
TallyGuard: Privacy Preserving Tallied-as-cast
Guarantee

Athish Pranav Dharmalingam1[0009−0000−7326−4662], Sai Venkata
Krishnan1[0009−0008−9609−772X], KC Sivaramakrishnan1,2[0000−0002−3491−1780],

and N.S. Narayanaswamy1[0000−0002−8771−3921]

1 Indian Institute of Technology, Madras, Chennai, India
2 Tarides, Paris, France

Abstract. This paper presents a novel approach to verifiable vote tal-
lying using additive homomorphism, which can be appended to existing
voting systems without modifying the underlying infrastructure. Existing
End-to-End Verifiable (E2E-V) systems like Belenios and ElectionGuard
rely on distributed trust models or are vulnerable to decryption com-
promises, making them less suitable for general elections. Our approach
introduces a tamper-evident commitment to votes through cryptographic
hashes derived from homomorphic encryption schemes such as Paillier.
The proposed system provides tallied-as-cast verifiability without reveal-
ing individual votes, thereby preventing coercion. The system also pro-
vides the ability to perform public verification of results. We also show
that this system can be transitioned to quantum-secure encryption like
Regev for future-proofing the system. We discuss how to deploy this
system in a real-world scenario, including for general political elections,
analyzing the security implications and report on the limitations of this
system. We believe that the proposed system offers a practical solution
to the problem of verifiable vote tallying in general elections.
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1 Introduction

In recent years, the integrity and transparency of elections have become crit-
ical concerns, especially in general elections. Traditional voting methods like
paper based voting, while reliable, have issues with scalability, security and
efficiency. This has led to the exploration of electronic and online voting sys-
tems [4,7,5,9], which aim to address these concerns, but also introduce new
security challenges [8,24].

We consider the setting of an offline, polling booth, electronic voting system
for general elections. Assume that an independent election commission runs the
elections at the constituency level. The election commission sets up the elections,
the polling booths, and runs the counting process. The votes are recorded both
electronically and in a secure printed slip of paper that the voter is able to see
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but not take home. The printed slip is collected and stored securely alongside
the electronic vote. The electronic votes are tallied to determine the election
outcome. A few of the electronic voting machines are selected and their votes
are tallied with the printed slips to ensure the integrity of the election. Election
observers are allowed to witness the voting and counting process to ensure that
the election is conducted fairly.

This system has the advantage that the association between the voter and
their votes end at the point of voting, ensuring voter privacy and coercion re-
sistance. The printed vote preference gives the voter the chance to confirm that
their votes have been cast correctly. However, given the votes are tallied elec-
tronically, and only a small percentage of electronic votes are tallied against the
printed votes, there is no guarantee that the votes are tallied correctly.

How can we ensure that the electronic votes are tallied correctly in such a
system? We would like to do this as an additional verification step, without
affecting the existing voting process. In particular, we would like any member of
the public to be able to (a) validate that their vote has been recorded as intended
and (b) all the collected votes are tallied correctly to determine the outcome of
the election. At the same time, we would also like to ensure that an individual
voter’s choice is not revealed to anyone, intentionally or otherwise, to prevent
coercion.

We can summarize our requirements as follows:

1. Cast-as-Intended: voters must be able to get convincing evidence that
their votes have been recorded as intended.

2. Recorded-as-Cast: voters should be able to verify that their vote has been
recorded correctly.

3. Coercion Resistance: voters must not be able to prove to anyone how
they voted.

4. Voter Privacy: no authority or a group of authorities should be able to
link a voter to their vote.

5. Tallied-as-Cast: any member of the public should be able to verify that all
the recorded votes have been tallied correctly.

6. Deployability: the system should be deployable in the existing voting sys-
tem as an addition, without affecting the existing process.

We propose TallyGuard, a novel approach to verifying vote tallying that
can be appended to an existing offline electronic voting system. Like existing end-
to-end verifiable voting systems such as Helios [1], Belenios [7], Electionguard [4],
StarVote [2], we use additive homomorphic encryption to tally the votes. The
voters are also given a hash of their vote as an acknowledgment, which they can
use to verify that their vote has been recorded correctly in a public list of cast
vote hashes. The key novelty of our system is that unlike existing approaches
systems, TallyGuard does not require decrypting the encrypted votes in the
entire election process. The public list of cast votes is used to verify that the
election result is valid. In the rest of the paper, we present the approach formally
and then discuss the deployment approach.
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2 Tallied-as-cast with Paillier encryption

In this section, we describe how TallyGuard uses a novel variant of the Pail-
lier encryption to guarantee privacy preserving tallied-as-cast property. Paillier
encryption [19] is a well-known public key cryptosystem, which is based on the
decisional composite residuosity problem (DCRA). It supports additive homo-
morphism. We describe the Paillier cryptosystem below.

Key generation: 2 large prime numbers p and q are chosen randomly
such that gcd(pq, (p − 1)(q − 1)) = 1. Randomly select a base g such
that g ∈ Z∗

n2 , where n = pq. The public key kpub is {g, n}. Compute
λ = lcm(p − 1, q − 1) and µ = L(gλ mod n2)−1 mod n, where
L(x) = x−1

n . The private key kpriv is {λ, µ}.

Encryption: The encryption function is ϵ(m, kpub = {g,n}) = gm · rn
mod n2 where r is a random nonce such that 0 < r < n and gcd(r, n) = 1
which is generated when the function is invoked.

Decryption: Let the ciphertext be c. The decryption function is
decrypt(c, kpriv = {λ, µ}) = L(cλ mod n2) · µ mod n.

TallyGuard is configured to use Paillier encryption with the following 2
changes:

1. TallyGuard does not use the private key kpriv. Hence, λ and µ are safely
discarded after key generation.

2. The random nonce r is generated and passed as input to the encryption
function.

The direct implication of the first change is that one cannot decrypt the
encrypted votes. Hence, for clarity, we call an encrypted vote as a vote hash.
The vote hashes still have the additive homomorphism property.
Notation. One dimensional vector is represented as

−→
V and the two dimensional

vector/matrix is represented as H. Scalars are represented in normal font.

2.1 Pre-election setup

As part of the pre-election setup phase, the election commission resets the voting
machine, and loads the candidate list for the upcoming election. At this point,
the election commission generates a kpub and kpriv pair, and immediately dis-
cards the private key kpriv. We assume that no stakeholder has access to kpriv.
We also make the reasonable assumption that the deriving the kpriv from the
kpub or any other information available in TallyGuard is computationally in-
feasible. Then, kpub is loaded into the voting machine. The election commission
also releases the kpub to the public before the election takes place, and thus
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committing to the public key. For the sake of the discussion, we assume that the
tallied-as-cast verification is performed at the level of individual voting machine.
This will produce tamper evidence at the level of a voting machine. If the same
public key is used for all the voting machines in a given election, then the tamper
evidence is at the level of the constituency.

Note: For a election with N voters, the public key parameter n must
be chosen such that n > N .

2.2 Recording the vote

We represent the vote of vth voter in form of a bit vector
−→
Vv of dimensions

l, where l is the number of candidates. When a voter casts his vote for jth

candidate, Vv,j = 1 and others are set to 0. For hashing the vote, we treat
each bit of the vector as an individual plain text and hash it using the Paillier
encryption scheme. The vote hash for the vth voter is represented as

−→
Hv.

−→
V v =


Vv,1

Vv,2

...
Vv,l

 ,
−→
Hv =


Hv,1

Hv,2

...
Hv,l

 =


ϵ(Vv,1, kpub, rv,1)
ϵ(Vv,2, kpub, rv,2)

...
ϵ(Vv,l, kpub, rv,l)


Independent random nonces rv,j are generated for each bit of the vote and

passed as input to the corresponding encryption function. The aggregate nonce
vector

−→
Rv is the product of all the random nonces used and the result vector−→

Wv is sum of votes that have been cast, where v is the number votes recorded
from start of polling.

−→
R v =


Rv,1

Rv,2

...
Rv,l

 =


∏v

i=1 ri,1∏v
i=1 ri,2

...∏v
i=1 ri,l

 ,
−→
W v =


Wv,1

Wv,2

...
Wv,l

 =


∑v

i=1 Vi,1∑v
i=1 Vi,2

...∑v
i=1 Vi,l


The vote hash acts as the evidence for the vote cast by the voter. A copy of

this hash is given to the voter as a receipt. The voting machine stores the result
vector

−→
W v, the aggregate nonce vector

−→
R v, the vote hash

−→
Hv and drops the

vote
−→
V v.

2.3 Post-election verification

Recall that the public key kpub had been made public during the pre-election
setup. Let the total number of votes cast be N . The election commission pub-
lishes the election result

−→
WN , which is the sum of all the votes cast. In addition,
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the election commission also publishes the aggregate nonce vector
−→
RN and the

individual vote hashes
−→
H in Bulletin Board (BB).

An individual voter can verify that his vote has been correctly recorded by
checking that their vote hash is included in the BB. Any member of the pub-
lic can verify the correctness of the election result based on the published vote
hashes, public key and the aggregate nonce vector as follows:

Theorem 1 (Tallied-as-cast verification-Paillier).
∏N

i=1 Hi,1∏N
i=1 Hi,2

...∏N
i=1 Hi,l

 =


ϵ(WN,1, kpub, RN,1)
ϵ(WN,2, kpub, RN,2)

...
ϵ(WN,l, kpub, RN,l)



The key difference between TallyGuard and other schemes is that we do not
decrypt the homomorphically computed hash to obtain the result. Decrypting
individual votes is not possible as the private key has been discarded during the
pre-election setup. Instead, we verify the tallied-as-cast by validating the hash
of the result with the published vote hashes.

TallyGuard offers flexibility for the granularity of the verification process.
If different public keys are used for different voting machines used in an election,
then the verification process can be done at the voting machine level (at the
cost of releasing the vote count for each voting machine). However, an election
for a constituency typically involves multiple voting machines. In such cases, the
tallied-as-cast verification can be done at the constituency level by using the
same public key for all the voting machines in the constituency. The aggregate
nonce vector is the product of the aggregate nonce vectors from all the voting
machines in the constituency. In the case of constituency level verification, result
is only required to be published at the constituency level, which is the result of
the election in that constituency.

2.4 Correctness of verification

The proof of Theorem 1 is as follows. Additive homomorphism property of Pail-
lier encryption ensures that the product of the vote hashes is the hash of the
sum of the votes with the product of the random nonces.
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Additive homomorphism

ϵ(m1, kpub, r1) · ϵ(m2, kpub, r2) mod n2

= (gm1 · rn1 mod n2) · (gm2 · rn2 mod n2)

= gm1+m2 · (r1 · r2)n mod n2

= ϵ(m1 +m2, kpub, r1 · r2)


∏N

i=1 Hi,1∏N
i=1 Hi,2

...∏N
i=1 Hi,l

 =


ϵ(
∑N

i=1 Vi,1, kpub,
∏N

i=1 ri,1)

ϵ(
∑N

i=1 Vi,2, kpub,
∏N

i=1 ri,2)
...

ϵ(
∑N

i=1 Vi,l, kpub,
∏N

i=1 ri,l)

 =


ϵ(WN,1, kpub, RN,1)
ϵ(WN,2, kpub, RN,2)

...
ϵ(WN,l, kpub, RN,l)



3 Quantum secure TallyGuard

The Paillier cryptosystem is increasingly considered unsuitable in light of recent
advancements in quantum computing, which have heightened the risks associated
with cryptographic schemes reliant on decisional composite residuosity problem
(DCRA), discrete log problem (DLP) and RSA problem. To ensure long-term se-
curity, it is essential to adopt cryptographic primitives that are resilient to quan-
tum attacks. The Regev encryption scheme [20] is one such quantum resistant
approach that enables homomorphic additions, making it a valuable candidate
for secure computations. A variant of this scheme [25] is particularly well-suited
to our use case, as it extends support to general addition operations, addressing
the limitations of the original scheme proposed, which was restricted to bitwise
addition. We describe the modified Regev encryption scheme below.

Key generation: The security parameter n is chosen which denotes
the dimension of the lattice used. χ is binomial distribution on Z2.
Modulus q is a prime integer. Message space is t such that t < q.
Choose −→s ′ ← Zn

±q uniformly and randomly such that −→s ← (1,−→s ′).
Choose n′ such that n′ < ⌊ q

2t⌋. Choose randomly A′ ← Zn′×n
q . Choose

−→e ← χn. Calculate
−→
b = A′−→s ′ + −→e ∈ Zn′

q . The public key kpub is

A = [
−→
b ,−A′] ∈ Zn′×(n+1)

q . The private key kpriv is −→s .

Encryption: The encryption function is −→ϵ (m, kpub) = AT ×−→r +−→m ·
⌊ q
2t⌋ where A is public key, −→m ← [m, 0, 0, . . .] and −→r ∈ (0, 1)

n′
.

Decryption: Let the ciphertext be −→c . The decryption function is
decrypt(c, kpriv) = ⌊ 1

⌊ q
2t ⌋

((−→c T ·−→s ) mod q)⌋ mod t.
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Similar to TallyGuard’s use of Paillier, TallyGuard does not use the
private key, and hence is discarded after key generation and the random vector
−→r is taken as input to the encryption function.

3.1 Pre-election setup

The pre-election setup is similar to the Paillier case, where the public key is
loaded into the voting machines and is made public. For sake of simplicity we
assume the verification is done at the voting machine level.

Note: For a election with N voters, Regev encryption scheme will hold
only when N < t < q and n′ < 1

N ⌊
q
2t⌋.

3.2 Recording the vote

The vote representation remains the same as the Paillier case. We use Regev
encryption here to hash the vote.

Hv =


−→
Hv,1−→
Hv,2

...
−→
Hv,l

 =


−→ϵ (Vv,1, kpub,

−→r v,1)−→ϵ (Vv,2, kpub,
−→r v,2)

...
−→ϵ (Vv,l, kpub,

−→r v,l)


Like before, we store the aggregate value of the random numbers used in the

encryption. Here the aggregate is the vector sum of −→r used in the encryption.
When v votes have been polled, the aggregate Rv is:

Rv =


−→
R v,1−→
R v,2

...
−→
R v,l

 =


∑v

i=1
−→r i,1∑v

i=1
−→r i,2

...∑v
i=1

−→r i,l



3.3 Post election verification

The result verification process is very similar to Paillier case, with the only
difference being the dimension of the vote hashes and aggregate information.
Following theorem is used to verify the result:
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Theorem 2 (Tallied-as-cast verification-Regev).

N∑
i=1

Hi =


−→ϵ (WN,1, kpub,

−→
R v,1)

−→ϵ (WN,2, kpub,
−→
R v,2)

...
−→ϵ (WN,l, kpub,

−→
R v,l)


The proof of Theorem 2 is similar Paillier-based solution (Theorem 1). To

verify the correctness of the theorem we use the additive homomorphism prop-
erty of the Regev encryption scheme.

Additive homomorphisim

−→ϵ (m1, kpub,
−→r 1) +

−→ϵ (m2, kpub,
−→r 2) = (AT ×−→r 1 +−→m1 · ⌊

q

2t
⌋)

+ (AT ×−→r 2 +−→m2 · ⌊
q

2t
⌋)

= AT × (−→r 1 +−→r 2) + (−→m1 +−→m2) · ⌊
q

2t
⌋

= −→ϵ (m1 +m2, kpub,
−→r 1 +−→r 2)

The proof of the theorem is as follows:

N∑
i=1

Hi =


∑N

i=1

−→
H i,1∑N

i=1

−→
H i,2

...∑N
i=1

−→
H i,l

 =


−→ϵ (

∑N
i=1 Vi,1, kpub,

∑N
i=1

−→r i,1)
−→ϵ (

∑N
i=1 Vi,2, kpub,

∑N
i=1

−→r i,2)
...

−→ϵ (
∑N

i=1 Vi,l, kpub,
∑N

i=1
−→r i,l)



=


−→ϵ (WN,1, kpub,

−→
RN,1)

−→ϵ (WN,2, kpub,
−→
RN,2)

...
−→ϵ (WN,l, kpub,

−→
RN,l)


4 Deployment in Indian general elections

As an illustration, we consider the deployment of TallyGuard in Indian gen-
eral elections. The Indian general elections is the largest democratic elections in
the world. In the Lok Sabha, the lower house of India’s bicameral parliament,
there are 543 constituencies with the eligible voter population of 968 million [6].
The main form of voting is Direct-Recording Electronic (DRE) voting using
an Electronic Voting Machine (EVM), along with postal voting for exceptional
cases.
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4.1 EVM-based voting in India

The EVM consists of two units – Control Unit (CU) and the Ballot Unit (BU).
The BU facilitates the cast of individual votes which contains a ballot paper
containing candidates and buttons corresponding to each candidate. The CU is
responsible to store the votes and controls the BU’s operations. The system is
powered by a 7.5 V battery inserted into the control unit specially to facilitate
voting in regions that lack access to electricity. The EVMs are completely isolated
from outside environment in electricity and communication. The votes recorded
are stored in the EEPROM present in the CU. A single machine can record a
maximum of 2000 votes [23].

The EVMs used in India are equipped with a Voter Verified Paper Audit
Trail (VVPAT). When the voter casts the vote in an EVM, a printed slip appears
through a sealed window for a few seconds. The printed slip contains the name
and party affiliation of the candidate for whom the vote was cast. The VVPAT
slip acts as a confirmation for the voter to identify if their vote is cast-as-intended.
During the result compilation, 2% of EVM– VVPAT [23] pairs are chosen per
constituency and the VVPAT slips are counted to cross verify the counts shown
in the EVM. This is carried out as an risk limiting audit to ensure the correctness
of the result partially.

On the polling day, a pre-election audit is performed at the polling station
before the polls are open. During the pre-election audit, the polling officers and
observers belonging to the different political parties, cast a small number of votes
in full public view. After the mock polls are over, the results are validated by
the polling agents and observers. The VVPAT slips are also cross verified with
the EVM results.

Given that the results are declared primarily based on the EVM counts with
only a limited verification of the VVPAT slips, the system is not end-to-end
verifiable. A full manual tally from the VVPATs is prohibitively expensive due
to the diversity and scale of the electorate. Moreover, it is difficult for the public
to determine whether a full hand count was conducted accurately. Concerns have
been raised about the security of the EVMs and the possibility of tampering.
Researchers have found vulnerabilities in the EVMs [24] which allows the votes
to be changed both at polling time and after polling. Citizen’s Commissions of
Elections (CCE), among its recommendations, suggest moving towards end-to-
end verifiable systems [16].

4.2 Extending Indian EVMs with TallyGuard

Figure 1 shows the extension of the existing EVMs with TallyGuard. As men-
tioned previously, the public key used in the hashing process is loaded onto the
EVMs during the pre-election setup. For ease of deployment and verification,
the same public key may be loaded onto all the EVMs used in a particular
constituency. The public key is released to the public before the polling day.
We extend the EVM with functionality for hash computation. This receives the
plaintext vote and generates the hash for the vote. Thus, for each vote, the EVM
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Fig. 1. Deployment architecture of TallyGuard in Indian general elections

now also stores the vote hash. In addition, the EVM also maintains the aggregate
nonce vector.

We add a Hash Paper Audit Trail (HPAT) printer to the EVM. The HPAT
printer prints vote hash on a paper slip along with a UUID that uniquely deter-
mines the voter. This UUID could be the same as the unique voter ID issued by
the election commission. The HPAT slip is printed and shown to the voter for
a few seconds and is securely stored in a box similar to VVPAT. A copy of the
printed slip, with the vote hash and the UUID, is given as an acknowledgement
to the voter. We also extend the pre-election audit of the EVMs to report the
vote hashes and the aggregate random nonces. With the already revealed public
key, the mock poll results are validated by the observers.

After the election, the EVMs, VVPATs and HPATs are transported to a se-
cure location where they are kept until the counting day. During the counting,
the election commission releases the results based on the counts from the EVMs.
Alongside, the election commission also releases the vote hashes and the aggre-
gate nonce vectors in a public bulletin board. Each voter can check that the vote
hash is included in the public bulletin board. Any member of the public can
verify the correctness of the results using the Theorems 1 and 2. HPAT may be
used by the election commission to respond to a voter who may challenge that
their vote hash was not recorded correctly.

We have prototyped TallyGuard using as a MirageOS Unikernel [17] writ-
ten using the memory-safe OCaml programming language, running on top of
the open-source security-enhanced Shakti RISC-V processor [11]. The use of
MirageOS reduces the trusted computing base of the platform to a bare mini-
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mum. OCaml programming language avoids many common memory errors by
construction. The security-enhanced Shakti processor prevents many common
programming errors becoming security holes. We believe that using open-source
components both for software and hardware is essential for building trust in the
implementation of TallyGuard. Overall, we believe that the proposed exten-
sion of the existing EVMs with TallyGuard is straight-forward and can be
done with minimal changes to the existing infrastructure and processes.

5 Related work

TallyGuard follows the long line of end-to-end verifiable election systems work.
Our specific aim was to design a system that is simple to extend to existing DRE-
based voting systems. Given that our aim is to deploy the system to general elec-
tions, we would like to avoid any major changes to the process side of running
the elections. Given that the election commission is currently a trusted stake-
holder in conducting free and fair elections, we chose to not go for distributed
trust and threshold encryption systems such as ElectionGuard [4], Belenios [7],
StarVote [2] and Selene [21]. In these systems, the secret key is divided among
multiple trustees and the decryption can only be done when all the trustees
come together. The system assumes that at least one honest trustee exist to
avoid decryption of individual votes. Such a system is more complex in terms of
process than the current system. In the case of TallyGuard, the private key is
destroyed and thus no decryption is possible. While the election commission still
runs the elections, the public can verify the correctness of the results without
having the ability to decrypt individual votes.

To gain cast-as-intended feature [5], we may use VVPAT or Benaloh chal-
lenge [3]. Benaloah challenge is a voter-initiated audit procedure, which provides
choice for the voter to either challenge the encrypted vote for audit or cast the
encrypted vote. Once audited that encrypted vote cannot be cast and a new
encrypted vote needs to be prepared. Given the complexity of the Benaloah
challenge, a casual voter may not be able to understand the process and may
end up missing out on casting the vote.

Many other systems utilize homomorphic encryption for voting. Helios [1] is
a Internet voting system where the votes are collected as encrypted votes from
the users. For the result computation, the collected votes are homomorphically
added and decrypted. In the online voting system, coercion resistance is a critical
issue and Helios provides coercion explicitly to make it apparent. Damgård et
al. [10] propose a generalization of Paillier encryption based electronic voting.
The system uses encryption, homomorphic addition and decryption of the votes
and extends the system using threshold encryption.

DRE-i [13] and DRE-ip [14,22] voting protocols are closest to TallyGuard
in that they do not require trustworthy authorities to perform tallying opera-
tions. In the DRE-ip system, the vote receipt are generated using random num-
bers whose aggregate sum is used for verification. It uses Beneloah challenge to
get cast-as-intended guarantee. Reversing the vote receipts is computationally
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hard under the decisional Diffie-Hellman (DDH) assumption [12]. In Tally-
Guard, we start with DCRA assumption [19] holds for the secrecy of the vote
hashes and then extend it to post-quantum secure hash functions. While Tal-
lyGuard does not use Benaloah challenge for cast-as-intended verification, we
can extend TallyGuard to add this support similar to DRE-ip. Compared
to DRE-ip, TallyGuard is extensible in the homomorphic encryption scheme.
We have shown that TallyGuard can use either Pailier or Regev encryption.
This flexibility allows a deployed TallyGuard system to switch to a different
encryption scheme without changing the process model. We have also shown
that TallyGuard is post-quantum secure, whereas no such claims are made
for DRE-ip.

6 Limitations, Conclusions and Future Work

In this paper, we have presented TallyGuard, a verifiable electronic voting
system that can be appended to existing offline DRE-based systems. Going back
to the requirements listed in Section 1, TallyGuard satisfies the requirements
as follows:

1. Cast-as-Intended: VVPAT ensures that the vote cast by the voter is the
same as the vote intended by the voter. Mohanty et al. [18] observe that
the current VVPAT auditing for Indian elections is not sufficient and pro-
pose an approach to conduct risk-limiting audits (RLA) of the ourcome of
Indian elections. RLA is orthogonal and can be used in conjunction with
TallyGuard.

2. Recorded-as-Cast: The voters can verify that their vote hash is included
in the public bulletin board.

3. Coercion Resistance and Voter Privacy: The system has no ability to
decrypt the individual votes from the vote hash.

4. Tallied-as-Cast: The result validation can be performed based on declared
results, the public key (released before the election), the hashes from the
public bulletin board and the aggregate random nonces (released along with
the results).

5. Deployability: We have shown in Section 4 that TallyGuard can be
deployed in a manner that is compatible with the current election process in
India.

We have built a prototype of the system using MirageOS Unikernel running
on top of security-enhanced Shakti RISC-V processor. The entire software and
hardware stack is fully open-source and we plan to make the hardware and
software stack available to the public. We believe that public scrutiny of the
software and hardware stack is essential for trust in the system.

While the tallied-as-recorded guarantee is software independent – the results
can be validated without relying on the software developed by the election com-
mission – the other parts of our system still rely on trusting the hardware and
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software, despite them being open-source. It is well-known that bugs in hard-
ware and software may be exploited by attackers to make the system operate
outside its specification, such as leaking the discarded private key at the point of
key generation, leaking the random nonces used for encrypting individual votes,
storing the association between the voter and their vote, etc. We plan to explore
the use of formal verification for proving the correctness of the application soft-
ware, using formally verified compiler such as CompCert [15] to ensure that the
compilation of the software preserves the semantics of the source program, using
hardware security techniques such as SecureBoot to ensure that the software
running on the hardware is the software that was intended to run, etc.

As a next step, we plan to discuss the deployment of TallyGuard with the
Election Commission of India and other stakeholders. We also plan to conduct
a pilot deployment of the system in a small election to gather feedback from the
voters and election officials. We believe that the deployment of TallyGuard
will help in increasing the trust of the voters in the election process and will help
in increasing the participation of the voters in the election process.
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