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Abstract

The zeta function ζ(z) =
∑

∞

n=1
1
n

z
is convergent for Re(z) > 1, and the

eta function η(z) =
∑

∞

n=1
(−1)n−1

n
z

is convergent for Re(z) > 0. The eta

function and the analytic continuation of zeta function have the same zeros in

the critical strip 0 < Re(z) < 1, owing to that η(z) =
(

1 − 21−z

)

ζ(z). In
this paper, we present the new experimental evidences which show that for any

a ∈ (0, 1), b ∈ (−∞,∞), there exists a zero 1
2
+ it such that the modulus

|η(a + ib)| ≥ |η(a + it)| > |η(1
2
+ it)| = 0. These evidences further confirm

that all zeros are on the critical line Re(z) = 1
2
.

Keywords: Riemann zeta function, Dirichlet eta function, partial sum, absolute
convergence.

1 Introduction

The Riemann zeta function is represented as [1]

ζ(z) =

∞
∑

n=1

1

nz
=

∞
∑

n=1

e−z lnn z=a+ib
======

a,b∈R

∞
∑

n=1

e−(a+ib) lnn

=

∞
∑

n=1

e−a lnne−ib lnn =

∞
∑

n=1

(

1

n

)a

cos(b lnn)− i

∞
∑

n=1

(

1

n

)a

sin(b lnn) (1)

If a > 1, both
∑∞

n=1

(

1
n

)a
cos(b lnn) and

∑∞
n=1

(

1
n

)a
sin(b lnn) are absolutely

convergent. Therefore, ζ(z) has no zeros for a > 1.
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By the famous functional equation [2, 3],

ζ(z) = 2zπz−1 sin
zπ

2
Γ(1− z)ζ(1− z), (2)

we know ζ(z) and ζ(1 − z) cannot be concurrently convergent, because at least one
of Re(z) and Re(1 − z) is strictly smaller than 1. So, ζ(z) and ζ(1 − z) must be two
different branches of the analytic continuation of the original series on the complex
plane. The famous Riemann zeros are not for the original series, instead for a branch
of its analytic continuation.

The general method to test these zeros needs to use the Riemann-Siegel function,
which is defined by Z(t) = eiϑ(t)ζ(12 + it). If Z(t1) and Z(t2) have opposite signs, Z(t)
vanishes between t1 and t2, and so ζ(z) has a zero on the critical line between 1

2 + it1
and 1

2 + it2. We currently know that for the first ten zeros

t =14.134725142, 21.022039639, 25.010857580, 30.424876126, 32.935061588,

37.586178159, 40.918719012, 43.327073281, 48.005150881, 49.773832478.

The Dirichlet eta function [4] is the alternating series

η(z) =

∞
∑

n=1

(−1)n−1

nz
, z ∈ C. (3)

η(0) is defined to be 1/2. η(1) = ln 2, η(2) = π2

12 . Notice that, for Re(z) > 1

2

2z
ζ(z) =

2

2z

(

1 +
1

2z
+

1

3z
+

1

4z
+ · · ·

)

=
2

2z
+

2

4z
+

2

6z
+

2

8z
+ · · · ,

(

1− 2

2z

)

ζ(z) =

(

1 +
1

2z
+

1

3z
+

1

4z
+ · · ·

)

−
(

2

2z
+

2

4z
+

2

6z
+

2

8z
+ · · ·

)

rearranged
=========== 1 + (

1

2z
− 2

2z
) +

1

3z
+ (

1

4z
− 2

4z
) + · · ·

= 1− 1

2z
+

1

3z
− 1

4z
+ · · · =

∞
∑

n=1

(−1)n−1

nz
= η(z).

Extending this relationship η(z) = (1−21−z)ζ(z) to the complex plane, we can obtain
the functional equation ζ(z) = 2zπz−1 sin zπ

2 Γ(1 − z)ζ(1 − z). If z = −2,−4,−6, · · · ,
sin zπ

2 = 0. These values are called simple zeros of ζ(z). Since Γ(z)Γ(1 − z) = π
sinπz ,

we know Γ(1− z) has no zeros. So, ζ(z) = 0 iff ζ(1 − z) = 0, which also implies that
ζ(z̄) = ζ(1 − z̄) = 0. The famous Riemann hypothesis [5] claims that all the complex
zeros of ζ(z) lie on the critical line Re(z) = 1/2. In history, the zeros of ζ(z) were
very hard to calculate [6]. Nowadays, several million zeros have been obtained [7].
We refer to the table of zeros https://www-users.cse.umn.edu/∼odlyzko/zeta tables/
index.html.
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In this paper, we present a simple method to test these famous zeros by checking
the partial sums of η(z). Based on this method, we present the new experimental
evidences which show that for any a ∈ (0, 1), b ∈ (−∞,∞), there exists a zero 1

2 + it
such that the modulus |η(a + ib)| ≥ |η(a + it)| > |η(12 + it)| = 0. These evidences
definitely validate the Riemann hypothesis. To the best of our knowledge, it is first
time to invent such a method to confirm the famous hypothesis.

2 The general method to test zeros

Define the functions

χ(z) = 2z−1πz sec
zπ

2
/Γ(z), ϑ = ϑ(t) = −|χ(

1
2 + it)|
2

argχ(
1

2
+ it),

where Γ(z) =
∫∞
0

xz−1e−xdx, and the Riemann-Siegel function

Z(t) = eiϑ(t)ζ(
1

2
+ it) (4)

which is real for real values of t. The Riemann-Siegel theta function appearing above
is also defined by

ϑ(t) = arg[Γ(
1

4
+

1

2
it)]− t

2
lnπ. (5)

If Z(t1) and Z(t2) have opposite signs, Z(t) vanishes between t1 and t2, and so ζ(z)
has a zero on the critical line between 1

2 + it1 and 1
2 + it2.

To calculate the first nontrivial zero, one needs to determine the sign of Z(0) =
eiϑ(

1

2
)ζ(12 ). If z = 1/2, η(1/2) = 1− 1√

2
+ 1√

3
− 1√

4
+ · · · , which converges to a positive

number. Since η(1/2) = (1 − 21/2)ζ(1/2) and 1 −
√
2 < 0, it claims that ζ(1/2) < 0

(page 388, Ref.[2]). Define

ξ(z) =
1

2
z(z − 1)π− z

2Γ(
z

2
)ζ(z). (6)

Hence, ξ(1/2) = − 1
8π

− 1

4Γ(14 )ζ(1/2). Since ζ(12 ) < 0 and Γ(14 ) > 0, then ξ(12 ) > 0,
which implies Z(0) < 0. By numerical analysis, it shows that Z(6π) > 0. Therefore,
there is one zero at least on the critical line between t = 0 and t = 6π.

3 A new method to test zeros

As we mentioned before, the eta function and the analytic continuation have the same
zeros in the critical strip 0 < Re(z) < 1. For the first three zeros

r1 = 1/2 + 14.134725 i, r2 = 1/2 + 21.0220396 i, r3 = 1/2 + 25.01085758 i,

we have the following numerical calculations (see Table 1). With the finite precision,
we have the faith in that the three values are really zeros of eta function.
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Table 1: Numerical calculations for the first three zeros

Partial-sum η(1/2 + 14.134725 i) = c− di |c|+ |d|
700000 0.00010144 +0.000588673 I 0.000690113
800000 0.00049395 -0.000261985 I 0.000755936
900000 -0.000289405-0.000440756 I 0.000730162
Partial-sum η(1/2 + 21.0220396 i) = c− di |c|+ |d|
700000 -0.000586334+0.000110852 I 0.000697186
800000 0.000553754 +0.0000797987 I 0.000633552
900000 -0.000362282-0.000383504 I 0.000745786

Partial-sum η(1/2 + 25.010857 i) = c− di |c|+ |d|
700000 0.000534317 -0.000268088 I 0.000802405
800000 -0.000439384+0.000345612 I 0.000784996
900000 0.000470723 -0.00023747 I 0.000708193

Theorem 3.1. Let z = 1
2 + bi, b > 0. Denote the partial sum

∑k
n=1

(−1)n−1

nz by c− di,
for some positive integer k. Then the modulus |c− di| is continuous with respect to b.

Proof. It is easy to see that

c− di =

k
∑

n=1

(−1)n−1

nz
=

K
∑

n=1

(−1)n−1e−z lnn z= 1

2
+ib

=======

k
∑

n=1

(−1)n−1e−( 1

2
+ib) lnn

=

k
∑

n=1

(−1)n−1

√

1

n
cos(b lnn)− i

k
∑

n=1

(−1)n−1

√

1

n
sin(b lnn),

|c− di|2 =

(

k
∑

n=1

(−1)n−1

√

1

n
cos(b lnn)

)2

+

(

k
∑

n=1

(−1)n−1

√

1

n
sin(b lnn)

)2

.

Since all cos(b lnn), sin(b lnn), n = 1, · · · , k, are continuous with respect to b, the
above modulus is also continuous with respect to b.

Likewise, we have the following theorem.

Theorem 3.2. Let z = a + ti, 0 < a < 1. Denote the partial sum
∑k

n=1
(−1)n−1

nz by

c−di, for some positive integer k. Then the modulus |c−di| is continuous with respect

to a.

Based on these theorems, we now present a new method (see Algorithm 1) to

search for a zero in a short interval. Let sk :=
∑k

n=1(−1)n−1e−( 1

2
+ib) lnn. We compute

the mean of partial sums sk1
, sk2

, · · · , skℓ
, so as to partly offset the roundoff errors.

Theorem 3.3. The computational cost for Algorithm 1 is O(50kℓ(3.32p+log2(kℓ))
2),

where p is the accuracy, i.e., the effective number of these digits which appear to the

right of the decimal point.

Proof. The longest binary length of operands in the procedure is log2(kℓ) (for integer
part) plus log2(10

p) (for fractional part). The total iteration number is stepnum× kℓ.
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Usually, stepnum = 50 which suffices to determine the local minimums in a short
interval. Note that log2(10) ≈ 3.32. So, the computational cost for a multiplication is
O((3.32p+ log2(kℓ))

2), and the total cost is O(50kℓ(3.32p+ log2(kℓ))
2).

Algorithm 1: Testing zeros of Dirichlet eta series in the critical strip

Input: (b1, b2), b2 > b1 > 0, which contains at least one zero of eta series, and a
set of positive integers K = {k1, k2, · · · , kℓ}, k1 < k2 < · · · < kℓ.

Output: (c, d) ⊂ (b1, b2), which contains at least one zero of eta series.
1 steplen← 1/4 (or 1/32, 1/256, etc), stepnum← (b2 − b1)/steplen
2 l ← 0, r ← 0, T ← { } // T is the empty set

3 for j = 0, j ≤ stepnum do

4 b← b1 + steplen ∗ j, S ← { } for n = 1, n ≤ kℓ do

5 l ← l + (−1)n−1
√

1
n cos(b lnn)

6 r ← r + (−1)n−1
√

1
n sin(b lnn)

7 if n ∈ K then

8 s← l − ri // i2 = −1

9 S ← S ∪ {|s|} // |s| is the modulus of s

10 t← the mean value of S
11 T ← T ∪ {(b, t)}
12 Find (b̂, t̂) ∈ T , with a local minimum t̂

13 c← b̂− steplen, d← b̂+ steplen

The following Mathematica code can be directly used to test the zeros, in which
we take kℓ = 5000.

Eta1[a_, b_, k_, mylist_] := Module[{n, l, r, s, t, U, V, precision},

l = r = 0; U = V = {}; precision = 10;

For[n = 1, n <= k, n++,

l = N[l + (-1)^(n - 1)/(n^a)*Cos[b*Log[n]], precision];

r = N[r + (-1)^(n - 1)/(n^a)*Sin[b*Log[n]], precision];

If[MemberQ[mylist, n], s = l - r*I; t = Abs[s];

U = AppendTo[U, {n, s, t}]]]; V = U];

Eta2[a_, b1_, b2_, steplen_, k_, mylist_] :=

Module[{A, B, stepnum, b, j, W, v, d, precision},

A = B = W = {}; precision = 10; stepnum = (b2 - b1)/steplen;

For[j = 0, j <= stepnum, j++,

b = b1 + steplen*j; A = Eta1[a, b, k, mylist];

d = N[steplen*j, precision];

v = N[Mean[A[[All, 3]]], precision];

B = AppendTo[B, {d, v}] ]; W = B]

k = 5000; mylist = Table[j*10^3, {j, 1, 5}];
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b1 = 10.0; b2 = 20.0; steplen = 1/4;

a = 1/2; A = Eta2[a, b1, b2, steplen, k, mylist]; Print[A];

ListLinePlot[A, Mesh -> Full]

{{0,1.33823},{0.2500000000,1.61259},{0.5000000000,1.86782},

{0.7500000000,2.09893},{1.000000000,2.30438},{1.250000000,2.46705},

{1.500000000,2.56858},{1.750000000,2.61239},{2.000000000,2.60302},

{2.250000000,2.52423},{2.500000000,2.36813},{2.750000000,2.14915},

{3.000000000,1.87241},{3.250000000,1.5319},{3.500000000,1.13841},

{3.750000000,0.709616},{4.000000000,0.253182},{4.250000000,0.2182},

{4.500000000,0.683107},{4.750000000,1.13002},{5.000000000,1.54547},

{5.250000000,1.90438},{5.500000000,2.19277},{5.750000000,2.41041},

{6.000000000,2.54455},{6.250000000,2.57632},{6.500000000,2.51031},

{6.750000000,2.36476},{7.000000000,2.14311},{7.250000000,1.84833},

{7.500000000,1.51511},{7.750000000,1.20657},{8.000000000,1.00278},

{8.250000000,0.988215},{8.500000000,1.15136},{8.750000000,1.39071},

{9.000000000,1.63032},{9.250000000,1.81398},{9.500000000,1.89421},

{9.750000000,1.85839},{10.00000000,1.71362}}

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

Fig. 1 Local minima for the interval (10, 20)

By Fig.1, we see there are two local minimums of modulus, corresponding to the
tuples (4.25, 0.2182), (8.25, 0.988215). So, the two possible intervals are (14.0, 14.5),
(18.0, 18.5).

For the first interval (14.0, 14.5), we have the following experimental results.

b1 = 14.0; b2 = 14.5; steplen = 1/32;

a = 1/2; A = Eta2[a, b1, b2, steplen, k, mylist]; Print[A];

ListLinePlot[A, Mesh -> Full]

{{0,0.253182},{0.03125000000,0.194737},{0.06250000000,0.136141},

{0.09375000000,0.0775431},{0.1250000000,0.0202913},{0.1562500000,0.0421528},
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{0.1875000000,0.100516},{0.2187500000,0.159346},{0.2500000000,0.2182},

{0.2812500000,0.276977},{0.3125000000,0.335624},{0.3437500000,0.394103},

{0.3750000000,0.452384},{0.4062500000,0.510443},{0.4375000000,0.568259},

{0.4687500000,0.625818},{0.5000000000,0.683107}}

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 2 Local minima for (14.0, 14.5)

0.01 0.02 0.03 0.04 0.05 0.06

0.02

0.04

0.06

0.08

Fig. 3 Local minima for (14.09375,
14.15625)

By Fig.2, it is easy to see that the local minimum of modulus is 0.0202913,
corresponding to the tuple (0.125, 0.0202913). So, the shorter interval is (14.09375,
14.15625), which still contains the target zero 14.134725142.

b1 = 14.09375; b2 = 14.15625; steplen = 1/256;

a = 1/2; A = Eta2[a, b1, b2, steplen, k, mylist]; Print[A];

ListLinePlot[A, Mesh -> Full]

{{0,0.0775431},{0.003906250000,0.070239},{0.007812500000,0.0629472},

{0.01171875000,0.0556731},{0.01562500000,0.0484252},{0.01953125000,0.0412181},

{0.02343750000,0.0340781},{0.02734375000,0.0270592},{0.03125000000,0.0202913},

{0.03515625000,0.0141802},{0.03906250000,0.0104262},{0.04296875000,0.0109457},

{0.04687500000,0.0150783},{0.05078125000,0.0212469},{0.05468750000,0.0280083},

{0.05859375000,0.0350174},{0.06250000000,0.0421528}}

With the shorter step length 1/256, we find the local minimum of modulus is
0.0104262, corresponding to the tuple (0.0390625, 0.0104262). So, the shorter interval
is (14.1289, 14.1367), which still contains the target zero 14.134725142. By the similar
procedure, we obtain the strictly decreasing modulus chain and the nested intervals

modulus : 0.2182 > 0.0202913 > 0.0104262 > · · ·
intervals : (14.0, 14.5) ⊃ (14.09375, 14.15625)⊃ (14.1289, 14.1367)⊃ · · ·

Finally, we can obtain a more accurate approximation of the target zero.
For the other local minimum (8.25, 0.988215), we have the below results.

b1 = 18.0; b2 = 18.5; steplen = 1/32;

a = 1/2; A = Eta2[a, b1, b2, steplen, k, mylist]; Print[A];

ListLinePlot[A, Mesh -> Full]
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{{0,1.00278},{0.03125000000,0.989387},{0.06250000000,0.979231},

{0.09375000000,0.972401},{0.1250000000,0.968948},{0.1562500000,0.968873},

{0.1875000000,0.972129},{0.2187500000,0.978623},{0.2500000000,0.988215},

{0.2812500000,1.00073},{0.3125000000,1.01596},{0.3437500000,1.03369},

{0.3750000000,1.05367},{0.4062500000,1.07566},{0.4375000000,1.09943},

{0.4687500000,1.12473},{0.5000000000,1.15136}}

b1 = 18.09375; b2 = 18.21875; steplen = 1/256;

a = 1/2; A = Eta2[a, b1, b2, steplen, k, mylist]; Print[A];

ListLinePlot[A, Mesh -> Full]

{{0,0.972401},{0.003906250000,0.971785},{0.007812500000,0.971221},

{0.01171875000,0.97071},{0.01562500000,0.970251},{0.01953125000,0.969846},

{0.02343750000,0.969494},{0.02734375000,0.969194},{0.03125000000,0.968948},

{0.03515625000,0.968754},{0.03906250000,0.968613},{0.04296875000,0.968525},

{0.04687500000,0.96849},{0.05078125000,0.968507},{0.05468750000,0.968577},

{0.05859375000,0.968699},{0.06250000000,0.968873},{0.06640625000,0.969099},

{0.07031250000,0.969377},{0.07421875000,0.969708},{0.07812500000,0.970089},

{0.08203125000,0.970523},{0.08593750000,0.971007},{0.08984375000,0.971543},

{0.09375000000,0.972129},{0.09765625000,0.972766},{0.1015625000,0.973454},

{0.1054687500,0.974192},{0.1093750000,0.974979},{0.1132812500,0.975816},

{0.1171875000,0.976703},{0.1210937500,0.977638},{0.1250000000,0.978623}}

It is easy to see that there does not exist a strictly decreasing modulus chain. So,
it does not correspond to a zero.

4 Local minima on vertical lines

In the above experiments, we always take a = 1/2. Now, we take any a ∈ (0, 1).

k = 5000; mylist = Table[j*10^3, {j, 1, 5}];

b1 = 10.0; b2 = 20.0; steplen = 1/4;

a = 1/3; A = Eta2[a, b1, b2, steplen, k, mylist];

a = 1/2; B = Eta2[a, b1, b2, steplen, k, mylist];

a = 2/3; U = Eta2[a, b1, b2, steplen, k, mylist];

ListLinePlot[{A, B, U}, Mesh -> Full,

PlotLabels -> {Callout["a=1/3", {Scaled[0.21], Above}],

Callout["a=1/2", {Scaled[0.78], Below}],

Callout["a=2/3", {Scaled[0.95], Below}]}]

a = 1/4; A = Eta2[a, b1, b2, steplen, k, mylist];

a = 1/2; B = Eta2[a, b1, b2, steplen, k, mylist];

a = 3/4; U = Eta2[a, b1, b2, steplen, k, mylist];

ListLinePlot[{A, B, U}, Mesh -> Full,

PlotLabels -> {Callout["a=1/4", {Scaled[0.25], Above}],

Callout["a=1/2", {Scaled[0.75], Below}],

Callout["a=3/4", {Scaled[0.95], Below}]}]
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The results are plotted as below (see Fig.4–9). It is easy to find that b = 14.134725142
locally minimizes the modulus |η(a+ ib)| for a = 1

4 ,
1
3 ,

1
2 ,

2
3 ,

3
4 .

a=1/3

a=1/2
a=2/3

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 4 Local minima for a = 1/3, 1/2, 2/3,
and interval (10, 20)

a=1/4

a=1/2

a=3/4

2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 5 Local minima for a = 1/4, 1/2, 3/4,
and interval (10, 20)

a=1/3
a=1/2

a=2/3

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Fig. 6 Local minima for a = 1/3, 1/2, 2/3,
and interval (14, 15)

a=1/4

a=1/2

a=3/4

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Fig. 7 Local minima for a = 1/4, 1/2, 3/4,
and interval (14, 15)

a=1/3

a=1/2

a=2/3

0.02 0.04 0.06 0.08 0.10

0.1

0.2

0.3

0.4

0.5

Fig. 8 Local minima for a = 1/3, 1/2, 2/3,
and interval (14.10, 14.20)

a=1/4

a=1/2

a=3/4

0.02 0.04 0.06 0.08 0.10

0.2

0.4

0.6

0.8

Fig. 9 Local minima for a = 1/4, 1/2, 3/4,
and interval (14.10, 14.20)

Notice that (ζ(a + ib))′b =
∑∞

n=1(−1)nie−a lnne−ib lnn lnn, (ζ(a + ib))′′b =
∑∞

n=1(−1)n+2e−a lnne−ib lnn ln2 n. Both are more complicated than the original series.
So, the general methods to find local minima using First Derivative Test or Second
Derivative Test are not applicable. But by numerical calculation and induction, we
have the following result.
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Theorem 4.1 (Local minima on vertical lines). If 1
2 + it is a zero of η(z), then for

any a ∈ (0, 1), a+ it is a local minima of |η(a+ ib)|. Namely, there exists an interval

[b1, b2] and t ∈ (b1, b2) such that |η(a+ it)| = minb∈(b1,b2){|η(a+ ib)|, a ∈ (0, 1)|}.
For example,

|η(a+ 14.134725142 i)|= min
b∈[10,20]

{|η(a+ ib)|, a ∈ (0, 1)},

|η(a+ 21.022039639 i)|= min
b∈[20,23]

{|η(a+ ib)|, a ∈ (0, 1)},

|η(a+ 25.01085758 i)|= min
b∈[23,30]

{|η(a+ ib)|, a ∈ (0, 1)}, · · ·

By Theorem 4.1, for any a+ bi, a ∈ (0, 1), we have

|η(a+ ib)| ≥ |η(a+ it)| (7)

where |η(12 + it)| = 0, and t is the nearest to b.

5 Monotonicity on any horizontal line with a zero

To investigate the monotonicity on any horizontal line with a zero, we revise the
original programming code as below.

Eta3[b_,steplen_,k_,mylist_]:=Module[{A,B,a,stepnum,j,W,v,precision},

A = B = W = {}; precision = 10; stepnum = 1/steplen;

For[j=0, j<=stepnum, j++, a=steplen*j; A=Eta1[a, b, k, mylist];

v=N[Mean[A[[All, 3]]], precision]; B=AppendTo[B, {a, v}]]; W=B]

k = 5000; mylist = Table[j*10^3, {j, 1, 5}]; steplen = 1/32;

b = 14.134725142; A = Eta3[b, steplen, k, mylist];

b = 21.022039639; B = Eta3[b, steplen, k, mylist];

b = 25.010857580; U = Eta3[b, steplen, k, mylist];

ListLinePlot[{A, B, U}, Mesh -> Full,

PlotLabels -> {Callout["b=14.13", {Scaled[0.35], Below}],

Callout["b=21.02", {Scaled[0.08], Above}],

Callout["b=25.01", {Scaled[0.95], Above}]}]

b = 30.424876126; A = Eta3[b, steplen, k, mylist];

b = 32.935061588; B = Eta3[b, steplen, k, mylist];

b = 37.586178159; U = Eta3[b, steplen, k, mylist];

ListLinePlot[{A, B, U}, Mesh -> Full,

PlotLabels -> {Callout["b=30.42", {Scaled[0.35], Below}],

Callout["b=32.93", {Scaled[0.08], Above}],

Callout["b=37.58", {Scaled[0.95], Above}]}]

The experimental results are plotted as above (see Fig.10, 11). Here is the
relationship between the three modulus (see Fig.12).
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b=14.12

b=21.02

b=25.01

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

Fig. 10 The monotonicity for
t = 14.134725142, 21.022039639, 25.01085758
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b=37.58
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Fig. 11 The monotonicity for t =
30.424876126, 32.935061588, 37.586178159

x

y

1
2 1

a + ib

a + it
1/2 + it

|η(a + ib)| ≥ |η(a + it)|, local minimum

|η(a + it)| > |η(1/2 + it)|, a 6= 1/2, monotonicity

Fig. 12 The relationship for three modulus

Note that the first derivative (ζ(a+ib))′a =
∑∞

n=1(−1)ne−a lnne−ib lnn lnn, which is
more complicated than the original series. So, it is impossible to theoretically validate
the monotonicity. But by numerical calculation and induction, we have the below
theorem.

Theorem 5.1 (Monotonicity on any horizontal line with a zero). If 1
2 + it is a zero

of η(z), then |η(a+ it)| is a strictly decreasing function for a ∈ (0, 1/2). But |η(a+ it)|
is a strictly increasing function for a ∈ (1/2, 1).

By Theorem 5.1, it is easy to see that

|η(a+ it)| > |η(1
2
+ it)| = 0 (8)

if a ∈ (0, 1) \ {1/2}. Combining (7) and (8), we have the following corollary.

Corollary 5.2. For any a+ bi, a ∈ (0, 1), we have

|η(a+ ib)| ≥ |η(a+ it)| > |η(1
2
+ it)| = 0

where 1
2 + it is a zero and t is the nearest to b.
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6 Conclusion

The local minima on vertical lines and the monotonicity on any horizontal line with
a zero in the critical strip, play a key role in validating the Riemann hypothesis.
But the general methods to find local minima using First Derivative Test or Second
Derivative Test, are not applicable for the eta series because its first derivative and
second derivative are more complicated than the original series. Besides, the usual
methods to validate the monotonicity are not applicable. The numerical calculation
method proposed in this paper could be a good choice for the intractable hypothesis.
It could be helpful for the future works on this topic.
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[3] Pérez-Marco R.: Notes on the Riemann Hypothesis, arXiv:1707.01770v2 (2018).

[4] Spanier J. and Oldham K.: The Zeta Numbers and Related Functions, An Atlas
of Functions, Washington, DC, Hemisphere, 25-33 (1987).

[5] Nuttall J.: Wronskians, Cumulants, and the Riemann hypothesis. Constructive
Approximation, 38, 193-212 (2013).

[6] Rubinstein M.: Elliptic curves of high rank and the Riemann zeta function on the
one line, Experimental Mathematics, 22(4), 465-480 (2013).

[7] Wolf M.: Evidence in favor of the Baez-Duarte criterion for the Riemann
hypothesis, arXiv:math/0605485v4 (2006).

12


	Introduction
	The general method to test zeros
	A new method to test zeros
	Local minima on vertical lines
	Monotonicity on any horizontal line with a zero 
	Conclusion

