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Abstract—Safeguarding cryptographic implementations against
the increasing threat of Side-Channel Analysis (SCA) attacks is
essential. Masking, a countermeasure that randomizes intermedi-
ate values, is a cornerstone of such defenses. In particular, SCA-
secure implementation of AES, the most-widely used encryption
standard, can employ Boolean masking as well as multiplicative
masking due to its underlying Galois field operations. However,
multiplicative masking is susceptible to vulnerabilities, including
the zero-value problem, which has been identified right after the
introduction of multiplicative masking. At CHES 2018, De Meyer
et al. proposed a hardware-based approach to manage these
challenges and implemented multiplicative masking for AES,
incorporating a Kronecker delta function and randomness op-
timization.

In this work, we evaluate their design using the PROLEAD
evaluation tool under the glitch- and transition-extended probing
model. Our findings reveal a critical vulnerability in their first-
and second-order implementation of the Kronecker delta function,
stemming from the employed randomness optimization. This
leakage compromises the security of their presented masked AES
Sbox. After pinpointing the source of such a leakage, we propose
an alternative randomness optimization for the first-order design
to address this issue, and demonstrate its effectiveness through
rigorous evaluations by means of PROLEAD.

Index Terms—Side Channel Analysis, Implementation Security,
Multiplicative Masking, AES

I. INTRODUCTION

Protecting confidential information has always been cru-
cial. Today, safeguarding data and securing both software
and hardware implementation of cryptographic primitives are
more critical than ever to prevent sensitive information from
being exposed by Side-Channel Analysis (SCA) attacks [1].
Numerous countermeasures have been devised to address these
attacks. Masking, introduced by Chari et al. in 1999 [2],
is among the most widely used and recognized techniques.
It is highly regarded due to its strong theoretical basis and
the possibility to prove its security under specific adversarial
models.

Boolean masking is straightforward to apply on linear func-
tions because the XOR operation with a mask is preserved
through the function, allowing the masked computation to
maintain its structure and security without complicating the
underlying process. Therefore, most of the relevant state-of-the-
art research focuses on applying Boolean masking to non-linear
Boolean functions, such as the Sboxes in symmetric block
ciphers. However, utilizing Boolean masking for the non-linear
AES Sbox is inefficient because the Sbox involves complex

operations, like inversion in a Galois field, which does not pre-
serve the linearity required for straightforward masking. This
results in the need for additional, complex countermeasures to
maintain security, leading to increased computational overhead
and implementation complexity.

An alternative approach is to apply multiplicative masking to
the AES Sbox. The application of this type of masking to the
Galois field inversion of the AES Sbox effectively addresses
the previously mentioned challenges. However, this requires
conversion between Boolean and multiplicative masking at the
beginning and end of the inversion. Further, it has been shown
in [3] that multiplicative masking can be easily broken due to
its inability to mask zero values, as the multiplication of zero
with any mask leads to zero. This issue has been addressed by
a series of work [4]–[6] showing that zero being the Sbox input
can be mapped to 1 and turned back to zero after the inversion
avoiding the zero-value issue. This approach requires tracking
zero values, and more importantly, the entire tracking and
mappings should be masked as well. Note that this technique
has been applied in (embedded) software applications, resulting
in secure and efficient masked software implementations of
AES.

Masking in hardware, however, involves many additional
challenges. Mangard et al. [7] were the first to report a
critical weakness in masked hardware implementation related
to unintended transitions at the output of gates, known as
glitches. Due to this vulnerability, the vast majority of pro-
posed masked hardware designs have become insecure, as
they overlook the impact of glitches in their constructions. By
considering the effect of glitches, Nikova et al. [8] proposed
the first methodology, named Threshold Implementation (TI),
successfully maintaining first-order SCA security which forces
a high number of shares depending on the algebraic degree
of the target function. Notable examples of implementations
based on this approach include [9] and [10]. However, its
application on the AES Sbox is not straightforward and leads
to a significant area overhead. Subsequently, Domain-Oriented
Masking (DOM) was introduced by Gross et al. [11], offering
the same level of security as TI with the minimum number of
shares and hence lower area and randomness overhead.

To construct a masked hardware implementation of the AES
Sbox, De Meyer et al. [12] took a different approach compared
to prior similar designs such as those shown in [10], [11], [13].
More specifically, their research builds upon works done by



Golić and Tymen [3] and Genelle et al. [5], which introduced
adaptive masking technique involving switching between dif-
ferent masking schemes and managing the zero problem. The
core idea of the work by Genelle et al. is to track and map zero
values, and De Meyer et al. extended this concept to hardware
by applying the well-known DOM scheme to a Kronecker delta
function. This approach reduces the area overhead and the need
for fresh masks compared to the state-of-the-art. Additionally,
they proposed a custom optimization to reduce randomness
further by strategically recycling fresh masks according to a
specific procedure.

In this work, we conduct a comprehensive security evaluation
of the masked AES Sbox and its corresponding modules as
detailed in [12], employing the PROLEAD evaluation tool [14].
In addition to the security evaluations, we carefully analyzed
the components to identify potential vulnerabilities and their
root causes. Following this procedure, we have identified first-
order leakage in the first-order design (resp. second-order
leakage in the second-order design) of [12] originating from the
randomness optimization technique employed in the masked
Kronecker delta function aiming at reducing the number of
fresh masks. Finally, we present another optimization technique
to address these weaknesses maintaining first-order security
in the first-order design under glitch- and transition-extended
probing models.

The rest of the paper is structured as follows. The next
section delves into the relevant concepts providing the nec-
essary background to follow the paper. The core of the paper
comprises in Section III and Section IV, where in addition to
the security evaluations and analyses, our proposed optimiza-
tion technique is presented and assessed. Finally, Section V
summarizes our key findings and highlights potential future
directions.

II. BACKGROUND

Notations. In equations, square brackets [ . ] serve as a reg-
ister. ⊕ and ⊗ are used to indicate addition and multiplication
in Fn = GF(n). AND operations have been presented by “&”
and in some cases, this notation has been omitted for brevity.
Also, F∗

n = Fn/{0}, and by subscripts xi we refer to the i-th
element (bit) of a vector X , and by superscript xj to the j-th
share of x.

A. Masking

Masking is a countermeasure technique employed to protect
sensitive information against SCA attacks, such as power
analysis. This technique randomizes intermediate values within
a circuit, obscuring the correlation between power consumption
and data that is expected to be processed, i.e., intermediates
of a cipher. Two primary masking techniques are employed in
the AES Sbox implementations: Boolean and multiplicative. As
follows, we present an exploration of these schemes and their
applications within the context of AES.

a) Boolean Masking: This method involves splitting sen-
sitive data X ∈ Fn into d > 1 shares ⟨X1, ..., Xd⟩ ∈ (Fn)

d.
One option to share X is to select d−1 shares ⟨X1, . . . , Xd−1⟩
uniformly at random (each over Fn), and set the last share Xd

as the XOR result of the original data X with all other shares
(random values). In short, we should be able to write

X =

d⊕
i=1

Xi. (1)

Boolean masking is particularly effective for linear operations
L(X ⊕ Y ) = L(X) ⊕ L(Y ), as the target function can be di-
rectly applied to the shares, i.e., L(

⊕d
i=1 X

i) =
⊕d

i=1 L(X
i).

For instance, linear operations of AES such as AddRoundKey,
MixColumns, and ShiftRows can utilize Boolean masking
by instantiating d instances of each operation, while each of
which processes a share individually. Despite its suitability for
affine operations, it cannot easily handle non-linear operations,
such as the AES Sbox. Since the AES Sbox is an inversion in
GF(28) followed by an affine transformation A(.)

S(X) = A
(
X−1

)
, (2)

one option to deal with this difficulty is to use a mixture
of Boolean and multiplicative masking and switch between
them [15].

b) Multiplicative Masking: When dealing with the AES
Sbox with S(X ⊕Y ) ̸= S(X)⊕S(Y ), multiplicative masking
can be used rather than Boolean masking. Similar to Boolean
masking, it involves d shares denoted as ⟨X1, . . . , Xd⟩. A
subset of d − 1 shares is randomly selected while omitting
{0}, i.e., from F∗

n. The remaining share is computed as the
product of the secret value X ∈ Fn and all other shares, i.e.,
the randomly selected values. This construction must adhere to
the following equation.

X =

(
d−1⊗
i=1

(
Xi
)−1

)
⊗Xd (3)

However, this scheme has a critical flaw known as the zero-
value problem, first identified in [3]. More specifically, it can
only effectively mask X ∈ F∗

n.

B. Zero-Value Problem in Multiplicative Masking

The zero-value problem occurs when the Sbox input is zero,
leaving it unchanged and unmasked in multiplicative masking,
compromising security and making the system vulnerable to
first-order Differential Power Analysis (DPA) attacks. To solve
this, a technique has been introduced in [5], which converts zero
inputs to non-zero values (ideally to 1) and tracks them to revert
after the Sbox inversion. This conversion and tracking must also
be securely masked to prevent leakage. De Meyer et al. [12]
applied the same concept in hardware, using the Kronecker
delta function to map zero inputs to non-zero values before
applying multiplicative masking. The underlying structure is
depicted in Fig. 1.

The AES Sbox has been designed based on switching
between different types of masking. However, as illustrated in
Fig. 1a, detecting and mapping zero inputs (using the Kronecker
delta) should be applied before the masking conversion. The
output of the Kronecker delta function is “1” (in a Boolean
masked form) only when the input is zero. In any other
case, its output is “0” (naturally in a Boolean masked form).



(a) Location of the Kronecker delta function in the AES Sbox.

(b) Structure of the first-order masked Kronecker delta function. (c) Structure of a first-order masked DOM-AND gate (G7).

Fig. 1: Overview of the Kronecker delta function within the AES Sbox.

More precisely, the output of the Kronecker delta function is
determined by the following equation.

z = x0 & x1 & . . . & x7, (4)

with x0 being the logical invert of the first input bit x0

(respectively for the other input bits x1, . . . , x7). Note that the
concept of mapping zero elements to 1 is directly inspired by
the property of the finite field where both zero and 1 are their
own inverses. Therefore, we can write

(z ⊕X)
−1 ⊕ z = X−1.

The Kronecker delta function’s first-order design, shown in
Fig. 1b, consists of a log2(n)-level 2-input AND-tree, where
the AND gates are based on the DOM-indep multiplier [11].
Each DOM-AND gate (depicted in Fig. 1c) requires a single-bit
random input, called fresh mask bit. As illustrated in Fig. 1b
the Kronecker structure demands a total of 7 fresh mask bits.
Accordingly, to decrease such a demand, the authors of [12]
proposed custom optimizations to re-use the fresh masks, i.e., to
give the same fresh mask bit to multiple DOM-AND modules.
These optimizations are based on the simplified equation of the
DOM-indep multiplier as follows.

biz = bix b
i
y ⊕ [bix b

i⊕1
y ⊕ r], for i ∈ {0, 1},

where, z = x y and their first-order Boolean mask representa-
tions are z = b0z ⊕ b1z , x = b0x⊕ b1x, and y = b0y ⊕ b1y . Using the
associative and commutative properties of XOR, we can write

biz = bix y ⊕ r. (5)

Based on the simplified expression in Equation (5), any ran-
domness previously employed to mask y is eliminated from
the output share z. Building upon these insights, the authors

of [12] proposed the following optimization for their first-order
implementation.

r1 = r3
$← GF(2), r2 = r4

$← GF(2), r5
$← GF(2),

r6 = [r5 ⊕ r2], r7 = r1 (6)

This means that the randomness cost is reduced from 7 to 3
bits. Due to the security proof of the Kronecker delta function,
the authors opted for a manual or pen-and-paper proof instead
of relying on any software to exhaustively examine the security
of their construction.

Through their manual proof, aligned with the concept of
Strong Non-Interference (SNI) [16] and one-time pad trans-
formation [17], the authors demonstrated that their first-order
Kronecker structure is 1-SNI, thereby establishing the provable
security of their implementation.

In their second-order design, second-order DOM-AND gates
should be employed in the Kronecker delta function (see
Fig. 1b). Each of such second-order masked DOM-AND gates
requires three fresh masks namely r1,j , . . . , r7,j with j ∈
{0, 1, 2}, i.e., 21 fresh masks in total. Similarly, the authors
have suggested an optimization strategy to reduce the demand
for the fresh masks to 13 as follows.

ri,j
$← GF(2), ∀i ∈ {1, 2, 3, 4}, j ∈ {0, 1, 2},

r5,0 = r3,0, r5,1 = r4,1, r5,2 = [r3,2 ⊕ r4,2],

r6,0 = r1,0, r6,1 = r2,1, r6,2 = [r1,2 ⊕ r2,2],

r7,0 = [r1,1 ⊕ r3,1], r7,1 = [r2,0 ⊕ r4,0], r7,2
$← GF(2)

(7)

C. Sbox Structure

The structure of the AES Sbox (first order) is illustrated in
Fig. 2. Following the zero-mapping process (Kronecker delta
function), a sequence of operations is applied: 1) Boolean to
multiplicative masking conversion, 2) local inversion based on



Fig. 2: The entire structure of the masked AES Sbox of [12].

the work presented in [18], and 3) subsequent multiplicative to
Boolean masking conversion. More specifically, ignoring the
Kronecker delta function, the initial stage involves converting
the given input X from Boolean masking with X = B0 ⊕B1

to multiplicative masking with X =
(
P 0
)−1⊗P 1. One option

to convert ⟨B0, B1⟩ to ⟨P 0, P 1⟩ is to write the multiplicative
shares as follows.

P 0 = R, P 1 = [B0 ⊗R]⊕ [B1 ⊗R]

Note that the fresh mask R is randomly selected from the set
of non-zero values, i.e., R $← F∗

256.
When X is zero, resulting in B0 = B1, the corresponding P 1

becomes also zero, which results in
(
P 1
)−1

to be also zero. To
mitigate this potential leakage, input X is preprocessed using
the Kronecker delta function before the masking conversion
process, whose functionality has been explained previously.

Assuming that ⟨Q0, Q1⟩ are multiplicative shares of the
inversion’s output (see Fig. 2), the conversion from multiplica-
tive masking to Boolean masking is done as follows, while
R′ $← F256.

B′0 = R′ ⊗Q0, B′1 = [R′ ⊕Q1]⊗Q0

Note that, as shown in Fig. 2, some registers are added to this
construction to form a pipeline circuit that can process one
input per clock cycle.

Finally, an affine transformation (naturally in Boolean
masked form) is performed and the final Sbox output is
generated. The overall latency of the first-order design is five
clock cycles, with three cycles dedicated to the Kronecker and
two cycles to the masking conversions. Notably, the affine
transformation is fully combinational.

D. Verification Tools

The authors of [12] made a considerable stride in achieving
SCA security by presenting the first masked hardware imple-
mentation of the AES encryption function using multiplicative
masking. One of the critical phases in implementation security
is its evaluation and leakage assessment [19], which necessi-
tates formal evaluation and verification tools. Unfortunately, a

high percentage of the existing formal verification tools struggle
to handle large circuits and implementations [20]–[23]. These
limitations pose significant obstacles for researchers attempting
to effectively validate their secure designs. For instance, the
authors of [12] employed VerMI [24] to verify their masked
Sbox implementation. However, when applying their custom
optimizations to the Kronecker delta function, they could not re-
use VerMI as it mainly examines the non-completeness property
of masked designs. Further, the only tool available at that time
was maskVerif [20] which in some cases reports the insecurity
of secure designs, i.e., false negatives (see [25]).

Given the limitations of the existing verification tools,
Müller and Moradi introduced PROLEAD [14], a state-of-the-
art evaluation tool specifically designed for masked hardware
implementations. The key features of PROLEAD include:

• It operates merely on the gate-level netlist of the given
circuit, eliminating the need for a power model.

• It enables the analysis of complete masked cipher imple-
mentations, not only small circuits/gadgets.

• It detects vulnerabilities arising from combined glitch
and transition effects, as well as higher-order multivariate
leakages.

• It avoids false negatives as well as false positives unlike
some other tools with the same goal.

As a result, PROLEAD is making major strides in over-
coming the limitations of former evaluation tools and filling
these gaps. However, it should be noted that it is not a formal
verification tool. In other words, if it reports the security of
a given design, it cannot be considered as a proof. However,
if it detects leakage with high confidence, the insecurity of the
circuit can be concluded. Finally, PROLEAD generates a report
identifying vulnerable intermediates and categorizing them by
leakage susceptibility.

III. EVALUATION AND SYSTEMATIC ANALYSIS

In order to ensure a robust framework for analysis, we
carefully implemented the complete AES Sbox design of [12]
along with its associated modules in Verilog-HDL. To evaluate
the security of the design, we made use of the open-source
Yosys tool [26] for the synthesis while utilizing the NanGate
45 nm standard cell library to generate the corresponding gate-
level netlist. To ensure the integrity of the design, we main-
tained a hierarchical structure throughout the synthesis process
as instructed and suggested by the original authors. For the
PROLEAD’s evaluations, we have set the tool to conduct a fixed
versus random test under the glitch-extended probing model.
To ensure a comprehensive evaluation, a total of 4 million
simulations were conducted, allowing for a robust statistical
analysis of the results.

In the remainder of this section, we focus only on the first-
order design. When excluding the Kronecker delta function
and selecting a non-zero input as the fixed value of the test,
the design passes the PROLEAD’s security assessments. This
confirms the correctness and security of the masking conver-
sions, inversion, and affine transformation of the design (see
Fig. 2). However, by including the Kronecker delta function



and selecting zero as the fixed input, the design failed to pass
the PROLEAD’s security evaluation. The assessment revealed
critical vulnerabilities that compromise security of the imple-
mentation. According to PROLEAD’s detailed report, these
vulnerabilities were directly associated with the Kronecker
delta function, which played a pivotal role in the design’s
failure. The report specifically identified certain intermediate
values within the design as leakage points, visually marked
with red stars in the gate G7 for clarity, as shown in Fig. 3.

We should highlight that in these analyses, we applied the
randomness optimization technique proposed by the original
authors (see Equation (6)). By avoiding such an optimization,
i.e., providing 7 individual and independent fresh mask bits
per clock cycle for the Kronecker delta function r0, . . . , r7, the
design passes all PROLEAD’s security evaluations. This clearly
shows that the applied randomness optimization is the Achilles’
heel of the design.

To determine the root cause of these leakages, we need to
precisely analyze the interdependencies between inputs, random
masks, and the identified leaking probes, while temporarily
disregarding the proposed optimization. A preliminary exami-
nation of Fig. 3 reveals the following key equations, which shed
light on how these factors contribute to the observed vulnera-
bilities, where the simplifications are based on Equation (5).

yi0 = [xi
0 x

i
1]⊕ [xi

0 x
i⊕1
1 ⊕ r1] = xi

0 x1 ⊕ r1,

yi1 = [xi
2 x

i
3]⊕ [xi

2 x
i⊕1
3 ⊕ r2] = xi

2 x3 ⊕ r2,

yi2 = [xi
4 x

i
5]⊕ [xi

4 x
i⊕1
5 ⊕ r3] = xi

4 x5 ⊕ r3,

yi3 = [xi
6 x

i
7]⊕ [xi

6 x
i⊕1
7 ⊕ r4] = xi

6 x7 ⊕ r4,

wi
0 = [yi0 y

i
1]⊕ [yi0 y

i⊕1
1 ⊕ r5] = yi0 y1 ⊕ r5,

wi
1 = [yi2 y

i
3]⊕ [yi2 y

i⊕1
3 ⊕ r6] = yi2 y3 ⊕ r6,

zi0 = wi
0 w1 ⊕ r7, i ∈ {0, 1} (8)

PROLEAD reports indicate that the leakage observed at each
node v1, . . . , v4 stems from inner domain terms, particularly
a1, a2, d1, and d2, as depicted in Fig. 3. To investigate the
source of this leakage more precisely, exemplary consider v1
and its associated inner domain extensions a1 and a2, which are
highlighted in Fig. 3.Analyzing these extensions will provide
critical insights into the pathways through which the leakage
occurs, thereby enhancing our understanding of the underlying
vulnerabilities within the design.

Consider a scenario in which a single randomness opti-
mization is implemented, specifically by setting r1 = r3 (see
Equation (6)). This choice simplifies the circuit’s behavior and
facilitates a more straightforward analysis of its implications.
Under this condition, we can derive the following relationships
and equations, which highlight how this optimization affects the
overall functionality and security of the design. More precisely,
we place a probe on v1 and focus on some of its glitch-extended
probes a1 and a2 while

a1 = [y00 y
0
1 ], a2 = [y02 y

0
3 ],

Fig. 3: Kronecker delta function architecture, based on DOM-
AND gate.

and

y00 = x0
0 x1 ⊕ r1, y01 = x0

2 x3 ⊕ r2,

y02 = x0
4 x5 ⊕ r1, y03 = x0

6 x7 ⊕ r4.

Now, let us consider a situation in which a1 and a2 both capture
the same value a1 = a2 = 1. This implies that y00 = y01 = y02 =
y03 = 1. Focusing on y00 = y02 = 1, we can write

y00 = y02 =⇒ x0
0 x1 ⊕ r1 = x0

4 x5 ⊕ r1

=⇒ x0
0 x1 = x0

4 x5. (9)

Here, x0
0 and x0

4 denote random shares that contribute to
the masking process. However, the vulnerability arises when
unmasked values x1 = x5 = 0, which implies this correctness
of the equality in Equation (9). In other words, considering the
concept behind simulatability [27], the observation achieved
by the probe v1 → {a1, b1, a2, b2} is not independent of the
circuit’s unmasked values x1 and x5. This phenomenon occurs
due to the removal of fresh masks r1 from both sides of the
equation, which eliminates the blinding effect that is crucial for
maintaining security.

This analysis can be extended to the other leaky probes v2,
v3, and v4. Consequently, re-using randomness within the Kro-
necker delta function compromises the design’s security. It is
essential to emphasize that these findings are based on applying
only one randomness optimization of Equation (6) in the first
AND layer of the Kronecker delta function. Considering other
optimizations such as r2 = r4 could further exacerbate the
vulnerabilities identified. For instance, under the previously



discussed conditions (i.e., observing v1 = 1), we can derive
that y01 = y03 , which allows us to express the following.

y01 = y03 =⇒ x0
2 x3 ⊕ r2 = x0

6 x7 ⊕ r2

=⇒ x0
2 x3 = x0

6 x7,

which implies the same conclusion that the observation made by
the probing set {a1, b1, a2, b2} is different whenx3 = x7 = 0.

IV. OUR PROPOSED OPTIMIZATION

The analysis detailed in Section III illustrates that the ran-
domness optimizations proposed in [12] for the first-order de-
sign unintentionally introduce notable vulnerabilities within the
design, particularly under the glitch-extended probing model.
Although the authors intended to mitigate the zero problem
associated with multiplicative masking through the use of the
Kronecker delta function, their proposed solution inadvertently
creates additional security risks. Specifically, the implementa-
tion of these optimizations can undermine the effectiveness
of the masking technique, resulting in potential information
leakage that compromises the overall security of the circuit.

Our analysis, supported by PROLEAD, emphasizes that the
independent selection of fresh mask bits for the first layer of
DOM-AND gates in the Kronecker delta function is crucial.
Ensuring that each fresh mask bit is chosen independently
enhances the security of the design by avoiding any glitch-
extended probe placed on the circuit from observing any data-
dependent information, i.e., first-order security. Accordingly,
fresh mask bits r1, . . . , r4 should be defined as follows.

r1
$← GF(2), r2

$← GF(2),

r3
$← GF(2), r4

$← GF(2)

The second and third layers of the DOM-AND gates exhibit
distinct characteristics that set them apart from the first layer.
Our comprehensive evaluations indicate that, in terms of vulner-
ability, these layers are less critical compared to the first layer,
which serves as the primary line of defense against potential
leakage. This reduced vulnerability is largely attributed to the
behavior of the masking mechanism; specifically the masking
of the second input of the DOM-AND gate disappears at its
output (see Equation (5)). As a result, the influence of fresh
masks in this context is less significant, allowing for more
flexible configurations.

The primary constraint pertains to the fresh masks assigned
to G5 and G6, which must not be identical. Otherwise, this
can introduce vulnerabilities, undermining the security of the
cryptographic implementation. To illustrate this, let’s examine
the scenario where if r5 = r6. According to the analysis
presented in Section III, the outputs of G5 and G6 can be
expressed by the following equations.

wi
0 = (xi

0 x1 ⊕ r1)x2 x3 ⊕ r5,

wi
1 = (xi

4 x5 ⊕ r3)x6 x7 ⊕ r5, i ∈ {0, 1}

When the exemplary probe placed on v1 observes 1, it can be
concluded that w0

0 = w0
1 = 1 leading to

(x0
0 x1 ⊕ r1)x2 x3 ⊕ r5 = (x0

4 x5 ⊕ r3)x6 x7 ⊕ r5

=⇒ (x0
0 x1 ⊕ r1)x2 x3 = (x0

4 x5 ⊕ r3)x6 x7

Hence, similar to the former analysis, this indicates that if any
of x2 or x3 (on the left side of the equation) is zero, and any
of x6 or x7 (on the right side) is zero, the distribution observed
by v1 is not uniform.

Therefore, as a potential solution, the fresh masks assigned
to the DOM-AND gates G5, G6, and G7 can be specified
as follows while maintaining the security under the glitch-
extended probing model.

r5 = r4, r6 = r2, r7 = r3 (10)

In order to rigorously evaluate this optimization, we did
not follow the one-time pad transformation approach applied
in [12] since we believe that it cannot appropriately exam-
ine the security of such optimizations as its result does not
fit to security evaluation under the glitch-extended probing
model. Therefore, we conducted comprehensive analysis by
PROLEAD confirming that the Kronecker delta function with
the fresh mask optimization given in Equation (10) effectively
mitigates vulnerabilities and ensures first-order security.

As mentioned earlier, our analysis and optimizations were
based on the adversarial model considered in [12], i.e., glitch-
extended probing model. However, when we expand the evalu-
ation to consider transitions, which is a natural way to evaluate
masked hardware designs, the results change quite a bit, re-
vealing new insights and challenges. In short, none of the opti-
mizations discussed above can maintain security under glitch-
and transition-extended probing models. We should highlight
that under such a model, a probe placed on a signal does
not only propagate backward through the combinational circuit
contributing to the probed signal but also to two consecutive
inputs of such a combinational circuit. By means of trial and
error, we found four solutions given below, which indeed do
not play a significant role in reducing the demand for fresh
mask bits.

r1
$← GF(2), r2

$← GF(2), r3
$← GF(2),

r4
$← GF(2), r5

$← GF(2), r6
$← GF(2),

r7 = ri, ∀i ∈ {1, 2, 3, 4}

Naturally, under the glitch- and transition-extended probing
models, PROLEAD did not detect any first-order vulnerability
in the Kronecker delta function when any of these fresh
randomness optimizations is applied.

We should further refer to their second-order implementation
following the same concept. As given in Equation (7), the
authors have also provided an optimization technique to reduce
the number of fresh masks from 21 to 13 bits. We have
constructed this design as well and performed similar analysis.
Similar to the first-order design, we have detected second-order
leakage in the second-order design by PROLEAD when the
optimization given in Equation (7) is applied. More precisely,



applying any single optimization of those in Equation (7)
would lead to second-order leakage, while no leakage could
be detected if no optimizations were applied. Our designs
and evaluation results can be found in https://github.com/
ChairImpSec/MultiplicativeMaskingAES.

V. CONCLUSIONS

This research presented a comprehensive security evaluation
of the multiplicative masking scheme applied to an AES hard-
ware design. Focusing on the AES Sbox, we identified a critical
vulnerability in the first- and second-order implementation
stemming from the randomness optimization of the Kronecker
delta function proposed in [12]. This vulnerability, which could
compromise the security of the underlying cryptographic im-
plementation, is addressed through an alternative optimization,
ensuring that the first-order design meets first-order security
requirements although the gain is minimal.

Our findings emphasize the crucial role of evaluation and
formal verification tools in assessing the security of masked
implementations particularly when customized optimizations
are in place. Although we have employed PROLEAD for our
entire evaluations, we should admit that it is not the only tool
capable to detecting this flaw. We predict that applying other
tools like SILVER [25] would lead to similar results.
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