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Abstract. We revisit Updatable Public-Key Encryption (UPKE), which was introduced
as a practical mechanism for building forward-secure cryptographic protocols. We begin by
observing that all UPKE notions to date are neither syntactically flexible nor secure enough
for the most important multi-party protocols motivating UPKE. We provide an intuitive
taxonomy of UPKE properties – some partially or completely overlooked in the past – along
with an overview of known (explicit and implicit) UPKE constructions. We then introduce a
formal UPKE definition capturing all intuitive properties needed for multi-party protocols.
Next, we provide a practical pairing-based construction for which we provide concrete
security bounds under a standard assumption in the random oracle and the algebraic group
model. The efficiency profile of the scheme compares very favorably with existing UPKE
constructions (despite the added flexibility and stronger security). For example, when used
to improve the forward security of the Messaging Layer Security protocol [RFC9420], our
new UPKE construction requires ≈ 1% of the bandwidth of the next-most efficient UPKE
construction satisfying the strongest UPKE notion previously considered.
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1 Introduction

Spurred on by the seemingly never-ending procession of data breaches, 0-day exploits
and system compromises, it is becoming ever more important in applied cryptography to
design protocols with the ability to automatically limit the blast radii of key and state
compromises. Among other techniques, this has lead to interest in primitives designed
to provide cheap but effective forward security, namely the property that security holds
despite possible future compromises.

A näıve (though not ineffective) approach to providing forward security for, say, public-
key encryption (PKE) is for the owner of a key pair (pk, sk) to periodically sample a
fresh and independent key pair (pk′, sk′) that replaces its old keys. While this technique
does provide forward security – old ciphertexts encrypted to pk remain secure even if the
adversary learns sk′ – it comes with a serious drawback from the protocol perspective.
After each key rotation the receiver must first inform prospective senders of the new public
key before new messages can be sent privately to the receiver again.3 Besides increasing
communication complexity, the biggest issue with this is that it forces potentially onerous
coordination requirements on protocol participants.

Avoiding this cost motivated the study of Puncturable Public-Key Encryption [GM15]
(PPKE) as a stand-alone primitive. PPKE provides essentially the same security as the
näıve approach but without further coordination between parties beyond the initial public
key distribution. After that, any number of senders may independently send any number
of ciphertexts to the receiver which can be delivered in any order (or not at all). Despite
the lack of coordination between parties, PPKE guarantees that at any point, leaking
the receiver’s secret key reveals nothing about messages in ciphertexts it had already
received and decrypted.

Clearly a powerful tool for building forward-secure protocols, PPKE lies at the heart
of recent forward-secure 0-round trip key agreement protocols [GHJL17]. But minimizing
round and communication complexity for forward-secure key agreement underpins other
classes of cryptographic protocols. Notably, these include 2-party ratcheting [JS18, PR18,
JMM19, DV19, CCD+20], the multi-party analogue: continuous group key agreement
(CGKA) [ACDT20, AAN+22, ACJM20] and secure group and 2-party messaging [ACDT21].
In this work, we are especially interested in CGKA and secure group messaging (SGM)
applications of forward-secure encryption primitives as these demand new, and hitherto
seemingly overlooked, properties of the underlying primitive.

Updatable public key encryption. Unfortunately, despite its wide-ranging practical
applications, to date, PPKE constructions are not practically efficient for many real-world
use cases, in particular in the ratcheting and messaging settings. This has given rise to a
new class of “off-brand” forward-secure encryption schemes in the messaging literature
called Updatable Public-Key Encryption (UPKE). They aim for a happy middle ground
between forward secrecy with minimal interaction and truly practical efficiency.

Intuitively, UPKE is public-key encryption where senders can also generate update
tokens. Applying an update token up to a public key pk produces an updated public key
pk →up pk′. Similarly, applying up to the secret key sk of pk yields the secret key sk→up sk′

corresponding to pk′. The essential promise of UPKE is that ciphertexts encrypted to pk
remain secure even when an adversary learns pk, the update token up and the updated
secret key sk′. Thus, a protocol in which parties update receivers’ key pairs whenever

3 Note that new keys cannot be prepared and distributed too far in advance since this only extends the
window of time during which forward secrecy is not provided.
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encrypting to them can achieve relatively strong forward secrecy properties. Indeed, done
right, no secret key is ever used more than once by a party and is immediately deleted
(and replaced) upon first use.

However, there is a caveat to this. While using UPKE this way doesn’t require as much
coordination between parties as the näıve approach, it does require more than PPKE. To
ensure a receiver has the correct secret key available, a sender must encrypt to the most
recent version of the receiver’s public key. In other words, senders must see each others’ up
tokens (or at least the most recently updated public key) before they can send. Otherwise,
two senders may concurrently produce update tokens up0 and up1 for one public key pk
giving rise to two sibling key pairs (pk0, sk0) and (pk1, sk1). We refer to this as a “fork”.
When a fork occurs, a receiver will typically only derive one of the forked secret keys skb

since it must then immediately delete sk to ensure forward security. Thus, when it later
receives up1−b, it can no longer produce sk1−b meaning it can’t decrypt anything sent
to pk1−b (or any of its descendent keys). A similar restriction is that the receiver must
decrypt ciphertexts in the same order they were sent (even when sent by different senders).

Still, compared to the näıve technique this represents a qualitative reduction in
coordination since the receiver can essentially stay silent after initial public key distribution.
Crucially, this makes asynchronous communication (as understood in asynchronous (group)
messaging) possible, because senders need not wait for a receiver to announce new public
keys before they can encrypt new messages to them. Thus, UPKE provides to secure
messaging protocol designers the benefits of strong forward secrecy without forcing them
to compromise on the ability of parties to privately message each other despite receivers
potentially being off-line for extended periods of time.

Unfortunately, no UPKE scheme to date is sufficiently flexible, nor has all of the
requisite security properties for natural use in CGKA and SGM applications which UPKE
was partly designed for. Indeed, the initial academic work [ACDT20] in this area introduced
rTreeKEM, a CGKA protocol which provides strong forward security by using UPKE in
place of the PKE. The goal of [ACDT20] was to provide a more secure CGKA upon which
to re-base the IETF’s Messaging Layer Security (MLS) protocol, an open SGM standard
specified in RFC9420 [BBR+23]. However, rTreeKEM (and the resulting SGM based on
rTreeKEM [ACDT21]) were only analyzed in a relatively restricted model, which lead to
relatively lightweight demands being placed on the underlying UPKE (both in terms of
functionality and security).

Since then, however, the much more realistic “insider security” paradigm [AJM22] has
established itself as a standard in the CGKA and SGM literature [HKP+21, AHKM22,
AMT23]. Unlike the security models of [ACDT20, ACDT21], which assume authenticated
channels, insider security only uses an insecure network. More challengingly maybe, insider
security also provides meaningful security guarantees to parties joining “fake” groups; that
is, sessions created arbitrarily by the adversary. These additions mean that insider security
better captures the practical security concerns for SGM and CGKA. However, they also
mean that to date, all UPKE schemes lack either the flexibility or security necessary for a
CGKA (or SGM) application like rTreeKEM to be insider-secure.

Fake-group security. One such missing security property of existing UPKE notions
is the (intuitive) property we call “joiner” security. When UPKE is used in higher-level
CGKA/SGM protocols as a forward-secure replacement for PKE (as in rTreeKEM, for
example), the joiner security of the UPKE scheme plays a central role in ensuring that
the resulting CGKA/SGM protocol provides the “fake group” security aspect of insider
security.
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In more detail, CGKA and SGM protocols allow for dynamic groups (i.e. groups with
evolving membership). Thus, a party P might receive an invitation to join an existing group
mid-session. To join the group, P also receives the group state including the signature
verification keys for each group member (authenticated by some trusted PKI). Fake-group
security (for SGM) considers the case when the invitation (and accompanying group state)
were produced maliciously by the adversary (who may also corrupt parties). It mandates
that if P validates the invitation and state (as specified by the protocol) and subsequently
proceeds with the execution to a point where no corrupt signing keys are left in the group’s
state, then the session should return to a secure state. For example, P’s messages to the
group should remain hidden from the adversary. Notably, this should be the case even
though the group state could still include (U)PKE keys obtained by P from the adversary.

Fake-group security in MLS. To date, the only protocol we are aware of that achieves
fake-group security is MLS. It does so by including signatures in the public group state,
which give P a way to identify which PKE keys in the state were (supposedly) generated
by which party and to whom the party sent the decryption keys as part of the protocol
execution. Whenever a party is removed from the group, so too are any keys they either
(supposedly) generated or were sent. In the insider corruption model, leaking a party’s
signing key also leaks all other secret keys it knows. Thus, if the group ever reaches a
state where only secure verification keys remain in the group state, we can conclude that
all remaining public keys were generated by and sent to uncorrupted parties. As a result,
under those conditions, MLS can provide P with meaningful security guarantees for the
session.

UPKE breaks MLS’s fake-group security mechanism. When [ACDT20] proposed replacing
PKE with UPKE to improve MLS’s forward security, the authors left as an open problem
how to adapt MLS’s mechanism for fake-group security accordingly (at least without
growing the group state in the number of updates to UPKE keys). This was one of the
primary barriers to adopting UPKE in MLS.

Indeed, in general, the state of a group mid-session would include UPKE keys pk that
are (nominally) the result of updates to some prior original key pk0. So, to guarantee that
pk is still secure, a new member must validate that (i) pk0 was generated by an honest
party, and (ii) that pk is the result of honestly using the update algorithm starting from
pk0.

One approach to providing (ii) could be to include in the group state all update tokens
up leading from pk0 to pk along with proofs that they were generated by the update
algorithm. But this solution results in a state size and computational cost of joining that
grow linearly in the number of updates between pk0 and pk, which is prohibitive in practice.
(MLS sessions can be expected to last for years and have, say, n = 50, 000 group members;
so it is not unrealistic that some of the 2n public keys in an MLS state will have been
updated n/2 times by the time a new member joins.) It is also not an adequate solution
to have receivers (i.e., members who can compute the updated sk, which could be as few
as a single party) sign the updated pk to attest to its correctness, as it conflicts with the
asynchronous nature of MLS.4

This motivates the joiner security property of UPKE identified in this work. It provides
a joiner P with a concise tag for validating that some UPKE public key pk is the result of
an (unknown) sequence of honest updates to a given “origin” UPKE public key pk0. Thus,

4 Indeed, after an update by one group member, new members could only join the group after a different
(receiving) group member comes online to validate and sign the updated key. This would mean that at
least 2 existing group members are needed to invite a new member to the group.
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if an uncorrupted honest party attests to having generated pk0 via a signature (just as
with the PKE keys in MLS) then we can again conclude, in the insider security model,
that pk must be secure.

Our proposal: UPKE allowing for fake-group security. These issues show that
there seems to be no easy way to efficiently adapt MLS’s fake-group security mechanism
to UPKE. So instead, we ask the UPKE scheme to directly provide a comparable public
key validation mechanism for new members (and a matching security guarantee). A joiner-
secure UPKE scheme thus includes an algorithm Verifyjt with 3 inputs: (i) a UPKE public
key pk to be validated, (ii) an original public key pk0 and (iii) a “joiner tag” jt. The tag
must be constant-size, in particular, independent of how many updates might have lead to
from pk0 to pk.

The UPKE security game chooses the initial pk0 honestly at the start of the game
(reflecting that in the application we only expect security from pk if an honest party
attested to having generated pk0, e.g. via a signature). Then, the UPKE adversary may
update pk0 with honest (i.e., generated by the challenger) or potentially malicious tokens
up. The adversary wins if it can come up with pk∗ and jt∗ which pass Verifyjt and for
which it can break privacy (IND-CCA) of a ciphertext c∗ encrypted to pk∗. However, the
adversary loses if it corrupts a secret key created before requesting c∗.

This restriction excludes trivial attacks in which pk∗ is an updated version of a corrupted
key. On the other hand, the restriction is not tight in the sense that it also excludes
corruptions that do not lead to trivial attacks. We believe that our joiner security is a good
compromise for the following reasons. First, defining UPKE security that only excludes
trivial attacks would require UPKE schemes with additional functionality, which seems
to require inefficient constructions.5 Second, our joiner security is sufficient to prove that
MLS with UPKE achieves the same fake-group security as today’s MLS with PKE. In fact,
the above can be proven even using UPKE joiner security with no corruptions at all. This
means that our joiner security notion with corruption could enable an even stronger flavor
of fake-group security for MLS with UPKE. Indeed, in Section 7.2 we give an example of
an MLS execution where MLS with UPKE satisfying our stronger joiner security is secure,
but would not be so if its UPKE only satisfied a notion disallowing corruptions. Such a
stronger notion for MLS has not been defined yet, and we leave this as an interesting open
problem.

State of the art. No UPKE definition in the literature accounts for joiner security. For
convenience, in Appendix B we provide the state-of-the-art security definition of [APS23],
which is the updatable KEM adaptation of the UPKE notion of [DKW21], subsequently
also used in [ALP22, APS23, AW23].

UPKE taxonomy. Hiding beneath the term “UPKE” and the high-level intuition above,
we actually find a series of concrete schemes in the literature (e.g. [JMM19, ACJM20,
EJKM22, ALP22, DKW21, AMT23, AW23, APS23]) that differ in their syntax, security
properties and even the purposes they serve in the applications they were conceived for.
To better interpret the results in our work, it is instructive to categorize these differences.

Long vs. short syntax: The most obvious differences between UPKE schemes are their
various syntaxes. UPKE was first introduced in [JMM19] using an (asymmetric) long
syntax also used in [AAN+22, EJKM22]. Here, “long syntax” means that key updates are

5 Essentially, the challenger needs some way to identify which pk’s are old versions of pk∗ provided by the
adversary. This seems to require storing the whole update history in pk∗ or jt∗.
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generated and applied using stand-alone purpose-built algorithms. In contrast, in this work
(as in [ACDT20, ACJM20, ACDT21]) we use a short syntax, where keys are updated as a
side-effect of encryption and decryption, thereby obviating the need for explicit update
tokens and associated algorithms. We opted for the simpler syntax as it suffices for the
dynamic group protocol applications we focus on and converting to long syntax is trivial.

Further, the work [EJKM22] defines two variants of a long syntax. “Asymmetric” long
syntax means an update up = (pu, su) includes a public component pu for updating public
keys and a private component su for updating corresponding secret keys. “Symmetric”
long syntax uses a single value to update both public and private keys. The notions in
[DKW21, ALP22, AW23, APS23] can be viewed as having a symmetric long syntax where
the random coins used by the public key update algorithm are also the update token used
for the private key.

CPA vs. CCA: The first UPKE applications needed only CPA-style UPKE as they either
included additional mechanisms reducing the role of UPKE in their protocol [JMM19,
AAN+22] or their application was analyzed in a model that disables all attacks that might
leverage honest parties as decryption oracles. (For example, the use of ideal authenticated
channels in [ACDT20] trivially prevents the adversary from injecting ciphertexts to
honest parties.) However, subsequently, the stronger and more realistic “insider security”
model [AJM22] has become the standard in the field [HKP+21, AHKM22, AMT23]. This
motivated the need for CCA-style UPKE. Indeed, all subsequent UPKE constructions
(including in this work) are now regularly proven secure with CCA-style security games.

Forking security: Almost all UPKE applications in the group setting involve multiple
parties using the same UPKE secret key. An adversary that, say, controls the network can
easily cause such parties to have diverging views of a protocol session’s transcript. This
can result in forked UPKE keys (i.e., the initial key is updated using different sequences
of updates). Thus, for such settings UPKE schemes must provide security in the face
of forks. To date, we know of no (explicitly defined) UPKE scheme with this property,
including those in [JMM19, EJKM22, ALP22, AW23, DKW21, APS23] making them, a
priori, insufficient for such applications.6

Notable exceptions are the schemes of [ACJM20, AMT23] that are (implicitly) based
on hierarchical identity-based encryption (HIBE). Unfortunately, owing to their use of
unbounded-depth HIBE, these are decidedly impractical for real-world applications leaving
the state of UPKE for the group setting unsatisfactory.

Decryption oracles for old keys: Even assuming there are no forks, in a setting with
multiple parties using the same UPKE secret key, one has to account for parties not seeing
some of the updates (yet) and hence holding old versions of the secret key. Accordingly,
UPKE security notions should account for the attacker trying to inject ciphertexts to such
parties. More precisely, assume we want to prove that an SGM scheme using UPKE is
secure against adversaries who can inject ciphertexts but can not create forks. Even this
weaker notion requires a UPKE security notion where, even after receiving the challenge
ciphertext, the adversary can use the decryption oracle for any old secret key. However,
this is not covered by any CCA-style UPKE definition we know of, in particular, not for
[AW23, DKW21, ALP22, APS23].

6 This seems to have happened because initial applications of UPKE are either in the 2-party setting,
where forking is inherently not possible [JMM19] or they used very restricted models that artificially
avoided forking by definition. Later UPKE constructions relied on UPKE security notions inspired
by these early works but were not analyzed in their motivating applications using newer models. We
provide a concrete scheme in Appendix A satisfying the definition [DKW21] but which leads to simple
attacks when plugged into rTreeKEM.
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Table 1: Comparison of security properties of different UPKE schemes. The last two
columns indicates whether their constructions are practically efficient and in which model
they are proven secure. AGM stands for the algebraic group model [FKL18].

Scheme Syntax Privacy Forking Agnostic Update
Validation

Joiner
Security

PQ Practical Model

[JS18] long CCA ✓ ✓ ROM
[PR18] long CCA ✓ ✓ ROM

[JMM19] long CPA ✓ ✓ ROM
[ACDT20] short CPA ✓ ✓ ROM
[EJKM22] long CPA ✓ ✓ ✓ standard
[DKW21] long CCA ✓ ✓ standard
[ALP22] long CCA ✓ ✓ ROM
[AW23] long CCA ✓ ROM

[APS23] long CCA ✓ ✓ ✓ ROM
[ACJM20] long CCA ✓ ✓ ✓ ✓ standard
[AMT23] long CCA ✓ ✓ ✓ ✓ standard

This Work short CCA ✓ ✓ ✓ ✓ ROM+AGM

Agnostic updates: The applications of UPKE considered in [JS18, PR18, JMM19, AAN+22]
require update tokens to be generated without knowing the public key to which they will
ultimately be applied which we refer to as “agnostic” updates. Consequently, the UPKE
schemes in those works are agnostic (as is the one in [EJKM22] and the implicit ones in
[ACJM20, AMT23], although this is not necessary for the applications in those works).
Conversely, the constructions of [AW23, DKW21, ALP22, APS23] create updates for a
target key.

Protocol usage: While UPKE is usually billed and used as a tool for achieving forward
security in an application, the work of [AAN+22] is an exception. There, applying honestly
generated updates to a possibly leaked secret key should refresh it to a new secure secret
key. In other words (in addition to forward security), their protocol also relies on UPKE
updates to ensure post-compromise security (PCS).7 Thus, unlike any other use for UPKE
we are aware of, [AAN+22] needs the additional intuitive property that secret keys of
updated public keys have high (computational) entropy given the old secret key and
updated public key. Fortunately, to the best of our knowledge, most UPKE schemes
already have this property with the exception of the HIBE-based implicit schemes in
[JS18, PR18, ACJM20, AMT23]. For the purpose of this work we focus on using UPKE
for forward secrecy, so we leave such an entropy requirement for future work.

Publicly verifiable updates: In multi-party protocols like MLS and rTreeKEM, a common
feature is that more than one user might encrypt messages to a particular public key.
Suppose we use UPKE in this setting and a party P1 updates a public key pk to pk′.
It is important that everyone in the group is convinced that pk′ was generated via an
honest update. Otherwise, a corrupt group member P1 (called an insider) might generate
a key pair (pk∗, sk∗) using KeyGen and then convince someone that pk∗ is the updated
key. Clearly this would be a problem as it would make all future ciphertext sent to the
“updated key” pk∗ decryptable by P1.

For group members that know sk, avoiding this is usually not too difficult. For example,
P1 could encrypt to pk the coins used to produce the update [ACDT20]. However, revealing
those coins to members who do not know sk would be problematic since UPKE security

7 PCS is the mirror image of forward security where future keys should be secure despite past compromises.
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notions only ensure forward secrecy for updated keys if the coins used to update sk to sk′

are kept secret.
So, to prevent an insider from tricking parties that don’t know sk into accepting

arbitrary new public keys, the UPKE scheme should provide a method to publicly verify
that pk′ was produced from pk via the update algorithm. To achieve this, the verification
procedure can also take as input a validation tag provided by P1 as part of the message it
sends to the group to announce the update. Intuitively, UPKE security should guarantee
that if pk is secure and the pair (pk, pk′) passes validation (with some tag), then pk′ is
also secure. Accordingly, the UPKE constructions [ALP22, DKW21, APS23] include a
special VerifyUpdate algorithm. For the implicit HIBE-based schemes of [ACJM20, AMT23],
update verification is quite trivial and the step is left implicit.

To summarize, no UPKE scheme to date is known to satisfy the (CCA and) forking
security properties needed to use UPKE in a CGKA protocol like rTreeKEM [ACDT20]
and meet the standard insider security for CGKA. (See Appendix A for a toy scheme that
satisfies the UPKE security notion of [DKW21, ALP22, APS23], yet leads to a trivial
insider security attack when used in place of PKE in MLS as proposed in [ACDT20]. The
attack leverages the lack of forking security in those UPKE notions.)

Our Contributions

New model. In this work, we study CCA-secure Updatable Key Encapsulation Mecha-
nisms (UKEM); the KEM analogue of UPKE. Note that building UPKE from a UKEM is
straightforward (for both the long and short syntax) e.g. using a standard KEM/DEM
construction of CCA-secure PKE from a CCA-secure KEM and a CCA-secure authenti-
cated encryption scheme, as done for example in Hybrid Public Key Encryption (HPKE)
[BBLW22].

We present a new UKEM syntax and security definition designed to meet the needs
of dynamic group protocols such as MLS and rTreeKEM of [ACDT20]. In particular, it
captures CCA-type confidentiality with forks and joiner security. Our notion for UKEM
can be easily extended to model UPKE security.

The new syntax does not require agnostic updates as this is not needed for these
applications. It is based on the short UPKE syntax augmented with two public key
validation algorithms. The first, Verifyjt, lets new members joining a group validate the
public keys they download as part of the group’s state. It takes as input a public key pk0
sampled via key generation, a public key pki being validated and a joiner tag jti. The
joiner tag for a key pki is generated along with pki. In particular, the tag jt0 is generated
alongside pk0 by KeyGen and for i > 0, the tag jti is generated together with pki by
Encaps when encrypting to and updating pki−1, given only pki−1 and jti−1.

Joiner tags can be used to provide new-member security in protocols like MLS and
rTreeKEM as follows. In addition to each UPKE public key pki, the group state contains
the associated tag jti, as well as the original key pk0 signed by the group member who
generated it.8 Whenever a group member encrypts to pki−1, they replace pki−1 and jti−1
by pki and jti. Note that this can be done by all members, including new ones who did
not see pk1, . . . , pki−2. Further, new members can verify the signature on pk0 and verify
jti, which convinces them, respectively, that pk0 was honestly generated and then updated
to get pki.

8 The number of signatures can be reduced by half using the same “hashing down the path” optimization
as in the parent hash mechanism of MLS.
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The second algorithm, Verifymt plays the same role as VerifyUpdate in the syntax
of [ALP22, DKW21, APS23]. It allows existing group members that do not know the
secret keys to validate an updated public key. It takes as input the previous public key
pki−1, the updated public key pki and a member tag mti, also produced as part of the
output when encapsulating to pki−1.

One may wonder why Verifymt is needed and why members cannot verify Verifyjt
instead. Indeed, there may exist schemes for which this is the case. However, constructing
Verifymt is much easier. Intuitively, this is because the creator of mti can use the actual
“witness” (i.e., secret randomness) for updating pki−1 to pki. On the other hand, jti must
be generated without knowledge of the witnesses of the updates from pk0 up to pki−1. As
a result, our efficient construction achieves better security for Verifymt. On the other hand,
joiners cannot profit from this additional security.

Our construction. We provide a practically efficient construction of UKEM satisfying
our model based on pairing-friendly elliptic curves. We prove it secure in the combination
of the random oracle model (ROM) and the algebraic group model (AGM) [FKL18] (see
below) under the co-discrete-log assumption for bilinear groups, which in the AGM directly
implies the co-CDH assumption [BLS01].9

Our starting point is the ElGamal-based KEM of DHIES [ABR98]. Public keys are
of the form u = gx ∈ G in a group G of prime order p with secret key x ∈ Zp. To
encapsulate a symmetric key K, one chooses r←$ Zp, computes the ciphertext v := gr

and sets K := H(u, ur), where H is treated as a random oracle.
To update a public key u in our scheme, we choose a random d←$ Zp, which defines a

new key u′ := u · gd. The associated member tag mt is a proof of knowledge (PoK) of d.
Intuitively, this proof guarantees that if u was “secure” then so is u′. Indeed, suppose an
adversary could update a random key u = gx to u′ = gy for which it knows the secret key y
while also proving knowledge of d such that u′ = u · gd. Then by extracting d from the PoK
we can use the adversary to compute the discrete log x = y − d for a random u. For our
scheme, this intuition about the one-wayness of u and u′ also extends to CCA-security. To
allow receivers to update their secret keys accordingly, d is encrypted under u. Decrypters
can thus recover d and update secret key x to x′ := x + d for u′.

In fact, in our construction, d is actually derived via a random oracle (like the
encapsulated key K). This achieves three goals. First, it allows us to deal with adaptive
corruptions, a problem resulting from forks (see below). Second, unlike in [JMM19,
ACDT20], we can use the KEM ciphertext directly to transmit d, which saves on encrypting
d explicitly. Third, using encryption would require key-dependent message security.

Our UKEM member security notion requires CCA-security for any public key whose
member tag is valid under Verifymt. The notion is strong in that it allows the adversary
to adaptively corrupt any secret key sk as long as sk does not let the adversary learn the
challenge secret key in a trivial way. We achieve this by leveraging the random oracle
and by devising a careful guessing strategy: the security reduction guesses the first key
u∗ on the path of key updates leading from an initial honestly generated public key u0
to the challenge public key for which (i) the adversary breaks an encryption (which, as
in DHIES, corresponds to solving CDH) or (ii) it breaks an encryption of any key the
adversary derived from u∗. Note that the reduction does not know this path and so it
simply guesses a key.

9 The co-DL assumption in groups G and Ĝ, both of prime order p and generated by g and h, respectively,
states that given gx ∈ G and hx ∈ Ĝ for x←$ Zp, it is hard to compute x. The co-CDH assumption
states that given (gx, gr, hx) for x, r←$ Zp, it is hard to compute gxr.
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Despite allowing adaptive corruption, our reduction achieves a security loss of only
the number of ciphertexts (and thus new keys) the adversary asks for. For this to work,
we need to assume that the proofs of knowledge of d (i.e., the member tags mt) are
simulation-sound, that is, even after the adversary has seen simulated proofs (which the
reduction creates when embedding its CDH challenge as a key), we can extract from an
adversarial proof mt. This lets us “translate” a CDH solution for a key the adversary
derived from the embedded key u∗ to a solution for u∗.

Aiming for efficiency, we instantiate these proofs of knowledge of logarithms with
Schnorr proofs, which consist of one element from G and one from Zp. These proofs were
shown simulation-sound in the ROM and the algebraic group model [FO22], which provides
“straight-line extractability”. That is, extraction of the witness does not require rewinding
the adversary (as in the security proof in the ROM [PS00]), which means we can extract
from several proofs without risking an explosion of the running time due to interleaved
rewinds for several proofs.
Joiner security. A trivial construction of a joiner tag jt would be to include all mt proofs
and intermediary public keys on the path from u0 to u′, which guarantee knowledge of
d1, . . . , dk s.t. u′ = u0 · gd for d = d1 + · · ·+ dk. However, this is inefficient and our goal
is constant-size joiner tags. Since the updater does not know the value d, we need a way
to “aggregate” the proofs mti guaranteeing honest hops from ui−1 to ui into a single
short proof jt guaranteeing honest hops from u0 all the way to u′. An inherent problem
with aggregatable proofs is that aggregation introduces malleability, which conflicts with
our requirement that mt should be simulation-sound. Thus, we cannot hope that an
instantiation of jt can also play the role of mt.

A very simple proof of knowledge of a logarithm is to assume that there exists a
second generator h of G of which no one knows the discrete log. To prove knowledge of the
logarithm of v = gd, one sets π := hd. The knowledge-of-exponent assumption [Dam92]
states that π can only be computed if one knows d; formally, for any algorithm outputting
(gd, hd), there exists an extractor that outputs d. These proofs can be efficiently aggregated:
given a proof π = hd for u = gx w.r.t. u0 = gx0 , that is, d = x− x0, a proof for u′ := u · gd

is easily computed as π′ := π · hd.
The problem is that, a priori, one cannot verify whether π was correctly computed.

We thus embed our scheme in a bilinear group. That is, we assume a second group Ĝ and
a bilinear map e: G× Ĝ→ GT for some target group GT .10 We can now set the basis h for
the proofs as a generator of Ĝ and use the pairing to verify a proof π ∈ Ĝ for v ∈ G by
checking whether e(v, h) = e(g, π).

We prove joiner security directly in the algebraic group model. This model implies that
after having received elements h, π1, . . . , πk ∈ Ĝ, whenever the adversary returns some
π ∈ Ĝ, it must have computed π as a linear combination (“algebraically”) of all the Ĝ
elements it has received. In particular, the AGM assumes that the adversary outputs
α0, . . . , αk ∈ Zp such that π = hα0 · πα1

1 · · ·π
αk
k . In our security proof, h and the proofs

π1, . . . , πk computed by the reduction will be all Ĝ elements given to the adversary. As
the reduction knows the discrete logarithms of the πi’s, it can compute the logarithm of π
from α0, . . . , αk.
Weaker assumption for member security. It turns out that the proofs π for joiner security
also allow us to prove member security of our construction under standard PoK security
10 In particular, we use an asymmetric pairing. That is, there are no efficiently computable homomorphisms

between G and Ĝ. In practice, this type of pairing yields the most efficient constructions. Note also
that assuming a pairing lets one prove the security of DHIES from co-CDH instead of the interactive
assumption gap-CDH [OP01, ABR01] which is also the case for our UKEM (see below).
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Table 2: Comparison of object sizes in {kilo, mega}-bytes of recent UPKE schemes. By ϕ
we denote the bit-length of a NIZK that the update was generated correctly. A similar
NIZK is needed to make the CPA scheme [DKW21] CCA-secure, while the CRS for the
NIZK is included in public keys. In all UPKE applications considered in this work (e.g.
rTreeKEM and MLS) ciphertexts are always sent together with a public key, an update
up, joiner tag jt and member tag mt.

Scheme Security PQ ROM |sk | |pk | |ctxt | |up | |jt | |mt |
[DKW21] CPA ✓ 166 B 41 KB 41 KB 52.375 MB

[APS23] CCA ✓ 1.8 KB 10.8 KB + ϕ
[ALP22] CCA ✓ 589 B 1.15 KB 11.375 KB 13.125 KB
[AW23] CCA ✓ 32 B 80 B 96 B 128 B

This work CCA ✓ 32 B 48 B 48 B 96 B 80 B

and with a tighter security proof. In particular, we only require a notion of simulation-
soundness for mt where extraction is done after all simulations. To better understand the
issue, recall that a co-CDH instance consists of u = gx, v = gr ∈ G and û = hx ∈ Ĝ and
the goal is to compute w = gxr. In the security proof of DHIES, the reduction embeds u
as the public key and v as the ciphertext and searches for w among the random oracle
queries made by the adversary. Using co-CDH (rather than CDH) the reduction can
efficiently find w = gxr using the pairing e, by checking if e(v, û) ?= e(w, h). (This is in
contrast to returning w from a randomly chosen random oracle query, which would entail
a multiplicative security loss in the number of adversary’s random oracle queries.)

Our reduction for UKEM embeds u as some (honestly updated) public key and v as
some ciphertext it hopes the adversary breaks. However, v may not be created for u but
for some u′ = u · gd derived from u by the adversary, who needs to provide proofs mt and
jt for u′. The reduction thus searches the random oracle queries for a value w′ = g(x+d)r.
It could do so by extracting d from the proof of knowledge mt. However, using π = hd, it
can directly check e(v, û · π) ?= e(w′, h) without extracting anything at all. Extraction of
the value d is then only needed when a CDH solution is found (and the reduction stops):
computing w := w′/vd = g(x+d)r/grd yields the co-CDH solution gxr.

Efficiency of our scheme. We describe the efficiency profile of our scheme when
instantiated with the BLS12-381 curve [SKSW22, Bow], which is a concrete instance of a
BLS curve [BLS04] with conjectured 128-bit security. It is equipped with an asymmetric
pairing from source groups G× Ĝ to target group GT . Elements of G and Ĝ are of size 48 B
and 96 B respectively and the group order p has 32 B. As NIZK we use a Schnorr proof of
knowledge of the discrete log of elements in G. This means that NIZK proofs are elements
of G × Zp and thus of length 48 B + 32 B = 80 B. Based on this, in our scheme, public
keys are 48 B, ciphertexts are 48 B, joiner tags are 96 B and member tags are 80 B. As
seen in Table 2 this represents a very significant improvement over all CCA-secure UPKE
(and UKEM) schemes to date (despite the new scheme satisfying a considerably stronger
security notion).

For example, using UPKE in rTreeKEM to achieve insider security involves sending
multiple tuples of the form (pk, ctxt, t) where t is either an update token up or a joiner
and member tag pair (jt, mt), depending on which UPKE syntax is used and ctxt is a
ciphertext under the previous key. The tuples of the new UPKE construction in this work
are around 1% the size of those of [ALP22]. For other CCA-secure schemes with publicly
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verifiable updates, the tuples are orders of magnitude larger still (despite none of these
schemes providing forking or joiner security like the new construction).

We note that in our scheme, neither key generation, encapsulation nor decapsulation
use pairing operations. One pairing is computed during each of the public key validation
algorithms (which is run by parties holding the secret key before decapsulation as well).

Outlook. In Section 6 we discuss extensions of our security model and efficiency improve-
ments of the construction. In Section 7 we dive into details of the impact of using variants
of UPKE, including ours and less secure ones from the literature, on the security of MLS.

The main open problem left by our work (cf. Table 1) is a post-quantum-secure UPKE
scheme that provides both forking and joiner security.

2 Preliminaries

Bilinear groups. Our scheme will be defined over a bilinear group with an asymmetric
pairing, that is, a tuple (p, G, Ĝ, GT , g, h, e), where G and Ĝ are groups of prime order p
generated by g and h, respectively, and e: G× Ĝ→ GT is a non-degenerate (i.e., e(g, h)
generates GT ) bilinear map (i.e., for all a, b ∈ Zp: e(ga, hb) = e(g, h)ab).

The security of our scheme relies on the hardness of the co-discrete-logarithm problem
in bilinear groups, defined as follows. We also state co-CDH [BLS01].

Definition 1 (co-DL). Let G = (p, G, Ĝ, GT , g, h, e) be a bilinear group. The advantage
of an adversary A in solving the co-DL problem over G is defined as

Advco-DL
G (A) := Pr

[
y = x

∣∣∣∣∣x←$ Zp, u← gx, û← hx

y ← A(u, û)

]
.

Definition 2 (co-CDH). Let G = (p, G, Ĝ, GT , g, h, e) be a bilinear group. The advantage
of an adversary A in solving the co-CDH problem over G is defined as

Advco-CDH
G (A) := Pr

w = gxr

∣∣∣∣∣∣∣
x, r←$ Zp

u← gx, û← hx, v ← gr

w ← A(u, û, v)

 .

For any u = gx, v = gr, we denote a CDH solution w = gxr by w = DH(u, v).

The algebraic group model. We analyze our scheme in the algebraic group model
(AGM) [FKL18], which assumes that an adversary is algebraic, meaning that it computes
any group element it outputs as a linear combination of the group elements it was given.
More precisely, if the adversary, given input g := u0, u1, . . . , uk ∈ G, outputs a group
element v ∈ G, then it must have computed v as v = uα0

0 · · ·u
αk
k for some α0, . . . , αk.

Formally, the AGM assumes that such coefficients αi, i.e., the “representation” of v are
output by the adversary. The following is implicit in [FKL18].

Lemma 1. In the algebraic group model, co-DL tightly implies co-CDH. In particular, for
any algebraic adversary A against co-CDH in G, there exists B against co-DL in G with
approximately the same running time as A s.t. Advco-DL

G (B) ≥ Advco-CDH
G (A).

Proof. B, on input a co-DL challenge (u = gx, û = hx), samples s←$ Z∗
p and runs A

on the co-CDH challenge (u, û, v := u · gs). When B returns a solution w = gx(x+s), it
accompanies it with a representation (α, β, γ) s.t. w = gαuβvγ = gα+xβ+(x+s)γ (where g,
u and v are the elements of G that A has seen). Equating the two representations of log w
yields x2 − (β + γ − s)x − (α + sγ) ≡ 0 (mod p), which B solves for x and returns the
solution x satisfying u = gx (which must exist). ⊓⊔
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Simulation-extractable zero-knowledge proofs. Our UKEM scheme uses a proof
system PoL (“proof of logarithm”) for statements of the form θ := (u, u′) proving knowledge
of a witness d s.t. u′/u = gd. Formally, PoL may make use of a random oracle H and
comprises the following algorithms: τ ← PoL.ProveH((u, u′), d) outputs a proof τ and
0/1← PoL.VerifyH((u, u′), τ) verifies τ .

We require two security notions: Zero-knowledge (in the random oracle model) means
that the reduction, which can program the random oracle H, can create proofs τi for state-
ments θi without knowing a witness, using an algorithm PoL.SimulateH . The programmed
random oracle and simulated proofs are, together, indistinguishable from a fresh random
oracle and proofs computed honestly via PoL.ProveH using a witness. We denote by ϵsim

PoL,n

the simulation error of PoL when simulating at most n proofs.
Strong simulation extractability (sSE) is an adaptation of strong simulation sound-

ness [Sah99] to proofs of knowledge [DP92]. It is defined via the following game: an
adversary A has access to random oracle H and an oracle that, on input a statement θi of
A’s choice, returns a simulated proof τi (and programs H as needed). Eventually, A returns
a statement/proof pair (θ∗, τ∗) /∈ {(θi, τi)}i. If τ∗ is a valid proof for θ∗ (using the final
programmed version of H) then a witness for θ∗ can be extracted from A. (The notion is
strong since after querying a simulated proof for a statement, a different proof for the same
statement must be extractable.) We require a multi-extraction version of sSE, in which,
after having queried simulated proofs, the adversary returns several valid pairs (θ∗

i , τ∗
i )

with {(θ∗
i , τ∗

i )}i ∩ {(θi, τi)}i = ∅ and one can extract witnesses for all statements θ∗
i . We

denote by ϵext
PoL,n(A) the advantage of the adversary A in breaking simulation extractability

of PoL when returning at most n proofs.

Schnorr signatures. (Key-prefixed) Schnorr signatures are defined over a group G of
order p and a hash function H : {0, 1}∗ → Zp, modeled as a random oracle. Using signing
key x ∈ Zp, a signature on a message m ∈ {0, 1}∗ is computed by sampling r←$ Zp and
returning

(v := gr, s := (r + cx) mod p) with c := H(v, gx, m).

A signature (v, s) is valid for message m under public key u = gx iff gs = v · uc with
c = H(v, u, m).

In the combination of the random oracle model and the algebraic group model, [FO22]
show that Schnorr signatures are sSE zero-knowledge proofs of knowledge of the logarithm
of the public key. That is, they are proofs of knowledge (of the witness) for the NP-relation
{((u, m), x) |u = gx, m ∈ {0, 1}∗}.

Proofs for statements (ui, mi) can be simulated by programming the random oracle (as
done in the original security proof for Schnorr [PS00]). Suppose an algebraic adversary A
receives simulated proofs (vi, si) for statements (ui, mi) of its choosing and then outputs a
valid statement/proof pair ((u∗, m∗), (v∗, s∗)) /∈ {((ui, mi), (vi, si))}. Then, [FO22] showed
that from the representations for the group elements u1, u2, . . . , u∗ and v∗, which A
outputted during the game, one can efficiently compute a witness for the statement
(u∗, m∗) with overwhelming probability.11 In particular, extraction is straight-line and
11 One might wonder why extraction is not trivial in the AGM anyway: an algebraic adversary that has

only seen the generator g and returns u∗ must know a representation α s.t. u∗ = gα. In the context
of security proofs, this is not the case: Consider e.g., an algebraic reduction R to the DL problem.
This means that R receives a DL instance g∗ and simulates the game to an adversary A, providing it
with group elements it computes as linear combinations of g and g∗. When A outputs a group element
z, it accompanies it by a representation in basis all group elements received from R. From this, R
can compute a representation (α0, α1) in basis (g, g∗), that is, z = gα0 · (g∗)α1 . To argue that R can
extract from proofs of knowledge made by A, we need to turn R together with A into an adversary
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we can extract witnesses for multiple proofs produced during a single execution of an
adversary. Thus, Schnorr signatures are multi-extraction sSE proofs in the ROM and AGM,
which we formally prove in Appendix C.

The proof system PoL for member tags is defined as taking input a statement (u, u′) and
a witness d = log(u′/u) and returning a Schnorr signature under key u′/u on the message
(u, u′). Then, sSE guarantees that after receiving simulated proofs for pairs (ui, u′

i), if the
adversary returns a new valid statement/proof pair ((u∗, u′

∗), (v∗, s∗)), we can extract d
such that u′

∗/u∗ = gd.

3 Updatable Key Encapsulation (UKEM)

3.1 Functionality

Intuitively, a UKEM scheme is a key encapsulation mechanism with the following modifi-
cations. First, on input a public key pki, the Encaps algorithm outputs – in addition to
the key K and the ciphertext c – the updated public key pki+1. Accordingly, on input ski,
the Decaps algorithm outputs – in addition to K – the updated secret key ski+1. This is
analogous to any UKEM/UPKE with short syntax from the literature.

Second, Encaps also outputs a “member tag” mti+1 which can be used by entities
holding pki to validate pki+1. In particular, running Verifymt(pki, pki+1, mti+1), such entities
can verify that if pki is “honest” then pki+1 is so, too. In MLS (more precisely, rTreeKEM
[ACDT20]), Verifymt is run by members (not joiners) who do not know ski but know and
have validated pki.

Third, Encaps also generates a “joiner tag” jti+1 which can be used by entities holding
pk0 to validate pki+1. In particular, running Verifyjt(pk0, pki+1, jti+1), such entities can
verify that if pk0 is “honest” then pki+1 is so, too. In MLS, Verifyjt is run by joiners after
checking that pk0 was signed by the member who generated it using KeyGen. Moreover,
Encaps takes the last joiner tag jti as input.

Decaps takes additional input pki+1 and should output ⊥ if it does not “match” ski+1.
In MLS, members who do know ski can thus reject “incorrect” (e.g. adversarially chosen)
pki+1.

Formally, a UKEM scheme consists of the following algorithms:

Key Generation. KeyGen(κ)→ (pk0, sk0, jt0), on input the security parameter, outputs
a key pair (pk0, sk0) and the first joiner tag jt0.

Encapsulation. Encaps(pki, jti) → (K, c, pki+1, mti+1, jti+1) takes as input the current
public key and joiner tag and returns an encapsulated key K, a ciphertext c, an
updated public key pki+1, a new member tag mti+1 and an updated joiner tag jti+1.

Verification of member tags. Verifymt(pki, pki+1, mti+1) → 0/1 verifies the update
from pki to pki+1 using the tag mti+1.

Verification of joiner tags. Verifyjt(pk0, pki+1, jti+1) → 0/1 verifies the update from
pk0 to pki+1 using the tag jti+1.

Decapsulation. Decaps(ski, c, pki+1) → (K, ski+1)/⊥ outputs the decapsulated key K
and the updated secret key ski+1, but only if pki+1 matches ski+1.

against simulation-extractability. This adversary is algebraic, but only in the sense that it can give
representations in basis (g, g∗) where g∗ is a group element of which the extractor will not know the
discrete logarithm. Therefore, [FO22] (and our proof in Appendix C) actually show that even in the
presence of an “auxiliary-input” g∗, one can extract the witness from a Schnorr proof.
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Using UKEM schemes. Importantly, Decaps does not validate any tags. Therefore, appli-
cations using a UKEM scheme should always run Verifymt and Verifyjt before Decaps. This
is reflected in our security notion.

Correctness. A UKEM scheme is correct if for all ℓ ≥ 1 the probability of Correct is
overwhelming, where Correct denotes the output of the following experiment. Generate
(pk0, sk0, jt0)← KeyGen(κ). If Verifyjt(pk0, pk0, jt0) = 0, output 0. For each i ∈ [0, ℓ− 1]:

– Compute (K, c, pki+1, mti+1, jti+1)← Encaps(pki, jti).
– If Verifymt(pki, pki+1, mti+1) = 0, output 0.
– If Verifyjt(pk0, pki+1, jti+1) = 0, output 0.
– Compute (K ′, ski+1)← Decaps(ski, c, pki+1). If (K ′, ski+1) = ⊥ or K ′ ̸= K, output 0.

Output 1.

3.2 Security

The IND-CCA security of UKEM schemes is formalized by the experiment in Figure 1.
Intuitively, during the experiment, a tree is created where each node is identified by an

integer i and has a public key pki and a joiner tag jti. The root is identified by i = 0. Each
non-root node has a parent pari and a member tag mti. Further, some nodes have a secret
key ski. If a node has a secret key, we call it full, and otherwise we call it a half node.

The root node i = 0 is created by the challenger at the beginning of the experiment.
Its public key pk0, secret key sk0 and joiner tag jt0 are generated using KeyGen (the root
is thus a full node). All other nodes j are created by updating existing nodes in one of
three ways:

1. When the adversary A calls the oracle Enc(i), the challenger creates a child j of i by
running Encaps. If i is a full node, j is also a full node with secret key generated by
running Decaps. A is also given the generated ciphertext and key.

2. A child of i with a possibly “adversarial” public key may be created when A calls
the oracle Dec(i, c, pk′, mt′, jt′). In such case, the challenger verifies mt′ and jt′ and,
if the check passes, creates the node j using these values. If i is a full node and
Decaps(ski, c, pk′) outputs (K, skj) (and not ⊥), then j is also a full node with secret
key skj ; in that case, A also receives K, which reflects CCA-security. Otherwise, j is a
half node. Observe that j is a half node if A provides correct (publicly verifiable) tags
but c inconsistent with pk′ (which is not publicly verifiable).

3. A node can be created during a challenge call. We address such calls next. There are
two challenge oracles: member challenge MChal and joiner challenge JChal. Without
loss of generality, A can only call one of them, and only once.

Member security. Consider the case that A calls MChal, which means that the notion
implies security for group members when used in a secure messaging application. On query
MChal(i∗), the challenger creates a child j∗ of i∗ just like during an Enc query creating
a “real” key K(1). A gets either K(1) or a random and independent key K(0) and has to
decide which is the case. It also receives the resulting tags, public key and the ciphertext c∗.
To disable trivial wins, on inputs i and c the Dec oracle returns ⊥ if pki = pki∗ and c = c∗.

Furthermore, our notion implies forward secrecy by giving A access to an oracle Rev,
which reveals secret keys (of full nodes). In particular, A can ask for the secret key of any
node outside the challenge set of i∗, which consists of three parts. First, the base of the
challenge set, which is the path from the root 0 to i∗. Clearly, revealing the secret key
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Game UKEM IND-CCA Security

ExpIND-CCA(A)

(pk0, sk0, jt0)← KeyGen(κ)
(mt0, par0, rev0, j)← (ϵ, ϵ, 0, 0)
b←$ {0, 1}
b′ ← AEnc,Dec,Rev,MChal,JChal(pk0, jt0)
S ← chall-set(chall)
return b = b′ ∧ ∀j ∈ S : ¬revj

Oracle Enc(i)

(K, c)← create-honest-node(i)
return (K, c, pkj , mtj , jtj)

Oracle MChal(i)

req chall = ⊥
K(0)←$ {0, 1}κ

(K(1), c∗)← create-honest-node(i)
chall← (“member”, i, c∗, pki)
return (K(b), c∗, pkj , mtj , jtj)

Oracle Rev(i)

req ski ̸= ⊥
revi ← 1
return ski

Oracle JChal(pk′, jt′)

req chall = ⊥
req Verifyjt(pk0, pk′, jt′)
K(0)←$ {0, 1}κ

(K(1), c∗, pk, mt, jt)← Encaps(pk′, jt′)
chall← (“joiner”, j, c∗, pk′)
return (K(b), c∗, pk, mt, jt)

Oracle Dec(i′, c′, pk′, mt′, jt′)

req pki′ ̸= ⊥ // i-th node exists
if chall = (∗, ∗, c∗, pk∗) then

req c∗ ̸= c′ ∨ pk∗ ̸= pki′

req Verifymt(pki′ , pk′, mt′)
req Verifyjt(pk0, pk′, jt′)
j++
(pkj , mtj , jtj , skj , parj , revj)← (pk′, mt′, jt′,⊥, i′, 0)
if ski′ ̸= ⊥ then

out← Decaps(ski′ , c′, pk′)
if out ̸= ⊥ then

(K, skj)← out
return K

return ⊥

Helper create-honest-node(i)

req pki ̸= ⊥ // i-th node exists
j++
(K, c, pkj , mtj , jtj)← Encaps(pki, jti)
if ski ̸= ⊥ then

// i-th node is full
(∗, skj)← Decaps(ski, c, pkj)

else skj ← ⊥
(parj , revj)← (i, 0)
return (K, c)

Helper chall-set(chall)

if chall = (“member”, i∗, ∗, ∗) then
base← {i0, . . . , iℓ} where i0, . . . , iℓ is the path
from node i0 = 0 to node iℓ = i∗

else if chall = (“joiner”, i∗, ∗, ∗) then
base← {0, . . . , i∗}

else return ∅
extd-base← {i′ | ∃ i ∈ base : // include duplicates

(pki′ , mti′ , jti′ ) = (pki, mti, jti)}
return dec-closure(extd-base)

Helper dec-closure(S)

Return the set of all j reachable from some i ∈ S
via only edges created by Dec queries.

Fig. 1: The experiment formalizing UKEM IND-CCA security. By default, all variables are
initialized to ⊥. We use req condition to denote that if condition is false, then the current
function, and any function calling it, stops and returns ⊥.
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for any such node would allow A to trivially win by computing the secret key of i∗ by
running Decaps sequentially on the ciphertexts between the corrupted and the challenged
node, and then decapsulating c∗. This base is extended to extd-base, which also includes
duplicates, i.e., any nodes that have the same public key and the same tags as a node in
base.12

Finally, the challenge set contains branches, which are nodes reachable from extd-base
via nodes created by Dec queries. This is where our notion does not formalize optimal
security: there exist UKEM schemes, notably the ones based on HIBE that achieve security
even when A can corrupt keys on branches. However, we are not aware of any efficient
schemes that achieve this. Observe that the secret keys of nodes on branches are generated
by updating a secret key on the challenge path (or a duplicate node) with updates generated
by A. Therefore, for optimal security we would need a mechanism that does not allow A
to undo its updates, which resembles PPKE.

We note that A is allowed to ask for the secret key for j∗ created by MChal, which
corresponds to the fact that in typical UPKE security notions [DKW21, APS23, ALP22,
AW23] the challenge oracle returns the updated secret key. However, A can also obtain
many other keys, e.g., any node created by Enc and not on the challenge path (and all
their children).

Joiner security. Next, consider the case that A calls JChal, formalizing a notion
that implies security for joiners when used in a secure messaging application. On query
JChal(pk′, jt′), the challenger verifies jt′ for pk′ w.r.t. the (honest) pk0 and, if the check
passes, runs Encaps on pk′ to generate the “real” key K(1). As for member security, A is
also given the resulting ciphertext, public key and tags. A’s goal is to distinguish K(1)

from a random and independent K(0). To disable trivial wins, on inputs i and c the Dec
oracle returns ⊥ if pki = pk′ and c = c∗.

Reveal queries are more restricted for joiner security than for member security. In
particular, the challenge set base now contains all nodes generated before the call to JChal
was made (which is thus a superset of the set base in the MChal setting). Analogously to
member security, A is not allowed to corrupt keys for nodes in the set base, any duplicates
of such nodes and branches (i.e., nodes derived from these via Dec queries).

The above restriction cannot be relaxed without enabling “trivial” attacks against
any correct scheme (at least with our syntax). To illustrate this, consider the following
adversary A. By calling Enc(0) twice, A generates two children of node 0 with keys pk1,
pk2 and tags jt1, jt2. Then by running Encaps(pk1, jt1) (possibly repeating this to create
a longer path), A computes a new pair (pk′, jt′) on its own and submits it to its JChal
oracle. If A was allowed to query Rev(1), it could then, by running Decaps (possibly
consecutively), compute the secret key for pk′.

In general, pk′ may have been derived via Encaps from any pki that A saw before
generating pk′. Our restriction thus disallows Rev(i) for all such pki, including pk0, pk1
and pk2 in the above example, even though corrupting pk2 would not lead to an attack.
However, the challenger cannot identify keys that can be revealed, as the UKEM syntax
does not allow to decide, given the challenger’s information, whether pk′ could not have
been derived from them.
12 This restriction prevents trivial attacks, as in the following example: A queries Enc(0), which creates

node 1 with (pk1, mt1, jt1) and ciphertext c1. It next queries Rev(1), to obtain the corresponding sk1.
It then queries Dec(0, c1, pk1, mt1, jt1), which creates node 2 with sk2 = sk1, and finally MChal(2),
to receive (c∗, K∗, pk3, mt3, jt3) and checks whether for (K′, sk3) ← Decaps(sk1, c∗, pk3) it holds that
K′ = K∗.
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Remark 1. One could consider relaxing the above restriction on reveal queries for a UPKE
with modified syntax, e.g. with an additional algorithm that decides, given pk′, jt′, pki

and ski (and any other information the challenger has), whether pki is an ancestor of pk′.
However, implementing such an algorithm seems to require inefficient techniques, such as
storing all ancestor public keys in jt′.

Remark 2. One could imagine strengthening joiner security by having JChal(pk′, jt′) create
an (incomplete) node i′ with pki′ = pk′ and jti′ = jt′ and allowing the adversary A to
create a (detached) tree rooted at i′. (Note that, by the arguments in Remark 1, we cannot
define a parent of i′.) However, the resulting notion would be equivalent to our notion.
Since i′ has no parent, its sub-tree contains only half-nodes without secret keys. So no
oracle call related to such nodes uses any secrets unknown to A (which are the secret keys
of full nodes and the bit b.) Thus, A could emulate such oracle calls itself.

Definition 3 (UKEM Security). Let ExpIND-CCA(A) be as defined in Figure 1. The
advantage of an adversary A against the IND-CCA security of a UKEM scheme is defined
as

AdvIND-CCA(A) := 2 Pr
[
ExpIND-CCA(A) = 1

]
− 1.

4 Construction

The basis of our construction is the KEM part of DHIES [ABR98], which is basically
“hashed ElGamal” for a hash function (modeled as a random oracle) H : {0, 1}∗ → K, the
symmetric key space. We use groups G and Ĝ of order p with a pairing e from G × Ĝ
and define the KEM in G: Public keys are of the form u = gx ∈ G and symmetric keys
K are encapsulated by choosing r←$ Zp, defining the ciphertext as v := gr and deriving
K := H(u, ur). Using the secret key x, keys are decapsulated from v as K := H(gx, vx).

We extend this to derive updated public keys as follows: using a second random
oracle H1, we define d := H1(u, ur) and set the new public key as u′ := u ·gd. Decapsulation
now takes as additional argument the updated key u′, derives d := H1(gx, vx), updates
the secret key to x′ := x + d and checks if u′ = gx′ . To guarantee that the new key u′

was derived correctly (and not chosen freshly with a known secret key), we add a proof
of knowledge (PoK) τ of d, that is, a PoK of the discrete log of u′/u. (For our security
notion allowing adaptive corruption, τ needs to be simulation-sound.) This τ corresponds
to mt in the UKEM model.

The tag jt given to joiners will be a PoK of D′ := x′ − x0, with x0 the secret
key of the root key u0 and x′ the secret key of the updated key u′. This guarantees
that u′ is linked to the root key u0. A straightforward solution would be to define
jtj := (u1, mt1, . . . , uj−1, mtj−1, mtj), that is, all keys between u0 and uj together with
their update proofs. To avoid a growth in size depending on the number of updates,
we would require a direct proof of knowledge of D′ = x′ − x0, but the updater will not
know D′. Our solution is to use “aggregatable” proofs, that is, given a PoK of D = x− x0
corresponding to key u, and deriving u′ from u using d, one should be able to derive a
PoK of D′ := D + d.

We use the second pairing source group Ĝ, generated by h, to instantiate these
aggregatable proofs. A proof π proving knowledge of the logarithm of an element u =
gx ∈ G is defined as π := hx ∈ Ĝ. Using the pairing, a proof can be verified by checking
e(u, h) = e(g, π). Making “knowledge-of-exponent”-type assumptions (in our security proof
we will directly rely on the algebraic group model), we get that from any algorithm
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Construction UKEM[H1, H2, H3,G, PoL]

KeyGen()

x←$ Zp

return (u← gx, x, π0 ← h0)

Encaps(ui, πi)

r←$ Zp

v ← gr // ciphertext
di+1 ← H1(ui, ur

i ) // secret key update
ui+1 ← ui · gdi+1 // update public key
τi+1 ← PoL.ProveH3 ((ui, ui+1), di+1)
πi+1 ← πi · hdi+1

K ← H2(ui, ur
i ) // output key

return (K, v, ui+1, τi+1, πi+1)

Verifymt(ui, ui+1, τi+1)

return PoL.VerifyH3 ((ui, ui+1), τi+1)

Verifyjt(u0, ui+1, πi+1)

return e(ui+1/u0, h) = e(g, πi+1)

Decaps(xi, v, ui+1)

di+1 ← H1(gxi , vxi )
xi+1 ← xi + di+1 // update secret key
if ui+1 ̸= gxi+1 then

return ⊥
K ← H2(gxi , vxi ) // output symmetric key
return (K, xi+1)

Fig. 2: The UKEM construction. Here H1, H2 and H3 are hash functions modeled in the
proof as random oracles, G = (p, G, Ĝ, GT , g, h, e) is a bilinear group, and PoL is a proof of
knowledge system for discrete logarithm statements in G, which might use H3.

that returns u and π satisfying the above equation, one can extract x = logg u = logh π,
meaning π is indeed a proof of knowledge.

Using these proofs for jt allows the updater to transform a proof π for u into a
proof π′ := π · hd for u′ = u · gd. A proof π′ for u′ w.r.t. u0 is verified by checking
e(u′/u0, h) = e(g, π′). Our UKEM scheme is formally defined in Figure 2.

5 Security of the Construction

Security of our construction is expressed by the following theorem.
Theorem 1. If PoL is a strongly simulation-extractable proof system and co-CDH holds
for G, and assuming adversary A is algebraic, then the UKEM construction from Figure 2
is IND-CCA secure in the ROM. More precisely, for any adversary A, there exist reductions
B and B′ such that

AdvIND-CCA(A) ≤ (ne + 2)
(
ϵsim
PoL,ne+1 + ϵext

PoL,nd
(B′) + Advco-CDH

G (B)
)
,

where ne (nd, resp.) are upper bounds on the number of Enc (Dec, resp.) queries made by A,
and ϵsim

PoL,n (ϵext
PoL,nd

(·), resp.) are the probabilities that simulation of n proofs (extraction
from nd proofs, resp.) fails for PoL.

Together with Lemma 1, Theorem 1 implies that the security of our construction can
be reduced to co-DL. Moreover, using the fact that Schnorr proofs, against algebraic
adversaries, are strongly simulation-(multi-)extractable (as we show in Appendix C) with
simulation error ϵsim

n := n/(p− nh − n) and (multi-)extraction error ϵext
n = n/p, yields the

following:

Corollary 1. Let G be an asymmetric bilinear group. If PoL is instantiated using Schnorr
(cf. Section 2) and co-DL holds for G, then the UKEM construction from Figure 2 is
IND-CCA secure in the ROM and the AGM. More precisely, for any algebraic adversary A,
there exist a reduction B such that

AdvIND-CCA(A) ≤ (ne + 2)
( ne + 1

p− nh − ne − 1 + nd

p
+ Advco-DL

G (B)
)
,
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where ne, nd and nh are upper bounds on the number of, respectively, Enc, Dec and H3
queries made by A.

Proof of Theorem 1. We split the security notion IND-CCA into two: CCA-M, in which
the JChal oracle is disabled, and CCA-J, in which the MChal oracle is disabled. The
advantages AdvCCA-M and AdvCCA-J are defined accordingly. In Lemmas 2 and 3 we then
bound these advantages. Theorem 1 then follows by summing them and letting B and B′

be those adversaries from Lemma 2 or Lemma 3 that have the greater advantage.

5.1 Member Security

We first prove the following lemma, which formalizes member security, CCA-M, of our
UKEM scheme.

Lemma 2. If PoL is a strongly simulation-extractable proof system and co-CDH holds
for G, then the UKEM construction from Figure 2 is CCA-M-secure in the ROM. More
precisely, for any adversary A, there exist reductions B and B′ such that

AdvCCA-M(A) ≤ (ne + 1)
(
ϵsim
PoL,ne+1 + ϵext

PoL,nd
(B′) + Advco-CDH

G (B)
)
,

where ne and nd are upper bounds on the number of A’s Enc and Dec queries, respectively.

Proof intuition. Let A be any adversary against the CCA-M security of our UKEM
scheme. We will construct a reduction B against the co-CDH problem, i.e., given u∗, û∗

and v∗, B must compute w∗ = DH(u∗, v∗).
We start by adapting the proof idea for the security of the KEM of DHIES in the

ROM. B embeds u∗ as some uj generated by the challenger, that is, either as u0 or some
uj returned by an Enc(i) query, hoping that A calls MChal(j). If this happens, B embeds
v∗ as the ciphertext returned by the oracle. Now as long as A never queries (u∗, w∗) to
the RO H2 with w∗ = DH(u∗, v∗), the challenge key K(b) is independently random in
both the real and the ideal game, and so no information on b is revealed. On the other
hand, querying (u∗, w∗) means A solved CDH; moreover, B can test this by checking if
e(w∗, h) = e(v∗, û∗).

Embedding u∗. Consider embedding u∗ = gx as ui∗ during a query Enc(p∗) (with p∗ the
parent of i∗), which returns ciphertext vi∗ . This is depicted in 3a. Recall that Encaps
would compute di∗ = H1(up∗ , wi∗) with wi∗ := DH(up∗ , vi∗) and define ui∗ := up∗ · gdi∗

and πi∗ := πp∗ · hdi∗ . So when setting ui∗ := u∗, the reduction B does not know the
corresponding di∗ = log(u∗/up∗). It thus generates the proof τi∗ using the simulator
guaranteed by zero knowledge of PoL. To compute πi∗ , it uses û∗ = hx from its co-CDH
challenge and sets πi∗ := û∗/hx0 (and πi∗ := h0 if j = 0).

While B can simulate the proofs, not knowing di∗ , it cannot consistently answer if A
queries H1 on (up∗ , wi∗). On the other hand, as long as this query has not been made, the
simulation is consistent. Now, to make this query, A would have to solve CDH w.r.t. up∗

and vi∗ . But if A ever does so, then B should have guessed differently and embedded u∗

as up∗ and v∗ as vi∗ (assuming for the moment there are no Dec queries). B’s guessing
strategy will therefore be to guess the index i∗ of the first key ui∗ generated during a
query Enc(p∗) on the path to the challenge for which A will solve CDH via an RO query.
(Note that B does not know the path; it simply guesses the index of an Enc query.) This
is depicted in Fig. 3b.
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0 p∗
i∗ j. . . Enc MCh

u∗ v∗

(a) Reduction B chose x0, . . . , xp∗ itself and embedded u∗ as ui∗ returned by a query Enc(p∗). Thus, B does
not know the value di∗ returned by the RO H1(up∗ , wi∗ ) with wi∗ = DH(up∗ , vi∗ ). But if A makes such a
query, then B should have embedded u∗ in p∗.

0 p∗
i∗ j ic. . . Enc Enc . . . MCh

u∗ v∗

(b) Reduction B embeds u∗ as the first key ui∗ on the path from 0 to ic for which A will solve co-CDH
via an RO query (ui∗ , wj).

0 p∗
i∗ j∗ j ic. . . Enc Dec Dec Enc . . . MCh

u∗ v∗

(c) The adversary can insert Dec-edges between i∗ and j∗. B will extract d for such edges from the τ -proofs
and use them to “translate” wj = DH(uj∗ , v∗) to w∗ = DH(u∗, v∗).

0 p∗
i∗ j∗ j ic

j′

. . . Enc Dec Dec Enc . . . MCh

Enc

u∗ vj = v∗ · gsj

v∗ · gsj′

(d) If A creates an Enc-edge (j∗, j′) then it is allowed to query Rev(j′). To answer such a query, B chooses
the secret key xj′ itself. Thus, B does not know dj′ returned by the RO H1(uj∗ , wj′ ) with wj′ = DH(uj∗ , vj′ ).
But if A makes such a query, then B can solve CDH if it embeds v∗ in vj′ .

0 k∗ j∗ j ic

j′

i∗ j′′

. . . Dec Dec Dec Enc . . . MCh

Enc

Enc

Dec Enc

uk∗ = u∗

u∗

v∗ · gsj

v∗ · gsj′

v∗ · gsj′′

(e) Via a Dec query, A can also create a node k∗ by copying the public key (and the tags) from some node
i∗ that is not on the path 0→ ic. In this case B must embed u∗ as the key in i∗. We are not able to answer
Rev queries for descendants of i∗ but they are not allowed as the descendants are in chall-set.

Fig. 3: Illustration of different executions of the member security experiment with reduction
B to co-CDH running the adversary A. Cyan marks nodes for which B does not know
the secret key and edges for which B doesn’t know the secret d. Magenta marks edges for
which B will extract d from A’s τ -proofs.
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For now we only considered the case that A makes the query MChal(j∗) or Enc(j∗)
assuming uj∗ was itself created during an Enc query; but uj∗ might have been created
during a Dec query. That is, the attacked key (i.e., the one for which A solves CDH)
has been generated by the adversary. Security now relies on the fact that ultimately the
attacked key was derived (possibly via many Dec queries) from an honest key, say ui∗

(which might be u0). This is depicted in Fig. 3c.
Since A must provide proofs τi for the hops from ui∗ to uj∗ (where τi proves knowledge

of di = xi−xpari
), B can extract the values di and sum them to di∗→j∗ := xj∗ −xi∗ , which

it can use to “translate” CDH solutions for uj∗ to ui∗ . Thus, it can embed u∗ as ui∗ and
embed v∗ = gr as the ciphertext the adversary breaks. A solution w = DH(uj∗ , v∗) then
yields a solution w/(v∗)di∗→j∗ = gxj∗ r/gr(xj∗ −xi∗ ) = DH(u∗, v∗).

Our strategy is thus to guess the following index i∗: if the first attacked key is uj∗ ,
then i∗ is the closest ancestor of j∗ with a public key generated by the challenger. That is,
at the latest i∗ = j∗ (if j∗ is generated during an Enc query), and at the earliest i∗ = 0.
Note that we do not need to guess j∗ (where we embed v∗), as explained below.

Answering Rev queries. Say B embeds u∗ as ui∗ and consider a query Enc(i∗), which
creates a new key uj . If node j turns out not to lie on the challenge path, then A is allowed
to query Rev(j). However, if B ran Encaps to answer the query, setting uj := u∗ · gdj with
dj := H1(ui∗ , DH(ui∗ , vj)), then it would not know xj = log uj to answer the Rev query.

But recall that B hopes that A attacks key ui∗ ! Every time Enc or MChal is queried
on i∗, the reduction thus embeds v∗ from its co-CDH challenge into the ciphertext. In
particular, using random self-reducibility, B chooses a uniform sj and defines the new
ciphertext as vj := v∗ · gsj . If A ever queries H1(ui∗ , wj) for wj := DH(ui∗ , vj), the game
stops and B returns w∗ := wj/(u∗)sj = gx∗(r+sj)/gx∗sj = DH(u∗, v∗). On the other hand,
as long as no such query is made, dj is not defined, and thus B can simply sample xj , set
uj := gxj (which implicitly defines dj) and simulate the proofs τj and πj . This way, B can
then answer the query Rev(j).

The case Enc(j∗) for an index j∗ whose path from i∗ consists of only Dec queries
is dealt with similarly: B embeds v∗ · gsj as vj and samples xj freshly. As long as the
adversary does not query H1(ui, wj) with wj = DH(uj∗ , vj), the simulation is perfect. If the
adversary makes that query, it can be translated back to a solution DH(u∗, vj), and thus to
DH(u∗, v∗), by extracting di∗→j∗ = xj∗ − x∗ from the τ -proofs provided by the adversary
when making the Dec queries linking ui∗ to uj∗ : we have w∗ := wj · (u∗)−sj · v−di∗→j∗

j =
g(x∗+di∗→j∗ )(r+sj)g−x∗sj g−(r+sj)di∗→j∗ = DH(u∗, v∗). This is illustrated in Fig. 3d.

Extracting from adversarial proofs. Simulation-extractability of τ -proofs only lets us
extract from proofs computed by the adversary (and not ones created by the simulator).
So what happens if the adversary “copies” proofs simulated by the challenger?

In particular, consider the situation where we embedded our challenge key u∗ as ui∗ and
the adversary attacked one of its Dec-descendants uj∗ . If none of the key/proof pairs (ui, τi)
on the path from i∗ to j∗ appear elsewhere in the tree, then the statement/proof pairs are
different from those of the simulated proofs, and we can extract their witnesses. On the
other hand, assume that on this path, there is a pair (uk∗ , τk∗) which appears elsewhere
as (uk′ , τk′) in the tree. If (and only if) k′ was created in a query Enc(i′) and i′ is a Dec-
descendant of i∗, then τk′ was simulated, and thus we cannot extract from τk′ = τk∗ . (Note
that since for every uk there is a unique valid πk, we have (uk∗ , τk∗ , πk∗) = (uk′ , τk′ , πk′).)

However, this just means that we should have guessed differently: assume k∗ is the
last “copied” node on the path from i∗ to j∗. If we had embedded our challenge key u∗ as
uk∗ (when we created it as uk′ when answering an Enc query) then we could now solve
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CDH: since, by assumption, no nodes between uk∗ and uj∗ are copied, we can extract
from their τ -proofs and thus compute dk∗→j∗ = xj∗ − xk∗ , which lets us shift a CDH
solution for uj∗ to one for uk∗ . Note that we would not be able to answer Rev for k′ and its
Dec-descendants, but such queries are disallowed (as they are part of chall-set, cf. Fig. 1).
This scenario is illustrated in Fig. 3e.

Our actual guess strategy is therefore: let uj∗ be the first key the adversary attacks
during the game; then what is the index of the Enc query that creates the node (uk∗ , τk∗)
so that when starting from uj∗ and moving up Dec-edges, (uk∗ , τk∗) is the first key/proof
pair created by the challenger during an Enc query (at latest, this is u0).

Answering Dec queries. We address answering decryption queries Dec(i) for nodes whose
secret key is not known to the reduction. These are all nodes whose public key u∗ is the
embedded co-CDH instance, or any Dec-descendant of such nodes, marked in cyan in
Fig. 3. Here we return to the ideas for proving CCA-security of DHIES, namely inspecting
the random-oracle table. We moreover use the fact that CDH solutions can be checked via
the pairing using the associated proof πi: given a ciphertext vj for key ui = gxi , we have
Kj = H2(ui, wj) with wj := DH(ui, vj) and the latter can be efficiently checked: setting
ûi := πi · hx0 = hxi (where hx0 := û∗ if i∗ = 0), check if e(wj , h) ?= e(vj , ûi).

So to decrypt ciphertext vj for key ui we do the following: if there has been a query
(ui, DH(ui, vj)) to H2, then we return the same key again; if there has not been such a
query, we sample a fresh key Kj and (implicitly) program the random oracle: store an
entry (ui, vj ,⊥, Kj), meaning that (ui, DH(ui, vj)) gets mapped to Kj . To detail how the
Dec queries are answered, we first address programming of the random oracles.

Programming the random oracles. Answering Enc, Dec and MChal queries results in
defining the entries of the random oracle tables for H1 and H2. The inputs are of the form
(u, w), on which H1 outputs d and H2 which outputs K. For certain queries, these entries
are partial, since the reduction does not know all inputs/outputs, meaning, the RO is pro-
grammed implicitly. The reduction thus stores RO entries of the form (u, û, v, w, u′, d, K),
some of whose components can be ⊥. For u = gx, the (non-⊥) values are: û = hx,
w = vx = DH(u, v), u′ = u · gd and d and K are the outputs of, respectively, H1 and H2,
on input (u, w). Note that û, w and u′ are determined by the other values. During Enc
and MChal queries, implicit programming happens at the following positions:

1. When embedding the key u∗ as ui∗ for i∗ ̸= 0, letting p∗ := pari∗ , the reduction
implicitly defines the oracles at (up∗ , v

xp∗
i∗ ) (where xp∗ was chosen by the reduction); H1

is set to di∗ := log(ui∗/up∗) (unknown to the reduction) and H2 is set to Ki∗ (chosen
by the reduction). When answering this query, the reduction thus stores the following
entry (where ûp∗ := hxp∗ ):

(up∗ , ûp∗ , vi∗ ,⊥, ui∗ ,⊥, Ki∗)

(We put ⊥ as the 4th component for consistency with the next case, although the
reduction knows the value v

xp∗
i∗ .)

2. For any call of Enc or MChal at position i with ui = u∗ or i being a Dec-descendant
of a node with public key u∗, the reduction creates vj (embedding v∗ from its co-CDH
instance) and uj (:= gxj for fresh j) and defines H1 and H2 at position (ui, DH(ui, vj)),
which is unknown to the reduction. While the reduction chooses the value Kj at this
position for H2 (for the MChal query, Kj corresponds to “K(1)”), it will not know the
value dj = log(uj/ui) for H1. The reduction thus stores

(ui, ûi, vj ,⊥, uj ,⊥, Kj),
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where, as above, ûi = û∗ if i∗ = 0 and ûi := πi · hx0 = hxi otherwise.

For every random-oracle query (u, w) the adversary makes, the reduction checks if
(u, w) = (ui, DH(ui, vj)) holds when i = i∗, or i = pari∗ or i is a Dec-descendant of i∗. It
does this by checking u ?= ui and e(w, h) ?= e(vj , ûi). (Note that such queries to H1 cannot
be answered, since the reduction does not know dj = log(uj/ui).)

If this is the case for i = pari∗ , the reduction stops, since the guess i∗ was wrong, as
pari∗ would have been the right guess. If it happens for i∗ or any of its Dec-descendants,
the reduction stops and returns the co-CDH solution (computed as described above).
Otherwise, fresh values d and K are sampled and a new entry (u,⊥,⊥, w, u · gd, d, K) is
created. We say that in this case the RO was explicitly programmed.

Details of answering Dec queries. Let us consider a query Dec(i′, v′, u′, τ ′, π′). If τ ′ and
π′ are valid, a new (for now: half-)node is created. If i′ is a full node, the oracle would
do the following: run Decaps on ski′ , that is, compute d′ := H1(ui′ , DH(ui′ , v′)); check if
u′ = ui′ · gd′ ; if so, return K := H2(ui′ , DH(ui′ , v′)) and declare the new node a full node;
else return ⊥.

If i′ is a half-node, then the reduction can simulate the Dec oracle perfectly, as the
latter uses only public values. Moreover, if i′ /∈ chall-set, then the reduction knows ski′

and can thus simulate the oracle perfectly as well.
For i′ ∈ chall-set and i′ being a full node, the reduction uses its extended RO table as

follows:

(i) If there is an entry (ui′ , ∗, v′,⊥, u′′, d, K) for some u′′, d (where possibly d = ⊥) and K,
then the RO was already implicitly programmed at (ui′ , DH(ui′ , v′)) (either during and
Enc or MChal query as described above, or during a Dec query as described below).
The reduction checks if u′ = u′′ (as Decaps does) and if so, it declares the new node a
full node and returns K; else, it declares the new node a half node and returns ⊥.

(ii) Else if there is an entry (ui′ ,⊥,⊥, w, u′′, d, K) for some u′′ and w = DH(ui′ , v′), which
can be checked using ûi′ = πi′ · hx0 , then the RO was already explicitly programmed
at (ui′ , DH(ui′ , v′)). As above, the reduction checks if u′ = u′′ (as Decaps does); if so,
it declares the new node a full node and returns K; else, it declares the new node a
half node and returns ⊥.

(iii) If none of the above apply, then sample d and K, create new entry

(ui′ , ûi′ , v′,⊥, ui′ · gd, d, K)

and proceed as in Decaps. (Note that, with overwhelming probability, this will return
⊥, since d will be inconsistent with ui′ and u′.)

Finally, note that the only RO query that would reveal the challenge bit b is querying
H2 on (uic , DH(uic , vjc)), where ic is the value queried to MChal and jc the current value
of j when MChal was queried. “Explicit” queries are dealt with by our guessing strategy:
if the guess i∗ was correct then such a query is used to solve co-CDH. On the other
hand, “implicit” queries via the Dec oracle cannot occur, since this would correspond to
Dec(i′, v′, u′, τ ′, π′) with u′ = uic and v′ = vic , which is forbidden (as trivial wins).

Proof of Lemma 2. We define the set dec-set of an index i as all nodes that have the
same public key ui and member tag τi as i, together with all nodes created via Dec queries
starting from these:
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Definition 4 (Dec-set). Let i be an index defined at some point during the experi-
ment ExpCCA-M. Define the set dec-set(i) := dec-closure({i′ | (ui′ , τi′) = (ui, τi)}), where
dec-closure is as in Fig. 1.

Note that since ui′ = ui implies πi′ = πi, we have dec-set(i) := dec-closure({i′ | ui′ =
ui ∧ τi′ = τi ∧ πi′ = πi}), meaning dec-set(i) is the set chall-set in Fig. 1 except with
base = {i}.

The break event. Let A be an adversary playing in game ExpCCA-M. We define an event
Brk, which intuitively occurs whenever A breaks CDH during the execution. That is, Brk
occurs if there is a node j∗ with a child j created during a query Enc(j∗) or MChal(j∗),
yielding ciphertext vj , and A breaks the edge (j∗, j), i.e., it makes a random oracle query
to H1 or H2 with input (uj∗ , wj) with wj = DH(uj∗ , vj).

For this to be a break, we moreover require that the adversary cannot trivially compute
wj , e.g., by learning xj∗ via a Rev query. For this, we define the index E(j∗) for any j∗.
Intuitively, if A breaks an edge (j∗, j) for some j, then E(j∗) is the index of the Enc query
creating a key of an ancestor of j in which the reduction to co-CDH should embed u∗.

Definition 5 (Index E). Let j be an index defined at some point during the security
experiment ExpCCA-M. The index E(j) is defined as follows. Let k be the closest ancestor
of j s.t. (uk, τk) was created by an Enc query ((uk, τk) may have been “copied” to k from
another node). If none exists, then E(j) = 0; else E(j) is the first node created by an Enc
query with values (uk, τk).

The event Brk further requires that A does not corrupt any node in the set S :=
dec-set(E(j∗)). (Note that if A corrupts any such node, by moving along Dec edges
(“upwards”) and using the corresponding d values, it can compute xi∗ for i∗ = E(j∗), and
then, again moving along Dec edges (“downwards”), compute xj∗ .)

Moreover, we also consider an edge “broken” if the adversary makes a random oracle
query which breaks an edge that is only created later. (This only happens with negligible
probability anyway, but defining breaks this way simplifies our analysis.)

If Brk occurs then a reduction B can solve co-CDH if it embeds u∗ as ui∗ with i∗ := E(j∗)
(after correctly guessing i∗) and, for every Enc edge (j∗, j) with j∗ ∈ dec-set(i∗), it embeds
v∗ in vj (using random self-reducibility). For this to work, we further need that A does
not break the edge from the parent p∗ of i∗ to i∗. (The reduction could not answer the
corresponding query to H1, as it does not know its output di∗ := log(u∗/up∗).) Therefore,
the event Brk further requires that (j∗, j) is the first edge that was broken. This implies
that (p∗, i∗) is not broken before (j∗, j), i.e., as long as the experiment lasts.

Definition 6 (Event Brk). Let A be an adversary in game ExpCCA-M. We define an
event Brk-Edge(j∗) that occurs when both of the following hold:

a) A queries Enc(j∗) or MChal(j∗), which returns the ciphertext vj, and A queries H1
or H2 on input (uj∗ , wj) with wj = DH(uj∗ , vj).

b) For all j ∈ dec-set(E(j∗)) : ¬revj.

Brk(i∗) occurs when i∗ = E(j∗), where j∗ is the value for which Brk-Edge(j∗) occurs first.

(Note that in a) the random oracle query can also occur before the Enc or MChal query.)
We now show that the advantage of any adversary A in winning the game is upper-

bounded by the probability of triggering Brk(i∗) for some i∗ in ExpCCA-M. The reason is
that not triggering Brk implies one of three things: Either A does not call MChal at all, or
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it queries MChal(ic) for some ic, but does not make the RO query breaking the MChal
edge (ic, j) (for j∗ = ic); then the challenge bit will be independent of its view. Or it makes
a disallowed Rev query and loses anyway.

The proof then proceeds by guessing the index i∗ and, when the guess was correct,
bounding the probability of Brk(i∗) by the co-CDH advantage of a reduction B, conditioned
on correct simulation and extraction of member proofs.

Claim 0. AdvCCA-M(A) ≤ Pr [∃ i∗ : Brk(i∗)] .

To show Claim 0, we let Win be the event that ExpCCA-M(A) = 1 and we define Brk (as
above) as ∃ i∗ : Brk(i∗). We have

Pr
[
ExpCCA-M(A) = 1

]
= Pr

[
Win

∣∣ Brk
]
· Pr[Brk] + Pr

[
Win

∣∣¬Brk
]︸ ︷︷ ︸

≤1/2 (∗)

· (1− Pr[Brk]), (1)

for which we show the bound (∗) below. Claim 0 then follows from (1) and (∗) since

AdvCCA-M(A) = 2 · Pr
[
ExpCCA-M(A) = 1

]
− 1

≤ 2 · Pr
[
Win

∣∣ Brk
]
· Pr[Brk]− Pr[Brk] ≤ Pr[Brk].

To show (∗) Pr
[
Win

∣∣¬Brk
]
≤ 1

2 , we partition the event ¬Brk:

Case 1: A makes no query MChal. Then the bit b is information-theoretically hidden from
A and the probability of Win is at most 1/2.

Case 2: A makes a query MChal(ic) for some ic and an “illegal” query to oracle Rev, that
is, at the end of game ExpCCA-M, for some j ∈ chall-set(ic) : revj , with chall-set as
defined in Fig. 1. Then, by definition of the ExpCCA-M, the probability of Win is 0.

Case 3: None of the above, that is, A makes a query MChal(ic) and

for all j ∈ chall-set(ic) : ¬revj . (2)

We argue that in Case 3, the probability of Win (conditioned on ¬Brk) is also bounded
by 1/2. We start with showing the following:

(∗∗) If ¬Brk and Case 3 happen then A does not query H2 on input (uic , wjc) with
wjc = DH(uic , vjc) for vjc returned by MChal(ic).

Indeed, assume towards a contradiction that A made this query to H2. Then condition a)
of Brk is satisfied for j∗ := ic. Moreover, let i∗ := E(ic). We show that (∗∗∗) dec-set(i∗) ⊆
chall-set(ic): Indeed, if k is as in Definition 5 then dec-set(i∗) = dec-set(k) and k is an
ancestor of ic. The latter means that k ∈ base in Fig. 1, so dec-set(k) ⊆ chall-set(ic) (since
dec-set and chall-set are computed the same way).

Eq. (2) together with (∗∗∗) implies that condition b) of Brk is satisfied for j∗. Thus, if
no other value makes Brk occur earlier then j∗ is the first value and thus satisfies a) and
b), which means that Brk occurs and contradicts our assumptions. This shows (∗∗).

Now, since (as just shown) A does not query H2(uic , DH(uic , vjc)), which is what defines
K(1), the challenge keys K(1) and K(0) are both independently random. The adversary’s
view is thus independent of the bit b, which concludes showing (∗) and thus the proof of
Claim 0.

Sequence of hybrids. For convenience, we next define a sequence of hybrid experiments,
starting with ExpCCA-M, each with its version of the break event.
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Hybrid 0. This is the experiment ExpCCA-M
0 = ExpCCA-M.

Hybrid 1 (Guessing the attacked key). The experiment ExpCCA-M
1 differs from Hybrid 0 in

that at the beginning the challenger guesses the index i∗ that makes the event Brk0 occur.
The experiment ends as soon as either Brk0(i∗) occurs, or the guess becomes incorrect,
i.e., Brk0(i∗) cannot occur. We define Brk∗

1 as the event that in Hybrid 1 Brk0(i∗) occurs
for the i∗ guessed by the challenger.
Claim 1. Pr [∃i∗ : Brk0(i∗)] ≤ (ne + 1) · Pr [Brk∗

1], where ne is an upper bound on the
number of A’s Enc queries.
The claim is straightforward given that there are ne + 1 possible guesses for i∗: ne possible
indices created by Enc queries and node 0.

Hybrid 2 (Simulating member and joiner tags). In Hybrid 2, the event Brk∗
2 is defined as

in Hybrid 1 and the experiment ExpCCA-M
2 differs from ExpCCA-M

1 as follows:
– If i∗ > 0 then in the response of the query Enc(p∗) creating node i∗, the proofs τi∗

and πi∗ are simulated: τi∗ ← PoL.SimulateH3((up∗ , ui∗)) and πi∗ = ûi∗/hx0 . (Jumping
ahead, the reduction to co-CDH will have chosen x0 itself and use ûi∗ = û∗ from its
co-CDH instance.)

– In the responses of all queries Enc(i) and MChal(i) queries for i ∈ dec-set(i∗), the
proofs τj and πj are also simulated: τj ← PoL.SimulateH3((ui, uj)) and πj computed
as follows:
• If i∗ = 0, then πj ← hxj /û0, where û0 = hx0 (jumping ahead, the reduction to

co-CDH will use û0 = û∗ from its co-CDH instance).
• If i∗ > 0, then πj ← hxj−x0 (jumping ahead, the reduction knows xj and x0).

Note that in Hybrid 2, for all i ∈ {pari∗} ∪ dec-set(i∗) and nodes j created via Enc(i) or
MChal(i), no values xi and rj (i.e., the logarithm of vj) are used to compute proofs τj

and πj .
Claim 2. Pr [Brk∗

1] ≤ ϵsim
PoL,ne+1 + Pr [Brk∗

2], where ne is an upper bound on A’s Enc queries
and ϵsim

PoL,n is the simulation error of PoL when simulating n proofs.
The claim is straightforward, noting that at most ne + 1 τ -proofs are simulated: ne for Enc
queries and one for the MChal query. Moreover, the simulation of the proofs πj is perfect.

Hybrid 3 (Decrypting keys K). In Hybrid 3, the event Brk∗
3 is defined as in Hybrid 2 and

the experiment ExpCCA-M
3 differs from ExpCCA-M

2 in how it defines entries in the random
oracle tables and answers Dec queries for indices in dec-set(i∗), following the strategy
outlaid in the proof intuition (p. 24).

Recall that the UPKE scheme always calls H1 and H2 together on the same inputs
(u, w) = (gx, vx). Thus for convenience, we store outputs of the two random oracles
together: the challenger keeps a list of entries (gx, hx, v, vx, gx+d, d, K), denoting that on
input (gx, vx), the oracle H1 outputs d and H2 outputs K. Several components of an entry
might be set to ⊥ (because they will be unknown to the final reduction).

Enc queries related to challenge. When answering queries Enc(i) and MChal(i) for
i ∈ {pari∗} ∪ dec-set(i∗), the challenger stores entries (ui, ûi, vj ,⊥, uj ,⊥, K), where j is
the current value of the counter. The 4th component wj := DH(ui, vj) is implicitly defined
by ui and vj ; the 6th component d is implicitly defined by ui and uj as d s.t. uj = ui · gd.

If however, there already exists an entry (ui,⊥,⊥, wj , ∗, ∗, ∗) with wj := DH(ui, vj)
(resulting from an RO query by A), then this Enc query triggered Brk∗

2 (and Brk∗
3), so the

experiment stops (and the final reduction will solve its co-CDH instance).
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Random oracle queries. For every query (u, w) to H1 or H2:

1. Check if the query was implicitly programmed: search for an entry (ui, ûi, vj ,⊥, uj , dj , Kj)
with ui = u and DH(ui, vj) = w by checking if e(w, h) ?= e(vj , ûi). If such an entry
exists:

(i) If dj ̸= ⊥, i.e., the entry was created during a Dec query (see below), then return
dj for an H1 query or Kj (which is never ⊥) for an H2 query.

(ii) If dj = ⊥ then the entry was created during an Enc query (see above). Therefore,
we must have i = pari∗ or i ∈ dec-set(i∗). In the first case, the current RO query
means that the guess i∗ is not correct so Brk∗

2 (and Brk∗
3) does not occur and

the experiment stops. In the latter case, this RO query precisely triggers Brk∗
2

(and Brk∗
3), so the experiment stops (and the final reduction will solve its co-CDH

instance).

2. Check if the query was explicitly programmed: if an entry (u,⊥,⊥, w, u′, d, K) exists
then return d for an H1 query or K for an H2 query.

3. Else, sample fresh d and K and store the entry (u,⊥,⊥, w, u · gd, d, K) (thus program-
ming the RO explicitly).

Dec queries. When answering Dec(i′, v′, u′, τ ′, π′) for i′ ∈ dec-set(i∗), return ⊥ if τ ′ or π′

is invalid. Otherwise let ûi′ := û∗ if i∗ = 0 and else ûi′ := πi′ · hx0 and process the query
as follows:

(i) If there is an entry (ui′ , ûi′ , v′,⊥, u′′, d, K) (where d could be ⊥) then:
– check if u′ = u′′ (as Decaps does);
– if so and i′ is a full node, then declare the new node a full node and return K;
– else, declare the new node a half node and return ⊥.

(ii) Else if there is an entry (ui′ ,⊥,⊥, w, u′′, d, K) for w satisfying e(w, h) = e(v, ûi′), then:
– if u′ = u′′ and i′ is a full node, declare the new node a full node and return K;
– else declare the new node a half node and return ⊥.

(iii) If none of the above apply, sample fresh d and K and create entry (ui′ , ûi′ , v′,⊥, ui′ ·
gd, d, K) (thus implicitly defining the 4th component as DH(ui′ , v′)). Then proceed
“honestly” as in the previous hybrids.

Note that Hybrid 3 can be efficiently simulated without knowing xi∗ s.t. ui∗ = gxi∗ nor
the values rj for nodes j created via Enc/MChal(i) for i ∈ dec-set(i∗).

Claim 3. Pr [Brk∗
2 = 1] = Pr [Brk∗

3 = 1].

The claim follows, since every “implicit” RO table entry (i.e., one created during an Enc
query or in Step (iii) of a Dec query) could be translated to an “explicit” entry, i.e., one
created in Step 3 of a RO query. The experiment defines all entries consistently (every
position (u, w) is uniquely defined) so the game proceeds as if it only used “explicit” entries,
as it does in Hybrid 2. Note that when the experiment stops, it is already determined if
Brk∗

2 / Brk∗
3 occurred.

Hybrid 4 (Extraction). The experiment ExpCCA-M
4 differs from ExpCCA-M

3 as follows: When
Brk∗ occurs, let i0, i1, . . . , iℓ ∈ dec-set(i∗) denote the path with (ui0 , τi0) = (ui∗ , τi∗) and
iℓ = j∗, with j∗ as in Definition 6 (i.e., j∗ is the “attacked” node). The challenger extracts
witnesses d1, . . . , dℓ from the proofs τi1 , . . . , τiℓ

sent by A to the Dec oracle when nodes
i1, . . . , iℓ were created. The event Brk∗

4 occurs if and only if Brk∗
3 occurs and extraction

succeeds (which can be checked efficiently).
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Claim 4. There exists an adversary B′ against strong simulation-extractability of PoL s.t.

Pr [Brk∗
3] ≤ ϵext

PoL,nd
(B′) + Pr [Brk∗

4] ,

where nd is an upper bound on A’s Dec queries and ϵext
PoL,n(B′) is B′s advantage for n

proofs.

The claim follows from strong simulation-extractability (sSE) of PoL: define an adversary
B′ that simulates ExpCCA-M

4 for A, except that instead of simulating the proofs τ itself (see
Hybrid 2), it queries them to its simulation oracle. Further, when Brk∗

3 occurs then the
experiment stops and instead of extracting from the proofs τi1 , . . . , τiℓ

as the challenger
would, B′ outputs these proofs and the corresponding statements (ui0 , ui1), . . . , (uiℓ−1 , uiℓ

).
Observe that B′ emulates ExpCCA-M

4 perfectly until Brk3 occurs. Further, Hybrids 3
and 4 are identical unless extraction does not succeed for all τij . We show that in this
case B′ breaks sSE. This is the case iff (1) the extractor failed on a valid statement/proof
pair outputted by B′ and (2) none of these pairs correspond to a simulation oracle
query/response.

For (1) note that all proofs are valid, as otherwise the corresponding node would not
have been created. To show that (2) holds as well, assume towards a contradiction that
Brk∗

3 occurs, but for some i′ ∈ {i1, . . . , iℓ} the statement (upari′ , ui′) was queried to the
simulation oracle and answered with τi′ ; further, let i′ be the largest index for which this
is the case. This means that there is a node k∗ created during the query Enc(park∗) with
(uk∗ , τk∗) = (ui′ , τi′) and park∗ ∈ {pari∗} ∪ dec-set(i∗) (which is the set of nodes for which
Enc simulates proofs). But this means that i′, and not i0, is the closest ancestor of j∗

whose values were created by an Enc query (namely the query generating node k∗). Thus,
k∗, and not i∗, is the correct guess and thus Brk∗

3 did not occur, which is a contradiction.
(Also note that (ui′ , τi′) ̸= (ui0 , τi0), as otherwise, the path i0, . . . , i′, . . . , iℓ would start at
i′. Therefore, also the values of k∗ and i∗ are different and thus k∗ ̸= i∗.)

Final reduction (to co-CDH). The last step in the proof is to break co-CDH whenever
Brk∗

4 occurs.

Claim 5. For any adversary A, there exists a reduction B s.t.

Pr [Brk∗
4] ≤ Advco-CDH

G (B).

To prove the claim, we construct a reduction B, which is given a co-CDH instance (u∗, û∗, v∗)
and simulates ExpCCA-M

4 for A as follows:

1. B embeds u∗ as ui∗ , computes πi∗ := û∗/hx0 (with πi∗ = h0 if i∗ = 0) and simulates
τi∗ if i∗ ̸= 0.

2. For each query Enc(i) or MChal(i) for i ∈ dec-set(i∗) creating node j:

a) B samples sj ←$ Zp and embeds v∗ in the ciphertext vj := v∗ · gsj . (Observe that
vj is distributed identically as in ExpCCA-M

4 where it is chosen as grj for rj ←$ Zp.)
b) B samples xj ←$ Zp and sets uj := gxj . It simulates the proofs τj and πj as of

Hybrid 2, so B does not need to know dj . (Note that B thus knows the secret key
xi of each node i /∈ dec-set(i∗).)

c) B generates the key Kj independently at random.

3. B simulates Enc, Rev and Dec queries for i /∈ dec-set(i∗) perfectly using the secret keys
it generated.
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4. B answers random-oracle queries and queries Dec(i′, v′, u′, τ ′, π′) for i ∈ dec-set(i∗)
without knowing xi′ as defined in Hybrid 3.

5. Whenever A queries H1 or H2 on some (u, w), B follows Steps 1 and 2 in Hybrid 3.
When in 1.(ii) the simulation stops, i.e., there is an entry (u, ∗, vj ,⊥, ∗,⊥, ∗) with
w = DH(u, vj), then B computes the co-CDH solution as follows. Assuming the guess
i∗ is correct, we have vj = v∗ · gsj . Moreover there is a path i0, . . . , iℓ with ui0 = u∗

and iℓ = j∗ with u = uj∗ . Let d1, . . . , dℓ be the witnesses for τi1 , . . . , τiℓ
extracted

as of Hybrid 4 and set di∗→j∗ := d1 + · · · + dℓ (if i∗ = i∗ then di∗→j∗ = 0). Return
w∗ := w/

(
(u∗)sj · vdi∗→j∗

j

)
.

We first show that B simulates ExpCCA-M
4 perfectly until Brk∗

4 occurs. To this end,
observe first that uj and Kj generated in Step 2 are distributed identically as in ExpCCA-M

4
unless A queries some (ui, wj := DH(ui, vj)) to the RO. However, as soon as this happens,
B stops the experiment in Step 5. Next, observe that the key ui∗ embedded in Step 1 is
distributed identically as in ExpCCA-M

4 unless i∗ > 0 and A makes a query (up∗ , wi∗ :=
DH(up∗ , vi∗)) to H1, where p∗ is the parent of i∗ (since ui∗ = ui · gH1(up∗ ,wi∗ )). However, if
A makes such a query, then i∗ is not the correct guess, contradicting Brk∗

4. Indeed, the
oldest twin of the closest ancestor of p∗ created by an Enc query (or i = 0) would be the
correct guess, since p∗ satisfies a) and b) in Definition 6 first.

Therefore, the only situation in which ExpCCA-M
4 and the simulation can differ is

when A makes a Rev(i) query that is allowed in ExpCCA-M
4 but which B cannot answer.

This cannot occur, because the only values for which B does not know the secret key
are all i ∈ dec-set(i∗). Since, as argued in (∗ ∗ ∗) in the proof of Claim 0, we have
dec-set(i∗) ⊆ chall-set(ic), no such corruptions are not allowed.

It remains to argue that B finds the correct solution w∗. To this end, observe that
by correctness of extraction, we have uj∗ = u∗ · gdi∗→j∗ . Therefore, setting u∗ = gx∗ and
v∗ = gr∗ , we get

w = DH(uj∗ , vj) = DH(u∗ · gdi∗→j∗ , v∗ · gsj ) = g(x∗+di∗→j∗ )(r∗+sj)

= gx∗r∗ · gx∗sj · gdi∗→j∗ (r∗+sj) = DH(u∗, v∗) · (u∗)sj · vdi∗→j∗
j .

The lemma now follows by combining Claims 0 to 5. ⊓⊔

5.2 Joiner Security

We next prove the following lemma, which formalizes the joiner security, CCA-J, of our
UKEM scheme.

Lemma 3. Let G be an asymmetric bilinear group. If PoL is a simulation-extractable proof
system, co-CDH holds for G and adversary A is algebraic in Ĝ, the UKEM construction
from Figure 2 is CCA-J secure in ROM. More precisely, for any algebraic adversary A,
there exist reductions B and B′ such that

AdvCCA-J(A) ≤ ϵsim
PoL,ne

+ ϵext
PoL,nd

(B′) + Advco-CDH
G (B),

where ne and nd are upper bounds on the number of A’s Enc and Dec queries, respectively.

Proof intuition. We build upon ideas the proof of Lemma 2 (member security), but for
joiner security the argument simplifies and there is no guessing of nodes. The difference
between the experiments is that instead of MChal, the adversary A now calls JChal(u′, π′).
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Accordingly, the reduction B against co-CDH now embeds v∗ in the ciphertext v′ returned
by JChal; specifically, using random self-reducibility, it sets v′ := v∗ · gs′ for a random s′.
The security of v′ encrypted to u′ hinges on the link between u′ and the honest u0 via the
associated proof π′. Thus, the value u∗ of the co-CDH challenge is embedded as u0.

More precisely, unless A queries H2 on w′ := DH(u′, v′), both the “random” key K(0)

and the “real” key K(1) = H2(u′, w′) are random and independent, so A’s advantage is 0.
On the other hand, if A makes such an RO query, B can compute the co-CDH solution by
extracting from the proof π′ to move the solution from u′ to u0 = u∗.

Extracting from the proof π′. Since A is algebraic, when it calls JChal(u′, π′), B can
extract the representation of π′ as a linear combination of all Ĝ elements given to A
so far, which are (precisely) the πj proofs returned by the Enc oracle. B knows the
logarithm of each such πj because it emulates the Enc oracle by running Encaps honestly
(while B does not know any secret keys). Thus, B can use the representation of π′ and
the known logarithms to compute the logarithm d′ of π′. Since π′ is valid, d′ is equal
to the logarithm of u′/u0 = u′/u∗. Thus B can use d′ and s′ chosen when embedding
v′ as v′ = v∗ · gs′ to translate w′ = DH(u′, v′) = DH(u∗ · gd′

, v∗ · gs′) from A’s RO
query to the solution w∗ = DH(u∗, v∗) analogously to the reduction for member security:
w∗ = w′ · (u∗)−s′ · (v′)−d′ .

Answering Rev queries. If, after the JChal call, A makes a query Enc(i) creating a node j,
then it is allowed to query Rev(j). B deals with such queries the same way as the reduction
for member security: It samples the secret key xj itself. This implies that B cannot answer
a query (ui, DH(ui, vj)) to H1, which should return dj = log(gxj /ui). But again, such a
query would allow B to solve its co-CDH instance, had it embedded v∗ in vj .

In more detail, recall that Rev queries are allowed for nodes outside of chall-set which
is the dec-closure of all nodes (and their duplicates) created before the JChal call. If after
the JChal query A queries Enc(i) for some i ∈ chall-set, B samples xj itself and returns
vj = v∗ · gsj for a random sj together with simulated proofs πj and τj . If A later “breaks”
vj by making an RO query (ui, wj) with wj = DH(ui, vj) then B translates wj to the
co-CDH solution DH(u∗, v∗): it does so by collecting and summing all d values on the path
from node 0 to node i: for any Dec edge, B extracts d from the τ proof provided by A;
for any Enc edge, B generated d itself, as all Enc edges in chall-set were created before
JChal and hence by running Encaps. Knowing d0→i s.t. ui = u0 · gd0→i = u∗ · gd0→i and sj

s.t. vj = v∗ · gsj , the reduction can compute DH(u∗, v∗) = DH(ui, vj) · (u∗)−sj · v−d0→i
j .

Observe that for the above “simulated” edges, B does not know the logarithm of the
simulated πj . This does not affect extraction from the proof π′ above, since extraction is
done when JChal is called, thus before any proofs are simulated.

Extracting from adversarial τ proofs. Say A breaks some vj embedded in the response
to Enc(i) as described above. Simulation-extractability allows B to extract from τ -proofs
for Dec edges as long as these were not simulated. However, A could copy a node with a
simulated proof via a Dec query. Therefore, we need to modify B’s strategy, analogously
to the proof of member security.

Consider the following example illustrated in Fig. 4: A starts by calling JChal (not
depicted) and then queries Enc(0) creating node 1, at which point B picks x1 and sets
u1 = gx1 as described above. Now A forwards the outputs of the above Enc query to
Dec(0), creating node 2 with (u2, τ2) = (u1, τ1). Finally, A queries Enc(2), which creates
node 3. Since node 2 is in chall-set, B, following the above strategy, would choose a fresh
key x3 for u3 := gx3 . However, if A queries (u2, DH(u2, v3)) to H1, then B would not be
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(a) Bad strategy: Picking x3 itself and embed-
ding a challenge in v3 would not work, because
B would not know d3 to answer the RO query on
(u2, DH(u2, v3))

0

1

2 3

Enc

Dec

u1, x1

u2 = u1, x1 = x2

Enc

(b) Good strategy: B knows that x2 = x1, which
it generated itself, so it can answer the Enc query
using Encaps, just like outside chall-set.

Fig. 4: Illustration of why B’s first strategy does not work. Cyan marks nodes for which
the reduction does not know the secret key and edges for which the reduction doesn’t
know the secret d. Magenta marks edges for which the reduction will extract d from the
adversary’s τ -proofs.

able to answer, since it does not know d3 := x3 − x2; moreover, the value DH(u2, v3) is of
no use, as B can compute it itself as vx2

3 = vx1
3 . But in this situation, B should have just

computed u3 honestly as u3 = u2 · gd3 . It could then still answer Rev(3), as required, since
it knows x3 = x1 + d3.
B’s strategy is thus the following: u∗ is embedded as u0, and before the JChal query,

every Enc query is answered by running Encaps (and thus B does not know the resulting
secret key). After the JChal query, every query Enc(i) creating node j must be answered
in a way so B knows the resulting secret key xj . We distinguish two cases: (1) B knows xi,
or xk for any Dec-“ancestor” k of i: then B, knowing xi, runs Encaps, and will thus know
xj . (2) Else B sets the resulting key as uj := gxj and vj := v∗ · gsj for fresh xj , sj , and
simulates the proofs.

Note that for every i /∈ chall-set, B either knows xi, or it can compute it by running
Decaps between the node k for which it knows xk and i in order to derive xi. Therefore, B
can answer all Rev queries for such i.

Moreover, when A makes an unanswerable RO query, B can use it to break co-CDH.
Any such query is of the form (ui, wj = DH(ui, vj)) where j is a node created in mode
(2) above (for which B does not know dj). B extracts all d values from the proofs τ on
the path from the root to node i. This must succeed as long as none of the proofs was
simulated, which we show next.

Towards a contradiction, assume that for some k on that path, τk for the statement
(upark

, uk) was simulated. B must have simulated the proof when, after the JChal call, A
called Enc(park′), creating node k′ with uk′ = uk. However, this means that B chose xk′

itself, and thus i has a Dec-ancestor with a known secret key, meaning that node j was
not created in mode (2), which is a contradiction.

Since B can extract all values d and thus compute d0→i with ui = u∗ · gd0→i , and since
vj = v∗ · gsj , it can translate DH(ui, vj) to DH(u∗, v∗), as done above.

6 Extensions

In this section, we discuss possible extensions of our construction.
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Table 3: Impact on MLS of UPKE/PKE with increasing security (top to bottom). SGM
security notions RealPCFSMLS, RealPCFSFS+, FakePCFSMLS and FakePCFSFS+ are intu-
itively described in the text.

Protocol Security of (U)PKE Security of MLS using the (U)PKE
Restrictions on adv. Member PCFS New-member PCFS

MLS0 PKE, IND-CCA — RealPCFSMLS FakePCFSMLS
rTreeKEM UPKE, IND-CPA [ACDT20] delivers messages in order,

does not inject
RealPCFSFS+ —

MLS2 UPKE, CU-CCA [DKW21] delivers messages in order RealPCFSFS+ —
MLS−

3 UPKE, IND-CCA− [this work] — RealPCFSFS+ FakePCFSMLS
MLS3 UPKE, IND-CCA

[this work]
— RealPCFSFS+ FakePCFSFS+

Batch proof verification. We observe that many π proofs for different statements can
be verified in a batch, at the cost of only one pairing evaluation. In particular, proofs
π1, . . . , πℓ ∈ Ĝ for statements u1, . . . , uℓ ∈ G can be verified by sampling random r1, . . . , rℓ ∈
Zp and checking if e(ur1

1 · . . . · urℓ
ℓ , h) ?= e(g, πr1

1 · . . . · πrℓ
ℓ ).

This can be particularly useful for MLS, where joiners have to verify a π proof for
each public key in the group state (the number of public keys is roughly twice the number
of members). However, even current group members have to verify π proofs for multiple
public keys, in certain bad scenarios even as many as group members.

Anchor tags. One can somewhat relax how joiner security is defined for UKEM and still
end up with a UKEM notion sufficient to prove new-member security in dynamic group
protocols like MLS. Instead of forcing Verifyjt to use an initial public key pk0 to validate a
key pk we could generalize the UKEM syntax to generate arbitrary (but constant size)
anchor tags at as part of KeyGen. Anchor tags are then used in place of pk0 in Verifyjt.
Of course, we could include such a tag inside pk0 under the hood, but that can result in
sub-optimal efficiency as it means growing (potentially quite significantly) the size of such
public keys. By separating the anchor tag from public keys in the syntax, applications can
include the anchor tag only when it is really needed.

As it turns out, in our scheme no additional anchor tag beyond pk0 itself is needed,
which is why we decided against using a more complicated syntax. However, explicit anchor
tags wouldn’t be a problem for the applications we had in mind and the added flexibility
may prove helpful for future UKEM constructions.

7 Impact of UPKE on the Security MLS

We discuss the impact of using various UPKE schemes (and their security notions) on
MLS. See Table 3 for a summary. Many claims in this section are intuitive; we leave formal
definitions and proofs of the security of MLS with UPKE as an open problem.

7.1 SGM Basics

We first recall some facts about Secure Group Messaging (SGM) protocols needed to
understand the impact of UPKE. SGM protocols allow members of a dynamic group, i.e.,
one whose membership can change over time, to securely broadcast messages to the group.
For clarity we call these “(application) messages” which stand in contrast to SGM protocol
messages which we refer to as “packets”. The execution of most SGM protocols proceeds
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in epochs which are characterized by a fixed state; notably, a fixed group membership.
Typically (e.g. in MLS) epochs’ states also include an implicit group key used to encrypt
the application messages broadcast by members of the epoch. To modify a group’s state,
any group member can create a new “child” epoch with the new state (e.g. a new set of
members) by broadcasting a single packet to the group. Other group members transition
from the “parent” epoch to the “child” epoch when they receive the packet. SGM protocols
like MLS also guarantee agreement; namely members can only read each others messages
if they agree on the current epoch’s state and its preceding history.

If two members, say A and B, each create and transition to a child epoch for the same
parent epoch, the result is a forked group — the views of A and B now diverge to different
branches of the fork and they will no longer be able to process each other’s messages as
they no longer agree on the group state.

In terms of security, at a minimum, SGM protocols should guarantee confidentiality of
the application messages in the presence of an adversary who controls the network and
can repeatedly corrupt parties by leaking their secret states.13 If the adversary corrupts
group members, some messages are not confidential. The exact flavor of Post-Compromise
Forward Secrecy (PCFS) of a protocol determines which messages are guaranteed to be
confidential given a sequence of corruptions. For a given execution, protocols with stronger
PCFS generally guarantee confidentiality of more messages.

7.2 Comparison of MLS with Different UPKE / PKE Schemes

We distinguish three aspects in which the security of MLS is impacted by the security
of the (U)PKE it uses. The first concerns the adversarial capabilities for which MLS
can be proven secure. The second concerns the strength of the PCFS afforded parties
participating in “real” groups, i.e. groups created by an honest party. The third concerns
the PCFS strength for parties in “fake” groups, i.e. groups created arbitrarily by the
adversary. (Interestingly, under the right conditions, some MLS-like protocols can indeed
ensure security for some epochs in fake groups.)

Baseline. As the baseline for our comparison, we use MLS0 – the original MLS protocol,
which uses PKE. We denote by RealPCFSMLS and FakePCFSMLS, the flavor of PCFS for
members of real and fake groups, respectively, achieved by MLS0. MLS0 can be proven
secure without any restrictions on the adversary, assuming IND-CCA security of the PKE
[AJM22].14

UPKE schemes from prior work. The rTreeKEM protocol of [ACDT20] introduced the
idea of replacing PKE with UPKE in MLS. That work used an IND-CPA style security
for UPKE with the added restriction that the adversary cannot produce forks when
evolving UPKE keys. The authors prove that rTreeKEM satisfies an SGM security notion
which similarly disallows forks. That is, the network is modeled as ideal authenticated
network15 and the adversary must deliver all packets in the same order to all parties. An
authenticated network also prevents the adversary from ever creating fake groups. However,
13 SGM also guarantees other properties like authenticity, but for simplicity we focus on confidentiality.
14 The analysis of MLS0 in [AJM22] disallows certain corruptions to avoid the so-called commitment

problem, but this is outside the scope of this work.
15 More accurately, the notion of [ACDT20] disallows only those packet modifications/injections that

cannot be prevented by the protocol (using signatures and MACs). As noted in [ACJM20], a more
realistic insecure network model allows the adversary to inject on behalf of corrupted parties, which
then requires IND-CCA (U)PKE.
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in executions with no forks, their flavor of PCFS for real groups, denoted by RealPCFSFS+,
is strictly stronger than RealPCFSMLS achieved by MLS0. The following example MLS
execution separates RealPCFSFS+ from RealPCFSMLS.

1. A, B and C are in the (“real”) group in epoch E1. C is corrupted.
2. B creates epoch E2, removing C from the group. A transitions to E2.
3. B creates epoch E3 (with the same set of members but a new group key). A transitions

to E3.
4. Adversary corrupts A.

Unlike RealPCFSMLS, RealPCFSFS+ implies confidentiality for messages broadcast in E2.
To see why, note that corrupting A lets the adversary learn the secret (U)PKE key of A in
epoch E3. For MLS0, PKE is used. So, A uses the same leaked secret key while in epoch
E1 to compute the group key for epoch E2 by processing the packet from sent by B. Thus
the adversary can do the same.16 Meanwhile, in rTreeKEM, which uses UPKE, processing
B packets results in A updating her UPKE secret key. So, although A’s updated secret key
leaked in E3 this does not reveal the secret key A used to process B’s packet announcing
epoch E2.

Following the ideas of [ACDT20] and with an eye towards stronger security of MLS, the
work [DKW21] proposed a stronger UPKE security notion (and matching construction)
called CU-CCA. Let MLS2 denote rTreeKEM using a CU-CCA secure UPKE. Intuitively,
MLS2 achieves the same RealPCFSFS+ as rTreeKEM but over insecure channels instead of
authenticated ones.

Nevertheless, CU-CCA is still not sufficient to remove the restriction preventing the
adversary from reordering messages, as we show in Appendix A. Moreover, MLS2 does not
provide any meaningful PCFS for fake groups. Indeed, the lack of joiner tags in the UPKE
of [DKW21] lets the adversary create fake groups with UPKE keys originally created by
honest parties but which then weren’t updated correctly. Without joiner tags, parties
joining the fake group have no means of verifying the provenance of the updated UPKE
keys.

This work. Let MLS3 denote MLS that uses our IND-CCA secure UPKE in place of PKE
and where joining members use joiner tags to validate the provenance of updated UPKE
keys. First of all, MLS3 achieves (at least) the FakePCFSMLS flavor of PCS of MLS0 as well
as the same improved RealPCFSFS+ as rTreeKEM and MLS2. Moreover, as for MLS0 (and
in contrast to rTreeKEM and MLS2) this holds for insecure channels. This means that
MLS3 achieves “best of both worlds” security (proving this is outside the scope of this
work).

To gain further insight, we observe that all of the above is already true for MLS3
assuming a weaker UPKE security, call it IND-CCA−, which differs from our IND-CCA
in that no Rev queries are allowed if JChal is called. Let MLS−

3 denote MLS3 where the
UPKE scheme satisfies IND-CCA−. MLS−

3 already achieves the “best of both worlds”
security. On the other hand, MLS3 has strictly better PCFS than MLS−

3 in fake groups, say
FakePCFSFS+. Indeed, the following example of an MLS execution separates FakePCFSFS+
from FakePCFSMLS.

1. A and B are in the “real” group in epoch Er1.
2. Adversary invites C to a “fake” group in epoch Ef1 with members A, C and the

adversary.
16 More precisely, computing E2’s group key also requires a second value not obtained from B’s packet,

but the adversary obtains that by corrupting C at the beginning.
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3. C creates epoch Ef2 in the fake group, removing the adversary.
4. B creates epoch Er2 in the real group. A transitions to Er2 and is corrupted.

In contrast to FakePCFSMLS, FakePCFSFS+ implies confidentiality of secret messages
broadcasted in Ef2.

We start with some intuition about why Ef2 is secure. Let pkr1, pkr2, pkf1 denote A’s
UPKE keys in Er1, Er2, Ef1, respectively. Intuitively, we know that Ef2 is secure because
B honestly updates pkr1 to pkr2 after the adversary creates Ef1 with pkf1. This means
that pkf1 used by C is independent of the leaked skr2. For example, if the adversary
chose pkf1 = pkr1, it is obvious that UPKE security guarantees security of C’s message
encrypted to pkr1 even if skr2 leaks.

Note that the temporal aspect is crucial in this scenario. If B created Er2 before the
adversary created the fake group (i.e., if Step 4 happened before 2 and 3), Ef2 would not
be secure. Indeed, the adversary could choose pkf1 to be the corrupted pkr2 (or pkf1 is
pkr2 updated by the adversary in its head, possibly making pkf1 and pkr2 look unrelated).

We note that security models of [AJM22] and all CGKA/SGM works we are aware of
are too coarse to capture this distinction as they do not model temporal relations of events
in an execution. Instead, they require considering Ef2 insecure as there exists a sequence
of the transpired events for which Ef2 would be insecure despite the actual execution not
having followed this order.17

We next give some intuition as to why IND-CCA− is sufficient for FakePCFSMLS.
Observe that the regular PKE of MLS0 can be viewed as UPKE where updates do nothing
and the secret/public keys never change. The above clearly does not achieve UPKE
member security (when JChal is disabled). However, it does achieve UPKE joiner security
of IND-CCA− (when MChal is disabled), since the static secret key never leaks. Moreover,
MLS0 achieves FakePCFSMLS using only PKE. It is therefore perhaps not surprising that
MLS−

3 also achieves FakePCFSMLS using UPKE with joiner security matching that of PKE.

7.3 UPKE vs Optimal PCFS

While MLS3 has much better PCFS than MLS0 (thanks to its use of UPKE), it does not
achieve the optimal PCFS defined in [ACJM20]. At a high level, this is because our UPKE
is not “optimally secure” in that the adversary (may) be able to undo updates for which it
knows the coins used (e.g. ones it generates). In our UPKE security notion, this is reflected
by restricting the adversary to not corrupt keys in the dec-closure of the challenge path.
HIBE, on the other hand, can easily be used to construct an “optimally secure” UPKE
which is why the HIBE-based messaging scheme of [ACJM20] provides optimal PCFS.

The following example of an MLS execution separates MLS3 from the optimally secure
HIBE-based construction of [ACJM20].

1. A, B and C are in the (“real”) group in epoch E1. C is corrupted.
2. The adversary, impersonating C, creates epoch E2. B transitions to E2.
3. The adversary corrupts B.
4. A creates epoch E3, removing the adversary.

Confidentiality of messages broadcast in E3 is guaranteed by the HIBE-based construction
but not by MLS3. Indeed, let sk1 and sk2 denote B’s keys in E1 and E2, resp. In MLS3,
the adversary corrupts sk2 and can compute sk1 by undoing its update from sk1 to sk2
that it generated (it subtracts d2 in our scheme). Now sk2 allows the adversary to decrypt
17 We leave a more fine-grained “temporally aware” CGKA/SGM security model for capturing such

subtleties for future work.
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ciphertexts encrypted by A to pk1 while creating E3. Thus the adversary learns the group’s
secrets in E3 and can decrypt messages in E3.

On the other hand, with the HIBE-based construction, B generated a HIBE master
secret key sk (in some parent epoch of E1), sk1 is below sk in the hierarchy, derived for
the identity vector (. . . , i1) and sk2 is underneath sk1 for the identity vector (. . . , i1, i2)
(the messaging protocol makes sure that i1, i2, . . . are unique for the epochs). Now by the
security of HIBE, sk2 reveals no information about sk1 even if the adversary chooses i2.
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A Insufficiency of Prior UPKE Notions

Here we present a couple of counterexamples demonstrating the insufficiency of the UPKE
security notion introduced in [DKW21] and used in [ALP22, AW23, APS23] for building
insider secure dynamic group protocols.

Forking, even without injections. The first counterexample shows that UPKE security of
[DKW21] is not sufficient to obtain a dynamic group protocol secure against adversaries
who can deliver packets out of order, but not to inject ciphertexts.

Let U ′ be a UPKE scheme satisfying the security notion of [DKW21] with (at most)
λ-bit long secret keys. We modify U ′ as to obtain scheme U as follows. Along with the
secret key sk′ generated by U ′, during key generation of U we also sample a uniform
random λ-bit string s to be stored along with sk′ as part of U ’s secret key sk. To update
the ski = (sk′

i, si) in U , we update sk′
i to obtain an sk′

i+1 just as U ′ does. In addition we
flip a fair coin b. If b = 0, we set the updated string to si+1 := H(s) for random oracle
H. Otherwise, when b = 1 we set the updated string to be si+1 := H(s) ⊕ sk′

i where ⊕
denotes bit-wise XOR.

It is easy U still satisfies [DKW21] UPKE security. After all, the values of s have
no effect on the output of any algorithm. Moreover, in the [DKW21] security game the
adversary is only allowed to leak one secret key overall. Clearly, a single s does not leak
anything.

However, consider an adversary attacking U which can leak the secret keys of t keys
pairs, each one the result of a unique update of a fixed target key pair (pk, sk) where
sk = (sk′, s). With overwhelming probability in t this will reveal both H(s) and H(s)⊕ sk′

which means we can get no privacy for anything encrypted to pk. Crucially, this holds
despite the adversary only corrupting keys derived from (pk, sk) via honest and secret
updates!

Now suppose we use U as our UPKE construction with which we replace PKE in, say,
MLS. Most modern security notions in the literature for a dynamic group protocol like MLS
[AJM22, AAN+22] allow the adversary to deliver packets in an arbitrary order, causing
members to have divergent views. In MLS, like in all messaging protocols with comparable
efficiency profiles, some of the secret UPKE keys making up a session’s cryptographic
state are known and used by multiple parties in the group. One such key, for example, is
used for decryption by half the group. By selectively forwarding updates (i.e. ciphertexts)
to different subsets in such a group the adversary can cause multiple child keys to be
derived off a target UPKE key pair (pk, sk). Therefore, using the above attack strategy
the adversary can easily put themselves in a position where they can compute sk without
ever corrupting a party that had in its state at the time of corruption (a) sk itself, (b) any
of its predecessor of sk nor (c) any other secret key to which sk or one of its predecessors
was directly or indirectly encrypted. Under such conditions, we’d expect UPKE’s forward
secrecy to ensure pk still provides (at least) CPA security. Of course, in this case it doesn’t
since the adversary can compute sk. Thus, the adversary can use knowledge of sk to derive
group keys and decrypt messages sent to the group for periods in the session for which we
would otherwise expect security.
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Injecting, even without forks. The first counterexample shows that UPKE security of
[DKW21] is not sufficient to obtain a dynamic group protocol secure against adversaries
who can inject ciphertexts but they cannot deliver packets out of order.

Again, let U ′ be a UPKE scheme satisfying the security notion of [DKW21] with (at
most) λ-bit long secret keys. We modify U ′ as to obtain scheme U as follows. The secret
key sk in U consists of sk′ generated by U ′ as well as a uniform random λ-bit string s. To
update ski, the scheme U updates sk′

i and copies s as is. Finally, a ciphertext in U is of
the form (0, c′) or (1, s′), the latter never outputted by encryption. To decrypt (0, c′), the
scheme U decrypts c′ with sk′, and to decrypt (1, s′), the scheme U outputs sk′ if s′ = s or
⊥ otherwise.

It is easy to see that U satisfies [DKW21] UPKE security, since the latter disallows
any decryption queries after any secret key is revealed.18 Therefore, s is random and
independent of the adversary’s view as long as decryption queries are allowed, so the
chance of guessing it is negligible.

However, suppose U was used in MLS. Say a group member A generates a key pair
(s, sk′

0) and pk0 and sends (s, sk′
0) to another member B (A and B will be able to decrypt).

Then another member C sends a message containing a ciphertext c encrypted to pk0; B
receives c but A does not (yet). We expect that the adversary cannot decrypt c even if B
is now corrupted, since B already updated the secret key to sk1 = (s, sk′

1). However, this
is not the case — using s from B’s key, the adversary can inject (1, s) to A

B APS Security for UPKE

We recall the (long) syntax and CCA-style security notions for UKEM of [APS23] which
is based on the analogues UPKE syntax and security introduced in [DKW21] and also
used in [ALP22].

Key Generation. UKeyGen(1κ)→ (pk, sk) outputs a public-secret key pair.
Encapsulation. UEncaps(pk)→ (K, c) encapsulates key K to public key pk in ciphertext

c.
Decapsulation. UDecaps(sk, c)→ K/⊥ decapsulates ciphertext c with secret key sk to

obtain key K.
Public Key Update. UpdatePk(pk)→ (up, pk′) takes input an public key pk and outputs

a updated public key pk′ and update token up.
Secret Key Update. UpdateSk(sk, up)→ sk′ takes input secret key sk and update token

up and outputs updated secret key sk′.
Update Verification. VerifyUpdate(pk, pk′, up)→ 0/1 takes input public key pk, updated

public key pk′ and update token up returning either true or false.

In particular, updates are not agnostic as UpdatePk takes a target public key to be updated
as input. Indeed, the following correctness notion only requires that UpdateSk correctly
update the corresponding secret key to the original target public key.

Definition 7 ((k, δ)-Correctness [APS23]). Let (pk, sk) ← UKeyGen(1κ) and k ∈ N.
For t < k let (upt+1, pkt+1) ← UpdatePk(pkt) and skt+1 ← UpdateSk(skt, up). A UKEM
scheme is (k, δ)-correct for δ > 0 if ∀t ≤ k:

P [UDecaps(skt, ct) ̸= Kt | (ct, Kt)← UEncaps(pkt)] < δ.
18 The likely reason is that after a key ski is revealed, the adversary can decrypt ciphertexts to ski, ski+1, . . .

itself. This reasoning makes sense if only one party holds the secret key; after all, it is supposed to have
deleted sk0, . . . , ski−1. However, this does not take into account the fact that other out-of-sync parties
may still have sk0, . . . , ski−1.
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Game UKEM k-IND-CU-CCA Security [APS23]

Expk-IND-CU-CCA(A)

t = 0
β ←$ U({0, 1})
(pk0, sk0)← UKeyGen(1κ).
st← AUp,Dec,H(pk0)
(c∗, K∗)← UEncaps(pkt);
if β = 1 then

K∗ ← U(K)
pkchall = pkt

st← AUp,Dec,H(c∗, st)
r∗ ← U(R)
(up∗, pk∗)← UpdatePk(pkt; r∗)
sk∗ ← UpdateSk(skt, up∗)
β′ ← AH(pk∗, sk∗, c∗, st)
A wins if β = β′

Oracle Up(pk′, up)

if VerifyUpdate(pkt, pk′, up) = 0 then
return 0

pkt+1 ← pk′

skt+1 ← UpdateSk(skt, up)
t = t + 1

Oracle Dec(c)

if (pkt = pkchall) ∧ (c = c∗) then
return ⊥

return UDecaps(skt, c)

Fig. 5: The experiment formalizing k-IND-CU-CCA security of UKEM schemes taken
from [APS23].

The UKEM k-IND-CU-CCA security game of [APS23] specified in Figure 5 (and the
UPKE analogue in [DKW21, ALP22]) capture CCA-style security with key validation
for group members (i.e. they adversarially updated keys). However, the game forces all
updates to be applied in sequence which means forks are not captured. Joiner security
is also not considered. For example, there is no way to aggregate updates. That means,
to use VerifyUpdate to validate a UKEM public key provided by an adversary (as part of
a downloaded protocol state) a joiner would, at a syntactic level already, need the full
history of updates and intermediary public keys leading starting at some initial public
key generated with UKeyGen to the current public key being validated. Unfortunately,
for joiner security we need validation of adversarial public keys to use a tag with only a
constant size.

C Simulation-Multi-Extraction of Schnorr Proofs

Schnorr signatures are zero-knowledge proofs of knowledge (PoK) of the secret key, as we
define them in Figure 6. A statement for this proof system consists of the public key u
and the signed message m. The proof system PoL used by our construction in Figure 2 is

Construction Sch[G, H]

Prove((u, m); x)

r←$ Zp ; v := gr

c := H(v, gx, m)
s := (r + cx) mod p
return π := (v, s)

Verify((u, m), π = (v, s))

c := H(v, u, m)
return gs = v · uc

Fig. 6: The Schnorr signature scheme defined over a group G of order p and hash function H,
interpreted as proof system for the NP-relation

{
((u, m), x) ∈ (G× {0, 1}∗)×Zp |u = gx

}
.

42



then obtained by setting

PoL.Prove((u, u′), x) := Sch.Prove((u′/u, (u, u′)), x) and
PoL.Verify((u, u′), τ) := Sch.Verify((u′/u, (u, u′)), τ)

Security requires that (1) proofs can be simulated (by programming the random
oracle) without knowledge of a witness (zero-knowledge) [PS00]. Further, (2) a proof
proves knowledge of a witness, that is, for an adversary that outputs a valid proof for
a statement (u, m) ∈ G× {0, 1}∗, there exists an extractor that can extract x such that
u = gx (knowledge soundness). Extraction was originally shown by rewinding the adversary,
but this incurs a security loss. Modeling adversaries as algebraic algorithms as in the AGM
[FKL18], extraction can be done “straight-line”, leading to only a negligible extraction
error [FPS20]. (Since an algebraic adversary must output “representations” together with
any group element, the extractor can compute the witness from these representations with
overwhelming probability.)

Fuchsbauer and Orrù [FO22] show that, in the AGM, Schnorr proofs are strongly
simulation-extractable. This means that after the adversary has obtained simulated proofs
πi for statements (ui, mi) of the adversary’s choice, from a “fresh” valid statement/proof
pair ((u∗, m∗), π∗) output by the adversary, a witness can be extracted with overwhelming
probability. The “freshness” requirement for the strong notion is that ((u∗, m∗), π∗) /∈
{((ui, mi), πi)}i (i.e., even returning a new proof for a queried statement is legal).

Since in the security proof of our UPKE scheme we need to extract from several proofs,
we extend this notion and allow the adversary to return proofs for (u∗

1, m∗
1), (u∗

2, m∗
2), . . . ∈

G× {0, 1}∗ and declare the adversary successful if from any of these proofs the extractor
fails to extract.

A technical property of their definition [FO22] is that, in order to be useful in a security
reduction, the notion needs to be w.r.t. auxiliary input one additional group element
a ∈ G of which neither the adversary nor the extractor know the discrete logarithm (cf.
Footnote 11).

Theorem 2. In the ROM and the AGM with one auxiliary group element, Schnorr
proofs of knowledge are strongly simulation-extractable. In particular, let ns be (an upper
bound on) the number of simulated proofs, nh the number of random oracle queries; let
p = |G| and n the number of output adversarial proofs. Then the simulation error is
ϵsim
ns

:= ns/(p− nh − ns) and the multi-extraction error is ϵext
n = n/p.

Proof. Let G be the group defining the statements, g be a generator and p = |G|. Let
a←$ G denote the uniformly sampled auxiliary-input group element. We model H as a
random oracle which is controlled by the challenger. We describe how the latter simulates
proofs and how it extracts witnesses from fresh adversarial proofs.

Simulation. Let (ui, mi) ∈ G× {0, 1}∗ be a statement for which the adversary A queries a
simulated proof. The challenger chooses uniform ci, si←$ Zp, sets

vi := gsi · u−ci
i (3)

and programs the random oracle H so that H(vi, ui, mi) = ci. By the choice of ci and si,
we have that vi is uniform and independent; therefore the probability that H has already
been defined for (vi, ui, mi) is negligible. If this happens, the challenger aborts and A wins.

In more detail, let nh be an upper bound on A’s random oracle queries. Then, by
the union bound, the probability that when querying ns simulated proofs, one of the
simulations fails, is upper-bounded by ϵsim

ns
:= ns/(p− nh − ns).
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Extraction. Since simulation queries contain a group element, A must return its repre-
sentation. A’s first query (u1, m1) is therefore accompanied by (α1, β1) s.t. u1 = gα1 · aβ1 .
This answer to the query contains a new group element v1, thus A’s second simulation
query (u2, m2) is accompanied by γ′, ζ ′, ρ′ with

u2 = gγ′ · aζ′ · vρ′

1
(3)= gγ′ · aζ′ · gs1ρ′ · (gα1 · aβ1)−c1ρ′

= gα2 · aβ2

with α2 := γ′ + (s1 − α1c1)ρ′ and β2 := ζ ′ − β1c1ρ′ for 1 ≤ i ≤ n.
In general, in an inductive fashion, assume that for every query (uj , mj) for j < i,

we have computed a representation αj , βj such that uj = gαj · aβj . The query responses
(vj , sj) are thus of the following form, for cj = H(vj , uj , mj):

vj = gsj · u−cj

j = gsj−αjcj · a−βjcj . (4)

Then from any representation

ui = gγ′′ · aζ′′ · vρ′′
1

1 · · · v
ρ′′

i−1
i−1

we can recursively derive αi and βi so that ui = gαi · aβi .
Consider proofs (v∗

i , s∗
i ) for statements (u∗

i , m∗
i ), resp., for 1 ≤ i ≤ n, output by A so

that
(v∗

i , u∗
i , m∗

i , s∗
i ) ̸= (vj , uj , mj , sj) for all i and j, (5)

that is, none of the statement/proof pairs was a simulation query/response. If Sch.Verify
on input statement (u∗

i , m∗
i ) and proof (v∗

i , s∗
i ) returns true then

v∗
i · (u∗

i )c∗
i = gs∗

i with c∗
i = H(v∗

i , u∗
i , m∗

i ) for 1 ≤ i ≤ n. (6)

For any i, consider the point when H(v∗
i , u∗

i , m∗
i ) gets defined. This must be during a

random oracle query made by A, since it cannot have made a simulation query for (u∗
i , m∗

i )
answered with v∗

i : as there is only one valid value s∗
i , this would mean that A returned

the oracle’s response, i.e., (5) does not hold.
Let qi be the number of simulation queries made before the random oracle query

(v∗
i , u∗

i , m∗
i ). Since A is algebraic, it must accompany the query by representations (δi, ηi,

ρi,1, . . . , ρi,qi) and (γi, ζi, ξi,1, . . . , ξi,qi) of v∗
i and u∗

i , respectively, that is,

v∗
i = gδi · aηi ·

qi∏
j=1

v
ρi,j

j

(4)= g
δi+

∑qi
j=1(sj−αjcj)ρi,j · aηi−

∑qi
j=1 βjcjρi,j

u∗
i = gγi · aζi ·

qi∏
j=1

v
ξi,j

j

(4)= g
γi+

∑qi
j=1(sj−αjcj)ξi,j · aζi−

∑qi
j=1 βjcjξi,j (7)

Substituting u∗
i and v∗

i in (6) by the above right-hand sides and grouping the coefficients
of g and the a yields

a

(
ηi−

∑qi
j=1 βjcjρi,j

)
+c∗

i

(
ζi−

∑qi
j=1 βjcjξi,j

)
= g

s∗−
(

δi+
∑qi

j=1(sj−αjcj)ρi,j

)
−c∗

i

(
γi+

∑qi
j=1(sj−αjcj)ξi,j

)
. (8)
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Assume that the representation of u∗
i in (7) is independent of a, that is

ζi −
qi∑

j=1
βjcjξi,j ≡p 0 . (9)

Then the extractor can output the witness log u∗
i = γi +

∑qi
j=1(sj − αjcj)ξi,j .

Otherwise, the coefficient of c∗
i in the exponent of a in (8) is non-zero. The adversary

(implicitly) chose the values αj , βj for all 1 ≤ j ≤ qi when making simulation (or random
oracle) queries before making the query H(v∗

i , u∗
i , m∗

i ). Likewise, it must have chosen the
values ηi, ζi and ρi,j , ξi,j for all 1 ≤ j ≤ qi before making this query. Therefore, c∗

i is
chosen uniformly at random after all the values in the exponent of a in (8) are defined,
and moreover c∗

i is not multiplied by 0. The probability that the exponent of a in (8) is
congruent to 0 modulo p is thus 1

p . If it is different from 0, the reduction can efficiently
compute log a from (8), and from the representation of u∗

i in (7), it can compute the
witness log u∗

i .
If the adversary returns n proofs then the probability that for any of them extraction

fails is upper-bounded by ϵext
n = n/p. ⊓⊔
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