Paper 2024/1748

New Experimental Evidences For the Riemann Hypothesis

Zhengjun Cao
Abstract

The zeta function $\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^z}$ is convergent for $\text{Re}(z)>1$, and the eta function $\eta(z)=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n^z}$ is convergent for $\text{Re}(z)>0$. The eta function and the analytic continuation of zeta function have the same zeros in the critical strip $0<\text{Re}(z)<1$, owing to that $\eta(z)=\left(1-2^{1-z}\right)\zeta(z)$. In this paper, we present the new experimental evidences which show that for any $a\in (0, 1), b\in (-\infty, \infty)$, there exists a zero $\frac{1}{2}+it$ such that the modulus $|\eta(a+ib)|\geq |\eta(a+it)|>|\eta(\frac{1}{2}+it)|=0$. These evidences further confirm that all zeros are on the critical line $\text{Re}(z)=\frac{1}{2}$.

Note: This is a new version.

Metadata
Available format(s)
PDF
Category
Foundations
Publication info
Preprint.
Keywords
Riemann zeta functionDirichlet eta functionpartial sumabsolute convergence
Contact author(s)
caozhj @ shu edu cn
History
2024-11-11: revised
2024-10-26: received
See all versions
Short URL
https://ia.cr/2024/1748
License
No rights reserved
CC0

BibTeX

@misc{cryptoeprint:2024/1748,
      author = {Zhengjun Cao},
      title = {New Experimental Evidences For the Riemann Hypothesis},
      howpublished = {Cryptology {ePrint} Archive, Paper 2024/1748},
      year = {2024},
      url = {https://eprint.iacr.org/2024/1748}
}
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.