Paper 2024/1748
New Experimental Evidences For the Riemann Hypothesis
Abstract
The zeta function $\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^z}$ is convergent for $\text{Re}(z)>1$, and the eta function $\eta(z)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^z}$ is convergent for $\text{Re}(z)>0$. The eta function and the analytic continuation of zeta function have the same zeros in the critical strip $0<\text{Re}(z)<1$, owing to that $\eta(z)=\left(1-2^{1-z}\right)\zeta(z)$. In this paper, we present the new experimental evidences which show that for any $a\in (0, 1), b\in (-\infty, \infty)$, there exists a zero $\frac{1}{2}+it$ such that the modulus $|\eta(a+ib)|\geq |\eta(a+it)|>|\eta(\frac{1}{2}+it)|=0$. These evidences further confirm that all zeros are on the critical line $\text{Re}(z)=\frac{1}{2}$.
Note: This is a new version.
Metadata
- Available format(s)
- Category
- Foundations
- Publication info
- Preprint.
- Keywords
- Riemann zeta functionDirichlet eta functionpartial sumabsolute convergence
- Contact author(s)
- caozhj @ shu edu cn
- History
- 2024-11-11: revised
- 2024-10-26: received
- See all versions
- Short URL
- https://ia.cr/2024/1748
- License
-
CC0
BibTeX
@misc{cryptoeprint:2024/1748, author = {Zhengjun Cao}, title = {New Experimental Evidences For the Riemann Hypothesis}, howpublished = {Cryptology {ePrint} Archive, Paper 2024/1748}, year = {2024}, url = {https://eprint.iacr.org/2024/1748} }