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Abstract—With the development of decentralized identity
(DID), anonymous credential (AC) technology, as well as its
traceability, is receiving more and more attention. Most works
introduce a trusted party (regulator) that holds a decryp-
tion key or backdoor to directly deanonymize the user iden-
tity of anonymous authentication. While some cryptographic
primitives can help regulators handle complex tracing tasks
among large amounts of user profiles (stored by the issuer)
and authentication records (stored by the service provider),
additional security primitives are still needed to ensure the
privacy of other users. Besides, hardware-binding anonymous
credential (hbAC) systems have been proposed to prevent
credential sharing or address platform resource constraints,
the traceability of hbAC has yet to be discussed.

In this paper, we introduce a public key encryption with
equality test as a regulatory text for each authentication record
to address the above-mentioned challenges. The security of
this feature is guaranteed by the verifiability, non-frameability,
and round isolation of the proposed scheme. We compared
the asymptotic complexity of our scheme with other traceable
AC schemes and shows our scheme has advantages in tracing
tasks as well as securely outsourcing them. The key feature
of our scheme is that the ability of equality test of regulatory
texts is independent of the public key, but rather depends on
the round identifier of the authentication. We instantiate a
traceable, hardware-binding AC scheme based on smart cards
and BBS+ signature and give the performance analysis of it.

1. Introduction

The anonymous credential system is a powerful cryp-
tographic tool that enables a user to prove possession of
certain attributes authorized by a legitimate issuer to a
service provider (verifier) in an anonymous and unlinkable
manner. Its privacy and functionality promise applications in
numerous authentication-related tasks, such as anonymous
voting, auctions, and wireless communications [1], [2], etc.

However, in real-world scenarios, many tasks demand
stricter requirements on the identity of entities; for example,
in a presidential election, in-person voting is mandatory. As
a digital certificate, anonymous credentials cannot guarantee
this feature. A feasible approach is separating the creden-
tials between the user and specific hardware, (such as the

core/helper setting in [3], and the card/holder setting in [4]),
which we called hardware-binding anonymous credentials
(hbAC). We follow their settings that the hardware we
mentioned always refers to secure hardware whose internal
data cannot be read or maliciously tampered with. The
main difference is that the helper is responsible for all
communications with the service provider under the former
setting, while the latter allows the hardware (card) to com-
municate with the service provider. These approaches help
mitigate application risks on the user side, like preventing
credential redistribution, while also offloading computation-
ally intensive tasks onto standard devices with more robust
computational and storage resources, such as smartphones.
During credential usage, the helper is responsible for com-
municating externally and calculating the primary content
of the credential based on usage requirements. Additionally,
the helper interacts with the core, which stores the other
part of the credential’s critical information, to compute the
complete proof of credential possession jointly.

A typical application of hbAC is Direct Anonymous
Attestation (DAA) [5], which is a widely used scheme on
Windows. DAA provides remote verifiers with anonymous
proof of the system environment and configuration, thereby
ensuring the legitimacy of the system. Another application
is associated with smart cards. For cases where the cre-
dential issuer and verifier are the same entity, Chase et
al. [6] propose keyed-verification anonymous credentials
(KVAC), which utilizes algebraic message authentication
codes to enhance the efficiency of credential issuance and
verification. Later, Camenisch et al. [7] combine KVAC with
BBS signatures, further increasing the efficiency of hbAC
(KVAC on smart cards). In a general setting, Bichsel et
al. [8] consider the implementation of the CL-credentials [9]
on Java cards. However, to maintain the independence of
the smart card in credential usage, all computations must
be completed within the smart card, which results in low
computational efficiency under practical security parame-
ters. Hanzlik et al. [3] focus on offloading computational
overhead to the devices and decoupling the smart card’s
computational burden from the number of attributes, thereby
improving overall performance.

Tracing misbehaved credential users. The commonly used
ACs, such as U-Prove, Idemix, and DAA, have introduced



TABLE 1: Asymptotic complexities of different AC systems (traceability part only).

Scheme Prove Verify Trace |Evidence| Approachtype (a) type (b) type (c)

[9] O(1) O(1) O(1) O(L) O(L) O(1) T-PKE
[10] O(1) O(1) O(1) O(L) O(L) O(1) T-PKE
[11] O(1) O(1) O(S) O(S + L) O(S + L) 0 T-PKE
[12] O(1) O(1) O(1) O(L) O(L) O(1) T-PKE
[13] O(1) O(1) O(S) O(S + L) O(S + L) 0 T-BD
[14] 0 0 O(S) O(L) O(S + L) 0 T-BD

This work O(1) O(1) O(1) O(R+ L) O(R+ L) O(1) T-PKE

new issues such as rampant malicious behavior, as ACs
allow users to perform any malicious action after anony-
mous authentication. The privacy features of ACs make
it impossible to trace wrongdoers [10]. A straightforward
solution is introducing tracing authorities who own tracing
keys and are capable of linking the anonymous owners be-
hind the credentials. This solves the problem of traceability
and enhances the security level and stability of the system
using ACs. Together with the hardware/device setting, it
is almost impossible for wrongdoers to dodge the tracing.
However, the aforementioned AC constructions did not put
these things together. Thus the feasibility and efficiency of
such a combination are still not clear.

Drawbacks of existing schemes. The notion of traceability
of anonymous credentials comes from the vein of group
signatures and is attracting increasing attention in recent
works. Existing traceable anonymous credential schemes
can briefly be categorized into two approaches: public key
encryption-based (T-PKE) [9], [10], [11], [12] and backdoor-
based (T-BD) [13], [14]. The former requires a regulator
to select a verifiable encryption scheme and release the
encryption public key, so users can encryption their identity
during each authentication for identity tracing. In contrast,
backdoor-based schemes will not introduce additional oper-
ations on the user side, as the user-specific backdoor was
generated based on his private key. The main drawback
of both approaches is that they typically focus on “de-
anonymizing” an anonymous malicious user based on his
authentication records. Due to this reason, the capability of
current traceable AC is somewhat limited and struggles to
trace anonymous users on larger scales, such as auditing the
authentication records across service providers or identify-
ing repeated authentication of the same user [15]. The latter
can be viewed as an essential security property. For example,
in the well-known anonymous voting system Helios and its
improvements [16], [17], [18], user privacy and the validity
of the voting can both benefit from de-duplicating the votes
from the same user.

We compare some related works with our work in Ta-
ble 1, where S is the total number of registered users, L
is the number of valid authentication records, and R is the
number of different authentication rounds. Then, |Evidence|
denotes the size for additional messages for traceability,
while the other fields represent computational complexity.
The

Type-1

Type-2

Type-3

(a) Record to identity

Type-1

Type-2

Type-3 (b) Identity to records

Type-1

Type-2

Type-3

(c) Record to Records

Figure 1: Different types of identity tracing.

On the complexity of tracing. From the regulator’s per-
spective, identity tracing tasks can be categorized into three
types (as shown in Figure 1): (a) identifying the credential
user corresponding to a particular authentication record; (b)
tracing other authentication records linked to a specific user;
and (c) identifying other authentication records associated
with a given authentication record. Type (c) can be seen as
a combination of type (a) and type (b). Let S and L denote
the total number of registered users and their authentication
records maintained by the service providers, respectively.
For type (a), only one decryption will be needed by T-PKE,
whereas the T-BD scheme typically requires approximately
S/2 rounds of matching calculations to complete. For type
(b), both tracking schemes demand L rounds of computa-
tion. Notably, the T-PKE scheme must ensure user identity
privacy throughout the computation process; otherwise, the
unlinkability between unrelated users and their respective
authentication records may be compromised. For type (c),
both schemes require safeguarding user identity privacy dur-
ing computation. The T-PKE scheme demands L+1 rounds
of decryption, while the T-BD scheme averages S/2 + L
rounds of computation.

To ensure user privacy, the regulators’ private keys must
be protected from leakage, and service providers must be
assured that the certification records they maintain are not
misused. To alleviate the computational burden on regula-
tors, advanced but time-consuming cryptographic primitives
(such as secure multi-party computation or private set in-
tersection) could be employed to enable outsourced compu-



tation. Notably, real-world scenarios may involve multiple
trust domains, various credential issuers, service providers,
and regulators, which make type (b) and (c) identity tracing
tasks complicated. Thus, enhancing regulatory efficiency
remains a critical and pressing challenge.

Our goals and setting. To overcome the aforementioned
problems, we consider designing a new tracing scheme
compatible with the hardware-binding AC systems [3], [4].
We consider designing an improved encryption scheme with
special functionalities that can be naturally integrated into
this setting as a plugin, which is of independent interest.
Intuitively, tracing malicious users (especially type (b) and
type (c)) entails unavoidable overheads, such as iterating all
authentication records to identify those linked to the target
user. Privacy concerns and computational offloading will
introduce additional costs, which make the tracing process
more complicated.

An intuitive solution is searchable encryption, which
supports keyword searches on encrypted data. However,
searchable symmetric encryption (SSE) is limited to a
single-user model and is unsuitable for authentication sce-
narios. Public key encryption with keyword search (PEKS),
on the other hand, manages backdoors for every keyword
and uses the corresponding one for each search. However,
the hash functions used by PEKS when generating backdoor
and ciphertext bring potential difficulties to the verifiability
proof of encrypted content. The keywords in PEKS can be
made public, but the user identity, with the same status as
the keyword, is private information. Therefore, introducing
searchable encryption to traceable AC is still challenging.

We also observe that most widely used AC systems (such
as U-Prove [19], Idemix [20], and BBS signatures [21],
[22]) generally have algebraic structures similar to Pedersen
Commitment. To use the credential, users must prove the
knowledge of a private element to demonstrate ownership
of the credential. This element is typically considered the
user’s private key and can be naturally stored in trusted
hardware to achieve credential separation. Besides, recent
credentials with different building blocks, such as schemes
based on aggregatable signatures [14] and SPS-EQ [23],
[24], advancements in functionality and efficiency. While
these schemes introduce new features, they also alter the
process, as the way how the private key will be used is
changed. This presents challenges for migrating such cre-
dentials into hbAC, as well as for the corresponding tracing
scheme, which is one of the main issues we aim to address
in the future.

High-level overview of our approach. Here we provide a
high-level overview of our tracing paradigm (see Figure 2).
Initially, the user can obtain credentials from the issuer
based on hardware with the user’s secret key, and then store
them on the device. For hardware matching, we mean... For
each authentication, the device has to cooperate with the
hardware to achieve: 1) proof of possession of the creden-
tials (as well as the requested attributes); and 2) generate
proof of regulatory text of authentication records. During
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Figure 2: High-level overview of our approach.

this procedure, the hardware only produces a partial token
but ensures the secret key will never be reconstructed outside
the hardware. The device then completes the whole showing
token and sends it to the verifier who either accepts or rejects
it. Combining them ensures that the information recorded
in the regulatory text is bound to the trusted hardware that
dominates the credentials. To trace an anonymous user, both
regulators and service providers can obtain clues by compar-
ing the regulatory texts (generated at different authentication
rounds), and finally de-anonymizing the user. Regulators
can also achieve privacy-preserving cross-domain identity
tracing by creating and distributing equality test backdoors
for specific users.

Related works about traceable anonymous credentials.
We reviewed recent works about credential tracing [10],
[12], [14]. Hébant et al. [14] propose a tracing method for
ACs with randomizable public keys. The tracing key for
a user can be treated as another public key of him (on
another group of the bilinear pair). Kohlweiss et al. [10]
design a privacy-preserving blueprint scheme supporting
arbitrary function relations f based on a new homomorphic
encryption primitive they proposed, allowing the regulators
to trace all escrowed user data that meets the relation f .
However, the main focus of the blueprint is to limit the
tracing ability of regulators to protect the privacy of other
users, which makes it less efficient. Wang et al. [12] use
an encryption-based approach, allowing users to generate
pseudonyms after each authentication. For tracing, the regu-
lator decrypts and obtains the user-specific backdoor, which
can help produce all potential pseudonyms for that user
(depending on the number of pseudonyms in the system).

In [5], Brickell, Camenisch, and Chen employ a spe-



cialized chip and construct an anonymous authentication
scheme (DAA), although not strictly an AC system. DAA
provides a selective linkability of the pseudonyms if one
of the public parameters of the verifier remains identical.
Although such a mechanism is useful for detecting rogue
members under some circumstances, it breaks the security
requirement of ACs and is unable to trace the real identity
of the user. In [25], Baldimtsi and Lysyanskaya introduce a
lightweight credential system that supports user tracing for
illegal use, but only valid for single-use credentials.

In [11], Canard and Lescuyer use ElGamal encryption to
generate regulatory key pairs during the initialization phase
(though this is not explicitly stated in the paper). Later, the
regulator can decrypt and obtain the re-randomized user
public key, and trace the real identity by comparing it
with other sanitizers’ public keys. We follow a similar path
but with different cryptography primitives–the probabilistic
public key encryption (PKEET) proposed by Yang et al. [26]
that allows anyone to compare two ciphertexts and check if
they are encryptions of the same message. However, the cor-
responding schemes rely on the hash functions as the main
building block, which does not support verifiable encryption.
We solve this issue by introducing a new encryption scheme
for better tracing efficiency and compatibility with hbAC.

1.1. Our Contributions and Technical Overview

Our contribution in this paper can be summarized in
points as follows:

Verifiable public key encryption with equality test. We
formalize a cryptographic primitive called twisted ElGamal
encryption with equality test (TEET). The key observation
is that twisted ElGamal encryption [27] is zero-knowledge
proof friendly and PKEET [26] supports equality test ci-
phertexts regardless of the public keys. However, to achieve
the desired security level (OW-CCA2 security), the latter
relies on the hash function, which will bring difficulties
to zero-knowledge proof and their combination with hbAC.
Although recent studies show that the overhead of SNARK
proofs can be significantly reduced by using new hash
functions [28] or outsourcing them [29], how hardware with
limited capabilities can compute such a proof of encrypted
content with other device remains underexplored. TEET
inherits the advantages of both schemes mentioned above
– the verifiability of ciphertexts and their equality test.
This makes the verifier convinced during the authentication
process that the regulatory text contains the user’s long-term
identity. Meanwhile, during the tracing of authentication
records, the user’s identity privacy within the regulatory
text is still protected. We should mention that in contrast
to standard construction, our scheme achieves only OW-
CPA security under CDH assumptions. However, the strong
Fiat-Shamir transformation [30] can turn TEET into a non-
malleable one, which is secure enough to satisfy our design
goals.
Round isolation for equality test. We focus on the privacy
security of PKEET, which was raised by the one-wayness

(due to the equality test) of the original scheme. When
considering anonymous authentication and regulation, this
property poses a privacy risk to users, as each regulatory text
generated during authentications can be used to match his-
torical records. Our solution is to introduce a new unknown
order generator for different rounds of authentications (e.g.
period), thereby restricting the capability of the equality
test to specific rounds. Such type of generators can be
selected by a trusted third party and assigned with proof of
reliability, we won’t further discuss this part in this paper.
With this modification, PKEET achieves perfect soundness
within rounds and computational soundness across rounds
(see Section 3.3). To trace identity across different service
providers (or different rounds), regulators can use this prop-
erty to generate matching texts to outsource tracking tasks
to service providers securely.

Efficient traceable hbAC instantiation. Our hbAC builds
upon the AC system with the card/helper settings by
Hesse et al. [4] but we add the round-specific generator
and TEET as a plugin. We instantiate our scheme in both
type-1 bilinear groups BG1 = (p,G1, g,GT , e) with pairing
e : G1 × G1 → GT , and type-3 bilinear groups BG3 =
(p, Ġ1, ḡ, Ġ2, g̃, ĠT , ė) with pairing ė : Ġ1×Ġ2 → ĠT . The
reason is that TEET encryption and the BBS+ signature rely
on different types of pairing. Thus, we cannot simply reuse
some variables in both components to maintain consistency
between them. Therefore, we show how to securely and
efficiently prove this relation: we reuse the random number
that was securely shared between the hardware and the
device via a PRF key held by both parties, then conduct
a zero-knowledge proof of the variables on different groups
(G1 and Ġ1). This allows us to prove the consistency with-
out introducing additional rounds of interaction. To ensure
the security of the message output by the hardware when
communicating with the device, all of them were masked
by the PRF output.

2. Preliminaries and Notation

2.1. Bilinear Groups

Bilinear groups are a set of three groups G1, G2, and GT

of order p along with a map, called pairing, e : G1×G2 →
GT that is:

• bilinear: for any g ∈ G1, g̃ ∈ G2, and a, b ∈ Zp,
e(ga, g̃b) = e(g, g̃)ab;

• non-degenerate: for any g ̸= 1G1 and g̃ ̸= 1G2 ,
e(g, g̃) ̸= 1GT

;
• efficient: for any g ∈ G1 and g̃ ∈ G2, e(ga, gb) can

be efficiently computed.

We follow the definition in [31] of the three types of
pairings: in type 1, G1 = G2; in type 2, G1 ̸= G2 but
efficient homomorphism ϕ : G2 → G1 exists, while no
efficient one exists in the other direction; in type 3, G1 ̸= G2



no efficiently computable homomorphism exists between G1

and G2, in either direction.
Definition 1 (Bilinear group generator). A bilinear

group generator BGGen is a (possibly probabilistic)
polynomial-time algorithm that takes as input a secu-
rity parameter 1λ and outputs a description of a bilin-
ear group BG = (p,G1,G2, GT , e, g, g̃) consisting of
groups G1 = ⟨g⟩, G2 = ⟨g̃⟩, and GT of prime order p
with ⌈log2 p⌉ = λ and a pairing e : G1 ×G2 → GT .

2.2. Computational Assumptions

• Discrete Logarithm (DL) assumption: Given
(g, ga) ∈ G2, the DL assumption in the group
G states that there is no probabilistic polynomial
time (PPT ) algorithm that can recover a with
nonnegligible advantage.

• Decisional Diffie–Hellman (DDH) assumption:
Given (g, ga, gb, gc) ∈ G4, the DDH assumption in
the group G states that there is no PPT algorithm
that can decide whether c = a · b or c is random
with nonnegligible advantage.

• q-Strong Diffie– Hellman (q-SDH) assumption:
Given a (q+2) tuple (g, gx, gx

2

, . . . , gx
q

), the q-
SDH assumption in the group G states that there is
no PPT algorithm that can output a pair (c, g

1
x+c )

where c ∈ Zp with nonnegligible advantage.

2.3. Zero-Knowledge Protocols

Zero-knowledge protocol enables a prover to convince a
verifier that a statement is true without revealing anything
except the validity of the statement. An interactive zero-
knowledge proof system is called a Sigma protocol (Σ-
protocol) if it contains 3 phases between the prover P and
the verifier V as below:

• (Commit) P sends a first message a to V;
• (Challenge) V sends a random challenge e to P;
• (Response) P replies with a second message z.

For any NP relation (x, ω) ∈ R, where ω is the witness
of the statement x, a valid Sigma protocol is required to
satisfy standard completeness and the variants of soundness
and zero-knowledge as below:

• Completeness. If P and V follow the protocol, then
V always accepts.

• Special soundness. For any x ∈ X and any pair of
accepting transcripts (a, c, r), (a, c′, r′) with c ̸= c′,
there exists a PPT extractor outputs a witness ω
for x.

• Special honest-verifier zero-knowledge (SHVZK).
There exists a PPT simulator S such that for any
x ∈ X and challenge c, S produces conversations
(a, c, r) with the same probability distribution as
conversations between honest P and V.

We also use Signature of Knowledge (SoK) as non-
interactive zero-knowledge proof (following the definition

in [32] and [33]) while designing the authentication proto-
col.

2.4. Card-based Anonymous Credential with BBS+
Signature

A card-based Anonymous Credential (cbAC) system [4]
is an anonymous credential scheme with visual holder
authentication. It contains three interactive procedures
(Setup,Join,Present) which will be executed between an is-
suer, and arbitrary tamper-resistant smartcards, holders, and
verifiers. In their settings, the verifier can visually verify that
the picture on the smartcard (hereinafter referred to as card)
matches the individual. The holder must cooperate with the
card to produce valid proof of knowledge of the selectively
disclosed attributes and the corresponding BBS+ signature.
Both of them will receive the shared state from a trusted card
issuer FcardAuth, consisting of a Pseudo-Random Function
(PRF) key K and a non-hiding commitment Q = hm

1 to
attribute m contributed by the card.

We briefly review the standard BBS+ signature: Let
g, h1, . . . , hℓ ∈ Ġℓ+1

1 and g̃, h̃1, . . . , h̃n ∈ Ġn+1
2 be the gen-

erators. The issuer randomly chooses γ ←$ Z∗p(
def
= Zp\{1})

and set (γ,w = g̃γ) as the secret-public key pair. Given
messages m = (m1, . . . ,mℓ) ∈ Zp, the issuer randomly
chooses e, s←$ Z2

p and computes A = (ggs
∏ℓ

i=1 h
mi
i )

1
e+γ .

The BBS+ signature can be verified by checking whether
e(A,wg̃e) = e(ggs

∏ℓ
i=1 h

mi
i , g̃) holds. BBS+ signature

satisfies the EUF-CMA security if the q-SDH problem is
hard in the bilinear group [34].

2.5. Twisted ElGamal Encryption

Twisted ElGamal [27] is modified from the standard
ElGamal encryption algorithm, it switched the roles of key
encapsulation and session key, and lifted the message m
on a new generator. Its ciphertext has the same structure
as Pedersen commitment, so it can easily connect with
existing zero-knowledge proof systems (such as sigma pro-
tocol [35]). Twisted ElGamal is IND-CPA secure under the
DDH assumption. We recall the algorithm ΠTE = (G, E ,D)
proposed in [27] as follows:

• Setup(1λ): Run (G1, g, p) ← GroupGen(1λ), pick
h1 ←$ G∗1(def= G1\{1}), set pp = (G1, g, h1, p)
as global public parameters. The randomness and
message spaces are Zp.

• G(1λ): On input pp, choose sk ←$ Zp, set pk = gsk.
• E(pk,m): Pick r ←$ Zp,compute X = pkr, Y =

grhm
1 , output C = (X,Y ).

• D(sk, C): Parse C = (X,Y ), compute hm
1 =

Y/Xsk−1

, recover m from hm
1 .

2.6. Public-Key Encryption with Equality Test

Also denoted as PKEET, is a primitive proposed by
Yang et al. [26] that can categorize ciphertexts, even those



encrypted with different public keys, with the same under-
lying messages into one cluster. We recall the algorithm
ΠPKEET = (G, E ,D,T) proposed in [26] as follows:

• G(1λ): Pick x ←$ Zp and compute y = gx. Set
pk = y and sk = x.

• E(m, y): Let m ∈ G∗1, pick r ←$ Z∗p, compute
U = gr, V = mr, W = H(U, V, yr) ⊕ m||r. The
ciphertext is C = (U, V,W ).

• D(C, x): To decrypt C = (U, V,W ), compute
m||r ← H(U, V, Ux) ⊕ W . If (m ∈ G∗1 ∧ r ∈
Z∗p ∧ U = gr ∧ V = mr), return m; otherwise,
return ⊥.

• T(C1,C2): Given two ciphertexts C1 = (C1, V1,W1)
and C2 = (U2, V2,W2), test if e(U1, V2) =
e(U2, V1), return 1; otherwise, return 0.

3. Twisted ElGamal Encryption with Equality
Test

At a high-level overview, we need a construction that
supports the hiding of sensitive information while supporting
the equivalence comparison. The first requirement ensures
that the users can only selectively disclose the required
attributes, while the second gives the service provider the
ability to de-duplicate the users according to their authen-
tication information. Specifically, we use twisted ElGamal
to better adapt to the BBS+ signature based cbAC systems
without introducing excessive knowledge proofs for consis-
tency between them.

Now, we extend the capabilities of the Twisted ElGamal
(TE) encryption algorithm by combining it with PKEET
to get Twisted ElGamal with Equality Test (TEET). This
allows the consistency of the plaintext to be checked without
decrypting the corresponding ciphertext. We use a non-
hiding commitment as the input and output of the encryption
and decryption methods of TEET.

3.1. Definition

Definition 2 (TEET). A twisted ElGamal encryption with
equality test is a verifiable public key encryption scheme
ΠTEET = (G, E ,D) of the following polynomial-time
algorithms:

• Setup(1λ) is a probabilistic algorithm which call
BG ← BGGen(1λ), pick two random generators in
G1, and return them as public parameter pp.

• G(λ) is a probabilistic algorithm which on input the
public parameter pp and outputs the decryption and
encryption key pair (sk, pk).

• E(pk,Q) is a probabilistic algorithm which on input
an encryption public key pk ∈ G1, a message Q ∈
G∗1 (def= G1\{1}), outputs a ciphertext C.

• D(sk,C) is a deterministic algorithm which given a
decryption secret key sk ∈ Zp and a ciphertext C,
outputs the message Q.

• Test(C,C′) is a deterministic algorithm which given
two valid ciphertexts C and C′ returns 1 on equality
of plaintext (under the same round) and 0 otherwise.

The correctness requirement is that ∀ λ ∈ N and ∀ Q ∈
PtSp(λ), (pk, sk) ← G(1λ), Q ← D(sk, E(pk,Q))
where PtSp(λ) is the message space associated to
TEET.
We say TEET has Ciphertext Comparability with error
ϵ for some function ϵ(·) if there exists an efficiently
computable deterministic function Test(C,C′) such that
for every λ we have:

1) Perfect Consistency: for every x ∈ PtSp(λ)

Pr
[

(pk, sk)← G(1λ), (pk′, sk′)← G(1λ),C← E(pk, x)
C′ ← E(pk′, x) : Test(C,C′) = 1

]
= 1

2) Soundness: for every polynomial time algorithm M

Pr

 (C,C′, sk, sk′)←M(1λ), x← D(sk,C),
x′ ← D(sk′,C′) : x ̸=⊥ ∧ x′ ̸=⊥ ∧ x ̸= x′∧
Test(C,C′) = 1


≤ ϵ(λ)

In the above definition, consistency ensures that encryp-
tions (even under different public keys) of the same
message with the same round-specific generator can be
recognized. We also define soundness to measure the
probability of false-hits (i.e. Test(C,C′) = 1 but C and
C′ are encryptions of different messages).

Definition 3 (OW-CPA). We followed the definition of OW-
CPA in [26]. Let Π = (G, E ,D) be a public key encryp-
tion scheme and let A = (A1,A2) be a polynomial-time
adversary. For λ ∈ N let

AdvOW-CPA
A,Π

def
= Pr

[
(pk, sk)← G(1λ), δ ← AOE

1 (pk)
x← PtSp(λ), y ← E(pk, x)
x′ ← AOE

2 (pk, δ, y) : x′ = x

]
We say that Π is secure in OW-CPA if Advow-cpa

A,Π is
negligible for any A.

3.2. Construction

• TEET.Setup(1λ): Run G1 = (p,G1,GT , e, g) ←
BGGen1(1

λ), (h, h1) ←$ G2
1, and set pp = (p,G1,

GT , e, g, h, h1) as global public parameters. Let the
randomness space be Zp and the message space be
G∗1.

• TEET.G(1λ): Choose sk ←$ Zp, set pk = gsk.
• TEET.E(pk,Q; r, v): Compute X = pkr, Y = grQ,

U = Qv, K = hv, output C = (X,Y, U,K).
• TEET.D(sk,C): Parse C = (X,Y, U,K), compute

Q = Y/Xsk−1

, and check if e(U, h) = e(Q,K)
holds. If so, output Q, otherwise output ⊥.

• TEET.Test(C,C′): Given two ciphertexts C =
(X1, Y1, U1,K1) and C′ = (X2, Y2, U2,K2), if
e(U1,K2) = e(U2,K1), return 1; otherwise, return
0.



Theorem 1. The PKE scheme ΠTEET with message space
G∗1 is OW-CPA secure based on the CDH assumption.

Proof 1.
Let A be a PPT adversary attacking the OW-CPA se-
curity of the above PKE scheme. Suppose that A runs
in time t and makes at most qE encryption queries. Let
AdvOW-CPA

A (t, qE) denote the advantage of A in the OW-
CPA experiment.
It remains to prove AdvOW-CPA

A (t, qE) is negligible. We
prove this by showing if not so, we can build an adver-
sary B and break the CDH assumption with the same
advantage. Let the public parameter be (p,G1,GT , e, g),
given the CDH challenge instance (g, ga, gb), B is asked
to compute gab. To do so, B interacts with A by simu-
lating A’s observation in the following experiment.

1) Setup: B picks t←$ Zp, sends pp = (p,G1,GT , e, g
a)

and pk = g and h = (ga)t = gat to A. Here, ga, g, and
gat serve as the original generator of G1, encryption
public key, and another generator in G1 respectively.

2) Challenge: B selects (u, v) ←$ Z2
p, sends C = (X =

gb, Y = gau, U = ( g
u

gb )
v,K = (gt)v) to A.

3) Query: A sets T = ∅ and makes at most qE encryption
queries: selects r, v ←$ Z2

p and Q∗ ←$ G∗1, computes
X∗ = pkr = gr, Y ∗ = garQ∗, U∗ = Q∗v, K∗ = hv =
gatv. Let T = T ∪ {(X∗, Y ∗, U∗,K∗, Q∗)}.

4) Guess: When A outputs Q∗, B outputs Y/Q∗.
It is obvious that B’s simulation is perfect. If A outputs
Q∗, it means that one of the following two events
occurred:

1) Event E0: If there is an entry (X∗, Y ∗, U∗,K∗, Q∗)
in the set T such that e(U∗,K) = e(U,K∗), return
Q∗. Then we have

e(U∗,K) = e(U,K∗)

e(Q∗v, gtv) = e(g, g)v(u−b)atv

Q∗ = ga(u−b)

Y/Q∗ =
gau

ga(u−b)
= gab

Obviously, Pr[E0] is negligible because Q∗ was ran-
domly selected in G∗1. So we have

Pr[E0] ≤
qE
2λ

2) Event E1: Compute Q∗ with instance (pp, pk, h,C).
If e(U, h) = e(Q∗,K) holds, return Q∗. Then we have

e(U, h) = e(Q∗,K)

e(Q∗, gtv) = e(g, g)atv(u−b)

Q∗ = ga(u−b)

Y/Q∗ =
gau

ga(u−b)
= gab

Therefore, we have

AdvCDH
B ≥ Pr[E1] = AdvOW-CPA

A (t, qE)− Pr[E0]

≥ AdvOW-CPA
A (t, qE)−

qE
2λ

Thus B can break the CDH assumption with a non-
negligible advantage, which results in a contradiction.
Putting all the above together, Theorem 1 follows.

3.3. Provable Security

The randomnesses used in TEET are identical between
(X,Y ) and (U,K), while the former can be treated as a TE
ciphertext. Inspired by the work of Bernhard et al. [30] on
the legitimacy of ballot casting, we add additional proof to
ensure the same message Q was used in Y and U (without
disclosing the value of Q). So that the equality of different
TEET ciphertexts can only be tested with the same approach
of PKEET. This can help us to integrate other researches
related to PKEET, such as authorization policies [36] or
scenarios of outsourced computation [37], to enhance the
functionality and expand application scenarios.

We define the relation mentioned above as Lvalid, and
let r1 = −rv. We further require the prove of knowledge
of m (assuming Q was calculated by Q = hm

1 ) for specific
consideration (see Section xx):

Lvalid = {(pk, g, h, h1,C = (X,Y, U,K))|∃ r,m, v, r1 s.t.

X = pkr ∧
Y = grhm

1 ∧
U = Km ∧
U = Y vgr1}

Sigma protocol for Lvalid. To prove Lvalid in
zore knowledge, we design a Sigma protocol Σvalid =
(Setup,P,V) for Lvalid to prove that the twisted ElGamal
encryption ciphertext (X,Y ) and the corresponding pair for
equality test (U,K) consist of the same value Q = hm

1 .
The Setup algorithm of Σvalid is the same as that of the
twisted ElGamal. On statement (g, h, h1, X, Y, U,K), P and
V interact as below:
1. P picks a, b, c, d ←$ Z4

p, sends A = pka, B = gahb
1,

C = Kb, D = Y cgd to V.
2. V picks e←$ Zp and sends it to P as the challenge.
3. P computes z1 = a + er, z2 = b + em, z3 = c + ev,

z4 = d+er1 using witness w = (r,m1, v, r1), then sends
(z1, z2, z3, z4) to V. V accepts if and only if the following
three equations hold simultaneously:

pkz1 = AXe (1)
gz1hz2

1 = BY e (2)
Kz2 = C · Ue (3)

Y z3gz4 = DUe (4)

Lemma 1. Σvalid is a public-coin SHVZK proof of knowl-
edge for Lvalid.

Proof 2. We prove that all three properties required for
Σvalid are met.
Perfect completeness is obvious from a simple calcula-
tion.
To show special soundness, we fix the initial message
(A,B,C,D), suppose there are two accepting transcripts



(e, z1, z2, z3, z4) and (e′, z′1, z
′
2, z
′
3, z
′
4) with e ̸= e′, the

witness can be extracted as below. From (1), we have
z1 = a + er and z′1 = a + e′r, which implies r =
(z1−z′1)/(e−e′). And so as from (2), (3) and (4), we can
compute m = (z2− z′2)/(e− e′), v = (z3− z′3)/(e− e′)
and r1 = (z4 − z′4)/(e− e′).
To show special HVZK, for a fixed challenge e, the
simulator S works as below: picks z1, z2, z3, z4 ←$ Z4

p,
then computes A∗ = pkz1/Xe, B∗ = gz1hz2

1 /Y e,
C∗ = Kz2/Ue, D∗ = Y z3gz4/Ue. Obviously, (A∗, B∗,
C∗, D∗, e, z1, z2, z3, z4) is an accepting transcript, and
it is distributed as in the real protocol.
This proves Lemma 1.

According to the result in [30], let sFS be a strong Fiat-
Shamir transformation, and Σ be a sigma protocol with a
challenge space that is exponentially large in the security
parameter. Then sFS.Σ is zero-knowledge and simulation
sound extractable with respect to expected polynomial-time
adversaries.
Theorem 2. The above PKE scheme has perfect consistency,

perfect soundness-SR, and computational soundness-DR
(whether the h used in E is the same or not).

Proof 3. The proof is straightforward, as follows:
1. Perfect Consistency. For any (pk, sk) ← G(1k),

(pk′, sk′) ← G(1k) and C ← E(pk,m, h), C′ ←
E(pk′,m, h) where C = (X,Y,Qv, hv), C′ =
(X ′, Y ′, Qv′

, hv′
), we have

e(Qv, hv′
) = e(Qv′

, hv) = e(Q, h)vv
′

for any Q = hm
1 (m ∈ Z∗p) and (v, v′) ∈ Z∗2p .

2. Perfect Soundness-SR. Given two ciphertexts C =
(X,Y,Qv, hv), C′ = (X ′, Y ′, Q′v

′
, hv′

), we have

e(Qv, hv′
) = e(Q, h)vv

′
, e(Q′v

′
, hv) = e(Q′, h)vv

′

then it must be true that e(Q, h)vv
′ ̸= e(Q′, h)vv

′
for any

Q ̸= Q′ (m ̸= m′) and (v, v′) ∈ Z∗2q .
3. Computational Soundness-DR. Given two ciphertexts

C = (X,Y,Qv, hv
1) and C′ = (X ′, Y ′, Q′v

′
, hv′

2 ) en-
crypted under any pair of different unknown order gen-
erators (h1, h2) ∈ G∗22 (h1 ̸= h2), we have

e(Qv, hv′

1 ) = e(Q, h1)
vv′

, e(Q′v
′
, hv

2) = e(Q′, h2)
vv′

then it must be true that e(Q, h1)
vv′ ̸= e(Q′, h2)

vv′
for

(v, v′) ∈ Z∗2q , no matter Q = Q′ (m = m′) or not.

Definition 4 (Encrypt+SoK). Let E = (G, E ,D) be a public-
key encryption scheme. Let R((Q,m; r, v), (C, pk)) :=
(C = E(pk,Q; r, v), Q = hm) be the relation that C is
encryption of Q with randomness r and v with relation
Lvalid. Let P = (P,V) be a non-interactive SoK for
this relation.

The Encrypt+SoK transformation EP is the following
encryption scheme.

• G′(1λ): Run G(λ).
• E ′(pk,m): Choose r, v

$← Z2
p and compute a ci-

phertext C = E(pk,Q; r, v). Create a proof π ←
sFS.Σvalid(pk,C, Q, r, v,m). The ciphertext is the
pair (C, π).

• D′(sk,C, π): First run Verify(pk,C, π). If this fails,
output ⊥ and halt. Otherwise, return D(sk,C).

One more thing left is to explore the capability of Ep

to resist active adversary attacks, so that it can be used
as traceability evidence in transactions related to anony-
mous authentications. We reviewed three definitions of non-
malleable cryptographic systems [38] and followed the orig-
inal definition of “simulation-based game” [39], because
“indistinguishability-based game” is not applicable here due
to the one-wayness of our scheme. It is still a problem to
prove the non-malleability of a OW-CPA with simulation-
sound extractable (SSE) non-interactive SoK for the encryp-
tion relation. Intuitively speaking, the non-malleability of
sFS ensures that it is difficult for adversaries to generate
other EP ciphertexts, corresponding to the same plaintext,
based on an existing ciphertext. Thus we give a conjecture
below.
Conjecture 1. OW-CPA + SSE-SoK gives non-malleable

encryption.

The decryption key allows traceability, and the non-
malleability of the encryption guarantees non-frameability
or exculpability, as one cannot maliciously accuse a user by
generating fake encryptions.

4. Joint Signature of Knowledge for TEET

In this section, we present a signature of knowledge
scheme for TEET that the prover consists of two parts:
hardware and device.

The main idea is as follows. Since the secret value
hid is only stored in the hardware, the device (only has
Q = hhid

1 ) must cooperate with the hardware to produce a
valid zero-knowledge proof for relation Lvalid. Based on this
observation, we modify Σvalid by splitting and distributing
the functionality of P to the hardware and device, as well
as using the strong Fiat–Shamir heuristic [30] to get a
non-interactive zero-knowledge proof with non-malleability.
To reduce the computational burden on the hardware and
protect the privacy of hid and Q, we directly use Q = hhid

1 as
the input message of TEET.E . The device can independently
generate TEET ciphertext and cooperate with the hardware
to generate a valid zero-knowledge proof.

The new protocol is shown in Figure 3. The device
chooses random numbers r and v, and calculates C =
(X,Y, U,K) (TEET encryption of Q = hhid

1 ) for initiation.
To prove that the ciphertext was constructed correctly, the
device calculates D and sends pk,K,D, r to the hardware.
Then the hardware calculates A,B,C, and the challenge e
accordingly. To prevent the illegal query from the adversary,
the hardware also additionally selects n′H and generates r′

with its PRF key K to mask its output. Finally, the device



(nV)

Hardware Device Verifier
(m) (r, v, r1,C = (X,Y, U,K))

a, b←$ Z2
p c, d←$ Z2

p

A← pk
a pk,C, D, r, nV D ← Y

c
g
d

B ← g
a
h
b
1

C ← K
b

n
′
H ← {0, 1}

λ
r
′
= PRFK(n

′
H)

r
′
= PRFK(n

′
H) e = e

′ ⊕ r
′ calculate

e = H(C∥A∥B∥C∥D∥n′
H∥nV) e

′
, z

′
r, z

′
m, n

′
H zr = z

′
r ⊕ r

′
A

′
= pk

zr/X
e

e
′
= e⊕ r

′
zm = z

′
m ⊕ r

′
B

′
= g

zrh
zm
1 /Y

e

z
′
r = (a + e · r)⊕ r

′
zv = c + e · v π, n

′
H, pk,C C

′
= K

zm/U
e

z
′
m = (b + e ·m)⊕ r

′
zr1 = d + e · r1 D

′
= Y

zv g
zr1 /U

e

π = (e, zr, zm, zv, zr1 ) e
′
= H(C∥A′∥B′∥C′∥D′∥n′

H∥nV)

check if

e = e
′

Figure 3: Cooperative version of Σvalid.

generates the full proof and sends it together with pk, n′H
and the ciphertext (X,Y, U,K) to the verifier.

5. A Construction for Secure Traceable hbAC
Under cbAC Setting

5.1. System Model

As shown in Figure 2, ThbAC involves five entities:
users, issuers, service providers, regulators, and blockchain.

1) User: Users are entities (with device D and hardware
H) who obtain identities along with attributes from
the issuer and authenticate themselves to the service
providers.

2) Issuer: Denoted as I. By interacting with the user, the
issuer finally signs the attribute credential to the user.

3) Service Provider: Denoted as SP . Before providing
services, SP will interact with D and H to determine
whether the user possesses a valid credential that fulfills
the required attributes.

4) Regulator: Denoted as R. Regulators are trusted par-
ties involved in cases when law enforcement or other
authorized entities require the ability to extract the real
identity of a malicious user.

5) Blockchain: Here, we model the blockchain as a
publicly accessible, globally consistent, and tamper-
resistant bulletin board. All the public parameters, such
as the bilinear group, public key of I or AU , etc. We
omit the statements related to blockchain operations for
simplicity.

5.2. Syntax and Security Model

We follow the syntax in [4] and let a credential system
Ψ = {Setup,KeyGen,RequestCred, IssueCred,ShowCred,

VerifyCred,Test,Trace} be a traceable hardware-binding
anonymous credential system.

1) Setup(1λ): Input a security parameter 1λ, it outputs
common system parameters para, which is a implicit
input to other algorithms.

2) KeyGen(1λ): Input a security parameter 1λ, it invokes
3 sub-algorithms HDKGen, IKGen,RKGen to generate
the corresponding key pairs for hardware/device, issuer,
and regulator.

a) HDKGen(1λ): On input security parameter 1λ, the
hardware will receive a secret unique identifier hid
and a PRF key K, and the device will receive K
and a public identifier corresponds to hid. Then the
regulator stores the user’s information and the public
identifier in a list.

b) IKGen(1λ): On input security parameter 1λ, the is-
suer will receive a key pair (isk, ipk).

c) RKGen(1λ): On input security parameter 1λ, the
regulator will receive a key pair (rsk, rpk).

3) RequestCred(aD, hid) ↔ IssueCred(aI , isk): It is an
interactive protocol between hardware/device and the
service provider. On input the device attribute set
aD = {(i,mi) : i ∈ D} and relevant proofs. If passed
verification, then the issuer will sign a credential cred
with the attributes aD and aI = {(i,mi) : i ∈ I} for a
hardware/device pair with secret identifier hid.

4) ShowCred(aM , cred, hid) ↔ VerifyCred(aM , cp, rt): It
is an interactive protocol between hardware/device and
the service provider. On input the required attribute set
aM , credential cred, and hardware secret identifier hid,
the hardware and device cooperate to generate creden-
tial proof cp and regulatory text (with proof) rt. The
service provider outputs either valid(1) or invalid(0).

5) Test(rt0, rt1): Input two regulatory texts rt0 and rt1,
this algorithm outputs either equal(1) or unequal(0).



6) Trace(rt): on input a regulatory text rt, this algorithm
outputs a public identifier of a hardware. This achieves
type (a) tracing in Figure 1.

7) TraceR(rsk, rt,Lrsg)↔ TraceSP(Lmt,LR): It is an in-
teractive protocol between the regulator and the service
providers. On input a valid regulatory text (and proof)
rt, a set of round-specific generators Lrsg, the regulator
generates a corresponding set of matching text Lmt and
sends them to the corresponding service providers. This
algorithm outputs all authentication records from LR

that corresponds to rt. This achieves type (c) tracing in
Figure 1.

5.3. Design Goals

We present the design goals of our traceable hbAC:
1) Unforgeability: A PPT adversary A without the legal

credential on requested attributes cannot forge a cre-
dential to pass the verification (see the ShowCred ↔
VerifyCred phase in Figure 4).

2) Blindness: I learns nothing about the user’s private
attributes aD except that these attributes satisfy the re-
quired statement C (see the RequestCred↔ IssueCred
phase in Figure 4).

3) Privacy Preservation: SP learns nothing about the
user’s attributes except those that were requested (see
the ShowCred phase mentioned below).

4) Hardware-bidning: This property means the creden-
tial of D is bound to H and cannot be delegated to
other devices or be used without the hardware.

5) Round Isolation: This property means the equality test
of regulatory texts (or matching text) is not feasible if
they were generated within different rsg.

5.4. Generic Construction

Here we present the generic construction of our Trace-
able hbAC system with ℓ attributes. The main components
are the card-based anonymous credential system proposed
in [4] and the TEET encryption we proposed in Section 3.

As the hardware possesses the long-term secret key for
all credentials, the device must cooperate to generate cp and
rt. When generating cp, H does not communicate directly
with D with SP acts as an intermediary. In contrast, the
latter is generated through direct cooperation between D
and H. So we use a little trick here: reuse the random
value r = PRFK(nH∥nD), which was used by H when
generating the credential proof, to produce rt. Then present
a consistency proof of {r, hid : Y = grhhid

1 , B̄ = ḡrh̄hid
1 }.

By doing so, we produce an intrinsic link between cp
and rt. Furthermore, since the BBS+ signature and TEET
encryption rely on different types of bilinear pairs, the
consistency proof also demonstrates the same secret value
hid was contained both in cp and rt. This is enough to make
SP ensure that the real identity of the anonymous user can
eventually be traced. Then we give a detailed construction
of hbAC in Figure 4.

5.5. Security Analysis

The construction of hbAC in Figure 4 achieves our
design goals including unforgeability, blindness, privacy-
preserving, hardware-binding, and round-isolating. We re-
duce these properties to the security of BBS+ signature and
zero-knowledge proof.
Lemma 2. Our construction is unforgeable if BBS+ signa-

ture is secure under the q-SDH assumption (see Sec-
tion 2.2) and the hardware is tamper-resistant.

Sketch: When PPT adversary A tries to forge a valid
credential, there are two cases: 1) it forges a BBS+ signature
of the issuer. Doing so contradicts the q-SDH assumption;
2) it modifies the hid in the hardware and uses the corre-
sponding BBS+ signature. However, this is contradictory to
the tamper-resistant property of a hardware. □
Lemma 3. Our construction is blind if π2 is a signature of

knowledge protocol satisfying zero-knowledge.

Sketch: In the RequestCred ↔ IssueCred phase, the
user sends the signature of knowledge π2 = SoK{(s′,
{mi}i∈H) : C = ḡs

′ ∏
i∈H h̄mi

i+1}(nI) of his private at-
tributes {mi}i∈H . The zero-knowledge property of π2 en-
sures that commitment does not reveal information about
these attributes. □
Lemma 4. Our construction is privacy-preserving if π4

is a signature of knowledge protocol satisfying zero-
knowledge.

Sketch: In ShowCred ↔ VerifyCred phase, the user
sends the signature of knowledge π4 ← SoK{(e, s, r2,
r3, {mi}i∈H) : A′−eḡr2 = Ā/d ∧ d−r3 ḡs

′
C = ḡ−11 B̄−1∏

i∈M h̄−mi
i }(nSP) to the service provider. This ensures

that all unused attributes are protected. Besides, the con-
struction of commitment C = ḡr

∏
i∈H h̄

m′
i

i satisfies perfect
hiding. So the unused attributes of the user cannot be
inferred by PPT adversary. □
Lemma 5. Our construction is hardware-binding if π3 and π4

are non-interactive SoK protocols satisfying soundness
and the hardware is tamper-resistant.

Sketch: In ShowCred ↔ VerifyCred phase, SP execute
the hardware matching first. Then the user sends the proof
π3 = SoK{(hid, r) : B̄ = h̄hid

1 ḡr}(nSP) and π4 ←
SoK{(e, s, r2, r3, {mi}i∈H) : A′−eḡr2 = Ā/d∧d−r3 ḡs′C =
ḡ−11 B̄−1

∏
i∈M h̄−mi

i }(nSP) to the service provider. As the
SoK proofs are sound, the device proves that he is indeed
the owner of the hardware that can provide the missing link
in the verification chain. □
Lemma 6. Our construction is round-isolating if the orders

of round-specific generators are unknown.

Sketch: The proof is straightforward as we already
proved the computational soundness-DR of TEET in Theo-
rem 2. For a matching text (Qv, hv

i ) of a device with identi-
fier Q with round hi and a regulatory text rt = (·, Q′v′

, hv′
).

The equality of e(Qv, hv′
) and e(Q′v

′
, hv

i ) can’t be tested
if θ = logh hi is unknown. □



Setup(1λ):
pp1 = (p,G1, g,GT , e)← BGGen1(1λ); h←$ G1

pp3 = (p, Ġ1, ḡ, Ġ2, g̃, ĠT , ė)← BGGen3(1λ); (h̄0, . . . , h̄ℓ)←$ Ġℓ+1
1

return pp = (pp1, h, pp3, h̄0, . . . , h̄ℓ)

KeyGen(1λ):
HDKGen(1λ):

A trusted hardware issuer FcardAuth grants the hardware a secret identifier
hid and a PRF key K, and the device Q = ghid, Q̄ = h̄hid

1 and key K.
IKGen(1λ):
x←$ Zp; w = g̃x; return isk = x, ipk = w

RKGen(1λ):
sk ←$ Zp; pk = gsk; return rsk = sk, rpk = pk

RequestCred(aD, hid)↔ IssueCred(aI , isk): The outline of this process is
shown in Figure 5.
Step (1):

nI ← {0, 1}λ
I → H

Step (2):
nH ← {0, 1}λ; r = PRFK(nH); B̄ = h̄hid

1 ḡr

π1 = SoK{(hid, r) : B̄ = h̄hid
1 ḡr}(nI).

H → I
Step (3):

If π1 is not valid; return ⊥.
Else; I → D

Step (4):
s′ ← Zp; C = ḡs

′ ∏
i∈H h̄

mi
i+1; r = PRFF (nH)

π2 = SoK{(s′, {mi}i∈H) : C = ḡs
′ ∏

i∈H h̄
mi
i+1}(nI).

D → I
Step (5):

If π2 is not valid; return ⊥.
Else; e← Zp\{x}, s̃← Zp; A = (ḡ · ḡs · B̄ ·C ·

∏
i∈I h̄

mi
i+1)

1/(e+x)

I → D
m = aH ⊕ aI = (m2, . . . ,mℓ)

If ė(A,wg̃e) ̸= ė(ḡ · ḡs̃+s′+r · Q̄ ·
∏ℓ

i=2 h̄
mi
i+1, g̃); return ⊥

Else; LC = LC ∪ cred = (C, Q, Q̄,K, σ = (A, e, s̃+ s′ + r),m)

Test(rt0, rt1):
Return TEET.Test(rt0, rt1)

a

ShowCred(aM , cred, hid)↔ VerifyCred(aM , cp, rt): The outline of this
process is shown in Figure 6.
Step (1):

nD ← {0, 1}λ
D → SP

Step (2):
nSP ← {0, 1}λ
SP → H

Step (3):
nH ← {0, 1}λ; n = nH∥nD , r = PRFK(n); B̄ = h̄hid

1 ḡr

π3 = SoK{(hid, r) : B̄ = h̄hid
1 ḡr}(nSP )

H → SP
Step (4):

If π3 is not valid; return ⊥
Else; SP → D

Step (5-7):
n = nH∥nD ; aM = {(i,mi) : i ∈ M}; Find cred =

(C, Q, Q̄,K, σ,m) ∈ LC : r = PRFK(n), B̄ = Q̄ · ḡr and m[i] = mi

for all i ∈M . Returns ⊥ if no record is found.
Else; aM = {(i,m′

i+1) : i ∈M}; σ = (A, e, s)

r = PRFK(n); v ←$ Zp; Y = grhhid
1 ; X = pkr;U = Qv

K = hv
1 ; rt = (X,Y, U,K)

π5 ← SoK{(r, hid, v, r1 = −rv) : X = pkr ∧ Y = grhhid
1 ∧ U =

Khid ∧ U = Y vgr1 ∧ B̄ = ḡrh̄hid
1 }(nSP ) (D cooperate with H as

shown in Figure 3)
aH as the hiding attributes (H = {2, . . . , ℓ}\M )
r1 ← Z∗

p; r2, r ← Z2
p; r3 = r−1

1 ; s′ = s− r2r3 − r

s = s′ − r; A′ = Ar1 ; b = ḡ1ḡsQ
∏ℓ

i=2 h̄
m′

i
i

Ā = A′−ebr1 ; d = br1 ḡ−r2 ; C = ḡr
∏

i∈H h̄
m′

i
i

π4 ← SoK{(e, s, r2, r3, {m′
i}i∈H) : A′−eḡr2 = Ā/d ∧

d−r3 ḡs
′
C = ḡ−1

1 B̄−1
∏

i∈M h̄
−m′

i
i }(nSP ).

D → SP
If π4, π5 are not valid or ė(Ā, w) ̸= ė(A′, g̃); return ⊥
Else; LR = LR ∪ (A′, Ā, d, π4, rt, n′

C , pk, π5)

Trace(rsk, rt):
Return TEET.D(rsk, rt)

TraceR(rsk, rt,Lrsg)↔ TraceSP(Lmt,LR):
Q = Trace(rsk, rt); Lmt = {(Qv , hv

i ), hi ∈ Lrsg, v ←$ Zp}i∈[Lrsg]
R→ SP
Return {Ri,j |Test(rt, (·,mtj)) = 1,Ri,j = (·, rt),mtj =
(Qv , hv

j )}i∈LR∧j∈Lmt

Figure 4: Our generic construction of hbAC.

Hardware Device

Issuer

(1)nI (2)nH, B̄, π1 (3)nH, nI (4)(C,H, π2) (5)(aI , A, e, s̃)

Figure 5: Outline of credential issuance between Hardware,
Device, and Issuer. Skeleton borrowed from [4].

6. Performance Analysis

The execution time of each operation is given in Table 2.
We analyze the efficiency of our construction by counting
different operations, i.e., Tcmp, Tmul, Tadd, and Thash. We
also give the computation cost analysis of our construction
in Table 3. In RequestCred↔ IsseuCred phase h and i refer
to the number of attributes held by H and I . In ShowCred↔
VerifyCred phase h and m refer to the unused number of

TABLE 2: Execution time of each operation

Notions Description
Tcmp Compare two pairings
Tmul Multiplication operation in G
Tadd Add operation in G
Thash Hash operation
|G1| Bit length of an element in G1

|GT | Bit length of an element in GT

|Ġ1| Bit length of an element in Ġ1

|Ġ2| Bit length of an element in Ġ2

|ĠT | Bit length of an element in ĠT

|Zp| Bit length of an element in Zp

attributes held by H and the number of attributes required
by I . We ignore the computation cost related to FcardAuth,
so the total computation cost in HDKGen phase is 0. We
use gray text to mark the additional cost introduced by our



Hardware Device

Service Provider

(2)nD, nSP (3)nH, B̄, π3

(5)

pk, rt, D, B̄, r, nSP
(6)

e′, z′r, z
′
m, n′

H

(1)nD (4)nH, nSP , aM , B̄ (7)A′, Ā, d, C, π4, rt, n
′
H, pk, π5

Figure 6: Outline of credential presentation between Hardware, Device, and Service Provider. Skeleton borrowed from [4].
The gray text denotes the messages we used to generate TEET ciphertext and the corresponding noninteractive zero-
knowledge proof.

TABLE 3: Computation Cost of Our Construction

Algorithms Computation cost

KeyGen

H&D 0

I 1 Tmul

R 1 Tmul

RequestCred
H 4 Tmul + 2 Tadd + 1 Thash

D 2 Tcmp + (3 + 2 |aH | + ℓ)·Tmul + (2 + 2 |aH |
+ ℓ) · Tadd + 1 Thash

IssueCred I (6 + ℓ) · Tmul + (7 + ℓ) · Tadd + 2 Thash

ShowCred
H (4 Tmul + 2 Tadd + 1 Thash) + (4 Tmul + 1

Tadd + 1 Thash)

D (10 + 7 + |aH | + ℓ) · Tmul + (4 + 2 + |aH | +

ℓ) · Tadd + 1 Thash

VerifyCred SP 1 Tcmp + (10 + 13 + |aM |) · Tmul + (14 + 8 +

|aM |) · Tadd + (1 + 1) · Thash

Test 1 Tcmp

Trace R 1 Tmul + 1 Tadd + 1 Tcmp

TraceR R 1 Tmul + ( 1 + |Lrsg|) · Tadd + 1 Tcmp

TraceSP SP |LR| · Tcmp

TABLE 4: Communication Cost of Our Construction

Algorithms Communication cost

I → H 1 |λ|
RequestCred H → I 1 |λ| + 3 |Zp| + 1 |Ġ1|
↔ I → D 2 |λ|

IsseuCred D → I (2 + |aH |) · |Zp| + 1 |Ġ1| + |aH | ·
|tag|

I → D (2 + |aI |) · |Zp| + 1 |Ġ1|
D → SP 1 |λ|
SP → H 2 |λ|

ShowCred H → SP 1 |λ| + 3 |Zp| + 1 |Ġ1|
↔ SP → D (2 + aM ) · |Zp| + 1 |Ġ1|

VerifyCred D → H 1 |λ| + 1 |Zp| + 1 |Ġ1| + 6 |G1|
H → D 1 |λ| + 3 |Zp|
D → SP (5 + 6) · |Zp| + 3 |Ġ1| + 5·|G1|

scheme in Table 3 and 4 when comparing with [4].

For the communication cost of our construction, we
show it in Table 4. The communication overhead is mainly
concentrated on the phases related to the transfer of at-
tributes, while the costs for other phases are fixed.

7. Conclusion

In this paper, we introduce the traceable anonymous
credential with hardware-binding (hbAC). traceable means
the true identity of the credential owner can be traced
through the records although the authentication process is
anonymous. hb means proving possession of credentials (as
well as attributes) requires the participant of a specific hard-
ware. Our solution involves the design of a new public key
encryption scheme with equality test and verifiability which
is independent of interest. With the unique and unknown
order round-specific generator for each authentication round,
we both achieve user privacy and secure outsourcing of
identity tracing tasks. Besides, we also propose a non-
interactive signature of knowledge scheme to implement
collaborative knowledge proof between the hardware and
device.
Open Problems and Future Work. We still have some
problems: 1) the non-malleability of an OW-CPA encryption
scheme with SSE signature of knowledge is not formally
proved. We only give a conjecture based on existing works.
2) Cooperative SNARKs between normal devices and hard-
ware with limited capabilities is another attractive technol-
ogy, which can help us turn the hash based encryption
schemes into verifiable on and combine with hbAC. While
the merit of hardware-binding in AC systems is obvious,
as they can help preventing unauthorized credential sharing
or even achieves human-binding, hardware also can play an
important role in areas such as property protection and data
sharing.

Appendix

Here are the details of the SoK we used.
1) π1 = SoK{(hid, r) : h̄hid

1 ḡr = B̄}(nI).
a) C randomly selects rhid, rr ←$ Z2

p, calculates B =

h̄rhid
1 ḡrr , e = H(B̄∥B∥nI), zhid = rhid+ e ·hid, zr =

rr + e · r, and sends (e, zhid, zr).
b) The proof will be accepted if e = H(B̄∥

hzhid
1 gzr/B̄e∥nI) holds.

2) π2 = SoK{(s′, {mi}i∈H) : C = ḡs
′ ∏

i∈H h̄mi
i+1}(nI).

a) H randomly selects rs′ , {rmi}i∈H ←$ Z|H|+1
p , cal-

culates C = ḡrs′
∏

i∈H h̄
rmi
i+1 , e = H(C∥C∥nI),



zs′ = rs′ + e · s′, {zmi
= rmi

+ e · mi}i∈H , and
sends (e, zs′ , {zmi

}).
b) The the proof will be accepted if e = H(C∥

ḡzs′
∏

i∈H h̄
zmi
i+1/ Ce∥nI) holds.

3) π3: consistent with π1.
4) π4 ← SoK{(e, s, r2, r3, {m′i}i∈H) : A′−eḡr2 = Ā/d ∧

d−r3 ḡs
′
C = ḡ−11 B̄−1

∏
i∈M h̄

−m′
i

i }(nSP).
a) H randomly selects re, rs̄, rr2 , rr3 ←$ Z4

p, calculates
Θ ← A′

−re ḡrr2 , Ξ ← d−rr3 ḡrs̄ , e = H(Θ∥Ξ∥nI),
ze = e + c · e, zs̄ = rs̄ + c · s̄, zr2 = rr2 + c · r2,
zr3 = rr3 + c · r3, and sends (e, ze, zs̄, zr2 , zr3).

b) Accept the proof if e = H(A′−ze ḡzr2 /( Ād )
c∥

d−zr3 ḡzs̄Ce/(ḡ−11 B̄−1
∏

i∈V h̄
−m′

i
i )c∥nI) holds.

5) π5 ← SoK{(r, hid, v, r1 = −rv) : X = pkr ∧ Y =
grhhid

1 ∧U = Khid ∧U = Y vgr1 ∧ B̄ = ḡrh̄hid
1 }(nSP).

a) D randomly selects c, d ←$ Z2
p, calculates D =

Y cgd. Then sends pk, rt = {X,Y, U,K}, D, r, nSP
to H.

b) H randomly selects a, b ←$ Z2
p and n′H ← {0, 1}λ,

calculates A ← pka, B ← gahb
1, B ← ḡah̄b

1,
C ← Kb, r′ = PRFK(n′H), e = H(rt∥A∥
B∥B∥C∥D∥n′H∥nSP), e′ = e ⊕ r′, z′r = (a +
e · r) ⊕ r′, z′hid = (b + e · hid) ⊕ r′. Then returns
(e′, z′r, z

′
hid, n

′
H) to D.

c) D calculates r′ = PRFK(n′H), e = e′ ⊕ r′, zr =
z′r⊕r′, zhid = z′hid⊕r′, zv = c+e ·v, zr1 = d+e ·r1.
Then sends (e, zr, zhid, zv, zr1).

d) The proof will be accepted if e = H(rt∥pkzr/Xe∥
gzrhzhid

1 /Y e∥ḡzr h̄zhid
1 /B

e∥Kzhid/Ue∥Y zvgzr1/Ue∥
n′H∥nSP) holds.
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