
Practical Asynchronous Distributed Key Reconfiguration and Its Applications

Hanwen Feng1, Yingzi Gao2, Yuan Lu2, Qiang Tang1 and Jing Xu2

1School of Computer Science, The University of Sydney
2Institute of Software, Chinese Academy of Sciences

Abstract

In this paper, we study practical constructions of asyn-
chronous distributed key reconfiguration (ADKR), which en-
ables an asynchronous fault-tolerant system with an existing
threshold cryptosystem to efficiently generate a new thresh-
old cryptosystem for a reconfigured set of participants. While
existing asynchronous distributed threshold key generation
(ADKG) protocols theoretically solve ADKR, they fail to de-
liver satisfactory scalability due to cubic communication over-
head, even with simplifications to the reconfiguration setting.

We introduce a more efficient share-dispersal-then-agree-
and-recast paradigm for constructing ADKR with preserving
adaptive security. The method replaces expensive O(n) asyn-
chronous verifiable secret sharing protocols in classic ADKG
with O(n) cheaper dispersals of publicly-verifiable sharing
transcripts; after consensus confirms a set of finished disper-
sals, it selects a small κ-subset of finished dispersals for veri-
fication, reducing the total overhead to O(κn2) from O(n3),
where κ is a small constant (typically ∼30 or less). To further
optimize concrete efficiency, we propose an interactive proto-
col with linear communication to generate publicly verifiable
secret sharing (PVSS) transcripts, avoiding computationally
expensive non-interactive PVSS. Additionally, we introduce
a distributed PVSS verification mechanism, minimizing re-
dundant computations across different parties and reducing
the dominating PVSS verification cost by about one-third.

Our design also enables diverse applications: (i) given a
quadratic-communication asynchronous coin-flipping pro-
tocol, it implies the first quadratic-communication ADKG;
and (ii) it can be extended to realize the first quadratic-
communication asynchronous dynamic proactive secret shar-
ing (ADPSS) protocol with adaptive security. Experimental
evaluations on a global network of 256 AWS servers show
up to 40% lower latency compared to state-of-the-art ADKG
protocols (with simplifications to the reconfiguration setting),
highlighting the practicality of our ADKR in large-scale asyn-
chronous systems.

1 Introduction

Modern fault-tolerant systems heavily rely on threshold cryp-
tosystems for achieving better performance (e.g. lower round
and communication complexities [4, 22, 40, 42, 48, 52]) and
enhanced security (e.g. private mempool to mitigate “miner”
extractable value [15, 21, 49]). Such reliance is particularly
critical in fully asynchronous fault-tolerant systems to achieve
superior robustness against unpredictable communication de-
lays, where unique threshold signatures [12] or other thresh-
old primitives [16] are widely adopted for generating com-
mon coins to efficiently overcome the seminal Fischer-Lynch-
Patterson (FLP) “impossibility” [31] to achieve agreement
while retaining liveness.1

Such heavy reliance on a pre-configured threshold cryp-
tosystem in practical asynchronous fault-tolerant systems,
unfortunately, fixes the set of participating parties, thereby
creating a fundamental obstacle to supporting dynamic partic-
ipation and hindering their broader adoption. A naive “solu-
tion” could be running asynchronous distributed key genera-
tion (ADKG) whenever the participants are changing. How-
ever, the approach suffers from significant performance issues
in a scalable network, despite recent advancements in the
field [2, 3, 24, 26, 39, 46]. For instance, Das et al. reported la-
tency of more than 40 seconds across about only 100 parties,
even if using the state-of-the-art ADKG protocols [24, 26].

The above issue underscores a major gap between the
current studies on practical asynchronous fault-tolerant sys-
tems—whose efficiency relies on pre-configured threshold
cryptosystems across fixed participants—and the dynamic
nature of real-world open blockchains.2 Motivated by the
key challenge, we focus on the following problem of asyn-

1Without common coins, one also can construct a fully asynchronous
consensus using the so-called local coins [11, 13], which, however, results in
an impractical round complexity exponential in the network scale.

2None of the top-30 blockchains by market capitalization (including
Ripple, Chainlink, Sui, Avalanche, Stellar, Aptos, Polkadot, etc., according to
CoinMarketCap) adopts fully asynchronous consensus at the time of writing
(January 19, 2025). Some have even simplified DAG-based asynchronous
consensus into partial synchrony by removing threshold common coins.

1

chronous distributed key reconfiguration (ADKR), aiming to
develop more efficient mechanisms for reconfiguring thresh-
old cryptosystems to accommodate changes in participants,
even in the presence of arbitrary and unpredictable network
delays caused by network asynchrony.

Definition 1 (ADKR, informal). Informally, ADKR is a sim-
plified version of ADKG, which, in the presence of an already-
established threshold cryptosystem among a set M of par-
ticipants, distributedly generates a threshold cryptosystem
among another set M̃ of participants, given a fully-meshed
asynchronous network consisting of all parties in M∪M̃.

Remarkably, ADKR captures the critical problem of reset-
ting a threshold cryptosystem when two sets of participants
need to hand over in an asynchronous fault-tolerant system.
The key distinction between ADKR and ADKG lies in the
former’s potential to utilize the established threshold cryp-
tosystem of the old participants to improve efficiency.

1.1 Limits of Existing Approaches
Unsurprisingly, ADKR, as a natural formulation of threshold
cryptosystem reconfiguration in the asynchronous network,
was previously studied [41] and can be derived from the im-
plications of ADKG protocols [2, 3, 24, 26, 39, 46]. Here, we
briefly review these approaches and highlight their limitations.

Adapting ADKG into the coin-hybrid model still suffers
from a cubic total overhead. As Figure 1 clarifies, ADKR
can be immediately realized from the state-of-the-art ADKG
[24, 26], with a couple of simple optimizations in the coin-
aided model. First, since an efficient one-round protocol for
asynchronous common coins can be implemented from the
old participants’ threshold cryptosystem [16], we can signifi-
cantly simplify the consensus part of ADKG by directly using
the best so-far asynchronous consensus from these granted
common coins, avoiding the usually complex protocols of
generating asynchronous common coins without any thresh-
old cryptosystem setup [10,33]. Second, the step of letting all
parties perform verifiable secret sharings in ADKG is usually
related to the generation of common coins in the absence of
threshold cryptosystem setup [26], and once common coins
are granted, the part can also be simplified, by letting 2 f +1
parties (instead of all parties) to distribute their secrets.

However, such straightforward modifications of ADKG,
though effective, do not scale well, as they fail to asymptoti-
cally reduce the significant cubic total overhead due to O(n)
asynchronous verifiable secret sharing (AVSS)3 protocols.4

3More precisely, a strong AVSS variant asynchronous complete secret
sharing (ACSS) is required in ADKG to ensure all parties receive the correct
secret shares. Hereafter, we consistently refer to ACSS throughout the paper.

4Note that a concurrent theoretic work [1] uses a recursive protocol struc-
ture to realize ADKG with nearly quadratic communication. But for typical
recursive depth of logn, it causes O(logn) rounds and is not compatible with
standard dLog cryptosystems since it generates group-element secret shares.

In particular, Figure 5 experimentally demonstrates that while
reconfiguring a high-threshold cryptosystem, the computa-
tional cost for each party still grows quadratically, exceeding
1000 seconds in a network with two thousand parties, even if
assuming that the consensus component is free.

...

 Async.
Consensus

Async. VSS

Async. VSS

Async. VSS
Common
 Coins

... ...

1. Dealing Secrets 2. Consensus

...

3. PK Derivation

Simple Adaption II:
Reducing # of AVSS

Simple Adaption I:
Simplifying common coins

Figure 1: High-level structure of existing ADKG protocols
and simple modifications of them to accommodate ADKR.

Previous sub-cubic attempt is neither concretely efficient
nor adaptively secure. In addition to the previous two modifi-
cations to ADKG, Günther, Das and Kokoris-Kogias [41] also
studied the exact ADKR problem and presented a construction
with sub-cubic communication. They used the granted com-
mon coin to select a c-size honest-majority sub-committee
from the whole network with honest super-majority and only
let the sub-committee members distribute secret sharings, re-
sulting in O(cλn2) communication cost. However, despite
being asymptotically better, their design’s concrete efficiency
does not significantly outperform the straightforward adap-
tation of ADKG since their sub-committee size c is not con-
cretely small. In particular, sampling an honest-majority sub-
committee with a failure probability below 10−10 requires
a sub-committee size of about four hundred. Moreover, the
design is insecure against an adaptive adversary capable of
corrupting participants after observing the common coin used
to select sub-committee members because the adversary can
always corrupt the majority within the sub-committee, thus
fully controlling the generated secret key.

Threshold cryptosystems with silent setup face perfor-
mance and compatibility issues. Silent-setup threshold sig-
nature schemes [23,34,51] and threshold encryption schemes
[35] have been proposed as alternatives to conventional thresh-
old cryptography to avoid interactive ADKG/ADKR protocols.
However, these schemes suffer from poorer performance, rais-
ing concerns for practical systems. For example, the state-
of-the-art silent threshold signature scheme [23] generates
signatures 11× larger than standard BLS signatures and re-
quires 8× more time for verification. Similar performance
limitations affect silent threshold encryption schemes. Fur-
thermore, these threshold signature schemes are incompatible
with standard signature verification algorithms, making them
unsuitable as drop-in replacements in existing systems.

Moreover, as an essential application of threshold cryptog-
raphy in consensus, a non-interactive unique threshold signa-
ture scheme (under ADKR/ADKG setup), such as threshold

2

BLS [7], enables a single-round and highly efficient asyn-
chronous common coin protocol [16]. Unfortunately, silent
threshold signature schemes lack the uniqueness property,
making it difficult to derive a common coin protocol directly5.

Given the limitation of existing techniques, we ask:

Can we design asymptotically and concretely more efficient
ADKR protocols for the standard discrete-logarithm-based
threshold cryptosystems (e.g., the standard BLS threshold

signature), with adaptive security?

Table 1: Comparison with existing ADKR and simplified
ADKG protocols. Here n is the total number of parties (e.g.
|M|+ |M̃|), λ is the bit length of cryptographic security pa-
rameter, and c and κ are statistic security parameters.

Possibly
adaptive?

Standard
dLog? Comm. Round

Classic ADKGs
with adaptions ! ! O(λn3) O(1)

GDK ADKR [41] % ! O(cλn2) † O(1)

Ours (§4) !‡ ! O(κλn2) † O(1)

† Though c and κ are both statistic parameters, κ is signifi-
cantly smaller than c. For a failure probability of 10−10, c is
more than 400, while κ is typically around 30.
‡ We provide an adaptive security proof for an instantiation
of our design in Appendix A.

Table 2: Comparison with the asynchronous proactive secret
sharing protocols having O(1) round and optimal resilience.

Possibly
adaptive?

Dynamic? High-thld? Comm.

CKLS [14] ! % % O(λn4)

GDK [41] % % ! O(cλn2)

YXXM [53] ! ! ! O(λn3)

Ours (§5) ! ! ! O(κλn2)

1.2 Our Contribution
We answer the above question affirmatively by proposing a
novel approach to constructing a more scalable ADKR proto-
col for conventional discrete-logarithm (Dlog)–based thresh-
old cryptosystems, with dedicated efforts preserving adaptive
security and optimizing concrete efficiency. Specifically, our
contribution can be summarized as follows.

• ADKR with asymptotically lower complexity and
adaptive security. To address the cubic total overhead

5Very recently, [30] proposed a silent-setup asymptotically optimal asyn-
chronous common coin protocol using both silent threshold signature and
encryption. However, its high concrete cost, such as requiring over 100 rounds
in expectation, limits its suitability for frequent use in practical systems.

caused by the O(n) ACSS protocols, we propose an ef-
ficient share-dispersal-then-agree-and-recast paradigm
for constructing ADKR while maintaining the potential
for adaptively secure implementations. The design re-
places O(n) ACSS protocols with O(n) asymptotically
cheaper dispersals of publicly-verifiable secret sharing
(PVSS) transcripts. Once consensus confirms the com-
pletion of these dispersals, κ dispersals are randomly
selected for reconstruction, reducing verification to these
few instances. Moreover, a small κ (several dozen) suf-
fices since adaptive security only requires an honest
dispersal among the κ selected (i.e. we only require an
any-trust κ-size sub-committee).

• Various optimizations for concrete efficiency. Inspired
by the recent DXT+ ACSS [25], we introduce an inter-
active dealing protocol to enable each dealer to gener-
ate a publicly-verifiable sharing transcript with linear
communication cost, to mitigate the high computational
cost of non-interactive publicly-verifiable secret sharing
schemes [32, 43] when instantiating the share-dispersal-
then-agree-and-recast paradigm. We further reduce the
dominating cost of verifying κ sharing transcripts to
about 2/3, at the price of a single round all-to-all com-
munication: for each n-item transcript, each item in it is
pre-scheduled to 2 f + 1 parties for verifying, so every
party at most verifies 2 f + 1 items (instead of n) and
can “verify” the remaining f items by exchanging the
verification results among other parties.

• Diverse applications arising from ADKR. We demon-
strate various implications of our efficient ADKR design.
First, our ADKR protocol can be directly adapted into
a quadratic communication ADKG in the presence of
common coins and PKI. When combined with the recent
quadratic-communication asynchronous coin-flipping
protocol from PKI [30], this completes the first quadratic-
communication ADKG in the PKI setting. Additionally,
we introduce the first asynchronous dynamic, proactive
secret sharing (ADPSS) protocol with quadratic com-
munication cost and adaptive security by extending our
ADKR design to efficiently distribute common random-
ness twice across two distinct committees. These appli-
cations may be of independent interest.

• Implementation and scalable experiments. We im-
plement our ADKR protocol and experimentally com-
pare it with state-of-the-art ADKG protocols (including
DYX+22 [26] and DYK+23 [24], with necessary simpli-
fications for fair comparisons) in large-scale wide-area
networks of up to 256 AWS servers evenly distributed
across 16 cities on five continents. For n = 256, our
single-threaded high-threshold ADKR implementation
reduces the latency of the simplified DYK+23 protocol
by 30–40%, reducing it from 103.96 seconds to approxi-
mately one minute.

3

1.3 Other Related Works
Most DKG protocols [2,33,36,46,50] have a communication
complexity of Ω(λn3). For a review of these classic construc-
tions, we refer readers to [6, 27].

Recent major advances [6, 28] introduced DKG protocols
with subcubic communication in the synchronous setting.
These schemes partition the network into smaller subgroups
and apply a recursive strategy, relying on at least one sub-
group having an honest majority. However, this method does
not naturally extend to the asynchronous setting, as messages
from an honest-majority subgroup may be arbitrarily delayed,
allowing the adversary to control the final secret key without
their contributions.

While [6, 28] focus on DKG without common coins, [29]
and [41] explored coin-aided DKG protocols for improved
performance in the synchronous and asynchronous settings,
respectively. These protocols use coins to select a small com-
mittee for secret sharing, avoiding O(n) instances of verifiable
secret sharing. However, this approach sacrifices strong adap-
tive security (i.e., tolerance of after-fact-removal attacks). [41]
requires an honest-majority committee of several hundred
nodes, limiting practical performance.

Recent concurrent work [1] extends the recursive method
of [6, 28] to the asynchronous setting using verifiable ran-
dom functions (VRFs) [9], requiring a one-time common
coin after PKI setup. Compared to our coin-aided DKG, their
protocol assumes a weaker setup (one-time initial coin vs. a
coin oracle), but its recursive structure and internal commit-
tee sampling procedures make it unsuitable for moderate-
scale networks of a few hundred nodes. Moreover, theirs pro-
duces group-element secrets, while ours gives field-element
secrets. [30] presented a quadratic-communication adaptive
common coin protocol based on silent threshold cryptogra-
phy [35], which, when combined with our coin-aided ADKG,
yields quadratic-communication ADKG with a silent setup.

Finally, we note that the paradigm of coin-aided DKG re-
sembles the idea of coin-tossing extension [5] which was
studied for circumventing the impossibility of coin tossing in
the dishonest-majority setting. Coin-aided DKG and ADKR
protocols can be seen as the coin tossing extension for the
honest-majority setting, for better amortized performance.

2 Problem Formulation and Building Blocks

We assume a fully asynchronous network consisting of two
sets of participating parties, M and M̃, with |M| = n and
|M̃|= ñ. Here, M represents an “old” committee with an es-
tablished threshold cryptosystem, and M̃ represents a “new”
committee aiming to distributedly (and efficiently) generate
its own threshold cryptosystem, with the help of the old com-
mittee. This problem setting is crucial for supporting dynamic
participation in many modern asynchronous fault-tolerant
systems that heavily rely on threshold cryptosystems.

Modeling. More precisely, we consider the following stan-
dard model in a computationally bounded setting, assuming a
fully mesh peer-to-peer asynchronous network.

• Public key infrastructure (PKI). Every party in M and M̃
knows all other parties’ public keys for verifying digital
signatures and performing public key encryption through
a bulletin board PKI.

• Established dLog threshold cryptosystem across the old
committee. The parties in M established a dLog based
(n, t)-threshold cryptosystem T C over a cyclic group G
with prime order q: (i) all parties in M have common
public keys (gs,gs1 ,gs2 , . . . ,gsn); (ii) each Pi ∈M holds
an exclusive private key share si ∈ Zq consist with gsi ;
and (iii) any t + 1 private key shares can interpolate
the same t-degree polynomial φ(x) with gs = gφ(0). T C
is called high-threshold, if the reconstruction threshold
t = n− f −1≥ 2 f . Similar to many quorum-based fault-
tolerate systems, we might leverage a high-threshold
cryptosystem setup for concrete efficiency.

• Asynchronous network. Each pair of honest parties in
M and M̃ can establish a secure asynchronous commu-
nication channel, where the adversary can arbitrarily
delay messages but cannot tamper with them or learn
any information about their content beyond their length.

• Malicious corruptions. Besides the power of arbitrarily
delaying communication, the adversary can also corrupt
up to f = ⌊ n−1

3 ⌋ parties in M and up to f̃ = ⌊ ñ−1
3 ⌋ parties

in M̃. Following the standard cryptographic practice
[15, 19], we consider the adversary to be probabilistic
polynomial-time (PPT) bounded and can coordinate all
corrupted parties to arbitrarily misbehave.

• Static vs. adaptive corruption. An adversary is static if it
corrupts malicious parties before the protocol starts after
the establishment of setup assumptions. In contrast, an
adversary is adaptive, if it can adaptively corrupt parties
during the protocol execution. We consider a strong adap-
tive adversary capable of performing the “after-the-fact
removal” attack, i.e., it can corrupt Pi and drop messages
sent from Pi before these messages reach their destina-
tion. This paper proposes a protocol structure for ADKR
that could be instantiated with adaptive security.

Design goals. As briefly aforementioned, we aim at accommo-
dating the reconfiguration of threshold cryptosystem when the
current participants is rotating (e.g. some current participants
are leaving and some new parties are joining), which means
to solve the following problem of asynchronous distributed
key reconfiguration (ADKR).

SYNTAX OF ADKR: An (n, t, ñ, t̃)-ADKR protocol for dLog
cryptosystems are executed by two sets M and M̃ of parties,
where |M| = n and |M̃| = ñ. A dLog-based (n, t)-threshold
cryptosystem T C was established across M. All parties in

4

M and M̃ inputs the public keys of T C , and each party in M
additionally inputs its exclusive private key share belonging to
T C . After the protocol terminates, the honest parties in M̃ set
up a dLog-based (ñ, t̃)-threshold cryptosystem T̃ C , namely,
each honest party in M̃ outputs its own exclusive private key
share and all public keys belonging to T̃ C .
SECURITY OF ADKR. As ADKR is to set up threshold cryp-
tosystem in M̃ (with the help of M), it shares the same security
goal as an ADKG protocol executed by M̃. Therefore, we con-
sider the following three properties that are well-established
in the literature of ADKG [24, 26, 46].

• Termination. Every honest party Pi in M̃ will output a
vector of public keys (gz,gz1 , gz2 , · · · , gzñ) and an exclu-
sive private key share zi ∈ Zq.

• Key Validity. The outputs of all honest parties in M̃ are
consistent: (i) all parties’ outputs contain the same pub-
lic keys (gz,gz1 , gz2 , · · · , gzñ); (ii) the private key share zi
obtained by each party is consistent with the correspond-
ing public key share of gzi ; (iii) there exists a t̃-degree
polynomial φ ∈ Zp[X], such that z = φ(0), and zi = φ(i)
for all i ∈ [ñ].

• Full Secrecy: No computationally bounded adversary
can (i) prevent the secret key z from being uniformly
sampled over Zq or (ii) learn information about z be-
yond the public key gz. Formally, for any PPT adver-
sary A which can corrupt up to f nodes, there exists a
PPT simulator S which on input a uniformly sampled
gz can produce a simulated view SimView, such that
(SimView,gz) is computationally distinguishable with
(ViewA , pk), where ViewA is the view of A is a real
execution with pk as the public key.

Similar to many existing adaptive (ADKG) protocols such
as Bingo [2], our adaptive construction aims at achieving a
relaxed version of secrecy known as oracle-aided algebraic
simulatability [7], which we recall in Def.2 in Appendix. A.2.
If t = n− f − 1 and t̃ = ñ− f̃ − 1 (where f = ⌊ n−1

3 ⌋ and
f̃ = ⌊ ñ−1

3 ⌋ represent the number of corruptions in M and M̃,
respectively), we say such an ADKR is high-threshold.
Building blocks. Our designs will use a few well-studied
building blocks, including: (i) a threshold signature scheme
(TSIG); (ii) a threshold common coin protocol (Coin) [16];
(iii) a communication-efficient multi-valued validated asyn-
chronous Byzantine agreement protocol (MVBA) [48]; (iv) a
verifiable encryption scheme for Pedersen commitment [25];
and (v) an asynchronous provable dispersal protocol, consist-
ing of a provable dispersal (PD) subprotocol and a recovery
(RC) subprotocol. Their definitions and instantiations are re-
called in Sect.7.

Notations. Throughout the paper, let λ denote the bit
length of the cryptographic security parameter, and let κ

be the statistical security parameter. The notation [i,n]

represents the set {i, i + 1, . . . ,n}, where i and n are in-
tegers with i < n. We may abbreviate [1,n] as [n]. For
a set {x1,x2, . . . ,xn} and a sequence (x1,x2, . . . ,xn), we
write them as {xi}i∈[n] and (xi)i∈[n], respectively, for brevity.
An instance of a protocol ProtoName is denoted by
ProtoName[ID]⟨{ParticipantID(input)}⟩. We may omit ID
or participant information when no ambiguity arises.

3 Challenges and Techniques

Challenge I: achieving quadratic total overhead with pre-
serving adaptive security. As illustrated in Figure 1, in a clas-
sic ADKG protocol based on O(n) PVSS protocols, (almost)
every party distributes a secret across the network through
an PVSS protocol. The participants then agree on a set of
completed PVSS protocols, ensuring that at least one honest
party’s PVSS is solicited. Nevertheless, the approach causes
cubic total communication cost, as PVSS has a quadratic com-
munication lower bound. Therefore, to asymptotically reduce
the cubic overhead,ADKG/ADKR can use, at most, a constant
number of PVSS protocols instead of O(n).

Reference [29] suggests selecting an any-trust commit-
tee (which has at least one honest member to deal secrets in
DKG) to deal secrets, which shows promising performance
improvements in the synchronous network due to the sig-
nificantly reduced number of VSS instances. However, its
selection of any-trust sub-committee raises two major prob-
lems: (1) it, at best, can achieve weak adaptive security (i.e.,
cannot tolerate the after-the-fact-removal of messages); (2)
in an asynchronous network, the adversary can arbitrarily de-
lay messages, so it can prevent the only honest party from
contributing its secret. To address (2), reference [41] uses a
larger sub-committee with an honest majority but requires a
significant sub-committee size (e.g., approximately several
hundred) and still fails to achieve adaptive security.

The above problem can be translated into the following
challenge: if we strive to realize quadratic communication,
we seemingly have to select a constant number of parties to
distribute their secrets, which in turn might hurt the desired
adaptive security, as a rushing adversary can wait until the
sub-committee members are selected to corrupt them.

...

 Async.
consensus

Agree a set
of finished
dispersals

Disperse

Disperse

Disperse

...

PVSS

PVSS

PVSS

Coin
Elect a

sub-comittee
of finished
dispersals

Recast to verify

Recast to verify

......

only recasts𝜅

Figure 2: High-level idea of our share-dispersal-then-agree-
and-recast paradigm (exemplified by non-interactive PVSS).

Technique I: share-dispersal-then-agree-and-recast paradigm.
We introduce a paradigm of share-dispersal-then-agree-and-
recast to achieve quadratic total overhead while preserving
an adaptively secure protocol structure, as Figure 2 outlines.

5

For asymptotic efficiency, this approach lets each party
distribute its secret shares, through a linear communication
protocol that disperses a publicly verifiable secret sharing
(PVSS) transcript instead of the quadratic-communication
PVSS; after the consensus component agrees on a set of n−
f completed dispersals, a common coin is used to select κ

dispersed PVSS transcripts to recover and verify, which costs
only quadratic communication as κ is asymptotically a small
constant. By combining all valid PVSS transcripts, every party
can derive its exclusive secret key shares, and all public keys
at the price of another round of all-to-all communication.

The share-dispersal-then-agree-and-recast paradigm also
has the potential for adaptive security. First, for any finished
dispersal confirmed by consensus, a strong adaptive adversary
can no longer prevent its correct recovery or replace the PVSS
transcript that was already dispersed by it. Moreover, by hav-
ing all parties perform dispersals, there is an overwhelming
probability (in κ) that at least one of the κ selected dispersals
originates from a sender that was not corrupted at the point
when the indices of select dispersals are published. More-
over, in the erasure model, we can let non-corrupted parties
erase their secrets locally before initiating their dispersals of
PVSS, preventing the adversary from adaptively corrupting
the selected senders to compromise the entire secrets.

Challenge II: retaining concrete efficiency for practical
large-scale instantiations. An immediate instantiation of
the share-dispersal-then-agree-and-recast paradigm can use
non-interactive PVSS schemes, which might either have pro-
hibitive computing cost [26, 32, 38, 44] or restricted applica-
tions (other than the standard dLog-based threshold cryptosys-
tems) [8, 20, 37, 43]. Recently, DXT+ ACSS [25] proposes
an insightful approach using an interactive dealing phase to
generate a publicly verifiable sharing transcript (we call this
phase as DTX+ PVSS6), offering an efficient alternative to the
expensive non-interactive PVSS: the dealer first distributes
secret shares along with a polynomial commitment of the
shares, then it solicits signatures on the commitment from
sufficient parties to produce a publicly-verifiable transcript.
However, integrating the publicly verifiable dealing phase into
our share-dispersal-then-agree-and-recast paradigm results
in cubic total communication because of the linear size of
polynomial commitment. A seeming “solution” of using com-
pact KZG polynomial commitment [45] limits the resulting
protocol to solely support pairing-friendly elliptic curves and
necessitates a trusted CRS setup.

The above issues translates into another key challenge:
can we instantiate the share-dispersal-then-agree-and-recast
paradigm, using concretely more efficient components and
optimizations, without hurting its asymptotic complexity?

Technique II-A: publicly-verifiable linear-overhead dealing.
We propose a simple optimization to DXT+ PVSS, reducing

6DXT + ACSS is realized by DTX+ PVSS and a subsequent broadcast
phase for broadcasting the transcript.

the communication cost of its dealing phase from quadratic
O(λn2) to linear O(λn), without extra CRS setup or hurting
its generality and public verifiability. Different from DXT+
PVSS that distributes the whole polynomial commitment to
all participants for verification, our dealing phase only sends
each participant its exclusive secret share and the share’s
Pedersen commitment, reducing dealer’s each message size
from O(λn) to O(λ). Moreover, the dealer can still compute
a publicly verifiable secret sharing (PVSS) transcript, by
combining the signed commitments to secret shares together
with verifiable encryption (VE) of other shares without
signed commitments, following a method similar to that used
in DXT+ PVSS.

Moreover, in the low-threshold setting when the recon-
struction threshold and the maximal number of corruptions
coincide, we can remove the reliance of VE, and the resulting
ADKR protocol can be proven to be adaptively secure.7

Technique II-B: distributedly reducing PVSS’s verification cost.
After applying our improved PVSS to reduce the dealer’s
computational cost, another primary bottleneck remains
to verify the κ selected PVSS transcripts. We observe that
different parties perform many redundant computing steps
for verifying each PVSS transcript, and we therefore propose
an optimized “distributed” verification approach to mitigate
the issue.

The idea partitions the workload of verifying each PVSS
transcript into the verifications of about n transcript items.
Each party is assigned 2 f +1 items (roughly two-thirds of the
n items) to verify, ensuring that every item is verified by at
least 2 f +1 parties. Each party then multicasts its verification
results for the 2 f +1 items assigned to it. For the remaining
f items that a party did not verify itself, it collects f + 1
consistent verification results from other parties, thus avoiding
the computing steps of locally verifying these f items. This
process ensures the correct verification of PVSS transcripts
while efficiently distributing the workload across the network.

Non-trivial application to dynamic proactive secret shar-
ing. We further extend our design methodology to improve
dynamic proactive secret sharing in the asynchronous setting.
Similar to ADKR, asynchronous dynamic proactive secret
sharing (ADPSS) is also a handover protocol between two
committees, while different from ADKR that lets a new com-
mittee set up a fresh threshold cryptosystem, ADPSS requires
the private key m to remain the same. To meet the additional
requirement of preserving the same private key, we optimize
the high-level approach from [53], which distributedly sam-
ples a random value r and shares it twice—once among the old
committee and once among the new committee. As such, the
old committee can reconstruct and publish m+r, enabling the

7We conjecture that our ADKR protocol can be adaptively secure if using
an adaptively secure high-threshold PVSS scheme (particularly considering
our adaptive security proof in the low-threshold setting). However, we only
prove static security of our efficient instantiation of high-threshold ADKR,
since the VE used is not adaptively secure in the multi-user setting.

6

new committee to derive fresh shares of m by subtracting its
local share of r from the reconstructed m+ r. However, [53]
implements the process with cubic communication, again, due
to the invocation of O(n) PVSS protocols.

We formalize this critical process as a primitive of dual-
committee randomness generation and extend our ADKR de-
sign to implement it more efficiently, with only quadratic
communication. Our improvement is achieved by modifying
our ADKR protocol to include two publicly verifiable PVSS
transcripts in each dispersal—one for the new committee
and the other for the old committee—and introduce an equal-
ity verification to check whether the secrets of each dealer’s
two transcripts match. From our dual-committee randomness
generation, the first quadratic-communication ADPSS with
adaptive security is therefore realized.

4 Efficient Asynchronous Distributed Key Re-
configuration Protocol

Before diving into the details of ADKR, we first introduce
an interactive PVSS scheme (an improved version of DXT+
PVSS [25]) in §4.1, which has a linear-communication asyn-
chronous dealing phase to generate a publicly verifiable shar-
ing transcript. From this optimized asynchronous dealing
protocol, we present our ADKR protocol in §4.2.

4.1 PVSS with Interactive Dealing
In a non-interactive publicly verifiable secret sharing (PVSS)
scheme [37, 38], a dealer locally runs a Deal algorithm to
produce a publicly verifiable transcript. Upon observing the
same valid (but potentially maliciously generated) transcript,
all honest receivers can obtain correct shares of the same
secret. However, the computation cost of verifying such tran-
scripts often becomes a performance bottleneck.

To improve concrete performance, we consider an interac-
tive variant of PVSS in this work, where transcript generation
is performed via an asynchronous Deal protocol instead of a
local algorithm.

Syntax. Formally, under a PKI setup where every receiver
Pi has generated its key pair (pki,ski) and published pki, an
interactive PVSS scheme can be described by the next sub-
protocols and algorithms.

• PVSS.Deal⟨Pd({pki}i∈[n],s),{Pi(ski)}⟩ →
⟨Pd(transcript),(auxi)i∈[n]⟩. The Deal stage protocol is
executed among the dealer Pd and all receivers {Pi}. Pd
takes the public keys {pki}i∈[n] of all participants and
the secret s as inputs, and it outputs transcript. Each
receiver Pi inputs its private key ski and receives an
auxiliary information auxi.

• PVSS.Verify({pki}i∈[n], transcript) → 0/1. This algo-
rithm verifies the sharing transcript transcript using the
public keys of the receivers.

• PVSS.Deliver(transcript,ski,auxi) → si. This algo-
rithm allows a receiver Pi to deliver a secret share si
according to a valid transcript, its secret key ski, and the
auxiliary information auxi from the Deal stage protocol.

We remark that the functionality of ACSS, which ensures
all honest nodes receive correct shares, can be achieved by
guaranteeing that all participants observe the same PVSS
transcript. This can be realized using external mechanisms,
such as reliable broadcast or consensus. Additionally, the
public and secret keys in the above syntax can be viewed as
collections of keys corresponding to various cryptographic
primitives used in the protocol.

An improved instantiation of [25]. As briefly mentioned in
§3, we give an improved version of the DXT+ PVSS protocol
from [25], which inherits all the benefits of DXT+ PVSS (e.g.,
transparent setup, supporting high-threshold, and computing
efficiency), and simultaneously reduces the communication
cost of PVSS.Deal protocol from O(λn2) bits to O(λn) bits.

INGREDIENTS. The protocol relies on the next components.

• A digital signature scheme with EUF-CMA security.

• A verifiable encryption (VE) scheme which satisfies
IND-CPA security. We recall the full syntax of VE in
Sect.7. In PVSS, we directly use the following three algo-
rithms of VE, where (ek j,dki) represents the encryption-
decryption key pair of P j.

– VE.bEncProve(I,{ek j} j∈I ,{a j} j∈I ,{vi}i∈I ,
{b j} j∈I)→ (c,πVE). For all j ∈ I, it encrypts each
a j under ek j to get c j, so it returns c = (c j) j∈I . It
also returns a proof attesting that v j = ga j hb j and
c j encrypts the same a j.

– VE.bVerify(I,{ek j} j∈I ,{v j} j∈I ,c,πVE) → 1 or 0.
It verifies the above proof.

– VE.Dec(dki,c)→ s. It decrypts the ciphertext to s.

• The degree check algorithm DegCheck from [20]. It on
input n group elements {vi}i∈[n] and two generators g
and h checks if there exists two t-degree polynomials φ

and φ̂, such that vi = gφ(i)hφ̂(i) for all i ∈ [n].

THE PVSS. With the above ingredients, we describe the
PVSS scheme in Algorithm 1 (which includes boxed items
but excludes dash-boxed items when used in our ADKR).
We assume that each Pi has generated the key pairs (eki,dki)
and (vki,ski) w.r.t. the VE scheme and the digital signature
schemes, respectively, and the public keys are known to every
participant. Compared with the original scheme in [25], the
dealer Pd sends (v j,(φ(j), φ̂(j))), instead of (v,(φ(j), φ̂(j))),
to each receiver P j, which reduces the communication cost of
the dealing stage from O(λn2) to O(λn). In the next subsec-
tion, we will show our simplified scheme suffices for building
a quadratic-communication ADKR, because it enables every

7

party in the old committee to use the linear-communication
PVSS.Deal protocol to distribute a random secret across the
new committee, which also produces a publicly-verifiable
sharing transcript that is ready to be dispersed.

Algorithm 1 Our improved DXT+ PVSS scheme

Deal⟨Pd({vki,eki}i∈[n],s , ŝ),{Pi(ski)}i∈[n]⟩→⟨Pd(transcript),(auxi)i∈[n]⟩
// Code run by Dealer Pd

1: randomly sample two t-degree polynomial φ(·) and φ̂(·) where φ(0) is s
and φ̂(0) is a random secret ŝ.

2: compute v←{v j = gφ(j)hφ̂(j)} j∈[0,n]
3: send SHARE(v j,φ(j), φ̂(j)) to every P j , j ∈ [n].
4: upon receiving 2 f +1 valid signatures σ j for v j do
5: Let Σ be the valid signatures set
6: Let I be the indices of nodes with missing valid signatures
7: c,πVE← VE.bEncProve(I,{ek j} j∈I ,{φ(j)} j∈I ,{vi}i∈I ,{φ̂(i)}i∈I)

8: return transcript := (v,c,πV E ,Σ, I)

// Code run by each receiving party Pi ∈M
9: upon receiving SHARE(vi,si, ŝi) from Pd do

10: if vi = gsi hŝi then
11: σi← Sign(ski,vi)
12: send ACK(σi)
13: return auxi = (si, ŝi)

14: return auxi =⊥

Verify({vki,eki}i∈[n],transcript)→ 0/1

15: parse script as: (v,c,πV E ,Σ, I)
16: Check ∀σ j ∈ Σ is a valid signature for v j
17: Check DegCheck(v, t) = 1
18: Check VE.bVerify(I,{ek j} j∈I ,{v j} j∈I ,c,πVE) = 1
19: if all the checks pass then
20: return 1
21: return 0

Deliver(transcript,dki,auxi)→ si

22: if auxi = (si, ŝi) then
23: return si (si, ŝi)

24: else
25: return si← VE.Dec(dki,ci) (si, ŝi)← VE.Dec(dki,ci)

Verifiable public key share computation. In the setting of
ADKR/ADKG, there are multiple instances of PVSS running
in parallel, and the final secret key share is the aggregation
of secret shares from a set T of a few PVSS instances, say
zi = ∑ℓ∈T s(ℓ)i , where s(ℓ)i is the secret share delivered in the
ℓ-th instance. Looking ahead, for achieving full secrecy, each
node needs to compute their public key share tpki = gzi along
with a proof which demonstrating tpki is honestly computed
from a set of transcripts {transcriptℓ}ℓ∈T . Formally, we need
a verifiable computation scheme {CompProve,VrfyComp}
for the following computation task:

tpki = g∑ℓ∈T PVSS.Deliver(transcript(ℓ),dki,aux
(ℓ)
i).

For describing the verifiable computation scheme, we need
a bit more detail about the VE scheme. In particular, for a Ped-
ersen commitment vi = gsihŝi , the corresponding ciphertext

ci consists of two parts: (1) c̄i, encrypting si, whose detailed
structure is irrelevant to the proof system; (2) ĉi, which is an
ElGamal ciphertext encrypting hŝi , i.e., ĉi = (gr,ekr

i ·hŝi).
With these facts, we develop the verifiable computation

scheme in Algorithm 2 w.r.t. our improved PVSS. Note that
the computation of tpki also gives the secret key share zi as an
intermediate result. To avoid redundant calculation, we let the
algorithm CompProve outputs zi as well. In this scheme, we
use the following two standard components: a NIZK pok for
proving the knowledge of x ∈ Zp for gx ∈G w.r.t. a generator
g; and a NIZK DELq for proving the knowledge of x for
(gx,hx) w.r.t. two generators g,h.

We establish the security properties of the scheme in the
following Lemma 1.

Lemma 1. Conditioned on that the input transcripts
(transcript(ℓ))ℓ∈T are valid, {CompProve,VrfyComp} in Al-
gorithm 2 satisfies the following properties:
• Completeness: Honestly generated (tpki,proof i) can al-

ways pass the verification.

• Zero-knowledge: An honestly generated (tpki,proof i)

does not leak anything beyond (tpki,hẑ′i). I.e., there
is a PPT simulator which, on input (tpki,hẑ′i) and the
transcripts, generates simproof i, s.t. (tpki,proof i) and
(tpki,simproof i) are computationally indistinguishable.

• Soundness: Any PPT adversary cannot provide a valid

proof for tpk′i ̸= g∑ℓ∈T PVSS.Deliver(transcript(ℓ),dki,aux
(ℓ)
i).

Proof. For completeness, it follows the completeness of the
proof-of-knowledge for discrete logarithm, that of the proof-
of-knowledge for DLEq, and the structure of Pedersen com-
mitment and the ElGammal-style ciphertext.

For zero-knowledge, we can construct a simulator, which

first computes the public element ekr
i ←

(∏ℓ∈S ĉ(ℓ)i [1])

vi/(h
ŝ′i ·tpk)

and

then trivially invokes the black-box simulators for zk-pok
of discrete logarithm and DLEq, to simulate a valid proof
(tpki,proof i) without accessing the witness.

For soundness, if there is an adversary A feasibly breaks
it, that means with some non-negligible probability δ, A can
compute (tpk′i,proof

′
i) passing the verification of VrfyComp

but tpk′i ̸= g∑ℓ∈T PVSS.Deliver(transcript(ℓ),dki,aux
(ℓ)
i) in polynomial

time. We therefore can construct another adversary B , in-
teracting with A , and uses black-box extractor of the proof-
of-knowledge for dLog and DH-tuple, to extract the witness
satisfying the relationships. Knowing two set of satisfying wit-
nesses, B therefore can feasibly break the discrete logarithm
problem.

4.2 Our ADKR Protocol

Setup and Ingredients. Recall the definition of ADKR in §2.
There are two sets of participating parties: M= {Pi}i∈[n] and

8

Algorithm 2 Verifiable Public Key Share Computation
CompProve((transcript(ℓ))ℓ∈T ,dki,(aux

(ℓ)
i)ℓ∈T)))

1: Parse each transcript(ℓ) as: (Σ(ℓ), I(ℓ),v(ℓ),(c̄(ℓ)i , ĉ(ℓ)i),π
(ℓ)
V E)

2: for ℓ ∈ T do
3: if aux

(ℓ)
i =⊥ then

4: Decrypt s(ℓ)i and hŝ(ℓ)i from c̄(ℓ)i and ĉ(ℓ)i
5: else
6: Parse aux

(ℓ)
i = (s(ℓ)i , ŝ(ℓ)i)

7: zi← ∑ℓ∈T s(ℓ)i , and ∀ j ∈ [n], v j ←∏ℓ∈T v(ℓ)j

8: let Si = {ℓ|ℓ ∈ T and i ∈ I(ℓ)}, S′i = T \Si

9: Ĥi←∏ℓ∈Si hŝ(ℓ)i , ẑ′i← ∑ℓ∈S′i
ŝ(ℓ)i

// ĉℓi is an ElGamal ciphertext with ĉi[0] = gri and ĉ(ℓ)i [1] = ekri
i ·hŝi

10: gr
i ←∏ℓ∈Si ĉ(ℓ)i [0], ekr

i ← (∏ℓ∈S ĉ(ℓ)i [1])/Ĥi
11: π∗i [0] = pok.prove(zi,g,gzi)

12: π∗i [1] = pok.prove(ẑ′i,h,h
ẑ′i)

13: π∗i [2] =DLEq.prove(g,eki,gr
i ,ek

r
i))

14: return (tpki = gzi ,proofi = (hẑ′i ,ekr
i ,(π

∗
i [0],π

∗
i [1],π

∗
i [2]),zi))

VrfyComp((transcript(ℓ))ℓ∈T ,tpk j,proof j)

15: Compute gr
j and v j from (transcript(ℓ))ℓ∈T as in CompProve

16: Parse proof j = (hẑ′j ,ekr
j,(π

∗
j [0],π

∗
j [1],π

∗
j [2]))

17: Compute Ĥ j = (∏ℓ∈S ĉ(ℓ)j [1])/ekr
i

18: if π∗i [0], π∗i [1], and π∗i [2] are valid, and v j = Ĥ j ·hẑ′j · tpk j then
19: return 1
20: return 0

M̃= {P̃i}i∈[ñ]. We assume all parties have generated key pairs
for the digital signature scheme and the VE scheme during
the PKI setup. Let (eki,dki) and (vki,ski) (resp. (ẽki, ṽki) and
(ṽki, s̃ki)) denote encryption key pair and signature key pair
of Pi ∈M (resp. P̃i ∈ M̃).

Our protocol uses the following primitives as ingredients:
(1) the (n, t)-PVSS protocol and its associated verifiable com-
putation {CompProve,VrfyComp} (described in §4.1), (2)
the Dumbo-MVBA protocol [48], (3) the PD protocol (cf.
Appendix 7), and (4) the threshold common coin Coin.Get
(recalled in Appendix 7). Note that parties in M have es-
tablished a dLog-based (n, t)-threshold cryptosystem with
t = n− f − 1 and f = ⌊ n−1

3 ⌋, providing sufficient setup to
execute Dumbo-MVBA, PD, and Coin.Get within M.

The protocol. With above setup and ingredients, we present
our ADKR protocol in Algorithm 3, and describe its execution
flow in the following.

• Sharing phase (Lines 1-2 for Pi ∈M and Lines 18-20
for P̃i ∈ M̃): Each node Pi ∈ M uniformly samples
s ∈ Zp and deals the shares of s to M̃ via PVSS.Deal.
Each P̃i ∈ M̃ participates in all PVSS.Deal instances and
receives aux(j)

i from each instance.

• Disperse phase (Lines 3-10 for Pi ∈M): After having
transcript(i) from PVSS.Deal, each node Pi ∈ M dis-
perses the transcript to M via PD[i]. Pi participates in all
PD[j] for j ∈ [n], and stores the fragments it delivered
in these instances.

Algorithm 3 ADKR, run by parties in both M and M̃
// Code run by each old committee member Pi ∈M
let store[j]←⊥, lock[j]←⊥ for j ∈ [n]
initialize a provable dispersal instance PD[j] for j ∈ [n]

SHARING PHASE (old committee part):
1: randomly sample s← Zp.
2: call PVSS.Deal[i]⟨Pi({ẽki, ṽki}i∈[ñ],s),{P̃i(s̃ki)}⟩ as the dealer

DISPERSAL PHASE:
3: upon obtain transcript(i) from PVSS.Deal[i] do
4: call PD[i]⟨Pi(transcript

(i)),M⟩
5: upon PD[j] delivers store j do
6: store[j] = store j

7: upon PD[j] delivers lock j do
8: lock[j] = lock j
9: if lock[j] ̸=⊥ then

10: Ti← Ti ∪{(j, lock[j])}

AGREE PHASE:
11: if |Ti|= 2 f +1 then
12: invoke Dumbo-MVBA⟨{Pi(Ti)}⟩

RECAST PHASE (old committee part):
13: upon Dumbo-MVBA outputs T do
14: call Coin.Get()⟨M⟩ to get T ′ = {ℓ1, . . . , ℓκ}, s.t. (ℓz, ·)∈ T for z∈ [κ]
15: for ℓ ∈ T ′ do
16: if store[ℓ] ̸=⊥ then
17: invoke RC[ℓ]⟨Pi(store[ℓ]),M̃⟩

// Code run by each new committee member P̃i ∈ M̃
let T ∗←⊥, aux(j)

i ←⊥ for all j ∈ [n], count= 0, PKs← /0

18: participate in all PVSS.Deal[j] and PD[j] for j ∈ [n]

SHARING PHASE (new committee part):
19: upon PVSS.Deal[j] returns aux do
20: aux

(j)
i ← aux

RECAST PHASE (new committee part):
21: upon RC[ℓ] returns transcript(ℓ) do
22: count← count+1
23: if PVSS.Verify({ṽki, ẽki}i∈[ñ],transcript

(ℓ)) = 1 then
24: T ∗← T ∗ ∪{ℓ}

KEY DERIVATION:
25: if count= κ then
26: CompProve((transcript(ℓ))ℓ∈T ∗ , d̃ki,(aux

(ℓ)
i)ℓ∈T ∗) →

(tpki,proofi,zi)

27: send KEY(tpki,proofi) to all P̃ j ∈ M̃
28: upon receiving KEY(tpk j,proof j) from P̃ j for the first time do
29: if VrfyComp((transcript(ℓ))ℓ∈T ∗ ,tpk j,proof j) = 1 then
30: PKs← PKs∪{tpk j}
31: if |PKs| ≥ 2 f̃ +1 then Interpolate tpk and any missing tpk j
32: output zi, tpk and {tpk j}P̃ j∈M̃

Predicate(T) for Dumbo-MVBA
33: parse T as : {...,(ℓ, lockℓ), ...}
34: if |T |= 2 f +1 and ValidateLock(⟨ID, ℓ⟩, lockℓ) = 1 for all items in

T then
35: return 1
36: else return 0

9

• Agree phase (Lines 11-22 for Pi ∈ M): After 2 f + 1
PD instances finish, each Pi ∈M collects a set Ti of the
indexes and proofs of those finished PD instances and
provides it as input to Dumbo-MVBA. Then, all parties
in M agree on T , which is a set of 2 f +1 finished PD
instances.

• Recast phase (Lines 13-17 for Pi ∈M and Lines 21-24
for P̃i ∈ M̃): All parties in M jointly invoke a common
coin to decide on a set of κ indexes T ′, such that all in-
dexes in T ′ are included in T . Then, if Pi has a fragment
from PD[ℓ] for each ℓ ∈ T ′, it invokes RC[ℓ] to provide
the fragment to all parties in M̃. Each P̃i ∈ M̃ can thus
obtain transcript(ℓ) via RC[ℓ] for every ℓ ∈ T ′.

• Key derivation (Lines 25-33 for P̃i ∈ M̃): After re-
ceiving κ sharing transcripts from the RC protocols,
each P̃i ∈ M̃ calculates its secret key share zi =

∑ℓ∈T ∗ PVSS.Deliver(transcript
(ℓ), d̃ki,aux

(ℓ)
i), and runs

CompProve to generate the public key share tpki = gzi

along with proofi attesting that tpki is honestly gen-
erated. Then, P̃i multicasts (tpki,proofi) to all parties
in M̃. Finally, after receiving 2 f̃ + 1 valid public key
shares (along with their proofs), each P̃i can obtain the
group public key tpk by interpolating these tpk j’s in the
exponent.

Two natural variants. While Algorithm 3 describes an
ADKR protocol with a high threshold t = 2 f , it can be easily
adapted to support the following functionalities, which may
be of independent interest:

• ADKR with a flexible threshold t ∈ [f ,2 f]. Our PVSS
already supports a flexible threshold, and we use t = 2 f
primarily because the underlying Dumbo-MVBA and
PD require threshold signatures with t = 2 f . However,
by leveraging silent-setup threshold signatures [23, 34,
51], Dumbo-MVBA and PD can also be implemented,
which enables a flexible (n, t)-dLog threshold setup in
M (as long as such setup still provides common coins).

• ADKG in the coin-aided model. When M = M̃, Al-
gorithm 3 describes an ADKG where the need for an
existing (n, t)-dLog threshold setup can be eliminated
by using a silent-setup threshold signature scheme com-
bined with a coin oracle. This results in a quadratic
communication ADKG in the coin-aided model. 8

A concrete optimization: distributed verification of shar-
ing transcript. In the above protocol, for each transcript,
every new committee member needs to independently verify
all ñ− f̃ signatures and call bVerify to verify the f̃ encrypted
shares corresponding in the set I. It is clearly redundant and

8With recent advancements in silent-setup common coin protocols [30],
this yields a quadratic ADKG under the PKI and CRS setup.

costly, as all parties perform κn same group-exponentiation
operations, making a major performance bottleneck.

Nonetheless, we can further reduce the verification cost as
follows: instead of verifying all ñ items in the transcript, we
let each party verify 2 f̃ +1 consecutive items. For example, Pi
verifies the signature or encrypted share of the items indexed
by { j mod ñ} j∈[i,i+2 f̃] in the transcript. So after verifying

these ñ− f̃ items assigned to it, each new committee member
multicasts ñ− f̃ bits within the new committee, where each
bit encodes one item’s verification result (where 1 represents
“accept” and 0 represents “reject”); Then, for other f̃ items
that are not locally verified, the party waits for f̃ +1 messages
from other parties, such that these messages carry the same
bit encoding the item’s verification result, and it can securely
use the bit to indicate whether the item is valid or not.

This approach reduces the computation cost of verifying
sharing transcripts by about one-third, at a concretely small
price: (i) it costs one round of all-to-all communication within
the new committee members, and (ii) each new committee
member multicasts a (ñ− f̃)-bit message, though causing
asymptotically cubic collective communication, it is still con-
cretely small as (ñ− f̃)ñ2 bits approximate the size of ñ2

group elements for typical system scales (e.g. about 500).9

4.3 Analysis
Number of recovered sharing transcripts. To keep commu-
nication and computation costs within O(n2), we select a κ-
size subset from the output set of MVBA in ADKR. The shar-
ing transcripts dispersed by parties in this sub-committee are
recovered, verified, and then used to derive the threshold keys.
To guarantee the pseudo-randomness of the generated secret
key, at least one recovered transcript in the sub-committee
shall be dispersed by a non-corrupted party.

We use the hypergeometric distribution to determine the
appropriate sub-committee size, as the sub-committee is ran-
domly sampled from the MVBA output using a threshold
common coin. Since the adversary can fully control the order
of message delivery in an asynchronous network, the indices
of all f corrupted parties could be included by the output set
of MVBA. Thus, the probability that a κ-size sub-committee
contains at least one non-corrupted party is given by:

p = 1−H (0,2 f +1, f +1,κ) (1)

where H is the hypergeometric distribution with a population
size of 2 f +1, the number of “success” objects (honest parties)
is f +1, and κ is the committee size. In Figure 3, we plot the
required committee size as a function of the total number of
parties n = 3 f +1, for some given probabilities p.

As the total number of parties increases, it becomes evident
that a constant-sized committee can ensure the presence of at
least one honest party except for the given probabilities p.

9Without the distributed verification optimization for concrete efficiency,

10

0 200 400 600 800 1000 1200 1400

of Nodes

0

10

20

30

40

C
om

m
itt

ee
 S

iz
e

p=1 - 10-12

p=1 - 10-10

p=1 - 10-8

Figure 3: Sub-committee size κ to ensure some selected dis-
persal from a non-corrupted sender with probability p.

Communication complexity. We first call n instances of
the PD protocol to disperse the O(λñ)-size scripts, which
incurs a communication cost of O(λn · ñ+ λn2) bits. Next,
the Dumbo-MVBA requires O(λn · ñ+λn2) communication,
where each party provides an input of size O(λñ). Subse-
quently, each Pi ∈ M multicasts O(λ)-bit store messages
across all κ RC instances to Pi ∈ M̃ resulting in a communi-
cation cost of O(κλn · ñ). Therefore, the total communication
cost of the ADKR for parties in M is O(κλn · ñ+λn2+λn · ñ).
For parties in M̃, each party multicasts O(λ)-size KEY mes-
sage, leading to a communication cost of O(λñ2). Thus, the
overall communication complexity of our ADKR is O(κλn ·
ñ+λn2 +λñ2).
Computation complexity. Here we count the number of
group exponentiation operations, which corresponds to the
dominating cryptographic cost. For parties in M, everyone
invokes an PVSS.Deal instance as a dealer and initiates one
PD protocol as sender while participating in other PD in-
stances as non-sender. In this phase, each party performs
O(n+ ñ) group-exponentiation operations. During the con-
sensus phase, the number of group exponentiation for each
party is O(n + ñ). For parties in M̃, each party verifies κ

sharing transcripts, each containing O(ñ) items, resulting
in O(κñ) group-exponentiation operations. The number of
group-exponentiation operations in the key derivation phase
is O(ñ log ñ) (assuming DFT in the exponent). Therefore,
the number of group exponentiation operations per party is
Õ(κñ+ ñ log ñ+n).

Security analysis. We establish the following theorem re-
garding the security of our ADKR.

Theorem 1. The algorithms shown in Algorithm 3 realize
ADKR in a fully asynchronous network model with up to
⌊ n−1

3 ⌋ corruptions in M and ⌊ ñ−1
3 ⌋corruptions in M̃, condi-

tioned on the hardness of Discrete Log problem and that the
underlying primitives are all secure.

In the following, we first sketch the security intuition, and
then prove the termination (in Lemma 4), key-validity (in

our design has asymptotically quadratic communication overhead.

Lemma 5 and 6), and full secrecy(in Lemma 7), respectively.

Security intuition. The termination of the protocol directly
follows from the termination of MVBA, Coin, and APDB.

For Key Validity, the agreement of MVBA and the consis-
tency of Coin ensure that the same set of scripts is selected,
while the recast-ability of APDB guarantees the reconstruc-
tion of each script is consistent among all parties.

For Full Secrecy, as long as at least one of the κ scripts is
provided by an honest party, it ensures the pseudo-randomness
of the secret key z. Since all secret shares are encrypted and
we use an (ñ, t̃)-Shamir secret sharing scheme, the adversary
cannot learn any information about z beyond the public keys.

Lemma 2. If all honest parties in M and M̃ invoke ADKR,
then every honest party Pi ∈ M̃ will generate an aggregate
commitment {v j}P j∈M̃

.

Proof. From the termination of APDB, if all honest parties in
M invoke ADKR and pass transcripts into the corresponding
PD instances, then all honest parties in M can output lock
from at least 2 f +1 PD instances. Consequently, each honest
party Pi ∈M will input valid set Ti to MVBA, so all of them
can output the same set T and call Coin.Get() according to the
termination and agreement of MVBA. Then from termination
and consistency of Coin, all honest parties can get the same
subset T ′ from T . The external-validity of MVBA requires
that the output satisfies the predicate Q, so for any index in
T ′, there exists a valid lock value which implies that at least
f +1 honest parties have its store values. These parties will
send their store values to parties in M̃ by invoking RC[ID, ℓ]
instances for ℓ ∈ T ′.

Then all honest parties in M̃ can receive at least f + 1
valid fragments and output in each RC instance correspond-
ing to the index in T ′. Thus, after calling PVSS.Verify to
eliminate incorrect scripts, all honest parties in M̃ will gener-
ate an aggregate commitment {v j}P̃ j∈M̃

when CompProve is
invoked.

Lemma 3. For any two honest parties P̃i and P̃ j that generate
aggregate commitment v and v′ respectively in the ADKR
protocol, v = v′.

From the agreement of MVBA, any honest party in M who
outputs from MVBA will output the same set T and then select
the same subset T ′ by calling the Coin.Get. According to the
external-validity of MVBA, for any script(ℓ) that ℓ ∈ T ′, there
are at least f + 1 honest parties who have stored the store
values of it. Thus, for any ℓ ∈ T ′, at least f +1 honest parties
will input store values for the same vector commitment vc
to RC[ID, ℓ], and no honest party will input to any RC[ID, ℓ]
that ℓ /∈ T ′ or input to a RC[ID, ℓ] that ℓ ∈ T ′ with a store
value that the vc is inconsistent with the lock[k] output in
MVBA. Since a party in M̃ will output from a RC instance
only if it receives at least f +1 valid fragments for the same

11

vc, all honest parties in M̃ can only output from RC[ID, ℓ] that
ℓ ∈ T ′.

So we prove the lemma by a contradiction. Assuming that
there exist two honest parties in M̃ that generate aggregate
commitment v ̸= v′. Since any honest party’s v is aggregated
from the transcripts outputs of RC instances, P̃i and P̃ j must
receive different outputs transcript(ℓ) ̸= transcript′(ℓ) from
at least one RC[ID, ℓ] that ℓ ∈ T ′. Recall that all valid store
values in one RC instance must have the same vc, this will
immediately break the correctness of erasure code or the col-
lision resistance of the hash function. Hence, any honest party
in M̃ that generates an aggregate commitment v = {v j}P j∈M̃
will generate the same one.

Lemma 4 (Termination). If all honest parties in M and M̃
invoke ADKR, then every honest party P̃i in M̃ will output the
public keys (gz,gz1 ,gz2 , · · · ,gzñ) and a private key share zi.

Proof. From Lemma 2 and 3, every honest party in M̃ will
generate the same aggregate commitment {v j}P j∈M̃

. Then

each honest P̃i ∈ M̃ will calculate its private key zi, public key
share tpki and a proofi from CompProve. Then honest P̃i
will send a KEY message containing tpki = gzi . The proofs
generated by any honest parties in M̃ can be verified by any
honest party in M̃ according to Lemma 3 and the complete-
ness of the proofs. So each honest party in M̃ can collect
at least 2 f̃ + 1 valid public key shares tpk j corresponding
to the aggregated commitment. Given that the degree of all
sharing polynomials generated in the PVSS instances in T ∗

is no more than 2 f̃ + 1, they can interpolate the public key
tpk= gz and all missing public key shares.

Lemma 5 (Key Validity 3). Any 2 f̃ +1-subset of private key
shares provided by the outputs can recover the same master
private key z.

Proof. From Lemma 3, any honest party in M̃ generates the
same aggregate commitment v = {v j}P̃ j∈M̃

. From the de-
scription of the ADKR and CompProve, the commitment v
is aggregated from the same set of verified transcript(ℓ)s that
ℓ ∈ T ∗, where the degree of each sharing polynomial is no
more than 2 f̃ , and each share z(ℓ)j is bound to the commitment

value v(ℓ)j in transcript(ℓ). So the private key share z j for each

P̃ j ∈ M̃ is on the polynomial of degree ≤ 2 f̃ . Therefore, any
2 f̃ +1-subset of private key shares recover the same z.

Lemma 6 (Key Validity 1&2). The outputs provide the same
public keys (gz,gz1 ,gz2 , · · · ,gzñ). Any private key share zi car-
ried by the outputs is consistent with the public key of gzi .

Proof. From the description of the protocol, each
transcript(ℓ) verified by PVSS.Verify satisfies that {v(ℓ)j } j∈M̃
is a Pedersen commitment to the sharing polynomial
with degree ≤ 2 f̃ . From Lemma 5, the private key shares

corresponds to a unique polynomial φ(·) (and φ̂(·)) of
degree ≤ 2 f̃ . Then {v j} j∈M̃ is a Pedersen commitment to

φ(·)(and φ̂(·)) since the Pedersen commitment is additively
holomorphic.

Now we prove that the honest party can output all the public
key shares.

Each honest party in M̃ receives a KEY message from P̃ j
containing tpk j = gz j and a proof j Each proof j contains 3
proofs:

• π∗j [0] proves that P̃ j knows z j.

• π∗j [1] proves that P̃ j knows the sum of all ẑ(ℓ)j for σ
(ℓ)
j ∈

Σ(ℓ).

• π∗j [2] proves that P̃ j knows the product of all hẑ(ℓ)j for

c(ℓ)j ∈ c(ℓ).

Through the above two proofs π∗j [1] and π∗j [2], hẑ j =

Ĥ j ·hẑ′ j can be calculated. Then by the binding property of
Pedersen commitment, we know that z j = φ(j) and hẑ j = hφ(j).
Therefore, the public key gφ(0) and all missing public key
shares can be interpolated from any 2 f̃ +1 shares gz j .

Lemma 7 (Full Secrecy). No computationally bounded ad-
versary can (i) bias the uniform sampling of master secret
key z over Zq or (ii) learn information about z beyond the
released public keys.

Proof. We prove the full secrecy of our ADKR by building
a PPT simulator S , which on inputs a uniformly distributed
group element y ∈ G can simulate an execution of ADKR
where y is group public key, such that any PPT adversary
A that corrupts up to ⌊ n−1

3 ⌋ nodes in M and ⌊ ñ−1
3 ⌋ nodes

in M̃ cannot distinguish the simulated execution and a real
execution which returns y as the group public key tpk.

We describe the simulator S as follows.
Notations: We denote the set of parties controlled by the
adversary A in M and M̃ as B and B̃, respectively. The
sets of honest party in M and M̃ are represented as G
and G̃. Without loss of generality, let B = {P1, ...,P f }, G =

{P f+1, ...,Pn}(with B̃ and G̃ defined similarly).
Input: a public key y ∈G.
Simulation: Firstly, sample i∗← [n] which represents a party
in M. S generates encryption key pairs (eki,dki) and signa-
ture key pairs for all parties in M̃. After that, S simulates an
execution as follows.
Simulating PVSS.Deal: S simulates PVSS.Deal[i∗] by the

following strategy: For i ∈ [1, t], S uniformly samples s(i
∗)

i

and ŝ(i
∗)

i , and computes v(i
∗)

i = gs(i
∗)

i · hŝ(i
∗)

i . S uniformly
samples v(i

∗)
0 . For all i ∈ [2t + 1,n], interpolate v(i

∗)
i =

∏ j∈[0,t](v
(i∗)
j)λ j(i), and λ j(x) = ∏k∈[0,t],k ̸= j

j−x
j−k .

12

Then, S sends (v(i
∗)

i ,s(i
∗)

i , ŝ(i
∗)

i) to each P̃i ∈ M̃, on the be-
half of Pi∗ S simply sends (v(i

∗)
i ,⊥) to honest nodes. On the

behalf of P̃i ∈ G̃, S signs each v(i
∗)

i , and sends the signature
to Pi∗ on the behalf of honest P̃i.

Finally, S can collects valid signatures for {v(i
∗)

i }i∈S, where
S ∈ [ñ] with |S| = 2 f̃ + 1. For every j /∈ S, if j ∈ B′, S hon-
estly uses VE to encrypt (s(i

∗)
i , ŝ(i

∗)
i); Otherwise, S encrypts a

random value under ẽk j and simulates a proof. By doing so,
S can obtain transcript(i∗).

Regarding other honest nodes, S honestly executes the pro-
tocol on the behalf of them in PVSS.Deal instances, except
their responses to the messages from Pi∗ (which we have
specified above).

Simulating the Dispersal Phase: For all operations until
Dumbo-MVBA outputs, S acts on the behalf of each hon-
est nodes by executing the protocol.

Simulating the Agree Phase: When Dumbo-MVBA outputs
T ′, if (i∗, ·) is not included in T ′, S shall abort the current
simulated execution, sample a new i∗← G, rewind A to the
begining of the simulation, and restart a new simulated exe-
cution. If (i∗, ·) is included in T ′, S continues to simulate the
subsequent phases.

Simulating the Recast Phase: For Coin.Get, recall that the
coin value is RO(ThldSig). S computes the unique thresh-
old signature Thld on the default message of this execution
(since S knows the secret keys of all honest nodes), and pro-
grams RO such that i∗ ∈ RO(ThldSig). S honestly executes
the protocol on the behalf of honest nodes for the subsequent
operations of the Recast Phase.

Simulating the Key Derivation: First, S computes the public
key shares of honest nodes as follows:

• For j ∈ [1,2 f̃], computes tpk(i
∗)

j = ga j .

• For j ∈ [f̃ +1, ñ], z̄ j = ∑ℓ∈T ∗\{i∗} s(ℓ)j , ¯tpk j = gz̄ j .

• Interpolate ¯tpk from { ¯tpk j}, j ∈ [2 f̃ +1,n].

• Compute tpk
(i∗)
0 = y/ ¯tpk.

• Interpolate tpk
(i∗)
j for j ∈ [2 f̃ +1, ñ] from {tpk(i

∗)
j } for

j ∈ [0,2 f̃]

• For P̃ j ∈ G̃, compute tpk j = tpk
(i∗)
j · ¯tpk j.

Then, S simulates the computation proof proofi for each
i ∈ [2 f̃ +1, ñ] as follows.

• Define Si = {ℓ|ℓ ∈ T and i ∈ I(ℓ)}, and S′i = T ∗ \Si

• If i∗ ∈ Si, compute ẑ′i = ∑ℓ∈S′i
ŝ(ℓ)i , where ŝ(ℓ)i was sent by

Pℓ during the Sharing Phase.

• If i∗ ∈ S′i, compute ẑ′′i =∑ℓ∈S′i,ℓ̸=i∗ ŝ(ℓ)i , hŝ(i
∗)

i =
v(i
∗)

i

tpk
(i∗)
j

, and

hẑ′i = hẑ′′i ·hŝ(i
∗)

i .

• Invoke the CompProve simulator with (tpki,hẑ′i) as in-
put and obtain proof j.

With (tpki,proofi) for all honest nodes in G̃, S honestly
executes the rest of the protocol on the behalf of all honest
nodes.

Public key in the simualted execution. Now we demonstrate
that the final public key tpk in the simulated execution is
the input of S , namely, y. First, all tpk j for parties in G̃ are

computed as tpk(i
∗)

j · ¯tpk j. Since that y = tpk
(i∗)
0 · ¯tpk and both

tpk
(i∗)
0 and ¯tpk are interpolated from 2 f̃ +1 shares. y can be

interpolated from 2 f̃ + 1 tpk
(i∗)
j . For any P̃ j ∈ B̃, it knows

z j for an opening of tpk j. From the knowledge soundness
of NIZK and the binding property of Pedersen commitment.
All tpk′j with a valid proof j are on the t-degree polynomial
defined by {tpk j} that P̃ j ∈ G̃. Thus the output of S is exactly
the input public key y.

Indistinguishability between the simulated execution and
a real execution. Then, we show that a PPT adversary cannot
distinguish the simulated execution and a real execution, by
considering the following hybrids.

Hybrid 0: It is identical to a real execution, where the simula-
tor honestly executes the protocol on the behalf of all honest
nodes.

Hybrid 1: It is almost identical to Hybrid 0, except that if
Coin.Get returns T ∗ which does not contain an honest node
i′ ∈G, the simulator aborts the current execution, rewidns the
adversary A to the begining, and restarts the simulation.

Hybrid 2: It is almost identical to Hybrid 1, except that the
simulator randomly selects i∗← G in the beginning.

Hybrid 3: It is almost identical to Hybrid 2, except that
during PVSS.Deal[i∗|old] and PVSS.Deal[i∗|new], when Pi∗

needs to encrypt shares for corrupted parties, the simulator
encrypts random values and generates a simulated proof.

Hybrid 4: It is almost identical to Hybrid 3, except that
if Dumbo-MVBA outputs T ′ and (i∗, ·) /∈ T ′, the simulator
aborts the current execution aborts, rewinds the adversary A
to the begining, and restarts the simulated execution with a
freshly sampled i∗← G.

Hybrid 5: It is almost identical to Hybrid 4, except that
after Dumbo-MVBA outputs T ′, the simulator programs RO
at ThldSig such that i∗ ∈ RO(ThldSig).

Hybrid 6: It is almost identical to Hybrid 5, except that
during the key derivation phase, the simulator invokes the
CompProve simulator to generate proofi on the behalf of all
P̃i ∈ G̃.

13

Hybrid 7: It is the simulated execution.
First, from A’s perspective, the difference between Hybrid

0 and Hybrid 1 is that in Hybrid 0, the output of Coin.Get is a
uniformly sampled subset of κ indexes in T ′, while in Hybrid
1, the output must include at least one honest i′ ∈G. Since the
probability that κ randomly sampled indexes do not include
any i′ ∈ G is negligible, the statistical distance between the
output distributions of Coin.Get in Hybrid 0 and Hybrid 1
is negligible. Thus, A cannot distinguish between the two
hybrids with a non-negligible advantage. Additionally, as the
probability that the simulator needs to rewind A and restart
the simulation is negligible, the simulator’s expected running
time is polynomial in the security parameter.

Next, Hybrids 1 and 2 are identical from A’s perspective.
Then, by the IND-CPA security of the underlying VE, A

cannot distinguish between Hybrids 2 and 3 except with neg-
ligible probability.

Furthermore, since the choice of i∗ is independent of A’s
view, Hybrids 3 and 4 are indistinguishable from A’s per-
spective. As T ′ contains at least f + 1 honest nodes and i∗

is uniformly chosen from G, the probability that (i∗, ·) /∈ T ′

is at most f
2 f+1 . Thus, the simulator is expected to rewind A

approximately twice, keeping the simulator’s running time
polynomial in the security parameter.

Next, the unforgeability of the unique threshold signature
ensures that A cannot obtain ThldSig before honest partici-
pants invoke Coin.Get(). Consequently, the probability that
A queries RO with ThldSig before RO is programmed is neg-
ligible. Hence, A cannot distinguish between Hybrids 4 and
5 except with negligible probability.

Then, ensured by the zero-knowledge property of
CompProve, the adversary cannot distinguish Hybrid 5 and
Hybrid 6 except with a negligible probability.

Finally, Hybrids 6 and 7 are indistinguishable from A’s
perspective. Therefore, A cannot distinguish between the real
execution and the simulated execution except with negligible
probability.

5 Application to Asynchronous
Dynamic Proactive Secret Sharing

In this section, we present a quadratic-communication asyn-
chronous dynamic proactive secret sharing (ADPSS) scheme,
based on an extension to our ADKR protocol.

Definition. In an (n, t, ñ, t̃)-ADPSS protocol executed among
two sets M and M̃ of parties, where |M| = n and |M̃| = ñ.
Each Pi ∈M hold a share mi of a secret m. After the protocol
terminates, each honest Pi ∈ M̃ will output a refreshed share
m′i of the secret m. Such an ADPSS satisfies the following
properties with all but negligible probability:

• Termination:. If all honest parties invoke ADPSS, then
all honest parties will eventually terminate the protocol.

• Correctness: Any honest Pi ∈ M̃ that terminates will
output a t̃-threshold share m′i of the secret m.

• Secrecy: No PPT adversary can learn any information of
the secret m.

5.1 A generic construction of ADPSS using
DCRG [53]

Our construction closely follows a (semi)-generic construc-
tion introduced in [53], which, essentially, builds an ADPSS
from a component which we term by the following Dual-
Committee Randomness Generation (DCRG) scheme.

SYNTAX OF DCRG. In an (n, t, ñ, t̃)-DCRG, there are two
committees: M = {Pi}i∈[n] and M̃ = {P̃i}i∈[ñ]. DCRG aims
to sample two uniform random values s and ŝ, such that par-
ties in M have (n, t) Shamir secret sharings of (s, ŝ), while
parties in M̃ have (ñ, t̃) Shamir secret sharings of them. More
specifically, at the end of the execution, parties in M agree on
a vector of Pedersen commitments (gshŝ,gs1hŝ1 , . . . ,gsnhŝn),
and each Pi ∈M receives a private output (si, ŝi), such that
{si} and {ŝi} of honest nodes are (n, t) Shamir secret shar-
ing of s and ŝ, respectively. At the same time, parties in M̃
outputs (gshŝ,gs′1hŝ′1 , . . . ,gsñhŝñ), and each P̃i ∈ M̃ receives a
private output (s′i, ŝ

′
i), such that {s′i} and {ŝ′i} of honest nodes

are (n, t) Shamir secret sharing of s and ŝ, respectively.

ADPSS PROTOCOL BASED ON DCRG. Now we describe
how to realize ADPSS by using DCRG. In the ADPSS proto-
col, each party Pi ∈M holds shares mi and m̂i of the secrets
m and a hiding randomness m̂, respectively, along with a set
of Pedersen commitments {cm j}P j∈M, where cm j = gm j hm̂ j .
The goal is to enable the parties in M̃ to have (ñ, t̃) Shamir
secret shares of the same m and m̂, as long with an updated
set of commitments {c̃m j}P̃ j∈M̃

.
The ADPSS protocol is presented in Algorithm 4. At a high

level, it leverages the DCRG protocol to generate two sets of
distinct shares for the same pair of random numbers r and r̂
across two configurations. The old and new configurations
use them to transmit a pair of masked secrets m+ r and m̂+ r̂.
The new configuration derives new shares of m by computing
m+ r− r′i. Specifically:

• Initialization: Each party Pi ∈M holds shares mi and m̂i
of the secrets m and a random number m̂, respectively,
along with a set of Pedersen commitments {cm j}P j∈M,
where where cm j = gm j hm̂ j .

• Invocation of DCRG (Lines 1-2, Lines 10-11): parties
in both M and M̃ jointly invoke an instance of the
DCRG protocol to generate two sets of secret shares
for the random numbers r and r̂. Specifically, Pi ∈M
obtains shares ri, r̂i along with a set of Pedersen commit-
ments {gr j hr̂ j}P j∈M. Correspondingly, a node P ′i ∈ M̃

14

receives shares r′i, r̂′i and a set of Pederson commitments
{gr′j hr̂′ j}P j∈M̃

.

• Reconstruction of the Masked Secrets (Lines 3-8): Each
Pi ∈M computes the masked shares (mi+ri, m̂i+ r̂i) and
multicasts them to all parties in M via a REC message
to reconstruct m+ r and m̂+ r̂. When Pi ∈M receives
2 f +1 REC(sh j, ŝh j) satisfying the condition v jcm j ==

gsh j hŝh j , it uses Lagrange interpolation to reconstruct
m+ r and m̂+ r̂.

• Share Transmission (Lines 9, 12): parties in M then
transmit the masked values m+r and m̂+ r̂ to the parties
in M̃ with TRANS messages. Due to the randomness of r
and r̂, the TRANS messages will not leak any information
about m and m̂. parties in M̃ ensure the consistency of
the masked secrets by receiving at least f + 1 TRANS
messages with the same values.

• Generation of New Shares (Lines 13-16): Each P ′i ∈ M̃
computes their respective shares of m and m̂ by cal-
culating (m+ r)− r′i and (m̂+ r̂)− r̂′i. It also outputs
a set of commitment for the new shares, defined as
cm′j = gm+rhm̂+r̂/c′j.

Algorithm 4 ADPSS run by parties in both M and M̃
// Code run by each Pi ∈M
initialize S← /0

Pi takes mi, m̂i and {cm j} j∈M as input
1: invoke DCRG as a party in M
2: wait for DCRG output ri, r̂i,{v j}P j∈M
3: multicast REC(mi + ri, m̂i + r̂i) to all parties in M
4: upon receiving REC(sh j , ŝh j) from P j ∈M do
5: if cm j · v j = gsh j ·hŝh j then
6: S← S∪{(j,(sh j, ŝh j))}
7: if |S| ≥ 2 f +1 then
8: Interpolate m+ r and m̂+ r̂ from S
9: multicast TRANS(m+ r, m̂+ r̂) to all parties in M̃

// Code run by each Pi ∈ M̃
10: invoke DCRG as a party in M̃
11: wait for DCRG output r′i , r̂′i, {v′j}P j∈M̃
12: upon receiving f + 1 TRANS messages with the same (m+ r) and

(m̂+ r̂) from distinct parties in M do
13: m′i← (m+ r)− r′i , m̂′i← (m̂+ r̂)− r̂′i
14: for P j ∈ M̃ do
15: cm′j ← (gm+rhm̂+r̂)/v′j
16: output m′i, m̂′i and {cm′j}P j∈M̃

Note that except the DCRG part, the communication cost of
the remaining part is merely O(λn2). However, [53] realizes
DCRG by using n instances of a variant of PVSS and thus
incurs O(λn3) communication cost. So we strive to reduce the
overhead of DCRG, from cubic to quadratic, towards realizing
quadratic-commutation ADPSS.

5.2 Our quadratic-communication DCRG

Here we describe how to realize a DCRG protocol with
O(λn2) communication cost, by extending our ADKR design.
A quadratic-communication ADPSS is immediately achieved
by replacing the component in Algorithm 4.

SETUP AND INGREDIENTS. Our DCRG assumes the same
setup and ingredients as ourADKR, except that the underlying
PVSS needs to be slightly modified.

In particular, since in DCRG, honest parties should output
shares of both s and ŝ, such that gshŝ is the public Pedersen
commitment, the PVSS scheme should support the dealer to
specify both s and ŝ and enable each receiver to deliver the
shares of both s and ŝ.

The above functionality can be supported by using a VE
scheme to encrypt both si and ŝi for a receiver Pi, so that
Pi can obtain both shares by decrypting the ciphertexts. As
discussed in [25], the VE scheme from [38] suffices for this
purpose. This variant of PVSS is also described in Algo-
rithm 1 (including dash-boxed items but excluding boxed
items).

Algorithm 5 DCRG, run by parties in both M and M̃
// Code run by each old committee member Pi ∈M
let store[j]←⊥, aux(j)

i lock[j]←⊥ for j ∈ [n]. count← 0
initialize a provable dispersal instance PD[j] and PVSS.Deal[j|old] for
j ∈ [n]

1: randomly sample s, ŝ.
2: call PVSS.Deal[i|old]⟨Pi({eki,vki}i∈[n],s, ŝ),{Pi(ski)}⟩ as the dealer

3: call PVSS.Deal[i|new]⟨Pi({ẽki, ṽki}i∈[ñ],s, ŝ),{P̃i(s̃ki)}⟩ as the dealer.
4: upon PVSS.Deal[j|old] returns aux do
5: aux

(j)
i ← aux

6: upon obtain transcript(i|old) from PVSS.Deal[i|old] and
transcript(i|new) from PVSS.Deal[i|new] do

7: call PD[i]⟨Pi(transcript
(i|old)|transcript(i|new)),M⟩

Then, Execute Lines 5-17 in Algorithm 3 while Line 17 is changed to:
8: invoke RC[ℓ]⟨Pi(store[ℓ]),M∪M̃⟩ ▷ Recast to all parties
9: upon RC[ℓ] returns transcript(ℓ|old)|transcript(ℓ|new) do

10: count← count+1
11: parse transcript(ℓ|old) = ({v(ℓ|old)

j } j∈[n], ·), and transcript(ℓ|new)

12: if both transcript(ℓ|old) and transcript(ℓ|new) are valid, and v(ℓ|old)
0 =

v(ℓ|new)
0 then

13: T ∗← T ∗ ∪{ℓ}
14: (s(ℓ)i , ŝ(ℓ)i)← PVSS.Deliver(transcript(ℓ|old),dki,aux

(j)
i)

15: if count= κ then
16: return ({∏ℓ∈T ∗ v(ℓ|old)

j } j∈[n],∑ℓ∈T ∗ s(ℓ)i ,∑ℓ∈T ∗ ŝ(ℓ)i)

// Code run by each new committee member P̃i ∈ M̃
let T ∗←⊥, aux(j)

i ←⊥ for all j ∈ [n], count= 0, PKs← /0

17: participate in all PVSS.Deal[j|new] and PD[j] for j ∈ [n]

18: upon PVSS.Deal[j|new] returns aux do
19: aux

(j)
i ← aux

Then, follow the same logic of Lines 9-16 above to obtain shares and
commitments from {transcript(ℓ|new)}ℓ∈T ∗

15

THE PROTOCOL. With above setup and ingredients, we
present our DCRG scheme in Algorithm 5, and describe its
execution flow in the following.

• Each Pi ∈ M samples two secrets s and ŝ, and
it invokes PVSS.Deal[i|old] (with threshold t) and
PVSS.Deal[i|new] (with threshold t̃) to share them with
M and M̃, respectively. All parties in both M and M̃ can
obtain the corresponding auxiliary information.

• After obtaining transcript(i|old) and transcript(i|new)

from PVSS.Deal[i|old] and PVSS.Deal[i|new], respec-
tively, Pi ∈M disperses them (as a single message) to M
via PD[i]. Every P j ∈M participates these PD instances
and stores the associate information.

• All parties in M invoke Dumbo-MVBA to agree on T ,
which is a set of 2 f +1 finished PD instances. Then, they
call Coin.Get to select a set of κ indexes T ′, such that all
indexes in T ′ have been included in T . Then, parties in
M recast both transcript(ℓ|old) and transcript(ℓ|new) for
all ℓ ∈ T to all parities in M∪M̃.

• After receiving transcript(ℓ|old) and transcript(ℓ|new)

from RC[ℓ], each party checks whether they are valid
and if they contain the same v(ℓ)0 (which ensures the two
transcripts sharing the same pair of s(ℓ) and ŝ(ℓ)). Let
T ∗ = {ℓ} such that transcript(ℓ|old) and transcript(ℓ|new)

passed the check. Each Pi ∈M (resp. P̃i ∈ M̃) processes
{transcript(ℓ|old)}ℓ∈T ∗ (resp. {transcript(ℓ|new)}ℓ∈T ∗) to
obtain their outputs, as specified in Lines 12-16.

We remark that the committee M is assumed to have a setup
for an (n, t) threshold cryptosystem, which enables threshold
common coin and subsequently enables Dumbo-MVBA. So
the new committee M should also set up its (n, t) thresh-
old cryptosystem after DCRG, to support a future execution
with a newer committee. Therefore, besides the operations
in Algorithm 5, all parties shall run an ADKR in parallel, to
accomplish the setup 10.

5.3 Analysis
We establish the following results about our ADPSS protocol.

Theorem 2. Using DCRG in Algorithm 5 to instantiate the
generic ADPSS in Algorithm 4 gives a secure ADPSS with
O(λκ(n+ ñ)2) communication complexity and O(1) rounds.

Communication Complexity. In the DCRG protocol, par-
ties in M invoke ADKR where the input size of each PD
is O(λ(n+ ñ)) instead of O(λñ), resulting in a communica-
tion complexity of O(κλn2 +κλn · ñ). Multicasting COMMIT

10It is not hard to see the ADKR and DCRG can be batched: the network
can use the same PD, Dumbo-MVBA, and Coin to disperse, agree, and
select PVSS transcripts for DCRG and ADKR.

messages cost O(κλn · ñ). For parties in M̃, the DCRG costs
O(λñ2 +κλn · ñ) bits.

The subsequent n-to-n(or n-to-ñ) multicast messages each
have a size of O(λ) for parties in M , contributing an ad-
ditional O(λn · ñ+λn2) in communication costs. Therefore,
the total communication complexity of ADPSS is O(κλn2 +
κλn · ñ+λñ2).

Computation Complexity. Each party in M performs O(κn+
ñ) exponentiations when invoking DCRG. Then verifying
shares in the REC messages and interpolating m+ r (and m̂+
r̂) incurs a computation cost of O(n) per party. For each party
in M̃, it costs O(κñ) in the DCRG protocol, followed by O(ñ)
exponentiations to compute cm′j for all P j ∈ M̃ Therefore,
the overall computation complexity of ADPSS is O(κn+κñ)
per party.

Security Analysis. Hereunder, we prove the properties of
termination, correctness, and secrecy, one-by-one.

Lemma 8. The ADPSS protocol (instantiating Algorithm
4 with DCRG from Algorithm 5) satisfies the termination
property.

Proof. First, following the proof about the termination of
ADKR in Lemma 4, we can show that every honest party in
M∪M̃ can terminate in DCRG.

Then, after receiving output (ri, r̂i,{v j} j∈[n]), every hon-
est Pi ∈ M can multicast (mi + ri, m̂i + r̂i), which satisfies
cmi · vi = gmi+rihm̂i+r̂i (condition in Line 5 of Algorithm
4). Therefore, all honest nodes in M can obtain S such
that |S| ≥ 2 f + 1 (condition in Line 7), so they can recover
(m+ r, m̂+ r̂) (Line 8) and multicast it to all parties in M̃;
then, they can terminate.

Regarding each party P̃i ∈ M̃, it can receive outputs from
DCRG and (m+ r, m̂+ r̂) from at least f + 1 parties in M
(since all honest parties in M send the same pair). There-
fore, each P̃iM̃ can execute the code after Line 12 and then
terminate.

Lemma 9. The ADPSS protocol (instantiating Algorithm
4 with DCRG from Algorithm 5) satisfies the correctness
property.

Proof. First, following the proof about the key validity of
ADKR in Lemma 5 and Lemma 6, we can show that all parties
in M can obtain a vector of Pedersen commitment {v j} j∈[n],
such that there exits two t-degree polynomials φ and φ̂, and
vold

j = gφ(j)hφ̂(j). And every honest Pi ∈M obtains (φ(i), φ̂(i)).

Similarly, we can show all parties in M̃ can obtain a vector
of Pedersen commitment {v′j} j∈[n], such that there exits two

t-degree polynomials φ′ and φ̂′, and vold
j = gφ(j)hφ̂(j). And

every honest P̃i ∈ M̃ obtains (φ′(i), φ̂′(i)). Moreover, since we
require v(ℓ|old)

0 = v(ℓ|new)
0 for all ℓ∈ T ∗, v0 =∏ℓ∈T ∗ v(ℓ|old)

0 = v
′
0.

So gφ(0)hφ̂(0) = gφ′(0)hφ̂′(0). Due to the binding property of

16

Pedersen commitment (implied by the dLog assumption), we
have φ(0) = φ′(0), and φ̂(0) = φ̂′(0). I.e., the parties in M and
the parties in M̃ have secret shares of the same pair (r, r̂).

Next, since every (mi + ri, m̂i + r̂i) needs to satisfy cm j ·
v j = gmi+rihm̂i+r̂i to be included in the set S, it is easy to see
every Pi ∈M can reconstruct the same (m+ r, m̂+ r̂). Then,
the updated secret share m′i = (m+ r)− r′i is F(i) for a t̃-
degree polynomial F(x) = (m+ r)−φ′(x). So, F(0) = m+
r−φ′(0) = m, which means {m′i}i∈[ñ] are (ñ, t̃) Shamir shares
of m. Following a similar argument, we can show {m̂′i}i∈[ñ]
are (ñ, t̃) Shamir shares of m̂.

Lemma 10. The ADPSS protocol (instantiating Algorithm 4
with DCRG from Algorithm 5) satisfies the secrecy property.

Proof. We prove the secrecy of our ADPSS by building a
PPT simulator S , which on inputs a Pedersen commitment
cm can simulate an execution of ADPSS where C is the com-
mitment to the secret cm, such that any PPT adversary A that
corrupts up to ⌊ n−1

3 ⌋ nodes in M and ⌊ ñ−1
3 ⌋ nodes in M̃ can-

not distinguish the simulated execution and a real execution
where the commitment to the secret is cm.

We describe the simulator S as follows.
Notations: We denote the set of parties controlled by the
adversary A in M and M̃ as B and B̃, respectively. The
sets of honest party in M and M̃ are represented as G
and G̃. Without loss of generality, let B = {P1, ...,P f }, G =

{P f+1, ...,Pn}(with B̃ and G̃ defined similarly).
Input: a Pedersen commitment cm, which is a group element
in G.
Simulation: Firstly, sample i∗← [n] which represents a party
in M. S generates encryption key pairs (eki,dki) and the
signature key pairs for all parties in M̃. After that, S simulates
an execution as follows.
Initial configuration in M: For all i ∈ [t], S uniformly sam-
ples mi and m̂i, and computes cmi = gmi · hm̂i . For all i ∈
[t +1,n], interpolate cmi = ∏ j∈[0,t] cm

λ j(i)
j , where cm0 = cm

and λ j(x) = ∏k∈[0,t],k ̸= j
j−x
j−k .

Simulating DCRG: For Pi∗ , S simulates its actions by the
following strategy:

• For simulating PVSS.Deal[i∗] , S samples t-degree poly-
nomials ϕ and ϕ̂, and t̃-degree polynomials ϕ′ and ϕ̂′,
such that ϕ(0) = ϕ′(0) and ϕ̂(0) = ϕ̂′(0). Then, S com-

putes v(i
∗)

0 = gϕ(0)·hϕ̂(0)

cm0
,

v(i
∗)

i =
gϕ(i) ·hϕ̂(i)

cmi
,∀i ∈ [n], (2)

and v(i
∗)′

i = gϕ′(i)·hϕ̂′(i)

cmi
for all i ∈ [ñ].

Then, S sends (v(i
∗)

i ,(mi +ϕ(i), m̂i + ϕ̂(i))) to each Pi ∈
M , and (v(i

∗)′

i ,(mi +ϕ′(i), m̂i + ϕ̂′(i))) to each P̃i ∈ M̃,
on the behalf of Pi∗

S simply sends (v(i
∗)

i ,⊥) or (v(i
∗)′

i ,⊥) to honest nodes.
On the behalf of each honest Pi ∈G and P̃i ∈ G̃, S signs
each v(i

∗)
i and v(i

∗)′

i , and sends the signature to Pi∗ on the
behalf of honest Pi and P̃i.

Finally, S can collects valid signatures for {v(i
∗)

i }i∈S and

{v(i
∗)′

i }i∈S′ , where S ∈ [n] with |S| = 2 f + 1, and S′ ∈
[ñ] with |S′| = 2 f̃ + 1. For every j /∈ S (resp j /∈ S′),
if j ∈ B (resp. j ∈ B′), S honestly uses VE to encrypt
(m j +ϕ(j), m̂ j + ϕ̂(j)) (resp. (m′j +ϕ′(j), m̂′j + ϕ̂′(j)));
Otherwise, S encrypts a random value under ek j (resp.
ẽk j) and simulates a proof. By doing so, S can obtain
transcript(i∗|old) and transcript(i∗|new).

Regarding other honest nodes, S honestly executes the
protocol on the behalf of them in PVSS.Deal instances,
except their responses to the messages from Pi∗ (which
we have specified above).

• For all operations until Dumbo-MVBA outputs, S acts
on the behalf of each honest nodes by executing the
protocol. When Dumbo-MVBA outputs T ′, if (i∗, ·) is
not included in T ′, S shall abort the current simulated
execution, sample a new i∗ ← G, rewind A to the be-
gining of the simulation, and restart a new simulated
execution. If (i∗, ·) is included in T ′, S continues to exe-
cute the protocol on the behalf of all honest nodes, until
Coin.Get.

• For Coin.Get, recall that the coin value is RO(ThldSig).
S computes the unique threshold signature Thld on the
default message of this execution (since S knows the
secret keys of all honest nodes), and programs RO such
that i∗ ∈ RO(ThldSig).

• For operations afterGetCoin, S acts on the behalf of each
honest nodes by executing the protocol. In particular, on
the behalf of each honest Pi ∈ G and P̃i ∈ G̃, S obtains
(r(ℓ)i , r̂(ℓ)i) and (r(ℓ)

′

i , r̂(ℓ)
′

i) for all ℓ ∈ T ∗, ℓ ̸= i∗; It skips
the deliver operation for ℓ= i∗.

Simulating other operations in ADPSS: On the behalf of all
honest nodes, S executes the rest of the protocol honestly,
except for Line 3 of Algorithm 4. Since S does not have the
secret share (ri, r̂i) of Pi ∈ G , it multicasts

(shi = ϕ(i)+ ∑
ℓ∈T ∗,ℓ̸=i∗

r(ℓ)i , ŝhi = ϕ̂(i)+ ∑
ℓ∈T ∗,ℓ̸=i∗

r̂(ℓ)i). (3)

Recall Eq.2 where S computes v(i
∗)

i = gϕ(i)·hϕ̂(i)

cmi
. Therefore,

(shi, ŝhi) can pass the check, since

cmi · vi = cmi · v
(i∗)
i · ∏

ℓ∈T∗,ℓ̸=i∗
v(ℓ)i

= gϕ(i)+∑ℓ∈T∗ ,ℓ̸=i∗ r(ℓ)i ·hϕ̂(i)+∑ℓ∈T∗ ,ℓ̸=i∗ r̂(ℓ)i = gshihŝhi .

(4)

17

Now, we turn to prove that an adversary A cannot distin-
guish a real execution and a simulated execution provided by
S . To argue this fact, we consider the following hybrids.

Hybrid 0: It is identical to a real execution, where the simula-
tor honestly executes the protocol on the behalf of all honest
nodes.

Hybrid 1: It is almost identical to Hybrid 0, except that when
during DCRG, if Coin.Get returns T ∗ which does not contain
an honest node i′ ∈ G, the simulator aborts the current execu-
tion, rewidns the adversary A to the begining, and restarts the
simulation.

Hybrid 2: It is almost identical to Hybrid 1, except that the
simulator randomly selects i∗← G in the beginning.

Hybrid 3: It is almost identical to Hybrid 2, except that
during PVSS.Deal[i∗|old] and PVSS.Deal[i∗|new], when Pi∗

needs to encrypt shares for corrupted parties, the simulator
encrypts random values and generates a simulated proof.

Hybrid 4: It is almost identical to Hybrid 3, except that when
during DCRG, if Dumbo-MVBA outputs T ′ and (i∗, ·) /∈ T ′,
the simulator aborts the current execution aborts, rewinds
the adversary A to the begining, and restarts the simulated
execution with a freshly sampled i∗← G.

Hybrid 5: It is almost identical to Hybrid 4, except that
during DCRG, after Dumbo-MVBA outputs T ′, the simulator
programs RO at ThldSig such that i∗ ∈ RO(ThldSig).

Hybrid 6: It is the simulated execution.
First, from A’s perspective, the difference between Hybrid

0 and Hybrid 1 is that in Hybrid 0, the output of Coin.Get is a
uniformly sampled subset of κ indexes in T ′, while in Hybrid
1, the output must include at least one honest i′ ∈G. Since the
probability that κ randomly sampled indexes do not include
any i′ ∈ G is negligible, the statistical distance between the
output distributions of Coin.Get in Hybrid 0 and Hybrid 1
is negligible. Thus, A cannot distinguish between the two
hybrids with a non-negligible advantage. Additionally, as the
probability that the simulator needs to rewind A and restart
the simulation is negligible, the simulator’s expected running
time is polynomial in the security parameter.

Next, Hybrids 1 and 2 are identical from A’s perspective.
Then, by the IND-CPA security of the underlying VE, A

cannot distinguish between Hybrids 2 and 3 except with neg-
ligible probability.

Furthermore, since the choice of i∗ is independent of A’s
view, Hybrids 3 and 4 are indistinguishable from A’s per-
spective. As T ′ contains at least f + 1 honest nodes and i∗

is uniformly chosen from G, the probability that (i∗, ·) /∈ T ′

is at most f
2 f+1 . Thus, the simulator is expected to rewind A

approximately twice, keeping the simulator’s running time
polynomial in the security parameter.

Next, the unforgeability of the unique threshold signature
ensures that A cannot obtain ThldSig before honest partici-
pants invoke Coin.Get(). Consequently, the probability that

A queries RO with ThldSig before RO is programmed is neg-
ligible. Hence, A cannot distinguish between Hybrids 4 and
5 except with negligible probability.

Finally, Hybrids 5 and 6 are indistinguishable from A’s
perspective. Therefore, A cannot distinguish between the real
execution and the simulated execution except with negligible
probability.

6 Implementation and Evaluations

This section will demonstrate the concrete efficiency and
scalability of our ADKR protocol via large-scale experiments.

6.1 Instantiations and Test Environment

Implementation. We implemented our high-threshold ADKR
protocol, along with two ADKRs naturally adapted from the
high-threshold ADKG protocols in [26] and [24] through us-
ing the existing threshold common coins generated by the old
committee members. In addition, we implemented two ver-
sions of the protocol adapted from [26]. Note that the ACSS
scheme in [26] is based a VE scheme. In the first version (de-
noted as “adapted DYX+22-VE”), we replaced the original
VE scheme with the VE for Pedersen commitments proposed
in [25]. In the second version (denoted as “adapted DYX+22-
ACSS”), we replaced the entire ACSS scheme in [26] with
DXT+ ACSS (with our improved PVSS generation in Algo-
rithm 1). Both versions are implemented and evaluated to
show each portion of the improvement.

All implementations are written in Python 3.8, using the
identical cryptographic library and security parameters across.
Concurrency is managed using the gevent library. We im-
plemented all protocols over BLS12-381 curve, so they can
support pairing-based threshold cryptosystems. We used the
BLS12-381 implementation from Zcash and its Python wrap-
per as described in [26]. we assume that the parties in the old
configuration have established a high-threshold cryptosystem
capable of performing non-interactive threshold BLS signa-
tures, which can be set up during the last ADKR. Furthermore,
in the implementation of VE for Pedersen commitment, each
node signs the commitment value using ECDSA algorithm.

Choices of other parameters. While the system scales from
n = 127 to n = 256 nodes, we consider two choices of sub-
committee size κ, ensuring the selected sub-committee con-
tains a dispersal from an honest sender with probabilities
p1 = 1−10−8 and p2 = 1−10−10, respectively. Intuitively,
if the system reconfigures its threshold key every 10 minutes,
it is expected to fail approximately once every 1902 years
under p1 and even longer for p2.

We show an optimization scheme for the good case where
most nodes are honest and the network latency is small: When
each party executes the dealing protocol to generate a PVSS
transcript, it waits for a short time δ after distributing the

18

260

125 150 175 200 225 2500
20
40
60
80

100
120

of nodes

Ru
nn

in
g

Ti
m

e
(s

ec
)

ADKR-10^(-8)-nowait
ADKR-10^(-10)-nowait
adapted DXK+23
adapted DYX+22-VE
adapted DYX+22-ACSS

(a) Running time.

125 150 175 200 225 250
of nodes

0

50

100

150

200

Ba
nd

wi
dt

h
Us

ag
e/

 N
od

e
(M

B)

ADKR-10^(-8)-nowait
ADKR-10^(-10)-nowait
adapted DXK+23
adapted DYX+22-VE
adapted DYX+22-ACSS

(b) Bandwidth usage.

125 150 175 200 225 250
of nodes

0

20

40

60

80

100

Ru
nn

in
g

Ti
m

e
(s

ec
)

ADKR-10^(-8)-wait
ADKR-10^(-10)-wait
adapted DXK+23
adapted DYX+22-ACSS

(c) Running time, if wait for δ time
to solicit signatures while dealing.

125 150 175 200 225 250
of nodes

0

20

40

60

80

100

Ru
nn

in
g

Ti
m

e
(s

ec
)

ADKR-10^(-8)-wait
ADKR-10^(-10)-wait
adapted DXK+23
adapted DYX+22-ACSS

(d) Running time in a good case if
interpolations of PK shares skipped.

Figure 4: Performance in comparison with the state-of-the-art asynchronous protocols (in the WAN setting).

shares, instead of proceeding immediately after receiving
2 f +1 signatures. Here δ is set to 1 sec for n = 127 and 196,
and 2 sec for n = 256. We also adopted another good-case
optimization from [24], which attempts to wait for KEY mes-
sages from all parties during the key derivation phase. This
optimization can be applied to all of the protocols. We orga-
nized an additional set of experiments in Fig. 4d to compare
all protocols under this optimization.

Setup of test environment. Our experimental evaluations
include both wide-area network (WAN) and local evaluations.
All evaluations were conducted on Amazon’s EC2 c5.xlarge
instances, equipped with 4 virtual CPUs and 8GB of RAM.
In the WAN setting, the number n of nodes ranges from 127
to 256. The nodes were evenly distributed across 16 geo-
graphical regions on 5 continents. The local evaluation was
conducted on a single c5.xlarge instance, where we measured
all computation time for a single node during one execution.

6.2 Evaluations in Large-scale WAN

Running time. We presented the evaluation of the running
time of the ADKR protocols. For DYX+22, we did not mea-
sure the running time for node sizes greater than 127, as it
was clearly much slower than the other two protocols.

As shown in Figure 4a, our ADKR protocol demonstrated a
clear performance advantage than the other two protocols. For
n = 127, the running time of our ADKR protocol is reduced
by more than 90% compared to the adapted DYX+22-VE
and about 75% compared to the adapted DYX+22-ACSS.
For larger node sizes (n = 196 and 256), when the failure
probability is 10−8, the running time of our protocol is only
71.5% and 57.7% of that of adapted DXK+23, respectively.
Similarly, When the failure probability is 10−10, it is 78.8%
and 66.2% of that of adapted DXK+23, respectively.

Bandwidth usage. We evaluated the bandwidth usage of the
protocols by measuring the number of bytes sent by each
node during a single execution. As shown in Figure 4b, for
n = 127, our protocol (with p1 = 1− 10−8) consumes ap-
proximately 24.7% and 48.6% of the bandwidth used by the
adapted DYX+22-VE and adapted DYX+22-ACSS, respec-
tively. Similarly, with p2 = 1−10−10, our protocol uses about

26.2% and 51.5% of their bandwidth.
Our ADKR protocol maintains a linear growth in band-

width usage, while the adapted DXK+23 protocol exhibits
a quadratic growth trend.11 As the node scales increase
from 127 to 256, the bandwidth usage of our protocol with
p1 = 1− 10−8 is approximately 71.1% to 39.8% of that of
the adapted DXK+22. With p2 = 1− 10−10, it is 61.7% to
41.7% of that of the adapted DXK+22.

Running time under optimistic conditions. We also mea-
sured the running time of the protocols with optimizations
for some good cases, such as the network latency being small
and almost all honest parties being honest.

First, during the process of generating sharing transcript,
we introduced a waiting period of length δ in both our pro-
tocol and the adapted DYX+22-ACSS protocol to collect ad-
ditional signatures. This optimization significantly improved
performance, as shown in Figure 4c. Particularly, compared
to the adapted DXK+23 protocol, our protocol achieves a
running time reduction of 40% to 54% with p1 = 1−10−8,
for n =127-256 nodes. Similarly, with p2 = 1− 10−10, the
running time is reduced by 36.4% to 50.8%, for n =127-256.

In another good case where the interpolations of f̃ public
key shares are skipped, our performance advantage became
even more pronounced. As shown in Figure 4d, the running
time of our protocol is only about 18.2% and 18.8% of that
of the adapted DYX+22-ACSS, respectively, with p1 and p2.
When the number of nodes increases from 127 to 256, our
protocol is 41.4% to 68% faster than adapted DXK+23 with
p1, and 43.2% to 65.3% faster with p2.

6.3 Evaluations of Local Computing Cost
As shown in Figure 5, we also compared the local CPU time
for all evaluated protocols, in order to estimate the computing
cost under even larger network scales. This result aligns with
our computational complexity analysis, demonstrating that
our protocol exhibits linear growth, in contrast to the quadratic

11Careful readers may notice a discrepancy between the bandwidth usage
of the adapted DXK+23 protocol in our measurements and those reported
in [24]. This difference arises because [24] implemented RBC with a fast
path in a “very good case”, while we implemented RBC from [17] (which
has no good-case path but causes less communication in the bad case).

19

behavior observed in protocols adapted from classic ADKG.
Particularly, if the failure probability is 10−8, the computing
time of our design is 410.88 seconds for n = 2041, achieving
a reduction of 68.2% compared to that of DXK+23.

2000

200

400

600

800

1000

1200

1400

800 1000 1200 1400 1600 1800 2000
of nodes

Ru
nn

in
g

Ti
m

e
(s

ec
)

ADKR-10^(-10)-nowait
ADKR-10^(-8)-nowait
adapted DXK+23

adapted DYX+22-VE
adapted DYX+22-ACSS

Figure 5: Computation time (without PK interpolations).

7 Preliminary

Non-interactive Threshold Signature (TSIG). Given a (n, t)
threshold signature scheme among a set M := {Pi}i∈[n] of n
parties, each party Pi ∈M has a private function denoted by
SignShare(ski, ·) to produce its partial signature, and there are
also three public functions VerifyShare, Combine and Verify,
which can respectively verify the partial signature, combine
partial signatures into a full signature, and validate the full
signature. Note that t represents the reconstruction thresh-
old (i.e. at least t +1 valid partial signatures are required to
compute a valid full signature). Throughout the paper, we re-
quire a so-called high-threshold threshold scheme, requiring
t = n− f −1 where f is the maximal number of malicious par-
ties. More formally, a non-interactive (n, t)-threshold signa-
ture scheme TSIG consists of hereunder algorithms/protocols:

• TSIG.Setup(λ, t,n)→ (pk,sk). Given t, n and the cryp-
tographic security parameter λ, the algorithm/protocol
generates the public keys pk and a vector of secret key
shares sk= (s1, · · · ,sn), where pk is published and si is
exclusively obtained by Pi.

• TSIG.SignShare(si,m)→ ρi. On input a message m and
a secret key share si, this algorithm outputs a partial
signature share ρi for the message m.

• TSIG.VerifyShare(m,(i,ρi))→ 0/1. Given a message
m, a partial signature ρi and an index i (along with the
implicit input of public keys pk), this algorithm outputs
1 (accept) or 0 (reject).

• TSIG.Combine(m,{(i,ρi)}i∈S)→ σ/⊥. Given the im-
plicit input of public keys pk, a message m, and a set of
indexed partial signatures {(i,ρi)}i∈S with |S| > t and
S⊂M, this algorithm outputs a full signature σ for mes-
sage m (or a special symbol ⊥).

• TSIG.Verify(m,σ)→ 0/1. Given a message m and a
combined full signature σ (along with the implicit input

of public keys pk), this algorithms outputs 1 (accept) or
0 (reject).

We require a (n, t)-TSIG scheme to satisfy correctness,
robustness and unforgeability:

• Correctness. The partial signatures and full signatures
that are correctly computed can be verified.

• Robustness. Combining any t +1 valid partial signatures
(even if some of them are computed by the adversary)
produces a valid full signature, with all but negligible
probability.

• Unforgeability. The unforgeability can be defined by a
threshold and adaptive version of Existential UnForge-
ability under Chosen Message Attack game [47]. Intu-
itively, the unforgeability ensures that no P.P.T. adversary
A that corrupts f parties can produce a valid full sig-
nature except with negligible probability in λ, unless A
queries sufficient partial signatures from at least t− f +1
honest parties.

Instantiations. According to the granted setup, we choose
the best-performing instantiation of high-threshold signature:

• DKG setup (or a trusted dealer). In such scenarios, any
high-threshold signature scheme supported by the DKG
setup can be adopted. For instance, if the DKG setup is
for dLog over a pairing-friendly elliptic curve, the thresh-
old BLS signature scheme can be used. Noticeably, this
is the case of high-threshold ADKR, where the old com-
mittee participants indeed share an already-established
high-threshold cryptosystem.

• PKI setup only. In the case, we can adopt a thresh-
old signature scheme with silent setup. This could be
the case in a general ADKR problem, where the old
committee members do not have a granted DKG setup
for high-threshold signature, as their established thresh-
old cryptosystem has a “low” reconstruction threshold
t = f < n− f −1.

Threshold common coin (Coin). Given a (n, t)-threshold
common coin scheme among a set M := {Pi}i∈[n] of n parties,
each party Pi ∈M is provided with an interface Coin.Get(·)
to invoke the protocol with taking x ∈ {0,1}∗ as input, and
if t honest parties in M invoke the protocol with the same
input x, all honest parties will return the same random value
r ∈ {0,1}λ for x. We require a (n, t)-threshold Coin scheme
to satisfy termination, consistency and pseudorandomness,
with all but negligible probability:

• Termination. If t +1 honest parties invoke Coin.Get(x)
using the same input x, then any honest party invoking
Coin.Get(x) will obtain some output r from Coin.Get(x),
despite the influence of the adversary.

20

• Consistency. For any two honest parties, if they obtain r
and r′ from Coin.Get(x) respectively, then r = r′.

• Pseudorandomness. For any PPT adversary A who can
corrupt up to f parties, let view denote A’s view (i.e.
all internal states of corrupted parties and all protocol
messages that have been generated) before t − f hon-
est parties invoke Coin.Get(x), then |Pr[r′ = r : r ←
Coin.Get(x) and r′← A(view)]− 1

2λ
| ≤ ε(λ).

Instantiation. In the setting of ADKR, it is straightforward
to let the old committee participants leverage their established
threshold cryptosystem to implement Coin. For instance, if
the old committee’s threshold cryptosystem is based on dLog
over a pairing-friendly elliptic curve, Coin can be realized
from threshold BLS signature in the random oracle model.

Multi-valued validated asynchronous Byzantine agree-
ment (MVBA). In an MVBA protocol executed among a set
M of n parties, the honest participants reach an agreement
on an output v satisfying a predefined global predicate Q s.t.
Q(v) = 1. Particularly, an MVBA satisfies the next properties
of termination, agreement and external-validity, except with
negligible probability:

• Termination. If all honest parties in M input some values
satisfying Q, then all honest parties in M will output.

• Agreement. If any two honest parties in M output v and
v′, respectively, then v = v′;

• External-Validity: If an honest party in M outputs a value
v, then v is valid w.r.t. Q, i.e., Q(v) = 1.

Instantiation. For efficiency consideration, we instantiate
MVBA from Dumbo-MVBA [48] in the paper, since given
a high-threshold signature scheme established across M, the
construction can attain a communication cost of O(Ln+λn2)
where L represents the bit length of the input value, which
is necessary to make our ADKR design preserve a collective
quadratic communication overhead.

Verifiable encryption for Pedersen commitment. We in-
clude a full syntax of VE as follows.

• VE.Setup(1λ,Cm)→ ppVE. Input security parameter λ

and a commitment scheme Cm, the algorithm outputs
public parameter ppVE.

• VE.KeyGen(ppVE)→ ({ek},{dk}). Input public param-
eters, the algorithm outputs the encryption keys ek and
decryption keys dk of the encryption scheme.

• VE.EncAndProve(ppVE,ek,s,v,w) → (c,πVE).Input
message s, commitment v and witness w, where v,w←
Cm. COMMIT(s). The algorithm outputs the encryption
c of the tuple (s,π = Cm.Open(v,s,w)) and a correct
encryption NIZK proof πVE.

• VE.Dec(dk,c)→ s,π. Input the ciphertext c and a de-
cryption key dk, the algorithm outputs a decryption of c
using dk.

• VE.Verify(ppVE,ek,v,c,πVE) → 0/1. Input public pa-
rameters ppVE, encryption key ek, commitment v, ci-
phertext c and its proof πVE. If πVE is a valid
proof that α,π exist, and α,π = VE.Dec(dk,c) and
Cm.Verify(v,α,π) = 1, the algorithm outputs 1.

• VE.bEncProve(ppVE, I,{ek},s,v,w)→ (c,πVE). Input
a set I, a set of encryption keys ek, a vector s of mes-
sages, their commitments v, corresponding witness w,
the algorithm outputs encryptions c for each si ∈ s, along
with a NIZK proof πVE that satisfy VE.bVerify.

• VE.bVerify(ppVE, I,{ek},v,c,πVE) → 0/1. Input pa-
rameters ppVE, a set of encryption keys ek, commit-
ments v, encryptions c and a proof πVE the algorithm
outputs 1 if πVE is a valid proof that, for each i ∈ I
there exists (αi,πi) such that αi,πi = VE.Dec(dki,ci)
and PC.Verify(v,αi,πi) = 1.

A VE scheme satisfies the standard IND-CPA security. In
addition, in the random oracle model, it allows a simulator
(which can program random oracles) to simulate a proof πVE

without knowing the plaintext and encryption randomness.

Asynchronous provable dispersal. An asynchronous prov-
able dispersal broadcast (APDB) protocol (adapted from [48])
allows a designated sender to disperse a message to a set M
of parties, such that the dispersed message can be recovered
by the message’s designated receiving parties.

Syntactically, APDB consists of two phases—provable dis-
persal (PD) and recovery (RC):

• The PD phase is executed by a designated sender Ps and
a set of parties denoted by M. Here Ps inputs a messages
m, and aims to split the message into |M| encoded frag-
ments and disperses each fragment to the corresponding
party in M. From the PD phase, each party in M obtains
two outputs store and lock.

• The RC phase is executed by the parties in M and a set of
receiving parties denoted by M′. The honest parties in M
take store and lock as their input (if they have obtained
store and lock from the PD phase), and aim to help M′
to recover some common message.

An APDB protocol with identifier ID satisfies termination
and recast-ability, except with negligible probability:

• Termination. If the sender Ps is honest, then all honest
parties in M will output store and valid lock from PD in
a constant number of asynchronous rounds, where the
valid lock satisfies ValidateLock(ID, lock) = 1;

21

Algorithm 6 PD protocol, with identifier ID and sender Ps

/* Protocol for the sender Ps */
1: upon receiving the input value m do
2: {m j} j∈n← Enc(m), vc← VCom({m j})
3: for each j ∈ [M] do
4: π j ←Open(vc,m j, j)
5: let store := ⟨vc,m j, j,π j⟩
6: send STORE(ID,store) to P j

7: wait until |S|= 2 f +1
8: σPD← TSIG.Combine(⟨STORED, ID,vc⟩,S)
9: let lock := ⟨vc,σPD⟩ and multicast DISPERSAL(ID, lock) to all

Pi ∈M

10: upon receiving STORED(ID,ρ j) from P j for the first time do
11: if TSIG.VerifyShare(⟨STORED, ID,vc⟩,(j,ρ j)) = 1 then
12: S← S∪ (j,ρ j)

/* Protocol for each party Pi ∈M */
13: upon receiving STORE(ID,store) from sender Ps for the first time do
14: if ValidateStore(i,store) = 1 then
15: deliver store and parse store it as ⟨vc,mi, i,πi⟩
16: ρi← TSIG.SignShare(ski,⟨STORED, ID,vc⟩)
17: send STORED(ID,ρi) to Ps

18: upon receiving DISPERSAL(ID, lock) from Ps for the first time do
19: if ValidateLock(ID, lock) = 1 then
20: deliver lock

ValidateStore(i′,store):
21: parse store as: ⟨vc,mi, i,πi⟩
22: return VerifyOpen(vc,mi, i,πi)∧ i = i′

ValidateLock(ID, lock):
23: parse lock as: ⟨vc,σPD⟩
24: return TSIG.VerifyThld(⟨STORED, ID,vc⟩,σPD)

• Recast-ability. If all honest parties in M enter the RC
phase and at least one of them has received a valid lock
satisfying ValidateLock(ID, lock) = 1, then: (i) all hon-
est parties in M′ output some common value m′; (ii) if
the sender Ps dispersed m during the PD phase and was
not corrupted before f + 1 honest parties in M output
store, then m′ = m.

Instantiation. Throughout the paper, we adapt the APDB
protocol from [48] to realize APDB as illustrated in in Al-
gorithm 6 and Algorithm 7. The construction relies on a
high-threshold signature scheme across the parties M to pre-
serve low communication overhead. Noticeably, if we con-
sider the high-threshold ADKR problem, the old committee M
members already have high-threshold signature for granted;
even if we consider the ADKR problem where M has only
“low-threshold” setup, the APDB construction still can be
instantiated from high-threshold signature with silent setup.

8 Conclusion

We present an efficient ADKR protocol, reducing commu-
nication complexity from O(n3) to O(κn2) with preserving
adaptive security (where κ ≈ 30). Using a share-dispersal-
then-agree-and-recast paradigm and optimizations like (i)
linear-communication interactive PVSS generation and (ii)

Algorithm 7 RC protocol, with identifier ID for each party in
M and M′.

/* Protocol for each Pi ∈M */
1: upon receiving input store do
2: multicast RCSTORE(ID,store) to all parties in M′

/* Protocol for each party Pi ∈M′ */
3: upon receiving RCSTORE(ID,store) from sender P j ∈M do
4: if ValidateStore(i,store) = 1 then
5: parse store as: ⟨vc,m j, j,π j⟩
6: C[vc]← (C[vc]∪ (j,m j))
7: if |C[vc]|= f +1 then
8: v←Dec(C[vc])
9: if VCom(Enc(v)) = vc then

10: return v
11: else return ⊥

distributed PVSS verification, it achieves up to 40% latency
reduction in 256-node experiments. Additionally, the design
supports broader applications, including the first quadratic-
communication ADPSS protocol with adaptive security.

References

[1] Ittai Abraham, Renas Bacho, Julian Loss, and Gilad
Stern. Nearly quadratic asynchronous distributed key
generation. Cryptology ePrint Archive, Paper 2025/006,
2025.

[2] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah
Meiklejohn, and Gilad Stern. Bingo: Adaptivity and
asynchrony in verifiable secret sharing and distributed
key generation. In Annual International Cryptology
Conference, pages 39–70. Springer, 2023.

[3] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah
Meiklejohn, Gilad Stern, and Alin Tomescu. Reaching
consensus for asynchronous distributed key generation.
In Proceedings of the 2021 ACM Symposium on Princi-
ples of Distributed Computing, pages 363–373, 2021.

[4] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren,
and Maofan Yin. Sync hotstuff: Simple and practical
synchronous state machine replication. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 106–
118, 2020.

[5] Damiano Abram, Jack Doerner, Yuval Ishai, and Varun
Narayanan. Constant-round simulation-secure coin toss-
ing extension with guaranteed output. In EUROCRYPT
(5), volume 14655 of Lecture Notes in Computer Sci-
ence, pages 122–154. Springer, 2024.

[6] Renas Bacho, Christoph Lenzen, Julian Loss, Simon
Ochsenreither, and Dimitrios Papachristoudis. Grand-
line: Adaptively secure DKG and randomness beacon
with (almost) quadratic communication complexity. In
CCS. ACM, 2024.

22

[7] Renas Bacho and Julian Loss. On the adaptive security
of the threshold BLS signature scheme. In CCS, pages
193–207. ACM, 2022.

[8] Renas Bacho and Julian Loss. Adaptively secure (aggre-
gatable) pvss and application to distributed randomness
beacons. In CCS. ACM, 2023.

[9] Christian Badertscher, Peter Gazi, Aggelos Kiayias,
Alexander Russell, and Vassilis Zikas. Ouroboros gen-
esis: Composable proof-of-stake blockchains with dy-
namic availability. In CCS, pages 913–930. ACM, 2018.

[10] Akhil Bandarupalli, Adithya Bhat, Saurabh Bagchi,
Aniket Kate, and Michael K Reiter. Random beacons
in monte carlo: Efficient asynchronous random beacon
without threshold cryptography. In Proceedings of the
2024 on ACM SIGSAC Conference on Computer and
Communications Security, pages 2621–2635, 2024.

[11] Michael Ben-Or. Another advantage of free choice
(extended abstract) completely asynchronous agree-
ment protocols. In Proceedings of the second annual
ACM symposium on Principles of distributed computing,
pages 27–30, 1983.

[12] Alexandra Boldyreva. Threshold signatures, multisig-
natures and blind signatures based on the gap-diffie-
hellman-group signature scheme. In International Work-
shop on Public Key Cryptography, pages 31–46, 2002.

[13] Gabriel Bracha and Sam Toueg. Resilient consensus pro-
tocols. In Proceedings of the second annual ACM sym-
posium on Principles of distributed computing, pages
12–26, 1983.

[14] Christian Cachin, Klaus Kursawe, Anna Lysyanskaya,
and Reto Strobl. Asynchronous verifiable secret sharing
and proactive cryptosystems. In Proceedings of the 9th
ACM Conference on Computer and Communications
Security, pages 88–97, 2002.

[15] Christian Cachin, Klaus Kursawe, Frank Petzold, and
Victor Shoup. Secure and efficient asynchronous broad-
cast protocols. In Annual International Cryptology Con-
ference, pages 524–541, 2001.

[16] Christian Cachin, Klaus Kursawe, and Victor Shoup.
Random oracles in constantinople: Practical asyn-
chronous byzantine agreement using cryptography. vol-
ume 3, pages 219–246, 2005.

[17] Christian Cachin and Stefano Tessaro. Asynchronous
verifiable information dispersal. In Proc. SRDS 2005,
pages 191–201, 2005.

[18] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo
Krawczyk, and Tal Rabin. Adaptive security for thresh-
old cryptosystems. In CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 98–115. Springer,
1999.

[19] Ran Canetti and Tal Rabin. Fast asynchronous byzantine
agreement with optimal resilience. In Proceedings of
the twenty-fifth annual ACM symposium on Theory of
computing, pages 42–51, 1993.

[20] Ignacio Cascudo and Bernardo David. Scrape: Scalable
randomness attested by public entities. In International
Conference on Applied Cryptography and Network Se-
curity, pages 537–556. Springer, 2017.

[21] Arka Rai Choudhuri, Sanjam Garg, Julien Piet, and
Guru-Vamsi Policharla. Mempool privacy via batched
threshold encryption: Attacks and defenses. In 33rd
USENIX Security Symposium (USENIX Security 24),
2024.

[22] George Danezis, Lefteris Kokoris-Kogias, Alberto Son-
nino, and Alexander Spiegelman. Narwhal and tusk:
a dag-based mempool and efficient bft consensus. In
Proceedings of the Seventeenth European Conference
on Computer Systems, pages 34–50, 2022.

[23] Sourav Das, Philippe Camacho, Zhuolun Xiang, Javier
Nieto, Benedikt Bünz, and Ling Ren. Threshold signa-
tures from inner product argument: Succinct, weighted,
and multi-threshold. In Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications
Security, pages 356–370, 2023.

[24] Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias,
and Ling Ren. Practical asynchronous high-threshold
distributed key generation and distributed polynomial
sampling. In USENIX Security 2023, 2023.

[25] Sourav Das, Zhuolun Xiang, Alin Tomescu, Alexander
Spiegelman, Benny Pinkas, and Ling Ren. Verifiable
secret sharing simplified. In IEEE S&P 2025.

[26] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew
Miller, Lefteris Kokoris-Kogias, and Ling Ren. Practical
asynchronous distributed key generation. In IEEE S&P
2022, 2022.

[27] Hanwen Feng, Zhenliang Lu, and Qiang Tang. Dragon:
Decentralization at the cost of representation after arbi-
trary grouping and its applications to sub-cubic DKG
and interactive consistency. Cryptology ePrint Archive,
Paper 2024/168, 2024.

[28] Hanwen Feng, Zhenliang Lu, and Qiang Tang. Dragon:
Decentralization at the cost of representation after arbi-
trary grouping and its applications to sub-cubic DKG

23

and interactive consistency. In PODC, pages 469–479.
ACM, 2024.

[29] Hanwen Feng, Tiancheng Mai, and Qiang Tang. Scal-
able and adaptively secure any-trust distributed key gen-
eration and all-hands checkpointing. In Proceedings
of the 2024 on ACM SIGSAC Conference on Computer
and Communications Security, pages 2636–2650, 2024.

[30] Hanwen Feng and Qiang Tang. Asymptotically op-
timal adaptive asynchronous common coin and DKG
with silent setup. Cryptology ePrint Archive, Paper
2024/2098, 2024.

[31] Michael J Fischer, Nancy A Lynch, and Michael S Pa-
terson. Impossibility of distributed consensus with one
faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[32] Pierre-Alain Fouque and Jacques Stern. One round
threshold discrete-log key generation without private
channels. In Public Key Cryptography: 4th Interna-
tional Workshop on Practice and Theory in Public Key
Cryptosystems, PKC 2001 Cheju Island, Korea, Febru-
ary 13–15, 2001 Proceedings 4, pages 300–316, 2001.

[33] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing
Xu, and Zhenfeng Zhang. Efficient asynchronous byzan-
tine agreement without private setups. In 2022 IEEE
42nd International Conference on Distributed Comput-
ing Systems (ICDCS), pages 246–257, 2022.

[34] Sanjam Garg, Abhishek Jain, Pratyay Mukherjee, Ro-
hit Sinha, Mingyuan Wang, and Yinuo Zhang. hints:
Threshold signatures with silent setup. In 2024 IEEE
Symposium on Security and Privacy (SP), pages 3034–
3052. IEEE, 2024.

[35] Sanjam Garg, Dimitris Kolonelos, Guru-Vamsi
Policharla, and Mingyuan Wang. Threshold encryption
with silent setup. In Annual International Cryptology
Conference, pages 352–386. Springer, 2024.

[36] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk,
and Tal Rabin. Secure distributed key generation for
discrete-log based cryptosystems. J. Cryptol., 20(1):51–
83, 2007.

[37] Craig Gentry, Shai Halevi, and Vadim Lyubashevsky.
Practical non-interactive publicly verifiable secret shar-
ing with thousands of parties. In Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 458–487, 2022.

[38] Jens Groth. Non-interactive distributed key genera-
tion and key resharing. IACR Cryptol. ePrint Arch.,
2021:339, 2021.

[39] Jens Groth and Victor Shoup. Fast batched asyn-
chronous distributed key generation. In Annual Inter-
national Conference on the Theory and Applications
of Cryptographic Techniques, pages 370–400. Springer,
2024.

[40] Guy Golan Gueta, Ittai Abraham, Shelly Grossman,
Dahlia Malkhi, Benny Pinkas, Michael Reiter, Dragos-
Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft:
A scalable and decentralized trust infrastructure. In 2019
49th Annual IEEE/IFIP international conference on de-
pendable systems and networks (DSN), pages 568–580,
2019.

[41] Christoph Günther, Sourav Das, and Lefteris Kokoris-
Kogias. Practical asynchronous proactive secret sharing
and key refresh. IACR Cryptol. ePrint Arch., page 1586,
2022.

[42] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang,
Jing Xu, and Zhenfeng Zhang. Speeding dumbo: Push-
ing asynchronous bft closer to practice. Cryptology
ePrint Archive, 2022.

[43] Kobi Gurkan, Philipp Jovanovic, Mary Maller, Sarah
Meiklejohn, Gilad Stern, and Alin Tomescu. Aggregat-
able distributed key generation. In EUROCRYPT (1),
volume 12696 of Lecture Notes in Computer Science,
pages 147–176. Springer, 2021.

[44] Aniket Kate, Easwar Vivek Mangipudi, Pratyay Mukher-
jee, Hamza Saleem, and Sri Aravinda Krishnan Thya-
garajan. Non-interactive vss using class groups and
application to dkg. In Proceedings of the 2024 on ACM
SIGSAC Conference on Computer and Communications
Security, pages 4286–4300, 2024.

[45] Aniket Kate, Gregory M Zaverucha, and Ian Goldberg.
Constant-size commitments to polynomials and their
applications. In Advances in Cryptology-ASIACRYPT
2010: 16th International Conference on the Theory and
Application of Cryptology and Information Security, Sin-
gapore, December 5-9, 2010. Proceedings 16, pages
177–194, 2010.

[46] Eleftherios Kokoris Kogias, Dahlia Malkhi, and Alexan-
der Spiegelman. Asynchronous distributed key genera-
tion for computationally-secure randomness, consensus,
and threshold signatures. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1751–1767, 2020.

[47] Benoît Libert, Marc Joye, and Moti Yung. Born and
raised distributively: Fully distributed non-interactive
adaptively-secure threshold signatures with short shares.
In Proceedings of the 2014 ACM symposium on Princi-
ples of distributed computing, pages 303–312, 2014.

24

[48] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang.
Dumbo-mvba: Optimal multi-valued validated asyn-
chronous byzantine agreement, revisited. In Proceed-
ings of the 39th symposium on principles of distributed
computing, pages 129–138, 2020.

[49] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and
Dawn Song. The honey badger of bft protocols. In
Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pages 31–42,
2016.

[50] Torben P. Pedersen. Non-interactive and information-
theoretic secure verifiable secret sharing. In CRYPTO,
volume 576 of Lecture Notes in Computer Science,
pages 129–140. Springer, 1991.

[51] Tian Qiu and Qiang Tang. Predicate aggregate signa-
tures and applications. In International Conference on
the Theory and Application of Cryptology and Informa-
tion Security, pages 279–312. Springer, 2023.

[52] Maofan Yin, Dahlia Malkhi, Michael K Reiter,
Guy Golan Gueta, and Ittai Abraham. Hotstuff: Bft
consensus with linearity and responsiveness. In Pro-
ceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, pages 347–356, 2019.

[53] Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew
Miller. Long live the honey badger: Robust asyn-
chronous {DPSS} and its applications. In 32nd USENIX
Security Symposium (USENIX Security 23), pages 5413–
5430, 2023.

A Adpatively Secure ADKR with t = f

In this section, we demonstrate that when instantiating with
adaptively secure components our framework yields an adap-
tively secure ADKR protocol.

Definition: Oracle-Aided Algebraic Simulatability. The
adaptive security achieved by our protocol is termed oracle-
aided algebraic simulatability, introduced by Bacho and Loss
[7] to capture the adaptive security of many practical DKG
protocols. This notion is at least sufficient for instantiating the
key generation of the threshold BLS signature protocol. At
a high level, it ensures that all information accessible to the
adversary during protocol execution can be simulated by an
algebraic algorithm with access to a discrete logarithm oracle
DLg(·).

Formally, the termination property and key validity defined
in Sect.2 naturally extend to the adaptive setting. We recall
the secrecy definition from [7] below, originally defined for
DKG but applicable to DKR with minimal modifications.

Definition 2 (Oracle-aided Algebraic Simulatability). A pro-
tocol Π satisfies k-oracle-aided algebraic simulatability if

for every PPT adversary A adaptively corrupts at most f
parties in M and f parties in M̃, there exists a PPT simula-
tor S A which on input ζ = (gz1 , . . . ,gzk) ∈Gk, can query the
DLog oracle DLg(·) for at most k−1 times, and simulate an
execution of ΠDKG for A . In particular,
• Algebraic oracle queries: When S A queries DLg(·) with

a group element g′, it must provides the algebraic ex-
pression of g′ in the term of (g,gz1 , . . . ,gzk), i.e., a vec-
tor (â,a1, . . . ,ak) ∈ Fk+1 such that g′ = gâ

∏ j∈[k](gz j)a j .
The oracle will return a ∈ F s.t. g′ = ga.

• Indistinguishable simulation: Denote by viewA ,y,Π the
view of A in an execution of Π outputting pk = y. S A

can output simviewA and pk, such that (viewA ,y,Π,y) is
computationally indistinguishable with (simviewA , pk).

• Invertible simulatability martrix: Let gi denote the i-
th query by S to DLg(·). Let (âi,ai,1, . . . ,ai,k) be the
corresponding algebraic coefficients of gi, i.e., gi =
gâi ∏

k
j=1(g

z j)ai, j and set (â,a0,1, . . . ,a0,k) as the alge-
braic coefficients of pk. Then, the following matrix over
F is invertible

L :=


a0,1 a0,2 · · · a0,k

a1,1 a1,2 · · · a1,k

...
...

...

ak−1,1 ak−1,2 · · · ak−1,k

 .

A.1 Choices of Adaptively Secure PVSS

The protocol in Section 4 only achieves the static security
because the underlying PVSS scheme is static. On the other
hand, while there are a few candidates for adaptive and veri-
fiable ACSS, they come with certain limitations. We discuss
the choices in the following.

Adaptive PVSS with Group-Element Secrets. Bacho and
Loss [8] recently proved that a variant of the PVSS scheme
from [43] is secure against adaptive adversaries. However,
this PVSS scheme only deals with secrets in a pairing-friendly
ECC group, making it incompatible with major Dlog cryp-
tosystems that require secret keys in a scalar field like Zp.

On the other hand, Bacho et al. [6] presented a threshold
signature scheme with group-element secret keys and utilized
the PVSS scheme to construct a distributed key generation
(DKG) protocol for their threshold signature scheme.

In principle, instantiating our ADKR protocol with this
adaptive PVSS scheme could yield an ADKR protocol for
the threshold signature scheme in [6]. As summarized in [6],
the threshold signature scheme is secure as long as the public
and secret key shares are derived from an aggregated PVSS
transcript, which “is just an aggregation of several initially
sampled PVSS transcripts with contributions from at least
one honest party.” Our ADKR/ADKG protocol satisfies this

25

condition: the network recasts κ randomly sampled PVSS
transcripts, ensuring at least one is contributed by an honest
party except with negligible probability.

A formal security analysis of Bacho et al.’s threshold sig-
nature scheme [6] under our ADKR setup is left for future
work.

Signature-based PVSS with a privacy threshold of f . Al-
ternatively, if the application does not need a high threshold
of t = 2 f , we can employ an adaptive variant of the PVSS in
Algorithm 1 (also a variant of [25]), which supports a privacy
threshold of f .

Compared with Algorithm 1, we make the following
changes. First, since the secrecy goal has been relaxed to
oracle-aided algebraic simulatability, we can use more effi-
cient Feldman commitment, i.e., gs as a commitment to s.
Second, as the privacy threshold is just f , we do not need
to use a VE to encrypt the shares for parties who have not
returned their shares. Instead, we can just publish those shares.
This strategy is also used in [25] for better efficiency for the
“low” threshold case. For completeness, we include a descrip-
tion of the PVSS protocol in Algorithm 8.

Algorithm 8 A Variant of PVSS in [25]

Deal⟨Pd(ek,pk,s),M(ski)⟩ → ⟨Pd(transcript),M(si)⟩
// Code run by Dealer Pd

1: randomly sample a t-degree polynomial φ(·) where φ(0) is s.
2: compute v←{gφ(j)}P j∈M
3: for P j ∈M do
4: send SHARE(v j,φ(j))

5: upon receiving 2 f +1 valid signatures σ j for v j do
6: Let Σ be the valid signatures set
7: Let I be the indices of nodes with missing valid signatures
8: return transcript← (v,Σ,{φ(i)}i∈I)

// Code run by each Pi ∈M
9: upon receiving SHARE(v(j)

i ,s(j)
i) from P j do

10: if v(j)
i = gs(j)

i then
11: σi← Sign(ski,v

(j)
i)

12: send ACK(σi)

13: return s(j)
i

14: return ⊥

Verify(pk,transcript)→ 0/1
15: parse script as: (v,Σ,{(s(j)

z)}z∈I)
16: Check ∀σ j ∈ Σ is a valid signature for v j
17: Check DegCheck(v, t) = 1

18: Check v(j)
z = gs(j)

z for z ∈ I
19: if all the checks pass then
20: return 1
21: return 0

A.2 Instantiation and Analysis

In the following, we formally analyze the adaptive security
of our ADKR protocol when instantiating the PVSS with the
signature-based PVSS protocol described above.

Instantiation. For clarity, we specify the instantiations of our
adaptive ADKR/ADKG protocol. As outlined in Sect. 4, our
protocol is built upon an ACSS protocol (with verifiable tran-
scripts), Dumbo-MVBA [48], APDB, and a threshold com-
mon coin. Both Dumbo-MVBA and APDB rely on a non-
interactive high-threshold signature, which can be instantiated
with any adaptively secure threshold signature scheme with a
silent setup, such as [23, 34, 51].

The PVSS protocol is instantiated using the signature-
based construction described above. Note that the key deriva-
tion phase of our ADKR/ADKG protocol is tailored to the
underlying PVSS protocol. With the signature-based PVSS,
the key derivation phase is detailed in Algorithm 9.

Algorithm 9 KEY DERIVATION PHASE for the PVSS
scheme in Algorithm 8

Each Pi ∈ M̃ has obtained a set of verified ACSS transcripts
{script(ℓ)}ℓ∈T ∗ , and script(ℓ) can be parsed as (v(ℓ),Σ,(s(ℓ)j) j∈I)

1: zi← ∑ℓ∈T ∗ s(ℓ)i

2: tpk j ←∏ℓ∈T ∗ v(ℓ)j for all P j ∈ M̃

3: tpk= ∏ j∈[t] tpk
λ j
j , where λ j is the Lagrange coefficient.

4: return (tpk,(tpki)i∈[n],zi)

The underlying threshold common coin must be adaptive.
For the ADKR setting, it can be instantiated with an adap-
tively secure unique threshold signature scheme [7, 16]. In
the ADKG setting, it can be instantiated with an adaptively
secure quadratic-communication common coin protocol that
does not require a DKG setup, such as [30].

To achieve adaptive security, we assume memory erasures
[18], requiring each node Pi in the old committee to erase
its secrets as a PVSS dealer (e.g., the secret polynomial φ(i))
before invoking the dispersal protocol PD.

Adaptive Security Analysis. The termination property and
key validity against adaptive adversaries easily follow the
analysis presented in Lemma 4, Lemma 5, and Lemma 6. In
the following, we prove our protocol satisfies the oracle-aided
algebraic simulatability.

Lemma 11. When the underlying PVSS is the signature-
based PVSS in Algorithm 8, and the other underlying compo-
nents are adaptively secure, our ADKR protocol satisfies the
oracle-aided algebraic simulatability.

Proof. For any PPT adversary A , we can build a simulator
S A in the following. S A takes as inputs 2 f +1 random group
elements and can make up to 2 f queries to DLogg.

Notations: Let H be the set of so-far-honest nodes, and let C
be the set of all corrupted nodes.

Input: 2 f +1 random group elements ζ0, . . . ,ζ2 f .

Simulation: First, uniformly sample i∗← [n], which repre-
sents a node in the old committee

26

S A runs the protocol with A by acting on the behalf of all
so-far-honest nodes with the following strategy:
Simulating the Setup: It honestly generates all public
parameters and key pairs for all nodes in H

Simulating the sharing/dealing phase:

• On the behalf of all nodes in H ∩M except Pi∗ , it hon-
estly executes the protocol.

• On the behalf of Pi∗ , it computes v j = ∏z∈[0,2 f] ζ
jz
z for all

P j ∈ M̃. Then, for all P j ∈ C , it queries the DLog oracle
DLogg(·) with v j, and obtains a j such that A j = ga j . It
sends SHARE(v j,a j) to all Pj ∈ C ∩M̃, and sends (v j,⊥)
to all honest nodes in M̃.

Then, after receiving (2 f +1) valid signatures from dis-
tinct nodes in M̃ (the signature set is denoted as Σ), it
queries requires the DLog oracle DLogg(·) with v j for all
P j ∈ I (if v j has not been queried before), where {Pj} j∈I

is the set of f nodes in M̃ which have not returned the
signature. It obtains {a j} j∈I accordingly. Finally, it pre-
pares the script as (v,Σ,(a j) j∈I). After that, it executes
the protocol honestly on the behalf of Pi∗ .

• On the behalf of all nodes in H ∩M̃, it honestly executes
the protocol except that it directly returns the digital sig-
nature for vi∗ to Pi∗ ∈M without verifying the openings.

Simulating the consensus phase: On the behalf of all hon-
est nodes, it executes the protocol honestly. However, if
Coin.Get() returns T ′ such that i∗ /∈ T ′, it aborts the cur-
rent simulated execution, samples a new i∗← [n], rewinds A
to the beginning of the protocol, and restarts the simulation.
Simulating verification and key derivation: On the behalf of
all honest nodes, it executes the protocol honestly.
Handle Corruption: If Pi∗ is corrupted before Pi∗ is supposed
to erase its secret polynomial (say, at the time of inovking PD),
then S A aborts the current simulated execution, samples a
new i∗← [n], and rewinds A to the beginning of the protocol.
If P j ∈ M̃ is corrupted, it queries the DLog oracle DLogg(·)
with v j (if v j has not been queried before) and obtains a j ∈Zp.
It then returns all internal states of P j to the adversary, while
the secret share s(i

∗)
j from Pi∗ ∈M is set to be a j. In other

cases, it returns the internal states of the node to the adversary.
Termination: Upon an honest node terminates, it returns all
information available to A in the last simulated execution and
the public key outputted by honest nodes.

Now, we analyze the simulator satisfies the requirements
outlined in Def.2.
Running time of S A . First, we show that the expected running
time of S A is polynomial in the security parameters and n.
Note that S A may rewind the adversary A under certain condi-
tions and restart a new simulated execution until a successful

execution where an honest node can terminate. It it trivial to
check that each simulated execution takes polynomial time.
Thus, it is sufficient to show that S A only needs to rewind A
for polynomial many times in expectation.

Note that S A rewinds A when the randomly sampled Pi∗ is
either corrupted before Pi∗ invokes PD or not included in L∗.
Since the choice of i∗ is independent of the view of A before
rewinding, and A corrupts up to f nodes, the probability that
Pi∗ is not corrupted before the output of Coin.Get() is at
least n− f

n . Being included in L∗ means that i∗ is included in
the output of Dumbo-MVBA and then selected by Coin.Get(),
which, under the condition that Pi is not corrupted before the
output of Coin.Get(), happens with the probability of at least
κ

n . Therefore, the probability that a simulated execution does
not abort is at least κ(n− f)

n2 , and the expected time that S A

rewinds A is not greater than n2

κ(n− f) , which is polynomial in
n and the security parameters.
Indistinguishable simulation. It is easy to see that the view of
an adversary in the last simulated execution which does not
abort is identically distributed with its view in a real execution.
Algebraic oracle queries and invertible simulatability matrix:
S A needs to query the DLog oracle DLogg(·) for all A j, such
that P j ∈ M̃ is corrupted or does not respond its signature at
the time of generating transcript script. There are at most f
corrupted nodes and at most f nodes having not returned their
signatures. Thus, S A queries the oracle for at most 2 f times.

For each query A j, S A can provide its algebraic representa-
tion over (g,ζ0, . . . ,ζ2 f) as (0,1, j, j2, . . . , j2 f). Note that the
final public key tpk is computed as

∏
j∈[2 f+1]

tpk
λ j
j = ∏

j∈[2 f+1]
(∏
ℓ∈T ∗

v(ℓj))
λ j = ∏

ℓ∈T ∗
∏

j∈[2 f+1]
(v(ℓ)j)λ j .

Without loss of generality, we assume S A has queried the
oracle for 2 f times with {A j} j∈S, for S = j1, . . . , j2 f

We know that ∏ j∈[2 f+1](v
(i∗)
j)λ j = ζ0. For ℓ ̸= i∗,

the simulator S A can reconstruct the secret s(ℓ) such
that ∏ j∈[2 f+1](v

(ℓ)
j)λ j = gs(ℓ) . Therefore, S A can provide

the algebraic representation of tpk over (g,ζ0, . . . ,ζt) as
(∑ℓ∈L∗,ℓ̸=i∗ s(ℓ),1,0, . . . ,0).

Therefore, the simulatability matrix is as follows:

L :=


1 0 · · · 0

1 j1 · · · j2 f
1

...
...

...

1 j2 f · · · j2 f
2 f

 .

It is easy to verify the above matrix is invertible.

27

	Introduction
	Limits of Existing Approaches
	Our Contribution
	Other Related Works

	Problem Formulation and Building Blocks
	Challenges and Techniques
	Efficient Asynchronous Distributed Key Reconfiguration Protocol
	PVSS with Interactive Dealing
	Our ADKR Protocol
	Analysis

	Application to Asynchronous Dynamic Proactive Secret Sharing
	A generic construction of ADPSS using DCRG yurek2023long
	Our quadratic-communication DCRG
	Analysis

	Implementation and Evaluations
	Instantiations and Test Environment
	Evaluations in Large-scale WAN
	Evaluations of Local Computing Cost

	Preliminary
	Conclusion
	Adpatively Secure ADKR with t = f
	Choices of Adaptively Secure PVSS
	Instantiation and Analysis

