SNARK of [68] computes about 1345000

17 The number of wires is 1y = Mum + Nin + Nout, Where n, = 4d + D is the number of
public/private input wires and nowt = 1+ D is the number of output wires. Here, we
count one output wire per bit-proving constraint w; - (w; — 1) = 0. The circuit can
be normalized to have one output wire, but it would increase the number of gates.
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equivalent G-exponentiations. On the other hand, our verification algorithm is
more demanding and computes n exponentiations in both groups G and G when
the SNARK only needs ¢5 exponentiations in G.

As far as the CRS size goes, the SNARK approach would cost n,, = 149504
elements of G and 2n,, + (nw —£s) = 747000 elements of G. Using KSS18 curves
with a 275-bit group order, it would take about 50440 KB. On the other hand,
the verifier only needs to store a small part of the CRS in Groth’s SNARK. In
Section we show how to obtain a similar feature in our construction.

Using similar estimations for the scheme of [73] with k£ = 32 plaintext slots
(we consider the packed version of [73, Section 4]), we find that an R1CS-based
SNARK would require an arithmetic circuit with more than 93000 multiplication
gates and 280000 wires. Then, [68] would require to compute 558000 exponenti-
ations in G and 93000 exponentiations in G. The total number of G-equivalent
exponentiations would be around 837000 (which is more than 4 times as large
as in our scheme) if exponentiations in G cost three times as much as in G.

G.6 A Variant with O(1) Exponentiations at the Verifier

If we increase the number of exponentiations on the prover side, we can have a
verification algorithm that only computes a constant number of exponentiations
and O(n - logn) field operations in Z,. This can be done by exploiting the fact
that the CRS has a similar structure to that of KZG polynomial commitments
[75] and leveraging the constant verification time of KZG. If we consider the
scheme from Section where the verification equation is

n

e(m.9) = e(Clr JICEE R ¢)

A
= Cp

(Cseq H m) e(g1, gn)"t00, (69)

R/—/
e

the idea is to have the prover compute all multi-exponentiations and convince
the verifier that they were correctly computed as KZG commitments (similar

ideas were used in [22]). The prover runs as in Section [G.1] but it also computes
n (Beq-ti—0y)-yi+oo- ag[z]
=1 gn+1 7

Then, (Cp, Ct) are included in the proof so that the verifier can test the equality
while performing only 2 exponentiations in G, one exponentiation in G, and
one exponentiation in Gr.

Note that (Cp, Cy) = (¢7»(@), P (@) can be seen as deterministic KZG com-

C’t = H? 1 QZL and another helper commitment Cj, = [];
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mitments to the polynomials

Py X] = Z ((Beq - ti — 6y) - yi + 8o - agli]) - X" 177 P[X] = Zti - X

i=1 =1

(70)

which are computable by the verifier. To provide evidence that (Ch,é't) were
really computed as KZG commitments to the above polynomials, the prover
can evaluate them on a random input z obtained by hashing (Cj, C’t) together
with all other commitments and proof components. The verifier can in fact
compute the real evaluations (pp,p:) = (Pn(z), P:(z)) on its own and check
the evaluation proofs sent by the prover for the input z and the commitments
(Ch, Cy). If these commitments are malformed and commit to different polyno-
mials (Qn[X], Q¢[X]) # (Pn[X], P[X]), the Schwartz-Zippel lemma ensures that
(Qn(2),Q¢(2)) = (pn, pt) with negligible probability.

Since both polynomials (P, [X], P,[X]) are evaluated on a common input, we
can generate an aggregated evaluation proof mkzg € G for the linear combina-
tion Py[X] + w - P,[X], for a random scalar w € Z,. Given the challenge point
z = Hz(x,é,Cy,ﬂ,Ch,ét,y,t,é) € Zp, the prover can derive a randomizer
w = Hw(x,C’,C’y,w,C’h,C’t,y,t,é,z,Ph(z),Pt(z))) and provide an aggregated
evaluation proof consisting of a single group element 7xzg € G satisfying

6(Oh : g*ph,,g) ! e(ga ét : gfpt)w = e(ﬂ-KZGvgl : giz)a (71)

where (pp,pt) = (Pn(2), P(z)). Since X — z divides the linear combination
(Po[X] 4+ w - P[X]) — (Pn(2) + w - Pi(2)), the prover can compute mkze sat-
isfying from (g1,...,9n) using n exponentiations in G.

The proof now consists of w = (C', Cy,m, Ch, C't, TkzG), which is twice as large
as the original proof. The verifier checks both pairing product equations and
(71). The polynomial evaluations (pn,p.) = (Pu(z), P:(z)) are not included in
the proof since they can be re-computed by the verifier from (P,[X], P;[X]).

The total cost for the prover now amounts to 5n exponentiations in G
(namely, n for each group element (Cy,Ch,mkzg) and another 2n to compute
7) and n exponentiations in G. The proof size has now increased by a factor
2. While the prover’s computational complexity approaches that of a Grothl6
prover for the same StatementE the CRS size remains significantly smaller than
in R1CS-based SNARKSs like [68]. In particular, the verifier only needs to store
a constant number of CRS components as in [68].

The security analysis proceeds identically to the proof of Theorem [6] except
that it additionally considers the case of adversarially-generated proofs contain-
ing malformed (Cy,, Cy). Let the real polynomials (Py,[X], P,[X]) defined in (70).
From the algebraic representation of commitments (Cj, C’t)7 the reduction can

18 For the scheme of [73], it would require 286240 exponentiations in G and 57248

exponentiations in G.
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compute polynomials Qp,[X] and Q,[X] such that Cj, = g@+(®) and C; = §Q(=),
If either C}, or Cy is malformed, we have (Q,[X], Q:[X]) # (Py[X], P,[X]). This
implies Qp[X] + w - Q¢[X] # Pn[X] + w - P[X] with overwhelming probability
since (Ch, Cy,y.t, d) are included in the inputs of H, and completely determine
(Pn[X], P[X]) in and (Qr[X], Q:[X]) (via the algebraic representation of

Ch, and C%). The KZG verification equation then implies

(@n(@) —pn) +w - (Qi(@) —pr) = 7(a) - (@ = 2)

where [ X] is defined by the algebraic representation of mxzg = ¢™(®) Then, the
polynomial identity

(Qn[X] = pn) +w - (Qu[X] = p1) = m[X] (X —2) (72)

must hold unless the reduction can compute a € Z, by factoring a non-zero
polynomial. Since (pn,pt) = (Pn(2), Pi(2)), (72)) implies

(Qn(2) = Pu(2)) + w - (Qu(2) — Fi(2)) = 0

However, since we assumed Qp[X]+w-Q¢[X] # Pp[X]4w-P;[X] at this point, this
is only possible with probability 1/p because z = H,(x, C, Cy,m,Ch, Cy,y.t, d)
is defined after (Qn[X], Q:[X], P»[X], P;[X]). This shows that, if an algebraic
cheating prover sends a malformed (Cy,C;) # (gF»(@), §P(@) it can only pro-
vide an accepting mkzg (i.e., satisfying ) with negligible probability under
the (2n,n)-DLOG assumption.

G.7 Extensions Proving Other Statements about Encrypted Data

The argument systems of Section[G.Iand Section[G.6both extend to prove other
statements about encrypted messages without any modification in the CRS. In
non-universal SNARKs like Groth16 [68], this would require to generate a new
CRS for each different circuit. For universal SNARKs with pre-processing (e.g.,
[52]), this would require a new circuit-dependent pre-processing phase.

As explained below, we can prove equalities or inequalities between two plain-
texts, or that these plaintexts agree in certain bit positions. It is also possible to
prove that at most one-out-of-k ciphertexts encrypts a non-zero value. For each
ciphertext, one can also prove an upper bound on the Hamming weight of the
plaintext. We provide examples for Joye’s encryption scheme [73] but the same
statements can be proven for LPR ciphertexts [87] as well.

Proving (In)equalities Between Encrypted Messages. We consider ci-
phertexts ¢1 = (c1,1,¢1,2) € Rq X Zg, and ¢c2 = (c2.1,¢22) € Rq X Zg, which
encrypt log t-bit messages my € Z; and mo € Z;, respectively. Suppose that the
prover knows the underlying plaintexts and randomness and wants to convince
the verifier that m, = moy or that m; < ms when they are interpreted as un-
signed integers.
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By adapting , we see that the prover knows witnesses w;,ws € {0,1}7
such that

rot(_a) G1+logB —-q- Glogd
d’(b) A- Glogt 9i+log B —q * Glogd
2 A ¢ 7(d+1)xD

o(rg)
mp
esn | _ [¢(cpa)
€s,2 g2 |’
g1 R
T30 = ¢(ep)
2 g

where mg = gl_oét(m@) € {0,1}°8* denotes the binary decomposition of mg € Z;
for each 8 € {1, 2}.

The prover first generates proofs of ciphertext validity m = (C’l, Cya,m1)
and o = (C’g, Cly,2,m2) for ¢1 and ¢ using the NIZK argument of Section |G| As
part of these proofs, the prover computes commitments ¢, and C» to the witness
vectors w, we, which contain the plaintext bits 7i2;, Mo € {0, 1}1°8* in their po-
sitions d + 1 to d + logt. Since the commitment is additively homomorphic, the
verifier can publicly compute é’g/é’l, which commits to ws — w; € {—1,0,1}7.
If nqy = mo, then w9 — w; contains zeroes in its positions d+ 1 to d +logt. The
prover can prove it by opening Cs / Cy to 08 at these positions using one group
element. This can be done in the same way as in PointProofs [62]. In a similar
way, it is possible to prove that m; and mso agree in certain bit positions.

To convince the verifier that m; < mes, the prover will prove that the right-
most non-zero element of 1y — iy € {—1,0,1}°8% (if it exists) is a 1. This
can be done without revealing the location of this element, by showing that the
inner product between mo — 12 € {—1,0,1}°8* and g = (1,2,4,...,2"°8*"1) is
non-negative. To do this, the prover can use the range proof technique of Sec-
tion 4] and prove knowledge of a binary decomposition of (s — my, g) so as to
provide evidence that (rmo — m4,g) € [0, — 1].

In more details, the prover will use an opening of the commitment Cs / Cy to
compute a proof that C'Q/C'l commits to a vector we — w; € {—1,0,1} such
that w = (wy — w1, (04 | g | 0P~971°8%)) belongs to the interval [0,¢ — 1]. To
this end, it can compute m,, € G such that

d+logt

j—d—1 N ~ \w ~
[T 625 Co/Cr) = elan.g0) - el ). (73)
j=d+1

Note that revealing m,, would not be zero—knowledge. However, the prover can
instead compute a commitment C,, to w = g t( w) € {0,1}°8* and, using the

technique of Section l generate a proof (Cy, 4, Twbin) € G? that C,, commits to
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a binary vector. Then, it can compute 7,, € G such that

logt

e( 1:[ I éw) = e(91,9n)" - (7w, ) (74)

as explained in the introduction (cf. equation ) By dividing from ,
the prover can obtain T £ 7, /7, such that

d+logt logt 1
gi—d=1 A A oY A\ 7T .
H gn+17j702/01> 'e(HgnJrlfjan) = 6(7T<,g)‘ (75)
j=d+1 j=1

This technique of proving that w € [0, ] without leaking it was already used in
Section[4] to prove that a Pedersen-committed value x is contained in an interval.
It can be proven secure in the same way.

Again, it is possible to aggregate the proof elements 71, wo (which are part of
71 and 7)), T« and 7, pin into one proof element mineq by exploiting the linearity
of all verification equations. The global proof of inequality contains the proofs
of ciphertext validity (C‘l7Cy,1) and (CA'Q,Cy’g) for ¢; and cs, and 3 additional
group elements (C‘w, Coys Tineq)-

The above construction was outlined for integers of logt bits that are both
encoded in a single plaintext slot in Z;. It easily extends to prove inequalities
between longer encrypted integers of k - logt bits encoded using their radix-¢
representation in a packed version of the encryption scheme, where ciphertexts
C1 = (Cl,l,C172) and Cy = (6271,C272) live in Rq X Zlg

Proving that At Most 1-out-of-k Plaintexts is Non-Zero. Suppose that
we have k ciphertext {¢; = (¢;.1,¢i2)}F_, in the scheme of [73]. We wish to prove
that at most one of them encrypts a non-zero plaintext.

The first step is to generate proofs of ciphertext validity m; = (C'Z, Cy.is i)
for each i € [k]. In the proofs {m;}*_,, we know that each C; commits to a
binary witness vector w; that contains the plaintext bits m; € {0, 1}°8¢ in its
positions d + 1 to d + logt. To prove the statement, the prover can compute
a linear combination C,, = [['_, C% using coefficients {w;}*_; derived from a
random oracle. Then, the prover can use the technique of Section [F.2] to prove
that C,, commits to a vector w,, € Zy of which the subvector w,, [d+1,d+]logt]
has Hamming weight < 1.

To do this, the prover uses the technique of Section in the following way.
It generates a commitment C), to a random vector w’ = (wi,...,w}) € {0,1}"
for which w} =1 for all i € [d + 1,d + logt] such that w,[i] # 0 and w, = 0
for all ¢ € [n]\ [d+ 1,d + logt]. The prover then proves that: (i) w’ is binary
and has Hamming weight 1; (ii) For each i € [d + 1,d +logt] , w; = 1 whenever

Wy, [i] # 0, which implies HW (w,,[d + 1,d + logt]) < HW (w'[d+ 1,d + logt]).

’LU

The prover thus commits to w’ € {0,1}" by computing C/, = 7 -HJ 195

for some random !, ¢~ Z,, and proves that ¢, is a commitment to a binary
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vector. Then, it derives a random vector (yg, 1, Yy 10gt) € ZY&! from a ran-
dom oracle, by hashing the statement and all previous commitments. It defines
y' = (0% (Yhys--- ,y&+10gt) | 0n-d-lost) e 7. Next, it generates another com-

W’

mitment C; = g 10, gn+1" , and proves that it commits to (y},-wy,, ..., y;-w])
by proceeding exactly as in Section [3] Next, the prover can generate a short
m, € G such that

-1 A ~ ~ n f(1—w’)w.,[i ~
HgZ:_l i / 7Cw) — e(ﬂ;,g) . e(gl’gn)Z'L:l yi-(1—w;) Wy [4] — e(ﬁ;,g),

which is possible since [, gffﬂﬂ- : C’g’j_1 =g I, gnJr(l1 S 2

In the above construction, the proof size grows with the number of ciphertexts
k. To avoid this, we can use a k-slot variant of the scheme (e.g., [73, Section 4])
with ciphertext space R, x Z’qC and message space ZF. For a given ciphertext
¢ = (c1,cg) encrypting (my,...,my) € ZF, the prover can then use a constant
number of group elements to prove that at most one of the plaintexts {m;}¥_; is
non-zero. The prover first generates a proof that ¢ is a valid ciphertext by means
of a proof 7 = (C, Cy, ), where C' commits to a witness @ € {0,1}” containing
the bits of (my, .. mk) in its positions d+1 to d+k-logt. In addition, the prover
can generate a commitment Cpp = g7 - H =1 g;’“ to (my,...,my) (interpreted
as a vector in Z’;). Then, the prover can use a constant number of group elements
to prove that w[d +1,d+ k -logt] € {0 1}#1oet is a concatenation of the binary
decompositions of the messages {m;}¥_; committed in Crm (this can be done as
explained in Section . Finally, the prover can use the technique of Section
[F-2] to prove that C,, commits to a vector of Hamming weight < 1.

H Generating the CRS via a Ceremony

Several distributed protocols can be used to generate the structured SRS with-
out relying on a centralized trusted party. Among them, the ceremony protocols
of [91I77] make it possible for K parties to sequentially contribute to the secret
trapdoor «, which is a obtained as a product a = Hfil 7; of individual random-
izers {7;}2£,. These protocols are designed in such a way that the NIZK and
soundness properties are preserved as long as at least one of the K participants
is honest. Due to their sequential nature, they cannot guarantee that the result-
ing product o = Hf{:l 7; is uniformly distributed. Indeed, a rushing adversary
can choose ak as a function of gm:1 Ti and force a few bits of ngil i to be 0.

Despite this bias, [77] showed that ceremonial versions of [68], for example,
can still be proven secure as long as one of the contributors behaves honestly
(meaning that it randomly chooses its contribution 7; and erases it after the cere-
mony protocol). To this end, each participant i has to demonstrate knowledge of
its randomizer 7;. In [77], it was done using BLS-type [13] proofs-of-possessions
[05] that were shown to satisy a suitable notion of simulation-extractability.
Nikolaenko et al. [91] use Schnorr-type [96] X-protocols in order to optimize the
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consistency checks on the CRS updates after each round. We show that their
protocol can be used with our scheme while preserving its security properties.
We first recall the ceremony protocol of Nikolaenko et al. [91] hereunder. It as-
sumes additional hash functions Hash : {0,1}* — Z¥ and Hash’ : {0,1}* — Z,
modeled as random oracles.

Initialization: The initial state after round 0 is the default CRS pp,
PPo = (91,0 =9 920=9, -5 Gno0=9, YGn+20=9;, ---5 G2n0=4Jg
B0=0 G20=8 s Ga0=9)

Update procedure: At the beginning of round j, the current CRS pp,_; is
assumed to be

. 2
PP,y = (gl,j—l =g%", gojo1 =9, L gnjo1 =g,
n+2 n
In+2,j-1 = 9( ) cees Gong-1 = g(aﬂ'—l),
G1j-1=9%" g2j-1= Gl Gnj1 = g1 )

e The j-th contributor then chooses a random 7; ¢ Z,, and computes

pp; = (915 = 977, gy =g, gy = g,
71.+2 ’n,+2 2n 27L
G2 =90 D) oy = glT Y,
Gy =G0 ey =g, mdzmﬁ%ﬂ>)

which implicitly defines a; = 7;-a;j_1. Then, the j-th contributor proves
knowledge of 7; € Z,, such that g1 ; = gfj_l. This non-interactive proof
Tpok,j = (PPoK,j, SPoK,j) € Zf, is obtained by choosing rpok,; ¢ Zp,

. TPoK,
computing Rpok j = gy 51, Prok,j = Hash(g1 7, 91,51, Rpok ;), and

SPoK,j = TPoK,j + hpok,j = Tj.
g j G Ty

o All parties verifiy the proof mpek; = (hpok,j, SPok,j) by testing the equal-
ity
'Ol h 'Ol
hpok; = Hash (g1, g15-1, 9151915 ) (76)
and reject pp; if (76) does not hold. They also reject pp; if g1; = lg.
Then, they compute (p1,p2) = Hash'(ppj) € Zg and reject it if one of
the equalities

— 2n—1

( H " Hééf’f):e(g' T 4. Hgg ) (77)
z;Zn—&-l =t i;n,
i#En—+2 i#n+1

e(gn+2.5,9) = €(gn.j, G2.5)
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does not hold. If the previous checks are all satisfied, then all parties
accept pp; as the updated CRS after round j.
Output: At the end of round K, the parties output pp := pp;, where j € [K]
is the largest index such that pp; was accepted by all parties.

If the j-th contributor is honest and generates a well-formed pp;, then is
satisfied because

n—1 —
i—1 -1y
( H g, g ﬁéﬁ?)—e(gm H g, H (p2)
z;én+1 Z#TLJrl =t
i#n+2 i#=n+2
2n—1

n—
:e<g1,j' H 91 ,j7 Q'H@éﬁz))
=

z;én
i#En+1

2n—1 (o (
) A (p
H gwl 0 915 Hg€+21 J)
i#n+1
2n—1

n
( ~(p5 )
H PR | )
=2

|| Il
o

/’\ N
s}

zyﬁn
i#En+1

2n—1 n
- e(g. T 4%, H H(o57 )
iZn =t
i#En+1
The second equality of can be verified in the same way.

We now prove that simulation-extractability is preserved in an experiment
where the adversary is involved in the ceremony protocol and controls all play-
ers but one. To prove the result, we exploit the straight-line extractability [50]
of Schnorr proofs in the combined AGM+ROM model. We show that, under
the (2n,n)-DLOG assumption, the knowledge extractor can always extract the
witness 7; from TTPoK; for each round j involving an adversarial contribution.
If earlier rounds did not involve any honest contribution, this can be proven
without any number theoretic assumption. If earlier rounds did involve a con-
tribution from honest parties, we have to rely on the simulation—extractability@
of the Schnorr proof of knowledge mpok;. In the following, we assume that the
unique honest player contributes first (note that the adversary always has an ad-
vantage when it speaks after honest players). However, the proof easily extends
when adversarial contributions occur before and after the honest player’s.

19 We only need its one-time simulation-extractability since the reduction should be
able to extract after having generated one simulated proof.
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Theorem 7. In the AGM+ROM model, the NIZK argument of Section [G] pro-
vides simulation-extractability under the (2n,n)-DLOG assumption when the
CRS is generated via the above ceremony protocol as long as at least one party
is honest.

Proof. We consider the simulation-extractability experiment when the adversary
A contributes to the ceremony protocol and controls all parties but the first
contributor. We describe a reduction/extractor B that either extracts a witness
from adversarially-generated proofs or breaks a given (2n,n)-DLOG instance
(g)gh s Ony Gn42s - - 79277,’.@7.@17' e agn)

We show that, at each round of the ceremony, B always manages to extract
adversarial contributions {7;}/<, to the final CRS ppy unless it can break its
(2n,n)-DLOG instance during the simulation of the ceremony protocol.

On input of its (2n,n)-DLOG instance

inst = ( g9, g1 = gTv ceey n = g(Tn)a n+2 = g(TTH—Q)v ceey Gon = g(TQW)v
gv nggTa"'7gn:g(T))7
B defines pp; = inst in round 1. Namely, it sets
ppy = (91,1 =01, 92,1 = 92, Sy 9n,1 = Gn,
In+2,0 = In+2, cevy 92n,0 = G92n,
911 =201, 921 = g2, vy Gn1 =Gn )

and simulates a proof of knowledge mpok, = (hpok, SPok) Of T = logg g1- This is
done by choosing spok, hpok & Z,, and programming

5 Pol —hpof
hpok = Hash(g1.1, 91,0, 9776 - 9117

If Hash was already defined for this input, B fails but this happens with negli-
gible probability Quash/p since g7 | - g, ;LP°K is uniformly distributed in G.
From round 2 onwards, the adversary A starts generating updated com-
mon reference strings {pp, }f:% each of which comes with a proof of knowledge
ok, = (PPoK,j, SPok,j) Of T; € Z, such that gy ; = ngj_l. If 7pok, verifies, it
satisfies
hpok,; = Hash(g1,j, 91,51, Rpok.; )+

SPoK, j —hpok,

where Rpok,j = 91,71 " 91 5 . This implies that the corresponding hash query
must have been made since, otherwise, mpok; could only be valid with probability
1/(p—1). We thus assume that A queried Hash(g1 ;, g1,j—1, Rpok ;). When it did,
it must have revealed an algebraic representation {wm}?go’#n 41 of Rpokj as

2n

WO i Wi, j
Rpok,j = g~ - H 9:; "
i=1itn+1
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s i —h i
However, we also have Rpok,j = g1 71791 ;

since mpok; verifies. Moreover, for
each round j € [2, K], A also supplies an algebraic representation {x; }1220,1‘ nt1
of each g1 ; = g"° - Hle,#nﬂ g;"’. We show by induction that B can always
compute 7; such that g; ; = gffj;l or solve its problem instance inst. For j = 2,

. . ~hpo . .
we have g1 j_1 = g1 and, since Rpok 2 = g77% - g1 5 "%, we obtain the equality

2n 2n

ngoK,2 . (gnog . H gf” )*hpoK,g _ 9“0,2 ' H g(:z‘,z (78)

i=1,i#n+1 i=1,i#n+1

= 91,2

Unless B can compute 7 by factoring a non-zero polynomial

mo[X] = Z (wi,2 + hpok,2 - Ki2) - X' + (w12 4 Apok,2 - K1,2 — SPok,2) * X
1€[0,2n]\{1,n+1}

we must have the equalities

—hpoK,2 * Kij2 = wi2 Vi €[0,2n] \ {1,n + 1} (79)

SPoK,2 — hpok,2 - K1,2 = w12

Since hpok,2 = Hash(g1 2,91, Rrok,2) € Zy is defined after {wi,2}5207i¢n+1 and
{ni72}3207i¢n+1, the upper equalities of are unlikely to hold if there exists
i €[0,2n]\ {1,n+ 1} such that k; 2 # 0 or w; 2 # 0 (i.e., if Quash is the number
of queries to Hash, it happens with probability smaller than Quash/(p — 1)).
With all but negligible probability, thus only holds if x; 2 = w; 2 = 0 for all
i €1[0,2n]\ {1,n + 1}. Then, we have

2n

__ Ko, Ki2 K12
p2=g" J[ ¢ =4
i=1.i#n+1

so that the AGM representation of g; o immediately provides B with 7o = K1 2.

We now assume that, at the beginning of round j > 2, B has obtained
{Tg}z;; € Zy such that g1, = g7*,_,. This implies that B knows 7,_; = %;; T

such that g1 j_1 = gfj’l. Since we have

2n

___SPoK,j —hpok,j __ _wo.; Wi j

Rpok, j —91,3‘7]1 “91,5 =gt H g; "
i=1,i#n+1
we obtain the equality
2n — hpok; 2n
Tj—1"SPoK,j KO - Ki,j oK, we 4 wW;,j
97 “-(gf“- 11 gﬂ) =g I & (80)
i=1,i#n+1 i=1,i#n+1
= 91,5
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By the same argument as in the base case j = 2, we have

—hpoK,j - Kij = Wi j Vi e [0,2n]\ {1,n+ 1} (81)

Tj—1 " SPoK,j — PoK,j * K1,j = W1,j

since, otherwise, B is able to compute 7 by factoring the non-zero

™[ X] = > (wijFhpok jKi ) X (Wi, +hpok K1, —Tj—1-5PoK,j)- X
1€[0,2n]\{1,n+1}

However, since hpok ; # 0, can only hold with probability < Quash/(p — 1)
unless we have k; ; = w; ; = 0for all ¢ € [0,2n]\{1,n+1}. Then,ifx; j =w,; ; =0
for all i € [0,2n] \ {1,n + 1}, the AGM representation of g; ; yields

2n I
R0, . Kigj _ K1j _  Tj—1"F1,j
g1,; =9’ I | 9; 7 =917 =911
i=1,i#n+1

and allows B to compute 7; = ~j__11 - k1,; (note that 7;_1 # 0 since the condition
g1,; # g is verified before accepting pp; at each round).

By induction, we have shown that, except with probability < K-Quasn/(p—1),
B either obtained 7x = ]_[522 7; such that g1 x = gf" or it already solved its
(2n,n)-DLOG instance at the end of the ceromony protocol. Although there
may be some bias in the distribution of the underlying trapdoor a = 7- Hf(:2 T
the ceremony outputs a properly shaped ppy with overwhelming probability.
At each round, as shown in [91, Theorem 2|, a malformed pp, passes the batch
verification test with probability < 2n?/p over the random choice of p; and
p2 by the Schwartz-Zippel lemma. Over the K rounds, this leads to a probability
< 2Kn?/p of ppj being malformed.

If B has not solved its problem instance yet at the end of the ceremony, it
starts interacting with the adversary in the simulation-extractability experiment
as specified in the proof of Theorem [f] with the jointly generated ppg. The
outcome of this interaction is that B either extracts a witness or computes the
secret o with overwhelming probability. In the latter case, B eventually obtains
T=a/ (HJK=2 7;j), which solves the original problem instance inst. O

The proof of Theorem [7] easily extends to the case where the adversary is
allowed to send CRS updates pp; before and after the unique honest player’s
contribution. Indeed, if the honest player comes into play at round j* > 1, the
first j* — 1 rounds only involve adversarially-generated group elements of which
the algebraic representations only depend on g and § (and not on {g(Tz)}ie[gn]).
This makes it straightforward to extract 7; such that g1 ; = 93}1 in the AGM.
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