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Abstract. Central Bank Digital Currencies (CBDCs) aspire to offer a digital replace-
ment for physical cash and, as such, must address two fundamental yet conflicting
requirements. On the one hand, they should be private to prevent the emergence of
a financial “panopticon.” On the other hand, they must be regulation-friendly, facili-
tating threshold-limiting, tracing, and counterparty auditing functionalities necessary
for compliance with regulations such as Know Your Customer (KYC), Anti-Money
Laundering (AML), and Combating the Financing of Terrorism (CFT), as well as
financial stability considerations.
In this work, we propose PEReDi, a new asynchronous model for CBDCs and present
an efficient construction that, for the first time, simultaneously addresses these chal-
lenges in full. Moreover, recognizing the necessity of avoiding a single point of failure,
our construction is distributed to ensure that all its properties remain intact even
when a bounded number of entities are corrupted by an adversary. Achieving all the
above properties efficiently is technically involved; among others, our construction em-
ploys suitable cryptographic tools to thwart man-in-the-middle attacks, introduces
a novel traceability mechanism with significant performance gains over previously
known techniques, and, perhaps surprisingly, shows how to obviate Byzantine agree-
ment or broadcast from the optimistic execution path of a payment, something that
results in an essentially optimal communication pattern and minimal communication
overhead. We demonstrate the efficiency of our payment system by presenting detailed
computational and communication cost analyses.
Beyond “simple” payments, we also discuss how our scheme can support one-off large
transfers while complying with Know Your Transaction (KYT) disclosure require-
ments. Our CBDC concept is expressed and realized within the Universal Compo-
sition (UC) framework, providing a modular and secure way for integration into a
broader financial ecosystem.
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1 Introduction

The development of cryptocurrencies provided a strong motivation for the development of
“central bank digital currency” (CBDC) systems. A CBDC is central bank money but more
widely accessible and transferable than central bank reserves and banknotes (see e.g., Bank
of England [45] for an overview of the basic principles of such systems). This type of money
can also be interest bearing (with a different rate than that on reserves) [14] and has a
different operational structure than other forms of central bank money [63]. It was early on
observed that CBDCs solve a different problem than general cryptocurrencies such as Bitcoin
and/or Ethereum. The first construction that exploited this distinction is RSCoin [35] which
was followed by designs explored by a number of central banks [1,32,13]. In such systems the
verification of transactions relies on a distributed set of independent authorities (we call them
“maintainers”). Such entities are empowered to enforce the monetary and regulatory policies
of the system that are dictated by the central bank and regulatory entities. A distinguishing
characteristic of CBDC systems compared to cryptocurrencies is that the monetary policy
is decoupled from the monetary exchange system. The integrity and soundness of the former
remains in the purview of the central bank, while the integrity of the latter is distributed
across a set of entities. Therefore, the CBDC system’s state is maintained in a distributed
manner by the maintainers such that the central bank as well as any regulatory entities can
be offline during the time users transact.

A common concern expressed in the context of CBDCs is that, contrary to other forms
of central bank money, a CBDC may transform the central bank into a “panopticon” that
is continuously aware of all transactional data. Such concerns have also been highlighted
in the context of cryptocurrencies. First generation cryptocurrencies such as Bitcoin and
Ethereum are only pseudonymous in the sense that a user’s transactions are linkable to a
(set of) pseudonym(s) that the user can generate. Privacy enhanced cryptocurrencies (e.g.,
Zerocash [11] or Monero [51]) were developed to hide the value of transactions and offer
unlinkable transactions to a certain degree or under plausible assumptions. Note that such
systems enjoy a level of anonymity that does not reveal directly any information about
payment counterparties and transaction values and, hence, may be attractive and be used
for illegal activities such as money laundering, financing terrorism, and so on. As a result,
privacy-preserving systems using such techniques can be problematic in settings where com-
prehensive regulatory compliance is required. CBDCs constitute such setting and hence it is
imperative to have built-in features by which, while full anonymity can be offered for most
circumstances, at the same time conditional disclosure to regulators and law enforcement in
case of misbehavior can be facilitated, cf. [5].

Privacy in payment systems can interfere with three main regulatory obligations: (i) Know-
Your-Customer (KYC), which requires the positive identification of counterparties before
they are able to transact. (ii) Anti-Money Laundering (AML), which requires that sources
of funds should be legitimate. (iii) Combating Financing of Terrorism (CFT), which requires
that the recipients of funds should not engage in terrorism. To appreciate the way such re-
quirements interfere with privacy, it helps to imagine the set of all payments as a hidden
directed graph where vertices correspond to counterparties and edges to payments between
them weighted by their value. Using this abstraction, it follows that introducing vertices in
the graph should be subject to KYC, while it should be possible to reveal the incoming or
outgoing edges to any vertex which is suspected for illicit or terrorism activity, as well as
trace selectively particular paths in the graph from source to destination and vice versa to
address AML and CFT considerations. Beyond these opening and tracing operations it is
widely recognized in the CBDC context, cf. [1,8,13], that it is desirable to restrict both the
volume of payments that a particular vertex can make (so that “hoarding” CBDC currency
is tempered) as well as limit the amount of value that can be transferred between two coun-
terparties in a single transaction, without triggering additional auditing regarding the funds
of the sender (what is referred to as KYT - know your transaction, cf. [3]). Unfortunately,
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currently no existing CBDC design offers privacy combined with such “regulation friendly”
capabilities.

1.1 Our results

We put forth a model and construction that for the first time addresses all the issues iden-
tified above simultaneously. In PEReDi each user has an account which is approved dur-
ing onboarding (i.e., it undergoes KYC) and can subsequently be issued currency by the
central bank (following its monetary policy) as well as receive or transmit funds to other
users. Our design approach applies a novel combination of cryptographic primitives and
distributed organization that, perhaps surprisingly, shows how we can remove the require-
ment for (byzantine) agreement or broadcast from the optimistic path of payment execution.
PEReDi features an encrypted ledger maintained separately by each maintainer, transac-
tions are identified by transaction identifiers and leave encrypted fingerprints in the ledger
of each maintainer that under normal circumstances are completely opaque. Transaction
senders and receivers independently update their private accounts, leaving the above traces,
while only in the case of a transaction abort the maintainers need to engage in an agreement
protocol to ensure consistency. In this way, PEReDi offers a digital equivalent of physical
cash: payments do take place with double-spending prevention without anyone in the system
becoming aware of the precise value transferred or the counterparties involved. Moreover,
both sender and receiver need to engage for the payment, something that prevents “dusting”
attacks1. At the same time (and contrary to physical cash) the transaction value is subject to
constraints in terms of sending and receiving limits of the two counterparties and maximum
transaction size, while the counterparties themselves are preconditioned to proper KYC on-
boarding. Tracing and opening operations are accommodated by the design elements of the
encrypted ledgers. Given adequate evidence about suspicious activities of a specific user or a
particular transaction (indexed by its unique transaction identifier), the authorities can trace
transactions made by that user or reveal the metadata of a given transaction by unlocking
the real world identities of the counterparties or the total value transferred. Combining these
opening and tracing operations, authorities can identify the labels of specific vertices in the
payment graph as well as trace paths of payment from source to destination and vice-versa.
We stress that such operations require a quorum of entities to agree and hence cannot be
unilaterally invoked by any individual entity hence precluding a single point of failure.

To summarize, our contributions are as follows:

• To the best of our knowledge, this is the first time that a fully privacy-preserving and
comprehensively regulation friendly CBDC is modeled formally. Our formal model is in
the Universal Composition (UC) setting [24]. This modeling enables the composition of
the system as payment infrastructure within larger systems.

• We review the regulatory compliance in the context of payment systems (KYC, AML,
CFT, auditing, etc.) and argue how our ideal functionality for CBDCs, FCBDC, captures
such requirements in a privacy preserving setting.

• We put forth a distributed construction ΠPEReDi that realizes our CBDC ideal functional-
ity FCBDC in an efficient manner based on standard cryptographic assumptions. Notably
ΠPEReDi demonstrates that neither Byzantine broadcast nor agreement is needed in the
optimistic execution path of a payment instance, resulting in an optimal communica-
tion pattern and message size in the case when both sender and receiver are online and
willing to finalize a payment.

• We introduce a novel simulatable approach for tracing suspicious users in the auditing
protocol which is employed for double-spending prevention as well and may be of inde-
pendent interest as it is more efficient than previously known techniques in the broader

1 Dusting attacks were observed in 2022 after the ruling of OFAC to blacklist the anonymization
service Tornado Cash [55].
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context of tracing users in conditionally anonymous payment systems. Moreover, the
introduced auditing mechanism does not require Byzantine agreement or broadcast.

• We describe how our efficient CBDC construction ΠPEReDi can facilitate additional fea-
tures such as protocol support for concurrent digital currency issuance by the central
bank for different users, aborting transactions, and Know Your Transaction (KYT) op-
erations.

It is worth noting that even though we describe our results in the context of CBDCs, it is
immediate that our system can be used to implement any “stablecoin” or more generally
fungible digital token which has a centrally managed supply. In such case, the role of the
central bank is played by the issuer of the digital token, who is capable to introduce new
tokens increasing the supply as determined by the issuer’s policy. It is also straightforward to
return such tokens to the issuer by sending them to a designated account for that purpose.

In the proceedings version of our paper [43], we assumed that the total number of main-
tainers required for the system was D = 3t+ 1 where t represents the maximum number of
maintainers that can be corrupted by the adversary. Upon further analysis, we identified a
need to revise this assumption — we describe a lower bound on D in Section 4.4, arguing
that 5t + 1 maintainers is necessary to prevent adversary-induced faults in the pessimistic
execution path of a payment for any efficient realization of FCBDC in the asynchronous set-
ting. In Section 5, we demonstrate that 5t + 1 is also sufficient. We establish that 5t + 1
maintainers are necessary in our construction to ensure security in the pessimistic execution
path, as the optimistic path eliminates communication between maintainers entirely to
enable fast settlement of payments.

1.2 Related works

The first system for anonymous electronic cash was introduced by Chaum [29] and focused on
sender anonymity, while disclosing the recipient’s identity and the amount transferred. The
system also required users to hold information linear in the number of coins they possess,
a performance consideration that was addressed in follow-up work [27,20]. Regarding the
problem of revealing the transaction value to the bank, transferable e-cash [23,7] introduced
a mechanism for double-spending prevention. In this mechanism, coins can be transferred to
various users without communicating with the bank. Hence, coins expand in size depending
on how frequently they are used, which might be inefficient for retail payments. Additionally,
in these schemes, coins are distinguishable based on the number of transfers performed.
Camenisch et al. [21] proposed a token-based e-payment solution in which the bank can
enforce simple rules such as per-user payment limits. The privacy of senders of transactions
is preserved; nonetheless, the recipient’s identity and payment amount are leaked.

Zerocash [11] represents a UTxO-based anonymous payment system characterized by a
full anonymity set. This set encompasses every coin within the system. Similarly, in the con-
text of PEReDi’s model of full anonymity, the anonymity set comprises all accounts within
the system. Notably, in both systems, the sender’s transaction size is constant O(1) (unaf-
fected by the size of the anonymity set). Garman et al. [39] addressed how regulation rules
could be enforced in constructions like Zerocash [11]. The disadvantage of payment systems
similar to the Zerocash approach is that they result in privacy-preserving transactions that
are unsuitable for resource-constrained users. Users must prove knowledge of the path of a
transaction output in a Merkle tree; hence, they must maintain an up-to-date version of this
tree (to achieve full anonymity at any given time). Moreover, users are required to download
the entire ledger and decrypt all transactions to determine whether they are recipients of
transactions. Instead, in our construction, there is no need to download the ledger. The
necessity for users to be up-to-date with the whole ledger makes distributed blockchain-
ledger-based constructions less efficient than our scheme, which is based on signatures of
distributed (known) maintainers on the updated account of each user.
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Monero [51], which is a UTxO-based anonymous payment system, uses ring signatures,
where the anonymity set is constituted by a group of public keys. The sender proves pos-
session of the secret key corresponding to one of the public keys within the ring (without
revealing which one). Monero does not provide full anonymity. However, it could support
larger anonymity sets at the cost of sacrificing efficiency, unlike PEReDi’s approach, where
the underlying zero-knowledge proof is independent of the anonymity set size.

Danezis and Meiklejohn [35] introduced RSCoin, a central bank currency framework
built around an efficient broadcast mechanism. In RSCoin, the central bank delegates the
responsibility of verifying transactions to a set of entities called mintettes. Unlike traditional
cryptocurrency miners, in their framework, mintettes are known and may eventually be
held responsible for any misconduct. RSCoin focuses on the scalability of broadcast rather
than privacy or regulatory compliance. Performance was improved further with the Fastpay
design [9], even though privacy remained unaddressed.

Wüst et al. [62] proposed an anonymous payment scheme called PRCash, in which trans-
actions are verified in a distributed manner. It achieves privacy and some degree of regula-
tory compliance. However, the main drawbacks of PRCash are that it does not provide full
anonymity, as validators can link different transactions, and it lacks auditability. Hence, the
authorities cannot investigate suspicious transactions or counterparties on demand.

Androulaki et al. [6] introduced a privacy-preserving auditable token management sys-
tem. Their proposed scheme uses a UTxO model in a permissioned blockchain. In contrast
to our construction, which is account-based, they target business-to-business scenarios and
do not offer a comprehensive approach to regulatory compliance as we do.

Zether, proposed by Bünz et al. [17], is a privacy-preserving payment design that hides
the user balance, transaction value, and sender and receiver identities. Zether is account-
based, where each public key holder is associated with an ElGamal encryption of its balance
under its public key. The sender generates a transaction by encrypting the value of the
transaction under the receiver’s public key, the negative value of the transaction under her
public key, and zero under some random public keys. These randomly chosen public keys,
along with the sender’s and receiver’s public keys, generate an anonymity set in which the
identities of the sender and receiver are hidden. The sender proves in zero knowledge that
she has done so correctly (e.g., all encryptions are well-formed). We highlight drawbacks of
Zether compared to PEReDi: i) The sender can only initiate one transaction per epoch (each
k consecutive blocks form an epoch), which reduces the speed of transaction generation by
senders. ii) In Zether, each sender, before generating their zero-knowledge proof, must query
the blockchain (at the beginning of each epoch) to obtain their most updated state. This
is necessary because, at the end of each epoch, the blockchain rolls over all pending states
to permanent ones. If other users have included the sender’s public key in their anonymity
set, the sender’s state will change at the end of the epoch. iii) Moreover, Zether has a much
smaller anonymity set of size k because the transaction size, O(k), is linear in the anonymity
set size, and the efficiency of the zero-knowledge proof is also affected by k. The transaction
size is upper bounded by the block size. However, the tag space used for double-spending and
replay attack prevention in Zether does not grow, as it is reset to empty at the end of each
epoch. In PEReDi, the tag space grows (one group element per transaction); however, the tag
serves the additional purpose of tracing, eliminating the need to introduce new elements to
manage the tracing of malicious users (thus reducing both communication and computation
costs by preventing attacks and offering tracing via recording one group element at the same
time). iv) Furthermore, there is no mechanism to capture regulatory-related rules in their
system design, such as tracing malicious user functionality.

Damgård et al.’s work [34] addressed the problem of balancing accountability with pri-
vacy. Nevertheless, their work is in the identity layer for blockchain systems, and they do
not study various features necessary for a CBDC system (e.g., currency issuance, transac-
tions between users, financial and regulatory policies, and so on) in their transaction layer
framework. The tracing mechanism in [34], for each account generation, requires the account
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holder to compute a pseudorandom function PRF using their secret key. There is no concrete
implementation for tracing in their work, as they use secure multi-party computation for
PRF in a black-box manner. More importantly, the input of PRF is restricted to a range
of values, making tracing inherently inefficient, as authorities are supposed to generate the
PRF values for all possible inputs in the range. In contrast, we achieve tracing complexity
per user proportional to the actual number of transactions issued by that specific user.

Wüst et al. [61] introduced Platypus, which is a privacy-preserving and centralized pay-
ment system. Platypus relies on a single authority, whereas our scheme is distributed, making
it robust against single points of failure with respect to regulation enforcement and capable
of functioning even if the central bank is completely offline. Furthermore, our scheme offers
encrypted (distributed) ledgers, which allow compliance with regulations like AML and CFT
by enabling the set of authorities to trace a malicious user and discover the transfer value
and identities of the counterparties in any suspicious transaction. Platypus [61] does not
offer such a capability. We stress that it is quite delicate to add efficient tracing and open-
ing mechanisms to a CBDC design, as various attacks—such as man-in-the-middle attacks
where the sender’s transaction information is not tied to the receiver’s identity and vice
versa—can occur and should be addressed through careful design and modeling choices, as
we do here. Moreover, the security properties of a CBDC system in their work are defined
via a game-based approach, which may limit the composability of their construction; cf. [25].

Tomescu et al. [60] introduced a decentralized payment system called UTT. Their con-
struction relies on Byzantine fault-tolerant infrastructure. However, PEReDi obviates Byzan-
tine agreement and Byzantine broadcast from the optimistic execution path of a transaction.
Hence, we achieve an essentially optimal communication pattern and communication over-
head when transaction participants are honest. In UTT, the receiver of a transaction has
to scan all transactions on a ledger—similar to blockchain-ledger-based anonymous pay-
ment systems—to successfully receive the currency, which increases the load on users’ sides.
Regarding regulation enforcement, the amount of money that can be anonymously sent in
the UTT setting is limited by a monthly budget. PEReDi, on the other hand, allows for
comprehensive regulatory compliance and can also enforce regulations from the recipient’s
standpoint.

2 Preliminaries

2.1 Notations

In this paper, for uniquely identifying parties, we denote the central bank by B, the user
and its key pair by U and (pkU, skU), respectively. The user U also possesses another secret
key a used for generating a per-transaction tracing tag, denoted by T. The account of U
is represented by acc. The notation Mj is used for the j-th maintainer, and M denotes
the set of all maintainers. Each maintainer (e.g., Mj) has two pairs of keys for threshold
encryption: (pk1,j , sk1,j) and (pk2,j , sk2,j). Additionally, each maintainer Mj has a pair of keys
for threshold signature: (pkj , skj). We assume |M| = D and define two threshold values:

• α represents the threshold number of maintainers required for signing transactions on
behalf of the central bank and the regulator.

• β represents the threshold number of maintainers required for the auditing protocol.
Maintainers for which β is required are called the audit committee.

The set of honest and malicious maintainers is denoted by H and C, with their associated
identifiers (indexes) given byH and C, respectively. We assume |C| = t. An honest maintainer
is represented by Mw, and a malicious maintainer by Mt. Each maintainer Mj maintains a
ledger Lj (local state), which is initially empty. The user record stored in Lj is denoted
by UR. The sender and receiver of a payment are denoted by Us and Ur, respectively. For
example, the key pair of the sender is (pks, sks), and its tracing key is as. The transaction
value transferred from a sender (B or Us) to a recipient is denoted by v, and the transaction
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identifier by tid. The balance of U is represented by B, while the total sum of all sent and
received values of U is denoted by S and R, respectively. The following are regulatory limits:

• Bmax: Maximum allowed account balance.
• Smax: Maximum allowed sum of all sent values.
• Rmax: Maximum allowed sum of all received values.
• Vmax: Maximum allowed transaction value.

The transaction counter of a user, incremented for each transaction (currency issuance or
payment), is denoted by x. The statement of the zero-knowledge proof is denoted by x. The
notation {ei}Ni=1 represents a set {e1, . . . , eN} of N elements. We use Fq to denote a field
with q elements. PPT stands for probabilistic polynomial time. A function negl is said to
be negligible if, for every positive polynomial p, there exists an integer i0 such that for all
integers i > i0, the following holds: negl(i) < 1

p(i) .

We provide the definition of our main building block in the following section. Additional
definitions can be found in Appendix B and Appendix C.

2.2 Digital signatures

Definition 1 (Digital signature scheme). A digital signature scheme Γ = (K,S,V) is
defined by the following components:

• K: A probabilistic algorithm that, given a security parameter λ, outputs a key pair
(sk, vk), where:
– sk: The private signing key used to generate signatures.
– vk: The public verification key used to verify signatures.

• S: A (possibly probabilistic) algorithm that, given the private signing key sk and a mes-
sage µ ∈M, produces a signature σ ∈ Ξ. Formally: σ ← Ssk(µ), whereM is the message
space and Ξ is the signature space.

• V: A deterministic algorithm that, given the public verification key vk, a message µ ∈M,
and a purported signature σ′ ∈ Ξ, outputs a binary decision β ∈ {0, 1}. Formally:
β = Vvk(µ, σ′), where β = 1 indicates that σ′ is a valid signature for µ under vk, and
β = 0 indicates rejection.

A digital signature scheme Γ satisfies correctness if, for all key pairs (sk, vk)← K(1λ) and
all messages µ ∈M, the following holds: Vvk(µ,Ssk(µ)) = 1. In other words, any signature σ
generated for µ using the private key sk must be accepted as valid by the verification algorithm
V when using the corresponding public key vk.

Definition 2 (EU–CMA Security). A digital signature scheme Γ = (K,S,V) is said to
be existentially unforgeable under a chosen message attack (EU-CMA) if, for all probabilis-
tic polynomial-time (PPT) adversaries A, the advantage AdvEU-CMA

A (λ) is negligible in the
security parameter λ:

AdvEU-CMA
A (λ) ≤ negl(λ).

The EU-CMA experiment EU-CMAΓ (A, λ) proceeds as follows:

1. The challenger generates a key pair (sk, vk) by running K(1λ) and sends the public ver-
ification key vk to the adversary A.

2. The adversary A queries a signing oracle Ssk(·), providing messages µ ∈ M. For each
query, the challenger returns the signature σ = Ssk(µ). The challenger records all queried
messages in a set L (the query list).

3. Eventually, the adversary A outputs a forgery attempt, consisting of a message-signature
pair (µ∗, σ∗), where µ∗ ∈M and σ∗ ∈ Ξ.

4. The adversary A wins if the following conditions are satisfied:
• µ∗ /∈ L (i.e., µ∗ was not queried to the signing oracle), and
• Vvk(µ∗, σ∗) = 1 (i.e., σ∗ is a valid signature for µ∗ under vk).
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The adversary’s advantage AdvEU-CMA
A (λ) in this experiment is defined as:

AdvEU-CMA
A (λ) = Pr[EU-CMAΓ (A, λ) = 1].

Definition 3 (Pointcheval-Sanders signature scheme). The Pointcheval-Sanders sig-
nature scheme [53] is defined as a tuple of algorithms PS = (KeyGen,Sign,Verify), operating
over a bilinear group setup. The algorithms are defined as follows:

• (sk, pk)
$←− KeyGen(1λ, q): Run a pairing group setup algorithm G(1λ) to generate:

par = (p,G, G̃,GT , e, g, g̃),

where e : G × G̃ → GT is a bilinear map, p is a prime order, and g ∈ G, g̃ ∈ G̃ are
generators.
The secret key is:

sk = (x, {yi}qi=1), x, yi
$←− Zp.

The public key is:

pk = (par, α, {βi}qi=1), α = g̃x, βi = g̃yi for i = 1, . . . , q.

• σ
$←− Sign(sk, {mi}qi=1): To sign a message vector {mi}qi=1 ⊂ Zqp, perform the following:

1. Select a random scalar r $←− Zp.
2. Compute h = gr.
3. Compute the signature component s:

s = hx+
∑q

i=1 yimi .

Output the signature σ = (h, s).
• (1, 0) ← Verify(pk, σ, {mi}qi=1): To verify a signature σ = (h, s) on a message vector
{mi}qi=1:
1. Check that h ̸= 1.
2. Verify the pairing equation:

e(h, α ·
q∏
i=1

βmi
i ) = e(s, g̃).

If both checks hold, output 1 (accept); otherwise, output 0 (reject).

2.2.1 Threshold blind signature Coconut [59] is an optional declaration credential
construction supporting distributed threshold issuance based on the Pointcheval-Sanders
signature [53] (Definition 3). Unlinkable optional attribute disclosures, as well as public and
private attributes, are supported by the framework of [59], even when some of the issuing
authorities are malicious or offline. Recently, Rial et al. [54] analyzed the security properties
of Coconut [59] by introducing an ideal functionality that captures all the security properties
of a threshold blind signature TBS. They proposed a new construction that builds upon
Coconut with a few modifications to realize the TBS ideal functionality. These modifications
involve changes to the issuing of blind signatures and the signature showing process.

Informally, the TBS scheme satisfies unforgeability, unlinkability, and blindness. Unforge-
ability guarantees that a corrupted user cannot convince an honest verifier that it has a valid
signature if, in fact, it does not. Blindness ensures that a corrupted signer cannot learn any
information about the message m during the execution of the signing protocol (IssueSig),
except that m satisfies a predicate. Unlinkability ensures that a corrupted signer or verifier
cannot learn anything about the message m, beyond the fact that it satisfies a predicate,
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nor can they link the execution of randomizing a signature (ProveSig) with either another
execution of ProveSig or with the execution of IssueSig.

We use the improved version of Coconut [59] introduced in [54] with some modifications
(such as modeling the communication between the user and the signing maintainer, and em-
bedding the zero-knowledge proofs needed throughout the TBS scheme into proofs generated
in our construction ΠPEReDi, as described in Sec. 4.2) as a TBS scheme.

Definition 4 (Threshold blind signature). The threshold blind signature scheme TBS =
(TBS.KeyGen, IssueSig,TBS.Agg,ProveSig,VerifySig) consists of the following algorithms.

• ({(pkj , skj)}Dj=1, pk)
$←− TBS.KeyGen(1λ, D, α) 2

– Run (p,G, G̃,Gt, e, g, g̃) ← G(1λ) and pick q random generators {hτ}qτ=1 ⊂ G. Set
the parameters:

par = (p,G, G̃,Gt, e, g, g̃, {hτ}qτ=1).

– Choose (q + 1) polynomials (v, {wτ}qτ=1) of degree (α − 1) with random coefficients
in Zp. Set:

(x, {yτ}qτ=1) =
(
v(0), {wτ (0)}qτ=1

)
.

– For j = 1 to D:
∗ Set the secret key skj of each signer Mj as:

skj =
(
xj , {yj,τ}qτ=1

)
=
(
v(j), {wτ (j)}qτ=1

)
.

∗ Set the verification key pkj of each signer Mj as:

pkj =
(
α̃j , {βj,τ , β̃j,τ}qτ=1

)
=
(
g̃xj , {gyj,τ , g̃yj,τ }qτ=1

)
.

– Set the aggregate verification key pk as:

pk =
(
par, α̃, {βτ , β̃τ}qτ=1

)
=
(
par, g̃x, {gyτ , g̃yτ }qτ=1

)
.

• IssueSig consists of the following three sub-algorithms: (PrepareBlindSign,BlindSign,Unblind).

– (accB, πs, {oτ}qτ=1)
$←− PrepareBlindSign(acc, ϕ)

∗ Parse acc = {mτ}qτ=1 ⊂ Zp. Pick a random value o $←− Zp and compute:

com = go
q∏

τ=1

hmτ
τ .

Send com to FRO
3 and receive h from FRO.

∗ Compute commitments to each of the messages. For τ ∈ {1, . . . , q}, pick random
oτ

$←− Zp and compute:
comτ = goτhmτ .

∗ Compute a NIZK proof πs for the following relation:

πs = NIZK


(
{mτ}qτ=1, o, {oτ}

q
τ=1

)
:

com = go
q∏

τ=1

hmτ
τ ∧ {comτ = goτhmτ }qτ=1 ∧ ϕ

(
{mτ}qτ=1

)
= 1

 .

∗ Set:
accB =

(
com, {comτ}qτ=1, h

)
.

2 This algorithm can be replaced by a distributed key generation protocol using, e.g., [36,42,40,26].
3 FRO denotes the functionality of a random oracle, which provides a truly random response from

an output domain for every unique request.
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– σB
j ← BlindSign(skj , ϕ, πs, acc

B)
∗ Send com to FRO and receive h′ from FRO. Abort if h ̸= h′ or πs is not correct.
∗ Compute:

cj = hxj

q∏
τ=1

comyj,τ
τ .

Set the blind signature share as:

σB
j =

(
h, cj

)
.

– σj ← Unblind({oτ}qτ=1, σ
B
j )

∗ Parse σB
j as (h′, cj). Abort if h ̸= h′.

∗ Compute:

σj = (h, sj) =
(
h, cj

q∏
τ=1

β−oτ
j,τ

)
.

∗ Abort if the following pairing equation does not hold:

e
(
h, α̃j

q∏
τ=1

β̃mτ
j,τ

)
= e(sj , g̃).

• σM ← TBS.Agg({σj}αj=1, pk)
– Let E ⊆ [1, D] be a set of α indices of signers in M.
– For all j ∈ E, evaluate at 0 the Lagrange basis polynomials:

lj =
∏
i∈E
i ̸=j

i

i− j
mod p.

– For all j ∈ E, take σj = (h, sj) and compute the aggregated signature:

σM = (h, s) =
(
h,
∏
j∈E

s
lj
j

)
.

– Abort if the following pairing equation does not hold:

e
(
h, α̃

q∏
τ=1

β̃mτ
τ

)
= e(s, g̃).

• (σRnd
M , πv, φ)

$←− ProveSig(φ, σM, {mτ}qτ=1, pk)

– Parse σM as (h, s), pick r $←− Zp and r′ $←− Zp.
– Compute:

σint
M = (h′, s′) =

(
hr

′
, sr

′
(h′)r

)
.

– Parse acc as {mτ}qτ=1 and compute:

κ = α̃

q∏
τ=1

β̃mτ
τ g̃r.

– Compute the NIZK proof πv for the following relation:

πv = NIZK
{
({mτ}qτ=1, r) : κ = α̃

q∏
τ=1

β̃mτ
τ g̃r ∧ φ({mτ}qτ=1) = 1

}
.

– Set:

σRnd
M = (σint

M , κ) =
(
(h′, s′), α̃

q∏
τ=1

β̃mτ
τ g̃r

)
.

• (1, 0)← VerifySig(σRnd
M , πv, φ, pk)

– Parse σRnd
M as (σint

M , κ) and abort with output 0 if:

h′ = 1 or e(h′, κ) ̸= e(s′, g̃).

– Verify πv. Output 0 if the proof is not correct. Otherwise, output 1.
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3 CBDC desiderata and modeling

We abstract a CBDC system into three separate classes of entities: the central bank, a set of
maintainers (e.g., commercial banks and financial institutions), and users. Role separation
is an important element in CBDC design; cf. [1]. The description of these roles, together
with the relevant assumptions made about them, is as follows.

• Central bank: The central bank issues the digital currency and is responsible for monetary
policy. The monetary supply at any given time is in the purview of the central bank.
However, the state of all users’ accounts is not under its control. Moreover, due to the
potential threat of mass surveillance [32], the central bank is also not trusted for privacy,
i.e., it has no ability to deanonymize the sender or recipient of a transaction or reveal
the transferred values associated with a specific transaction. Finally, the central bank is
not responsible for enforcing the regulatory rules that govern payments. We refer to [13]
and [32] for more context on the role of central banks.

• Maintainers: The authority to validate transactions and facilitate various auditing oper-
ations needed for regulatory compliance is delegated to a number of approved institutions
that we call the maintainers. As a result, the central bank and regulator are not required
to be active in any of the system’s day-to-day operations (except for issuing currency in
the case of the former). The maintainers share the state of the system and are responsi-
ble for continuously updating it as users issue transactions. In a real-world deployment,
maintainers can be organizations with an existing connection to the central bank, such
as commercial banks, financial institutions, etc. Note that, contrary to, e.g., miners in a
cryptocurrency blockchain, the set of all maintainers is public and known to all network
participants. The basic properties of the system, such as integrity, regulatory compli-
ance, and privacy of transactions, emanate from the actions of the maintainers. We note
that the system’s security and liveness objectives will be met as long as the adversary
controls less than a certain threshold number of maintainers. In any financial system,
various operations are subject to regulatory rules. Examples of relevant entities devel-
oping and/or enforcing such rules include the Financial Conduct Authority (FCA) in
the UK and the Securities and Exchange Commission (SEC) in the US. One important
aspect of regulatory compliance is KYC; in our CBDC system abstraction, we assume
maintainers are responsible for onboarding users to the system, i.e., all accounts in the
system are introduced subject to the approval of the maintainers.

• Users and payment interface providers (PIPs): As in any digital currency system, in a
CBDC system, users can act as either the sender (a.k.a. buyer, payer, or customer) or the
recipient (a.k.a. seller, payee, or merchant) of digital currency in a transaction. Users of
the currency can be private individuals or organizations. Note that users engage with the
system through software and/or hardware provided by a PIP. The distinction between
users and PIPs will not be essential for our analysis and modeling, and we will not
pursue it further. We assume that any number of users in the system are untrusted, i.e.,
they may behave maliciously against honest users or other system entities. The privacy
of payments should be satisfied between an honest sender and an honest receiver in a
transaction.

3.1 CBDC security requirements

In this section, we informally define security requirements that will be captured by our
CBDC ideal functionality. Note that the CBDC system should be resilient against broad
types of attacks (e.g., Sybil attacks, man-in-the-middle attacks, etc.); however, the focus of
this section is on explaining requirements that are more specific to payment systems and
CBDCs. These are as follows.

• Financial and regulatory integrity. No one should be able to update the account of
another user. Furthermore, the currency in circulation, or the amount of CBDC used to
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conduct transactions between consumers and businesses, does not change as the system
evolves over time except when the central bank decides to create new money (digital
currency). Double-spending prevention is a crucial requirement for any payment system.
A specific balance of a user should not be used in two transactions without being updated
each time. In addition, after a successful payment between two users, the accounts of
both should be updated correctly, considering all parameters included in users’ accounts
for the purpose of checking financial and regulatory rules.

• Comprehensive regulatory compliance. This term means achieving all the following four
items at the same time.

– Balance limit: This limits the amount of funds that a particular user can possess in
a specific period of time. The Bank of England [1] and a report from several central
banks detailing the principles, motivations, and risks of CBDC [13] have mentioned
that balance limits can help prevent bank runs and evasion of wealth tax. Moreover,
the Bank of England [1] and the European Central Bank [12] have addressed that
to manage the implications of a CBDC for financial stability, limits on how much
CBDC any individual can hold are necessary.

– Receiving and sending limit: This limits the amount of funds a particular user can
receive or send in a specific period of time. The sent and received amounts should not
exceed a predefined threshold. The European Central Bank [8] and several central
banks [13] have mentioned that limiting receiving and sending values can help achieve
AML and prevent tax evasion.

– Transaction value limit and KYT: Reporting requirements and disclosure of the
source of funds for large-value transactions are typically required (e.g., in the US,
filing a report is required for transactions in cash exceeding $10, 000). To reflect this,
we impose a limit on the value of each transaction. Furthermore, we discuss how it
is possible to comply with more complex KYT policies, where users should disclose
additional information for large-value transactions.

– Auditability: In cases of suspicious activities, additional auditing actions are needed
(e.g., filing suspicious activity reports called SARs [2]). The auditing functionality
has two components:

∗ Privacy revocation: Given an anonymous transaction, authorities can reveal the
real-world identities of the involved parties and the transferred value of that
transaction.4

∗ Tracing: Given the real-world identity of a user, authorities can trace anonymous
payments in which the user has engaged (as a sender or recipient).

• Full privacy. This property means achieving all the following three items at the same
time.

– Identity privacy: For any given transaction, the real-world identities of either the
sender or the receiver cannot be revealed (except when auditing). Furthermore, given
the identity of a specific user, no one can find the transactions in which the user has
been involved as a sender or receiver.

– Transaction privacy: The transferred value from the sender to the recipient cannot
be revealed (except when auditing). Given a specific amount of transferred value,
no one can find the transactions that match that same (or related) value. Only the
sender and recipient should know the value of the transaction. Moreover, the account
information of users (e.g., the sum of all sent and received values) is hidden from all
network entities.

– Full unlinkability: This consists of two parts, as follows.
4 To improve regulatory compliance, we recognize the existence of more general rules that are sub-

jective and cannot be formally captured. To address these, we encrypt transaction information,
allowing decryptability and decision-making based on external information and additional evi-
dence (Privacy revocation). This approach supports subjective decision-making. It is important
to note that this encryption feature is part of a modular design. If deemed inappropriate, it can
be removed without affecting other system functionalities.
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∗ User unlinkability: Given an anonymous payment, knowing the real-world iden-
tities of the sender or receiver should not make it possible to link the sender’s
or receiver’s other transactions to the given transaction.

∗ Transaction unlinkability: Given a transaction, it should not be possible to link
any past transaction that resulted in the possession of the funds used by the
current transaction.

• Accountability. When a user makes a payment, they should not be able to deny it
later—there is an obligation to accept the responsibilities that come with a finalized
transaction.

3.2 CBDC formal model

We formalize the objectives of a CBDC system as an ideal functionality in the Universal
Composition framework [24]. The central bank digital currency scheme consists of six main
sub-protocols: user registration, currency issuance, payment, abort transaction, privacy re-
vocation, and tracing. The last two are collectively referred to as auditing. Valid transactions
are recorded in the ledger L of each maintainer M. Hence, there is a history of all verified
transactions accessible by anyone who is permissioned to audit private transactions. FCBDC is
parameterized by D, t, Vmax, Bmax, Smax, and Rmax, where D = 5t+1 holds. The functionality
FCBDC maintains the following tables and mappings:

• T (U) outputs 0 if U has not been traced and 1 if it has been traced. Initially, T (U)← ⊥,
meaning that for non-registered users, T (U) outputs ⊥.

• Users to their accounts’ state: W = (B,S,R, x)← K(U). Initially, K(U)← ⊥.
• U(U) outputs pid if the user U has an ongoing transaction with pid. Once the transaction

is finalized (in the real world, the user receives α valid signature shares on its new
account), U(U) is set to ⊥, meaning that the user is in the Idle state and can start a
new transaction.

• Payment identifiers pid to transaction identifiers tid: tid ← P (pid).
• Set of maintainers who engage in a specific transaction whose identifier is tid: M(tid).
• Users to their most recent transaction metadata and transaction identifier: (Us,Ur, tid, v)←
Tid(U), where U = Us or U = Ur, or (B,U, tid, v)← Tid(U). Initially, Tid(U)← ⊥.

• Transaction identifiers to transaction metadata: (Us,Ur, v)← Rvk(tid).
• Users to all their transaction identifiers and their role in each of them: {tτid, role

τ}xτ=1 ←
Trc(U).

We note that session identifiers are of the form sid = (B,M, sid′) such that M = {Mj}Dj=1.
Initially, init← 0, where init ∈ {0, 1}. At the end of initialization, init is set to 1. Afterwards,
at the beginning of all parts of the functionality (namely, user registration, currency issuance,
payment, abort transaction, privacy revocation, and tracing), it is checked whether init has
been set to 1. If it has not been set to 1, FCBDC ignores the received message. In FCBDC,
by sending a message m to M via delayed output, we mean the following: FCBDC provides
m and the unique identifiers of all maintainers in the set M to the ideal-world adversary
A. FCBDC lets A decide the order of maintainers in the set M who receive the message m.
Additionally, it can delay the message delivery or prevent the message from being delivered.

In more detail, the components of our functionality are as follows.
Initialization. This step ensures that the relevant parties (B and all D maintainers

M) have been activated. The functionality maintains a record of all parties that have been
initialized.

User registration. During the registration phase, a user U must have their account
ratified by the system. If the user U has already been registered by the maintainers M,
they cannot be registered again. As is common in the Universal Composition setting, we
allow the adversary A to communicate and potentially block registration (i.e., we do not
model denial-of-service attacks). The balance and regulation-related information of user U
are initialized as follows: the balance B, the sum of all sent values S, the sum of all received
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values R, and the transaction counter x are all set to zero. The maintainers are notified
upon each successful user registration.

Currency issuance. In the currency issuance process, unlike payment, only the central
bank B is permitted to act as the payer, and no limits are imposed on the funds the central
bank possesses.5 First, the functionality FCBDC verifies whether the recipient of the digital
currency, U, is a valid registered user in the system. This means that if U has not been regis-
tered by the maintainers M, it cannot obtain any digital currency. The functionality enforces
regulatory restrictions: B+v ≤ Bmax, and R+v ≤ Rmax, where v is the amount of currency
issued according to the central bank’s instructions. We note that different jurisdictions may
impose varying regulatory rules. For instance, restrictions such as capping the value issued
by the central bank B (v ≤ V ∗

max) can be easily incorporated. Similarly, the aforementioned
constraints, B + v ≤ Bmax and R+ v ≤ Rmax, can be ignored for currency issuance transac-
tions. Notably, since our construction is account-based rather than token-based, modifying
or removing such regulatory compliance constraints is relatively straightforward. Currency
issuance is not a unilateral action by the central bank B; it also requires activation by the
recipient user U. This highlights a key distinction between our setting and blockchain sys-
tems: the recipient U must be online during the transaction, making the protocol interactive.
The state of the receiver’s account is updated after each currency issuance action. As before,
the adversary A may attempt to block the currency issuance process. A successful currency
issuance increases the balance of the receiver U by the specified amount v. The transaction
value and the identity of the receiver remain hidden from the adversary. The adversary A
must assign a unique transaction identifier tid, and all transaction metadata are stored by
the functionality in a table Rvk(tid). The identifier tid is also recorded in Trc(U), where U is
the recipient.

Functionality FCBDC, part I: initialization, registration and issuance

Initialization.
• Upon input (Init, sid) from party P ∈ {B,M}: Abort if sid ̸= (B,M, sid′). Else,

output (InitEnd, sid, P ) to A. Once all parties have been initialized, set init← 1.

User registration.
• Upon receiving a message (GenAcc, sid) from U: If K(U) = ⊥, output (GenAcc, sid,
U) to A. Else, ignore.

• Upon receiving (Ok.GenAcc, sid,U) from A: Output (AccGened, sid,U) to M via
public-delayed output. Output (AccGened, sid) to U via public-delayed output and
set K(U)←W = (0, 0, 0, 0) and T (U)← 0 when delivered.

Currency issuance.
• Upon receiving a message (Iss, sid,U, v) from B: Ignore if B /∈ sid. Else, gener-

ate a new pid, and record the tuple (Iss,U, v, pid, 1). If U is corrupted, output
(Iss, sid, pid,U, v) to A. Else, output (Iss, sid, pid) to A.

• Upon receiving (AcceptIss, sid, v) from U: If K(U) = ⊥ or U(U) ̸= ⊥ or the tuple
(Iss,U, v, pid, 1) is not recorded, ignore. Else, retrieve K(U) =W . If B+ v > Bmax

or R+ v > Rmax, ignore. Else, set U(U)← pid and retrieve T (U): (a) If T (U) = 0,
output (AcceptIss, sid, pid) to A. (b) Else, output (AcceptIss, sid, pid,U) to A.

• Upon receiving (GenTnx, sid, pid, tid) from A: If already exits a pid′ ̸= pid where
P (pid′) = tid or the tuple (Iss,U, v, pid, 1) is not recorded, ignore. Else, if P (pid) =
⊥, set P (pid) ← tid. Else, retrieve P (pid) = t′id, ignore if t′id ̸= tid. Set Tid(U) ←
(B,U, tid, v).

5 Currency issuance is one of the main differences between CBDCs and cryptocurrencies (e.g.,
Bitcoin [50]) or stablecoins (e.g., PARScoin [57]).
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• Upon receiving (GenTnx, sid, pid,Mk) from A: Retrieve the tuple (Iss,U, v, pid, b).
Ignore if b = 0 or P (pid) = ⊥. Else, retrieve P (pid) = tid. SetM(tid)←M(tid)∪Mk

and output (Issued, sid, tid) to Mk via public-delayed output. Once |M(tid)| ≥ β:
Set K(U) ← (B + v, S,R + v, x + 1), Rvk(tid) ← (B,U, v), Trc(U) ← Trc(U) ∪
(tid, receiver), P (pid) ← ⊥, and b ← 0 if B + v ≤ Bmax and R + v ≤ Rmax hold.
Once |M(tid)| ≥ α: Output (Issued, sid, v) to U via private-delayed output and set
U(U)← ⊥ when delivered.

Payment. As in the case of currency issuance, the payment process requires both the
sender Us and the receiver Ur to be activated. Unlike issuance transactions, the functionality
verifies that the sender Us has a sufficient balance to fund the payment, ensuring that
Bs−v ≥ 0. Interactive payments are necessary because FCBDC enforces regulatory compliance
(e.g., AML, CFT) by considering both parties, meaning each party must be aware of their
counterparty in the transaction. Thus, it is crucial for the receiver Ur to actively engage in
every payment6. A successful payment protocol increases the balance of the receiver Ur by
the specified amount v while subtracting the same amount from the sender Us. Additionally,
each user’s account information is updated to reflect different regulatory policies. As in the
case of issuance, a unique transaction identifier tid is assigned by the ideal-world adversary
A, and the transaction metadata are stored in the table Rvk(tid). The identifier tid is also
recorded in Trc(Ur) and Trc(Us), where Ur and Us are the recipient and sender of the
payment, respectively. Note that the adversary A is not aware of the transaction value or
the identities of the sender and receiver (unless one of them is malicious), and tid is selected
independently of them.

Abort transaction. A user initiates an abort transaction request to update the state
of their account. The update the user receives depends on the number of maintainers who
actively participated in the user’s most recent transaction (either in currency issuance or
payment). If at most 2t maintainers have participated in the user’s most recent transaction,
the state of the account remains unchanged, except that the transaction counter x is in-
cremented by one. Otherwise, the functionality notifies the transaction counterparties and
maintainers that the transaction has been finalized.

Functionality FCBDC, part II: payment and abort transaction

Payment.
• Upon receiving a message (GenTnxSnd, sid,Ur, v) from Us: If K(Us) = ⊥ or U(Us) ̸=
⊥ ignore. Else, retrieve K(Us) =Ws. If Ss+v > Smax, or Bs−v < 0, or v > Vmax, or
v < 0 holds ignore. Else, generate a new pid, set U(Us)← pid, and record the tuple
(Tnx,Us,Ur, v, pid, 1). If Ur is corrupted, output (GenTnxSnd, sid, pid,Us,Ur, v) to
A. Else, retrieve T (Us): (a) If T (Us) = 0, output (GenTnxSnd, sid, pid) toA. (b) Else,
output (GenTnxSnd, sid, pid,Us) to A.

• Upon receiving (GenTnxRcv, sid,Us, v) from Ur: If K(Ur) = ⊥ or U(Ur) ̸= ⊥ or
the tuple (Tnx,Us,Ur, v, pid, 1) is not recorded, ignore. Else, retrieve K(Ur) =Wr.
If Br + v > Bmax, or Rr + v > Rmax, ignore. Else, set U(Ur) ← pid and re-
trieve T (Ur): (a) If T (Ur) = 0, output (GenTnxRcv, sid, pid) to A. (b) Else, output
(GenTnxRcv, sid, pid,Ur) to A.

6 Refer to PARScoin [57] for an alternative system design and modeling approach, where the
receiver does not need to be online at the time of payment. In PARScoin, payments are non-
interactive between the sender and receiver. When the receiver comes online, she scans the ledger,
identifies transactions associated with her, and submits a zero-knowledge proof to claim the
funds. Furthermore, the receiver still needs to prove compliance with the system’s regulations to
successfully claim the funds.
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• Upon receiving (GenTnx, sid, pid, tid) from A: If already exits a pid′ ̸= pid where
P (pid′) = tid or the tuple (Tnx,Us,Ur, v, pid, 1) is not recorded, ignore. Else, if
P (pid) = ⊥, set P (pid) ← tid. Else, retrieve P (pid) = t′id, ignore if t′id ̸= tid. Set
Tid(Us)← (Us,Ur, tid, v) and Tid(Ur)← (Us,Ur, tid, v).

• Upon receiving (GenTnx, sid, pid,Mk) from A: Retrieve the tuple
(Tnx,Us,Ur, v, pid, b). Ignore if b = 0 or P (pid) = ⊥. Else, retrieve P (pid) = tid.
SetM(tid)←M(tid)∪Mk, and output (TnxDone, sid, tid) to Mk via public-delayed
output. Once |M(tid)| ≥ β: Set K(Us) ← (Bs − v, Ss + v,Rs, xs + 1), K(Ur) ←
(Br+v, Sr, Rr+v, xr+1), Rvk(tid)← (Us,Ur, v), Trc(Us)← Trc(Us)∪ (tid, sender),
Trc(Ur) ← Trc(Ur) ∪ (tid, receiver), P (pid) ← ⊥, and b ← 0 if Ss + v ≤ Smax, and
v ≤ Bs, and Br + v ≤ Bmax, and Rr + v ≤ Rmax hold. Once |M(tid)| ≥ α: Output
(TnxDone, sid,Us, v) to Ur via private-delayed output and set U(Ur) ← ⊥ when
delivered. Output (TnxDone, sid,Ur, v) to Us via private-delayed output and set
U(Us)← ⊥ when delivered.

Abort transaction.
• Upon receiving a message (AbrTnx, sid) from Ua: If K(U) = ⊥ or Tid(U) = ⊥,

ignore. Else, retrieve Tid(U) = (Us,Ur, tid, v). Send (AbrTnx, sid, tid) to A.b
• Upon receiving (AbrTnx.Ok, sid, tid) from A: Set Tid(U) ← ⊥. (a) If |M(tid)| <
2t + 1: Set K(U) ← (B,S,R, x + 1), Trc(U) ← Trc(U) ∪ (tid,Aborted). Output
(TnxAborted, sid) to U via public-delayed output and set U(U) ← ⊥ when deliv-
ered. Output (TnxAborted, sid, tid) to M via public-delayed output. (b) Else, given
the retrieved tuple (Us,Ur, tid, v): Output (TnxDone, sid,Us, v) to Ur via private-
delayed output and set U(Ur) ← ⊥ when delivered. Output (TnxDone, sid,Ur, v)
to Us via private-delayed output and set U(Us) ← ⊥ when delivered. Output
(TnxDone, sid, tid) to M via public-delayed output.

a Either U = Us or U = Ur holds.
b Depending on whether U = Us or U = Ur, the functionality marks the associated tag
Ts ∈ tid or Tr ∈ tid to make it distinguishable to A.

Privacy revocation. Privacy revocation is initiated by maintainers who submit the
transaction identifier of a fully anonymous payment they wish to revoke. If a sufficient
number of maintainers (set to β) agree on the revocation of a specific transaction, the
functionality recovers the metadata of the transaction and returns it to the maintainers and
the adversary.

Tracing. As in the case of revocation, the maintainers must agree to trace a specific
user. If the quorum is reached (requiring β maintainers), the set of transaction identifiers
and roles corresponding to the agreed-upon user is returned to the maintainers and the
adversary.

Functionality FCBDC, part III: privacy revocation and tracing

Privacy revocation.
• Upon receiving a message (RvkAnm, sid, tjid) from maintainer Mj : If Rvk(tjid) = ⊥,

ignore. Else, record (RvkAnm, sid, tjid,Mj) and output (RvkAnm, sid, tjid,Mj) toA. Once
|{j|tjid = tid}| ≥ β, set X ← tid.

• Upon receiving (RvkAnm.Ok, sid, tid) from A: If X has not already been set to tid,
ignore. Else, retrieve Rvk(X) = (Us,Ur, v). Output (AnmRevoked, sid, tid,Us,Ur, v)a
to M via public-delayed output.
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Tracing.
• Upon receiving a message (Trace, sid,Uj) from maintainer Mj : If K(Uj) = ⊥ ignore.

Else, record (Trace, sid,Uj ,Mj) and output (Trace, sid,Uj ,Mj) toA. Once |{j|Uj =
U}| ≥ β, set Y ← U.

• Upon receiving (Trace.Ok, sid,U) from A: If Y has not already been set to U, ignore.
Else, retrieve K(U) = (B,S,R, x). Retrieve Trc(Y ) = {tτid, role

τ}xτ=1. Set T (U)← 1.
Output (Traced, sid,U, {tτid, role

τ}xτ=1) to M via public-delayed output.
a For a currency issuance transaction Us = B.

4 Our construction: PEReDi

4.1 High-level technical overview

In our construction, we aim to achieve all the financial, regulatory, and security properties
described informally in Section 3.1 and formally in Section 3.2. We assume that the total
number of maintainers is D = 5t + 1 and that up to t of them can be corrupted by the
adversary. This assumption arises because the optimistic path eliminates communication
between maintainers entirely to enable fast settlement of payments. Consequently,D = 5t+1
is necessary to ensure security in the pessimistic execution path (see Section 4.4 for more
details). Thus, we set the thresholds of the blind signature scheme and auditing as α = 4t+1
and β = t+ 1, respectively.

Every user in the system has an account acc for storing the current balance B and other
user-specific values related to the system’s financial and regulatory considerations. Users
update their accounts when transacting. For each new currency issuance or payment trans-
action, the parties involved in the transaction engage in a cryptographic protocol with all
maintainers M. To this end, users encode the values of accounts into cryptographic one-time
objects that fix a unique tag T. When updating an account, a user discloses the tag associated
with the previous account snapshot acc (which has been signed by at least α maintainers).
A user also discloses σRnd

M , which is a re-randomization of the consolidated signature σM on
their previous account snapshot. The disclosed tags are stored by maintainers to enforce that
users utilize their most updated accounts (similar to Chaum’s double-spending prevention
for online cash [29]). To support tracing, the protocol computes tags pseudo-randomly so
that they can be recomputed by the auditing protocol using a special-purpose multi-party
computation (MPC) protocol, as we will see.

The user creates their updated account accnew and blinds it to obtain accnew,B. The
blinded account is then submitted to M for signing, along with an efficient zero-knowledge
proof that demonstrates, for example, that: (i) accnew,B is consistent with the previous
account accold; (ii) accnew,B is consistent with the transaction value v issued by B to U
in the currency issuance protocol or transferred from the sender Us to the receiver Ur in
the payment protocol (e.g., the same value is deducted from Us’s account and added to
Ur’s account); and (iii) the account state transition complies with the system’s regulatory
requirements. The parties engaged in a transaction must acquire at least α maintainers’
blind signature shares σnew,B on their new blinded accounts. They then locally unblind
these signature shares σnew and aggregate them to create a single consolidated signature
σnew
M on their new account.

Furthermore, every transaction results in a unique transaction identifier tid that is out-
put to maintainers M and stored in each maintainer’s ledger L. This identifier contains
cryptographic information concerning the transaction. To ensure privacy, we prove that the
transaction identifier tid does not leak any privacy-sensitive information, thereby achieving
full privacy. It is only retrievable and reconstructable by an audit committee using the in-
formation stored in L for the purpose of privacy revocation and tracing. In other words, an
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Receiving

Sending

Idle
(initial state)

Aborting

Fig. 1: User’s state transition in PEReDi transactions. TI: transaction information. AR: abort
request. σnew

M : maintainers’ signature on the user’s new account. σr
M: maintainers’ signature

on the user’s refreshed account.

audit can be conducted when the audit committee has been convinced that a specific trans-
action or user is sufficiently suspicious for anonymity to be revoked or for its counterparties
to be traced, respectively. Note that tracing and revocation can be applied adaptively to
reconstruct a set of counterparties across a sequence of payments.

In the following, we describe the user’s state transition (in the currency issuance and pay-
ment protocols) in the PEReDi setting, as depicted in Figure 1. Upon receiving the environ-
ment’s Z command of the form (AcceptIss, sid, v), (GenTnxRcv, sid,Us, v), or (GenTnxSnd,
sid,Ur, v) to initiate a transaction:

• If in the Idle state, the user sends its transaction information TI (which includes U’s
new-blinded account accnew,B) to all maintainers M. Upon sending TI, U’s state changes
to Receiving (if receiving from the central bank B or another user Us) or to Sending (if
sending to another user Ur).

• If in either the Receiving or Sending state (indicating that U’s most recent transaction is
still pending), U ignores Z’s message.

When the state changes from Idle to Receiving or Sending, the transaction can either be
successful or pending, as explained in the following cases:

• Successful (e.g., payment participants use their newly updated accounts, regulatory com-
pliance is met, and maintainers have received valid transaction information for both pay-
ment participants). U receives at least α valid blind signature shares from maintainers
on accnew,B. Upon generating the unblinded consolidated maintainers’ signature on the
new account σnew

M , the state changes to Idle. Hence, U, who now has its new account
signed, is ready to enter into the next transaction.

• Pending (e.g., the sender-receiver pair has not been generated on a sufficient number of
maintainers’ sides). U’s state remains in Receiving or Sending until Z instructs U to send
an abort request AR.

Upon Z’s instruction of the form (AbrTnx, sid) to send an abort request AR, which includes
U’s refreshed-blinded account accr,B, U sends AR to M. In this case, if U’s state is not Sending
or Receiving, it ignores Z’s instruction. Doing so changes U’s state from either Sending or
Receiving to Aborting. The following two scenarios apply when U is in the Aborting state:

• If sufficient number of maintainers have saved a sender-receiver TI pair in their ledgers,
they ignore accr,B and send their signatures for accnew,B to U. Upon generating the
unblinded consolidated maintainers’ signature on the new account σnew

M , the state changes
to Idle.

• Otherwise, maintainers sign accr,B, record the pending transaction as aborted, and ig-
nore accnew,B included in TI. Upon generating the unblinded consolidated maintainers’
signature on the refreshed account σr

M, the state changes to Idle.
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A pictorial representation of all the sub-protocols of our construction can be found in Fig-
ure 2-23. Note that, for simplicity, the figures do not include the messages exchanged between
the environment Z and the parties. For the same reason, AR messages are also omitted.

4.2 Details of the construction

In this section, we describe our CBDC construction ΠPEReDi. We will prove that ΠPEReDi

securely realizes FCBDC. Our construction uses several cryptographic components, including:

• Threshold ElGamal encryption (Definition 11).
• Shamir secret sharing (Appendix B.2).
• Pedersen commitment (Definition 19).
• Threshold blind signature TBS (Definition 4), which is based on the Pointcheval-Sanders

signature [53] (Definition 3). Our scheme uses the Coconut threshold blind signature
scheme [59,54] with small modifications. We reduce the unforgeability of the (modified)
Coconut scheme to its underlying Pointcheval-Sanders signature component. Through-
out this section, when we use TBS, we employ its algorithms as described in Definition 4.
However, whenever possible, we merge its zero-knowledge proofs with those of the rest
of the protocol to improve performance.

ΠPEReDi employs the following ideal functionalities:

• Key registration functionality FKR (Appendix C.1).
• Communication channels functionality FCh (Appendix C.2), parameterized by different

labels, e.g., “sa” for a sender-anonymous channel F sa
Ch. We assume that transacting parties

communicate through variants of FCh as specified. We note that some degree of sender
anonymity is necessary for privacy; otherwise, network “leakage” will trivially reveal the
counterparties of a transaction, regardless of the strength of cryptographic protections
at the transactional level. We also note that in a real-world deployment, such network
leakage may be considered tolerable. Our analysis applies directly to such a setting
as well, with the unavoidable concession that the adversary may compromise privacy
through traffic analysis.

• Asynchronous Byzantine agreement functionality FaBA (Appendix C.3).
• Broadcast functionality FBC (Appendix C.4).
• Random oracle functionality FRO (Appendix C.5).
• Non-interactive zero-knowledge (NIZK) functionality FNIZK (Appendix C.6).
• Signature of knowledge (SoK) functionality FSoK (Appendix C.7).

Each maintainer M has its own ledger L for storing registration and transaction infor-
mation. In the currency issuance and payment protocols described below, the sender and
receiver separately send their transaction information TI to all maintainers M. However, an
alternative plausible communication pattern could involve the sender first sending its trans-
action information TI to the receiver, who then forwards both the sender’s TI and their own
TI to M.

The public key of the threshold encryption scheme, the ciphertexts, and the tracing tags
all belong to G (see Definition 5), the first source group in the bilinear map.

4.2.1 Initialization The key generation algorithm takes the security parameter as input
and generates the secret key sk and public key pk for the caller of the algorithm as outputs.
Participants in the network independently invoke the key generation algorithm for each
underlying cryptographic scheme to generate their keys (see Appendix B for key generation
algorithms). The public keys of all parties are stored in a public-key directory and are
assumed to be accessible on demand by calling FKR with input (RetrieveKey, sid,P) for
party P.
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4.2.2 User registration Upon receiving (GenAcc, sid) from Z, U, who is initially in the
Idle state, initiates the user registration protocol (see Figure 2) to get their initial account
signed by maintainers M.

3
4

Maintainers’ consolidated-unblinded 
signature         on user’s initial account.

Maintainers’ blind signature shares 
on user’s account.

Registration Information

(Blinded account, share of tracing tag’s secret key, randomness,
commitment on tracing tag’s secret key, public key, and NIZK proof).

1

2

Commercial Banks and Financial Institutions 

5

6

Sybil-resilient user record

is saved in ledgers that will be used
in the Auditing protocol.

User

Fig. 2: User registration protocol

Maintainers M enroll a user U in the CBDC system by creating a signature on the user’s
initial account. Afterwards, U uses this signature to create transactions. For registration,
U, with a pair of public-secret keys (pkU, skU) and a secret key a (used in tag generation),
engages in a threshold blind signature (TBS) protocol with M, where U proves the well-
formedness of their initial blinded account to M.

The output of this protocol is a signed account σM for U (needed for their first transaction)
and the user record UR, which is saved in the ledger L of each maintainer M (required for
additional investigation during the auditing protocol, as we will see). Every user’s account
consists of a tuple of field elements

acc = (B,S,R, skU, a
x, a)

where B represents the balance, S is the sum of all sent values, R is the sum of all received
values, skU and a are secret keys, and x is the transaction counter. During registration, U
sets B,S,R, and x to 0.

U generates its registration information RI, as described in Figure 3.

▷ Upon receiving (GenAcc, sid) from Z, act as follows.
▷ Set acc← (0, 0, 0, skU, 1, a).
▷ Given acc, call PrepareBlindSign to generate the blinded account accB.a

▷ Call {aj}Dj=1
$←− SSH.ShareD,β(a) to secret share a and compute:

˜comj = gaj · hrj , ∀j ∈ {1, . . . , D}, where rj
$←− Z∗

p, set comM ← { ˜comj}Dj=1.

▷ Call FNIZK with (Prove, sid, x, w), and receive back (Proof, sid, π).
Denote the randomness used to create the blinded account accB and the commitment
comM by racc.com. The following is the NIZK statement x and witness w:

x = (accB, comM, pkU), w = (acc, {aj}Dj=1, racc.com).

The definition of the relation R(x, w) of NIZK is informally as follows (see below for
the formal definition):

• The secret key skU in the blinded account accB is the secret key associated with
the public key pkU.
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• The secret key a in accB is the same as the secret key that can be reconstructed
from the shares {aj}Dj=1 committed in comM.

• accB is generated such that B = S = R = x = 0 holds.
• The user U knows the randomness racc.com.

▷ Call FBC with (Broadcast, sid, comM).
▷ Set registration information:

RIj ← (accB, aj , rj , comM, pkU, π), ∀j ∈ {1, . . . , D}.

▷ For k = 1 to D − 1, perform the following steps:
• Call F sc

Ch with the message (Send, sid,Mk,RIk).
• Wait for a response: (Continue, sid) from F sc

Ch.
▷ Call F sc

Ch with the message (Send, sid,MD,RID).
a Given acc, it calls the PrepareBlindSign algorithm of the threshold blind signature TBS

scheme to obtain a blinded account accB. Here, as explained in the beginning of this sec-
tion, in contrast to the original PrepareBlindSign algorithm of Coconut [59], the algorithm
does not create a proof. All necessary ZK proofs are included in the user registration ZK
relation (see below).

Fig. 3: User registration – U 1st phase

Formal definition of user registration NIZK relation:

• w =
(
(0, 0, 0, skU, 1, a), {aj}Dj=1, o, {oτ}6τ=1, {rj}Dj=1, {coej}

β−1
j=1

)
7

• x =
(
accB, comM, pkU

)
• The relation R(x, w) is defined as:

R(x, w) =
{
com = go · hskU4 · h5 · ha6 ∧ com1 = go1 ∧ com2 = go2 ∧ com3 = go3

∧ com4 = go4 · hskU ∧ com5 = go5 · h ∧ com6 = go6 · ha

∧
{

˜comj = gajhrj
}D
j=1
∧ pkU = gskU

∧
{

˜comj = g
a+

β−1∑
i=1

coeij
i

· hrj = ga ·
β−1∏
i=1

gcoeij
i

· hrj
}D
j=1

}
.

See Appendix A.3 for the implementation details of the relation using Sigma protocols.

Each maintainer (Mj) acts as described in Figure 4.

▷ Upon receiving (Broadcasted, sid,U, comM) from FBC, and (Received, sid,U,RIj)
from F sc

Ch, act as follows.
▷ Parse RIj = (accB, a∗j , r

∗
j , com

∗
M, pkU, π).

▷ Ignore if comM ̸= com∗
M. Otherwise, parse comM = { ˜comj}Dj=1.

▷ Ignore if at least one of the following conditions holds:
• There already exists a user record UR′ in Lj where U′ = U.
• Upon calling FKR with (RetrieveKey, sid,U), (KeyRetrieved, sid,U, pk′) is re-

ceived such that pkU ̸= pk′.
• Upon calling FNIZK with (Verify, sid, x, π), (Verification, sid, 0) is received.

7 See Definition 4 for more information.
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• Given (a∗j , r
∗
j ) ∈ RIj , compute ga

∗
j · hr

∗
j where it is not equal to ˜comj for ˜comj ∈

comM.
• Know your customer (KYC) guidelines for U are not verified.

▷ Otherwise, save the user record UR = (aj , rj , comM,U) in Lj .
▷ Given accB, call BlindSign to obtain σB

j .a

▷ Call Fac
Ch with (Send, sid,U, σB

j ).
▷ Output (AccGened, sid,U) to Z.

a Each maintainer signs associated information of accB using the BlindSign algorithm of the
TBS scheme to obtain a blind signature share σB

j .

Fig. 4: User registration – Mj

The user U acts as described in Figure 5.

▷ Receive (Received, sid,Mj , σ
B
j ) for different j from Fac

Ch.
▷ Given σB

j in the messages received from Fac
Ch, call Unblind to obtain σj .a

▷ Given the unblinded signatures {σj}αj=1, call TBS.Agg to obtain σM.b

▷ Output (AccGened, sid) to Z.
a Unblinds at least α different signature shares {σj}αj=1 using the Unblind algorithm of the
TBS scheme.

b Aggregates unblinded signature shares using the TBS.Agg algorithm of the TBS scheme
to form one consolidated signature σM.

Fig. 5: User registration – U 2nd phase

4.2.3 Currency issuance Upon receiving (Iss, sid,U, v) from Z, B initiates the currency
issuance protocol as shown in Figure 6. To issue digital currency worth v for U, B first sends
v to U by calling F sra

Ch with (Send, sid,U, v), so that U receives (Received, sid,B, v).

User

Central Bank

1

2

(Threshold encryption of public key and transaction
value, blinded-updated account, re-randomized
signature on previous account, tracing tag, and
NIZK proof).

Commercial Banks and Financial Institutions 

Transaction identifier

is saved in ledgers that will be
used for compelling users to
use their most updated
accounts and in the auditing
protocol as well.

3

3

4(Threshold encryption of user’s public key and
transaction value). 5

Maintainers’ blind signature shares
on user’s updated account.

6

Maintainers’ consolidated-
unblinded signature
on user’s updated account.

7

Fig. 6: Currency issuance protocol

Upon receiving (AcceptIss, sid, v) from Z, if U is in the Idle state, it sends the fresh random-
ness ρ of ψ to B by calling F ssa

Ch with (Send, sid,B, ρ).8 ψ is a threshold ElGamal encryption
of U’s public key pkU and gv.
8 Otherwise, if U is in the Sending or Receiving state, it ignores the message.
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U must prove that it has a valid signature σM on its previous account accold and request a
new signature on its new account accnew. accnew,B is computed for U’s new account accnew

using the PrepareBlindSign algorithm, and σRnd
M is computed for U’s previous account accold

(for which it has the consolidated signature σM) using the ProveSig algorithm of the TBS
scheme.
The tag is computed as T = ga

x+1

, where x is an incrementing value per transaction. As
we will see, the same value is used for tracing the user when necessary. U generates its
transaction information TIU and sends it to M.

The algorithm executed by U is provided in Figure 7.

▷ Compute threshold ElGamal encryption as follows, setting the public key pkU and gv
as plaintexts:

ψ = (ψ1, ψ2, ψ3)← (gρ, pkρ1,M · pkU, pk
ρ
2,M · g

v)

▷ Given σM, call ProveSig to obtain σRnd
M .

▷ Given accold = (Bold, Sold, Rold, skU, a
x, a) and v, set:

accnew = (Bnew, Snew, Rnew, skU, a
x+1, a)← (Bold + v, Sold, Rold + v, skU, a

x · a, a).

▷ Given accnew, call PrepareBlindSign to generate the blinded account accnew,B.
▷ Compute T = ga

x+1

.
▷ Call FNIZK with (Prove, sid, x, w), and receive back (Proof, sid, π).

Denote the randomness used to create accnew,B, σRnd
M , and threshold encryption ψ by

rreg. The following is the NIZK statement x and witness w:

x = (ψ, accnew,B, σRnd
M ,T), w = (accold, rreg, v)

The definition of the relation R(x, w) of NIZK is informally as follows (see below for
formal definition):

• The secret key skU used in accnew,B is the secret key associated with the public key
pkU in the threshold encryption ψ generated under the public key of maintainers
pk1,M.

• T is well-formed; the exponent of g is the fifth element in accnew.
• σRnd

M is a re-randomization of σM, which is a signature generated by aggregating
α different valid signature shares of maintainers on accold.

• accnew,B is generated considering accold and v in ψ. Hence, the following hold
for accnew: Bnew = Bold + v, Snew = Sold, Rnew = Rold + v, sknewU =
skU, ax+1 = ax · a, anew = a. Additionally, the following constraints hold:
Bnew ≤ Bmax, Rnew ≤ Rmax.

a

• U knows the randomness rreg.
▷ Set transaction information:

TIU ← (ψ, accnew,B, σRnd
M ,T, π).

▷ For k = 1 to D − 1, perform the following steps:
• Call F sa

Ch with the message (Send, sid,Mk,TIU).
• Wait for a response: (Continue, sid) from F sa

Ch.
▷ Call F sa

Ch with the message (Send, sid,MD,TIU).
a Different from the payment protocol, in which the transferred value is upper bounded, in

this protocol, there is no upper bound on the transaction value v issued by B. However,
as addressed before, it is straightforward to add such a constraint if desired.

Fig. 7: Currency issuance – U 1st phase
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Formal definition of currency issuance NIZK relation:

• w =
(
(Bold, Sold, Rold, sk, φ, a), ρ, o, {oτ}6τ=1, r, r1, r2, v

)
where φ = ax.

• x =
(
ψ, accnew,B, σRnd

M ,T
)

• The relation R(x, w) is defined as:

R(x, w) =
{
ψ1 = gρ ∧ ψ2 = pkρ1,M · g

sk ∧ ψ3 = pkρ2,M · g
v

∧ com = go · hB
old+v

1 · hS
old

2 · hR
old+v

3 · hsk4 · h
φold·a
5 · ha6

∧ com1 = go1 · hB
old+v ∧ com2 = go2 · hS

old

∧ com3 = go3 · hR
old+v

∧ com4 = go4 · hsk ∧ com5 = go5 · hφ
old·a ∧ com6 = go6 · ha

∧ κ = α̃ · β̃B
old

1 · β̃S
old

2 · β̃R
old

3 · β̃sk
4 · β̃

φold

5 · β̃a6 · g̃r

∧ T = gφ
old·a ∧N = gr1 · hφ

old

∧ com5 = Na · gr2

∧Bnew = Bold + v ≤ Bmax ∧Rnew = Rold + v ≤ Rmax

}
.

See Appendix A.1 for the implementation details of the relation using Sigma protocols and
bulletproofs (used only for range proofs).

B acts as described in Figure 8.

▷ Upon receiving (Received, sid,U, ρ) from F ssa
Ch , act as follows.

▷ Set the transaction information TIB = ψ = (ψ1, ψ2, ψ3)← (gρ, pkρ1,M · pkU, pk
ρ
2,M · gv).

▷ For k = 1 to D − 1, perform the following steps:
• Call Fac

Ch with the message (Send, sid,Mk,TIB).
• Wait for a response: (Continue, sid) from Fac

Ch.
▷ Call Fac

Ch with the message (Send, sid,MD,TIB).

Fig. 8: Currency issuance – B

Each maintainer (Mj) acts as described in Figure 9.

▷ Receive (Received, sid,TIU,mid) from F sa
Ch and parse TIU = (ψ, accnew,B, σRnd

M ,T, π).
▷ Receive (Received, sid,B,TIB) from Fac

Ch and parse TIB = ψ.a

▷ Ignore if at least one of the following conditions holds:
• There already exists a transaction identifier t′id (either for an issuance transaction

or an aborted transaction) in the ledger Lj , where T′ ∈ t′id and T′ = T, or ψ′ ∈ t′id
and ψ′ = ψ. The latter condition applies only if t′id corresponds to an issuance
transaction.

• There already exists a transaction identifier t′id (for a payment transaction) in Lj ,
where T′

s ∈ t′id and T′
s = T, or T′

r ∈ t′id and T′
r = T.

• Upon calling FNIZK with (Verify, sid, x, π), (Verification, sid, 0) is received.
• Given σRnd

M , upon calling VerifySig, 0 is received.
▷ Otherwise, record a sender-receiver pair ((TIB,TIU),mid) in Lj .
▷ Set the transaction identifier tid ← (ψ,T) and record it in Lj .
▷ Given accnew,B, call BlindSign to obtain σnew,B

j .
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▷ Call F sa
Ch with (Send, sid,mid, σnew,B

j ).
▷ Output (Issued, sid, tid) to Z.

a Note that it does not matter which transaction information TIU or TIB is received by Mj

first.

Fig. 9: Currency issuance – Mj

The user U acts as described in Figure 10.

▷ Receive (Received, sid,Mj , σ
new,B
j ) for different j from F sa

Ch.
▷ Given σnew,B

j received from F sa
Ch for different j, call Unblind to obtain σnew

j .
▷ Given {σnew

j }αj=1 computed in the previous step, call TBS.Agg to obtain σnew
M .

▷ Output (Issued, sid, v) to Z.

Fig. 10: Currency issuance – U 2nd phase

4.2.4 Payment To make a payment, upon receiving (GenTnxSnd, sid,Ur, v) from Z, if Us
is in the Idle state, it initiates the payment protocol as shown in Figure 11 by sending fresh
randomness ρs of ψs and the transaction value v to the receiver Ur by calling F fa

Ch with
(Send, sid,Ur, (ρs, v)).9 ψs is a threshold ElGamal encryption of Us’s public key pks and gv.

Receiver

Sender

1

2

(Threshold encryption of sender and receiver’s public keys and
transaction value, signature of knowledge, blinded-updated account,
re-randomized signature on previous account, and tracing tag).

Commercial Banks and Financial Institutions 

Transaction identifier

is saved in ledgers that will be
used for compelling users to
use their most updated
accounts (e.g., to achieve
double-spending prevention)
and in the Auditing protocol as
well.

4

5

Maintainers’ blind signature shares ,

on sender and receiver’s updated accounts.

6

Maintainers’ consolidated-
unblinded signature on
receiver’s updated account.

7

3

3

Maintainers’ consolidated-
unblinded signature on
sender’s updated account.

7

6

Fig. 11: Payment protocol

On receiving (GenTnxRcv, sid,Us, v) from Z, if Ur is in the Idle state, it sends back fresh
randomness ρr used in ψr to Us by calling F fa

Ch with (Send, sid,Us, ρr).10 ψr is a threshold
ElGamal encryption of Ur’s public key pkr. Us and Ur generate their transaction information,
denoted by TIs and TIr, respectively, and send it to maintainers.
The sender Us executes the algorithm provided in Figure 12.

▷ Compute threshold ElGamal encryptions:

ψs = (ψs,1, ψs,2, ψs,3) = (gρs , pkρs1,M·pks, pk
ρs
2,M·g

v), ψr = (ψr,1, ψr,2) = (gρr , pkρr1,M·pkr).

9 Otherwise, if Us is in the Sending or Receiving state, or if v < 0, it ignores the message.
10 Otherwise, if Ur is in the Sending or Receiving state, or if v < 0, it ignores the message.
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▷ Given accolds = (Bold
s , Sold

s , Rold
s , sks, a

xs
s , as) and v, set:

accnews = (Bnew
s , Snew

s , Rnew
s , sks, a

xs+1
s , as)← (Bold

s − v, Sold
s + v,Rold

s , sks, a
xs
s · as, as).

▷ Compute accnew,Bs , σRnd
s,M, and Ts similar to the currency issuance protocol.

▷ Call FSoK on input (Sign, sid, ψr, xs, ws) and receive (Signature, sid, ψr, xs, σs(ψr)),
where σs(ψr) is Us’s signature of knowledge (SoK) on ψr, binding the message ψr to
the proof so that it proves knowledge of ws satisfying the relation R(xs, ws).
Denote the set of all random values associated with accnew,Bs , σRnd

s,M, and ψs by rs. The
following is the SoK statement xs and witness ws:

xs = (ψs, acc
new,B
s , σRnd

s,M,Ts), ws = (accolds , rs, v),

and the message of SoK, σs(ψr), is ψr.
The definition of the relation R(xs, ws) of SoK is informally as follows (see below for
the formal definition):

• The secret key sks used in accnew,Bs is the secret key associated with the public key
pks in the threshold encryption ψs generated under the public key of maintainers
pk1,M.

• Ts is well-formed; the exponent of g is the fifth element in accnews .
• σRnd

s,M is a re-randomization of σs,M, which is a signature generated by aggregating
α different valid signature shares of maintainers on accolds .

• accnew,Bs is generated considering accolds and v in ψs. Hence, the following hold
for accnews : Bnew

s = Bold
s − v, Snew

s = Sold
s + v, Rnew

s = Rold
s , sknews =

sks, axs+1
s = axs · as, anews = as. Additionally, the following constraints hold:

0 ≤ Bnew
s , Snew

s ≤ Smax, 0 ≤ v ≤ Vmax.
• Us knows the randomness rs.

▷ Set the sender transaction information:

TIs ← (ψs, ψr, σs(ψr), acc
new,B
s , σRnd

s,M,Ts).

Fig. 12: Payment – Us 1st phase

Formal definition of payment (sender side) NIZK relation:

• ws =
(
(Bold, Sold, Rold, sk, φold, a), ρ, o, {oτ}6τ=1, r, r1, r2, v

)
where φold = ax.

• xs =
(
ψs, acc

new,B
s , σRnd

s,M,Ts
)

• The relation R(xs, ws) is defined as:

R(xs, ws) =
{
ψs,1 = gρ ∧ ψs,2 = pkρ1,M · g

sk ∧ ψs,3 = pkρ2,M · g
v

∧ com = go · hB
old−v

1 · hS
old+v

2 · hR
old

3 · hsk4 · h
φold·a
5 · ha6

∧ com1 = go1 · hB
old−v ∧ com2 = go2 · hS

old+v ∧ com3 = go3 · hR
old

∧ com4 = go4 · hsk ∧ com5 = go5 · hφ
old·a ∧ com6 = go6 · ha

∧ κ = α̃ · β̃B
old

1 · β̃S
old

2 · β̃R
old

3 · β̃sk
4 · β̃

φold

5 · β̃a6 · g̃r

∧ T = gφ
old·a ∧N = gr1 · hφ

old

∧ com5 = Na · gr2

∧ 0 ≤ v ≤ Vmax ∧Bnew = Bold − v ≥ 0 ∧ Snew = Sold + v ≤ Smax

}
.
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See Appendix A.2 for the implementation details of the relation using Sigma protocols and
bulletproofs (used only for range proofs).

The receiver Ur acts as described in Figure 13.

This algorithm is similar to what has been described for Us in Figure 12 except that
accnew,Br is generated considering accoldr (for which user reveals σRnd

r,M) and v in ψs,3
(recall, Ur knows ρs).
Given accoldr = (Bold

r , Sold
r , Rold

r , skr, a
xr
r , ar) and v, the receiver sets:

accnewr = (Bnew
r , Snew

r , Rnew
r , skr, a

xr+1
r , ar)← (Bold

r + v, Sold
r , Rold

r + v, skr, a
xr
r · ar, ar)

Hence, the following hold for accnewr : Bnew
r = Bold

r + v, Snew
r = Sold

r , Rnew
r = Rold

r +
v, sknewr = skr, axr+1

r = axr
r ·ar, anewr = ar.Additionally, the following constraints

hold: Bnew
r ≤ Bmax, Rnew

r ≤ Rmax.
a

The receiver transaction information, TIr, is similar to TIs with values associated to
Ur’s account:

TIr ← (ψs, ψr, σr(ψs), acc
new,B
r , σRnd

r,M ,Tr).

a Regulatory compliance v ≤ Vmax has already been considered in TIs.

Fig. 13: Payment – Ur 1st phase

The sender Us (resp. receiver Ur) acts as described in Figure 14.

▷ For k = 1 to D − 1, perform the following steps:
• Call F sa

Ch with the message (Send, sid,Mk,TIs) (resp. (Send, sid,Mk,TIr)).
• Wait for a response: (Continue, sid) from F sa

Ch.
▷ Call F sa

Ch with the message (Send, sid,MD,TIs) (resp. (Send, sid,MD,TIr)).

Fig. 14: Payment – Us (resp. Ur) 1st phase (continued)

Each maintainer (Mj) acts as described in Figure 15.

▷ Receive (Received, sid,TIs,mids), and (Received, sid,TIr,midr) from F sa
Ch and parse

TIs =
(
ψs, ψr, σs(ψr), acc

new,B
s , σRnd

s,M,Ts
)
,

TIr =
(
ψs, ψr, σr(ψs), acc

new,B
r , σRnd

r,M ,Tr
)
.

▷ Ignore TIs (resp. TIr) if at least one of the following conditions holds:
• There already exists a transaction identifier t′id (either for an issuance transaction

or an aborted transaction) in Lj , where T′ ∈ t′id and T′ = Ts (resp. T′ ∈ t′id and
T′ = Tr).

• There already exists a transaction identifier t′id (for a payment transaction) in Lj ,
where T′

s ∈ t′id and T′
s = Ts or T′

r ∈ t′id and T′
r = Ts (resp. T′

s ∈ t′id and T′
s = Tr

or T′
r ∈ t′id and T′

r = Tr).
• Upon calling FSoK with (Verify, sid, ψr, xs, σs(ψr)) (resp. (Verify, sid, ψs, xr,
σr(ψs))), (Verified, sid, ψr, xs, σs(ψr), 0) (resp. (Verified, sid, ψs, xr, σr(ψs), 0))
is received.

• Given σRnd
s,M (resp. σRnd

r,M), upon calling VerifySig, 0 is received.
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▷ Otherwise, record a sender-receiver pair ((TIs,TIr), (mids,midr)) in Lj .
▷ Set the transaction identifier tid ← (ψs, ψr,Ts,Tr) and record it in Lj .
▷ Given accnew,Bs and accnew,Br , invoke BlindSign to obtain blind signature shares σnew,B

s,j

and σnew,B
r,j , which belong to Us and Ur, respectively.

▷ Call F sa
Ch with (Send, sid,mids, σ

new,B
s,j ) and (Send, sid,midr, σ

new,B
r,j ).

▷ Output (TnxDone, sid, tid) to Z.

Fig. 15: Payment – Mj

The sender Us (resp. receiver Ur) acts as described in Figure 16.

▷ Receive (Received, sid,Mj , σ
new,B
s,j ) (resp. (Received, sid,Mj , σ

new,B
r,j )) for different j

from F sa
Ch.

▷ Given σnew,B
s,j , call Unblind to obtain σnew

s,j (resp. given σnew,B
r,j , call Unblind to obtain

σnew
r,j ).

▷ Given {σnew
s,j }αj=1, call TBS.Agg to obtain σnew

s,M (resp. given {σnew
r,j }αj=1, call TBS.Agg

to obtain σnew
r,M).

▷ Output (TnxDone, sid,Ur, v) (resp. (TnxDone, sid,Us, v)) to Z.

Fig. 16: Payment – Us (resp. Ur) 2nd phase

4.2.5 Abort transaction In the currency issuance and payment protocols, it may occur
that a user’s specific transaction is pending. This could mean that the transaction has passed
the checks performed by maintainers; however, a sufficient number of maintainers have not
yet received a valid TI for the user’s counterparty. As a result, a sender-receiver pair has not
been generated on a sufficient number of maintainers’ sides,11 which implies that the user
has not yet received α valid signature shares on its new account.
Upon receiving the environment’s instruction (AbrTnx, sid) to abort the most recent trans-
action, if the user is not in the Receiving or Sending state, it ignores the message. Otherwise,
the user U sends an abort request AR to M by submitting its blinded refreshed account
accr,B, which maintains the same state as the current account, except that the transaction
counter is incremented by one.

The user U executes the algorithm provided in Figure 17.

▷ Given the current (old) account state accold = (Bold, Sold, Rold, skU, a
x, a), set the re-

freshed account:

accr = (Br, Sr, Rr, skU, a
x+1, a)← (Bold, Sold, Rold, skU, a

x · a, a)

▷ Given accr and σM, compute accr,B, and σRnd
M calling PrepareBlindSign and ProveSig

algorithms of the TBS scheme respectively.
▷ Set T← ga

x+1

.
▷ Call FNIZK with (Prove, sid, x, w), and receive back (Proof, sid, π).

11 Recall, e.g., in the payment protocol, the sender sends transaction information to the maintainers,
and the receiver does the same. The maintainers then verify the information, and if everything
is correct, they locally generate a sender-receiver pair associated with one transaction on their
side.
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Denote the randomness used to create accr,B and σRnd
M by rabr. The NIZK statement

and witness are as follows:

x = (accr,B, σRnd
M ,T), w = (acc, rabr)

The following is informal description of the NIZK relationR(x, w) (see below for formal
definition):

• T is well-formed; the exponent of g is the fifth element in accr.
• σRnd

M is a re-randomization of σM, which is a signature generated by aggregating
α different valid signature shares of maintainers on accold.

• accr,B is generated considering accold. Hence, the following hold for accr: Br =
Bold, Sr = Sold, Rr = Rold, skrU = skU, ax+1 = ax · a, ar = a.

• U knows the randomness rabr.
▷ Set abort request:

AR← (accr,B, σRnd
M ,T, π).

▷ For k = 1 to D − 1, perform the following steps:
• Call F sa

Ch with the message (Send, sid,Mk,AR).
• Wait for a response: (Continue, sid) from F sa

Ch.
▷ Call F sa

Ch with the message (Send, sid,MD,AR).

Fig. 17: Abort transaction – U

Formal definition of abort transaction NIZK relation:

• w =
(
(Bold, Sold, Rold, sk, φ, a), o, {oτ}6τ=1, r, r1, r2

)
where φ = ax.

• x =
(
accnew,B, σRnd

M ,T
)

• The relation R(x, w) is defined as:

R(x, w) =
{
com = go · hB

old

1 · hS
old

2 · hR
old

3 · hsk4 · h
φold·a
5 · ha6

∧ com1 = go1 · hB
old

∧ com2 = go2 · hS
old

∧ com3 = go3 · hR
old

∧ com4 = go4 · hsk ∧ com5 = go5 · hφ
old·a ∧ com6 = go6 · ha

∧ κ = α̃ · β̃B
old

1 · β̃S
old

2 · β̃R
old

3 · β̃sk
4 · β̃

φold

5 · β̃a6 · g̃r

∧ T = gφ
old·a ∧N = gr1 · hφ

old

∧ com5 = Na · gr2 ∧ r2 = o5 − ar1
}
.

See Appendix A.3 for the implementation details of the relation using Sigma protocols.

Each maintainer Mj acts as described in Figure 18.

▷ Receive (Received, sid,AR,mid) from F sa
Ch and parse AR = (accr,B, σRnd

M ,T, π).
▷ Ignore AR if at least one of the following conditions holds:

• There already exists a transaction identifier of the form t′id = (Aborted,T) in the
ledger Lj .

• Upon calling FNIZK with (Verify, sid, x, π), (Verification, sid, 0) is received.
• Given σRnd

M , upon calling VerifySig, 0 is received.
• There is no recorded sender-receiver pair (TIs,TIr) with T′ ∈ TIs or T′ ∈ TIr such

that T′ = T.
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▷ Otherwise, send (TIs,TIr,mids,midr) to other maintainersa by calling Fac
Ch with:

(Send, sid,Mi, (TIs,TIr,mids,midr)) for i = 1, . . . , D ∧ i ̸= j.

a (mids,midr) have already been recorded—see the previous protocol.

Fig. 18: Abort transaction – Mj

Each maintainer Mi acts as described in Figure 19.

▷ Receive (Received, sid,Mj , (TIs,TIr,mids,midr)) sent by Mj .
▷ Verify (TIs,TIr) by calling FNIZK and VerifySig, and ignore the message on failure.a

Otherwise, record (Received, sid,Mj , (TIs,TIr,mids,midr)) and proceed.b
▷ Do not sign any account in any transaction that contains tag T′ where T′ = Ts ∈ TIs,
T′ = Tr ∈ TIr, or T′ = T ∈ TIU until the decision about (TIs,TIr) is made via the
output of FaBA, as described in the following.

▷ Check if there already exists an entry (TIz,TIw) recorded in ledger Li where at least
one of the transaction information in the entry is different from TIs or TIr, and at
least one of the tags used in (TIz,TIw) equals one of the tags used in (TIs,TIr). If so,
send (TIz,TIw,midz,midw) to other maintainers by calling Fac

Ch with:c

(Send, sid,Mj , (TIz,TIw,midz,midw)) for j = 1, . . . , D ∧ j ̸= i.

▷ Otherwise, check if there already exists (TIs,TIr) recorded. If so, send (TIs,TIr,mid′s,
mid′r)

d to other maintainers by calling Fac
Ch with:

(Send, sid,Mj , (TIs,TIr,mid′s,mid′r)) for j = 1, . . . , D ∧ j ̸= i.

▷ Else, sign (accnew,Bs , accnew,Br ) in (TIs,TIr) and record them in Li together with the
associated tid. Send (TIs,TIr) to other maintainers by calling Fac

Ch with:

(Send, sid,Mj , (TIs,TIr, ·, ·)) for j = 1, . . . , D ∧ j ̸= i.

a Mj can be identified as malicious. Mi can submit the signature of Mj as proof of mali-
ciousness to all other maintainers. Formally identifying malicious maintainers is out of the
scope of this paper.

b If there already exists an entry recorded of the form (Received, sid,Mj , (TIz,TIw, ·, ·))
where at least one of the transaction information in the entry is different from TIs or TIr,
and at least one of the tags used in (TIz,TIw) equals one of the tags used in (TIs,TIr), this
identifies Mj as malicious. Mi can submit the signatures of Mj as proof of maliciousness
to all other maintainers. Additionally, the tuples (TIz,TIw) and (TIs,TIr) serve as proof
of cheating by the transaction counterparty (whoever has engaged in both transactions as
an honest user should finalize a transaction before engaging in another).

c The tuples (TIz,TIw) and (TIs,TIr) serve as proof of cheating by the transaction coun-
terparty (whoever has engaged in both transactions as an honest user should finalize a
transaction before engaging in another).

d mid′s and mid′r have already been recorded—see the payment protocol.

Fig. 19: Abort transaction (continued) – Mi

Users and maintainers act as described in Figure 20.
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▷ Upon receiving messages from Fac
Ch, each maintainer acts as follows:

▷ Call FaBA with (Agree, sid || [(TIs,TIr), (mids,midr)], dj).
• Set dj ← 1 if Mj agrees to sign (based on checks in Figure 19)—or has already

signed—(accnew,Bs , accnew,Br ) in (TIs,TIr).
• Otherwise, set dj ← 0.

▷ Upon receiving the output of FaBA, (Agreed, sid || [(TIs,TIr), (mids,midr)], Q), proceed
as follows:

▷ If Q = 1:
• If accounts in (TIz,TIw) have been signed, remove (TIz,TIw) and the associated
tzwid from the ledger.

• Sign (accnew,Bs , accnew,Br ) if they have not been signed yet to obtain σnew,B
s and

σnew,B
r .

• Call F sa
Ch with (Send, sid,mids, σ

new,B
s ) and (Send, sid,midr, σ

new,B
r ).

• Record (TIs,TIr) together with its associated tsrid.
• Output (TnxDone, sid, tsrid) to Z.

The user Us (resp. receiver Ur) acts as follows:
– Receive (Received, sid,Mk, σ

new,B
s,k ) (resp. (Received, sid,Mk, σ

new,B
r,k )) for

different k from F sa
Ch.

– Similar to payment, unblind and aggregate the received signatures.
– Output (TnxDone, sid,Ur, v) to Z (resp. output (TnxDone, sid,Us, v)).

▷ Else (Q = 0):

• If (accnew,Bs , accnew,Br ) in (TIs,TIr) have been signed and thus (TIs,TIr) have been
recorded, remove them together with the associated tsrid.

• Verify AR by calling FNIZK and VerifySig. Ignore if it does not verify.
• Otherwise, call FaBA with (Agree, sid || [AR,mid], dj).

– Set dj ← 1 if Mj signs accr,B (e.g., FNIZK and VerifySig checks are passed).
– Otherwise, set dj ← 0.

• Upon receiving the output of FaBA, (Agree, sid || [AR,mid], Q′), proceed as follows:
• If Q′ = 1:

– Save the aborted transaction identifier tid = (Aborted,T) in the ledger.
– Sign the refreshed-blinded account of the user accr,B to obtain σr,B.
– Call F sa

Ch with (Send, sid,mid, σr,B).
– Output (TnxAborted, sid, tid) to Z.

• Else, ignore.

The user U acts as follows:
– Receive (Received, sid,Mj , σ

r,B
j ) for different j from F sa

Ch.
– Similar to payment, unblind and aggregate the received signatures.
– Output (TnxAborted, sid) to Z.

Fig. 20: Abort transaction (continued) – maintainers and users

4.2.6 Auditing To achieve auditability, we make use of trust dispersal (cf. [1]). Users
trust multiple independent authorities, ensuring that no single authority holds unlimited
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power over any user. Hence, for privacy revocation and user tracing, we leverage threshold
cryptography. Executing any type of auditing requires the participation of at least β = t+1
maintainers, where t is the maximum number of maintainers that can be corrupted by the
adversary. Since we have set the threshold of the TBS scheme to α = D − t, there always
exist at least D− 2t honest maintainers who have the transaction identifier tid of a finalized
transaction stored in their ledgers. The auditing protocol consists of two sub-protocols:
privacy revocation and tracing, which are described in the following.

Privacy revocation: Given a privacy-preserved payment made by a specific sender-receiver
pair, the audit committee revokes the privacy of the transaction by decrypting the ciphertexts
and identifying the transaction participants and the transaction value (see Figure 21).

Commercial Banks and Financial Institutions 
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privacy-preserved payment.
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Fig. 21: Privacy revocation protocol

The algorithm executed by the j-th maintainer Mj is described in Figure 22.

▷ Upon receiving (RvkAnm, sid, tjid) from Z, act as follows.
▷ Locate the associated (ψs, ψr) stored in the ledgera Lj for the given tjid.
▷ Parse

ψs = (ψs,1, ψs,2, ψs,3), ψr = (ψr,1, ψr,2).

▷ Compute the decryption shares:

Aj ← ψ
sk1,j
s,1 , Bj ← ψ

sk2,j
s,1 , Cj ← ψ

sk1,j
r,1 .

▷ Call FNIZK with (Prove, sid, xj , wj), and receive back (Proof, sid, πj), where the NIZK
statement and witness are:

xj = (ψs,1, ψr,1, Aj , Bj , Cj), wj = (sk1,j , sk2,j)

for the following relation R(xj , wj):

{logg pk1,j = logψs,1
Aj , logg pk2,j = logψs,1

Bj , logg pk1,j = logψr,1
Cj}.

▷ Call Fac
Ch with:

(Send, sid,Mi, (xj , πj)) for i = 1, . . . , D ∧ i ̸= j.

▷ Upon receiving (Received, sid,Mi, (xi, πi)) from Fac
Ch, proceed as follows.

▷ Call FNIZK with (Verify, sid, xi, πi), and ignore if (Verification, sid, 0) is received.
▷ Upon obtaining β valid decryption shares, compute pks, gv, and pkr as follows:

pks =
ψs,2∏

j∈I A
λ1,j

j

, gv =
ψs,3∏

j∈I B
λ2,j

j

, pkr =
ψr,2∏

j∈I C
λ1,j

j

such that |I| = β and λ is the Lagrange coefficient. Compute v from gv.b
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▷ Call FKR with (RetrieveID, sid, pks) and (RetrieveID, sid, pkr) to retrieve the unique
identifiers of users by receiving (IDRetrieved, sid,Us, pks) and (IDRetrieved, sid,Ur,
pkr) from FKR.

▷ Output (AnmRevoked, sid, tid,Us,Ur, v) to Z.
a For a currency issuance transaction, given that the sender is B, the cryptographic informa-

tion saved for auditing contains only ψ. However, in this algorithm, we describe the steps
of the privacy revocation protocol for a payment transaction; the process for a currency
issuance transaction is similar.

b Note that to have efficient zero-knowledge and signature of knowledge proofs, the user sets
gv as one of the plaintexts in ψ. One of the system’s regulatory compliance measures is
enforcing a limit on transaction value v < Vmax, which makes extracting v from gv efficient
for M in this sub-protocol. Moreover, as proposed in [56], implementing a constant-time
decryption mechanism can remove the need for brute-force attempts.

Fig. 22: Privacy revocation – Mj

Tracing: Given a suspicious user’s unique identifier, the audit committee traces all transac-
tions made by that user (see Figure 23). First, they locate the user’s record generated during
the user registration protocol. Using secret shares of a, maintainers compute all tracing tags
of the user without revealing a. We will see that, to achieve simulatability, a must not be
revealed.
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Fig. 23: Tracing protocol

The maintainers jointly compute tracing tags such that the last computation results in a tag
that does not exist in their ledgers. In this way, tracing authorities can determine the most
recent transaction of U. As described in the currency issuance and payment protocols, all
transactions contain tracing tag values of the form ga

x

, where a is the user’s (tracing tag)
secret key and x is the transaction counter (recall that for aborted transactions, the user
also increments x by one).
The threshold for TBS is α, ensuring that at least β honest maintainers always have the
transaction identifier tid of a specific transaction saved in their ledgers. However, the number
of honest maintainers who possess the complete set of tid values for all transactions of a
specific user is not necessarily β, as we do not enforce any agreement in the currency issuance
or payment protocols. Thus, we must ensure that, at each step of threshold tag computation,
all maintainers can compute the tag T and then check their ledgers to determine whether
such a tag already exists. They achieve this by sending their next tag-computation shares
in a provable manner to others so that, once β shares are collected, the next tag can be
computed. This process continues until maintainers do not find the computed tag T in their
ledgers.
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For a currency issuance transaction, tid contains only the tracing tag of the receiver, whereas
for a payment transaction, it contains the tracing tags of both the sender and the receiver.
Based on the computed tracing tags, each maintainer determines whether the traced user
was the sender or the receiver of the transaction for which tid is retrieved (the sender’s tag
appears first in tid). Hence, maintainers output {tτid, role

τ}xτ=1 to Z, where role can be either
sender or receiver. Note that given the values {tτid}xτ=1, the counterparties of the suspicious
user can be identified using the privacy revocation protocol. To ensure efficient tracing, in
the user registration protocol, each user proves that x starts from 1 and increments by one
for each transaction.

The algorithm executed by the j-th maintainer Mj is described in Figure 24.

▷ Upon receiving (Trace, sid,Uj) from Z, act as follows.
▷ Locate the associated user record UR = (aj , rj , comM,U) stored in Lj , where U = Uj .
▷ Parse comM = { ˜comj}Dj=1.
▷ (*) Set ġ ← gaj

e

(with e initially set to 0). Set Ej ← ġaj . Call FNIZK with (Prove,
sid, xj , wj), and receive (Proof, sid, πj) from FNIZK, where the NIZK statement and
witness are:a

xj = ( ˜comj , Ej , ġ), wj = (aj , rj)

The relation R(xj , wj) is defined as:

{ ˜comj = gaj · hrj ∧ Ej = ġaj} .

▷ Call Fac
Ch with:

(Send, sid,Mi, (xj , πj)) for i = 1, . . . , D ∧ i ̸= j.

▷ Upon receiving (Received, sid,Mi, (xi, πi)) from Fac
Ch, proceed as follows.

▷ Call FNIZK with (Verify, sid, xi, πi), and ignore if (Verification, sid, 0) is received.
▷ Upon obtaining β valid tracing shares, compute ġa as follows:

ġa =
∏
j∈I

E
λj

j

where |I| = β and λ is the Lagrange coefficient.
▷ If a transaction identifier tid (for issuance, payment, or an aborted transaction) already

exists in the ledger Lj that includes ġa as a tag T, proceed from (*) setting ġ step
above with e← e+1 and record the associated tid of the computed T along with role.

▷ Otherwise, send a message to all maintainers by calling Fac
Ch with input:

(Send, sid,Mi, (0, ġ
a)) for i = 1, . . . , D ∧ i ̸= j.

indicating that Mj has not seen ġa in Lj .
▷ Upon receiving D − t messages of the form (Received, sid,Mi, (0, ġ

a)), where ġ =
ga

e

from Fac
Ch, output the recorded transaction identifiers and corresponding roles

(Traced, sid,U, {tτid, role
τ}xτ=1) to Z, and abort.

a The maintainer proves that the share contributed to the threshold tag computation is con-
sistent with the j-th commitment ˜comj ∈ comM (broadcasted during the user registration
protocol).

Fig. 24: Tracing – Mj
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4.3 Binding real-world identities to transactions

In our formal modeling, FCBDC captures well-known regulatory compliance rules such as bal-
ance limits and receiving and sending limits specified by various central banks. To address
more general regulations, users can bind their unique real-world identities to their trans-
actions. This enables them to prove different attributes associated with their real-world
identities (without revealing them) in every transaction, thereby addressing general KYC
regulations in a privacy-preserving manner.
For this purpose, anonymous credentials [30,31,22] can be used. However, due to the impor-
tance of efficiency in our setting, a recently introduced anonymous signature scheme called
SyRA signatures [33] can be utilized. SyRA signatures incorporate the unique real-world
identity of the signer and are efficient to generate and verify. This allows users to prove
their adherence to regulations such as AML and KYC in an anonymous manner based on
their real-world identities. Each PEReDi transaction information TI can be signed using
SyRA signatures while proving attributes about identity. PEReDi maintainers can serve as
distributed SyRA issuers.

4.4 On abort requests and a lower bound on D

Recall that in our construction, we neither use Byzantine broadcast nor Byzantine agree-
ment in the optimistic execution path of a payment. However, in the pessimistic execution
path, handling an abort request AR requires a supermajority of honest maintainers while
maintaining asynchronous operation. In the following, we discuss the upper limit on the
number of maintainers that can be corrupted by the adversary in our asynchronous setting
such that the construction can handle the pessimistic execution path.
To understand the difficulty of handling abort requests, consider a malicious user that ini-
tiates multiple transactions with the same account state. Since the adversary controls the
communication channel between users and maintainers, they can easily create conflicting
views among honest maintainers, causing confusion about which transaction to confirm and
which to discard in the case of an abort request AR. For example, a malicious user A, either
as a sender or receiver, can engage in two different transactions with users B and C, gener-
ating two sets of transaction information objects and sending them to maintainers (B and
C can be honest and/or malicious). Consequently, honest maintainers have differing local
views about handling a potential abort request. Some maintainers may record (TIA,TIB),
while others may record (TIA,TIC). Below, we argue that with fewer than 5t+1 maintainers,
it is impossible to correctly handle an abort request in an asynchronous setting.
We examine settings with D ≤ 5t maintainers. Without loss of generality, we focus on the 5t
case. Consider a scenario in which user A has transactions (TIA,TIB) and (TIA,TIC). Suppose
(TIA,TIB) is signed by the majority of honest maintainers (3t) and all malicious maintain-
ers (t), while (TIA,TIC) is signed by a minority of honest maintainers (t) and all malicious
maintainers (t). Recall that any agreement (e.g., by running asynchronous interactive con-
sistency) among the maintainers should rely on messages from D − t = 4t maintainers.
Moreover, the adversary can delay a group of t honest maintainers and provide false claims
on behalf of the t malicious maintainers. Consider now an adversary that falsely claims they
have not signed (TIA,TIB) by showing their signature on (TIA,TIC). This leads to a view
for honest maintainers in which there are 2t votes for (TIA,TIB) and 2t votes for (TIA,TIC),
while the transaction containing (TIA,TIB) is already finalized, and the honest maintainers
must make a decision about the abort request. A symmetric protocol configuration can be
produced by reversing TIB and TIC. It follows that the following two configurations are hard
to distinguish for honest maintainers:

(i) (TIA,TIB) is finalized and (TIA,TIC) is pending.
(ii) (TIA,TIC) is finalized and (TIA,TIB) is pending.

Observe that without privacy, a reasonable decision would be to reject both (TIA,TIB) and
(TIA,TIC) once each receives 2t votes, provided no account state has been updated as a
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result of these transactions. On the other hand, if a user has advanced their account state
and created any of those transactions, the maintainers can run a protocol to check the
(previous) state and finalize the transaction. As a result, the system can accurately update
its state because the malicious user A cannot use an account generated from a transaction if
it has already been decided to reject that transaction. Moreover, the transaction can never
be rejected in the future if at least one transaction counterparty has already used the account
created from the transaction. However, in our fully anonymous setting, where transactions
are unlinkable to each other, it is not straightforward how to implement this procedure.
Potentially, by using an MPC protocol, we could solve this issue in a privacy-preserving
manner. However, this would require using MPC for every single submitted transaction
and checking the incoming transaction against the whole state of the system, which would
significantly reduce efficiency. It follows thatD ≥ 5t+1 is necessary for any construction that
is both efficient and privacy-preserving. As we demonstrate in Section 5, choosing D = 5t+1
is also sufficient to realize FCBDC in the asynchronous setting.

4.5 Know your transaction for large payments

Enforcing limits on transaction value and the sum of all sent values are two general regulatory
rules. The maximum allowed value for the former is denoted by Vmax, and for the latter, it
is denoted by Smax. While such limits serve a purpose, a user may need to exceed them
when making a large payment. Even though we do not include this feature in our main
functionality, we describe in this section how to realize it given our construction.
In such cases, regulatory compliance may require proving the source of funds. Under these
circumstances, the user can exceed the specified thresholds up to the new limits V ′

max and
S′
max. The new limit is computed by adding all values whose sources are verified as legitimate

to the predefined general limit. For instance, consider a scenario in which a user has accu-
mulated funds over a long period of time and now wishes to spend them all at once (e.g.,
purchasing a property). This would result in a transaction value far exceeding Vmax (note
that we assume Bmax ≫ Vmax; otherwise, this mechanism would not be necessary). The user
saves the relevant information about transactions for which they will make a claim. Specif-
ically, the user refers to transaction identifiers of past transactions in which they received
funds from an acceptable source. The user can submit such a claim to M, which will facilitate
exceeding the predefined thresholds.
We denote the sum of all values for which the user makes a claim by δ. Following the
explanation above, we obtain the updated limits: V ′

max = Vmax+ δ, and S′
max = Smax+ δ. The

user references the transaction identifiers of l past transactions, {tτid}lτ=1, which contain the
associated threshold encryptions {(ψs, ψr)τ}lτ=1. Given that the user knows the randomness
of these threshold encryptions, they provide proof of knowledge and demonstrate that the
sum of all values in the threshold encryptions equals δ. Moreover, by using the corresponding
random values, the user convinces M regarding the sender of the transactions. More generally,
M can designate a third-party auditor to verify the user’s claim. In this case, the user only
needs to present a certification of this transaction issued by the auditor.

5 PEReDi security

Our main theorem is given below.

Theorem 1. Assuming that ElGamal encryption (Definition 10) is (i) unconditionally cor-
rect (Definition 8), (ii) computationally IND-CPA secure (Definition 9), Pointcheval-Sanders
signature (Definition 3) is (i) unconditionally correct (Definition 1) (ii) computationally
EU-CMA secure (Definition 2) in the random oracle model, Pedersen commitment (Defini-
tion 19) is (i) unconditionally correct (Definition 16), (ii) unconditionally hiding (Defini-
tion 17), and (iii) computationally binding (Definition 18), and d-strong decisional Diffie-
Hellman (d-sDDH) assumption (Definition 6), there exist two polynomials pc and pu such
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that no PPT environment Z can distinguish the real-world execution EXECΠPEReDi,A,Z from
the ideal-world execution EXECFCBDC,S,Z in the {FKR,FCh,FaBA,FBC,FRO,FNIZK,FSoK}-
hybrid model with static corruptions in the presence of arbitrary number of malicious users,
up to t malicious maintainers out of D = 5t+1 total maintainers and a potentially malicious
central bank with advantage better than:

pc · AdvIND-CPA
A + AdvEU-CMA

A + AdvBindA + pu · Advd-sDDH
A .

We denote the real-world protocol and adversary by ΠPEReDi and A, respectively. The sim-
ulator S, described in detail in Section 5.2, makes the view of the real-world execution
EXECΠPEReDi,A,Z and the ideal-world execution EXECFCBDC,S,Z for any PPT environment Z
indistinguishable. The session identifier, denoted by sid, is chosen by Z. The simulator S
internally runs a version of ΠPEReDi and ensures that the view of the dummy adversary A
in the ideal world is indistinguishable from its view in the real world. At the inception of
the execution, Z triggers A to corrupt parties with a message (Corrupt, sid,P), where P
denotes a party that can be any entity in the network. S reads these corruption messages
and informs FCBDC which parties are corrupted by sending the message (Corrupt, sid,P).
The simulator S also stores the identifiers of the corrupted parties. S internally emulates the
functionalities FKR,FCh,FaBA,FNIZK,FBC, and FSoK. The adversary A instructs corrupted
parties arbitrarily. The simulator S interacts with FCBDC on behalf of the corrupt parties. In
the ideal-world execution EXECFCBDC,S,Z , honest (dummy) parties forward their input from
Z to FCBDC.

5.1 Sequence of games and reductions

Through a sequence of games, we show that the random variables EXECΠPEReDi,A,Z and
EXECFCBDC,S,Z are statistically close. We denote by Pr[Gamei] the probability that the envi-
ronment Z outputs 1 in Gamei. Each game Gamei has its own F iCBDC and Si. We start from
the most leaky functionality F1

CBDC and the associated simulator S1 and gradually move
toward the main functionality FCBDC and the simulator S. For the security analysis, without
loss of generality, we set the number of malicious maintainers equal to the maximum allowed
number of malicious maintainers (wherever necessary).
Game0: Initially, F0

CBDC forwards all communication with Z, and the simulator S0 corre-
sponds to the execution of the real-world protocol EXECΠPEReDi,A,Z .
Game1: Same as Game0 except that Game1 checks if A provides two commitments com and
com′ where com = com′ and com ∈ x, and com′ ∈ x′ (with associated proofs π and π′,
respectively), but with different committed values.
More specifically, in Game1, F1

CBDC prohibits S1 from submitting any message to F1
CBDC on

behalf of the adversary A if A provides two different messages with the same associated
commitment.
The simulator S(1), which emulates FNIZK, extracts witnesses by submitting
(Verify, sid, x, π) and (Verify, sid, x′, π′) to A. S(1) receives (Witness, sid,w) and
(Witness, sid,w′) from A. If, with the extracted witnesses, the committed values are
different, a flag is raised. Therefore, any difference between Game1 and Game0 is due to
breaking the binding property of the underlying Pedersen commitment, which enables us
to bound the probability that Z distinguishes Game1 from Game0 as follows12.

|Pr[Game1]− Pr[Game0]| ≤ AdvBindA

Game2: Same as Game1 except that in Game2 we change the w-th honest maintainer’s
blind signature share on U’s account to σB

w , which is simulated by S2. To do so, in this
game, S2 selects the secret signing key of the non-threshold Pointcheval-Sanders signature

12 As this is straightforward, we refrain from providing a formal proof.
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and then computes the non-threshold signature σM = (h, s). Note that after Game2, the
simulator Si for i ≥ 2 never uses the secret signing key of the non-threshold signature
scheme (as we will see, it receives a non-threshold signature from the challenger of the non-
threshold signature’s unforgeability game—see Definition 2—in the associated reduction).
Additionally, by selecting the secret key of malicious maintainers, S2 computes the partial
blind signatures of malicious maintainers, denoted by σB

t for t ∈ C. As a result of having
σM and σB

t for t ∈ C, the simulator S2 computes honest maintainers’ signature shares σB
w

for w ∈ H as follows.
When A initiates the protocol by requesting a signature on the blinded account accB, S2,
which emulates FNIZK in currency issuance and FSoK in payment protocols, extracts the
witness of A’s (malicious user’s) message, namely acc, and the associated randomness of
accB. Then, having the message acc, S2 computes σM. S2 selects the secret keys of malicious
maintainers and computes the associated public keys. S2 uses Lagrange interpolation to
compute public keys of Mw ∈ H using the computed public keys for Mt ∈ C and the public
key of the non-threshold signature. Hence, all public keys are consistent with the public key
of the non-threshold signature.
First, S2 computes blind signature shares for ∀Mt ∈ C using the selected skt = (xt, {yt,τ}qτ=1)
to obtain

σB
t = (h, hxt

q∏
τ=1

comyt,τ
τ )

As described above, S2 has extracted the witness of NIZK or SoK proofs; hence, it knows
{oτ}qτ=1, which allows it to compute unblinded signature shares in the following way:

σt = (h, c

q∏
τ=1

β−oτ
t,τ ) = (h, st)

where st = hxt
∏q
τ=1 h

mτyt,τ . Then, S2 computes unblinded signature shares for ∀Mw ∈ H
as follows (note that 0 does not exist in the corrupted maintainers’ indexes C):

σw = (h, sw) =

(
h, s

∏
k∈C((k−w)/k)

∏
t∈C

st
∏

k∈C∪{0},k ̸=t((w−k)/(t−k))

)

Having extracted the witness {oτ}qτ=1, the simulator computes blind signature shares for
∀Mw ∈ H using the computed σw as follows:

σB
w = (h,

q∏
τ=1

swβ
oτ
w,τ )

As a result, in this game, we changed the w-th honest maintainer’s blind signature share
on U’s account to σB

w , which is simulated by S2 as described above. Based on the Unblind
algorithm, which is run by A, the unblinded signature is computed as follows:

σw = (h, c

q∏
τ=1

β−oτ
w,τ )

for C simulated by the simulator as

c =

q∏
τ=1

swβ
oτ
w,τ

As a result, we have σw = (h, sw), which passes the verification algorithm

e(h, α̃w

q∏
τ=1

β̃mτ
w,τ ) = e(sw, g̃)
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which means that the following equation holds:

Pr[Game2] = Pr[Game1]

Game3: Same as Game2 except that in Game3, F3
CBDC does not allow S3 to submit any

message on behalf of the adversary A (malicious user) who forges the threshold blind sig-
nature TBS scheme to F3

CBDC. Hence, Game3 is equivalent to Game2 except for the fact that
it checks whether a flag is raised. If A, who has not been issued at least 4t + 1 signature
shares, submits a valid signature, the flag is raised. Hence, any difference between Game3

and Game2 is due to the forgery of the threshold blind signature TBS, which allows us to
bound the probability that Z distinguishes Game3 from Game2 as follows.
Associated reduction (existential unforgeability of signature). If A forges the threshold
blind signature TBS used in our construction, it can be used to construct another ad-
versary A′ who breaks the unforgeability property (see Definition 2) of the non-threshold
Pointcheval-Sanders signature used in the threshold blind signature TBS scheme. The par-
tial blind signatures of all honest maintainers σB

w for ∀w ∈ H can be reconstructed from
the partial blind signatures of malicious maintainers, which are σB

t for t ∈ C, and the non-
threshold signature σM = (h, s) obtained from the challenger of the existential unforgeability
game (different from Game2, in which S2 selected the secret signing key of the non-threshold
signature) using Lagrange interpolation for the other shares. We omit the details, as the
algorithm is similar to what S2 does in Game2, except that A′ obtains the non-threshold
signature σM from the challenger. Hence, given the non-threshold signature, A′ simulates
the entire view of A, including the partial signatures contributed by the honest maintainers,
which implies that A cannot forge messages in the threshold setting of our construction
unless A forges them in the non-threshold one. In other words, for Z, Game3 is equivalent
to running a threshold signature TBS with real-world maintainers rather than maintainers
simulated by A′. Thus, if A forges in the real world, it will also forge in this threshold
setting, and A′ will use this forgery as a forgery for the non-threshold scheme. As a re-
sult, TBS is simulatable, and together with the unforgeability property of the non-threshold
Pointcheval-Sanders signature, this ensures that TBS is unforgeable in our construction.
Therefore, under the unforgeability property of the non-threshold Pointcheval-Sanders sig-
nature, the following inequality holds (see Definition 2):

|Pr[Game3]− Pr[Game2]| ≤ AdvEU-CMA
A

Game4: Same as Game3 except that S4 computes σRnd
M for the honest user without knowing

the account values of the user. In the real world, having the consolidated signature σM =

(h, s), σRnd
M is computed as (h′, s′) = (hr

′
, sr

′
hr

′r) such that r $←− Zp and r′ $←− Zp. Assume a
random value η, and set h = gη by programming the random oracle. Hence, we have

σRnd
M =

hr′ ,
∏
j∈E

(
hxj

q∏
τ=1

comyj,τ
τ β−oτ

j,τ

)ljr′

hr
′r


=
(
gηr

′
, gηr

′(x+
∑q

τ=1(mτyτ )+r)
)

(x+
∑q

τ=1(mτyτ )+r)=d−−−−−−−−−−−−−−−→
ηr′=d′

σRnd
M = (gd

′
, gdd

′
)

Also, in the real world, in the ProveSig algorithm, the user U computes κ as well, which is
of the form:

κ = α̃

q∏
τ=1

β̃mτ g̃
r = g̃(x+

∑q
τ=1(yτmτ )+r)

(x+
∑q

τ=1(mτyτ )+r)=d−−−−−−−−−−−−−−−→ κ = g̃d

S4 randomly selects u $←− Zp and u′
$←− Zp. Then, it sets h′ ← gu

′
, s′ ← guu

′
and hence

sets σRnd
M ← (gu

′
, guu

′
). Finally, it sets κ ← g̃u. The computed values pass the verification
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e(h′, κ) = e(s′, g̃), as we have e(gu
′
, g̃u) = e(guu

′
, g̃). Since d = (x +

∑q
τ=1(mτyτ ) + r) and

d′ = ηr′ are random values, they match the distribution of u and u′, which concludes the
fact that

Pr[Game4] = Pr[Game3]

Game5: Same as Game4 except that in Game5, S5 simulates the decryption shares ψsk1,w
s,1

and ψsk2,w
s,1 (for ψs), and ψsk1,w

r,1 (for ψr) of honest maintainer Mw, where w ∈ H, for the s-th
and r-th honest users’ threshold encryptions using the values of a non-threshold ElGamal
encryption scheme. In this game, the plaintexts of ψs and ψr are the same as real-world
values (in Game5i for i ≥ 1, we will change the plaintexts to dummy values selected by the
simulator S5i ). To achieve this, S5 selects the secret decryption keys of the non-threshold
ElGamal encryption sk1,M and sk2,M. (Note that from Game5 onward, the simulator does not
use sk1,M and sk2,M directly, as the decryption shares are simulated using a non-threshold
scheme. This allows for reductions to the non-threshold ElGamal IND-CPA security game;
see Definition 9, associated with Game5.) Then, S5 computes

cs = (ψs,1, ψs,2, ψs,3) = (gρs , pkρs1,M · pks, pk
ρs
2,Mg

v)

and
cr = (ψr,1, ψr,2) = (gρr , pkρr1,M · pkr)

The plaintexts of threshold encryptions are retrieved as

pks = ψs,2/
∏
j∈I

ψ
sk1,jλ1,j

s,1 , pkr = ψr,2/
∏
j∈I

ψ
sk1,jλ1,j

r,1 , gv = ψs,3/
∏
j∈I

ψ
sk2,jλ2,j

s,1

Now, S5 should simulate the honest maintainers’ decryption shares such that the
decrypted values become pks, pkr, and gv, respectively, which are consistent with
(AnmRevoked, sid, tid,Us,Ur, v) received from the leakage of F5

CBDC.
S5 computes ψs,2/pks, which results in pkρs1,M = (gsk1,M)

ρs
= ψ

sk1,M
s,1 , which is used in the

computation of the honest maintainers’ shares in the following equation. S5 computes the
w-th honest maintainer’s decryption share as follows, knowing the malicious maintainers’
shares ψsk1,t

s,1 and ψ
sk2,t
s,1 for ψs, and ψ

sk1,t
r,1 for ψr for ∀t ∈ C such that |C| ≤ β − 1 = t. (Note

that 0 does not exist in the corrupted maintainers’ indexes C, similar to Game2.)

ψ
sk1,w
s,1 = (ψs,2/pks)

∏
k∈C(k−w)/k ·

∏
t∈C

(ψ
sk1,t
s,1 )

∏
k∈C∪{0},k ̸=t(w−k)/(t−k)

S5 computes ψr,2/pkr, which results in pkρr1,M = (gsk1,M)
ρr

= ψ
sk1,M
r,1 , then computes ψsk1,w

r,1 as
follows:

ψ
sk1,w
r,1 = (ψr,2/pkr)

∏
k∈C(k−w)/k ·

∏
t∈C

(ψ
sk1,t
r,1 )

∏
k∈C∪{0},k ̸=t(w−k)/(t−k)

S5 computes ψs,3/gv, which results in pkρs2,M = (gsk2,M)
ρs

= ψ
sk2,M
s,1 , then computes ψsk2,w

s,1 as
follows:

ψ
sk2,w
s,1 = (ψs,3/g

v)
∏

k∈C(k−w)/k ·
∏
t∈C

(ψ
sk2,t
s,1 )

∏
k∈C∪{0},k ̸=t(w−k)/(t−k)

The FNIZK emulation allows S5 to provide fake proofs about the contribution of honest
maintainers, which is unconditionally secure. Moreover, changing the honest maintainers’
decryption shares is information-theoretically indistinguishable. Additionally, the simulated
decryption shares work in the threshold decryption computation (as shown above), thus, we
have the following equation:

Pr[Game5] = Pr[Game4]

Game6: Same as Game5 except that in Game6, we change all plaintexts of threshold encryp-
tions to dummy values selected by S6. Hence, Game6 is equivalent to Game5 except for the
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fact that S6 computes encryptions for some dummy values as plaintexts (e.g., denoted by
pk∗s, pk

∗
r , and g∗v) on behalf of an honest user. However, the decryption shares of honest

maintainers are simulated in a way that the computation of

ψs,2/
∏
j∈I

ψ
sk1,jλ1,j

s,1 , ψr,2/
∏
j∈I

ψ
sk1,jλ1,j

r,1 , ψs,3/
∏
j∈I

ψ
sk2,jλ2,j

s,1

results in pks, pkr, and gv, respectively, which are consistent with (AnmRevoked,
sid, tid,Us,Ur, v) received from F6

CBDC (rather than dummy values pk∗s, pk
∗
r , and g∗v). We

omit writing the details as they are similar to Game5. Hence, any difference between Game6

and Game5 is due to breaking the IND-CPA security of the threshold encryption used in our
construction, which allows us to bound the probability that Z distinguishes Game6 from
Game5 as follows.
We define Game50 = Game5 and let pc be the upper bound on the number of all ciphertexts
of honest users. Also, let us define Game51 as a game similar to Game50 except that in Game51,
we change the plaintext of the first ciphertext from the real-world value to the ideal-world
dummy value. The reduction between Game50 and Game51 is similar to the described reduction
below, so that any difference between Game50 and Game51 is upper bounded by AdvIND-CPA

A
(see Definition 9). Similarly, we change the plaintexts of ciphertexts of the i-th honest user
to dummy values and finally apply the same process for the last ciphertext of the last honest
user such that in Game5pc (which equals Game6), all ciphertexts are generated from dummy
plaintexts. The reduction between Game5pc−1 and Game5pc is similar to the reduction described
below, so that any difference between Game5pc−1 and Game5pc is upper bounded by AdvIND-CPA

A .
Associated reduction between Game5i−1 and Game5i (IND-CPA Security of Encryption).
If A distinguishes Game5i−1 and Game5i , it can be used to construct another adversary A′ who
breaks the IND-CPA security of the non-threshold ElGamal encryption used in the threshold
encryption scheme. The decryption shares of all honest maintainers ψsk1,w

s,1 and ψsk2,w
s,1 for ψs,

and ψsk1,w
r,1 for ψr for ∀w ∈ H can be reconstructed from the decryption shares of malicious

maintainers, which are ψsk1,t
s,1 and ψ

sk2,t
s,1 for ψs, and ψ

sk1,t
r,1 for ψr for ∀t ∈ C, and the non-

threshold encryption cs and cr obtained from the challenger of the IND-CPA security game of
non-threshold encryption using Lagrange interpolation for the other shares. We omit writing
the details, as the algorithm is similar to the one described in Game5, except that A′ obtains
the non-threshold encryptions cs and cr from the challenger of the IND-CPA game. Hence,
given the non-threshold ciphertexts, A′ simulates the entire view of A, which consists of
the decryption shares contributed by the honest maintainers. This implies that A cannot
distinguish Game5i−1 from Game5i unless A distinguishes non-threshold ciphertexts cs and
cr generated using real-world values as plaintexts from ciphertexts generated using ideal-
world dummy values as plaintexts. In other words, for Z, Game5i is the same as running a
threshold encryption scheme with real-world maintainers rather than simulated maintainers
by A′. Hence, if Z distinguishes Game5i−1 from Game5i , A′ uses this to win the IND-CPA
security game of the non-threshold encryption scheme. As a result, threshold encryption
is simulatable, and together with the IND-CPA property of the non-threshold encryption
scheme, this ensures that threshold encryption is IND-CPA secure in our construction.
Therefore, under the IND-CPA property of the non-threshold ElGamal encryption scheme,
the following inequality holds:∣∣Pr[Game6]− Pr[Game5]

∣∣ ≤ pc · AdvIND-CPA
A

Game7: Same as Game6, except that for the honest maintainer Mw, the simulator S7 com-
putes the tracing tag share ġaw for tracing the honest user U without directly knowing the
shares aw of the tracing key. Here, ġ is a group element computed in each step of the protocol.
In this game, tracing tags are the same as real-world values (as we will see in Game7i for i ≥ 1,
we will change these tags to dummy values selected by the simulator S7i ). S7 knows {gzτ }xτ=1

from the transaction identifiers leaked from F7
CBDC, which are (Traced, sid,U, {tτid, role

τ}xτ=1),
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and computes Mw’s first share as follows (ġ = g):

gaw = (gz1)
∏

k∈C,k ̸=0(k−w)/k ·
∏
t∈C

(gat)
∏

k∈C∪{0},k ̸=t(w−k)/(t−k)

Then, given the revealed (τ − 1)-th tracing tag (gzτ−1), the w-th honest maintainer’s share
for the next computation is simulated as follows (ġ = gzτ−1):

(gzτ−1)aw = (gzτ )
∏

k∈C,k ̸=0(k−w)/k ·
∏
t∈C

((gzτ−1)at)
∏

k∈C∪{0},k ̸=t(w−k)/(t−k)

Changing the honest maintainers’ shares is information-theoretically indistinguishable, and
emulating FNIZK (which is unconditionally secure) allows S7 to provide faked proofs. As a
result, we have

Pr[Game7] = Pr[Game6]

Game8: Same as Game7, except that in Game8, we change the tracing tags of honest users
to dummy values selected by S8. Hence, Game8 is equivalent to Game7 except for the fact
that S8 computes tracing tags and submits them to F8

CBDC as part of transaction identifiers
in the currency issuance and payment protocols. However, the tracing tag shares of honest
maintainers are simulated in such a way that the computation of tags results in {gzτ }xτ=1,
which are consistent with the transaction identifiers tid leaked from F8

CBDC. We omit writing
the details as they are similar to Game7. Hence, any difference between Game8 and Game7

is due to distinguishing ga
x

values from gz values, which allows us to bound the probability
that Z distinguishes Game8 from Game7 as follows.
We define Game70 = Game7 and let pu be the upper bound on the number of all honest users.
Also, let us define Game71 as a game similar to Game70, except that in Game71, we change the
tracing tags of the first honest user from real-world values to ideal-world dummy values.
The reduction between Game70 and Game71 is described below, so that any difference between
Game70 and Game71 is upper bounded by Advd-sDDH

A (see Definition 6). Similarly, we change the
tracing tags of the i-th honest user to dummy values, and finally, we apply the same process
for the last honest user such that in Game7pu (which is equivalent to Game8), all tracing tags
are dummy values. The reduction between Game7pu−1 and Game7pu is similar to the described
reduction below, so that any difference between Game7pu−1 and Game7pu is upper bounded by
Advd-sDDH

A .
Associated reduction between Game7i−1 and Game7i (Hardness of d-sDDH). If A distin-
guishes Game7i−1 from Game7i , it can be used to construct another adversary A′ who breaks
the hardness of the d-strong Diffie-Hellman problem. The tracing tag shares of all honest
maintainers ġaw for ∀w ∈ H can be reconstructed from the tracing tag shares of malicious
maintainers, which are ġat for ∀t ∈ C, and the tracing tags {gzτ }xτ=1 received from the
leakage of functionality, using Lagrange interpolation for the other shares. We omit writing
the details, as the algorithm is similar to the one described in Game7. Hence, A′ simulates
the entire view of A, which consists of the tracing tag computation shares contributed by
the honest maintainers. This implies that A cannot distinguish Game7i−1 from Game7i un-
less A breaks the hardness of the d-strong Diffie-Hellman problem. Thus, if Z distinguishes
Game7i−1 from Game7i , A′ uses this to win the indistinguishability game of the d-strong Diffie-
Hellman problem. As a result, under the hardness of the d-strong Diffie-Hellman problem,
the following inequality holds:∣∣Pr[Game8]− Pr[Game7]

∣∣ ≤ pu · Advd-sDDH
A

As F8
CBDC = FCBDC and S8 = S, which means that Game8 corresponds to the ideal-

world execution EXECFCBDC,S,Z , we argue that the random variables EXECΠPEReDi,A,Z and
EXECFCBDC,S,Z are statistically close. In other words, the probability for any PPT environ-
ment Z to distinguish EXECΠPEReDi,A,Z from EXECFCBDC,S,Z is upper bounded by

pc · AdvIND-CPA
A + AdvEU-CMA

A + AdvBindA + pu · Advd-sDDH
A
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which, together with the simulator description, concludes the security proof.

5.2 Simulation

We describe a simulator S that reproduces the real-world view of A and emulates
the execution of honest parties. The simulator internally emulates the functionalities
FKR,FCh,FaBA,FRO,FBC,FNIZK, and FSoK. To achieve this, it maintains specific lists as-
sociated with each functionality. However, without loss of generality, we assume that S
internally tracks the states of functionalities and omit explicit discussion of these state man-
agement processes. S interacts with the dummy adversary A and the CBDC functionality
FCBDC. Similar to the functionality FCBDC and our construction ΠPEReDi, the simulator is
described in six parts: user registration, currency issuance, payment, abort transaction, pri-
vacy revocation, and tracing. Following the notations described in Section 2.1, we use the
subscript w for an honest maintainer (e.g., σw denotes a signature generated by an honest
maintainer). Similarly, we use the subscript t for a malicious maintainer.

Remark 1. In the following, we assume that the simulator S, whenever emulating an honest
entity, follows the associated real-world algorithms provided in Section 4.2 without explic-
itly mentioning all the details (e.g., updates local ledgers emulating honest maintainers).
However, whenever the simulator needs to deviate from the real-world algorithms (e.g., by
simulating a cryptographic object using information leaked via the ideal functionality FCBDC,
or extracting NIZK witness from the adversary’s proof), we explicitly state it.

Remark 2. In any protocol where there is communication between a malicious user and
maintainers, the adversary controlling the communication channel may, for example, choose
to block t honest maintainers and, on behalf of t malicious maintainers, refrain from transfer-
ring blind signature shares via the ideal channel functionality emulated by the simulator. In
this case, the simulator does not know whether the malicious user’s account state transition
has been finalized in that protocol, as 4t + 1 valid shares are required for state transition.
However, since the simulator always extracts the witness whenever a transaction including
a NIZK proof is submitted by the adversary, it is aware of the account state of malicious
users. Therefore, the simulator checks its own state to determine whether the adversary has
decided to finalize any previous account state transitions (for malicious users). If the account
state has advanced, the simulator invokes FCBDC with the appropriate message to finalize
the previous protocol. Henceforth, we omit explicit mention of this process for clarity and
conciseness.
The following is the simulator S description.

Initialization. Emulating FKR, internally update the state of FKR for all honest users and
maintainers. Also, upon receiving calls from the adversary (on behalf of malicious entities),
follow the functionality description of FKR and update its state accordingly. Provide all the
associated leakages of FKR to A accordingly.

User registration. We note that in order to keep the functionality as simple as possible we
leave it to the adversary to determine the outcome of the KYC process in the ideal world.
Our construction on the other hand does capture it.
(i) Honest U and at most t malicious maintainers:

• Upon receiving (GenAcc, sid,U) from FCBDC, initiate the honest user emulation, for the
user with the leaked unique identifier U, as follows.

• Emulating FNIZK, output (Prove, sid, x) to A where x = (accB, comM, pkU) is computed
following the real-world algorithm provided in Figure 3.

• Upon receiving (Proof, sid, π) from A update the state of FNIZK and proceed as follows.
• Emulating FBC, send (Broadcasted, sid,U, comM) to A (both as the leakage of FBC and

the message malicious maintainers receive).
• Set RIj ← (accB, aj , rj , comM, pkU, π), ∀j ∈ {1, . . . , D}.
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• Emulating F sc
Ch and the honest user provide all the channel leakages to A.

• Send (Received, sid,U,RIt) to A (for malicious maintainers) depending on A’s choice on
F sc

Ch’s message delivery.
• Emulating FKR provide all the leakages of the form (RetrieveKey, sid,U,M) to A (both

as honest maintainers emulation and whenever the adversary on behalf of malicious
maintainers calls FKR with (RetrieveKey, sid,U)).

• Upon receiving (Ok, sid,U,M) from A, submit the information malicious maintainers
receive from FKR to A: (KeyRetrieved, sid,U, pkU).

• Emulating FNIZK, whenever A calls FNIZK with (Verify, sid, x, π) for x = (accB, comM,
pkU) output (Verification, sid, 1).13

• Emulating Fac
Ch, provide the channel leakages of the form (Send, sid, (Mj ,U, σ

B
j ),mid) to

A on behalf of honest maintainers and malicious ones who call Fac
Ch with (Send, sid,U,

σB
t ). For honest maintainers (e.g., Mw) generate σB

w following the algorithm provided
in Figure 3.

• Depending on A’s choice on message delivery in Fac
Ch, let FCBDC deliver (AccGened, sid,U)

to maintainers.
• Submit (Ok.GenAcc, sid,U) to FCBDC.
• Depending on A’s choice on Fac

Ch blockage, let FCBDC output (AccGened, sid) to U.

(ii) Malicious U and at most t malicious maintainers: (We avoid addressing simulations
that are similar to honest U case described above.)

• Emulating FBC, once adversary A calls FBC with (Broadcast, sid, comM), submit
(GenAcc, sid) to FCBDC on behalf of malicious U.14

• Upon receiving (GenAcc, sid,U) from FCBDC proceed as follows.
• Emulating F sc

Ch, receive RIj values submitted by the adversary.
• Emulating honest maintainers parse RIj ← (accB, aj , rj , comM, pkU, π), ∀j ∈ {1, . . . ,
D}, and execute the algorithm described in Figure 4.

• Emulating FNIZK and honest maintainers, submit (Verify, sid, x, π) to A where x =
(accB, comM, pkU), x ∈ RIw and π ∈ RIw for RIw values received from A.

• Upon receiving (Witness, sid, w) from A, check if (x, w) ∈ R holds. If holds, store (x, π).
Else, ignore.

Currency issuance.
(i) Honest U, honest B and at most t malicious maintainers:

• Upon receiving (Iss, sid, pid) from FCBDC, initiate currency issuance protocol by emu-
lating honest B.

• Emulating F sra
Ch , provide the leakage of F sra

Ch to A where |v| in the leakage is for a random
v.

• Upon receiving (AcceptIss, sid, pid) from FCBDC, emulate an honest user.15

• Emulating F ssa
Ch , submit the leakage of F ssa

Ch to A for a random ρ.
• Based on the algorithm provided in Figure 7 compute threshold ElGamal encryption ψ

on dummy values as plaintexts, and sample random values for accold. Select a random
value as v.

• Emulating honest maintainers, generate σM for accold.
• Given accold, v and σM, compute accnew,B and σRnd

M following TBS algorithms.

• Sample z $←− Zp, and set T← gz.

13 Since S (emulating FNIZK) has already recorded (x, π), we will no longer mention the Verify

command of FNIZK whenever the adversary invokes it in our simulator description across all
protocols.

14 Emulating FBC, S knows U.
15 Note that if the user has already been traced S receives (AcceptIss, sid, pid,U) from FCBDC so

that it is able to use the same tag in this protocol as it had generated for the user U who did not
have any transactions in the time of executing the tracing protocol.
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• Set x← (ψ, accnew,B, σRnd
M ,T).

• Emulating FNIZK, send (Prove, sid, x) to A. Upon receiving back (Proof, sid, π) from A,
record (x, π) and proceed.

• Set TIU ← (ψ, accnew,B, σRnd
M ,T, π), and TIB ← ψ.

• Emulating F sa
Ch and an honest user provide all the channel leakages to A.

• Send (Received, sid,TIU,mid) to A (for malicious maintainers) depending on A’s choice
on F sa

Ch’s message delivery.
• Emulating Fac

Ch and the honest bank B provide all the channel leakages to A.
• Send (Received, sid,B,TIB) to A (for malicious maintainers) depending on A’s choice

on Fac
Ch’s message delivery.

• Set tid ← (ψ,T), and submit (GenTnx, sid, pid, tid) to FCBDC.
• Emulating F sa

Ch, provide the channel leakages of the form (Send, sid,Mj , σ
new,B
j ,mid) to

A on behalf of honest maintainers and malicious ones who call F sa
Ch with (Send, sid,

mid, σnew,B
t ). For honest maintainers (e.g., Mw) generate σnew,B

w following the algorithm
provided in Figure 9.

• Depending on A’s choice on message delivery in F sa
Ch and Fac

Ch for maintainer Mk, submit
(GenTnx, sid, pid,Mk) to FCBDC.

(ii) Malicious U, honest B and at most t malicious maintainers: (We avoid addressing
simulations that are similar to honest U and honest B case described above.)

• Upon receiving (Iss, sid, pid,U, v) from FCBDC, start emulating the honest B by initiating
the currency issuance protocol to issue a digital currency worth of v for the adversary
A (malicious user U).

• Emulating F sra
Ch , submit (Received, sid,B, v) to A.

• Emulating F ssa
Ch , receive the message of A (Send, sid,B, ρ) and leak the leakages of F ssa

Ch .
• Emulating FKR, retrieve pkU and compute ψ ← (gρ, pkρ1,M · pkU, pk

ρ
2,M · gv).

• Upon receiving, the call of A to F sa
Ch of the form (Send, sid,Mj ,TIU) provide the necessary

leakages of F sa
Ch to A and deliver associated messages to A (on behalf of malicious

maintainers).
• Parse TIU = (ψ∗, accnew,B, σRnd

M ,T, π) and ignore if ψ∗ ̸= ψ.
• Else, submit (AcceptIss, sid, v) on behalf of malicious user U to FCBDC and proceed

upon receiving back (AcceptIss, sid, pid).
• Emulating FNIZK and honest maintainers, submit (Verify, sid, x, π) to A where x = (ψ,
accnew,B, σRnd

M ,T), x ∈ TIU and π ∈ TIU received from A.
• Upon receiving (Witness, sid, w) from A, check if (x, w) ∈ R holds. If holds, store (x, π)

and set tid ← (ψ,T) for T ∈ TIU. Else, ignore.16

• Depending on F sa
Ch blockage by A, send (Received, sid,Mj , σ

new,B
j ) to A (malicious U).

(iii) Honest U, malicious B and at most t malicious maintainers: (We avoid ad-
dressing simulations that are similar to previous cases e.g., in honest U and honest B case
described above.)

• Emulating F sra
Ch , receive A’s call of the form: (Send, sid,U, v).

• Submit (Iss, sid,U, v) to FCBDC on behalf of malicious B.
• Upon receiving back (Iss, sid, pid) from FCBDC, proceed as follows.
• Upon receiving (AcceptIss, sid, pid) from FCBDC, start emulating the honest user.
• Emulating Fac

Ch, receive A’s call of the form: (Send, sid,Mj ,TIB).
• Parse TIB = ψ∗ and ignore if ψ∗ ̸= ψ (where ψ is generated by S using randomness ρ).

(iv) Malicious U, malicious B and at most t malicious maintainers:
• Emulating F sa

Ch, receive A’s call of the form (Send, sid,Mj ,TIU).
• Emulating Fac

Ch, receive A’s call of the form (Send, sid,M′
j ,TIB).

16 Recall Remark 1 that we do not explicitly mention the steps of the real-world algorithm executed
by an honest maintainer simulated by S, e.g., verifying the signature by running the VerifySig
algorithm of the TBS scheme.
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• Ignore if ψ ̸= ψ∗ for ψ ∈ TIB equals to ψ∗ ∈ TIU.
• Else, extract the witness of NIZK proof π ∈ TIU similar to the malicious U and honest
B case described above and ignore if NIZK relation does not hold.

Payment.
(i) Honest Us, honest Ur and at most t malicious maintainers:

• Upon receiving (GenTnxSnd, sid, pid) from FCBDC, initiate the payment protocol by em-
ulating an honest sender Us.17

• Choose a random value as v.
• Emulating F fa

Ch and an honest Us, provide the associated leakages of F fa
Ch to A.

• Upon receiving (GenTnxRcv, sid, pid) from FCBDC, emulate an honest receiver Ur, and
provide associated leakages of F fa

Ch to A.18

• Based on the algorithms provided in Figure 12 and Figure 13 compute threshold ElGamal
encryptions ψs and ψr on dummy values as plaintexts, and sample random values for
accolds and accoldr .

• Emulating honest maintainers, generate σs,M and σr,M for accolds and accoldr respectively.
• Given accolds , accoldr , v, σs,M, and σr,M compute accnew,Bs , σRnd

s,M, accnew,Br and σRnd
r,M following

TBS algorithms.
• Sample zs

$←− Zp and zr
$←− Zp. Set Ts ← gzs and Tr ← gzr .

• Set xs ← (ψs, acc
new,B
s , σRnd

s,M,Ts) and xr ← (ψr, acc
new,B
r , σRnd

r,M ,Tr).
• Emulating FSoK, compute σs(ψr)← Simsign(ψr, xs) and σr(ψs)← Simsign(ψs, xr).
• Emulating FSoK, record the entries (ψr, xs, σs(ψr)), and (ψs, xr, σr(ψs)).
• Set TIs ← (ψs, ψr, σs(ψr), acc

new,B
s , σRnd

s,M,Ts) and TIr ← (ψs, ψr, σr(ψs), acc
new,B
r , σRnd

r,M ,
Tr).

• Emulating F sa
Ch provide all the associated leakages to A.

• Emulating F sa
Ch, send (Received, sid,TIs,mids), and (Received, sid,TIr,midr) to A (for

malicious maintainers) depending on A’s choice on F sa
Ch’s message delivery.19

• Set tid ← (ψs, ψr,Ts,Tr), and record tid.
• Submit (GenTnx, sid, pid, tid) to FCBDC.
• Emulating F sa

Ch, provide the channel leakages of the form (Send, sid,Mj , σ
new,B
s,j ,mids) and

(Send, sid,M′
j , σ

new,B
r,j ,midr) to A on behalf of honest maintainers and malicious ones who

call F sa
Ch with (Send, sid,mids, σ

new,B
s,t ) and (Send, sid,midr, σ

new,B
r,t ) respectively. Emulat-

ing honest maintainers (e.g., Mw) generate σnew,B
s,w and σnew,B

r,w following the algorithm
provided in Figure 15.

• Depending on A’s choice on message delivery in F sa
Ch for maintainer Mk, submit (GenTnx,

sid, pid,Mk) to FCBDC.

(ii) Malicious Us, honest Ur and at most t malicious maintainers: (We avoid ad-
dressing simulations that are similar to honest Us and honest Ur case described above.)

• Emulating F fa
Ch, receiveA’s call to F fa

Ch of the form (Send, sid,Ur, (ρs, v)). Send the leakage
of F fa

Ch to A.
• Call FCBDC on behalf of malicious Us with (GenTnxSnd, sid,Ur, v) and proceed as follows

upon receiving back (GenTnxSnd, sid, pid) (or (GenTnxSnd, sid, pid,Us)).

17 Note that if the sender Us has already been traced, S receives (AcceptIss, sid, pid,Us) from FCBDC

so that it is able to use the same tag in this protocol as it had generated for Us who did not have
any transactions in the time of executing the tracing protocol.

18 Similar to the case where Us is traced, if the receiver Ur has already been traced, S receives
(AcceptIss, sid, pid,Ur) from FCBDC.

19 Emulating FSoK, whenever A calls FSoK with (Verify, sid, ψr, xs, σs(ψr)) and (Verify, sid, ψs, xr,
σr(ψs)) (where all the values are simulated by S) output (Verified, sid, ψr, xs, σs(ψr), 1) and
(Verified, sid, ψs, xr, σr(ψs), 1) respectively to A.
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• Upon receiving (GenTnxRcv, sid, pid) (or (GenTnxRcv, sid, pid,Ur)) from FCBDC start em-
ulating the honest receiver Ur.

• Emulating F fa
Ch and Ur, send (Received, sid,Ur, ρr) to A for a randomly chosen ρr.

• Emulating F sa
Ch, receive (Send, sid,Mj ,TIs) from A once it calls F sa

Ch and act accordingly
(as described for the previous case).

• Emulating FKR, retrieve pks and pkr.
• Compute ψs = (gρs , pkρs1,M · pks, pk

ρs
2,M · gv) and ψr = (gρr , pkρr1,M · pkr).

• Parse TIs = (ψ∗
s , ψ

∗
r , σs(ψr), acc

new,B
s , σRnd

s,M,Ts). Ignore if ψ∗
s ̸= ψs or ψ∗

r ̸= ψr.
• Emulating FSoK, let ws ← Extract(ψr, xs, σs(ψr)). If (xs, ws) ∈ R holds proceed as follows.

Else ignore.
• Set tid ← (ψs, ψr,Ts,Tr) where Tr is computed in a similar way as described in honest
Us and honest Ur case above.

(iii) Honest Us, malicious Ur and at most t malicious maintainers: (We avoid ad-
dressing simulations that are similar to malicious Us and honest Ur case described above.)

• Upon receiving (GenTnxSnd, sid, pid,Us,Ur, v) from FCBDC, start emulating the honest
Us, who initiates the payment protocol.

• Send (Received, sid,Us, ρs, v) to A (malicious Ur) for a randomly chosen ρs.
(this case is similar to malicious Us and honest Ur case described above, however, e.g.,
witness extraction is for TIr.)

(iv) Malicious Us, malicious Ur, and at most t malicious maintainers: (We avoid
addressing simulations that are similar to previous cases.)

• Emulating F sa
Ch, receive A’s calls to F sa

Ch with the messages (Send, sid,Mk,TIs) and
(Send, sid,Mk,TIr).

• Emulating honest maintainers execute the algorithm described in Figure 15, however,
emulating FSoK, extract the witness for both TIs and TIr (e.g., similar to malicious Us
and honest Ur case described above.). If the relation holds submit (GenTnxSnd, sid,Ur, v)
and (GenTnxRcv, sid,Us, v) on behalf of malicious Us and Ur to FCBDC.

Abort transaction.
(i) Honest U, and at most t malicious maintainers:

• Upon receiving (AbrTnx, sid, tid) from FCBDC, start emulating an honest user.
• Sample random values for accold.
• Emulating honest maintainers, generate σM for accold.
• Given accold and σM, compute accr,B and σRnd

M following TBS algorithms.
• Retrieve the marked tag leaked from FCBDC: T ∈ tid (see abort transaction leakage in
FCBDC).

• Set x← (accr,B, σRnd
M ,T).

• Emulating FNIZK, send (Prove, sid, x) to A. Upon receiving back (Proof, sid, π) from A,
record (x, π) and proceed.

• Set AR← (accr,B, σRnd
M ,T, π).

• Emulating F sa
Ch provide all the associated leakages to A.

• Emulating F sa
Ch, send (Received, sid,AR,mid) toA (for malicious maintainers) depending

on A’s choice on F sa
Ch’s message delivery.

• Following the algorithm described in Figure 18, leak the leakages of Fac
Ch to A (for both

honest maintainers being emulated and malicious maintainers on behalf of whom A
calls Fac

Ch with (Send, sid,Mi, (TIs,TIr,mids,midr))), and submit (AbrTnx.Ok, sid, tid) to
FCBDC.

• Following the algorithm described in Figure 19 when emulating honest maintainers for
messages sent by malicious maintainers, act as follows.

– For (j = s ∧ i = r) and (j = r ∧ i = s):
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∗ check whether there exists some σ′ such that (ψi, xj , σ
′) where xj = (ψj ,

accnew,Bj , σRnd
j,M ,Tj) is stored.

∗ if not, emulate FSoK and compute: wj ← Extract(ψi, xj , σj(ψi)).
∗ check whether the relation holds: (xj , wj) ∈ R. If it does not hold, ignore. Oth-

erwise, proceed as follows.
• Emulating Fac

Ch, leak all associated leakages of Fac
Ch to A based on the algorithm in Fig-

ure 19. Deliver messages to A (malicious maintainers) depending on A’s choice for mes-
sage blockage.

• Emulating FaBA, leak the associated leakages of FaBA to A for honest maintainers (fol-
lowing the algorithm described in Figure 20) and malicious ones who call FaBA with
(Agree, sid || [(TIs,TIr), (mids,midr)], dj).

• Emulating FaBA, based on A’s actions, terminate the Byzantine agreement upon receiv-
ing the call from 4t + 1 maintainers (including honest ones that are being emulated).
Set Q to the bit that has the majority among the 4t + 1 (e.g., in the worst-case sce-
nario, messages are split into two 2t groups, and the 4t + 1-th message will terminate
the agreement). (Note that if a transaction is already finalized (i.e., there are at least
4t + 1 valid maintainer signature shares for it), the adversary can never prevent the
abort transaction protocol from finalizing the transaction. Even if the adversary blocks t
honest maintainers and provides incorrect input on behalf of t malicious ones, there are
still 2t+ 1 (= 4t+ 1− t− t) honest maintainers emulated by S who can safely finalize
the transaction and unstuck the user similar to the real-world protocol.)

• If Q = 1, follow the algorithm described in Figure 20 and leak the F sa
Ch’s leakages to A

accordingly. Let FCBDC send (TnxAborted, sid) and (TnxAborted, sid, tid) (to associated
maintainers), then terminate.

• If Q = 0, emulating FaBA, leak the associated leakages of FaBA to A for honest maintain-
ers (following algorithm described in Figure 20) and malicious ones who call FaBA with
(Agree, sid || [AR.mid], dj). Follow the algorithm described in Figure 20 and leak the F sa

Ch’s
leakages to A accordingly. Let FCBDC send (TnxDone, sid,Us, v), (TnxDone, sid,Ur, v), and
(TnxDone, sid, tid) (to associated maintainers), then terminate.

(ii) Malicious U, and at most t malicious maintainers: (We avoid addressing simula-
tions that are similar to the honest U case described above.)

• Emulating F sa
Ch, upon receiving messages of the form (Send, sid,Mk,AR) from A, leak

associated leakages of F sa
Ch to A.

• Parse AR = (accr,B, σRnd
M ,T, π).

• Emulating FNIZK and honest maintainers, submit (Verify, sid, x, π) to A where x =
(accr,B, σRnd

M ,T).
• Upon receiving (Witness, sid, w) from A, check if (x, w) ∈ R holds. If holds, store (x, π)

and submit (AbrTnx, sid) on behalf of malicious U to FCBDC. Else, ignore.
• Upon receiving (AbrTnx, sid, tid) from FCBDC, retrieve the marked tag leaked from FCBDC:
T∗ ∈ tid (see abort transaction leakage in FCBDC).

• Ignore if T∗ ̸= T. Else, proceed similar to the honest U case described above.

Privacy revocation.
(i) Honest Us, honest Ur, and at most t malicious maintainers for both currency
issuance and payment protocols:20

• Upon receiving (RvkAnm, sid, twid ,Mw) from FCBDC, start emulating honest maintainers
(recall w and t are used for information associated to honest and malicious maintainers
respectively).

• Emulating honest maintainers if there exists at least one twid recorded, submit (RvkAnm.Ok,
sid, twid) to FCBDC.

20 In the following, for simplicity we describe S for payment transactions (issuance transactions are
similar and more straightforward).
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• Emulating Fac
Ch, receive A’s call (e.g., on behalf of Mt) of the form: (Send, sid,Mi, (xt, πt))

and submit leakages accordingly to A.
• Parse xt = (ψs,1, ψr,1, At, Bt, Ct).
• Emulating honest maintainers, check if there exists recorded t∗id with ψs and ψr where
ψs = (ψs,1, ·, ·) and ψr = (ψr,1, ·) for ψs,1 ∈ xt and ψr,1 ∈ xt hold. If hold, proceed.

• Emulating honest maintainer, upon receiving (Received, sid,Mt, (xt, πt)) (e.g., if A does
not block Fac

Ch), submit (Verify, sid, xt, πt) to A.
• Upon receiving (Witness, sid, wt) from A, check if (xt, wt) ∈ R holds. If holds, store
(xt, πt) and submit (RvkAnm, sid, t∗id) on behalf of malicious maintainer Mt to FCBDC.

• Upon receiving (AnmRevoked, sid, tid,Us,Ur, v) (for a maintainer Mj) from FCBDC, pro-
ceed as follows.

• Emulating FKR, retrieve (Us, pks) and (Ur, pkr).
• Parse tid = (ψs, ψr,Ts,Tr), ψs = (ψs,1, ψs,2, ψs,3) and ψr = (ψr,1, ψr,2).
• Set xw ← (ψs,1, ψr,1, Aw, Bw, Cw) where Aw, Bw and Cw are simulated using Lagrange

interpolation in a way that threshold decryption of (ψs, ψr) result in pks, gv, and pkr as
described in details in Section 5.1.

• Emulating FNIZK, send (Prove, sid, xw) to A. Upon receiving back (Proof, sid, πw) from
A, record (xw, πw) and proceed.

• Emulating Fac
Ch, output the associated leakages of Fac

Ch to A.
• Emulating FKR, output the associated leakages of FKR to A.

(ii) Honest (resp. malicious) Us and malicious (resp. honest) Ur, or malicious Us
and malicious Ur; and at most t malicious maintainers for both currency issuance
and payment protocols: The simulation of this case is similar to the case of honest Us
and honest Ur, except that there is no need to simulate the threshold decryption shares of
honest maintainers. The reason is that, in this case, S has already known the identities of
the participants Us and Ur, as well as the transaction value v. Hence, S, on behalf of honest
maintainers, computes the decryption shares by following the real-world algorithm described
in Figure 22.

Tracing.

Remark 3. Our construction achieves a stronger form of post-tracing privacy. However, for
the sake of keeping the functionality concise we exclude that property in the functionality.
(i) Honest U and at most t malicious maintainers for both currency issuance and
payment protocols:

• Upon receiving (Trace, sid,Uj ,Mw) from FCBDC, start emulating honest maintainer.
• Emulating honest maintainers if there exists a user record UR recorded for Uj , submit
(Trace.Ok, sid,Uj) to FCBDC.

• Emulating Fac
Ch, receive A’s call (e.g., on behalf of Mt) of the form: (Send, sid,Mi, (xt, πt))

and submit leakages accordingly to A.
• Parse xt = ( ˜comt, ġ

at , ġ).
• Emulating honest maintainers, check if there exists a user record UR = (·, ·, comM,U

∗)
where parsing comM = { ˜comj}Dj=1, ˜comt ∈ comM holds. If holds, proceed.

• Emulating honest maintainer, upon receiving (Received, sid,Mt, (xt, πt)) (e.g., if A does
not block Fac

Ch), submit (Verify, sid, xt, πt) to A.
• Upon receiving (Witness, sid, wt) from A, check if (xt, wt) ∈ R holds. If holds, store
(xt, πt) and submit (Trace, sid,U∗) on behalf of malicious maintainer Mt to FCBDC.

• Upon receiving (Traced, sid,U, {tτid, role
τ}xτ=1) (for a maintainer Mj) from FCBDC, pro-

ceed as follows.
• Depending on roleτ retrieve the associated tag Tτ ∈ tτid.
• Given U, retrieve ˜comw.
• Set xw ← ( ˜comw, Ew, ġ) where Ew is simulated using Lagrange interpolation in a way

that threshold tracing tag computation result in tτid as described in details in Section 5.1.
• Emulating FNIZK, send (Prove, sid, xw) to A. Upon receiving back (Proof, sid, πw) from
A, record (xw, πw) and proceed.
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• Emulating Fac
Ch, output the associated leakages of Fac

Ch to A.

(ii) Malicious U and at most t malicious maintainers for both currency issuance
and payment protocols: The simulation of this case is similar to the honest U case above
except that there is no need to simulate the tracing tag shares of honest maintainers. S
on behalf of honest maintainers participate at computing the tracing tags as described
in Figure 24.

6 Implementation details and PEReDi performance

We measured the performance of PEReDi transactions on an Intel Core i7-9850H CPU @
2.60 GHz with 16 GB of RAM using Ubuntu 20.04.2 LTS. Table 1 lists the size of the field
and group elements, as well as the exponentiation running time and pairing cost, using the
Charm-Crypto framework [4], a Python library for pairing-based cryptography. E, Ẽ,Et, and
P denote exponentiation in G, G̃, and Gt, and pairing, respectively. We applied the Barreto-
Naehrig (BN) curve, type F, defined by the equation y2 = x3+ b over a field of order p, with
an embedding curve degree of k = 12 and a 1920-bit discrete logarithm (DLog) security
level. For simplicity, computations over Zp and hash functions are not taken into account.

Table 1: Size of parameters and cost of operations

Parameter: |Zp| |G| |G̃| |Gt|

Size (bytes): 46 46 90 514

Parameter: field operations E Ẽ Et P

Time (ms): negligible 0.89 1.58 5.36 23.32

The summary of time complexity and communication costs with respect to the number of
maintainers and the ranges required for regulatory compliance are shown in Table 2 and
Table 3, respectively21.

Table 2: Time complexity of PEReDi transactions considering all regulatory compliance-
related information in a user’s account. We assume that Bmax = 2nb − 1, Smax = 2ns −
1, Rmax = 2nr − 1, and Vmax = 2nv − 1. t is the maximum number of malicious maintainers,
where the total number of maintainers is D = 5t+ 1.

Transaction Sender (ms) Receiver (ms)

Issuance 3.56 (for B) 7.12(nb + nr) + 310.86t+ 192.21

Payment 7.12(nv + ns + nb) + 310.86t+ 193.99 7.12(nb + nr) + 310.86t+ 193.99

Maintainer (ms)

Issuance 3.56(nb + nr) + 81.15

Payment 3.56(nv + 2nb + nr + ns) + 162.3

21 For the sake of completeness and to provide some examples of concrete values, one may set nv

to 32, and other values can be set accordingly.
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Table 3: Communication cost of PEReDi transactions considering all regulatory compliance-
related information in user’s account. We assume that Bmax = 2nb−1, Smax = 2ns−1, Rmax =
2nr − 1 and Vmax = 2nv − 1. G and G̃ means group elements, and F means field elements.

Transactions Sender

Issuance 3 G (for B)
Payment 48 G+ 2 log2(nv) G+ 2 log2(nb) G+ 2 log2(ns) G+ 2 G̃+ 19 F

Receiver

Issuance 40 G+ 2 log2(nb) G+ 2 log2(nr) G+ 2 G̃+ 19 F
Payment 42 G+ 2 log2(nb) G+ 2 log2(nr) G+ 2 G̃+ 19 F

Maintainer

Issuance 2 G
Payment 2 G

See Appendix A for more details on implementation and performance. Note that, as proposed
in [57,56], implementing a constant-time decryption mechanism can remove the need for
brute-force attempts to retrieve v from the ElGamal ciphertext, where gv is encrypted.
To instantiate FNIZK and FSoK efficiently, one can either follow the approach of [46], which is
based on Fischlin’s transform [44], or construct a simulation-extractable NIZK/SoK from a
simulation-sound NIZK and a CPA-secure encryption scheme, as described by [34]. Instead,
to allow for an apple-to-apple comparison with existing schemes, we analyze performance in
the more commonly used stand-alone setting, e.g., [60], in which one can employ the plain
Fiat-Shamir transform.

6.1 Fiat-Shamir transform

All the proofs presented in this section as an interactive protocol with a logarithmic number
of rounds can be converted into a non-interactive protocol that is secure and zero-knowledge
in the random oracle model using the Fiat-Shamir transform [10]. All random challenges are
replaced by hashes of the transcript up to that point, including the statement itself.

6.2 Range proofs

For the range proofs of PEReDi, we use Bulletproofs [18]. The range proof relation is defined
as follows:

{(Public input: h, g ∈ G, A, n;witness: v, γ ∈ Zp) : A = gγ · hv ∧ v ∈ [0, 2n − 1]}

According to comparisons made in [47], the computational complexity of one range proof of
the form above is 8n group exponentiations on the prover’s side and 4n group exponentiations
on the verifier’s side. We note that using other techniques for range proofs (rather than
Bulletproofs) can result in better efficiency.
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2. User needs to compute TIU = (ψ, accnew,B, σRnd
M ,T, π). Associated computation complex-

ities to compute each element of TIU are as follows.
(a) ψ: Similar to central bank user needs to perform 4 exponentiation in G and 2 mul-

tiplication in G to compute ψ.
(b) accnew,B: For accnew,B = (com, {comτ}6τ=1 , h) user performs 19 exponentiation in G,

12 multiplication in G and 1 hash.
(c) σRnd

M : For re-randomizing signature user parses σM as (h, s), picks r $←− Zp and sets

r′
$←− Zp. Then, it computes σint

M = (h′, s′) ← (hr
′
, sr

′
(h′)r). It computes κ ←

α̃
∏6
τ=1 β̃

mτ
τ g̃r. Sets σRnd

s,M = (σint
M , κ) = (σint

M , α̃
∏6
τ=1 β̃

mτ
τ g̃r). Hence, computing σRnd

M
requires 3 exponentiation in G, 1 multiplication in G, 7 exponentiation in G̃, and 7
multiplication in G̃.

(d) T = ga
x+1

: It requires 1 exponentiation in field, and 1 exponentiation in G.
(e) π: To compute computation complexity of proof π we describe the details of Sigma

protocol between the prover (user) and the verifier (each maintainer).
The witness of the user is w = ((Bold, Sold, Rold, sk, φ = ax, a), ρ, o, {oτ}6τ=1 , r,
r1, r2, v), the statement is x = (ψ, accnew,B, σRnd

M ,T), and the relation is

{ψ1 = gρ ∧ ψ2 = pkρ1,M · g
sk ∧ ψ3 = pkρ2,M · g

v∧

com = go · hB
old+v

1 · hS
old

2 · hR
old+v

3 · hsk4 · h
φold·a
5 · ha6∧

com1 = go1 · hB
old+v ∧ com2 = go2 · hS

old

∧ com3 = go3 · hR
old+v∧

com4 = go4 · hsk ∧ com5 = go5 · hφ
old·a ∧ com6 = go6 · ha∧

κ = α̃ · β̃B
old

1 · β̃S
old

2 · β̃R
old

3 · β̃sk
4 · β̃

φold

5 · β̃a6 · g̃r∧

T = gφ
old·a ∧N = gr1 · hφ

old

∧ com5 = Na · gr2∧
Bnew = Bold + v ≤ Bmax ∧Rnew = Rold + v ≤ Rmax}

We stress that prover sets r2 ← o5−ar1. Also, all values are included in the (defined)
statement instead of N which is sent by the prover to the verifier as part of the proof.
First of all, the prover and verifier execute 2 range proofs using bulletproofs (as
defined in 6.2) where the relations are as follows: {(g, h ∈ G, com1, Bmax; o1, B

new ∈
Zp) : com1 = go1 · hBnew ∧ Bnew ∈ [0, Bmax]} and {(g, h ∈ G, com3, Rmax; o3, S

new ∈
Zp) : com3 = go3 ·hRnew ∧Rnew ∈ [0, Rmax]}. Then the prover and verifier run a sigma
protocol (where in the non-interactive version all random challenges are replaced
by hashes of the transcript up to that point, including the statement itself, so the
hash in the following Sigma protocol contains bulletproof’s transcripts as well). The
commitments used in the range proof relations are exactly the commitments used
in the sigma protocol explained in the following. The prover and verifier execute the
following (interactive) Sigma protocol:
i. Prover computes:

ψ′
1 = gη1 , ψ′

2 = pkη11,M · g
η2 , ψ′

3 = pkη12,M · g
η3 ,

com′ = gη4 · hη5+η31 · hη62 · h
η7+η3
3 · hη24 · h

η17
5 · hη86 ,

com′
1 = gη10 · hη5+η3 , com′

2 = gη11 · hη6 , com′
3 = gη12 · hη7+η3 ,

com′
4 = gη13 · hη2 , com′

5 = gη14 · hη17 , com′
6 = gη15 · hη8 ,

κ′ = α̃ · β̃η51 · β̃
η6
2 · β̃

η7
3 · β̃

η2
4 · β̃

η9
5 · β̃

η8
6 · g̃η16 ,

T′ = gη17 , N ′ = gη18 · hη9 , com′′
5 = Nη8 · gη19 .
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Prover sends ψ′
1, ψ

′
2, ψ

′
3, com

′, com′
1, com

′
2, com

′
3, com

′
4, com

′
5, com

′
6, κ

′,T′, N ′, com′′
5

to the verifier.
ii. Verifier sends back challenge C.
iii. Prover computes:

ω1 = η1 − ρc, ω2 = η2 − skc, ω3 = η3 − vc, ω4 = η4 − oc,
ω5 = η5 −Boldc, ω6 = η6 − Soldc, ω7 = η7 −Roldc, ω8 = η8 − ac,
ω9 = η9 − φoldc, ω10 = η10 − o1c, ω11 = η11 − o2c, ω12 = η12 − o3c,
ω13 = η13 − o4c, ω14 = η14 − o5c, ω15 = η15 − o6c, ω16 = η16 − rc,
ω17 = η17 − φnewc, ω18 = η18 − r1c, ω19 = η19 − r2c.

where φnew = φold · a. Prover sends ω1, . . . , ω19 to the verifier.
iv. Verifier checks if:

ψ′
1 = ψc1 · gω1 , ψ′

2 = ψc2 · pk
ω1

1,M · g
ω2 , ψ′

3 = ψc3 · pk
ω1

2,M · g
ω3 ,

com′ = comc · gω4 · hω5+ω3
1 · hω6

2 · h
ω7+ω3
3 · hω2

4 · h
ω17
5 · hω8

6 ,

com′
1 = comc

1 · gω10 · hω5+ω3 , com′
2 = comc

2 · gω11 · hω6 , com′
3 = comc

3 · gω12 · hω7+ω3 ,

com′
4 = comc

4 · gω13 · hω2 , com′
5 = comc

5 · gω14 · hω17 , com′
6 = comc

6 · gω15 · hω8 ,

κ′ = κc · α̃1−c · β̃ω5
1 · β̃

ω6
2 · β̃

ω7
3 · β̃

ω2
4 · β̃

ω9
5 · β̃

ω8
6 · g̃ω16 ,

T′ = Tc · gω17 , N ′ = N c · gω18 · hω9 , com′′
5 = comc

5 ·Nω8 · gω19 .

The interactive protocol explained above is converted to non-interactive version using
Fiat-Shamir transform. The computation complexity on the prover’s side for non-
interactive version is 1 hash, 29 exponentiation in G, 7 exponentiation in G̃, 16
multiplication in G, 7 multiplication in G̃, 23 field addition, 19 field multiplication,
and 16n exponentiation in G. Moreover, as explained above the prover computes
N which is sent to the verifier as well that needs 2 exponentiation in G and 1
multiplication in G.

The user also needs to unblind and aggregate the maintainers’ signatures. Hence, we
address each of them in the following.
(a) For unblinding signature: the user parses σB

j as (h′, c). Aborts if h ̸= h′. Then,
computes σj = (h, sj) ← (h, c

∏6
τ=1 β

−oτ
j,τ ). Hence, this step requires at maxi-

mum 6D exponentiation in G and 6D multiplication in G. Afterwards, aborts if
e(h, α̃j

∏6
τ=1 β̃

mτ
j,τ ) = e(sj , g̃) does not hold. Hence, at maximum this step requires

2D pairings, 6D exponentiation in G̃ and 6D multiplication in G̃.
(b) For aggregating signature: the user parses σj = (h, sj) and computes the signature

σM = (h, s)← (h,
∏
j∈E s

lj
j ) which requires D− t exponentiation in G and D− t− 1

multiplication in G. Afterwards, aborts if e(h, α̃
∏6
τ=1 β̃

mτ
τ ) = e(s, g̃) does not hold

which requires 2 pairings, 6 exponentiation in G̃ and 6 multiplication in G̃.
3. Each maintainer verifies the proof and re-randomized signature and generates a blind

signature.
(a) For verification, each maintainer does the following:

i. Parses σRnd
M as (σint

M = (h′, s′), κ) and aborts if h′ = 1 or if e(h′, κ) = e(s′, g̃) does
not hold which requires 1 pairing.

ii. Verifies π and aborts if the proof is not correct which means that the maintainer
acts as what explained above for the proof verification as a result, considering
the presented details above this step requires 1 hash, 42 exponentiation in G,
9 exponentiation in G̃, 29 multiplication in G, 8 multiplication in G̃, 4 field
addition, and 8n exponentiation in G.

(b) For blind signature, each maintainer does the following:
i. Sends com to FRO and receive h′ from FRO. Aborts if h ̸= h′ which requires 1

hash.
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ii. Computes c = hxj
∏6
τ=1 com

yj,τ
τ and sets the blind signature share σB

j = (h,

hxj
∏6
τ=1 com

yj,τ
τ ) which requires 7 exponentiation in G, and 6 multiplication in

G.

A.2 Performance details of payment

In the following, we present the details for the sender’s side. The computation complexity
on the receiver’s side is similar to the sender’s side except the fact that the receiver performs
one range proof less than the sender.

1. The sender needs to compute TIs = (ψs, ψr, σs(ψr), acc
new,B
s , σRnd

s,M,Ts). Associated com-
putation complexities to compute each element of TIs are as follows.
(a) ψs: The sender needs to perform 4 exponentiation in G and 2 multiplication in G to

compute ψs = (ψs,1, ψs,2, ψs,3) = (gρs , pkρs1,M · pks, pk
ρs
2,M · gv).

(b) ψr: Computing ψr = (ψr,1, ψr,2) = (gρr , pkρr1,M · pkr) requires 2 exponentiation in G
and 1 multiplication in G.

(c) accnew,Bs : Computing accnew,Bs = (com, {comτ}6τ=1 , h) requires 19 exponentiation in
G, 12 multiplication in G and 1 hash.

(d) σRnd
s,M: For re-randomizing signature user parses σM as (h, s), picks r $←− Zp and sets

r′
$←− Zp. Then, it computes σint

M = (h′, s′) ← (hr
′
, sr

′
(h′)r). It computes κ ←

α̃
∏6
τ=1 β̃

mτ
τ g̃r. Sets σRnd

s,M = (σint
M , κ) = (σint

M , α̃
∏6
τ=1 β̃

mτ
τ g̃r). Hence, computing σRnd

M
requires 3 exponentiation in G, 1 multiplication in G, 7 exponentiation in G̃, and 7
multiplication in G̃.

(e) Ts = gas
xs+1

: It requires 1 exponentiation in field, and 1 exponentiation in G.
(f) σs(ψr): To compute computation complexity of signature of knowledge σs(ψr) we

describe the details of Sigma protocol between the prover (sender) and the verifier
(each maintainer).
The witness of the sender is ws = ((Bold, Sold, Rold, sk, φold = ax, a), ρ, o, {oτ}6τ=1 , r,
r1, r2, v), the statement is xs = (ψs, acc

new,B
s , σRnd

s,M,Ts), and the relation is

{ψs,1 = gρ ∧ ψs,2 = pkρ1,M · g
sk ∧ ψs,3 = pkρ2,M · g

v∧

com = go · hB
old−v

1 · hS
old+v

2 · hR
old

3 · hsk4 · h
φold·a
5 · ha6∧

com1 = go1 · hB
old−v ∧ com2 = go2 · hS

old+v ∧ com3 = go3 · hR
old

∧

com4 = go4 · hsk ∧ com5 = go5 · hφ
old·a ∧ com6 = go6 · ha∧

κ = α̃ · β̃B
old

1 · β̃S
old

2 · β̃R
old

3 · β̃sk
4 · β̃

φold

5 · β̃a6 · g̃r∧

T = gφ
old·a ∧N = gr1 · hφ

old

∧ com5 = Na · gr2∧
0 ≤ v ≤ Vmax ∧Bnew = Bold − v ≥ 0 ∧ Snew = Sold + v ≤ Smax}

Similar to currency issuance protocol, we stress that prover sets r2 ← o5 − ar1.
Also, all values are included in the (defined) statement instead of N which is sent
by the prover to the verifier as part of the proof. First of all, the prover and verifier
execute 3 range proofs using bulletproofs (as defined in 6.2) where the relations are
as follows: {(pk2,M, g ∈ G, ψs,3, Vmax; ρ, v ∈ Zp) : ψs,3 = pkρ2,M · gv ∧ v ∈ [0, Vmax]},
{(g, h ∈ G, com1, Bmax; o1, B

new ∈ Zp) : com1 = go1 · hBnew ∧ Bnew ∈ [0, Bmax]}, and
{(g, h ∈ G, com2, Smax; o2, S

new ∈ Zp) : com2 = go2 · hSnew ∧ Snew ∈ [0, Smax]}. Then
the prover and verifier run a sigma protocol (where in the non-interactive version
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all random challenges are replaced by hashes of the transcript up to that point,
including the statement itself and the message of signature of knowledge ψr, so the
hash in the following Sigma protocol contains bulletproof’s transcripts as well). The
commitments used in the range proof relations are exactly the commitments used
in the sigma protocol explained in the following. The prover and verifier execute the
following (interactive) Sigma protocol:
i. Prover computes:

ψ′
s,1 = gη1 , ψ′

s,2 = pkη11,M · g
η2 , ψ′

s,3 = pkη12,M · g
η3 ,

com′ = gη4 · hη5−η31 · hη6+η32 · hη73 · h
η2
4 · h

η17
5 · hη86 ,

com′
1 = gη10 · hη5−η3 , com′

2 = gη11 · hη6+η3 , com′
3 = gη12 · hη7 ,

com′
4 = gη13 · hη2 , com′

5 = gη14 · hη17 , com′
6 = gη15 · hη8 ,

κ′ = α̃ · β̃η51 · β̃
η6
2 · β̃

η7
3 · β̃

η2
4 · β̃

η9
5 · β̃

η8
6 · g̃η16 ,

T′ = gη17 , N ′ = gη18 · hη9 , com′′
5 = Nη8 · gη19 .

Prover sends ψ′
s,1, ψ

′
s,2, ψ

′
s,3, com

′, com′
1, com

′
2, com

′
3, com

′
4, com

′
5, com

′
6, κ

′,T′, N ′,
com′′

5 to the verifier.
ii. Verifier sends back challenge C.
iii. Prover computes:

ω1 = η1 − ρc, ω2 = η2 − skc, ω3 = η3 − vc, ω4 = η4 − oc,
ω5 = η5 −Boldc, ω6 = η6 − Soldc, ω7 = η7 −Roldc, ω8 = η8 − ac,
ω9 = η9 − φoldc, ω10 = η10 − o1c, ω11 = η11 − o2c, ω12 = η12 − o3c,
ω13 = η13 − o4c, ω14 = η14 − o5c, ω15 = η15 − o6c, ω16 = η16 − rc,
ω17 = η17 − φnewc, ω18 = η18 − r1c, ω19 = η19 − r2c.

Prover sends ω1, . . . , ω19 to the verifier.
iv. Verifier checks if:

ψ′
s,1 = ψcs,1 · gω1 , ψ′

s,2 = ψcs,2 · pk
ω1

1,M · g
ω2 , ψ′

s,3 = ψcs,3 · pk
ω1

2,M · g
ω3 ,

com′ = comc · gω4 · hω5−ω3
1 · hω6+ω3

2 · hω7
3 · h

ω2
4 · h

ω17
5 · hω8

6 ,

com′
1 = comc

1 · gω10 · hω5−ω3 , com′
2 = comc

2 · gω11 · hω6+ω3 , com′
3 = comc

3 · gω12 · hω7 ,

com′
4 = comc

4 · gω13 · hω2 , com′
5 = comc

5 · gω14 · hω17 , com′
6 = comc

6 · gω15 · hω8 ,

κ′ = κc · α̃1−c · β̃ω5
1 · β̃

ω6
2 · β̃

ω7
3 · β̃

ω2
4 · β̃

ω9
5 · β̃

ω8
6 · g̃ω16 ,

T′ = Tc · gω17 , N ′ = N c · gω18 · hω9 , com′′
5 = comc

5 ·Nω8 · gω19 .

The interactive protocol explained above is converted to non-interactive version using
Fiat-Shamir transform. The computation complexity on the prover’s side for non-
interactive version is 1 hash, 29 exponentiation in G, 7 exponentiation in G̃, 16
multiplication in G, 7 multiplication in G̃, 23 field addition, 19 field multiplication,
and 24n exponentiation in G. Moreover, as explained above the prover computes
N which is sent to the verifier as well that needs 2 exponentiation in G and 1
multiplication in G.

The user also needs to unblind and aggregate the maintainers’ signatures. Hence, we
address each of them in the following.
(a) For unblinding signature: the user parses σB

j as (h′, c). Aborts if h ̸= h′. Then,
computes σj = (h, sj) ← (h, c

∏6
τ=1 β

−oτ
j,τ ). Hence, this step requires at maxi-

mum 6D exponentiation in G and 6D multiplication in G. Afterwards, aborts if
e(h, α̃j

∏6
τ=1 β̃

mτ
j,τ ) = e(sj , g̃) does not hold. Hence, at maximum this step requires

2D pairings, 6D exponentiation in G̃ and 6D multiplication in G̃.
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(b) For aggregating signature: the user parses σj = (h, sj) and computes the signature
σM = (h, s)← (h,

∏
j∈E s

lj
j ) which requires D− t exponentiation in G and D− t− 1

multiplication in G. Afterwards, aborts if e(h, α̃
∏6
τ=1 β̃

mτ
τ ) = e(s, g̃) does not hold

which requires 2 pairings, 6 exponentiation in G̃ and 6 multiplication in G̃.
2. Each maintainer verifies the proof and re-randomized signature and generates a blind

signature. All the following computation complexities are related to processing TIs, pro-
cessing TIr requires the same computation complexity except one range proof less than
processing TIs. In our results, we have considered computation complexity for processing
both TIs and TIr.
(a) For verification, each maintainer does the following:

i. Parses σRnd
M as (σint

M = (h′, s′), κ) and aborts if h′ = 1 or if e(h′, κ) = e(s′, g̃) does
not hold which requires 1 pairing.

ii. Verifies π and aborts if the proof is not correct which means that the maintainer
acts as what explained above for the proof verification as a result, considering
the presented details above this step requires 1 hash, 42 exponentiation in G,
9 exponentiation in G̃, 29 multiplication in G, 8 multiplication in G̃, 4 field
addition, and 12n exponentiation in G (for TIr it is 8n exponentiation in G).

(b) For blind signature, each maintainer does the following:
i. Sends com to FRO and receive h′ from FRO. Aborts if h ̸= h′ which requires 1

hash.
ii. Computes c = hxj

∏6
τ=1 com

yj,τ
τ and sets the blind signature share σB

j = (h,

hxj
∏6
τ=1 com

yj,τ
τ ) which requires 7 exponentiation in G, and 6 multiplication in

G.

A.3 Details of zero-knowledge relations

In this section, we provide details on implementing the zero-knowledge relations used in user
registration, abort transaction, privacy revocation, and tracing protocols based on Sigma
protocols.

A.3.1 User registration. The prover and verifier execute the following Sigma protocol:

1. Prover sends:

com′ = gη1 · hη24 · h5 · h
η3
6 , com′

1 = gη4 , com′
2 = gη5 , com′

3 = gη6 ,

com′
4 = gη7 · hη2 , com′

5 = gη8 · h, com′
6 = gη9 · hη3 ,

{ ˜com∗
j = gµjhγj}Dj=1∧

pk′ = gη2∧

{ ˜com∗∗
j = gη3 · gα1j · . . . · gαβ−1j

β−1

· hγj}Dj=1

to the verifier.
2. Verifier sends back challenge C.
3. Prover sends:

ω1 = η1 − oc, ω2 = η2 − skc, ω3 = η3 − ac, ω4 = η4 − o1c,
ω5 = η5 − o2c, ω6 = η6 − o3c, ω7 = η7 − o4c, ω8 = η8 − o5c, ω9 = η9 − o6c,
ω′
1 = µ1 − a1c, . . . , ω′

D = µD − aDc,
ω′′
1 = γ1 − r1c, . . . , ω′′

D = γD − rDc,
ω′′′
1 = α1 − coe1c, . . . , ω

′′′
β−1 = αβ−1 − coeβ−1c

to the verifier.
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4. Verifier checks if:

com′ = comc · gω1 · hω2
4 · h

1−c
5 · hω3

6 ,

com′
1 = comc

1 · gω4 , com′
2 = comc

2 · gω5 , com′
3 = comc

3 · gω6 ,

com′
4 = comc

4 · gω7 · hω2 , com′
5 = comc

5 · gω8 · h1−c, com′
6 = comc

6 · gω9 · hω3 ,

{ ˜com∗
j = ˜comc

j · gω
′
jhω

′′
j }Dj=1∧

pk′ = pkc · gω2∧

{ ˜com∗∗
j = ˜comc

j · gω3 · gω
′′′
1 j · . . . · gω

′′′
β−1j

β−1

· hω
′′
j }Dj=1.

A.3.2 Abort transaction. The prover and verifier execute the following Sigma protocol:

1. Prover computes:

com′ = gη4 · hη51 · h
η6
2 · h

η7
3 · h

η2
4 · h

η17
5 · hη86 ,

com′
1 = gη10 · hη5 , com′

2 = gη11 · hη6 , com′
3 = gη12 · hη7 ,

com′
4 = gη13 · hη2 , com′

5 = gη14 · hη17 , com′
6 = gη15 · hη8 ,

κ′ = α̃ · β̃η51 · β̃
η6
2 · β̃

η7
3 · β̃

η2
4 · β̃

η9
5 · β̃

η8
6 · g̃η16 ,

T′ = gη17 , N ′ = gη18 · hη9 , com′′
5 = Nη8 · gη19 .

Prover sends com′, com′
1, com

′
2, com

′
3, com

′
4, com

′
5, com

′
6, κ

′,T′, N ′ and com′′
5 to the veri-

fier.
2. Verifier sends back challenge C.
3. Prover computes:

ω2 = η2 − skc, ω4 = η4 − oc, ω5 = η5 −Boldc, ω6 = η6 − Soldc,

ω7 = η7 −Roldc, ω8 = η8 − ac, ω9 = η9 − φoldc, ω10 = η10 − o1c,
ω11 = η11 − o2c, ω12 = η12 − o3c, ω13 = η13 − o4c, ω14 = η14 − o5c,
ω15 = η15 − o6c, ω16 = η16 − rc, ω17 = η17 − φnewc, ω18 = η18 − r1c,
ω19 = η19 − r2c.

Prover sends ω2, ω4, . . . , ω19 to the verifier.
4. Verifier checks if:

com′ = comc · gω4 · hω5
1 · h

ω6
2 · h

ω7
3 · h

ω2
4 · h

ω17
5 · hω8

6 ,

com′
1 = comc

1 · gω10 · hω5 , com′
2 = comc

2 · gω11 · hω6 , com′
3 = comc

3 · gω12 · hω7 ,

com′
4 = comc

4 · gω13 · hω2 , com′
5 = comc

5 · gω14 · hω17 , com′
6 = comc

6 · gω15 · hω8 ,

κ′ = κc · α̃1−c · β̃ω5
1 · β̃

ω6
2 · β̃

ω7
3 · β̃

ω2
4 · β̃

ω9
5 · β̃

ω8
6 · g̃ω16 ,

T′ = Tc · gω17 , N ′ = N c · gω18 · hω9 , com′′
5 = comc

5 ·Nω8 · gω19 .

A.3.3 Privacy revocation. Maintainer’s witness is wj = (sk1,j , sk2,j), the statement
is xj = (ψs,1, ψr,1, ψ

sk1,j
s,1 ψ

sk2,j
s,1 , ψ

sk1,j
r,1 ), and the relation is {pk1,j = gsk1,j ∧ ψsk1,j

s,1 ∧ pk2,j =

gsk2,j ∧ ψsk2,j
s,1 ∧ ψ

sk1,j
r,1 }. The prover and verifier execute the following Sigma protocol:

1. Prover computes: pk′1,j = gη1 , ψη1s,1, pk
′
2,j = gη2 , ψη2s,1 and ψη1r,1.

Prover sends pk′1,j , ψ
η1
s,1, pk

′
2,j , ψ

η2
s,1 and ψη1r,1 to the verifier.

2. Verifier sends back challenge C.
3. Prover computes: ω1 = η1 − sk1,jc and ω2 = η2 − sk2,jc.

Prover sends ω1 and ω2 to the verifier.
4. Verifier checks if: pk′1,j = pkc1,j · gω1 , ψη1s,1 = (ψ

sk1,j
s,1 )c · ψω1

s,1, pk
′
2,j = pkc2,j · gω2 , ψη2s,1 =

(ψ
sk2,j
s,1 )c · ψω2

s,1 and ψη1r,1 = (ψ
sk1,j
r,1 )c · ψω1

r,1
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A.3.4 Tracing. Maintainer’s witness is wj = (aj , rj), the statement is xj = ( ˜comj , ġ
aj , ġ),

the relation is { ˜comj = gaj · hrj ∧ ġaj}. The prover and verifier execute the following Sigma
protocol:

1. Prover computes: ˜com∗
j = gη1 · hη2 and ġη1 .

Prover sends ˜com∗
j and ġη1 to the verifier.

2. Verifier sends back challenge C.
3. Prover computes: ω1 = η1 − ajc and ω2 = η2 − rjc.

Prover sends ω1 and ω2 to the verifier.
4. Verifier checks if: ˜com∗

j = ˜comc
j · gω1 · hω2 and ġη1 = (ġaj )c · ġω1 .

B Cryptographic schemes and assumptions

In this section, we present the cryptographic primitives and assumptions that we use in our
construction ΠPEReDi.

Definition 5 (Bilinear maps). Let G, G̃, and GT denote groups of prime order p. A
map e : G× G̃→ GT is called a bilinear map if it satisfies the following properties:

• Bilinearity: For all g ∈ G, g̃ ∈ G̃, and x, y ∈ Zp, the map satisfies:

e(gx, g̃y) = e(g, g̃)xy.

• Non-degeneracy: For generators g ∈ G and g̃ ∈ G̃, the element e(g, g̃) is a generator
of GT .

• Efficiency: There exists an efficient setup algorithm G(1k) that, given a security pa-
rameter k, outputs the tuple (p,G, G̃,GT , e, g, g̃), where g ∈ G and g̃ ∈ G̃ are generators.
Furthermore, the computation of e(a, b) for any a ∈ G and b ∈ G̃ is efficient.

In the case of Type-3 pairings, G ̸= G̃, and no efficiently computable homomorphism between
G and G̃.

Definition 6 (d-strong decisional Diffie-Hellman (d-sDDH) assumption). Let G be
a cyclic group of prime order p, where p is a prime, and let g be a generator of G. Suppose
(G, p, g) ← G(1λ), where G is a group generation algorithm parameterized by the security
parameter λ.
For x, x1, . . . , xd

$←− Zp, the d-strong decisional Diffie-Hellman (d-sDDH) assumption asserts
that the following holds relative to G. For any probabilistic polynomial-time (PPT) adversary
A, there exists a negligible function negl(λ) such that:

Advd-sDDH
A (λ) =

∣∣∣Pr [A(G, p, g, gx, gx2

, . . . , gx
d

) = 1
]

− Pr
[
A(G, p, g, gx1 , gx2 , . . . , gxd) = 1

]∣∣∣ ≤ negl(λ)

B.1 Public key encryption schemes

Definition 7 (Public key encryption scheme). A public key encryption scheme con-
sists of three algorithms PKE = (KeyGen,Enc,Dec), defined as follows:

• KeyGen(1λ): A probabilistic algorithm that, given a security parameter λ, outputs a key
pair (pk, sk), where pk is the public key and sk is the secret key. The public key pk
implicitly specifies the message spaceMpk, which represents the set of plaintext messages
that can be encrypted.

• Enc(pk,m): A probabilistic algorithm that, given a public key pk and a message m ∈Mpk,
outputs a ciphertext c.
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• Dec(sk, c): A deterministic algorithm that, given a secret key sk and a ciphertext c,
outputs the plaintext m if c is a valid ciphertext, or a special failure symbol ⊥ if decryption
fails.

Definition 8 (Correctness of a public key encryption scheme). A public key en-
cryption scheme PKE = (KeyGen,Enc,Dec) is correct if, for all security parameters λ ∈ N,
for all key pairs (pk, sk)← KeyGen(1λ), and for all messages m ∈Mpk, it holds that

Dec(sk,Enc(pk,m)) = m

with overwhelming probability over the randomness of KeyGen and Enc.

Definition 9 (IND-CPA security of a public key encryption scheme). A public key
encryption (PKE) scheme PKE = (KeyGen,Enc,Dec) is IND-CPA-secure if, for all proba-
bilistic polynomial-time (PPT) adversaries A, the advantage AdvIND-CPA

A (λ) in the following
experiment is negligible in the security parameter λ:

AdvIND-CPA
A (λ) =

∣∣Pr[IND-CPA1
PKE(A, λ) = 1]− Pr[IND-CPA0

PKE(A, λ) = 1]
∣∣ ≤ negl(λ).

The experiment IND-CPAbPKE(A, λ) is defined as an interaction between a PPT adversary A
and a challenger, parameterized by a security parameter λ and a random bit b ∈ {0, 1}:

1. The challenger generates a key pair (pk, sk) ← KeyGen(1λ) and sends the public key pk
to the adversary A.

2. The adversary A submits two plaintext messages (m0,m1) such that m0,m1 ∈Mpk and
|m0| = |m1|.

3. The challenger chooses a random bit b $←− {0, 1}, encrypts mb to obtain the ciphertext
cb = Enc(pk,mb), and sends cb to the adversary A.

4. The adversary A outputs a guess b′ ∈ {0, 1} for b.

The output of the experiment IND-CPAbPKE(A, λ) is defined as 1 if b′ = b, and 0 otherwise.
The adversary’s advantage in distinguishing between the two cases b = 0 and b = 1 is defined
as:

AdvIND-CPA
A (λ) =

∣∣Pr[IND-CPA1
PKE(A, λ) = 1]− Pr[IND-CPA0

PKE(A, λ) = 1]
∣∣.

Definition 10 (ElGamal encryption scheme). The ElGamal encryption scheme [37],
denoted EG, is a public-key encryption (PKE) scheme defined over a prime-order cyclic group
Gq with a generator g. The scheme consists of three algorithms EG = (KeyGen,Enc,Dec),
defined as follows:

• KeyGen(1λ): The key generation algorithm proceeds as follows:
1. Run a group generation algorithm G(1λ) to obtain (q, g), where Gq is a cyclic group

of prime order q with generator g.
2. Sample a secret key x $←− Zq uniformly at random.
3. Compute the public key component h = gx.
4. Output the public key pk = (q, g, h) and the secret key sk = x.

• Enc(pk,M): To encrypt a message M ∈ Gq, the encryption algorithm proceeds as follows:
1. Sample a random r

$←− Zq.
2. Compute the ciphertext components: u = gr, v = hr ·M.
3. Output the ciphertext ψ = (u, v).

• Dec(sk, ψ): Given a ciphertext ψ = (u, v), the decryption algorithm proceeds as follows:
1. Compute s = ux.
2. Recover the plaintext message M as: M = v · s−1.

The security of the ElGamal encryption scheme under chosen-plaintext attack (IND-CPA)
relies on the hardness of the Decisional Diffie-Hellman (DDH) problem in Gq.
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Definition 11 (Threshold ElGamal encryption scheme). The Threshold ElGamal
encryption scheme, denoted T-EG, is a threshold public-key encryption (PKE) scheme de-
fined over a prime-order cyclic group Gq with a generator g. The scheme consists of four
algorithms T-EG = (Setup,Enc,PartialDec,Combine), defined as follows:

• Setup(1λ, t, n): The setup algorithm proceeds as follows:
1. Run a group generation algorithm G(1λ) to obtain (q, g), where Gq is a cyclic group

of prime order q with generator g.
2. Sample a secret key x $←− Zq uniformly at random.
3. Compute the public key component h = gx.
4. Use a (t, n)-threshold secret sharing scheme to split x into n shares {s1, s2, . . . , sn},

where each share si = f(i) (mod q), with f(z) being a random polynomial of degree
t− 1 such that f(0) = x.

5. Output the public key pk = (q, g, h) and private shares {ski = si}ni=1.
• Enc(pk,M): To encrypt a message M ∈ Gq, the encryption algorithm proceeds as follows:

1. Sample a random r
$←− Zq.

2. Compute the ciphertext components: u = gr, v = hr ·M.

3. Output the ciphertext ψ = (u, v).
• PartialDec(ski, ψ): Given a private share ski = si and ciphertext ψ = (u, v), a party

computes its partial decryption: di = usi . Output the partial decryption di.
• Combine({di}i∈T , ψ): Given partial decryptions {di}i∈T from a subset T ⊆ [n] of size
|T | ≥ t, combine them as follows:
1. Compute the Lagrange coefficients {λi}i∈T over Zq, where λi =

∏
j∈T
j ̸=i

j
j−i (mod q).

2. Compute the shared decryption: s =
∏
i∈T d

λi
i (mod q).

3. Recover the plaintext message M as: M = v · s−1.

(Our) threshold ElGamal encryption scheme (extended). Using a distributed key
generation protocols (e.g., [36,42,40,26]), the secret key of the threshold ElGamal encryption
scheme is generated. We denote skj as the secret decryption key for the j-th maintainer,
and pkj = gskj as the corresponding public key share. Hence, the aggregated secret key is
sk =

∑
j∈I skjλj , where λj is the Lagrange coefficient for the j-th share, and |I| = β.

To decrypt an ElGamal ciphertext c = (c1, c2) = (gk, pkkm), the j-th maintainer first
publishes cskj1 and then generates a proof that logg pkj = logc1 c

skj
1 to prove their honest

contribution. Finally, the plaintext m is retrieved as m = c2∏
j∈I c

skjλj
1

.

In our construction, assuming the first message is the user’s public key m1 = pkU and the
second message is m2 = gv, where v is the value of the transaction, we extend the ciphertext
such that

c = (c1, c2, c3) = (gk, pkk1,M ·m1, pk
k
2,M ·m2).

Here, the j-th maintainer has two secret keys, sk1,j and sk2,j , such that pk1,j = gsk1,j and
pk2,j = gsk2,j . Similarly, the aggregated secret keys are sk1,M =

∑
j∈I sk1,jλ1,j and sk2,M =∑

j∈I sk2,jλ2,j , with their associated public keys being pk1,M = gsk1,M and pk2,M = gsk2,M ,
respectively.
The j-th maintainer’s decryption shares are csk1,j1 and c

sk2,j
1 . The maintainer also generates

proofs that logg pk1,j = logc1 c
sk1,j
1 and logg pk2,j = logc1 c

sk2,j
1 hold to demonstrate their

honest contribution.
The messages m1 and m2 are retrieved by computing

m1 =
c2∏

j∈I c
sk1,jλ1,j

1

and m2 =
c3∏

j∈I c
sk2,jλ2,j

1

.
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B.2 Shamir secret sharing

Shamir’s secret sharing scheme [58] allows a secret s to be divided into n shares such that
any subset of at least t shares can reconstruct the secret s. However, fewer than t shares
reveal no information about the secret.

Definition 12 (Shamir secret sharing (SSS)). A (n, t)-threshold secret sharing scheme
SSS = (Share,Reconstruct) consists of the following algorithms:

• Sharing: {(xi, yi)}ni=1
$←− Sharen,t(s) This algorithm takes as input a secret s ∈ Fq, where

Fq is a finite field of prime order q, and outputs n secret shares (xi, yi), where xi ̸= 0 are
distinct and yi = P (xi). The steps are as follows:
1. Choose t− 1 random coefficients a1, . . . , at−1 ∈ Fq.
2. Construct the polynomial P (x) = s+ a1x+ a2x

2 + . . .+ at−1x
t−1.

3. Compute each share as a pair (xi, yi), where yi = P (xi) and xi ̸= 0 are distinct.
• Reconstruction: s∗ ←− Reconstructn,t({(xi, yi)}i∈I) This algorithm takes as input a set

of t shares {(xi, yi)}i∈I , where |I| = t, and reconstructs the secret s using Lagrange
interpolation: s =

∑
i∈I yi · λi, where the Lagrange coefficients λi are defined as: λi =∏

j∈I,j ̸=i
xj

xj−xi
.

Definition 13 (Correctness of Shamir secret sharing). A Shamir secret sharing
scheme SSS is correct if, for any secret s ∈ Fq, any set of t or more shares {(xi, yi)}i∈I can
be used to reconstruct s with probability 1. Formally: Pr[s∗ = s] = 1, where s∗ is the output
of the reconstruction algorithm Reconstructn,t.

Definition 14 (Privacy of Shamir secret sharing). A Shamir secret sharing scheme
SSS satisfies privacy if, given fewer than t shares, no probabilistic polynomial-time (PPT)
adversary A can gain any advantage in distinguishing between two secrets s0, s1 ∈ Fq shared
using Sharen,t.

B.3 Commitment schemes

Definition 15 (Commitment scheme). A commitment scheme COM = (KeyGen,
Commit,Verify) consists of the following algorithms:

• KeyGen(1λ): A probabilistic algorithm that takes as input a security parameter λ and
outputs a pair of keys (ck, vk), where:
– ck: Commitment key, used by the committer to generate commitments.
– vk: Verification key, used by the verifier to verify commitments.

In publicly verifiable schemes, it holds that ck = vk.
• Commit(ck,m): A probabilistic algorithm that takes as input a commitment key ck and

a message m ∈ MessageSpace(ck). It outputs a commitment c and an opening d:

(c, d)← Commit(ck,m).

The pair (c, d) enables the committer to prove the commitment corresponds to the mes-
sage m in the verification phase.

• Verify(vk, c,m, d): A deterministic algorithm that takes as input the verification key vk,
a commitment c, a message m, and an opening d. It outputs accept if (c, d) correctly
reconstructs m and satisfies the consistency of the commitment; otherwise, it outputs
reject:

Verify(vk, c,m, d) = accept if (c, d) is valid for m, and reject otherwise.
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Definition 16 (Commitment correctness). A commitment scheme COM = (KeyGen,
Commit,Verify) satisfies correctness if, for any security parameter λ, any valid message m ∈
MessageSpace(ck), and any keys (ck, vk)← KeyGen(1λ), the following holds:

Verify(vk, c,m, d) = accept,

with probability 1 over the randomness of Commit, where (c, d)← Commit(ck,m).
In other words, when both the committer and verifier behave honestly, any valid commitment
c corresponding to a message m will always be accepted during verification.

Definition 17 (Commitment hiding). Let COM = (KeyGen,Commit,Verify) denote a
(publicly verifiable) commitment scheme. The hiding property ensures that no probabilistic
polynomial-time (PPT) adversary A can distinguish between commitments of two messages.
The hiding experiment HidebCOM(A, λ), parameterized by a security parameter λ and a bit
b ∈ {0, 1}, proceeds as follows:

1. The challenger generates a commitment key ck = vk by running KeyGen(1λ) and sends
ck to the adversary A.

2. The adversary A submits two messages (m0,m1), such that |m0| = |m1| and m0,m1 ∈
MessageSpace(ck).

3. The challenger selects a random bit b $←− {0, 1}, computes the commitment (c, d) ←
Commit(ck,mb), and sends the commitment c to the adversary A.

4. The adversary A outputs a bit b′ as its guess for b.

The adversary’s advantage in this experiment is defined as:

AdvHideA (λ) =
∣∣Pr[Hide1COM(A, λ) = 1]− Pr[Hide0COM(A, λ) = 1]

∣∣.
A commitment scheme satisfies the hiding property if:

• Perfect hiding: For all adversaries A, it holds that:

AdvHideA (λ) = 0.

• Computational hiding: For all PPT adversaries A, it holds that:

AdvHideA (λ) ≤ negl(λ),

where negl(λ) is a negligible function in the security parameter λ.

Hiding ensures that no adversary can distinguish the commitment of m0 from m1 with a
probability significantly better than a random guess.

Definition 18 (Commitment binding). Let COM = (KeyGen,Commit,Verify) denote a
(publicly verifiable) commitment scheme. The binding property ensures that no probabilistic
polynomial-time (PPT) adversary A can produce a valid commitment that can be opened to
two different messages.
The binding experiment BindCOM(A, λ), parameterized by a security parameter λ, proceeds
as follows:

1. The challenger generates a commitment key ck = vk by running KeyGen(1λ) and sends
ck to the adversary A.

2. The adversary A outputs a tuple (c,m, d,m′, d′), where m,m′ ∈ MessageSpace(ck).
3. The challenger checks the following conditions:

Verify(vk, c,m, d) = accept and Verify(vk, c,m′, d′) = accept.

4. If both conditions hold and m ̸= m′, the adversary A wins the binding game. Otherwise,
the adversary fails.
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The adversary’s advantage in this experiment is defined as:

AdvBindA (λ) = Pr[BindCOM(A, λ) = 1].

A commitment scheme satisfies the binding property if:
• Perfect binding: For all adversaries A, it holds that:

AdvBindA (λ) = 0.

• Computational binding: For all PPT adversaries A, it holds that:

AdvBindA (λ) ≤ negl(λ),

where negl(λ) is a negligible function in the security parameter λ.

Binding ensures that a commitment c uniquely binds the committer to a single message m.
No adversary should be able to produce two distinct valid openings (m, d) and (m′, d′) for
the same commitment c, except with negligible probability.

Definition 19 (Pedersen commitment scheme). The Pedersen commitment
scheme [52] PCOM = (KeyGen,Commit,Verify) is defined as follows:

• KeyGen(1λ): A probabilistic algorithm that, given a security parameter λ, generates:
– G: A cyclic group of prime order q,
– g: A generator of G,
– h

$←− G: A random independent group element.
The output is the commitment key ck and the verification key vk: ck = vk = (G, q, g, h).

• Commit(ck,m): A probabilistic algorithm that, given the commitment key ck = (G, q, g, h)
and a message m ∈ Zq:
– Samples a random opening value d $←− Zq,
– Computes the commitment: c = gd · hm.

The output is the commitment pair (c, d): (c, d)← Commit(ck,m).
• Verify(vk, c,m, d): A deterministic algorithm that, given the verification key vk =

(G, q, g, h), a commitment c ∈ G, a message m ∈ Zq, and an opening value d ∈ Zq:
– Verifies whether: gd · hm = c.
– Outputs accept if the equality holds, and reject otherwise:

Verify(vk, c,m, d) = accept if gd · hm = c, and reject otherwise.

The Pedersen commitment scheme PCOM satisfies the following properties [49,48]:
• Perfect hiding: The commitment c reveals no information about the message m, as
hm is masked by the randomness gd.

• Computational binding: Given a valid commitment c, it is computationally infeasible
to find distinct (m, d) and (m′, d′) such that: c = gd · hm = gd

′ · hm′
.

C Ideal functionalities

The description of the ideal functionalities used in our protocol is as follows.

C.1 Key registration functionality

The ideal functionality FKR models public key registration and public key/identity retrieval
mechanism. In the register phase, a user U can register a public key pk uniquely linked to
their identity U, provided they know the associated secret key sk, they have not registered
a public key pk before or there does not exist an identity with pk already registered. The
registration request waits for the adversary A’s approval. Upon approval, the public key-
identity pair is stored, and U is notified. In the retrieve phase, a user U∗ can retrieve U’s
registered public key, or U∗ can request an identifier for a specific pk. Retrieval involves
interaction with A, and the response depends on whether the public key or identity exists.
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Functionality FKR

The functionality FKR is parameterized by a secret key–public key relation R(sk, pk).

• Register. Upon input (Register, sid, sk, pk) from U, ignore if R(sk, pk) does not
hold, or there exists an entry (·, pk) or (U, ·). Else, output (Register, sid,U, pk)
to A. Upon receiving (Ok, sid,U, pk) from A, record the pair (U, pk), and output
(Registered, sid) to U.

• Retrieve key. Upon input (RetrieveKey, sid,U) from U∗, sample a fresh q and
set L(q) ← (U,U∗). Output (RetrieveKey, sid, q) to A. Upon receiving (Ok, sid, q)
from A, ignore if L(q) = ⊥. Else, retrieve L(q) = (U,U∗). If there exists a recorded
pair (U, pk), output (KeyRetrieved, sid,U, pk), else, output (KeyRetrieved, sid,U,
⊥) to U∗ via private-delayed output.

• Retrieve ID. Upon input (RetrieveID, sid, pk) from U∗, sample a fresh r and set
L(r)← (pk,U∗). Output (RetrieveID, sid, r) to A. Upon receiving (Ok, sid, r) from
A, ignore if L(r) = ⊥. Else, retrieve L(r) = (pk,U∗). If there exists a recorded pair
(U, pk), output (IDRetrieved, sid,U, pk) else, output (IDRetrieved, sid,⊥, pk) to
U∗ via private-delayed output.

C.2 Communication channel functionality

For privacy-preserving requirements, FCBDC does not leak the identities of users. To realize
this functionality, our protocol uses different types of communication channels FCh to deliver
messages and to meet network-level anonymity (e.g., preventing traffic analysis attacks and
extracting identities) see [33] for more information.

Functionality FCh

Let define S and R as the sender and receiver of a message m respectively. ∆ is defined
as follows based on parameters of functionality. Message identifier mid is selected freshly
by the functionality.

1. Upon input (Send, sid, R,m) from S, sample a fresh mid and record L(mid) =
(S,R,m). Output (Send, sid, ∆,mid) to A.

2. Upon receiving (Ok, sid,mid) from A, ignore if L(mid) = ⊥. Else, retrieve L(mid) =
(S,R,m). Send (Received, sid, S,m) to R.

Set ∆ based on the following parameterized functions:

• for Fac
Ch set ∆ = (S,R,m). Upon receiving (Ok.Snd, sid,mid) from A, send

(Continue, sid) to S.a
• for F sra

Ch set ∆ = (S, |m|).
• for F ssa

Ch set ∆ = (R, |m|).
• for F fa

Ch set ∆ = |m|.
• for F sc

Ch set ∆ = (S,R, |m|). Upon receiving (Ok.Snd, sid,mid) from A, send
(Continue, sid) to S.

• for F sa
Ch set ∆ = (R,m).

– upon receiving (Ok, sid,mid) from A, send (Received, sid,m,mid) to R. Upon
receiving (Ok.Snd, sid,mid) from A, send (Continue, sid) to S.

– upon receiving (Send, sid,mid,m′) from R, output (Send, sid, R,m′,mid) to A.
Upon receiving (Ok.End, sid,mid) from A, send (Received, sid, R,m′) to S.

a This gives more power to adversary A who decides when the sender can proceed as sequential
message sending is required in the UC model.
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C.3 Asynchronous byzantine agreement functionality

In asynchronous byzantine agreement (BA) protocol a set of D parties agree on their inputs,
even facing malicious corruptions. The following functionality tolerates a malicious adver-
sary who statically corrupts up to t parties. In our protocol ΠPEReDi that tolerates static
malicious adversaries, we use the following asynchronous Byzantine agreement functionality
FaBA which can be implemented as follows. Parties send their inputs to everyone. Once all
D− t inputs are received, an honest party switches its input to the bit that has the majority
among D − t. Afterwards, parties engage in a standard Byzantine agreement protocol [16].

Functionality FcaBA

Running with M = {M1, ...,MD} parties; Byzantine agreement functionality FaBA pro-
ceeds as follows where initially Q← ⊥:

• Upon receiving (Agree, sid, dj) from Mj where dj ∈ {0, 1}, record (Agree, sid, dj ,
Mj) and send (Agree, sid, dj ,Mj) to A. Upon receiving D− t distinct dj values: Set
Q = dj once |{j|dj}| ≥ c · t+ 1.

• Upon receiving (Agree.Ok, sid) from A: If Q ̸= ⊥ output (Agreed, sid, Q) to every
Mj via public-delayed output. Else, ignore.

C.4 Broadcast functionality

The broadcast functionality FBC [38] models a reliable broadcast channel where a sender P
can transmit a message m to a predefined set of recipients M = {M1, . . . ,MD}, ensuring
that all recipients receive the identical message. Upon receiving (Broadcast, sid,m) from P,
the functionality delivers (Broadcasted, sid,P,m) to all parties in M and the adversary A,
ensuring consistency and eventual delivery but providing no secrecy guarantee for m.

Functionality FBC

Broadcast functionality FBC parameterized by the set M = {M1, ...,MD} proceeds as
follows: Upon receiving (Broadcast, sid,m) from a party P, send (Broadcasted, sid,
P,m) to all entities in the set M and to A.

C.5 Random oracle functionality

The random oracle functionality FRO [19] models an idealized cryptographic hash function
that provides truly random outputs while ensuring consistency across repeated queries. It
is parameterized by a message space M and an output space Y . Upon receiving a query
(Query, sid,m) from a party P, the functionality first checks whether m ∈ M ; if not, it
aborts. Otherwise, if m has not been queried before, it selects a fresh random value h ∈ Y ,
ensuring that no previous query maps to the same output, and stores the mapping (sid,m, h).
For repeated queries on the same input m, the functionality returns the previously stored
value. This models an idealized hash function that behaves like a truly random function but
remains deterministic for repeated inputs.
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Functionality FRO

The functionality is parameterized by an output space Y and a message space M . Upon
receiving (Query, sid,m) from a party P:

• Abort if m /∈M .
• Else, if a tuple (sid,m′, h) where m′ = m has not already been stored, select a

random h from Y where there is no stored tuple (sid,m∗, h′) where h′ = h, then
store (sid,m, h).

• Take the stored tuple (sid,m′, h) where m′ = m and output (Query.Re, sid, h) to
party P.

C.6 Non-interactive zero knowledge functionality

Groth et al. [41] formalized ideal functionality of non-interactive zero-knowledge (NIZK) that
was introduced by Blum et al. [15]. The NIZK functionality FNIZK models a proof system
where a prover can convince any verifier of the validity of a statement without interaction.
Unlike interactive zero-knowledge proofs, FNIZK allows publicly verifiable proofs without
pre-specifying the verifier.

Functionality FNIZK

The functionality is parameterized by a relation R.

• Proof. On receiving (Prove, sid, x, w) from U, ignore if (x, w) /∈ R. Else, send
(Prove, sid, x) to A. Upon receiving (Proof, sid, π) from A, store (x, π) and send
(Proof, sid, π) to U.

• Verify. Upon receiving (Verify, sid, x, π) from U check whether (x, π) is stored.
If not send (Verify, sid, x, π) to A. Upon receiving the answer (Witness, sid, w)
from A, check (x, w) ∈ R and if so, store (x, π). If (x, π) has been stored, output
(Verification, sid, 1) to U, else output (Verification, sid, 0).

C.7 Signature of knowledge functionality

Signature of knowledge (SoK) was first formally defined by Chase et al. [28]. In SoK, by
providing a valid signature, the signer proves the possession of a witness w to a statement x
for a relation R. It generalizes the notion of traditional signature where a signature under a
public key serves as a proof that the signer is in possession of the corresponding secret key.

Functionality FSoK

The functionality is parameterized by a relation R. Moreover, Sign,Simsign and Extract
are descriptions of PPT TMs, and Verify is a description of a deterministic polytime
TM.

• Setup. Upon receiving (Setup, sid) from U if this is the first time that
(Setup, sid) is received, send (Setup, sid) to A; upon receiving (Algorithms, sid,
Sign,Verify,Simsign,Extract) from A, store these algorithms. Output the stored
(Algorithms, sid,Sign,Verify) to U.
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• Signature Generation. Upon receiving (Sign, sid,m, x, w) from U, if (x, w) /∈ R
ignore. Else, compute σ ← Simsign(m, x), and check that Verify(m, x, σ) = 1. If
so, then output (Signature, sid,m, x, σ) to U and record the entry (m, x, σ). Else,
output an error message (Completeness error) to U and halt.

• Signature Verification. Upon receiving (Verify, sid,m, x, σ) from Uj , if (m, x, σ′)
is stored for some σ′, then output (Verified, sid,m, x, σ,Verify(m, x, σ)) to Uj . Else
let w ← Extract(m, x, σ); if (x, w) ∈ R, output (Verified, sid,m, x, σ,Verify(m, x,
σ)) to Uj . Else if Verify(m, x, σ) = 0, output (Verified, sid,m, x, σ, 0) to Uj . Else
output an error message (Unforgeability error) to Uj and halt.
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