
Experimentally studying path-finding problem between conjugates in

supersingular isogeny graphs: Optimizing primes and powers to

speed-up cycle finding

Madhurima Mukhopadhyay

Department of Mathematics, Indian Institute of Technology, Madras
ma24r008@smail.iitm.ac.in ∗

Abstract

We study the problem of finding a path between conjugate supersingular elliptic curves over Fp2

for a prime p, which is important for cycle finding in supersingular isogeny graphs. We see that
for any given p, there is some l corresponding to p which accelerates the process of conjugate path-
finding. Also, time-wise, the most efficient way of overviewing the graph is seeing i(= 3) steps at
once. We have outlined methods in which the next vertex of any pseudo-random walk should be
chosen to reach conjugate vertex faster. We have experimentally investigated the paths between
frobenius conjugates for wide ranges of small prime l. We introduce sets to experimentally learn
about the structure of the isogeny graphs when short cycles are present.

1 Introduction

The public key cryptosystems used today are based on integer factoring or the discrete logarithm prob-
lem in finite fields or elliptic curves. The presence of a quantum computing facility of a few thousand
logical qubits would probably suffice to break these systems [RNSL17], given Shor’s algorithm [Sho99].
Post-quantum cryptography is the study of cryptosystems that remain secure even if a quantum com-
puter is available.
Let p be a large prime defining a finite field Fp. The supersingular isogeny graph χl(Fp) for a prime
l(6= p) is a directed graph with the vertices being the isomorphic classes of supersingular elliptic curves,
and the directed edges being equivalent l isogenies where both the supersingular elliptic curves and
isogenies are defined over Fp. Isogeny based cryptography is a candidate of post-quantum cryptogra-
phy, and it relies on the hardness of various [EHL+20, DFG19, BKV19, DFKL+20, CLM+18] types of
path-finding problem in supersingular isogeny graphs between same or different base and final curves.
Endomorphisms being isogenies between same supersingular elliptic curves can be perceived as cycles
within the graph χl(Fp). The problem of finding paths in these graphs is equivalent to computing en-
domorphism rings [EHL+18] of supersingular elliptic curves which can be again reduced to computing
one endomorphism [PW24, MW23].

∗Personal email ID: mukhopadhyaymadhurima@gmail.com

1

Time complexity improvements in the path-finding problem are important from the viewpoint of choos-
ing better cryptographic parameters [Ber20, CRSCS22, BDF+24, BBC+21]. Computational observa-
tions [ACNL+23] reveal that for l = 2, 3, vertices are generally closer to their frobenius conjugates in
χl(Fp), in the sense that if one performs a pseudo-random walk, lesser steps will be required when the
base and final curves are frobenius conjugates of each other compared to the case when they are two
arbitrary supersingular elliptic curves. The path-finding problem between conjugates is the problem of
finding a path between a given supersingular elliptic curve E and it’s frobenius conjugate curve E(p).
Paths between conjugate supersingular elliptic curves are used to construct cycles which aid in comput-
ing endomorphism rings [EHL+20]. Relying on efficient computation of cycles, Kohel [Koh96] first stud-
ied the problem of finding endomorphism rings, which was later continued by Galbraith et. al. [GPS20]
along a different line. The runtime of Kohel’s algorithm [Koh96], which finds subring of finite index in
the endomorphism ring is O(p1+ε) while [GPS20] calls cycle finding algorithm O(log p) times. The algo-
rithm of Eisenträger et. al., [EHL+20] is probabilistic and depends on certain heuristics and constructs

two cycles to recover endomorphism ring from a Bass suborder in time O((log p)2p
1
2). An essential

component of the above algorithms is that they are all based on finding cycles. Recent endomorphism
ring computation algorithms are also available [FIK+23, ES24, XZQ24]. Despite these newer algorithms
which remove some conditions in [EHL+20], the algorithm in it remains relevant due to optimized com-
plexity, especially as p increases.
The cycle computation problem is also important as an algorithmic number theory problem and it’s
hardness can be utilized for devising secure cryptographic schemes. Important applications beside en-
domorphism ring computation [EHL+20] are in constructing collision resisting hash functions [CLG09],
SQIsign [DFKL+20], etc.

1.1 Motivation and our contributions

In this section, we list our contributions(which we have itemized) and the motivations behind them.
We have referred to some experiments. Our code is available at:

https://github.com/Madhurima11/cycle-computation-practical-methods

As conjugate elliptic curves are equal in the subfield Fp of Fp2 , a related problem is finding a
supersingular elliptic curve in Fp from an arbitrary supersingular elliptic curve in Fp2 . The improvement
in [CRSCS22] showed that choosing different l’s for each step of the pseudo-random walk leads to less
time. In our case, the value of l has to be fixed. But there lies an underlying possibility that a prime l
other than 2, 3 may lead to better timing estimates.

• We choose various primes p of sizes around 35 to 45 bits and l upto 59. Our aim was to initiate
from any vertex of the graph χl(Fp) and find a mirror path to it’s frobenius conjugate. We see
that the l for which the time to find a path to conjugate is minimum is not always the smaller
primes like 2, 3. It varies for each value of p. We have tabulated[Table 3] some values of p, l which
correspond to each other.

• The above observations imply that for practical parameters l has to be pre-computed when just
given p, supersingular elliptic curves over Fp2 and the aim is to find a mirror path. We have
outlined a procedure[Section 6.2] for choosing l with the goal of minimizing the total cost.

2

The above discussion makes it necessary to study the nature of the path between conjugates in χl(Fp)
as l varies. Experimental data[Section 5,[ACNL+23]] is available for l = 2, 3.

• We have investigated [Table 1] the paths between frobenius conjugates for l > 2, 3. Our studies
partly fulfill the requirement specified in Section 4.1 of [ACNL+23], which states that “Further
studies on a broader sample of primes would be required to fully explore the differences between
the distributions of distances between conjugate and arbitrary vertices.”

The related sets to study the paths between conjugates is the set of all supersingular j-invariants in
Fp(denoted by S0) and
Si = {j ∈ Fp2 : j is supersingular and is connected to it’s conjugate jp by an isogeny of degree li} for
i ≥ 1. The cardinality of sets Si have been well studied for i = 0, 1. We note that increasing the
cardinality of sets Si [Proposition1] leads to a decrease in the length of pseudo-random walk, in our
path finding problem between conjugates.

• Paths induced by j invariants in Si may contain short cycles, depending on the value of l, p,
which introduces cryptographic vulnerablities. We introduce sets Si = {j ∈ Si(i > 1)|j i

2
∈

S0 if i is even and jb i
2
c ∈ S1 if i is odd, where jk represents any descendant at the k-th step}. Each

set Si = Si, when short cycles of corresponding lengths are absent. However, when such cycles
are present, the sets Si and Si may not be equal for some i. It is interesting to delve into the
structure of isogeny graphs in these cases. We have studied the frequency distribution[Table 1
and Table 2] of vertices in Si and Si for small values of i, and several primes l, p.

The path-finding between conjugates is a specialised case of the general path-finding problem between
any two arbitrary supersingular elliptic curves. The connectedness of the graph χl(Fp) implies that for
large i, about O(log p) isogenies between two given supersingular elliptic curves is guaranteed [Theorem
79, [Koh96]]. But for small i, the existence of isogenies is not guaranteed. Hence a relevant problem
is that, given small i, enquiring existence of an isogeny of degree li between two supersingular curves
which are frobenius conjugates of each other. The important aspect here is that when we are performing
a psuedo-random walk, increasing i at each step means we can view a larger portion of the graph. This
gives the advantage of choosing a direction that would help us to land with our desired vertex quickly.
On the other hand, the cost of finding isogeny grows on increasing i.

• Inspired by remark 3.5 of [EHL+20] which says we can tinker their algorithm[Algorithm 3.4 [EHL+20]]
with the cases when the distances between frobenius conjugates “in the graph is bounded by some
fixed integer B”. Asymptotically, we prove that [Section 5.6] when solving the path finding prob-
lem between conjugates, taking i = 3 balances the cost of finding isogenies with the advantage of
broader view. We have described optimal methods for each bound up to 3. Connecting it with
the sets introduced, the relevant structure to concentrate on is S0 ∪ S1 ∪ S2 ∪ S3. We achieve the
same asymptotic cost of O(l2 log p) as in [EHL+20], which is the most optimal till now, but with
the advantage of practical improvements.

Some recent works [ABC+25, KKA+24] deal with cycle computation using several prime degrees of
isogenies. The bottleneck still lies in the choice of primes that would be necessary to generate cycles for
constructing endomorphism rings of the general case of curves, i.e., supersingular elliptic curves over
Fp2 . We stick to one prime l and the necessary pre-computations that would minimize the time.

3

1.2 Paper organization

We introduce the context of the problem in Section 1. We specifically point out our contributions
in subsection 1.1. In Section 2, we give some background regarding elliptic curves and isogenies. In
Section 3, we present the specific problem of path finding to conjugates and the motivation to work
with it. In Section 4, we analyse the relative cardinalities of some sets which arise when short cycles
are present. We calculate the cost of finding prime power isogenies in Section 5, where we also devise
the optimal way in which we can do the test for finding path to conjugate. We outline the importance
of choosing l beforehand and the pre-computation strategies to do so in Section 6. We list some future
works in Section 7.

2 Preliminaries

We present a brief exposure to understand this work. A detailed background on elliptic curves, isogenies
and related information is available in literature [Sil86, Was08].

Elliptic curve: Let p > 3 be a prime. An elliptic curve E over a finite field Fpn (for some positive
integer n) can be given by a (short) Weierstrass form E(Fpn) : y2 = x3 + ax+ b where a, b ∈ Fpn . The
points on E are the points x, y ∈ Fpn satisfying the equation of E along with a point (0 : 1 : 0) on
the projective curve y2z = x3 + axz2 + bz3, which form an abelian group [Chapter III,[Sil09]]. The

discriminant ∆(E) = −16(4a3 + 27b2) 6= 0 and j-invariant is defined by j(E) = −1728 (4a)3

∆(E) . For any

arbitrary j0 ∈ Fpn , there exists an elliptic curve E0 over Fpn such that j(E0) = j0. Two elliptic curves
are isomorphic over Fp if and only if they have the same j-invariant. The cardinality of E is given by
E(Fpn) = pn + 1− t where t is the trace of the pn-th frobenius map[Chapter V, [Sil09]]. A curve E(Fpn)
is supersingular if the characteristic p divides the trace t, otherwise, it is ordinary1. Every supersingular
elliptic curve over Fp has it’s j-invariant defined over Fp2 [Theorem 3.1, Chapter V, [Sil09]]2. There are
p
12 of isomorphism classes of supersingular elliptic curves defined over Fp2 .

Isogenies: An isogeny φ : E1 → E2 between two elliptic curves E1, E2 is a non-constant rational
map which is also a group homomorphism. This implies that an isogeny is surjective on points over
algebraic closure, has a finite kernel, and can be expressed in terms of rational functions (p1(x)

q1(x) ,
p2(x)
q2(x) .y)

where p1, q1, p2, q2 ∈ Fpn [x] with gcd(p1, q1) = 1. The degree deg(φ) = max(deg p1, deg q1) and φ is

separable if
(p1(x)
q1(x)

)′
6= 0. An example of any isogeny on any elliptic curve is the multiplication by some

integer m, denoted by [m] which takes any point P to the point mP obtained by m times adding P . All
isogenies of some prime degree l 6= p are separable, which can be described by it’s kernel [Proposition
4.12, Chapter III, [Sil09]]. Isogenies with the same kernel are identified as same3 and we can compute
the isogeny from kernel by using Velu’s formula [Vél71]. Given any isogeny φ : E1 → E2, there is an
isogeny φ̂ : E2 → E1 such that φ ◦ φ̂ = φ̂ ◦ φ = [deg(φ)] . This map φ̂ is called the dual of φ.
An isogeny from any elliptic curve E to itself is called an endomorphism of E. The set of endomorphisms

1There are equivalent definitions in terms of Weierstrass equation, torsion points, multiplication map, endomorphism
rings or zeta function.

2Henceforth in our discussions from now on, we will assume the elliptic curves to be defined over Fp2 .
3We say that they are equivalent if one isogeny can be obtained from another by composing an automorphism.

4

defined over Fpn together with the zero map, form a ring under the operations of addition and com-
position, which is called the endomorphism ring of E and is denoted by End(E). For a supersingular
elliptic curve, the endomorphism ring is isomorphic to an order in a quaternion algebra.

Modular Polynomials: The modular polynomial φl(x, y) for a prime l is a symmetric polyno-
mial of degree (l + 1), whose roots over Fp2 correspond to pair of l-isogeneous j-invariants of elliptic
curves over Fp2 [Exercise 2.18, Chapter II, [Sil94]] and is of the form φl(x, y) = xl+1 − xlyl + yl+1 +∑

k,m≤l,k+m<2l akmx
kym for akm ∈ Z. It requires O(l3 log l) bits to represent φl. Given an elliptic curve

E, to compute l isogeneous curve, we evaluate φl(j(E), x) ∈ Fpn [x] and then compute roots in algebraic
closure. An algorithm due to Elkies [E+98] allows to compute the isogeny in time exponential in l.

Isogeny graphs: We have already defined the supersingular isogeny graph χl(Fp) in Section 1. The
number of edges from any j-invariant is the (l + 1) of roots of the modular polynomial evaluated at
that point. The graph can be a multi-graph and for each edge (j(E1), j(E2)), the concept of dual
isogeny implies that (j(E2), j(E1)) is also an edge. When j(E1), j(E2) 6= 0, 1728, the multiplicities
of (j(E1), j(E2)) and (j(E2), j(E1)) are same, which means barring these two vertices, we can view
it as an undirected graph4. This graph is connected, (l + 1)-regular(except at 0, 1728 due to extra
automorphisms). Any two elliptic curves in this graph is connected by m isogenies of degree l where
m = log p [Theorem 79,[Koh96]]. For a fixed prime l = O(log p), any l-isogeny in the just mentioned
chain can be specified by rational maps or kernel, and so have representations of size polynomial in
log p. The cardinality of the set V of vertices of this graph is given by #V = [p12] + εp where εp = 0, 1, 2
accordingly as p ≡ 1, {3, 5, 7}, 11 mod 12 respectively. This graph is a Ramanujan graph [Piz90],
an optimal expander graph. This means any random walk mixes rapidly, and it is widely used in
endomorphism ring computation and path-finding problems.

Isogeny cycles: An isogeny cycle, which we shall refer as simply cycle from now on, is a closed
walk containing the given set of vertices of elliptic curves, which contains no backtracking and is not
a power of another closed walk. By backtracking we mean an edge is dual to any other5. The cycle
{a1, a2, a3, . . . , aN}, through some elliptic curve E, corresponds to an endomorphism End(E) of degree
lN .

Conjugates: Given an elliptic curve E : y2 = x3 + ax+ b over Fp2 , let E(p) : y2 = x3 + apx+ bp. The

Frobenius morphism Frob : E → E(p) is given by (x, y) 7→ (xp, yp). The Galois group Gal(Fp2/Fp) of

the frobenius automorphism π : Fp2 → Fp2 such that π(α) = αp acts on the graph χl(Fp) and sends
a j-invariant j1 to jp1(the conjugate). The fixed points under this automorphism are the supersingular
j-invariants in Fp. Also, π is an involution as jp1 = j1∀j1 ∈ Fp2 . Any isogeny Φ : E1 → E2 such that
Φ = (f, g) between two elliptic curves results in another isogeny between the conjugate curves given by
Φp : Ep1 → Ep2 where Φp = (fp, gp). Also,

(
Φp
)p

= Φ.
The mirror involution [ACNL+23] sends each element of the graph χl(Fp) to it’s conjugate, resulting in
some important structural properties. The algebraic number theoretical condition of E and Ep being l-

4By identifying isogenies with it’s dual and edges as equivalent upto post composition with an automorphism.
5Two edges are dual if the dual of the isogeny corresponding to it is equal to the composition of automorphism of it

with the isogeny corresponding to the other.

5

isogeneous for some supersingualr elliptic curve E over Fp2 , is that Z[
√
−lp] embeds into End(E) [Lemma

6,[CLG09]].

3 Path finding to conjugates in supersingular isogeny graphs

In this section we discuss the concept of mirror paths and certain sets which help to study path finding to
conjugates. Next, we introduce a modified version of these sets, which are useful from the cryptographic
security viewpoint.

Mirror paths[Definition 2.6 [ACNL+23]]: Cycles are build with one side the the mirror image
under the frobenius map, of the other side as,

φl(j1, j2) = 0 =⇒ φl(j
p
1 , j

p
2) = φl(j1, j2)p = 0 (1)

This now implies that for l-isogeneous vertices j1 and j2, if any of them is in Fp or isogeneous to
it’s conjugate, then there exists a path between the other vertex and it’s conjugate. When this event
happens in a pseudo-random walk, then, the path can be traced backwards to reach the starting vertex.
Mirror paths are either of the form j1 → j2 → . . . jm → j → jpm → jpm−1 → jp2 → jp1 (where the
intermediate vertex j is in Fp), which makes it of even length or it is of the form j1 → j2 → . . . j →
jp → jp2 → jp1 (where j is l-isogeneous to jp) of odd length.

An essential subroutine of cycle finding [Algorithm 3.4,[EHL+20]] is to find a path between conjugate
vertices in χl(Fp) for fixed l. This makes it relevant to study values of l and minimum value of B(for
fixed l), so that finding lB isogeny to the conjugate jp takes optimal time.

3.1 Length of pseudo-random walk

The length of the pseudo-random walk to find a cycle, can be connected to the cardinality of the target
vertex set as below.

Proposition 1. [Proposition 3.6, [EHL+20]] Let us consider a random walk in χl(Fp)(p > 3 and l 6= p)
to reach a set S of vertices, not containing 0 or 1728. Then the minimum length L of the random walk
is

L =

log
(p

6|S|
1
2

)
log
(
l+1
2
√
l

) .
The corresponding probability PrS to reach S is

PrS ≥
6|S|
p

3.2 Cardinality of the set S of target vertices for various choices of isogeny degree

The set S can be chosen as the set of all supersingular j-invariants in the subfield Fp. In that case, the

cardinality of S is O(p
1
2), where the actual value [Equation 1, [DG16]] can be calculated from the class

number of some associated imaginary quadratic field and the value of p modulo 8.

6

The above value is independent of the choice of the prime l, as it does not deal with any isogeneous
curve. The other choice of the set S arises when li isogeny to the conjugate curve is considered for
various values of the integer i ≥ 1. Let us call this set as Si. More formally, let

Si = {j ∈ Fp2 : j is supersingular and is connected to it’s conjugate jp by an isogeny of degree li} (2)

for i ≥ 1. Additionally, let us define

S0 = {j ∈ Fp2 : j is supersingular and j = jp} = {j ∈ Fp2 : j is supersingular and j ∈ Fp} (3)

For example, [EHL+20] considers l isogeny to the conjugate. They have derived a lower bound[Theorem

3.9, [EHL+20]] on the cardinality of the corresponding set S1 as #S1 >
C
√
p

log(log(p)) where l < p
4 and C > 0

is a constant depending upon the value of l.

In general, asymptotically, the cardinality [[CLG09], Lemma 6] of Si is l
i
2O(
√
p).

3.3 Necessity to choose l and i optimally

A vital issue here is to test membership of an element in Si. For relatively large i(i = O(log p)), the
existence of isogeny for any element of χl(Fp) is guaranteed [Theorem 79, [Koh96]]. But for smaller
values of i, the isogeny of degree li between conjugates may not exist. Computing isogenies is the only
way in this case. This cost of isogeny computation grows bigger as the value of l or i increases. The
necessity of relatively larger l and i may arise as it increases the cardinality of Si, which decreases the
length of the pseudo-random walk. This motivates to study ways to choose l and i so that the total cost
which depends both on the length of the pseudo-random walk and the cost of isogeny computation is
optimally balanced, which has the possibility of adding practical improvements to the most optimized
algorithm [EHL+20] for finding paths between conjugates.

3.4 Paths leading to mirror paths

The vertices in S0 or S1 give rise to mirror paths which aid in finding cycles. For i > 1, the paths
corresponding to vertices in Si may be mirror paths or non-mirror paths. Non-mirror paths may
happen when a vertex is l-isogeneoous to the conjugate of some vertex j, whose immediate ancestor
is a part of the pseudo-random walk, but j itself is not a part of the walk. Let us call such paths as
generalised sibling paths.

Definition 1. Sibling Path: Suppose j is a vertex which appears in a pseudo-random walk with l-
isogeneous supersingular j-invariants (leaving the one already chosen as it’s ancestor) ji1 , ji2 , . . . , jil.
We call a path sibling path if ∃ i1 6= i2 such that jpi1 and ji2 are l-isogeneous.

In case of sibling paths ji1 and ji2 have a common immediate ancestor. The notion of generalised
sibling paths captures the cases when the immediate common ancestor may not be the same. Obviously,
any sibling path is also a generalised sibling path.
For example, let, j, j11, j21, j31, j41, j52, j61, j72, j81 be a path such that jkm(obtained as a root of jk−1,.)
signifies a vertex at the k-th level and is the m-th of the l isogenous vertices. Following this no-
tation, the vertex j32 is l-isogenous to j21 and it is not a part of the pseudo-random walk. Let
the conjugate jp32 be l isogeneous to j81, i.e., φl(j81, j

p
32) = 0. We then obtain a short cycle6 as

j21, j31, j41, j52, j61, j72, j81, j
p
32, j

p
21, j

p
31, j

p
41, j

p
52, j

p
61, j

p
72, j

p
81, j32, j21.

6We express this as an isogeny with initial and terminal vertex j21

7

Remark 1. Any sibling path or generalised sibling path leads to a short cycle.

Let us recall the relation between isogeny and endomorphism ring.

Theorem 2. [Theorem 3.1 [MMP24]] Let the Generalised Riemann Hypothesis hold true. Also, let
E,E′ be two supersingular elliptic curves with an isogeny of degree l between E and E′. Furthermore,
let End(E) and End(E′) be the endomorphism rings of E and E′ respectively.
If End(E) and End(E′) are known, then the l-isogeny can be computed in polynomial time.
If the l-isogeny is known, along with one of the endomorphism rings, then the other endomorphism ring
can be computed in polynomial time.

The above theorem implies that if a short cycle through any vertex of χl(Fp) is known along with
an isogeny from any other vertex, it may introduce vulnerabilities, which leads to knowledge about the
endomorphism ring, which again aids in computing isogenies. This disturbs the foundational hardness
assumptions of isogeny-based cryptography. Hence, we are interested in studying paths in Si(i > 1),
which fall in the category of non-sibling paths. This implies the study of sets Si(i > 1), such that vertex
j ∈ Si is only characterized by the fact that it has a descendant vertex in either of S0 and S1. We
exclude those vertices which may lead to generalised sibling paths. Since a new vertex is selected at
every point of the pseudo-random walk, choosing such a vertex j earlier in the pseudo-random walk will
save the cost of computing isogenies which may not lead to mirror paths or the paths which may be
insecure for cryptographic purposes. Thus our focus will be to study the sets

Si = { j ∈ Si(i > 1)| j has a descendant vertex in S0 or Si}

By the theory of mirror paths,

Si = {j ∈ Si(i > 1)| j i
2
∈ S0 if i is even and jb i

2
c ∈ S1 if i is odd}

7 We thus discard elements of the set Si \ Si of those j-invariants which have descendants at any two
levels(may be same also) such that one is isogeneous to the frobenius conjugate of the other. Technically,

Si \ Si = {j ∈ Si(i > 1)| j has no descendant jk1,i1 and jk2,i2 such that jk1,i1 is isogeneous to jpk2,i2}

8

4 Experimental observations with small distance

Previous observations [ACNL+23] point out that paths between conjugate vertices are much more
common than those between arbitrary vertices. In this section, we report the relative frequency of
vertices in S2, S3, S4 from the experiments of performing pseudo-random walks.
To do this, we focussed on three primes p equal to 70001, 90001, 100003 and l ranging from primes 2 to
59. The difference from the earlier [ACNL+23] observations in literature is that, we consider a larger set
for primes l, instead of only 2, 3 and deal with child nodes in Fp or S1. We note that precise bounds on
the estimate of cardinality of S0, S1 are known, whereas the same for Si is absent in literature for i > 1.

7where jk represents any descendant at the k-th step
8where jt,i1 represents a descendant at the t-th step

8

We considered the graph χl(Fp), where we took random supersingular j-invariants, j0 and continued
pseudo-random walks by initially choosing j = j0 and then j as a random root of φl(j, x).
The aim was to see when can we get a hint of a mirror path to jp0 . This could happen when some
intermediate j and jp were connected by li isogeny. We varied i = 2, 3, 4 and stopped when a desired
isogeny was found. To do this, we also labeled each of the l roots (leaving out the root that has occurred
previously) as ji1 , ji2 , . . . , jil .
We halted when there was some i1, i2 ∈ {1, 2, . . . , l} such that either ji1 = jpi2 , or φl(ji1 , j

p
i2

) = 0 or

deg
(

gcd(φl(ji1 , x), φl(x, j
p
i2

))
)
≥ 1. This corresponds to the cases where j ∈ S2 or S3 or S4 respectively,

j being the parent of ji1 and ji2 . When i1 = i2, the child ji1 ∈ S0 (for i = 2, 4) or S1 (for i = 3). These
lead to mirror paths that can be utilised to construct cycles. Contrarily when i1 6= i2, the paths lead to
short cycles which are discarded from the viewpoint of cryptographic security.
In Table 1, we have noted l, p along with the cases for which we get mirror paths. In the third column,
we record the total number of supersingular j invariants. For each prime and each isogeny l, we have
noted the number of elements in Si and Si for i = 2, 3, 4. The figures under S \ Si comes from the
number of supersingular j invariants such that ji1 and jpi2 are isogeneous for i1 6= i2. We see that the

number of elements in this set Si \Si which leads to cycles is quite small when compared with the total

elements in Si. This is reflected in the ratio |Si\Si|
|Si| .

We have separately computed the relative cardinality of Si’s in terms of % when compared with the total
number of j invariants in Table 2. This reveals the importance of checking the presence of the element
in Si for small i, as they are the dominant isogeny that finds the path to the conjugate. This practical
idea of the comparison of the proportional cardinalities is new and is a step further towards studying
the distances between conjugates and arbitrary vertices as was suggested in Section 4.1 of [ACNL+23].

l
p Total

su-
per-
sin-
gular
j-inv.

i = 2 Distribution in S2 i = 3 Distribution in S3 i = 4 Distribution in S4

|S2| |S2 \S2|,
|S2\S2|
|S2|

|S2| |S3| |S3 \ S3|,
|S3\S3|
|S3|

|S3| |S4| |S4 \S4|,
|S4\S4|
|S4|

|S4|

70001 616 44 0,0 44 108 9,0.083 99 464 0,0 464
2 90001 2194 55 0,0 55 1169 33,0.028 1136 970 0,0 970

100003 4594 119 0,0 119 3323 117,0.035 3206 1152 0,0 1152

70001 616 42 0,0 42 288 13,0.045 275 286 0,0 286
3 90001 2194 81 14,0.173 67 1122 43,0.038 1079 991 0,0 991

100003 4594 201 41,0.204 160 2157 97,0.045 2060 2236 0,0 2236

70001 616 78 0,0 78 175 29,0.166 146 363 0,0 363
5 90001 2194 79 0,0 79 1353 73,0.054 1280 762 0,0 762

100003 4594 298 40,0.134 258 3257 324,0.099 2933 1039 0,0 1039

70001 616 122 11,0.090 111 277 28,0.101 249 217 0,0 217
7 90001 2194 166 14,0.084 152 975 70,0.072 905 1053 0,0 1053

100003 4594 391 39,0.100 352 1250 70,0.056 1180 2953 0,0 2953

9

70001 616 158 0,0 158 197 20,0.083 177 261 0,0 261
11 90001 2194 217 0,0 217 1653 189,0.114 1464 324 0,0 324

100003 4594 462 0,0 462 2336 157,0.067 2179 1796 0,0 1796

70001 616 182 0,0 182 276 35,0.127 241 158 32,0.203 126
13 90001 2194 260 12,0.046 248 743 58,0.078 685 1191 260,0.218 931

100003 4594 583 36,0.062 547 3276 387,0.118 2889 735 189,0.257 546

70001 616 249 10,0.040 239 154 7,0.045 147 213 94,0.441 119
17 90001 2194 356 13,0.037 343 1417 142,0.100 1275 421 206,0.489 215

100003 4594 642 0,0 642 3461 377,0.109 3084 491 266,0.541 225

70001 616 259 10,0.039 249 349 49,0.140 300 8 5,0.625 3
19 90001 2194 414 12,0.029 402 1414 138,0.0.098 1276 366 281,0.768 85

100003 4594 816 41,0.050 775 1998 151,0.076 1847 1780 1177,0.661 603

70001 616 299 9,0.030 290 285 23,0.081 262 32 15,0.469 17
23 90001 2194 450 12,0.027 438 1673 156,0.093 1517 71 54,0.761 17

100003 4594 903 0,0 903 3292 285,0.087 3007 399 301,0.754 98

70001 616 303 0,0 303 291 110,0.378 181 22 9,0.41 13
29 90001 2194 527 12,0.023 515 1625 339,0.209 1286 42 36,0.857 6

100003 4594 1153 36,0.031 1117 3327 341,0.102 2986 114 74,0.649 40

70001 616 328 0,0 328 288 83,0.288 205 0 0,0 0
31 90001 2194 575 10,0.017 565 1617 401,0.248 1216 2 1,0.5 1

100003 4594 1239 37,0.030 1202 3189 991,0.311 2198 166 119,0.717 47

70001 616 382 0,0 382 234 122,0.521 112 0 0,0 0
37 90001 2194 675 14,0.021 661 1503 752,0.500 751 16 11,0.688 5

100003 4594 1424 35,
0.025

1389 3166 1260,0.398 1906 4 4,1 0

70001 616 422 8, 0.019 414 194 98,0.505 96 0 0,0 0
41 90001 2194 719 14,0.019 705 1475 445,0.302 1030 0 0,0 0

100003 4594 1476 0,0 1476 3116 731,0.234 2385 2 2,1 0

70001 616 429 7,0.016 422 187 95,0.508 92 0 0,0 0
43 90001 2194 676 0,0 676 1500 912,0.608 588 18 14,0.777 4

100003 4594 1549 0,0 1549 3039 2145,0.705 894 6 6,1 0

70001 616 464 6,0.012 458 152 91,0.598 61 0 0,0 0
47 90001 2194 719 0,0 719 1475 517,0.350 958 0 0,0 0

100003 4594 1735 31,0.017 1704 2859 1075,0.376 1784 0 0,0 0

70001 616 482 5,0.010 477 134 114,0.850 20 0 0,0 0
53 90001 2194 824 0,0 824 1370 1018,0.743 352 0 0,0 0

100003 4594 1820 27,.014 1793 2774 1048,0.377 1726 0 0,0 0

70001 616 496 5,.010 491 120 91,0.758 29 0 0,0 0
59 90001 2194 903 7,0.007 896 1291 577,.446 714 0 0,0 0

100003 4594 2010 29,0.014 1981 2584 1574,0.609 1010 0 0,0 0

Table 1: Analysis of conjugate paths and detection of li iso-
genies for small i.

10

Table 2: Relative %’s of the set Si for i = 2, 3, 4 when compared with the total number of j invariants
considered.

Si % of Si from Table 1

S2 7, 3, 3; 7, 3, 3; 13, 4, 6; 18, 7, 8; 26, 10, 10; 30, 11, 12; 39, 16, 14; 41, 18, 17; 48, 20, 20; 50, 24, 24;
54, 26, 26; 63, 30, 30; 68, 32, 32; 69, 31, 34; 75, 33, 37; 78, 38, 39; 80, 41, 43

S3 16, 52, 70; 45, 49, 45; 24, 58, 64; 41, 41, 26; 29, 67, 47; 40, 31, 63; 24, 58, 67; 49, 58, 40; 43, 69, 66;
30, 59, 65; 34, 56, 48; 18, 34, 41; 16, 47, 52; 15, 27, 19; 10, 44, 39; 3, 16, 38; 5, 33, 22

S4 75, 44, 25; 47, 45, 49; 60, 35, 22; 36, 48, 64; 42, 15, 39; 21, 42, 12; 20, 10, 5; 0, 4, 13; 3, 1, 2; 2, 0, 1;
0, 0, 1; 0, 0, 0; 0, 0, 0; 0, 0, 0; 0, 0, 0; 0, 0, 0; 0, 0, 0

This once again reassures that paths between conjugate j-invariants are much more common than
any other paths. Along with that, it points to the new direction that paths arising due to vertices in
S2, S3, S4 are quite common and so efficient detection strategies for i ≥ 2 would be helpful for obtaining
mirror paths.

We have experimentally studied the issue of mirror paths arising from vertices in S2, S3, S4 for
various values of l. We see that the derivation of better theoretical estimates of the cardinality of sets
Si is important from the viewpoint of obtaining paths between conjugate vertices in the supersingular
isogeny graph.
Also, this suggests searching for optimal distance and better l to find mirror paths. We have done this
in Sections 5.6 and 6 respectively.

5 Cost of finding an isogeny of degree li

The aim of this section is to find the cost of testing whether a given vertex j is li isogeneous to it’s
conjugate jp in each case. The intuition is that, for a fixed l, we would like to reduce the length of
the pseudo-random walk and accelerate the process of arriving at a suitable vertex that would give a
path to the conjugate. We would like to minimize root computations, if possible. For smaller values of
i, we consider the modular polynomial while for larger i, we use minimal polynomial generated from
a system of modular polynomials. We calculate corresponding costs in terms of the multiplications
needed9. There is a trade-off between increasing the value of i and testing whether elements are in Si.
We compare the methods and find which one would be best according to the computational resource of
time.

5.1 i = 0:

This consist of the set S0. Given a j-invariant, the cost of testing whether it is in the subfield Fp or
not, will take constant time O(1).

9We have neglected the costs of addition and subtraction in our analysis as they are quite less than those of multipli-
cation.

11

5.2 i = 1:

Given a j-invariant, the cost of finding whether it is a member of S1 or not will comprise taking into
account three issues.

1. Finding the conjugate invariant jp.

2. The cost of evaluating the modular polynomial φl(x, y) at x = j, y = jp.

3. The cost of testing whether φl(j, j
p) = 0 or not.

5.2.1 Finding conjugates:

Given a finite field Fp2 it is expressed as Fp2 = Fp(β), where β is a primitive element of the extension.
The element β can be chosen such that it is −1 or the first non-square in the sequence ±n, n ≥ 2. This
means that for any element j = a+ βb ∈ Fp2 , it’s conjugate jp = a− βb. This operation costs O(1) so
we can ignore it henceforth.

5.2.2 Evaluating the modular polynomial:

The modular polynomial φl(x, y) modulo prime p is of the form xl+1−xlyl+yl+1+
∑

k,m≤l,k+m<2l akmx
kym

where the integers akm are reduced modulo p. To evaluate this polynomial at x = j, y = jp, we initially
need the values of jk, (j̃)k ∀k = 0, 1, . . . , l where j̃ = jp is already known. Once these values are avail-
able, we need to multiply several elements in the field Fp2 . We note that one multiplication in Fp2 costs
three multiplications in Fp.
For computing these powers, the cost is O(l) multiplications in Fp2 as each of the powers jk1 for j1 = j, j̃,

can be re-used to compute the next power jk+1
1 . We can now consider this cost as O(l) multiplications

in Fp.
Once these powers are computed we can move with the evaluation of the bivariate polynomial of degree
O(l) in each variable. For each k ≤ l, the coefficient of xk consists of terms of the form a0+a1y

1+. . .+aly
l.

The cost of each power of x is O(l) multiplications in Fp. Now considering all the l powers of x, the
entire bivariate polynomial can be evaluated in O(l2) multiplications in Fp.

Considering all of the above, the total cost is O(l2) multiplications over Fp.

5.2.2.1 Cost of testing whether the evaluation is zero or not

Once the polynomial is evaluated for the conjugates, the cost of knowing whether it is zero or not can
be neglected as it is constant, O(1).

Remark 2. The above implies that the cost of testing whether vertices are in S1 or not will take time
complexity of O(l2 log p).

5.3 i = 2:

Given a j-invariant j, it is a member of S2, if it is connected with it’s conjugate by an isogeny of degree
l2. By the theory of mirror paths, this connection exists if there is a vertex js which is a member of

12

the subfield Fp, and it appears as a neighbour of both j and jp. Let f = φl, p(j, x) . Clearly, from
Section 5.2.2, the cost of getting f is O(l2) multilipliactions in Fp.
From Proposition 1 of [CRSCS22], the problem reduces to finding gcd of two polynomials g1, g2 where,

g1 = f + π(f), g2 = f − π(f)

where π is the p-power frobenius endomorphism. We note that π fixes each element of Fp and π(β)+β =
0 for the primitive element β. This means that πk(β) = (−1)kβ, which is something we shall use
repeatedly now.

5.3.1 Simplifying expression of g1 and g2

The essential aim of Proposition 1 of [CRSCS22] is to find whether g1, g2 have common roots. Con-
sidering the fact that multiplications by constants do not change the roots of the polynomials, we can
modify the polynomials g1, g2 as:

g1 =
1

2
[φl, p(j, x) + π(φl, p(j, x))], g2 =

−β
2

[φl, p(j, x)− π(φl, p(j, x))]

If we consider the polynomial f of the form f =
∑n

i=0 aix
i for the coefficients ai reduced modulo the

prime p, where ai’s are elements of Fp2 ,

g1 =
1

2
[f + π(f)] = Re(an)xn +Re(an−1)xn−1 +Re(an−2)xn−2 + . . .+Re(a1)x1 +Re(a0) (4)

g2 =
−β
2

[f − π(f)] = Im(an)xn + Im(an−1)xn−1 + Im(an−2)xn−2 + . . .+ Im(a1)x1 + Im(a0) (5)

where by Re and Im we mean, the coefficients of β0, β1 respectively for an element (a + βb) ∈ Fp2 .
Using (a+ βb)p = (a− βb) and substituting Re(a+ βb) = a and Im(a+ βb) = b when each of the ai’s
are expressed in terms of β, we get

g1 = xn + . . .+Re(a0), g2 = Im(an)xn−1 + . . .+ Im(a0) (6)

5.3.2 Testing whether the modular polynomials have a root in Fp

We can compute the inverse-free gcd of g1 and g2 by using Algorithm 1 of [CRSCS22]. The value of
n is the degree of the modular polynomial, which is (l + 1). So the above procedure will take time
O(n2) = O(l2) [Proposition 2, [CRSCS22]], multiplications in Fp.
This analysis sums up the total cost of checking for an l2 isogeny as O(l2) multiplications in Fp.

5.4 Problems in using modular polynomials for i = 3 or i = 4 and higher without
root computation

Case for i = 3: Given a j-invariant j, to test whether it is connected with it’s frobenius conjugate
jp by an isogeny of degree l3, we need to know whether the modular polynomials φl(j, x) and φl(x, x

p)
have a common root. If there is a common root α, then this will imply a path of length 3 given by
j → α→ αp → jp. But, the polynomial φl(x, x

p) is a polynomial of degree pl and hence the complexity
to compute the gcd will be exponential in log p. So using simply univariate modular polynomials is not
suitable for i = 3.

13

Case for i = 4: In this case to know whether a mirror path exists, we need to know the intermediate
roots. This is not possible without root computation.
For higher value of i, the same situations holds true and so we need several modular polynomials for
these cases.

5.5 Approach for i ≥ 3 using a system of modular polynomials

We assume we are given a fixed positive integer i ≥ 3 and a j-invariant j. Our job is to find whether
there is a small isogeny of degree li between j and jp. As the paths between j and jp are mirror paths,
it is sufficient to test whether there is some intermediate j-invariant in Fp or S1. We consider d = b i2c,
our aim is then to know whether a vertex jd is in Fp or S1, that satisfies the system below.

φl(j, j1) = 0

φl(j1, j2) = 0

...

φl(jd−1, jd) = 0

(7)

5.5.1 Computing roots of modular polynomials at each level

In this case, we focus on calculating the complexity when the roots j1, j2, . . . , jd of modular polynomials
are computed at each level. For the given modular polynomial, we exclude the root at the previous level
and compute the possible roots at the next level. This implies that for each modular polynomial, there
are l options for j1, l2 options for j2, and so on, with ld options for jd. The last job is to test whether
any of the jd’s are in Fp or S1.
Initially, we need to compute the root of the polynomial φl(j, x). Let Rl be the cost of root computation
for a degree l polynomial. Depending on the number of options for each of j1, j2, . . . , jd, the total cost
of root computation is (1 + l+ l2 + . . .+ ld−1)Rl

10. The standard algorithms for these are Berlekamp’s
algorithm [Ber70] with complexity O(l3 + l2 log l log(p2)) operations in Fp2 or Cantor-Zassenhaus algo-
rithm [CZ81] with complexity O(l3 log(p2)) operations in Fp2 . We can consider an optimized complexity
of O(l3 + l2 log(p2)) in Fp2 [Sho09]. The deterministic variants are more costly.
Replacing operations in Fp2 with those in Fp and also considering the total number of roots we pointed
out, the total complexity when the root finding method is used is 1

l−1(ld − 1)O(l3 + l2 log p). The

dominating factor in this case is O(l(d+1) log p) operations in Fp.

5.5.2 Gröbner basis algorithms

In this method, we consider a system of equations which we solve by creating the Gröbner basis of
related ideals and then obtaining the minimal polynomial.

5.5.3 Constructing the ideal satisfying system of equations

The system of equations 7 will generate an ideal I in the multivariate polynomial ring.

I = 〈φl(j, j1), φl(j1, j2), . . . , φl(jd−1, jd)〉 ⊆ Fp2 [j1, j2, . . . , jd]

10We compute roots till the (d− 1)-th level and obtain all supersingular ellipic curves at the d-th level.

14

The modular polynomial for a prime l 6= p, can have at most (l + 1) distinct roots. Due to this, the
dimension of the vector space Fp2 [j1, j2, . . . , jd]/I is bounded above by (l + 1)d. By the finiteness the-
orem [Chapter 2, [CLO05]] and considering the fact that j ∈ Fp2 , I is zero-dimensional. Consequently,
there is a non-zero polynomial in I ∩ Fp2 [jk] for each k = 1, 2, . . . , d.

5.5.3.1 The minimal polynomial for the last variable

Let us consider the lex ordering jd > jd−1 > . . . > j2 > j1 and a corresponding Gröbner basis.
Let us recall that by Hilbert’s basis theorem [Chapter 1, [CLO05]] and Buchberger’s criteria [Chapter
1, [CLO05]], the existence of a Gröbner basis is valid. Again by the FGLM algorithm [Chapter
2, [CLO05]], we can construct the Gröbner basis for the particular monomial ordering, and then find
the minimal polynomial of jd with respect to the ideal I. Let md denote the minimal polynomial. We
can then check whether the roots of this minimal polynomial is in Fp or S1 to ensure that a mirror path
between j and jp exists.
Considering the number of variables d and the dimension of Fp2 [j1, j2, . . . , jd]/I over Fp2 being at most
(l + 1)d, the complexity of using the FGLM algorithm is O(d(l + 1)3d) [Proposition 4.1, [FGLM93]].
Fortunately, we can take advantage of some generic relation and forego this cost.

5.5.3.2 Pre-computing the minimal polynomials

We notice that we can actually avoid computation of this minimal polynomial at each step, by using
the generic relation [Remark 3.1,[TKF+20]] that exists between modular polynomials and corresponding
minimal polynomials. The authors claimed to have verified it. We have also run codes for some test
cases, where we found this to hold true in all the cases. Technically for d ≥ 3:

md(j, x) = φld−2(j, x)φld(j, x)

We can pre-compute minimal polynomials md for some d from the knowledge of modular polyno-
mials already pre-computed before. One possible source of such pre-computed modular polynomi-
als is a database maintained by Sutherland. This cost is then a one-time cost. This will remove
the cost of d at each step. Instead, we need to substitute the given j each time in md(x, y), where
(md(x, y) = φld−2(x, y)φld(x, y) as modular polynomials are symmetric). The degree of this minimal
polynomial in each variable is the sum of the degrees of the component modular polynomials in each
variable which is (l+1)ld−3 for φld−2(x, y) and (l+1)ld−1 for φld(x, y). Clearly, this sum is O(ld). Using
the same strategies as in Section 5.2.2, to evaluate modular polynomials of degree l+1, we can evaluate
md(x, y) at x = j in O(ld) operations in Fp.
This method is cost-wise much better than constructing the modular polynomial at each step which
multiplies the complexity by O(dl2d).

5.5.3.3 Testing for mirror paths

The next aim would be to test whether the minimal polynomials md have a root that gives rise to a
mirror path between j and jp.
The naive method over here is to construct a system of (i− 1) equations like 7, and then test whether
jp is the root of this system by evaluating the corresponding minimal polynomial of degree O(li−1) at

15

https://math.mit.edu/~drew/ClassicalModPolys.html

x = j and y = jp. The cost of this evaluation would be O(l2(i−1)). Considering the fact that i = 2d if it
is even and i = 2d+ 1 if it is odd, the total cost of this evaluation would be O(l2i−2) which is O(l4d−2)
if i is even and O(l4d) if i is odd.
The above cost is quite high for larger values of i. We thus, try to see if modifications could lead to
better complexities. The situation of mirror paths indicates that intermediate roots are either in Fp for
even i and over S1 for odd i.

Roots in Fp We notice that when our aim is to know whether any root of the minimal polynomial
is in Fp or not, we can formulate the easier problem of checking gcd by constructing polynomials g1

and g2 of equations 4 and 5. The analysis is same as in Section 5.3.1, when we replace f by md(j, x) of
degree O(ld).

The analysis is almost the same, except the fact that now the degree of md(j, x) is O(ld). The
corresponding polynomials g1, g2 are

g1 =
1

2
[md(j, x)+π(md(j, x))] = Re(an)xn+Re(an−1)xn−1+Re(an−2)xn−2+. . .+Re(a1)x1+Re(a0) (8)

g2 =
−β
2

[md(j, x)−π(md(j, x))] = Im(an)xn+Im(an−1)xn−1+Im(an−2)xn−2+. . .+Im(a1)x1+Im(a0)

(9)
for md(j, x) =

∑n
i=0 aix

i. We can now obtain the polynomials g1, g2 over Fp as in equation 6, by using
the relations between any element and it’s conjugate and adding the coefficients of β0, β1. Algorithm 1
of [CRSCS22], will now take time O(n2) which in this case can be obtained as n is the degree of the
modular polynomial O(ld) as in Section 5.5.3.2. Thus the cost of evaluating the gcd without inverse
computation will be O(l2d).
By Proposition 1 of [CRSCS22], if the degree of this gcd is 1, then a root over the subfield exists. We
note that the range of l, d that we wish to consider is not too big, and so this is comparable to the
analysis for the range of values of l considered in [CRSCS22], so that the probability of the degree of the
gcd being 1 is not negligible. The complete cost of evaluating a pre-computed minimal polynomial and
knowing whether there is a root over Fp or not, is the sum of O(ld log p) [Section 5.5.3.2] and O(l2d log p)
which is O(l2d log p). For d ≥ 2, the above cost exceeds the cost to compute individual roots.

Roots in S1 In this section, we present Algorithm 1 to test whether there are ld isogenies resulting in
a root in S1. We assume that we are given a j-invariant j and our task is to know whether md(j, x) has
a root in S1. Technically, we aim to see whether the polynomials md(j, x) and φl(x, x

p) have common
roots. We consider the resultant R of these polynomials with respect to the variable a after noting that
each polynomial can be considered as a bivariate polynomial to remove p from the exponent.
The degrees of the polynomial M and Φ are O(ld) and O(l) respectively. Thus the construction of the
Sylvester matrix will take about O(ld+1) operations and the determinant will require about O(l3d log p)
operations. The total cost, which will also include the cost of later steps of gcd and root computation
thus exceeds the cost of individual root computation as in Section 5.5.1.

16

Algorithm 1: Testing for vertices in S1.

Input: A prime l, a positive integer d and a supersingular j-invariant j00 ∈ Fp2 .
Output: Whether there exists a vertex jd ∈ S1 such that j00 and jd are ld-isogeneous.

1 M ← md(j00, a+ βb).//Bivariate polynomial in Fp2 [a, b].
2 Φ← φl(a+ βb, a− βb).//Bivariate polynomial in Fp[a, b].
3 R = Resultant(M,Φ, a).//Resultant of above polynomials with respect to a.
4 if R has a root b0 in Fp then
5 g = GCD(M(a, b0),Φ(a, b0)).
6 if g has a root b0 in Fp then
7 Return Yes.

8 Return False.

5.6 Optimal method to detect mirror paths

Given the previous discussions, we observe that the cost of testing whether vertices are in Fp or S1 is
O(l2 log p) (Section 5). To search whether the j-invariant at some level leads to a mirror path within
a few steps, we have to detect whether there exists a small integer i ≥ 0 such that j and jp are li

isogeneous. The cost for i = 0 and i = 1 is the cost of detecting vertices in Fp and S1 respectively. This
implies that the minimum cost is O(l2 log p). Also for i = 2, 3 the value of d(= b i2c) is 1, so the cost in
these cases is also O(l2 log p) (Section 5.5).

Best value of i and corresponding cardinality The above analysis indicates that the best value of
i to balance the cost of computing isogenies with the advantage of viewing a longer path is i = 3. Beyond
i = 3 the cost incurred exceeds O(l2 log p) and grows further with an increase in i. Keeping the notations
of equation 7, the set of our interest is S0∪S1∪{j ∈ S2|jd ∈ S0}∪{j ∈ S3|jd ∈ S1} = S0∪S1∪S2∪S3..

The steps: Given a j-invariant we test first whether it belongs to Fp. The cost of this is O(1). If it is
found, then the mirror path is already found. Else we now test whether it is in S1 which will take time
O(l2 log p). On the occasion, it is not in S1, we can test whether any neighbour of j (i.e., root of φl(j, x))
is in Fp, without actually computing the roots of it by computing the gcd of two polynomials, as in
Section 5.3. This will also require the same cost of O(l2 log p). Beyond, this point root computation is
essential, and the best cost can be approximated by O(l2 log p), with the roots being computed with
probabilistic algorithms (Section 5.5.1). This cost is asymptotically equal to the cost in [EHL+20], with
the gain being practical. We are able to view a larger proportion of the graph at each step, which will
provide better options to choose favourable routes to reach the frobenius conjugate earlier.

6 Choice of l

The number of supersingular elliptic curves in Fp or S1 increases, in the graph χl(Fp) on increas-

ing l. By Lemma 6 of [CLG09] for mirror paths of length i, it is given by l
i
2O(
√
p). The number of

isogeny cycles also increases with the increase in l [Theorem 7.1 of [ACL+24]]. This favour towards a
higher value of l is also aggravated by the fact that using only l = 2 may result in some amount of

17

non-randomness, short cycles, or walks.
However, the cost of root finding also increases with the increment of l. This means that to choose l,
suitable for our purpose, this balance so that the cost of increase in root finding is counter-acted by the
expansion of suitable vertices to yield mirror paths is an important factor that we should keep in mind.

We performed experiments with various values of p and small values of l to find which l takes least
time to find a mirror path. We also discuss how to calculate the cost and fix l suitably.

6.1 Experimental observations

We choose primes of size 35 to 45 bits and for each prime, we generated a list of supersingular j-
invariants randomly. We aimed to perform a pseudo-random walk for each j-invariant until we found
some isogeneous (isogeny being some power of l) j-invariant for each, which would lead to a mirror
path. This ensured that the number of vertices we would walk through would be substantial enough
for inference. Let j0 be any j-invariant chosen from the list. Initially, we set j = j0. At each step, we
computed the root of the classical modular polynomial φl(j, x). If a root was found, in Fp or S1 then
the algorithm halted for this j0. Else choosing j as any random root we again continued the process.
We performed the above experiment for different values of small primes l(≤ 59). We noted the l for
which time to find the mirror path was least, considering all the vertices. We call this l optimal, which
balances the cost of obtaining roots with the increase in number of roots for that prime in the most
efficient manner. The optimal l differed for values of p chosen. We have listed them in Table 3. These
observations indicate that given p, we need to choose l after calculating the cost at each point. This is
more important as our observations were for creating a small number of cycles, although we walked over
a large number of j-invariants. The difference in time required by various values of l should increase
when larger number of cycles have to be constructed in practical situations. This makes it necessary to
choose l suitably.

Table 3: Table showing that for a given prime, there is a prime l, which finds a requisite vertex for
mirror path in shorter time.
p Best l

34359738337 7 and 3

274877906857 7

1099511627689 3

2199023255521 13

8796093022141 17

35184372088777 23

6.2 Cost to optimize to pre-compute l in preprocessing phase

We focus on the specific scenario on how to choose a small l more appropriate for the problem. Let us
denote the cost per node by cl. We can compute cl for the first few small primes l. Considering the
entire random walk, the total cost is obtained by multiplying the cost cl with the number of steps. We
can then fix l as that prime for which the total cost is minimum.
We keep in mind that each modular polynomial φl(x, y) is a degree (l + 1) polynomial in each of x, y

18

and we can approximate one Fp2 multiplications by three multiplications in Fp. Considering multipli-
cations as the dominant cost, and our ultimate aim is to check the membership of a given j-invariant
in S0 ∪ S1 ∪ S2 ∪ S3, we can compute the exact cost at any given j-invariant j as the sum total of the
exact costs of evaluating φl(j, x) at x = jp, the cost of finding whether φl(j, x) has a root in Fp and the
cost of root computation of φl(j, x). The cost cl is obtained by dividing the sum of these exact costs
by the degree (l+ 1) of the modular polynomial. We can pre-compute this costs cli , 1 ≤ i ≤ t, for some
small primes l1 < l2 < . . . < lt.
The exact cardinality of the sets Si is difficult to compute, given it is associated with the cardinality of
class groups. Estimations will be possible in special cases, when the cardinality of the associated class
group, or a lower bound is available. There are methods [GJ16, MS24, Gél18] present in literature to
compute class groups.
We can estimate the length L of a random walk from Proposition 1, and calculate the total cost
Tl = cl × L. Both cl and L being functions of the isogeny degree l, we can minimize the function Tl
with respect to l and choose l = li when Tli = min(Tl1 , Tl2 , . . . , Tlt). We choose l, keeping in mind the
splitting of p in an associated number field, so that short cycles [Section 5.3.4 [CLG09]] are not present.

Our experiments conclude that it is essential to choose l optimally, when we are searching for mirror
paths. The optimization is possible when we find the cost cl suitably and balance it by minimizing the
total cost. This will help in adding practical gain to the frobenius conjugate path-finding algorithm.

7 Future Work

Two important venues of future work arise as a result of the discussions in this paper.
We have proved that to find path between conjugates in the graph χl(Fp) by seeing li isogenies the
optimal value of i is i = 3 and the optimal l depends on the cardinality of the target set S0∪S1∪S2∪S3.
There exists precise estimations of bounds on S1[Theorem 3.9 [EHL+20]] and S0[Equation 1, [DG16]].
This implies it remains a later work to derive estimations, especially the lower bounds on the cardinality
of Si up to i ≤ 3.
Another future scope of work is to test membership of elements in S3 without finding the roots exactly.
If it leads to a speed-up, a similar approach for other Si can also help in improving run-time by raising
the value of i, which would aid in viewing a larger portion of the graph.

8 Conclusion

The problem of finding a path between supersingular elliptic curves which are frobenius conjugates of
each other, is a specialised case of the general path-finding problem on which supersingular isogeny-
based cryptography is based. Considering the graph of all supersingular elliptic curves for a given prime
p, the important aspect to keep in mind to solve the path finding problem between conjugates is wisely
choosing the values of l, i when we are overviewing the graph i steps at a time.
The issue here is that conjugate vertices are closer [ACNL+23] to each other than arbitrary vertices of the
graph χl(Fp) of all supersingular elliptic curves so it is just sufficient to search for special vertices which
are either equal to their frobenius conjugates or have it as a neighbour. The search complexity of such
special vertices is exponential in p and polynomial in l. As optimally choosing l in general path-finding
problem reduces run-time [CRSCS22], we were interested to see the application in this scenario. Our ex-

19

periments reveal that for different primes p, the value of l that leads to the smallest time to find appropri-
ate paths for our problem is variable [Table 3]. We have framed a procedure[Section 6.2] to pre-compute
l. Connected to this, we experiment the nature of the path between frobenius conjugates when l > 2, 3,
which partially answers the issue of exploring paths as was mentioned in Section 4.1 of [ACNL+23]
between frobenius conjugates and arbitrary vertices for a larger set of primes. To experimentally learn
about the structure of isogeny graphs when short cycles are present, we introduce sets Si = {j ∈ Si(i >
1)| j i

2
∈ S0 if i is even and jb i

2
c ∈ S1 if i is odd, where jk represents any descendant at the k-th step}

where the set of all supersingular j-invariants in Fp is denoted by S0 and
Si = {j ∈ Fp2 : j is supersingular and is connected to it’s conjugate jp by an isogeny of degree li} for
i ≥ 1. For various primes l, p, we have recorded[Table 1 and Table 2] the frequency distribution of
elements in Si for small i.
We recall the question of choosing l and i suitably, so that instead of seeing just the immediate neigh-
bour arising from 2−isogenies, we can expand our point of view and choose the path that accelerates
the process of finding a mirror path. The connectedness of χl(Fp) means for large i close to O(log p),
the existence of isogenies is always guaranteed. We can broadly observe the graph for large i, but that
increases the cost of computing isogenies. We proved[Section 5.6] i = 3 is optimal, which means the
corresponding set is S0 ∪ S1 ∪ S2 ∪ S3. Also, i = 3 implies that the issue of bounding “by some fixed
integer B”[Remark 3.5, [EHL+20]] is possible by taking B = 3. The literature contains estimations of
sizes of S0, S1 and different modes of testing membership. This implies a future work is to compute
cardinalities of Si for i up to 3, and test membership in S3 without computing the roots.
The considerations on l and i will accelerate the process of pathfinding among frobenius conjugate,
which will result in a speed-up of cycle finding. Concrete application scenarios like general endo-
morphism ring computation [EHL+20], SQIsign [DFKL+20] or construction of collision resistant hash
functions [CLG09] which depends on the hardness of cycle finding will benefit from this practical im-
provement.

References

[ABC+25] Sarah Arpin, Ross Bowden, James Clements, Wissam Ghantous, Jason T LeGrow, and
Krystal Maughan, Cycles and cuts in supersingular l-isogeny graphs, Cryptology ePrint
Archive (2025).

[ACL+24] Sarah Arpin, Mingjie Chen, Kristin E Lauter, Renate Scheidler, Katherine E Stange, and
Ha TN Tran, Orientations and cycles in supersingular isogeny graphs, Research Directions
in Number Theory: Women in Numbers V, Springer, 2024, pp. 25–86.

[ACNL+23] Sarah Arpin, Catalina Camacho-Navarro, Kristin Lauter, Joelle Lim, Kristina Nelson,
Travis Scholl, and Jana Sotáková, Adventures in supersingularland, Experimental Mathe-
matics 32 (2023), no. 2, 241–268.

[BBC+21] Gustavo Banegas, Daniel J Bernstein, Fabio Campos, Tung Chou, Tanja Lange, Michael
Meyer, Benjamin Smith, and Jana Sotáková, Ctidh: faster constant-time csidh, IACR
Transactions on Cryptographic Hardware and Embedded Systems 2021 (2021), no. 4,
351–387.

20

[BDF+24] Andrea Basso, Pierrick Dartois, Luca De Feo, Antonin Leroux, Luciano Maino, Giacomo
Pope, Damien Robert, and Benjamin Wesolowski, Sqisign2d–west: The fast, the small,
and the safer, International Conference on the Theory and Application of Cryptology and
Information Security, Springer, 2024, pp. 339–370.

[Ber70] Elwyn R Berlekamp, Factoring polynomials over large finite fields, Mathematics of compu-
tation 24 (1970), no. 111, 713–735.

[Ber20] D Bernstein, Faster computation of isogenies of large prime degree, Tech. report, IACR
Cryptology ePrint Archive, 2020: 341, 2020.

[BKV19] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren, Csi-fish: efficient isogeny
based signatures through class group computations, International conference on the theory
and application of cryptology and information security, Springer, 2019, pp. 227–247.

[CLG09] Denis X Charles, Kristin E Lauter, and Eyal Z Goren, Cryptographic hash functions from
expander graphs, Journal of CRYPTOLOGY 22 (2009), no. 1, 93–113.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes,
Csidh: an efficient post-quantum commutative group action, Advances in Cryptology–
ASIACRYPT 2018: 24th International Conference on the Theory and Application of Cryp-
tology and Information Security, Brisbane, QLD, Australia, December 2–6, 2018, Proceed-
ings, Part III 24, Springer, 2018, pp. 395–427.

[CLO05] David A Cox, John Little, and Donal O’shea, Using algebraic geometry, vol. 185, Springer
Science & Business Media, 2005.

[CRSCS22] Maria Corte-Real Santos, Craig Costello, and Jia Shi, Accelerating the delfs–galbraith
algorithm with fast subfield root detection, Annual International Cryptology Conference,
Springer, 2022, pp. 285–314.

[CZ81] David G Cantor and Hans Zassenhaus, A new algorithm for factoring polynomials over
finite fields, Mathematics of Computation (1981), 587–592.

[DFG19] Luca De Feo and Steven D Galbraith, Seasign: compact isogeny signatures from class group
actions, Advances in Cryptology–EUROCRYPT 2019: 38th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19–23, 2019, Proceedings, Part III 38, Springer, 2019, pp. 759–789.

[DFKL+20] Luca De Feo, David Kohel, Antonin Leroux, Christophe Petit, and Benjamin Wesolowski,
Sqisign: compact post-quantum signatures from quaternions and isogenies, Advances in
Cryptology–ASIACRYPT 2020: 26th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Daejeon, South Korea, December 7–11,
2020, Proceedings, Part I 26, Springer, 2020, pp. 64–93.

[DG16] Christina Delfs and Steven D Galbraith, Computing isogenies between supersingular elliptic
curves over f p f p, Designs, Codes and Cryptography 78 (2016), 425–440.

[E+98] Noam D Elkies et al., Elliptic and modular curves over finite fields and related computa-
tional issues, AMS IP Studies in Advanced Mathematics 7 (1998), 21–76.

21

[EHL+18] Kirsten Eisenträger, Sean Hallgren, Kristin Lauter, Travis Morrison, and Christophe Petit,
Supersingular isogeny graphs and endomorphism rings: reductions and solutions, Advances
in Cryptology–EUROCRYPT 2018: 37th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Tel Aviv, Israel, April 29-May 3, 2018
Proceedings, Part III 37, Springer, 2018, pp. 329–368.

[EHL+20] Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis Morrison, and Jennifer Park,
Computing endomorphism rings of supersingular elliptic curves and connections to path-
finding in isogeny graphs, Open Book Series 4 (2020), no. 1, 215–232.

[ES24] Kirsten Eisentraeger and Gabrielle Scullard, Connecting kani’s lemma and path-finding
in the bruhat-tits tree to compute supersingular endomorphism rings, arXiv preprint
arXiv:2402.05059 (2024).

[FGLM93] Jean-Charles Faugere, Patrizia Gianni, Daniel Lazard, and Teo Mora, Efficient computation
of zero-dimensional gröbner bases by change of ordering, Journal of Symbolic Computation
16 (1993), no. 4, 329–344.

[FIK+23] Jenny Fuselier, Annamaria Iezzi, Mark Kozek, Travis Morrison, and Changningphaabi
Namoijam, Computing supersingular endomorphism rings using inseparable endomor-
phisms, arXiv preprint arXiv:2306.03051 (2023).

[Gél18] Alexandre Gélin, Reducing the complexity for class group computations using small defining
polynomials, arXiv preprint arXiv:1810.12010 (2018).

[GJ16] Alexandre Gélin and Antoine Joux, Reducing number field defining polynomials: an ap-
plication to class group computations, LMS Journal of Computation and Mathematics 19
(2016), no. A, 315–331.

[GPS20] Steven D Galbraith, Christophe Petit, and Javier Silva, Identification protocols and signa-
ture schemes based on supersingular isogeny problems, Journal of Cryptology 33 (2020),
no. 1, 130–175.

[KKA+24] Yuta Kambe, Akira Katayama, Yusuke Aikawa, Yuki Ishihara, Masaya Yasuda, and
Kazuhiro Yokoyama, Computing endomorphism rings of supersingular elliptic curves by
finding cycles in concatenated supersingular isogeny graphs, COMMENTARII MATHE-
MATICI UNIVERSITATIS SANCTI PAULI 72 (2024), no. 1, 19–42.

[Koh96] David Russell Kohel, Endomorphism rings of elliptic curves over finite fields, University of
California, Berkeley, 1996.

[MMP24] Marzio Mula, Nadir Murru, and Federico Pintore, On random sampling of supersingular
elliptic curves, Annali di Matematica Pura ed Applicata (1923-) (2024), 1–43.

[MS24] Madhurima Mukhopadhyay and Palash Sarkar, Pseudo-random walk on ideals: practical
speed-up in relation collection for class group computation, Cryptography and Communi-
cations (2024), 1–21.

[MW23] Arthur Herlédan Le Merdy and Benjamin Wesolowski, The supersingular endomorphism
ring problem given one endomorphism, arXiv preprint arXiv:2309.11912 (2023).

22

[Piz90] Arnold K Pizer, Ramanujan graphs and hecke operators, Bulletin of the American Mathe-
matical Society 23 (1990), no. 1, 127–137.

[PW24] Aurel Page and Benjamin Wesolowski, The supersingular endomorphism ring and one en-
domorphism problems are equivalent, Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer, 2024, pp. 388–417.

[RNSL17] Martin Roetteler, Michael Naehrig, Krysta M Svore, and Kristin Lauter, Quantum re-
source estimates for computing elliptic curve discrete logarithms, Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceed-
ings, Part II 23, Springer, 2017, pp. 241–270.

[Sho99] Peter W Shor, Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer, SIAM review 41 (1999), no. 2, 303–332.

[Sho09] Victor Shoup, A computational introduction to number theory and algebra, Cambridge
university press, 2009.

[Sil86] Joseph H Silverman, Heights and elliptic curves, Arithmetic geometry, Springer, 1986,
pp. 253–265.

[Sil94] , Advanced topics in the arithmetic of elliptic curves, vol. 151, Springer Science &
Business Media, 1994.

[Sil09] , The arithmetic of elliptic curves, vol. 106, Springer, 2009.

[TKF+20] Yasushi Takahashi, Momonari Kudo, Ryoya Fukasaku, Yasuhiko Ikematsu, Masaya Yasuda,
and Kazuhiro Yokoyama, Algebraic approaches for solving isogeny problems of prime power
degrees, Journal of Mathematical Cryptology 15 (2020), no. 1, 31–44.

[Vél71] Jacques Vélu, Isogénies entre courbes elliptiques, Comptes-Rendus de l’Académie des Sci-
ences 273 (1971), 238–241.

[Was08] Lawrence C Washington, Elliptic curves: number theory and cryptography, Chapman and
Hall/CRC, 2008.

[XZQ24] Guanju Xiao, Zijian Zhou, and Longjiang Qu, Endomorphism rings of supersingular elliptic
curves and quadratic forms, arXiv preprint arXiv:2409.11025 (2024).

23

	Introduction
	Motivation and our contributions
	Paper organization

	Preliminaries
	Elliptic curve:
	Isogenies:
	Modular Polynomials:
	Isogeny graphs:
	Isogeny cycles:
	Conjugates:

	Path finding to conjugates in supersingular isogeny graphs
	Mirror paths[Definition 2.6 arpin2023adventures]:
	
	Length of pseudo-random walk
	Cardinality of the set S of target vertices for various choices of isogeny degree
	Necessity to choose l and i optimally
	Paths leading to mirror paths

	Experimental observations with small distance
	Cost of finding an isogeny of degree li
	i=0:
	i=1:
	Finding conjugates:
	Evaluating the modular polynomial:

	Cost of testing whether the evaluation is zero or not
	i=2:
	Simplifying expression of g1 and g2
	Testing whether the modular polynomials have a root in Fp

	Problems in using modular polynomials for i=3 or i=4 and higher without root computation
	Case for i=3:
	Case for i=4:

	Approach for i3 using a system of modular polynomials
	Computing roots of modular polynomials at each level
	Grbner basis algorithms
	Constructing the ideal satisfying system of equations

	The minimal polynomial for the last variable
	Pre-computing the minimal polynomials
	Testing for mirror paths
	Roots in Fp
	Roots in S1
	Optimal method to detect mirror paths
	Best value of i and corresponding cardinality
	The steps:

	Choice of l
	Experimental observations
	Cost to optimize to pre-compute l in preprocessing phase

	Future Work
	Conclusion

