
Efficient algorithms for the detection of
(N,N)-splittings and endomorphisms

Maria Corte-Real Santos1[0000−0003−2651−8951]∗, Craig
Costello2[0000−0001−5423−7714], and Sam Frengley3[0000−0002−8904−6253]†

1 ENS de Lyon, CNRS, UMPA, UMR 5669, Lyon, France
maria.corte real santos@ens-lyon.fr
2 Queensland University of Technology

craig.costello@qut.edu.au
3 University of Bristol, Bristol, UK

sam.frengley@bristol.ac.uk

Abstract. We develop an efficient algorithm to detect whether a su-
perspecial genus 2 Jacobian is optimally (N,N)-split for each integer
N ≤ 11. Incorporating this algorithm into the best-known attack against
the superspecial isogeny problem in dimension 2 (due to Costello and
Smith) gives rise to significant cryptanalytic improvements. Our imple-
mentation shows that when the underlying prime p is 100 bits, the attack
is sped up by a factor of 25; when the underlying prime is 200 bits, the
attack is sped up by a factor of 42; and, when the underlying prime is
1000 bits, the attack is sped up by a factor of 160. Furthermore, we de-
scribe a more general algorithm to find endomorphisms of superspecial
genus 2 Jacobians.

Keywords: Isogeny-based cryptography, genus 2, superspecial, crypt-
analysis.

This article is an extended version of [14] in which we additionally present
an algorithm to detect superspecial Jacobians that have real multiplication
by a maximal order in a real quadratic field using similar techniques.

1 Introduction

Let C and C ′ be genus 2 curves with superspecial Jacobians. The general di-
mension 2 superspecial isogeny problem asks us to find an isogeny

ϕ : JC → JC′ ,

∗Parts of this work were supported by the UK EPSRC grant EP/S022503/1, and
the European Research Council under grant No. 101116169 (AGATHA CRYPTY).

†Funded by the Woolf Fisher and Cambridge Trusts and by Céline Maistret’s Royal
Society Dorothy Hodgkin Fellowship.

of principally polarised (p.p.) abelian surfaces, where JC and JC′ are the Jaco-
bians of C and C ′ respectively.

We say that the Jacobian JC of a genus 2 curve C is split (over K) if there
exists a separable (polarised) K-isogeny of p.p. abelian surfaces JC → E1 × E2

where E1/K and E2/K are elliptic curves.
The best known algorithm for solving the superspecial isogeny problem is

due to Costello and Smith [16]. It consists of two stages. The first stage com-
putes pseudorandom walks away from the two input Jacobians to find paths
to products of two supersingular elliptic curves, i.e., φ : JC → E1 × E2 and
φ′ : JC′ → E′

1 ×E′
2. Assuming the pseudorandom walks quickly converge to the

uniform distribution, the first stage runs in Õ(p) classical bit operations, since
the proportion of superspecial abelian surfaces that are isomorphic to a product
of elliptic curves is O(1/p). The second stage calls the Õ(p1/2) Delfs-Galbraith
algorithm [19] to find paths between E1 and E′

1 and between E2 and E′
2. These

are then glued together to obtain the path π : E1 × E2 → E′
1 × E′

2 connecting

φ and φ′ in order to output the full solution ϕ := φ̂′ ◦ π ◦ φ. It follows that the
entire algorithm runs in Õ(p) classical bit operations on average, with the cost
dominated by the first step: finding paths to products of elliptic curves.

Isogeny-based cryptography in dimension 2. The product-finding algo-
rithm [16] that we accelerate in this work solves the general superspecial isogeny
problem, which underlies the security of various isogeny-based protocols in di-
mension 2. An example of such a scheme is the dimension 2 analogue of the
Charles-Goren-Lauter hash function [12], which was proposed by Takashima [66]
and later extended by Castryck, Decru and Smith [10].

The 2022 breaks of SIDH and SIKE [9,51,57] revealed that understanding
higher dimensional isogenies is essential to navigate the isogeny graphs in dimen-
sion 1. More recently, there has been a line of works leveraging the techniques
used in the attacks to propose new cryptosystems that exploit isogeny compu-
tations in higher dimensions [18,1,13]. Although the hard problems underlying
these schemes are not directly impacted by the algorithm that is optimised in this
paper, we believe the trend towards instantiating schemes in higher dimensions
will only make the dimension 2 supersingular isogeny problem more relevant to
practitioners as the field of isogeny-based cryptography continues to mature.

Based on the present knowledge of attacks in dimension 2, we believe it
is reasonable to speculate that the complexity of the product-finding algorithm
may eventually be used as an upper-bound on the classical hardness of attacking
many schemes that are currently conceivable, even when the underlying instances
of the isogeny problem are special cases of its general formulation (provided no
superior algorithm for the special problem is found, of course). For example,
consider the dimension 2 analogue of the Sigma protocol that proves knowledge
of an isogeny of a specified degree (see [24] for the latest on this protocol). In
dimension 1, the best known classical attack on this protocol is the van Oorschot–
Wiener (vOW) meet-in-the-middle algorithm [69]. In dimension 2, however, the

Õ(p) product-finding algorithm will solve the general problem at least as fast

as the van Oorschot–Wiener meet-in-the-middle algorithm [69], and is likely to
become the preferred algorithm4 for large enough p.

Computing endomorphisms. Finding endomorphisms of supersingular ellip-
tic curves is closely linked to solving the supersingular isogeny problem. Indeed,
Wesolowski showed that the problem of finding an isogeny between a pair of
supersingular elliptic curves E/Fp2 and E′/Fp2 is equivalent (under reductions
of polynomial expected time, assuming the generalised Riemann hypothesis)
to the problem of computing their endomorphism rings [71]. Recent work by
Wesolowski and Page further showed that access to an oracle that returns a
single non-trivial endomorphism ϕ ∈ End(E) corresponding to a given supersin-
gular curve E is sufficient to solve the supersingular isogeny problem [55].

It is therefore natural to ask whether an analogous equivalence occurs beyond
the case of elliptic curves and, in particular, in the case of dimension 2. As it
currently stands, however, the literature on algorithms for computing the endo-
morphism ring of superspecial p.p. abelian surfaces is limited. To our knowledge,
there is not yet a well-established algorithm for this computation (let alone a
mature complexity analysis). In the ordinary case several such algorithms have
been studied [30], [37, §6.1], [65].

Nevertheless, we expect that a connection between the hardness of the endo-
morphism ring and isogeny problems in dimension 2 is likely to exist. In partic-
ular, developing an efficient algorithm for computing the endomorphism ring of
a superspecial p.p. abelian surface is an important open problem for furnishing
the security picture of higher-dimensional isogeny-based cryptography. The new
routine we present in Section 7 can be viewed as a small step in this direction,
since its termination gives partial information about the corresponding endomor-
phism ring – it returns a real multiplication (RM) subfield of the endomorphism
algebra. More strongly, we note that a p.p. abelian surface A having RM by the
“degenerate” quadratic algebra ON2 of discriminant N2 is the same as A being
(N,N)-split (see [46, §2]). The Costello–Smith algorithm shows that this is the
bottleneck step in solving the isogeny problem in dimension 2, and it is therefore
natural to ask:

Question 1. Can the detection of an RM action by an order OD of (small) dis-
criminant D > 0 be realised as the bottleneck towards solving the isogeny prob-
lem in dimension 2?

Note that for sufficiently large discriminants D (with respect to p) such an
action is guarenteed to exist [36, Theorem 2.4] (this is conditional, see [36, Re-
mark 2.6]). For further discussion on the role of real multiplication in the isogeny

4For a fixed memory bound w and single processor, taking n = p3/4 [29, §4.1]
in [69, Equation 4] gives an asymptotic runtime of O(p9/8) on a single core. Moreover,
parallel processors running vOW must read from, and write to, the huge central storage
database (which hampers parallel performance in practice), while product-finding is
memory-free and parallelises perfectly.

graph of superspecial p.p. abelian surfaces, the reader is encouraged to con-
sult [11] and [35, Section 6.2].

We note that the runtime complexity of the algorithm SplEndid described
in Remark 10 is unknown and that the analysis we present in this paper is
entirely emperical. Our intention in Section 7 is not only to show that our original
algorithm in [14] can be extended to more general endomorphisms, but also to
use this generalised algorithm to produce numerical data (see Section 8.2) that
prompts a number of interesting but unresolved questions in dimension 2.

Contributions. We begin with an implementation of the algorithm described
above for finding paths to products of elliptic curves. This includes a streamlined
version of the Takashima–Yoshida algorithm [67, §5.5] for computing chains of
Richelot isogenies. With this optimised algorithm, we provide a toolbox for ex-
ploring the (2, 2)-isogeny graph. The expansion properties of the (2, 2)-isogeny
graph are not well understood, and our implementation is well suited to explor-
ing this. For example, one could hope to provide evidence towards [27, Conj.
4.10]. Understanding the expansion properties of this graph is crucial to gaining
a deeper insight into the hardness of the general isogeny problem in dimension
2.

This lays the foundation for the main contribution of this work: a new algo-
rithm that speeds up the search for paths to products of elliptic curves. At the
heart of our algorithm is the work of Kumar [46], who gives explicit parametri-
sations of the moduli space of genus 2 curves whose Jacobians are split by an
(N,N)-isogeny. When we step to a new node in the Richelot isogeny graph, these
parametrisations allow us to efficiently test whether any of the (N,N)-isogenous
neighbours are isomorphic to a product of supersingular elliptic curves with-
out computing any expensive (N,N)-isogenies. For example, over a field whose
characteristic is a 100-bit prime, an optimised Richelot isogeny (see Section 3)
requires 1176 Fp-multiplications. This is the cost of taking a single step in the
Richelot isogeny graph, which reveals only one neighbour and is thus the per-
node cost of running the attack described in [16]. However, using the new algo-
rithm we describe in Section 5 with N = 3, we are able to test whether any of
the (3, 3)-isogenous neighbours are split with a total of 767 Fp-multiplications.
Since there are 40 such neighbours, the per-node cost of simultaneously searching
these neighbours is less than 20 Fp-multiplications each. The upshot is that when
attacking an instance of the superspecial isogeny problem, we can sift through
a larger proportion of superspecial Jacobians per unit time, thus reaching an
elliptic curve product with fewer Fp-multiplications.

Motivated by the close relationship between the supersingular isogeny prob-
lem and the problem of finding endomorphisms in the case of elliptic curves, in
Section 7 we briefly turn to the problem of finding endomorphisms on super-
special Jacobians of genus 2 curves. We present an algorithm that finds certain
types of endomorphisms of small degree in the superspecial isogeny graph. More
precisely, leveraging the work by Elkies and Kumar [23], the methods developed

for splitting detection can be repurposed to develop an algorithm that detects
whether the input Jacobian has real multiplication by a quadratic order.

In Section 8 we present the results of experiments conducted on our accel-
erated product-finding algorithm, as well as our endomorphism detection algo-
rithm. For the product-finding algorithm, we report on a number of experiments
conducted over both small primes (where instances of the superspecial isogeny
problem can be solved) and large primes of cryptographic size. Applying our
accelerated algorithm to find paths to elliptic products when p = 231 − 1, we
solve 10 instances of the problem using an average of 233.0 multiplications in Fp

for an average wall time of 216.3 seconds. Our optimised version of the original
algorithm from [16] requires an average of 236.8 multiplications in Fp for an av-
erage runtime of 220.5 seconds to solve the same 10 instances. In Table 1 we give
a snapshot of the improvements that were observed in our implementation for
a number of large primes of varying bitlength. We see that the relative speedup
improves as the prime p grows in size (see Section 8 for more details).

Walks in Γ2(2; p) Walks in Γ2(2; p)

without additional searching w. split searching in Γ2(N ; p)

[16] (optimised in Section 3) This work

p Fp-mults. set Fp-mults. improv.

(bits) per node N ∈ {. . . } per node factor

50 579 {2, 3} 35 16.5x

100 1176 {2, 3} 48 24.5x

150 1575 {3, 4} 54 29.2x

...
...

...
...

...

950 9772 {4, 6} 69 141.6x

1000 11346 {4, 6} 71 159.8x

Table 1. An abbreviated version of Table 6. See Section 8 for further explanation.

Indeed, for primes of at least 150 bits, we argue in Section 6.3 that (heuris-
tically) Algorithm 4 requires an expected number of(

14 log2(p) + 34490

5 · 664

)
p+O(log2(p))

Fp-multiplications before encountering a product of elliptic curves. Under the
same heuristics, our optimised version of the algorithm in [16] would require a

larger expected
(

12 log2(p)+129
5

)
p+O(log2(p)) Fp-multiplications.

Let D be a fundamental discriminant and let OD be the maximal order in
Q(
√
D). In Section 8.2 we report on experiments in which we use our endomor-

phism detection algorithm to study the distribution of superspecial p.p. abelian
surfaces in the (2, 2)-isogeny graph with OD ⊂ End(A) (or more precisely the
Rosati fixed space, see Section 2) for p up to 23 bits. We compare this to a
heuristic given by Florit–Smith [27] for split nodes occurring in random walks
in the (2, 2)-isogeny graph.

All the source code accompanying this paper is written in Magma [3] and can
be found at

https://github.com/mariascrs/SplitSearcher.

Finally, we note that our algorithm for detecting (N,N)-splittings may be of
interest outside of our target application of the dimension 2 superspecial isogeny
problem. For example, it answers a question posed by Castryck and Decru [9,
§11] for N ≤ 11.

Related work. At a high level, our improvements to the dimension 2 super-
special isogeny attack can be viewed as an analogue of those recently given by
Corte-Real Santos, Costello and Shi [15] to the Delfs–Galbraith attack [19] in
dimension 1. Indeed, both attacks use random walks to find special nodes in
the graph to reduce the (remainder of the) algorithm to a comparatively easier
isogeny problem: the special nodes in the Delfs–Galbraith algorithm are the iso-
morphism classes of elliptic curves defined over Fp, while the special nodes in
the Costello–Smith algorithm are the isomorphism classes of products of elliptic
curves. The key to the improvements in [15] was an efficient method for deter-
mining whether modular polynomials have subfield roots without computing any
such roots explicitly. This allows many nodes to be simultaneously searched over
without being visited by means of expensive isogeny computations. The key to
the improvements in this paper stem from Kumar’s parametrisations of the mod-
uli space of genus 2 curves whose Jacobians are split by an (N,N)-isogeny [46].
In a similar vein to [15], we show that these can be used to simultaneously search
over many neighbours without visiting the corresponding nodes in the isogeny
walks.

It is worth noting that, relatively speaking, the improvements found in this
work are significantly larger than the improvements reported in [15] in the dimen-
sion 1 case. At first glance of Section 5, it seems our batch (N,N)-split searching
requires a lot more computation than the analogous batch N -isogenous subfield
curve searching in [15]. However, in dimension 2 we are processing O(N3) neigh-
bours simultaneously (see Equation (1)), while the subfield search in dimension 1
is batch testing O(N) neighbours each time. For primes of size 50 to 800 bits, [15,
Table 6] report speedups ranging from 3.2× to 17.6×, while the speedups we
found for primes of these same sizes (see Table 6) range from 16.5× to 116.3×.

Outline. After giving the necessary background in Section 2, we detail our op-
timised version of the original Γ2(2; p) walk from [16] in Section 3. In Section 4
we recall standard results concerning moduli spaces for genus 2 curves with split

https://github.com/mariascrs/SplitSearcher

Jacobians and Kumar’s formulae [46]. In Section 5 we present the main contribu-
tion of this work: an efficient algorithm to detect (N,N)-splittings. We give the
full algorithm and discuss our implementation in Section 6. Using the methods
developed in the previous two sections, in Section 7 we present our algorithm for
efficient endomorphism detection. Finally, we present the experimental results in
Section 8 before we conclude by mentioning some possible avenues for improving
the algorithm.

2 Background

We give a brief account of abelian surfaces and fix notation. Readers looking for
an in-depth discussion of higher dimensional abelian varieties and their appli-
cation in isogeny based cryptography are encouraged to consult [10], [16], and
[29].

Let A be an abelian surface (i.e., an abelian variety of dimension 2) defined

over a field K and write Â for the dual abelian variety. A pair (A, λ) is said to

be a polarised abelian surface if λ : A→ Â is an isogeny (i.e., a surjective finite
morphism of group varieties). We say that (A, λ) is principally polarised (p.p.)
if λ is an isomorphism.

If C/K is a smooth projective curve we write JC/K for the Jacobian of C,
the abelian variety whose points parametrise degree zero divisors on C up to
linear equivalence. Throughout the article we will suppress the implicit choice
of (principal) polarisation on A. In particular, when A = JC is the Jacobian of
a (smooth projective) curve then A is equipped with the (canonical) principal
polarisation arising from the theta divisor and when A = E1 × E2 is a product
of elliptic curves then A is equipped with the product polarisation.

Let (A, λ) and (A′, λ′) be p.p. abelian surfaces. An isogeny ϕ : A→ A′ is said
to be an isogeny of p.p. abelian surfaces if there exists an integer m ≥ 1 such
that ϕ̂ ◦ λ′ ◦ ϕ = [m]λ. If N ≥ 2 is an integer coprime to the characteristic of K,

then for any abelian variety A we have the N -Weil pairing A[N]× Â[N]→ µN .
When A is equipped with a principal polarisation this gives rise to the N -Weil
pairing

eN : A[N]×A[N]→ µN .

We say that a subgroup G ⊆ A[N] is isotropic (with respect to the N -Weil
pairing) if eN (P,Q) = 1 for all P,Q ∈ G. We say G is maximal isotropic if
moreover there is no isotropic subgroup G′ with G ⊊ G′ ⊆ A[N].

Given a maximal isotropic subgroupG ⊆ A[N], the abelian surface A′ = A/G
comes equipped with a principal polarisation λ′ such that ϕ : A → A′ is an
isogeny of p.p. abelian surfaces and ϕ∗λ′ = [m]λ for some integer m. We say
that a subgroup G ⊆ A[N] is an (N,N)-subgroup if it is maximal isotropic
(with respect to eN) and isomorphic (as an abstract group) to (Z/NZ)2. In this
case we say that ϕ is an (N,N)-isogeny. The number of (N,N)-subgroups of

A[N] is equal to

DN := N3
∏

primes
ℓ|N

1

ℓ3
(ℓ+ 1)(ℓ2 + 1). (1)

In particular, when N is prime we have DN = (N2 + 1)(N + 1). See e.g., [8,
Lemma 2] (see also [16, Lemma 2] and [29, Proposition 3(2)] when N is a prime
or prime power, respectively).

Let (A, λ) be a p.p. abelian surface and let End(A) denote the endomorphism
ring of A. The principal polarisation λ induces an involution on End(A) known

as the Rosati involution via ϕ 7→ ϕ† = λ−1 ◦ ϕ̂ ◦ λ. We write End†(A) for the
subring of End(A) consisting of endomorphisms which are fixed by the Rosati
involution.

We say that a positive integer D is a discriminant if D ≡ 0, 1 (mod 4). Let
OD be the quadratic ring of discriminant D. That is, if D is not a square then
OD ⊂ Q(

√
D) is the order of discriminant D, and if D = N2 then we have

ON2 ∼= {(a, b) ∈ Z2 : a ≡ b (mod N)}. We say that a p.p. abelian surface A has
real multiplication by OD (or RM by OD for short) if there exists an embedding
ι : OD ↪→ End†(A). Note that if D = N2 and JC is the Jacobian of a genus 2
curve, then JC having RM by OD is equivalent to being (N,N)-isogenous to a
product of elliptic curves (see [46, §2] or Lemma 1).

2.1 Superspecial abelian surfaces

As discussed by Castryck, Decru, and Smith [10, §2], for cryptographic applica-
tions the most natural generalisation of the set of supersingular elliptic curves
to dimension 2 is the set of superspecial p.p. abelian surfaces.

Definition 1. We say a p.p. abelian surface A/Fp is supersingular if the New-
ton polygon of A is a line of slope 1

2 . We say A is superspecial if the Hasse-Witt
matrix M ∈ F2×2

p vanishes identically.

If A is superspecial, then it is supersingular. The converse is not necessarily true
when dim(A) ≥ 2. The condition for superspeciality is a natural generalisation
of the fact that when p > 3 an elliptic curve is supersingular if and only if it
has trace of Frobenius congruent to 0 modulo p. An alternative characterisa-
tion is that A is isomorphic (as an abstract abelian variety) to a product of
supersingular elliptic curves.

It can be shown that every superspecial p.p. abelian surface A/Fp is Fp-
isomorphic (as a p.p. abelian variety) to a p.p. abelian surface defined over Fp2

(see [39, Theorem 1]) and moreover this abelian surface may be chosen to have
full Fp2-rational 2-torsion when p is odd (see [10, §2]).

The dimension 2 superspecial isogeny problem may be stated precisely as:

Problem 1 (Dimension 2 superspecial isogeny problem). Given a pair of su-
perspecial p.p. abelian surfaces A and A′ defined over Fp2 , find an Fp-isogeny
A→ A′.

2.2 The superspecial isogeny graph

We now describe the superspecial isogeny graph, and re-frame Problem 1 as a
path finding problem.

Let S2(p) denote the set of Fp-isomorphism classes of superspecial p.p. abelian
surfaces. Since every superspecial p.p. abelian surface admits a model over Fp2 ,
the set S2(p) is finite. In fact, it can be shown that it has size O(p3) [10, The-
orem 1]. For each integer N coprime to p, we define Γ2(N ; p) as the directed
weighted multigraph on vertex set S2(p), whose edges are Fp-isomorphism classes
of (N,N)-isogenies (weighted by the number of distinct kernels yielding isoge-
nies in the class). The graph Γ2(N ; p) is DN -regular, where DN is given by
Equation (1) (taking into account multiplicities of each edge).

Though primitives constructed using superspecial p.p. abelian surfaces, such
as the Castryck–Decru–Smith hash function [10], assume the rapid convergence
of random walks in the graphs Γ2(N ; p) to the uniform distribution, it is im-
portant to note that these expansion properties are not well understood. The
superspecial isogeny graph is connected (see e.g., [54,43]), however, as discussed
by Florit and Smith [27, §4.3], the graphs Γ2(N ; p) do not fit into the definition
of an expander graph as they are directed multigraphs. However, one can still
obtain upper bounds on the eigenvalues of these graphs to determine whether
Γ2(N ; p) is Ramanujan, i.e, has optimal expansion. Jordan–Zaytman [43] give
the first counterexample: Γ2(2; 11) is not Ramanujan. Florit–Smith provide evi-
dence that the same behaviour occurs for Γ2(2; p) where 11 ≤ p ≤ 201, therefore
suggesting that the superspecial (2, 2)-isogeny graph fails to be Ramanujan [27,
Appendix A]. It would also be interesting to study the expansion properties of
Γ2(N ; p) for N > 2. Despite the lack of optimal expansion, Florit–Smith con-
jecture [27, Conjecture 4.10] that Γ2(N ; p) still has good enough expansion for
cryptographic purposes.

Every p.p. abelian surface is isomorphic to either the Jacobian of a curve of
genus 2, or to a product of two elliptic curves with the product polarisation. In
the latter case, if the abelian surface is superspecial, then the elliptic curves will
be supersingular. Therefore, S2(p) is equal to the disjoint union of the following
two sets:

J2(p) := {A ∈ S2(p) : A ∼= JC for some genus 2 curve C} and
E2(p) := {A ∈ S2(p) : A ∼= E1 × E2 for some E1, E2 ∈ S1(p)},

where the isomorphisms are of p.p. abelian varieties over Fp. It can be shown that
#J2(p) = 1

2880p
3 + O(p2) and #E2(p) = 1

288p
2 + O(p) (combine [64, Theorem

V.4.1(c)] with [4, Theorem 3.10(b)] or [40, Theorem 3.3], see [10, Theorem 1] for
details). In particular #E2(p)/#S2(p) = 10/p+O(1/p2).

Important to our work will be the ratio of nodes A ∈ E2(p) to nodes visited
while performing a random walk on Γ2(N ; p). A natural first guess would be that
this ratio matches the proportion of such nodes in the entire graph, i.e., ∼ 10/p.
However, Florit–Smith show that all but O(p) of the products of elliptic curves
have reduced automorphism group of order 2, and deduce that the expected
proportion of products in a random walk is ∼ 1

2 ·
10
p = 5

p [27, §6.2].

As in the dimension 1 case, we can view the dimension 2 isogeny problem as
a path finding problem in the superspecial isogeny graph.

Problem 2. Given superspecial p.p. abelian surfaces A and A′ defined over Fp2 ,
find a walk in Γ2(N ; p) connecting them (when p ∤ N).

2.3 Attacking the general isogeny problem in dimension 2

The best known algorithm for solving Problem 2 exploits the properties of the
subset E2(p) ⊆ S2(p) and is depicted in Algorithm 1. Given two (Fp-isomorphism
classes of) p.p. abelian surfaces A and A′ ∈ J2(p), Steps 1 and 2 find paths
φ : A → E1 × E2 and φ′ : A′ → E′

1 × E′
2, where both E1 × E2 ∈ E2(p) and

E′
1×E′

2 ∈ E2(p). As #J2(p) = O(p3) and #E2(p) = O(p2), we expect to complete

both of these steps using Õ(p) operations in Fp. Steps 3 and 4 then solve the
dimension 1 isogeny problem on input of E1 and E′

1 and on input of E2 and
E′

2 to output the paths ψ1 : E1 → E′
1 and ψ2 : E2 → E′

2 in the supersingular
elliptic curve N -isogeny graph. Both of these steps terminate using on average
Õ(
√
p) operations in Fp [19]. If length(ψ1) ≡ length(ψ2) mod 2, we can use these

to construct a product path π : E1×E2 → E′
1×E′

2, as described in [16, Lemma

3]. The desired path between A and A′ is then ϕ := φ̂′ ◦π ◦φ.5 Overall, the cost

of the algorithm is Õ(p) bit operations.
For the rest of this paper we focus on improving the concrete complexity

of Steps 1 and 2 of this attack, i.e., on finding paths to the product surfaces,
since this is the bottleneck step that determines the concrete complexity of
Algorithm 1.

Algorithm 1 Computing isogeny paths in Γ2(N ; p) [16]

Input: A and A′ in S2(p)
Output: A path ϕ : A→ A′ in Γ2(N ; p)

1: Find a path φ from A to some E1 × E2 in E2(p)
2: Find a path φ′ from A′ to some E′

1 × E′
2 in E2(p)

3: Find a path ψ1 : E1 → E′
1 using (elliptic curve) path finding

4: Find a path ψ2 : E2 → E′
2 using (elliptic curve) path finding

5: if length(ψ1) ̸≡ length(ψ2) (mod2) then
6: return ⊥
7: else
8: Construct a path π : E1 × E2 → E′

1 × E′
2 using ψ1, ψ2 as in [16, Lemma 3]

9: return the path ϕ := φ̂′ ◦ π ◦ φ from A to A′

5If length(ψ1) ̸≡ length(ψ2) mod 2, we fail and return ⊥. Note, however, only three
runs of Algorithm 1 are required to successfully return path ϕ. Indeed, if we instead
run Algorithm 1 to find paths ψ1 : E1 → E′

1, ψ2,1 : E2 → E, and ψ2,2 : E → E′
2, where

E : y2 = x3+x has an endomorphism of degree 2, say τ , then we can set ψ2 = ψ2,2◦ψ2,1

if length(ψ1) ≡ length(ψ2,1 ◦ ψ2,2) mod 2 and ψ2 = ψ2,2 ◦ τ ◦ ψ2,1, otherwise.

Applications to cryptanalysis. In the security analysis of their hash func-
tion [10], Castryck–Decru–Smith correctly argue that, since the steps taken by
their hash function correspond entirely to “good extensions” (see Section 3.2),
the path returned by [16, Algorithm 1] (which does not only consist of good
extensions) is therefore not a valid preimage [10, Footnote 11]. However, more
recent work by Florit and Smith [27, §6.2 - 6.4] shows that collisions in the
Castryck–Decru–Smith hash function can be constructed once a walk to an el-
liptic product is known. So long as we assume our walks approximate the random
distribution on Γ2(2; p) (more on this in Remark 1), then we consider it prudent
to use the complexity of the product-finding algorithms to classify the security
of a given instance of the CDS hash function, even if preimage resistance is the
governing security property.

As will become apparent in Section 6, our acceleration of the Costello–Smith
algorithm will return a (2nN, 2nN)-isogeny (for some n). However, for many
cryptographic protocols in isogeny-based cryptography, the secret isogeny will
be of a specified degree, usually a prime power ℓk. Though an algorithm that
transforms a (2nN, 2nN)-isogeny to a (ℓk, ℓk)-isogeny has yet to be developed,
for example by generalising the KLPT algorithm [44] to dimension 2, we find it
prudent to conjecture such an algorithm exists, rather than betting the security
of primitives on the converse.

3 Optimised product finding in Γ2(2; p)

In this section we describe an optimised instantiation of the product finding
algorithm from [16] in the case of dimension 2.

Our instantiation uses pseudo-random walks in the superspecial subgraph of
the Richelot isogeny graph [28, Definition 1] and exploits a streamlined version of
Takashima and Yoshida’s Richelot isogeny algorithm [67] to take efficient steps
therein.

3.1 Taking a step in Γ2(2; p)

We start by deriving a streamlined version of Takashima and Yoshida’s Richelot
isogeny algorithm [67, Algorithm 2] that will be used as the basis for pseudo-
random walks in the superspecial subgraph of Γ2(2; p). On input of the six-tuple
a = (a0, . . . , a5) ∈ (Fp2)6 defining6 the genus 2 curve

C/Fp2 : y2 = (x− a0) · · · (x− a5),

the algorithm outputs the six-tuple a′ = (a′0, . . . , a
′
5) ∈ (Fp2)6 that defines

C ′/Fp2 : y2 = (x− a′0) · · · (x− a′5),

6For odd p, superspecial abelian surfaces always have full Fp2 -rational 2-torsion
(cf. [10, §2]), which in particular implies that the ai are defined over Fp2 .

where ϕ : JC → JC′ is the Richelot isogeny whose non-trivial kernel is precisely
the three points ((x− ai)(x− ai+1), 0) in JC with i ∈ {0, 2, 4}.

The main modifications we have made to their algorithm are:

– We assume that both the equations for C and C ′ are indeed given by the
sextic polynomials whose six roots are rational elements of Fp2 . This avoids
the case distinctions made by Takashima and Yoshida that allow for quintic
inputs and outputs (i.e., one of the ai and/or a′j being at infinity), which
are unnecessary for our purposes (they occur with negligible probability, and
after a change of coordinates we may assume that C and C ′ are defined by
sextics).

– We do not keep track of the leading coefficient of the sextic, since this merely
determines which quadratic twist we are on, which is irrelevant for our ap-
plication because twists correspond to the same node in Γ2(2; p). This means
we avoid the final inversion in Line 33 of [67, Algorithm 2].

– Each of the three iterations of their main loop involve separate inversion and
square root computations. In each case we merge the inversion and square
root into one combined inverse-and-square-root computation (see Line 7 of
Algorithm 2) using the trick described in [58].

On top of a small, fixed, number of field multiplications, Algorithm 2 computes
a Richelot isogeny using 3 calls to InvSqrt, which is essentially the same cost as
a square root in Fp2 (i.e., 2 exponentiations in Fp). This means our streamlined
version saves all of the four additional Fp2 inversions reported by Takashima and
Yoshida [67, §5.5]. Otherwise, the notation and description of the algorithm is
essentially unchanged: the indices in Line 3 of Algorithm 2 are taken modulo 6,
and the indices in Line 5 are taken modulo 3.

Algorithm 2 RIsog(): A Richelot isogeny in the general case

Input: a = (a0, . . . , a5) ∈ (Fp2)
6 defining C/Fp2 : y

2 = (x− a0) · · · (x− a5).
Output: a′ = (a′0, . . . , a

′
5) ∈ (Fp2)

6 defining C′/Fp2 : y
2 = (x− a′0) · · · (x− a′5), where

ϕ : JC → JC′ is a Richelot isogeny whose kernel corresponds to the three quadratic
splittings (x − ai)(x − ai+1) for i = 0, 2, 4; and split, a boolean that is true if the
image of ϕ is in E2(p).
1: Initialise λ← [a[0] · a[1],a[2] · a[3],a[4] · a[5]], θ ← [], a′ ← []
2: for j = 0 to 2 do
3: ρ← [a[2j+2]−a[2j+4],a[2j+3]−a[2j+5],a[2j+2]−a[2j+5],a[2j+3]−a[2j+4]]
4: θ[j]← ρ[0] + ρ[1]
5: ν ← λ[j + 1]− λ[j + 2]
6: δ ← ρ[0] · ρ[1] · ρ[2] · ρ[3].
7: (µ, κ)← InvSqrt(θj , δ)
8: (a′[2j],a′[2j + 1])← ((ν + κ) · µ, (ν − κ) · µ)
9: split← (λ[0] · θ[0] + λ[1] · θ[1] + λ[2] · θ[2]) = 0
10: return (a′, split)

Alternatives for computing (2n, 2n)-isogenies. There are numerous ways
to compute chains of (2, 2)-isogenies that would be fit for our purposes, but
we are yet to find one that can appreciably outperform repeated calls to Algo-
rithm 2. Recall that each such call computes a (2, 2)-isogeny using a fixed num-
ber of Fp-multiplications on top of three calls to the merged inversion-and-square
root computation (i.e., InvSqrt). Castryck and Decru’s multiradical variant of a
Richelot isogeny also requires at least three square root computations in Fp2 [8,
§4.2], so the most we could expect to gain using their formulae is in the constant
number of additional Fp-operations (assuming any field inversions required in
their case can also be absorbed into the square root calls). Kunzweiler’s efficient
(2n, 2n)-isogeny algorithm [47] could also be used in our scenario, but in testing
this algorithm against ours we observed that, on average, ours performs between
3x and 5x faster for the two primes considered by Kunzweiler. Note, Kunzweiler’s
formulae were derived with a different target application (i.e., G2SIDH) in mind,
meaning computing a chain of (2, 2)-isogenies of fixed length n is most efficient
when 2n | p+1. In our algorithm, we compute chains of length much larger than
any such n and, as a result, this comparison is unfair to [47]. Our comparison is
to ensure that we are not sacrificing efficiency in our context.

3.2 Walking in the superspecial subgraph of Γ2(2; p)

We now turn to describing walks in the superspecial subgraph of Γ2(2; p) that
take steps using the RIsog algorithm developed above. To ensure that these walks
are non-backtracking and avoid short cycles, the output of RIsog must first be
permuted so that the quadratic splitting implicit to its ordering (see §3.1) cor-
responds to a good extension of the previous (2, 2)-isogeny (i.e., a (2, 2)-isogeny
whose kernel intersects trivially with the kernel of the dual of the previous (2, 2)-
isogeny).

Kernel permutations corresponding to good extensions. Following Cas-
tryck, Decru and Smith [10], there are 8 non-equivalent permutations of our ai
which correspond to good extensions of the previous (2, 2)-isogeny. Our walks
are deterministically defined by pseudorandom bitstrings. Each step uses three
bits to choose which of the 8 good extensions defines our next (2, 2)-isogeny.
Using [10, Proposition 3], we define the function a← PermuteKernel(a, bits) by

a←



(a[0],a[2],a[1],a[4],a[3],a[5]) , bits = 0|0|0;
(a[0],a[2],a[1],a[5],a[3],a[4]) , bits = 0|0|1;
(a[0],a[3],a[1],a[4],a[2],a[5]) , bits = 0|1|0;
(a[0],a[3],a[1],a[5],a[2],a[4]) , bits = 0|1|1;
(a[0],a[4],a[1],a[2],a[3],a[5]) , bits = 1|0|0;
(a[0],a[4],a[1],a[3],a[2],a[5]) , bits = 1|0|1;
(a[0],a[5],a[1],a[3],a[2],a[4]) , bits = 1|1|0;
(a[0],a[5],a[1],a[2],a[3],a[4]) , bits = 1|1|1.

Remark 1. Under a mild conjecture on the associated eigenvalues, Florit and
Smith [27] show that despite Richelot isogeny graphs not having optimal expan-
sion, walks of length O(log p) still approximate the stationary distribution on
Γ2(2; p) [27, Theorem 6.1]. This statement is implicitly assuming that walks are
unrestricted, i.e., that each step can take any one of the 15 outgoing Richelot
isogenies. In choosing to restrict each step in Γ2(2; p) to the 8 good edges with
the aim of avoiding fruitless cycles, we are under the implicit assumption that
these walks also rapidly approximate the stationary distribution. All of our ex-
periments over small primes produced results that support this assumption (see
Section 8), and Florit and Smith also comment in its favour [27, §6.4]. Never-
theless, if future research provides evidence to the contrary, modifying our walks
to include the 6 other extensions is straightforward. In this case we could either
aim to prohibit certain sequences of isogenies that cycle back to prior nodes,
or (since we abandon walks after a small number of steps – see below) simply
tolerate the possibility of revisiting prior nodes. Even if a walk did cycle back
and hit a prior node, in general we would have a 14−n chance of continuing along
the same path for n steps thereafter.

Pseudorandom walks in the superspecial subgraph of Γ2(2; p). A given
step of our pseudorandom walk can now be defined as a← Step(a, bits), where
the function Step is simply given by

Step(a, bits) = RIsog(PermuteKernel(a, bits)).

Recall (from Lines 1 and 2 of Algorithm 1) that our goal is to find a path φ from
A ∈ S2(p) to some E1 × E2 ∈ E2(p). In principle, one could continue walking
deterministically from the input node A ∈ S2(p) for as long as it takes to find
the splitting E1 × E2 ∈ E2(p), but the length of this path would be O(p). To
ensure a compact description of the solution, we instead take a relatively small
number of steps from A ∈ S2(p) before abandoning a walk, returning back to
A ∈ S2(p), and starting again.

Our implementation uses Magma’s inbuilt function SHA1 : {0, 1}∗ → {0, 1}160
to generate pseudorandom walks consisting of 160 Richelot isogeny steps as fol-
lows. We start by setting H0 := StartingSeed(a), where a ∈ (Fp2)6 defines the in-
put node A ∈ S2(p), and where StartingSeed merely concatenates and parses the
12 Fp components of a in order to be fed as input into SHA1. We then define the
function Hash : {0, 1}∗ → {0, 1}480 as Hash : s 7→ SHA1(s)||SHA12(s)||SHA13(s),
where SHA12(s) denotes SHA1(SHA1(s)), etc. Our first walk in Γ2(2; p) is de-
fined by H1 = Hash(H0); these 480 bits are used (three bits at a time) to give
160 steps away from A ∈ S2(p), at which point we return back to A ∈ S2(p)
and repeat the process by using Hi+1 = Hash(Hi) for i = 1, 2, . . . , until one of
our calls to RIsog returns split = true, at which point our walks have hit a
node in E2(p). To proceed to the elliptic curve path finding in Steps 3 and 4
of Algorithm 1, the j-invariants of the elliptic curves in the product of the fi-
nal (2, 2)-isogeny are determined using [10, §6.2]. This concludes the description

of our implementation of the generic product finding algorithm from [16] that
works entirely in Γ2(2; p).

Choice of Optimisations. In our search for product curves we use optimised
walks in Γ2(2; p), rather than adopting Castryck and Decru’s multiradical isoge-
nies [8] to walk in Γ2(3; p). Indeed, their hash function built from multiradical
(3, 3)-isogenies between superspecial genus 2 Jacobians outperforms its (2, 2)-
counterpart by a factor ≈ 9. We first note that the bulk of the Castryck–Decru
speedup comes from their hash function processing 3 trits of entropy per (3, 3)-
isogeny, rather than 3 bits of entropy processed by a (2, 2)-isogeny. In our appli-
cation, however, entropy is irrelevant and we are only interested in the raw cost
of taking one step in the graph. Nevertheless, Castryck and Decru still report a
≈ 2.7× speedup for a multiradical (3, 3)-isogeny (which is dominated by 3 cube
roots over Fp2) compared to a multiradical (2, 2)-isogeny (which is dominated
by 3 square roots over Fp2), with this factor coming directly from the relative
performance of cube roots and square roots in Fp2 in Magma. In our implemen-
tation, we optimised explicit computation of the square roots in Fp2 in terms of
Fp exponentiations and multiplications using the tricks in [58, §5.3], and we are
unaware of analogous (or any) tricks in the cube root case that could outperform
the square root computation.

Furthermore, we use walks in Γ2(2; p) that do not store or recycle any infor-
mation from previous steps. Indeed, we could not see an obvious way to (re)use
any of the three square roots in Line 7 of Algorithm 2 to compute the other 7
good extensions. We remark that this is a feature of our choice to walk using
only good extensions, and we could in fact recycle these square roots to compute
some of the bad extensions. If it turns out that there is a way to compute all
8 of the image tuples a in appreciably fewer operations than calling the RIsog
algorithm on all 8 kernels individually, then one could define an octonary tree
in an analogous fashion to the binary tree from [15].

4 Humbert surfaces

We give a brief review of some well known facts about genus 2 curves with split
Jacobians, p.p. abelian surfaces with real multiplication, and their moduli. The
reader wishing for a more in-depth discussion is encouraged to consult e.g., [6,
§2], [23], [33], [45], [46], [68].

Let K be a field of characteristic not equal to 2. LetM2 denote the variety
whose points [C] ∈M2(K) correspond to the K-isomorphism classes of genus 2
curves C/K.

4.1 The Igusa–Clebsch invariants of a genus 2 curve

From the invariant theory of the binary sextic, we may associate to any genus
2 curve C/K its Igusa–Clebsch invariants I2(C), I4(C), I6(C), and I10(C) (here
the subscript denotes the weight of the invariant). Moreover the isomorphism

class of C/K is uniquely determined by its Igusa–Clebsch invariants (see e.g.,
[41,52]). This induces a K-birational morphism M2 ↪→ P(2, 4, 6, 10) given by
associating to [C] the Igusa–Clebsch invariants [I2(C) : I4(C) : I6(C) : I10(C)].

Explicitly, if C/K is a genus 2 curve given by a Weierstrass equation

C : y2 = (x− a0) · · · (x− a5)

where a0, . . . a5 ∈ K, we define:

I2(C) :=
∑
15

(01)2(23)2(45)2, I4(C) :=
∑
10

(01)2(12)2(20)2(34)2(45)2(53)2,

I6(C) :=
∑
60

(01)2(12)2(20)2(34)2(45)2(53)2(03)2(14)2(25)2, and

I10(C) :=
∏
i<j

(ai − aj)2,

where, for any permutation σ ∈ S6, we let (ij) denote the difference (aσ(i) −
aσ(j)). Here the sums are taken over all distinct expressions in the ai as σ ranges
over S6; the subscripts denote the number of expressions in each sum.

4.2 Optimal splittings of Jacobians of a genus 2 curves

Let C be a curve of genus 2 defined over a field K. Recall that we say the
Jacobian JC of C is split (over K) if there exists a (polarised) separable K-
isogeny ϕ : JC → E1 × E2 where E1/K and E2/K are elliptic curves7.

To work explicitly with subvarieties ofM2 which parametrise genus 2 curves
with split Jacobians, we will restrict our focus to Jacobians which are split by
an (N,N)-isogeny. However, without imposing further conditions on the isogeny,
our subvarieties will not be irreducible. Following Bruin–Doerksen [6, §2], we
make the following definition:

Definition 2. Let K be a field, C/K be a curve of genus 2, and E/K be an
elliptic curve. We say that a cover ψ : C → E of degree N is optimal if N is
coprime to the characteristic of K and ψ does not factor through a non-trivial
unramified covering.

We say that a polarised separable isogeny ϕ : JC → E1 × E2 is an optimal
(polarised) (N,N)-splitting if ϕ is an (N,N)-isogeny and the covering C → E1

induced by ϕ and the Abel–Jacobi map is optimal. In this case JC is said to be
optimally (N,N)-split.

In our application N will be an integer ≤ 11 and K will be the finite field
Fp2 for some prime number p ≫ 11, so the assumption that ϕ is separable will
be automatically satisfied.

In fact every splitting factors through an optimal (N,N)-splitting, more pre-
cisely:

7The convention that ϕ is separable contrasts with, e.g., [6, Definition 2.1].

Proposition 1. If JC is split (over K) then there exists an integer N ≥ 2 such
that JC is optimally (N,N)-split (over K).

Proof. We closely follow [6, Proposition 2.8]. Since JC is split, there exists a
separableK-isogeny ϕ : JC → E1×E2 where E1/K and E2/K are elliptic curves.
Since ϕ is separable, there exists an elliptic curve E′

1/K such that the morphism
C → E1 induced by the Abel–Jacobi map and ϕ factors through an optimal
cover ψ : C → E′

1. By [6, Lemma 2.6], ψ gives rise to an optimal (N,N)-splitting
JC → E′

1 × E′
2, where E

′
2 is an elliptic curve and N is the degree of ψ. ⊓⊔

4.3 The surfaces Y−(D) and HD

We now recall several definitions about Hilbert modular and Humbert surfaces.
The reader concerned only with detecting splittings can safely skip to Lemma 1.

We first recall Theorem 1 which asserts the existence of a surface Y−(D)
which parametrises genus 2 Jacobians with RM by OD, or more precisely genus
2 Jacobians equipped with a real multiplication ι : OD ↪→ End†(A). For more
details, the reader should consult [20,56] or [38, Theorem 4.9] when D is not a
square, and [46, §2] when D is a square. We call the surface Y−(D) the Hilbert
modular surface of discriminant D.

Theorem 1. Let D > 1 be a discriminant (i.e., D is an integer congruent to 0
or 1 modulo 4) which is coprime to the characteristic of K. Then there exists a
surface Y−(D), defined over K, whose K-points are in bijective correspondence
with (isomorphism classes of) pairs (JC , ι) where C is a genus 2 curve and
ι : OD ↪→ End†(A).

Given a point (JC , ι) ∈ Y−(D) we may forget ι and obtain a morphism
Y−(D) → M2 given by (JC , ι) 7→ [C]. We write HD for the image of this
morphism, which we call the Humbert surface of discriminant D. The Humbert
surface remembers only that the endomorphism ring of the Jacobian JC contains
OD (but forgets the choice of embedding).

Lemma 1. Let C/K be a genus 2 curve and let N > 1 be coprime to the char-
acteristic of K. There exists an optimal (N,N)-splitting JC → E1 × E2 if and
only if [C] ∈ HN2(K) ⊂ M2(K). In particular, the Jacobian of C is split over
K if and only if there exists an integer N ≥ 2 such that [C] ∈ HN2(K).

Proof. The first claim follows from the discussion in [46, §2]. The second claim
follows from Proposition 1. ⊓⊔

Let D > 1 be an integer which satisfies either:

(D1) D = N2 where 2 ≤ N ≤ 11, or

(D2) D < 100 is a fundamental discriminant.

Under both coniditions (D1) and (D2) explicit models for the surfaces HD

are known. Elkies–Kumar [23] gave explicit models for the surface Y−(D) for
every fundamental discriminant D < 100. These calculations were extended by
Kumar [46] who computed explicit models of the surfaces Y−(N

2) for each inte-
ger N ≤ 11. In each of these cases the Humbert surfaces HD are rational (i.e.,
birational to A2), and they presented the surfaces Y−(D) as a double covers of
HD together with the moduli interpretation of HD. More specifically, they com-

pute rational functions I(D)
2 (r, s), I(D)

4 (r, s), I(D)
6 (r, s), I(D)

10 (r, s) which (after
an appropriate projective rescaling) may be taken to lie in Z[r, s] and for which
the following diagram commutes

A2 P(2, 4, 6, 10)

HD M2

φD

Here the maps on the left and right are birational and the rational map φD is

given by (r, s) 7→ [I(D)
2 (r, s) : I(D)

4 (r, s) : I(D)
6 (r, s) : I(D)

10 (r, s)].

Remark 2. Genus 2 curves C/K with split Jacobians have appeared many times
elsewhere in the literature. Indeed when N ≤ 4 generic families were known clas-
sically from work of Legendre, Jacobi, Hermite, Grousat, Burkhardt, Brioschi,
and Bolza (as discussed in [46]). More recently, Shaska [59] gave a method for gen-
eral N for computing the surface Y−(N

2) together with a curve C/K(Y−(N
2))

such that JC is (N,N)-isogenous to a product E1 × E2. Explicit computations
have been performed for 2 ≤ N ≤ 5 by Shaska, Magaard, Volklein, Wije-
siri, Wolf, and Woodland [60,62,61,50,63] and by Gaudry–Schost [34], Bröker–
Lauter–Howe–Stevenhagen [5], Bruin–Doerksen [6], and Djukanović [22,21]. If
JC is (N,N)-isogenous over K to a product of elliptic curves E1 × E2 there
exists an anti-symplectic Galois equivariant isomorphism E1[N] ∼= E2[N] (see
e.g., [6, Proposition 2.8]). For N > 11 this has been considered by Fisher when
N = 13, 17 [25,26] and Frengley when N = 12, 14, 15 [31,32]. However, while
they give the generic elliptic curves E1 and E2, they do not give the genus 2
curve C.

4.4 The image of the morphism HN2 → M2

Recall that we have a map HN2 → M2 → P(2, 4, 6, 10) given by the Igusa–
Clebsch invariants. The (Zariski closure of) the image of this map is a projective
surface given by the vanishing of a polynomial FN ∈ Z[I2, I4, I6, I10] which is
homogeneous with respect to the weights.

If K is a field of characteristic coprime to 2N , the Jacobian of a genus 2
curve C/K is optimally (N,N)-split over K if and only if

FN (I2(C), I4(C), I6(C), I10(C)) = 0.

For 2 ≤ N ≤ 5 the polynomial FN was computed by Bruin–Doerksen [6,7, Theo-
rem 1.2] and Shaska, Magaard, Volklein, Wijesiri, Wolf, andWoodland [61,63,50].

Such equations may be computed from Kumar’s formulae [46]. For each
N ≤ 5 we interpolate the image of φN2 modulo a small number of primes of
approximately 128 bits. Lifting these equations to characteristic zero with the
LLL algorithm gives a candidate for FN .

Since FN is an irreducible polynomial and the image of φN2 is an irreducible
variety, we verify the result in Magma by checking that FN vanishes at the equa-
tions defining φN2 . These polynomials are available in the code accompanying
this article, and their properties are summarised in Table 2.

Remark 3. As pointed out to us by Benjamin Smith, for a generic genus 2 curve
C : y2 = (x − a0) . . . (x − a5) the polynomial F2(I2(C), I4(C), I6(C), I10(C)) is
(up to a scaling factor) equal to the square of the product of the determinants of
the 15 Richelot kernels. This gives a connection to the classical work of Bolza [2,
p. 51] where this is the invariant which Bolza calls R2.

N Weighted degree of FN

Number of

monomials in FN

Average bitlength of the

coefficients of FN

2 30 34 ∼ 16.6

3 80 318 ∼ 64.3

4 180 2699 ∼ 197

5 480 43410 ∼ 617

Table 2. The number of monomials in the defining equation FN for the image of HN2

in P(2, 4, 6, 10) and the total number of bytes required to (naively) store the coefficients
of each FN .

5 Efficient detection of (N,N)-splittings

In this section we present an algorithm to efficiently detect whether, at each step,
the p.p. abelian surface JC is (N,N)-isogenous (over Fp) to a product of elliptic
curves, without ever computing an (N,N)-isogeny. In this way we are able to
use resultants and gcd computations, rather than inefficient computations of
(N,N)-isogenies, therefore avoiding all N th-root calculations and the need to
work in extension fields when the N -torsion is not fully Fp2-rational.

A natural starting point to perform this detection is to exploit the equations
FN for the image of the morphism HN2 → P(2, 4, 6, 10) (see Section 4.4). Indeed,
if a genus 2 curve C/Fp2 is (N,N)-split, then FN (I2(C), I4(C), I6(C), I10(C)) =
0. However, as demonstrated in Table 2, both the number of monomials in FN

and the bitlength of its coefficients grow rapidly with N . As a result, computing
and storing FN for N > 5 is challenging. Instead, we will use techniques in

elimination theory to determine whether [C] lies on the (Zariski closure of) the
image of φN2 . Indeed, even for N ≤ 5, evaluating the image at the Igusa–Clebsch
invariants of C will not outperform this method.

Lemma 2. Let D > 1 be a discriminant satisfying either (D1) or (D2) and let
C/K be a genus 2 curve defined over a field K of characteristic not dividing 2D.
Suppose that the Igusa–Clebsch invariants I2(C), I4(C), I6(C), and I10(C) are

non-zero. Write α1(C) :=
I4(C)
I2(C)2 , α2(C) :=

I2(C)I4(C)
I6(C) , and α3(C) :=

I4(C)I6(C)
I10(C) .

If there exist r0 ∈ K ∪ {∞} and s0 ∈ K satisfying
α1(C) =

I(D)
4 (r0,s0)

I(D)
2 (r0,s0)2

,

α2(C) =
I(D)
2 (r0,s0)I(D)

4 (r0,s0)

I(D)
6 (r0,s0)

,

α3(C) =
I(D)
4 (r0,s0)I(D)

6 (r0,s0)

I(D)
10 (r0,s0)

then [C] ∈ HD(K). In particular, if D = N2 then JC is optimally (N,N)-split

over K. Here I(D)
w (r, s) are as in Section 4.3.

Proof. The rational map ψ : P(2, 4, 6, 10) 99K A3 given by [I2 : I4 : I6 : I10] 7→(
I4
I2
2
, I2I4I6

, I4I6I10

)
is birational with inverse (α1, α2, α3) 7→

[
1 : α1 : α1

α2
:

α2
1

α2α3

]
.

Moreover on the open subvariety of P(2, 4, 6, 10) where I2, I4, I6, and I10 are
nonzero the map ψ restricts to an isomorphism onto its image. The claim follows
from the discussion preceding the lemma. ⊓⊔

Remark 4. It is common in the literature (e.g., [6,42]) to choose the affine patch

with coordinates the absolute invariants
6(I2

2−16I4)

I2
2

,
−12(5I3

2−176I2I4+384I6)

I3
2

, and
3888I10

I5
2

. Our choice is ad hoc and made to optimise the algorithms in Section 5.2.

In particular, the choice in Lemma 2 yields polynomials Pi,j in Lemma 3 of
smaller degree. Choosing an affine patch of P(2, 4, 6, 10) so that the analogous
polynomials to Pi,j in Lemma 3 have minimal degree would likely lead to im-
proved performance of our algorithm.

Remark 5. In the code accompanying this article we provide a function Invari-
antsFromWeierstrassPoints that, on input of the 6-tuple a = (a0, . . . , a5) ∈ (Fp2)6

of Weierstrass points, computes the 3-tuple α(C) = (α1(C), α2(C), α3(C)) ∈
(Fp2)3 using a total of 291 multiplications and one (merged) inversion in Fp.
This is the first step of Algorithm 4.

If D > 1 is a discriminant satisfying either (D1) or (D2), we define polynomials

f
(D)
k (r, s) ∈ Z[α1, α2, α3][r, s] by

f
(D)
1 (r, s) = I(D)

4 (r, s)− α1I(D)
2 (r, s)2,

f
(D)
2 (r, s) = I(D)

2 (r, s)I(D)
4 (r, s)− α2I(D)

6 (r, s),

f
(D)
3 (r, s) = I(D)

4 (r, s)I(D)
6 (r, s)− α3I(D)

10 (r, s).

The following proposition follows immediately from Lemma 2.

Proposition 2. Let D > 1 be a discriminant satisfying either (D1) or (D2)
and suppose that C/K is a genus 2 curve with non-zero Igusa–Clebsch invariants.
If there exist r0 ∈ K ∪ {∞} and s0 ∈ K such that for each w ∈ {2, 4, 6, 10} we

have I(D)
w (r0, s0) ̸= 0 and f

(D)
k (r0, s0) = 0 then [C] ∈ HD(K). In particular if

D = N2 then JC is optimally (N,N)-split over K.

We describe a method for determining whether, given a genus 2 curve C/Fp

with superspecial Jacobian, there exists a point P ∈ A2(Fp) such that the poly-

nomials f
(D)
k (r, s) vanish at P when D = N2 and N ≤ 11 (Section 5.2) or

a fundamental discriminant D ≤ 100 (Section 7.1). Our approach utilises the
equations of Kumar [46] and Elkies–Kumar [23]. Moreover, we determine lower
bounds on the costs in terms of Fp-multiplications.

5.1 The resultants of fi and fj

Fix a discriminant D > 1 satisfying either (D1) or (D2). For each distinct pair
i, j ∈ {1, 2, 3}, define polynomials8

R
(D)
i,j (s) := resr(f

(D)
i (r, s), f

(D)
j (r, s)) ∈ Z[α1, α2, α3][s].

If C/K is a genus 2 curve then, since resultants are invariant under ring ho-
momorphisms, by the elimination property of the resultant (see e.g., [17, §3.6
Lemma 1]) the specialisations (R

(D)
i,j)[C](s) ∈ K[s], given by evaluating the co-

efficients of R
(D)
i,j (s) at α1(C), α2(C), and α3(C), vanish at the s-coordinate of

any common solution to the specialised polynomials (f
(D)
j)[C](r, s).

However, these resultants (generically) have factors which correspond to un-

wanted solutions (i.e., where one of the polynomials I(D)
w vanishes). We make

this more precise in the following lemma.

Lemma 3. Let L = Q(α1, α2, α3) and let D > 1 be a discriminant satisfying

(D1) or (D2). When i ̸= j, there exist polynomials Q
(D)
i,j ∈ Z[α1, α2, α3][s]

dividing R
(D)
i,j with the following property: for each pair r0, s0 ∈ L such that

f
(D)
k (r0, s0) = 0 for k = 1, 2, 3 and Q

(D)
i,j (s0) = 0, then I(D)

w (r0, s0) = 0 for some
w ∈ {2, 4, 6, 10}. Moreover, the polynomials

P
(D)
i,j = R

(D)
i,j /Q

(D)
i,j ∈ Z[α1, α2, α3][s]

are coprime.

Proof. This follows from a direct calculation in Magma. ⊓⊔
8If necessary, we swap the roles of Elkies–Kumar or Kumar’s r and s so that the

polynomials P
(D)
i,j from Lemma 3 are of lowest degree (as noted in the accompanying

code). It would be interesting to find a birational transformation of A2 which minimises

degP
(D)
i,j .

Applying [17, §3.6 Corollary 7] we have:

Proposition 3. Let C/K be a genus 2 curve such that I
(D)
w (C) ̸= 0 for each

w ∈ {2, 4, 6, 10} and let D > 1 be a discriminant satisfying (D1) or (D2).

If there exist r0, s0 ∈ K such that (f
(D)
i)[C](r0, s0) = 0 for each i = 1, 2, 3

then the degree of gcd((P
(D)
1,2)[C], (P

(D)
2,3)[C]) is at least 1.

Conversely if s0 ∈ K is a root of gcd((P
(D)
1,2)[C], (P

(D)
2,3)[C]) then there ex-

ist r0, r
′
0 ∈ K ∪ {∞} such that (f

(D)
1)[C](r0, s0) = (f

(D)
2)[C](r0, s0) = 0 and

(f
(D)
2)[C](r

′
0, s0) = (f

(D)
3)[C](r

′
0, s0) = 0.

In the electronic data attached to this article we give the polynomials P
(D)
i,j ∈

Z[α1, α2, α3][s] for each pair j ̸= k.

5.2 An algorithm to detect (N,N)-split Jacobians

We now present our algorithm to efficiently detect whether the Jacobian of a
genus 2 curve C/Fp2 is (N,N)-split for some integer 2 ≤ N ≤ 11. In Proposition 4
we then give an upper bound on the number of Fp-multiplications required by
the algorithm.

Precomputation step. Let D = N2. We reduce the coefficients of the poly-

nomials P
(D)
1,2 , P

(D)
2,3 ∈ Z[α1, α2, α3][s] from Lemma 3 modulo p to obtain poly-

nomials P̃
(D)
1,2 , P̃

(D)
2,3 ∈ Fp[α1, α2, α3][s], which are stored.

Evaluation and gcd step. Our approach is summarised in Algorithm 3. To test
whether a given genus 2 curve C/Fp2 with superspecial Jacobian is (N,N)-split,

we specialise the coefficients of P̃
(D)
1,2 , P̃

(D)
2,3 at α(C) = (α1(C), α2(C), α3(C)), by

running the algorithm EvalCoeffs, to obtain the polynomials (P̃
(D)
1,2)[C], (P̃

(D)
2,3)[C] ∈

Fp2 [s]. The EvalCoeffs algorithm takes as input P̃
(D)
i,j and the invariants α(C),

and evaluates the coefficients of the polynomial at these invariants (see the proof
of Proposition 4 for more details).

We then compute the gcd of (P̃
(D)
1,2)[C] and (P̃

(D)
2,3)[C] using the “inversion-free

gcd” algorithm InvFreeGCD from [15, Algorithm 1], modified to output the gcd
explicitly, rather than a boolean.

If this gcd has degree ≥ 1 then it has a root s0 ∈ Fp and (by Proposition 3)

there exist r0, r
′
0 ∈ Fp ∪ {∞} such that (f

(D)
1)[C](r0, s0) = (f

(D)
2)[C](r0, s0) = 0

and (f2)[C](r
′
0, s0) = (f

(D)
3)[C](r

′
0, s0) = 0. By Proposition 2 to verify that JC is

(N,N)-split it suffices to show that we may take r0 = r′0 such that I(D)
w (r0, s0) ̸=

0 for each w ∈ {2, 4, 6, 10}. We verify the first condition by computing the

gcd of (f
(D)
1)[C](r, s0), (f

(D)
2)[C](r, s0), (f

(D)
3)[C](r, s0), and if it has degree ≥ 1

computing a root r0 ∈ Fp. We verify the second condition by checking that

I(D)
w (r0, s0) ̸= 0 for each w ∈ {2, 4, 6, 10} – we abbreviate this to the function

IgNonzero.

Remark 6. If JC is optimally (N,N)-split then Algorithm 3 will return true with
high probability. In this case [C] is an Fp2 -point onHN2 . Since φN2 : A2 99K HN2

is birational (over Fp) it is an isomorphism outside a closed Fp-subvariety X ⊆
HN2 of dimension 1. But from the Weil conjectures #HN2(Fp2) = O(p4) and

#X(Fp2) = O(p2). In particular except in O(1/p2) of cases there exist r0, s0 ∈ Fp

satisfying the conditions of Proposition 3.

Algorithm 3 IsSplit(α(C), P̃
(N2)
1,2 , P̃

(N2)
2,3 , N):

Input: A tuple α(C) = (α1(C), α2(C), α3(C)), the polynomials P̃
(N2)
1,2 , P̃

(N2)
2,3 ∈

Fp[α1, α2, α3][r], and an integer 2 ≤ N ≤ 11.
Output: A boolean which is true if JC is optimally (N,N)-
split.

1: (P̃1,2)[C] ← EvalCoeffs(P̃
(N2)
1,2 ,α(C))

2: (P̃2,3)[C] ← EvalCoeffs(P̃
(N2)
2,3 ,α(C))

3: g ← InvFreeGCD((P̃1,2)[C], (P̃2,3)[C])
4: if deg g ≥ 1 then
5: s0 ← ComputeRoot(g)

6: (f̃1)[C] ← EvalCoeffs(f̃
(N2)
1 ,α(C))

7: (f̃2)[C] ← EvalCoeffs(f̃
(N2)
2 ,α(C))

8: (f̃3)[C] ← EvalCoeffs(f̃
(N2)
3 ,α(C))

9: h← InvFreeGCD(InvFreeGCD((f̃1)[C](r, s0), (f̃2)[C](r, s0)), (f̃3)[C](r, s0))
10: if deg h ≥ 1 then
11: r0 ← ComputeRoot(h)
12: bool← IgNonzero(r0, s0)
13: if bool == true then
14: return true

15: return false

The cost of Algorithm 3. We now determine an upper bound for the number
of Fp-multiplications required for the online part of this method (i.e., ignoring the
cost of precomputation). In the analysis that follows we assume that Karatsuba
multiplication is used in Fp2 , hence we cost one Fp2-multiplication as three Fp-
multiplications.

Proposition 4. Let N ∈ {2, . . . , 11} be an integer, and let mons(N) be the

set of monomials in α1, α2, α3 appearing in the coefficients of P̃
(N2)
1,2 and P̃

(N2)
2,3

(which lie in Fp[α1, α2, α3]). For each i = 1, 2, 3, let

di(N) = max({degree of αi in m | m ∈ mons(N)}).

The cost of steps 1–3 in Algorithm 3 (with input N) is at most

3(d1(N) + d2(N) + d3(N)) + 6m(N) + 2M(N) +
3

2
(dP (N) + 2)(dP (N) + 3)− 27

Fp-multiplications, where dP (N) = deg P̃
(N2)
1,2 + deg P̃

(N2)
2,3 , m(N) = #mons(N),

and M(N) is the number of monomials in α1, α2, α3 appearing in the coefficients

of P̃
(N2)
1,2 and P̃

(N2)
2,3 counting repetitions.

Proof. We first evaluate the coefficients of P̃
(N2)
1,2 , P̃

(N2)
2,3 ∈ Fp2 [α1, α2, α3][s] at

the normalised invariants α1(C), α2(C), α3(C) ∈ Fp2 using our evaluation al-
gorithm EvalCoeffs on each polynomial. This runs as follows. We first compute
powers α1(C)

2, . . . , α1(C)
d1(N) where d1(N) is the maximum degree of α1 ap-

pearing in mons(N) (as defined in the statement of the proposition). Similarly,
we compute powers of α2(C) and α3(C) up to d2(N) and d3(N) respectively.
This step is performed using d1(N) + d2(N) + d3(N)− 3 multiplications in Fp2 .

From these powers, we obtain the monomials appearing in the coefficients

of (P̃
(N2)
1,2)[C](s) and (P̃

(N2)
2,3)[C](s) in at most 2m(N) Fp2-multiplications, where

m(N) = #mons(N). We then require 2M(N) Fp-multiplications (and 2M(N)

additions) to construct the coefficients of (P̃
(N2)
1,2)[C] and (P̃

(N2)
2,3)[C].

The final step computes the gcd of (P̃
(N2)
1,2)[C] and (P̃

(N2)
2,3)[C] using InvFreeGCD.

This requires 3
2 (dP (N) + 2)(dP (N) + 3) − 18 Fp-multiplications by [15, Propo-

sition 2]. ⊓⊔

The cost from Proposition 4 depends only on N . Therefore, for each 2 ≤
N ≤ 11, we can determine the total number of Fp-multiplications required for
the detection per node revealed in S2(p) for any prime p. We give these costs in
Table 3.

Noting that, when N ̸= N ′ we may have non-empty intersection mons(N) ∩
mons(N ′), our implementation of Algorithm 4 stores all evaluated monomials to
avoid repeated computations. In particular, the upper bound in Proposition 4 is
often not sharp.

Remark 7. We note that, in practice, when our algorithm enters the if loop
on Line 4 in Algorithm 3, we have yet to encounter a case where Steps 5–14
fail to return true. In these cases the bound in Proposition 4 yields a bound
on the cost of Algorithm 3. It is however possible to construct examples of
polynomials for which they would be necessary – e.g., f1(r, s) = r− 1, f2(r, s) =
s − r(r + 1)(r − 1), and f3(r, s) = r + 1. It would be interesting to put this
observation on rigorous footing by showing that with overwhelming probability
the roots r0 and r′0 guaranteed by Proposition 3 are equal.

Alternative approach for N = 10 and 11. When N = 10, 11, several

megabytes are required to store the coefficients of the polynomials P̃
(N2)
i,j . Rather

than computing the resultants R
(N2)
1,2 and R

(N2)
2,3 and dividing out by the generic

factors described in Lemma 3 to obtain P
(N2)
1,2 , P

(N2)
2,3 as a precomputation, the

approach we pursued was to instead perform these two steps during the online
phase. Even still, our experiments (which were reinforced by the cost analysis
above) revealed that performing the detection for N = 10, 11 is suboptimal in

N d1(N) d2(N) d3(N) m(N) M(N) dP (N)
Total #Fp

mults.

Total #Fp mults.

per node revealed

2 1 2 1 6 23 6 175 12.5

3 2 3 2 11 97 16 767 19.2

4 6 8 6 78 1136 35 4882 46.9

5 6 10 6 64 2500 92 18818 120.6

6 7 11 7 91 4118 114 29188 52.1

7 10 14 10 190 24779 294 182641 456.6

8 16 24 16 433 73454 340 325606 395.2

9 12 16 12 271 69648 540 582474 539.3

10 24 32 24 1005 260178 606 1082007 495.4

11 28 38 28 1345 669432 1120 3237198 2211.2

Table 3. Values of d1(N), d2(N), d3(N),m(N),M(N), and dP (N) for N ∈ {2, . . . , 11}.
The final columns respectively list the number of Fp-multiplications in Proposition 4
and the ratio of multiplications to the number of (N,N)-isogenous p.p. abelian surfaces.

our application to SplitSearcher (shown in Algorithm 4) and slows the overall
search down, even when the characteristic of the field is very large. Thus, we
leave the further optimisation of these computations as future work.

6 The full algorithm

In Section 3 we discussed our optimised implementation of the product-finding
attack [16] that works entirely in the Richelot isogeny graph Γ2(2; p). In this sec-
tion, we present SplitSearcher, which leverages our efficient detection of (N,N)-
splittings from Section 5.2 to improve on the concrete complexity of product-
finding when solving the dimension 2 isogeny problem.

6.1 SplitSearcher

Each time we take a step using a Richelot isogeny, we will use the methods from
the previous section to detect whether the current node is (N,N)-isogenous to
a product of elliptic curves, for some subset of integers in 2 ≤ N ≤ 11. Using
the algorithm from Section 5.2 makes this check much more efficient than, say,
walking in Γ2(N ; p); each node we step to would require computing an (N,N)-
isogeny which, at minimum, requires three N -th roots in Fp2 [8].

Each time we take a step and arrive at a new abelian surface, A, we are in
one of two cases: either A is isomorphic to a product of elliptic curves, in which
case the algorithm terminates, or A is isomorphic to the Jacobian of a genus 2

curve C/Fp2 . In the latter case, SplitSearcher calls Algorithm 3 to detect whether
A is (N,N)-split for certain 2 ≤ N ≤ 11. The set of N ’s for which this detection
is performed is chosen to minimise the number of Fp-multiplications per node
revealed (either by stepping on them in Γ2(2; p) or inspecting them via our
splitting detection) in S2(p). Since it only depends on the prime p, determining
this optimal list of N ’s is performed during precomputation.

If Algorithm 3 determines that A is (N,N)-split, the elliptic curves E1 and E2

can be recovered by applying [49, Algorithm 4] to compute all (N,N)-isogenies
from A (alternatively, E1 and E2 may be recovered from Kumar’s equations [46]
by solving for r0 and s0 in Proposition 2). As both of these costs are negligible
and do not affect the cost of finding such a splitting, we may view this as a
post-computation step and exclude it from our multiplication counts.

A precise formulation of the full algorithm for finding paths to elliptic curve
products is given by Algorithm 4. Along with the target abelian surface A ∈
S2(p), the auxiliary inputs into the algorithm are the polynomials P̃

(N2)
1,2 , P̃

(N2)
2,3 ∈

Fp[α1, α2, α3][r] (see Lemma 3), and the optimal set N ⊆ {2, . . . , 11} (see Sec-
tion 6.2). The hash function on Line 4 is assumed to be of the form Hash : {0, 1}∗ →
{0, 1}3ℓ, where ℓ is a positive integer, since we use three bits of entropy each
time we call the Richelot isogeny (i.e., Step algorithm) in Line 13. In practice
we choose ℓ to be large enough that we can expect to find an elliptic product in
walks of ℓ steps, but not too large, since storing walks of up to ℓ steps requires
more storage on average. Once the 3ℓ bits of entropy have been consumed, the
hash function is called again and the walk is restarted from astart (more on this
in Remark 8). The output returned by Algorithm 4 is of the form (path, N),
where path is a sequence of 3k bits (with k ≤ ℓ) and N is an integer: the 3k bits
define a sequence of k Richelot isogenies and the integer N specifies the final
(N,N)-isogeny whose image is in E2(p).
Remark 8. In a real-world attack, we would expect to return to Line 4 of Algo-
rithm 4 an exponential number of times before the algorithm terminates. Thus,
there are a number of ways one could recycle information computed in the early
stages of each walk to avoid recomputing them over and over again. One solution
that is easy to implement in view of Algorithm 4 would be to store a hash table
whose entries each correspond to the (hash of the) Igusa–Clebsch invariants of
any node that is visited and checked for (N,N)-splittings. Upon returning to
a given node and finding a collision in the hash table, the walk could simply
avoid the tests for (N,N)-splittings between Lines 8 and 11. Another approach
would be to build a table of the six-tuples a that are computed after the first t
Richelot steps have been taken, alongside the label of the 3t-bit string that took
us there. Each time we return back to Line 4 and iterate the hash function, we
simply check to see if the first 3t bits are already in the table and, if so, we can
skip straight to a.

Finally, as is mentioned in [16], parallelising the search for product curves is
trivial. For P processors, we would simply compute P unique short walks from
our target surface A ∈ S2(p) and send each of the corresponding image surfaces
A1, . . . , AP to a unique processor as its assigned input surface.

Algorithm 4 SplitSearcher: finding paths to elliptic curve products

Input: astart = (a0, . . . , a5) ∈ (Fp2)
6 defining a genus 2 curve C/Fp2 with superspecial

Jacobian, and a set N ⊆ {2, 3, . . . , 11}.
Output: A pair (path, N) where path is a path φ : JC → JC′ in Γ2(2; p) and N is an
integer such that JC′ is optimally (N,N)-split.

1: split← false

2: H ← StartingSeed(astart) §3.1
3: while not split do

4: (H, i, path,a)← (Hash(H), 0, {∅},astart)
5: while i < ℓ and not split do

6: if N ≠ ∅ then

7: α(C)← InvariantsFromWeierstrassPoints(a) Remark 5

8: for N ∈ N do

9: split← IsSplit(α(C), P̃
(N2)
1,2 , P̃

(N2)
2,3 , N) Algorithm 3

10: if split then

11: return (path, N)
12: bits← H[3i] ∥H[3i+ 1] ∥H[3i+ 2]
13: a, split← Step(a, bits) §3.2
14: path← path ∥ bits
15: i← i+ 1
16: return (path, 2)

6.2 Determining the optimal set N

Recall that, when we step to a new p.p. abelian surface A ∈ S2(p), we want
to determine if it is (N,N)-split for a set N ⊆ {2, . . . , 11} of N . We wish to
determine the optimal subset N ⊆ {2, . . . , 11}, i.e., the subset which minimises
the number of Fp-multiplications per node revealed in the graph. The first step
towards determining this ‘multiplications-per-node’ ratio is to count the number
of nodes in S2(p) that are inspected inside the for loop of Algorithm 4 with
a finite set of integers N ⊆ Z≥2. A first attempt would be to simply count
the number of neighbours a node A ∈ S2(p) has in Γ (N ; p), i.e., DN given by
Equation (1) in Section 2. However, this is an overcount as we now detail.

Suppose we take a non-backtracking walk

A0
ϕ0−→ A1

ϕ1−→ · · · ϕn−1−−−→ An
ϕn−−→ · · · (2)

in Γ2(2; p) and we inspect (N,N)-splittings for N ∈ N . If 0 ≤ m ≤ n are
integers, let ϕm,n denote the (2n−m, 2n−m)-isogeny ϕm−1 ◦ · · · ◦ ϕn and let ϕn,m

denote ϕ̂m,n.
Firstly, if both N and 2kN are contained in N (for k ≥ 1), then any

abelian surfaces (N,N)-isogenous to An are automatically (2kN, 2kN)-isogenous
to An+k. Therefore, we restrict to only considering subsets N which do not con-
tain pairs of integers M ̸= N with N = 2kM .

This restriction is not sufficient to stop double-counting nodes. Indeed, sup-
pose N ∈ N with N = 2M . Then any abelian surface (N,N)-isogenous to An

will be (M,M)-isogenous to An+1. In particular such an abelian surface will
also be (N,N)-isogenous to An+2. To rule out such scenarios, we introduce the
following restriction on our paths.

Definition 3. Let N ⊆ Z≥2 be a finite set of integers and let P be a walk of
(2, 2)-isogenies in Γ2(2; p) as in (2).

Let M,N ∈ N and suppose that there exist integers m,n ≥ 0 and (M,M)-
and (N,N)-isogenies ψM : Am → B and ψN : An → B. We say that P resists
collisions for M,N if there exists an integer i ≥ 0 and an isogeny Ψ : Ai → B
such that ψM = Ψ ◦ ϕm,i and ψN = Ψ ◦ ϕn,i.

We say that P resists collisions for N if it resists collisions for every pair
M,N ∈ N .

We are now able to state precisely the number of nodes checked between
Lines 8–11 of Algorithm 4, assuming our paths resist collisions for the set N .

Lemma 4. Let N ⊆ Z≥2 be a finite set of integers such that, if N is non-empty,
there do not exist distinct M,N ∈ N with N = 2kM for any k ≥ 1.

Let P be a path in Γ2(2; p) which resists collisions for N . The number of
nodes inspected per step by running Algorithm 4 in P is at least

nodesN :=

{∑
N∈N D′

N if N contains a power of 2,∑
N∈N D′

N + 1 otherwise

where
D′

N = DN −
∑
1≤k

2k|N

DN/2k

and DN is the number of neighbours of a node in Γ2(N ; p), given in Equation (1).
Equality holds for steps taken after maxN∈N (2 log2(N)) steps.

Remark 9. It is important to note that the assumption that P resists collisions
for N is mild in practice. Indeed, when N contains only odd integers the assump-
tion simplifies to requiring that, in a walk in the (2, 2)-isogeny graph, any abelian
surface (N,N)-isogenous to An is not (M,M)-isogenous to Am for some m. The
set N will consist only of integers ≤ 11 and our walks have length O(log(p)). A
collision of this sort therefore implies that An has an endomorphism of degree
O(log(p)). Heuristically there should be very few such abelian surfaces. Indeed
in the dimension 1 case, by Proposition B.3 in the unpublished appendix to [48],
the proportion of supersingular elliptic curves with an endomorphism of degree
at most O(log(p)) is O(log(p)3/2/p).

Proof. Suppose we have taken the following walk in Γ2(2; p)

A0 → A1 → · · · → An → An+1 → · · · ,

applying Algorithm 4.

First note that if N contains a power of 2, then each successive p.p. abelian
surface Ai is known not to be a product of elliptic curves. By hypothesis, there
do not exist distinct M,N ∈ N with N = 2kM for any k ≥ 1. Therefore, since
P resists collisions for N , for each distinct M,N ∈ N the p.p. abelian surfaces
(M,M)-isogenous to Am are not (N,N)-isogenous to An for all m,n ≥ 0. In
particular it suffices to show that the number of p.p. abelian surfaces (N,N)-
isogenous to Ai, but not (N,N)-isogenous to Aj for each j < i, is equal to
D′

N .
The claim follows immediately when N is odd, since the walk takes place

in Γ2(2; p). If N is even, write N = 2ℓM where ℓ ≥ 1 and M is odd. In this
case, for each 1 ≤ k ≤ ℓ, any p.p. abelian surface (2ℓ−kM, 2ℓ−kM)-isogenous
to An−k is (N,N)-isogenous to both An−2k and An. Therefore, DN/2k surfaces
(N,N)-isogenous to An are (N,N)-isogenous to An−2k.

The claim follows by summing over 1 ≤ k ≤ ℓ. Note that equality holds if
n− 2k ≥ 0 for each 1 ≤ k ≤ ℓ, i.e., we have taken at least 2ℓ steps. ⊓⊔

We use the lemma above to determine, for each prime p, an optimal set N
for which we perform the detection of (N,N)-splittings during Algorithm 4.

Let cstep be the number of Fp-multiplications required to take a step in
Γ2(2; p) using Algorithm 2, and let cig be the number of Fp-multiplications re-
quired to compute α(C) using InvariantsFromWeierstrassPoints (see Remark 5).
Finally, letting csplit(N) be the total number of Fp-multiplications required by
Algorithm 3 (see Proposition 4 and Remark 7), we obtain the following lemma.

Lemma 5. For a subset N ⊆ {2, 3, . . . , 11}, the number of Fp-multiplications
required to run Steps 7-15 of Algorithm 4 is at most

costN :=

{
cstep + cig +

∑
N∈N csplit(N) if N ̸= ∅,

cstep otherwise.

Proof. Given input defining a genus 2 curve C/Fp2 if N = ∅ then Steps 7-15 of
Algorithm 4 require a single call to Step(a, bits), taking cstep Fp-multiplications.

Otherwise, Step 7 calls InvariantsFromWeierstrassPoints taking cig multiplica-
tions in Fp. For each N ∈ N , the contents of the for-loop (i.e., Steps 8-11) require
csplit(N) multiplications in Fp. Finally Steps 12-15 call Step(a, bits), again re-
quiring cstep Fp-multiplications. ⊓⊔

We consider subsets of {2, . . . , 11} satisfying the hypotheses of Lemma 4. As
a precomputation, amongst these subsets we determine the optimal set N for
Algorithm 4 by choosing N to minimise the number of Fp-multiplications per
node revealed (either visited by the Richelot walk or revealed by IsSplit). That
is, we choose the N that minimises the ratio costN

nodesN
.

6.3 A bound on the cost of the SplitSearcher algorithm

We now discuss a heuristic upper bound for the concrete cost of finding a split-
ting of a genus 2 Jacobian using the SplitSearcher algorithm combined with an
optimised walk in Γ2(2; p).

First recall that our function InvariantsFromWeierstrassPoints terminates with
291 Fp-multiplications and 1 Fp inversion. Bounding this inversion by 2 log2(p)
Fp-multiplications (i.e., by the worst case where the binary expansion of the
exponent consists only of 1’s), we have cig ≤ 291 + 2 log2(p).

We now assume that the cost of IsSplit is bounded by the cost of its first 3
steps (see Proposition 4 and Table 3 bounds depending only on N , and Remark 7
for a justification). Finally RIsog requires 63 Fp-multiplications and 3 calls to
InvSqrt which costs at most 22 + 4 log2(p) Fp-multiplications (with the log2(p)
terms arising from 2 exponentiations). In particular, RIsog costs at most 129 +
12 log2(p) Fp-multiplications.

For primes of at least 150 bits, the set N = {4, 6} is the optimal set discussed
in Section 6.2, and we obtain an upper bound of

14 log2(p) + 34490

664
(3)

Fp-multiplications per node revealed (assuming the heuristics from Remarks 6
and 9). If we assume that the proportion of product nodes (among nodes in-
spected by Algorithm 4) is equal9 to 5/p we would expect that Algorithm 4
requires (

14 log2(p) + 34490

5 · 664

)
p+O(log2(p)) (4)

Fp-multiplications before encountering a product node.

7 Efficient detection of endomorphisms

In this section, we show how our algorithm SplitSearcher can be extended to
detect endomorphisms. Recall that for the detection of (N,N)-splittings we work
with the Humbert surface HN2 of square discriminant N2. The key observation
that sets up the work in this section is the following: the methods from Section 5
apply directly to surfaces HD, even when D is not a perfect square. Using this
observation, we obtain an algorithm that efficiently detects endomorphisms of
degree D for fundamental discriminants D < 100.

Though these algorithms are constructed in a manner nearly identical to
Sections 5 and 6, we provide details here for completeness and to set the stage
for the experimental data presented in Section 8.

7.1 An algorithm to detect endomorphisms

In Section 5.2, we presented a method to efficiently detect whether the Jacobian
JC of a genus 2 curve C is (N,N)-isogenous to a product of elliptic curves, by
determining whether [C] lies on the Humbert surface HD defined in Section 4.3.

9This is the expected proportion of product nodes in a random walk in Γ2(2, p),
see [27, §6.2]. However, preliminary experiments (see Table 5 and Section 8.2) indicate
that in our walk (taking only good extensions) the proportion may be closer to 1/p.

Now consider instead the Humbert surface HD of fundamental discriminant
D. By Theorem 1 the Jacobian JC has RM by OD (over K) if and only if
[C] ∈ HN2(K). In this case, we use the explicit formulæ for the maps φD given
by Elkies and Kumar [23] for 1 < D < 100.

Indeed, let f
(D)
i (r, s) and PD

i,j be as in Proposition 2 and Lemma 3. By
Proposition 2, to show that JC has RM by OD, it suffices to show there exists

a point P ∈ A2(Fp) such that f
(D)
1 (r, s), f

(D)
2 (r, s) and f

(D)
3 (r, s) vanish at P .

This is analogous to the situation in Section 5 and, given a genus 2 curve C/Fp,
we can use the methods described in Section 5.1 to perform this detection. As

in Section 5.2 let P̃
(D)
i,j be the polynomial obtained from P

(D)
i,j by reducing its

coefficients mod p.

By direct analogy to IsSplit (see Algorithm 3) we have the algorithm De-
tectEnd, which we present in Algorithm 5.

Algorithm 5 DetectEnd(α(C), P̃
(D)
1,2 , P̃

(D)
2,3 , D):

Input: A tuple α(C) = (α1(C), α2(C), α3(C)), the polynomials P̃
(D)
1,2 , P̃

(D)
2,3 ∈

Fp[α1, α2, α3][r], and a discriminant D > 1 satisfying either (D1) or (D2).
Output: A boolean that is true if JC has RM by OD.

1: (P̃1,2)[C] ← EvalCoeffs(P̃
(D)
1,2 ,α(C))

2: (P̃2,3)[C] ← EvalCoeffs(P̃
(D)
2,3 ,α(C))

3: g ← InvFreeGCD((P̃1,2)[C], (P̃2,3)[C])
4: if deg g ≥ 1 then
5: s0 ← ComputeRoot(g)

6: (f̃1)[C] ← EvalCoeffs(f̃
(D)
1 ,α(C))

7: (f̃2)[C] ← EvalCoeffs(f̃
(D)
2 ,α(C))

8: (f̃3)[C] ← EvalCoeffs(f̃
(D)
3 ,α(C))

9: h← InvFreeGCD(InvFreeGCD((f̃1)[C](r, s0), (f̃2)[C](r, s0)), (f̃3)[C](r, s0))
10: if deg h ≥ 1 then
11: r0 ← ComputeRoot(h)
12: bool← IgNonzero(r0, s0)
13: if bool == true then
14: return true

15: return false

As with Proposition 4, we have the following proposition which gives the cost
of DetectEnd.

Proposition 5. Let 1 < D < 100 be a fundamental discriminant, and let
mons(D) be the set of monomials in α1, α2, α3 appearing in the coefficients of

P̃
(D)
1,2 and P̃

(D)
2,3 (which lie in Fp[α1, α2, α3]). For each i = 1, 2, 3, let

di(D) = max({degree of αi in m | m ∈ mons(D)}).

The cost of steps 1–3 in Algorithm 5 (with input D) is at most

3(d1(D) + d2(D) + d3(D)) + 6m(D) + 2M(D) +
3

2
(dP (D) + 2)(dP (D) + 3)− 27

Fp-multiplications, where dP (D) = deg P̃
(D)
1,2 + deg P̃

(D)
2,3 , m(D) = #mons(D),

and M(D) is the number of monomials in α1, α2, α3 appearing in the coefficients

of P̃
(D)
1,2 and P̃

(D)
2,3 counting repetitions.

In Table 4, we give the values of d1(D), d2(D), d3(D), m(D), M(D), and
dP (D) for some 1 < D < 100. Combining this with Proposition 5, we obtain the
number of Fp multiplications required to run DetectEnd for a fixed D.

D d1(D) d2(D) d3(D) m(D) M(D) dP (D) Total #Fp mults.

5 1 2 1 6 15 4 114
8 3 5 3 21 117 11 639
12 2 3 2 13 154 22 1280
13 3 5 3 21 228 22 1488
17 8 12 8 121 2076 44 8178
21 8 12 8 121 2492 44 9010
24 5 7 5 56 1956 69 11940
28 9 13 9 154 6795 88 26865
29 6 8 6 78 1981 66 11501
33 10 14 10 190 10375 132 49100
37 6 10 6 64 2896 110 25199
41 10 14 10 190 13402 176 75812
44 13 18 13 316 20040 154 78819
53 8 12 8 131 10380 154 58341
56 14 20 14 350 30534 220 137544
57 14 22 14 320 42309 308 231276
60 15 24 15 415 45272 264 199702
65 12 16 12 271 48240 352 286704
69 10 14 10 190 24775 264 157298
73 16 24 16 433 97830 484 553422
76 17 23 17 518 106063 418 480608
77 10 16 10 196 21193 264 150176
85 20 32 20 715 143863 396 530408
88 16 22 16 459 110859 506 612465
89 20 28 20 695 185100 572 869622
92 19 26 19 645 124159 440 546062
93 20 32 20 715 124527 396 491736
97 28 40 28 1311 572417 924 2440564

Table 4. Values of d1(D), d2(D), d3(D), m(D), M(D), and dP (D) for fundamental
discriminants D < 100. The final column lists the number of Fp-multiplications from
Proposition 5.

Remark 10. Combining our optimised algorithm for taking steps in the (2, 2)-
isogeny graph with Algorithm 5 (which detects whether the current node has
RM by OD), we obtain a new algorithm by direct analogy with Algorithm 4,
which we call SplEndid. More precisely, SplEndid takes as input of a genus 2 curve
C/Fp2 with superspecial Jacobian and a set D of discriminants satisfying either
(D1) or (D2) and outputs a path JC → JC′ in Γ2(2; p) such that JC′ has an
RM by OD for some D ∈ D.

The output of SplEndid gives non-trivial information about the endomor-
phism ring of JC′ . As discussed in Section 1, the utility of this information in the
broader picture of the superspecial isogeny problem is not known. Nevertheless,
to begin to compare the dimension 2 isogeny problem and the problem of finding
an endomorphism on a superspecial Jacobian, it seems natural to compare the
relative performances of SplitSearcher and SplEndid as p grows. For SplitSearcher
the set N passed into the algorithm containing the integers N on which the
detection is performed can be chosen to be (heuristically) optimal. However, in
the case of SplEndid it is unclear how to obtain the optimal set of discriminants
D. Indeed, we are not yet aware of any heuristics on the proportion of nodes
in the graph that have RM by OD, and thus do not know how many nodes we
“reveal” when running DetectEnd at each step for a specific D. In Section 8.2
we give some experimental evidence towards an appropriate heurtistic.

8 Experimental results

We present some experimental data for the SplitSearcher algorithm in §8.1 and
for the SplEndid algorithm in §8.2. We conclude the paper with some possible
improvements to these algorithms in §8.3.

8.1 SplitSearcher results

We conducted experiments over both small and large primes, and the results are
reported in Tables 5 and 6, respectively.

The small prime experiments were conducted so that we could run multiple
instances of the full Õ(p) search for product curves to completion. The four
Mersenne primes of the form p = 2m − 1 with m ∈ {13, 17, 19, 31} were chosen
as the field characteristics, and instances of the product-finding problem were
generated by taking a chain of 40 randomised Richelot isogenies away from the
superspecial abelian surface10 corresponding to C/Fp : y

2 = x5+x. For the three
smaller primes, 256 instances were generated, while for p = 231−1, we generated
10 such instances; each instance is specified by a 6-tuple of Weierstrass points
(see Section 3.1). All of the instances were solved once using the original walk
in Γ2(2; p) described in Section 3. and again using our improved SplitSearcher
algorithm described in Section 6. For all four of these primes, the set N = {2, 3}

10The shapes of the primes chosen in both tables is of little consequence: we merely
made consistent choices of the prime shape so that the same form of superspecial
starting surface could be used throughout the experiments.

was optimal for use in SplitSearcher. In Table 5 we report the average number
of steps taken in Γ2(2; p) for both algorithms, as well as the average number of
Fp-multiplications required to solve the problem. In the case of SplitSearcher, we
additionally report the average number of nodes searched. This includes both
the nodes that were walked on and those that were inspected using our (N,N)-
splitting detection11. As we might expect, this is always relatively close to the
number of steps taken in the Richelot-only walk.

Walks in Γ2(2; p) Walks in Γ2(2; p)

without additional searching w. SplitSearcher in Γ2(N ; p)

[16] (optimised in Section 3) This work

Prime No. inst. Av. steps Av. Fp Av. steps Av. nodes Av. Fp Improv.

p solved taken mults. taken covered mults. factor

213 − 1 256 6531 1839209 122 6536 188015 9.8x

217 − 1 256 101812 33538079 2154 116305 3474579 9.7x

219 − 1 256 475300 168095438 8593 464008 14104408 11.9x

231 − 1 10 238694656 118336348672 4856252 262237639 8787389743 13.4x

Table 5. Solving the product-finding problem using Richelot isogeny walks in Γ2(2; p)
only (left) vs. using Richelot isogeny walks in Γ2(2; p) together with SplitSearcher in
Γ2(N ; p) (right).

For cryptographically sized primes, we are unable to solve the product-finding
problem, which is why Table 6 instead reports the number of nodes that were
searched when the number of Fp-multiplications was bounded at 108. The main
trend to highlight (in both tables) is that the speedup is increasing steadily as
the prime grows in size: the number of Fp-multiplications required for a single
Richelot isogeny is proportional to the bitlength of p (due to the square root
computations), while the number of Fp-multiplications required to inspect the
(N,N)-isogenous neighbours (after computing the Igusa–Clebsch invariants) re-
mains fixed as p grows. This is also predicted by Equation 3, where the coefficient
of the dominating log2(p) term is 14/664 versus 12.

Interestingly, as shown in Table 6 the set N = {2, 3} is optimal for the 50-
and 100-bit primes, the set N = {3, 4} is optimal for the 150-bit prime, while the
set N = {4, 6} takes over and reigns supreme for all other reported bitlengths.
Our implementation can be used to obtain the same data for any other prime of
interest, and the number of Fp-multiplications used per node can be combined
with the (average) number of nodes one expects to search through in order to
get a very precise estimate on the concrete classical security of the superspecial
isogeny problem.

11Throughout this section we assume that the number of nodes revealed by Split-
Searcher after s steps is equal to s · nodesN . Indeed, as discussed in Remarks 6 and 9
an overcount should occur with very low probability. In particular, after O(p) steps we
would expect to overcount at most o(p) nodes. This heuristic is also supported by the
experiments reported in Table 5.

Walks in Γ2(2; p) Walks in Γ2(2; p)

without additional searching with SplitSearcher in Γ2(N; p)

[16] (optimised in Section 3) This work

Prime p log(p)
nodes per

108 mults.

Fp-mults.

per node

Set

N ∈ {· · · }
nodes per

108 mults.

Fp-mults.

per node

Improv.

factor

211 · 324 − 1 50 172712 579 {2, 3} 2830951 35 16.5x

244 · 335 − 1 100 85034 1176 2076517 48 24.5x

227 · 377 − 1 150 63492 1575 {3, 4} 1858912 54 29.2x

2144 · 335 − 1 200 42088 2376

{4, 6}

1802816 55 43.2x

2181 · 343 − 1 250 34083 2934 1771608 56 52.4x

5 · 2193 · 366 − 1 300 29317 3411 1745712 57 59.8x

2201 · 394 − 1 350 25581 3909 1719152 58 67.4x

2231 · 3106 − 1 400 22753 4395 1694584 59 74.5x

2204 · 3155 − 1 450 20729 4824 1672672 60 80.4x

2113 · 3244 − 1 500 20239 4941 1667360 60 82.4x

2293 · 3162 − 1 550 16835 5940 1619552 62 95.8x

5 · 2299 · 3188 − 1 600 15679 6378 1599632 63 101.2x

2404 · 3155 − 1 650 13848 7221 1562448 64 112.8x

283 · 3389 − 1 700 14530 6882 1580376 63 109.2x

2477 · 3172 − 1 750 12046 8301 1517960 66 125.7x

2107 · 3437 − 1 800 13228 7560 1548504 65 116.3x

2166 · 3431 − 1 850 11968 8355 1515304 66 126.6x

2172 · 3459 − 1 900 11427 8751 1500032 67 130.6x

2536 · 3261 − 1 950 10233 9772 1443592 69 141.6x

2721 · 3176 − 1 1000 8814 11346 1403752 71 159.8x

Table 6. The approximate number of multiplications required to search a single node
using Richelot isogeny walks in Γ2(2; p) only (left) vs. using Richelot isogeny walks
in Γ2(2; p) together with SplitSearcher in Γ2(N ; p) (right). Note that the shape of the
primes chosen has little effect on the multiplication counts since we expect to never
find a splitting.

8.2 The distribution of RM nodes in the Richelot isogeny graph

Suppose thatD = N2 is a perfect square. Recall that the number Fp-isomorphism
classes of superspecial Jacobians and elliptic products is equal to #J2(p) =

1
2880p

3 + O(p2) and #E2(p) = 1
288p

2 + O(p) respectively (as discussed in Sec-
tion 2.2). Naively we predict that the expected number of steps in a random
walk in Γ2(2; p) to arrive at a Jacobian which is (N,N)-isogenous to a product

of elliptic curves is equal to 1
DN

#J2(p)
#E2(p)

= p
10DN

+O(1), where DN is as defined in

Equation (1). On account of the fact that the automorphism group of a product
E1 × E2 of elliptic curves contains C2 × C2, and is therefore not isomorphic to
C2 (which it is for a generic superspecial p.p. abelian surface) Florit–Smith [27,
§6.2] argue for a more precise heuristic of p

5DN
+O(1).

By simply extending this function to a general discriminant D, we arrive at
the heuristic that the expected number steps in a random walk in Γ2(2; p) to
arrive at an abelian surface with RM by OD is

p

D̃D

+O(1) (5)

for some function D̃D = O(D3/2) which interpolates D̃N2 = 5DN .

A heuristic for D̃D. The following heuristic description of the function D̃D

was kindly provided to us by Jonathan Love. Suppose that D is a fundamental
discriminant and that OD has narrow class number 1. Write K = Frac(OD)
for the field of fractions of OD. By combining [53, Theorem 2.5.35] and the
Eichler mass formula ([70, Theorem 26.1.5]) we obtain an approximation for
the number of superspecial p.p. abelian surfaces equipped with a choice of RM
action OD ↪→ End†(A) given by

ζK(2)D3/2

8π4
p2 +O(p) (6)

where ζK(s) is the Dedekind zeta function. (The difference between (6) and the
true count of superspecial p.p. abelian surfaces with RM by OD is accounted for
by the Eichler class number formula [70, Theorem 30.8.6].) If D ≪ p one expects
heuristically that for almost all superspecial p.p. abelian surfaces A/Fp2 which
can be equipped with RM by OD there exist exactly 2 choices of embeddings
OD ↪→ End†(A). In particular, the expected number of steps in a random walk
in Γ2(2; p) to arrive at an abelian surface with RM by OD is heuristically given
by the formula in Equation (5) with

D̃D =
1

2
· 360ζK(2)

π4
D3/2. (7)

Experimental distribution of RM nodes. In Figure 1 we report on some
preliminary experiments giving the average number of steps required to find a
surface with RM by OD. These experiments appear to suggest that the leading
term in Equation (5) should be closer to p/D̃expt

D where

D̃expt
D =


5
4DN if D = N2, and

1
3 ·

360ζK(2)
π4 D3/2 if D is fundamental.

(8)

Note that this adjusted heuristic matches our experimental data closely, even
when OD does not have narrow class number 1.

Remark 11. Note that our walks in Γ2(2; p) take only good extensions. It is not
clear to us whether this should have an effect on the number of endomorphisms
encountered in a random walk.

8.3 Possible improvements and questions

There have been a number of choices made throughout this paper which open
up possible avenues for improvement. We conclude by giving a non-exhaustive
list of such improvements.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
0

200

400

600

800

D

p/µD

Fig. 1. The mean number of steps µD in Γ2(2; p) required to find a p.p. abelian surface
with RM by OD for each discriminant D < 40 which is either fundamental or a perfect
square. The vertical axis is normalised as p/µD to account for the heuristic dependence
on p discussed in Section 8.2. Each plotted point corresponds to a separate prime p,
and darker points correspond to larger values of p (which range from 12 to 23 bits).

The squares are the values of D̃expt
D .

1. The parametrisation of HN2 given by Kumar [46] may be altered through
composition with a birational transformation of A2. There may be better
choices of parametrisations for our purposes, i.e., ones which minimise the

degree of P
(N2)
i,j . Furthermore, as detailed in Remark 4, there are many ways

to normalise the Igusa–Clebsch invariants, though it is unclear to us which
normalisations minimise the degrees that arise in the resultant computations.

2. Since the Weierstrass points of genus 2 curve with superspecial Jacobian are
all Fp2-rational, it may be desirable to work with the Rosenhain invariants
which may be computed more efficiently. To use our methods one would
need to compute a birational model for the surface HN2(2) whose points
parametrise optimally (N,N)-split Jacobians with full level 2 structure. One
approach is described in [37].

3. It may be possible to improve the complexity of the evaluations performed
by EvalCoeffs (see Section 5.2) by taking longer walks in the (2, 2)-graph and
then batching the evaluations using multi-point evaluation.

4. Knowledge of explicit equations for the surface HN2 for larger N would
allow us to perform efficient detection of (N,N)-splittings beyond N = 11.

It may be possible to derive these from the pre-existing equations for the
surfaces Y−(N

2) (which parametrise pairs of elliptic curves (N,N)-isogenous
to a genus 2 Jacobian) in [25, Theorem 2.4], [26, Theorem 1.2], and [32,
Theorem 1.1], or by extending Kumar’s computations.

5. As was pointed out to us by Thomas Decru, it is possible to detect (2N, 2N)-
splittings more efficiently by taking partial steps in the (2, 2)-isogeny graph.
Let C/Fp2 be a genus 2 curve given by a Weierstrass equation y2 = (x −
a0) · · · (x − a5). While we cannot take a full step in Γ2(2; p) (recovering
the factorisation of the Weierstrass sextic for each of the (2, 2)-isogenous
curves) without computing square roots, we can compute the Igusa–Clebsch
invariants of all the neighbours of JC using only a small number of Fp-
multiplications and a single batched inversion. In this case we may detect
(2N, 2N)-splittings of JC by applying IsSplit to each of the (2, 2)-neighbours
of JC . In the code attached to this article, this optimisation can be enabled
by setting split after 22 flag = true. In our implementation of this idea,
and for the primes ranging between 50 and 1000 bits reported in Table 6,
we observed additional improvement factors ranging between 1.3-1.6.

We conclude with a natural question arising from the experiments in Sec-
tion 8.2. Recall that for an integer N > 1 we write Γ2(N ; p) for the (N,N)-
isogeny graph of superspecial p.p. abelian surfaces over Fp.

Question 2. Given a discriminant D > 0, what is the expected number of p.p.
abelian surfaces with RM by OD encountered in a random walk in Γ2(N ; p)?

An answer to Question 2 is necessary to construct optimal sets D of discrim-
inants for the algorithm SplEndid defined in Remark 10.

Acknowledgements

We thank Thomas Decru, Tom Fisher, Jonathan Love, Aurel Page, Benjamin
Smith, and John Voight for helpful conversations and comments on earlier ver-
sions of this paper. We also thank Thomas Decru for mentioning to us im-
provement 5 in Section 8.3 and Jonathan Love for the arguments in Section 8.2
pertaining to fundamental discriminants.

References

1. A. Basso, L. Maino, and G. Pope. Festa: Fast encryption from supersingular
torsion attacks. In Jian Guo and Ron Steinfeld, editors, Advances in Cryptology –
ASIACRYPT 2023, pages 98–126, Singapore, 2023. Springer Nature Singapore.

2. O. Bolza. On binary sextics with linear transformations into themselves. Amer.
J. Math., 10(1):47–70, 1887.

3. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra
and number theory.

4. B. Brock. Superspecial curves of genera two and three. PhD thesis, Princeton
University, 1994.

5. R. Bröker, E. W. Howe, K. E. Lauter, and P. Stevenhagen. Genus-2 curves and
Jacobians with a given number of points. LMS J. Comput. Math., 18(1):170–197,
2015.

6. N. Bruin and K. Doerksen. The arithmetic of genus two curves with (4, 4)-split
Jacobians. Canad. J. Math., 63(5):992–1024, 2011.

7. N. Bruin and K. Doerksen. Electronic resources. http://www.cecm.sfu.ca/

~nbruin/splitigusa/, 2011. Accessed Septemeber 2022.
8. W. Castryck and T. Decru. Multiradical isogenies. Arithmetic, Geometry, Cryp-

tography, and Coding Theory 2021, 779:57, 2022.
9. W. Castryck and T. Decru. An efficient key recovery attack on SIDH. In EURO-

CRYPT 2023, volume 14008 of Lecture Notes in Computer Science, pages 423–447.
Springer, 2023.

10. W. Castryck, T. Decru, and B. Smith. Hash functions from superspecial genus-2
curves using Richelot isogenies. Journal of Math. Crypt., 14(1):268–292, 2020.

11. D. X. Charles, E. Z. Goren, and K. E. Lauter. Families of Ramanujan graphs and
quaternion algebras. In Groups and symmetries, volume 47 of CRM Proc. Lecture
Notes, pages 53–80. Amer. Math. Soc., Providence, RI, 2009.

12. D. X. Charles, K. E. Lauter, and E. Z. Goren. Cryptographic hash functions from
expander graphs. Journal of Cryptology, 22(1):93–113, 2009.

13. M. Chen, A. Leroux, and L. Panny. SCALLOP-HD: Group action from 2-
dimensional isogenies. In Q. Tang and V. Teague, editors, Public-Key Cryptography
– PKC 2024, pages 190–216, Cham, 2024. Springer Nature Switzerland.

14. M. Corte-Real Santos, C. Costello, and S. Frengley. An algorithm for efficient de-
tection of (N,N)-splittings and its application to the isogeny problem in dimension
2. In Public-key cryptography—PKC 2024. Part III, volume 14603 of Lecture Notes
in Computer Science, pages 157–189. Springer, Cham, 2024.

15. M. Corte-Real Santos, C. Costello, and J. Shi. Accelerating the Delfs–Galbraith
algorithm with fast subfield root detection. In Annual International Cryptology
Conference, pages 285–314. Springer, 2022.

16. C. Costello and B. Smith. The supersingular isogeny problem in genus 2 and
beyond. In PQ Crypto, pages 151–168. Springer, 2020.

17. D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. Undergrad-
uate Texts in Mathematics. Springer, 2015.

18. P. Dartois, A. Leroux, D. Robert, and B. Wesolowski. SQIsignHD: New dimensions
in cryptography. In M. Joye and G. Leander, editors, Advances in Cryptology –
EUROCRYPT 2024, pages 3–32, Cham, 2024. Springer Nature Switzerland.

19. C. Delfs and S. D. Galbraith. Computing isogenies between supersingular elliptic
curves over Fp. Designs, Codes and Cryptography, 78(2):425–440, 2016.

20. Pierre Deligne and Georgios Pappas. Singularités des espaces de modules de
Hilbert, en les caractéristiques divisant le discriminant. Compositio Math.,
90(1):59–79, 1994.

21. M. Djukanović. Split Jacobians and Lower Bounds on Heights. PhD thesis, Leiden
University and L’Université de Bordeaux, 11 2017. https://hdl.handle.net/

1887/54944.
22. M. Djukanović. Families of (3,3)-split Jacobians. arXiv e-prints arXiv:1811.10075,

November 2018.
23. N. D. Elkies and A. Kumar. K3 surfaces and equations for Hilbert modular surfaces.

Algebra Number Theory, 8(10):2297–2411, 2014.

http://www.cecm.sfu.ca/~nbruin/splitigusa/
http://www.cecm.sfu.ca/~nbruin/splitigusa/
https://hdl.handle.net/1887/54944
https://hdl.handle.net/1887/54944

24. L. De Feo, S. Dobson, S. D. Galbraith, and L. Zobernig. SIDH proof of knowledge.
In ASIACRYPT. Springer, 2022.

25. T. Fisher. On families of 13-congruent elliptic curves. arXiv e-prints
arXiv:1912.10777, December 2019.

26. T. Fisher. On pairs of 17-congruent elliptic curves. arXiv e-prints
arXiv:2106.02033, June 2021.

27. E. Florit and B. Smith. Automorphisms and isogeny graphs of abelian varieties,
with applications to the superspecial Richelot isogeny graph. In Arithmetic, Ge-
ometry, Cryptography, and Coding Theory 2021, 2021.

28. Enric Florit and Benjamin Smith. An atlas of the Richelot isogeny graph. In The-
ory and Applications of Supersingular Curves and Supersingular Abelian Varieties,
volume B90 of RIMS Kôkyûroku Bessatsu, pages 195–219. Res. Inst. Math. Sci.
(RIMS), Kyoto, 2022.

29. E. V. Flynn and Y. B. Ti. Genus two isogeny cryptography. In PQ Crypto, pages
286–306. Springer, 2019.

30. D. Freeman and K. Lauter. Computing endomorphism rings of Jacobians of genus
2 curves over finite fields. In Algebraic geometry and its applications, volume 5 of
Ser. Number Theory Appl., pages 29–66. World Sci. Publ., Hackensack, NJ, 2008.

31. S. Frengley. Explicit moduli spaces for curves of genus 1 and 2. PhD thesis,
University of Cambridge, December 2023.

32. S. Frengley. On 12-congruences of elliptic curves. Int. J. Number Theory, 20(2):565–
601, 2024.

33. G. Frey and E. Kani. Curves of genus 2 covering elliptic curves and an arithmetical
application. In Arithmetic algebraic geometry (Texel, 1989), volume 89 of Progr.
Math., pages 153–176. Birkhäuser Boston, Boston, MA, 1991.

34. P. Gaudry and É. Schost. On the invariants of the quotients of the Jacobian of
a curve of genus 2. In Applied algebra, algebraic algorithms and error-correcting
codes (Melbourne, 2001), volume 2227 of Lecture Notes in Comput. Sci., pages
373–386. Springer, Berlin, 2001.

35. E. Z. Goren and J. R. Love. Supersingular elliptic curves, quaternion algebras and
applications to cryptography. arXiv e-prints arXiv:2410.06123, October 2024.

36. Eyal Z. Goren and Kristin E. Lauter. Evil primes and superspecial moduli. Int.
Math. Res. Not., pages Art. ID 53864, 19, 2006.

37. D. Gruenewald. Computing Humbert surfaces and applications. In Arithmetic,
geometry, cryptography and coding theory 2009, volume 521 of Contemp. Math.,
pages 59–69. Amer. Math. Soc., Providence, RI, 2010.

38. H. Hida. Hilbert modular forms and Iwasawa theory. Oxford Mathematical Mono-
graphs. The Clarendon Press, Oxford University Press, Oxford, 2006.

39. T. Ibukiyama and T. Katsura. On the field of definition of superspecial polarized
abelian varieties and type numbers. Compositio Math., 91(1):37–46, 1994.

40. T. Ibukiyama, T. Katsura, and F. Oort. Supersingular curves of genus two and
class numbers. Compositio Math., 57(2):127–152, 1986.

41. J. Igusa. Arithmetic variety of moduli for genus two. Ann. of Math. (2), 72:612–
649, 1960.

42. J. Igusa. On Siegel modular forms of genus two. Amer. J. Math., 84:175–200, 1962.
43. B. W. Jordan and Y. Zaytman. Isogeny graphs of superspecial abelian varieties

and generalized Brandt matrices. arXiv preprint arXiv:2005.09031, 2020.
44. D. Kohel, K. Lauter, C. Petit, and J. Tignol. On the quaternion-isogeny path

problem. LMS Journal of Computation and Mathematics, 17(A):418–432, 2014.
45. R. M. Kuhn. Curves of genus 2 with split Jacobian. Trans. Amer. Math. Soc.,

307(1):41–49, 1988.

46. A. Kumar. Hilbert modular surfaces for square discriminants and elliptic subfields
of genus 2 function fields. Research in the Mathematical Sciences, 2(1):1–46, 2015.

47. S. Kunzweiler. Efficient computation of (2n, 2n)-isogenies. Des. Codes Cryptogr.,
92(6):1761–1802, 2024.

48. J. Love and D. Boneh. Supersingular curves with small noninteger endomorphisms.
Open Book Series, 4(1):7–22, 2020. Appendices available at https://arxiv.org/
pdf/1910.03180.pdf.

49. D. Lubicz and D. Robert. Fast change of level and applications to isogenies. In
ANTS-XV, 2022.

50. K. Magaard, T. Shaska, and H. Völklein. Genus 2 curves that admit a degree 5
map to an elliptic curve. Forum Math., 21(3):547–566, 2009.

51. L. Maino, C. Martindale, L. Panny, G. Pope, and B. Wesolowski. A direct key
recovery attack on SIDH. In EUROCRYPT 2023, volume 14008 of Lecture Notes
in Computer Science, pages 448–471. Springer, 2023.

52. J. Mestre. Construction de courbes de genre 2 a partir de leurs modules. In Effective
methods in algebraic geometry, volume 94 of Progr. Math., pages 313–334. Springer,
1990.

53. M.-H. Nicole. Superspecial abelian varieties, theta series and the Jacquet–Langlands
correspondence. PhD thesis, McGill University, 2005. https://escholarship.

mcgill.ca/concern/theses/f1881m434.
54. F. Oort. A stratification of a moduli space of abelian varieties. In Moduli of

abelian varieties (Texel Island, 1999), volume 195 of Progr. Math., pages 345–416.
Birkhäuser, Basel, 2001.

55. A. Page and B. Wesolowski. The supersingular endomorphism ring and one en-
domorphism problems are equivalent. In Advances in cryptology—EUROCRYPT
2024. Part VI, volume 14656 of Lecture Notes in Computer Science, pages 388–417.
Springer, Cham, 2024.

56. M. Rapoport. Compactifications de l’espace de modules de Hilbert-Blumenthal.
Compositio Math., 36(3):255–335, 1978.

57. D. Robert. Breaking SIDH in polynomial time. In EUROCRYPT 2023, volume
14008 of Lecture Notes in Computer Science, pages 472–503. Springer, 2023.

58. M. Scott. A note on the calculation of some functions in finite fields: Tricks of the
trade. Cryptology ePrint Archive, 2020.

59. T. Shaska. Curves of genus 2 with (n, n) decomposable Jacobians. Journal of
Symbolic Computation, 31(5):603–617, 2001.

60. T. Shaska. Curves of genus two covering elliptic curves. University of Florida,
2001.

61. T. Shaska. Genus 2 fields with degree 3 elliptic subfields. Forum Math., 16(2):263–
280, 2004.

62. T. Shaska and H. Völklein. Elliptic subfields and automorphisms of genus 2 func-
tion fields. In Algebra, arithmetic and geometry with applications, pages 703–723.
Springer, 2004.

63. T. Shaska, G. S. Wijesiri, S. Wolf, and L. Woodland. Degree 4 coverings of elliptic
curves by genus 2 curves. Albanian J. Math., 2(4):307–318, 2008.

64. J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts
in Mathematics. Springer, Dordrecht, second edition, 2009.

65. C. Springer. Computing the endomorphism ring of an ordinary abelian surface
over a finite field. Journal of Number Theory, 202:430–457, 2019.

66. K. Takashima. Efficient algorithms for isogeny sequences and their cryptographic
applications. In Mathematical modelling for next-generation cryptography, pages
97–114. Springer, 2018.

https://arxiv.org/pdf/1910.03180.pdf
https://arxiv.org/pdf/1910.03180.pdf
https://escholarship.mcgill.ca/concern/theses/f1881m434
https://escholarship.mcgill.ca/concern/theses/f1881m434

67. K. Takashima and R. Yoshida. An algorithm for computing a sequence of Richelot
isogenies. Bulletin of the Korean Mathematical Society, 46(4):789–802, 2009.

68. G. van der Geer. Hilbert modular surfaces, volume 16 of Ergebnisse der Mathe-
matik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)].
Springer-Verlag, Berlin, 1988.

69. P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications. J. Cryptol., 12(1):1–28, 1999.

70. John Voight. Quaternion algebras, volume 288 of Graduate Texts in Mathematics.
Springer, Cham, [2021] ©2021.

71. B. Wesolowski. The supersingular isogeny path and endomorphism ring prob-
lems are equivalent. In 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science—FOCS 2021, pages 1100–1111. IEEE Computer Society, Los
Alamitos, CA, 2022.

	Efficient algorithms for the detection of (N,N)-splittings and endomorphisms

