
Tetris! Traceable Extendable Threshold Ring Signatures and More

Gennaro Avitabile1, Vincenzo Botta2, and Dario Fiore1

1 IMDEA Software Institute, Madrid, Spain. {gennaro.avitabile,dario.fiore}@imdea.org
2 Sapienza University of Rome, Rome, Italy. vincenzo.botta@uniroma1.it

Abstract. Traceable ring signatures enhance ring signatures by adding an accountability layer.
Specifically, if a party signs two different messages within the protocol, their identity is revealed.
Another desirable feature is extendability. In particular, extendable threshold ring signatures (ETRS)
allow to non-interactively update already finalized signatures by enlarging the ring or the set of signers.
Combining traceability and extendability in a single scheme is unexplored and would offer a new tool for
privacy-preserving voting schemes in scenarios where the voters are not known in advance. In this paper,
we show how to reconcile both properties by introducing and constructing a new cryptographic primitive
called Tetris. Notably, our Tetris construction simultaneously achieves strong anonymity and linear-
size signatures, which is the main technical challenge in existing techniques. To solve this challenge,
we develop a new approach to traceability that leads to several conceptual and technical contributions.
Among those, we introduce and construct, based on Groth-Sahai proofs, extendable shuffle arguments
that can be non-interactively updated by several provers.

Keywords: Ring Signatures · Traceability · Malleable Proof Systems.

1 Introduction

A ring signature scheme allows a signer to generate a signature on behalf of a publicly known group of
potential signers called ring R [45]. In ring signatures, the identity of the signer is hidden among all
the possible signers in the ring. Ring signatures are crucial in many applications including anonymous
authentication [42], privacy-protecting cryptocurrencies [48], whistleblowing [45], and e-voting [49,46]. An
interesting feature of ring signatures is that, unlike group signatures [25,12], they operate without the need of
an online central authority. This feature is extremely useful in decentralized scenarios where such authority
simply does not exist. However, ring signatures offer an unlimited level of anonymity which is not always
desirable. For example, consider a simple voting protocol where voters have to pick between two choices. To
cast a vote, a user simply produces a signature of the desired choice using their own secret key. A dishonest
voter might exploit the high level of anonymity of ring signatures to cast a double vote without being detected.
To tackle these issues, variants of ring signatures known as linkable ring signatures [39] and traceable ring
signatures have been proposed [30,31]. The former allows one to establish whether two signatures have
been produced by the same user or not. The latter has additional features. In traceable ring signatures, a
signature on a message m is also issued w.r.t. a topic τ (e.g., a unique identifier of an election). Given two
valid signatures w.r.t. the same topic τ and different messages, one can trace the public key of the signer who
generated both signatures. If τ and m are equal in both signatures, the tracing procedure just reveals that
they were both generated by the same signer, without revealing their identity. On the other hand, signatures
issued w.r.t. different topics are unlinkable. A traceable ring signature must also be exculpable, meaning that
it is unfeasible to produce two signatures to falsely accuse a user of having signed two different messages on
the same topic. The level of accountability offered by traceability is strictly stronger than linkability. Indeed,
aside from preventing malicious behavior, they enable identification of any dishonest party.

Threshold ring signatures generalize ring signatures allowing t ≥ 1 signers to hide their identity within
a ring of size n ≥ t. The signature guarantees that at least t different signers in the ring signed the message
without revealing which ones. Generally, threshold ring signatures require fixing the ring and the threshold
at signature generation time with no possibility of further modifying them without a new intervention of the
signers themselves. This is a significant limitation as all the potential signers must be known in advance.

More recently, the concept of Extendable Threshold Ring Signatures (ETRS) was introduced in [5].
ETRS allow to non-interactively update a threshold ring signature on a certain message so that the updated
signature has a greater threshold and/or an augmented ring. This is done via two operations named join and
extend respectively. A key property of ETRS is the strong anonymity notion defined in [8]. The adversary
can see all the signature’s updates resulting from threshold increments and ring extensions that a signature
undergoes from when it is generated up until the protocol ends. This property is crucial for voting since all
the updates are publicly available. Despite the main application of ETRS being voting (when participants
are not known in advance), all the known ETRS providing even the weaker notion of linkability (i.e., [4,
Sec. 5.3]) have “quadratic” O(tn) size.

1.1 Our Contributions

We formalize and construct the first Traceable Extendable Threshold Ring Signature (Tetris). Our first
contribution is a general definition of traceable ring signatures that takes into account the threshold setting
as well as extendability. Indeed, to the best of our knowledge, previous definitions of traceability are only for
(plain non-threshold i.e., with t = 1) ring signatures and allow tracing only between signatures having the
same ring [30]. Simple adaptations of previous approaches fail at capturing the idea that all the misbehaving
signers should be discovered (and not just a subset of them). Therefore, we adopt a fundamentally different
approach in defining traceability (see Sec. 3 for more details).

The main technical challenge we solve is to construct a linear-size Tetris. Indeed, there are straightforward
solutions to build a Tetris with signatures of “quadratic”, O(tn), size. On the other hand, linear-size
traceability techniques for non-extendable threshold ring signatures are not applicable as they inherently
break strong anonymity. Towards our Tetris, we introduce and construct the following building blocks:

– We propose the notion of extendable non-interactive proof systems (EP). EP model proof systems for a
generalized threshold relation (e.g., they cover shuffle arguments), where a proof for a certain statement
x can be updated into a new proof for a different but related statement x′. Our notion can be seen as a
generalization, also adding new properties, of the ENIWI of [8]. Among those, we introduce a notion of
zero knowledge for extendable proof systems and a mild, but useful, notion of extractability that allows
to perfectly extract a part of the witness.

– We introduce and construct extendable shuffle arguments, namely arguments proving that a t-size list of
clear-text elements is a permuted subset of the values encrypted in a list of n ≥ t ciphertexts. The proof
can be updated by several (independent) provers that can re-randomize the ciphertexts, add a ciphertext
to the list, or reveal a new clear-text element.

– We introduce and construct doubly-authentication-preventing tags (DAPT) which are deterministic tags
that are tied to a public key, a topic, and a message. These tags are anonymous when issued on different
topics, but two tags generated with the same key, on the same topic, and different messages reveal the
corresponding public key.

1.2 Technical Overview

We first discuss some approaches to traceability and their shortcomings. Then, we give a high-level description
of our techniques and how we use them to overcome those issues.

A simple quadratic solution. A candidate technique to get a Tetris is to adapt a widely known compiler to
transform linkable ring signatures into linkable threshold ring signatures supporting the join operation. In a
nutshell, whenever two linkable ring signatures over the same message and ring do not link to the same signer,
they can be concatenated together to produce a 2-out-of-n signature. As a result, a signature with threshold
t is composed of t ring signatures. Similarly, two traceable ring signatures can be concatenated if they do not
trace to any public key in the ring. Therefore, applying this compiler starting from a traceable ring signature
naturally gives a traceable threshold ring signature equipped with the join operation. If the base traceable
ring signature also supports the extend operation, then we immediately get a Tetris. Thus, a viable approach

2

to get a Tetris could involve modifying an existing traceable ring signature into one supporting extensions,
and then applying the above compiler to get a Tetris. Unfortunately, currently known approaches [5,8] to
get extendability are inherently linear in n, leading to a base extendable traceable ring signature with size
O(n) and thus to a Tetris of size O(tn).

Towards a linear-size Tetris. A natural starting point is to combine a strongly anonymous O(n)-size ETRS [8]
with traceability techniques of previous works [30,29,18]. The key idea of these works is to publish a pseudo-
random tag for each of the public keys in the ring. Whenever pki is one of the signers, its tag is uniquely
determined by pki and the topic τ , while the tags of non-signers are just placeholders indistinguishable from
legitimate tags. To trace a pair of signatures, it suffices to look for identical tags in both signatures. However,
this approach is at odds with strong anonymity. Indeed, an adversary who has access to the full evolution
of a signature can easily guess which signers have performed a join operation along the way. This is because
once a new signer joins a signature, it is necessary to replace its placeholder tag with a new one as there
exists only one valid tag for a key that is in the set of signers. Moreover, for the same reason, it is not possible
to change the tags related to the previous signers. Given a pair of signatures (σj−1, σj) before and after the
j-th join operation, the signers of σj−1 are the public keys corresponding to the tags that have remained
unchanged in σj . If the tags were re-randomizable, one could avoid such an attack by re-randomizing the
list of tags after every join operation so that every signature in the sequence contains seemingly unrelated
tags. However, since the tracing algorithm must work exclusively using publicly available information, it
seems unlikely that one could come up with re-randomizable traceability tags that when compared reveal
the dishonest signers.

An alternative approach is to break the link between tags and public keys and publish only t tags (i.e.,
one tag per signer). The signature also contains a NIZK proof3 that the t tags come from t public keys in
the ring, while hiding the actual correspondence between individual tags and public keys. Notice that the
above attack is not applicable anymore, as no information is published about non-signers. We remark that
the NIZK proof should be extendable, allowing future signers to extend the ring or to increase the threshold
by providing a new tag. One could use extendable proofs for disjunctions and prove the above statement via
t disjunctive proofs stating that each of the t tags comes from one of the n public keys in the ring. Known
extendable proofs ([8]) support disjunctive threshold relations, that are proofs stating that t out of n base
statements (x1, . . . , xn) are in a base language L. These proofs have size O(nS)4, where S is the size of a
proof for xi ∈ L. For example, such relations can be used to express the above predicate via t disjunctive
proofs stating that each of the t tags is generated w.r.t the topic τ and the message m using one of the
public keys pk1, . . . , pkn. This approach gives again a signature of size O(tn) (i.e., t proofs of size nS, with
S independent from t and n).

In this work, we start from the idea of publishing only t tags and we build new tools allowing us to
instantiate the above template to get O(n)-sized signatures providing both traceability and strong anonymity.
In the next paragraphs, we give an high-level overview of such building blocks and how we combine them.

Extendable non-interactive proof systems (EP). We propose the notion of extendable non-interactive proof
systems (EP). EP model proof systems for a generalized threshold relation and are inspired from the ENIWI
of [8]. ENIWI are defined w.r.t. a threshold relation, which is in turn defined w.r.t. a poly-time relation RL as
RLtr

= {(x = (k, x1, . . . , xn), w = ((w1, α1), . . . , (wk, αk)))|1 ≤ α1 < . . . < αk ≤ n ∧ ∀ j ∈ [k] : (xαj
, wj) ∈

RL}. Let Ltr be the corresponding NP-language and let us call active statements the statements that are
in the set {xαj}j∈[k]; the other statements are called inactive. In words, the prover wants to prove that k
different statements out of n are in the language L. An ENIWI supports two kinds of transformations called
extend and add operations:

3 In this work, we interchangeably use the word proof and argument. Generally, unless specified, soundness is assumed
to hold against a PPT adversary.

4 Although using SNARKs in a recursive fashion one might get succinct extendable proofs [24,22], those proof
systems are costly in terms of proving time and memory and rely on strong assumptions. We are instead interested
in efficient provers and more standard assumptions.

3

– Extend: transform a proof for (k, x1, . . . , xn) ∈ Ltr into a proof for (k, x1, . . . , xn, xn+1) ∈ Ltr.
– Add: transform a proof for (k, x1, . . . , xn) ∈ Ltr into a proof for (k + 1, x1, . . . , xn) ∈ Ltr.

The extend operation can be executed without involving any private input from the previous provers.
However, the same does not apply to the add operation. When a prover computes a proof Π for a statement
x = (k, x1, . . . , xn) ∈ Ltr, it generates auxiliary values AUX = (aux1, . . . , auxn) alongside the proof. The
auxiliary value auxi is used later to perform the add operation through an additional algorithm named PAdd.
Given an accepting proof Π for (k, x1, . . . , xn) ∈ Ltr, a witness wi for an unused index i where (xi, wi) ∈ RL,
and the corresponding auxiliary value auxi, PAdd outputs a proof Π ′ for (k+1, x1, . . . , xn) ∈ Ltr. Similarly,
the algorithm PExt is employed for the extend operation, which does not need any auxiliary value. When
provided with an accepting proof for (k, x1, . . . , xn) ∈ Ltr and a statement xn+1, PExt produces a proof
Π ′ for (k, x1, . . . , xn+1) ∈ Ltr and the auxiliary value auxn+1 associated with the statement xn+1. This
auxiliary value auxn+1 can subsequently be used to perform an add operation using witness wn+1 s.t.
(xn+1, wn+1) ∈ RL. In [8] the notion of extended witness indistinguishability is introduced. It is a witness
indistinguishability (WI) notion which allows the adversary to additionally get some of the auxiliary values.

The notion of EP supports more expressive types of threshold relations (see Sec. 4), for example it also
models shuffle arguments. Unlike ENIWI, EP also allow to transform (e.g., re-randomize) the statements.
Namely, after an extend/add operation, the base statements x1, . . . , xn can be transformed into different
(but related according to a specific transformation) statements x′1, . . . , x′n. Additionally, we introduce a
definition of extended zero knowledge with a similar spirit to extended witness indistinguishability and a
mild, but useful, notion of extractability (reminiscent of F-extractability [28, Def. 3]) that allows to perfectly
extract what are the active statements along with a function of (part of) the rest of the witness (see Sec. 4).

ENIWI internals. To give a better understanding of our tools, we briefly describe the ENIWI of [8], which is
based on the remarkable malleability of the Groth-Sahai (GS) proof system [37,23]. GS proofs are a commit-
and-prove framework to prove the satisfiability of several types of equations over bilinear groups. In GS,
secret variables are committed, and the prover generates proof elements from the committed values and
commitment randomnesses. The proof is verified based on the statement, commitments, and proof elements.
More concretely, partial knowledge of satisfying assignments for k out of n equations is proved by introducing
additional binary “switch” variables biti s.t. when biti = 1 the i-th equation is left unaltered, while when
biti = 0 the i-th equation admits the trivial solution, thus allowing for simulation. Then, an additional
equation proving that

∑n
i=1 biti = k guarantees that only n−k equations can be simulated, while the prover

must hold a satisfying assignment for k of them.
The core idea of [8] is the observation that the proof elements of a GS proof are computed by linearly

combining, along with some randomizers, the committed variables and the commitment randomnesses. This
means that given (a function of) the values and the randomnesses of some committed variables, it is always
possible to erase their contribution from a proof element in order to replace the old variables with freshly
committed ones, assuming that the new assignment of the variables satisfies the new equation being proven5.

Roughly speaking, auxiliary values correspond to commitment openings for these switch variables biti
allowing to update a proof for

∑n
i=1 biti = k into a proof for

∑n
i=1 biti = k + 1 without knowledge of the

other bitj with j ̸= i.
A key observation that we use is that several extendable proof systems can be connected to each other

by sharing the same switch variables; this guarantees that the active indices (i.e, i ∈ [n] s.t. biti = 1) are the
same in all proofs.

Extendable shuffle arguments. We introduce and construct an EP for the shuffle relation that we call
extendable shuffle argument. The goal of an extendable shuffle argument is to prove that each element
ei of a public list {e1, . . . , ek} of k ≤ n elements is the value committed in a different commitment in a list
{c1, . . . , cn} of n commitments. For k = n the relation proved by an extendable shuffle argument coincides
with a shuffle argument to known values (e.g., [3,43]), where one proves that a set of public values is obtained
5 Even though the techniques shown in [8] are applied only to prove k out of n Pairing-Product Equations (PPEs),

the same techniques apply with minimal adjustments to all the other equation types supported by GS.

4

by first permuting and then opening a set of public commitments. Formally, the relation for the extendable
shuffle argument is the following:

RSH = {(x = (c1, . . . , cn, e1, . . . , ek), w = (ϕ, r1, . . . , rn)|∀ i ∈ [k] :

ϕ is an injective map [k]→ [n] ∧ cϕ(i) ← Com(ei, ri)}.
(1)

An extendable shuffle argument allows one to update previously generated proofs in the following two ways:

– Extend: On input a proof for x = (c1, . . . , cn, e1, . . . , ek) ∈ Lsh, and a new commitment cn+1, output a
proof for x′ = (c′1, . . . , c

′
n, c

′
n+1, e1, . . . , ek) ∈ Lsh.

– Add: On input a proof for x = (c1, . . . , cn, e1, . . . , ek) ∈ Lsh, a new element ek+1, a new commitment
c′i to ek+1 (along with its opening randomness) where position i has not been previously used, and an
auxiliary value auxi, output a proof for x′ = (c′1, . . . , c

′
n, e1, . . . , ek, ek+1) ∈ Lsh.

Notice that we apply a further transformation to the statement when performing an add/extend operation
by re-randomizing all the commitments (i.e., when we write c′i we mean that c′i is the re-randomization of
ci). This is an instantiation of our new notion of EP (see Sec. 4) that differs from the ENIWI of [8] where the
base statements do not change after add/extend operations. This additional feature is crucial to guarantee
the strong anonymity of our Tetris.

We build our extendable shuffle argument by modifying the shuffle argument by Groth and Lu [36] which
is in turn based on GS proofs. We first adapt their work to asymmetric bilinear groups and then use the
techniques of [8] to turn their regular shuffle into an extendable one by modifying the involved equations
using switch variables (see Sec. 8 for more details). Our extendable shuffle satisfies our new notion of extended
zero knowledge.

Doubly-authentication-preventing tags. We also define and construct new traceability tags that are compatible
with our approach. We name such tags doubly-authentication-preventing tags (DAPT), inspired by
doubly-authentication-preventing signatures (DAPS) [26,21]. A DAPS is a digital signature scheme with
accountability. Messages consist of both an address and a payload component. If a signer signs two messages
with identical addresses but different payloads, their secret key will be revealed. However, we cannot use
DAPS as traceability tags since, being digital signatures, they are publicly verifiable and thus they reveal
the public key w.r.t. they were generated.

Therefore, we define the related but different notion of DAPT. In a DAPT, a user is equipped with a
public key and a secret key. There is a tag generation algorithm Tag that on input the secret key, a topic τ ,
and a message m deterministically generates a tag e. Unlike DAPS, an adversary who is only in possession of
the public key cannot distinguish a valid DAPT from a random element of the tag space. Therefore, tags are
not linkable to a specific signer. However, a DAPT is also provided with a tracing algorithm TagTrace that
on input a public key and two tags generated on the same topic and different messages, outputs 1 if those
tags were both generated w.r.t. the public key given in input. This property will allow us to trace malicious
signers in our Tetris. Additionally, DAPT enjoy a non-frameability property stating that it is unfeasible to
produce two tags that trace to a public key without having the corresponding secret key. This property will
make our Tetris exculpable.

Putting everything together. To build a Tetris, we combine an EP for a threshold relation with our extendable
shuffle argument (SH). The public key of the Tetris is composed by the public key of a DAPT and the public
key of a public key encryption scheme, while the secret key simply includes the corresponding individual
secret keys. To compute a signature on message m with tag τ , the first signer computes e ← Tag(ski, τ,m)
and ci ← Com(e; r) with randomness r. Then, it generates other commitments cj with j ∈ [n], j ̸= i by
committing to 0. The signature includes e as well as all the commitments. The signer then proves using the
EP that 1 out of the n commitments actually commits to a tag that was honestly generated starting from
τ , m, and one of the DAPT keys in the ring. The resulting auxiliary values are individually encrypted under
the public keys of the corresponding potential future signers as done in [8].

5

Nevertheless, this does not suffice to get traceability as the EP proof above is about the value in ci and
not the clear-text e, i.e., e might not be in any of the commitments and just be a random value. Therefore,
the signer uses SH to prove that the clear-text tag e actually comes from the commitments list. However,
this is still not enough. Indeed, the EP proof certifies that one commitment contains the correct tag, while
the SH proof certifies that the clear-text tag e corresponds to the content of one of the commitments, but
in principle there is no guarantee that the two proofs are talking about the same commitment. To solve
this issue we make EP and SH share the same switch variables biti so that we are guaranteed that the two
proofs talk about the same commitments. This assures that all the t clear-text tags of a valid Tetris actually
correspond to honestly generated tags w.r.t. τ,m and t different keys in the ring.

The Trace algorithm of our Tetris simply runs the TagTrace algorithm of the DAPT on all possible triplets
of tags and public keys. Finally, the extend and join operations exploit the extendability of the underlying
proof systems.

1.3 Related Work

Ring signatures were introduced by Rivest et al. [45]. Several works have focused on improving the signature
size [27,2,44,38,52,6,41,51,34,9], the minimal assumptions required [1,15,40,10], the security against quantum
adversaries [2,13,38,19,14]. For some applications (e.g., e-voting) plain ring signatures are not enough and
additional properties are required. Accountability properties based on trusted authorities were explored
for both group and ring signatures [50,17,32,16]. Liu et al.[39] introduced likability allowing anyone to
determine if multiple signature were made by the same user without revealing their identity. Fujisaki et
al. [30] introduced traceable ring signatures allowing deanonymization of a signer that produces multiple
signatures on different messages. Subsequent works focused on improving the size or the assumptions of
traceable ring signatures [29,7,19,47]. Threshold ring signature were introduced by Bresson et al. [20], in
which t members of a group of n parties can sign a message keeping their identity hidden. Aranha et al. [5]
have enhanced the functionality of threshold ring signatures by proposing ETRS. Avitabile et al. [8] proposed
a stricter anonymity definition for ETRS along with a new construction based on Groth-Sahai (GS) proofs
[37,33,28].

2 Notation and Preliminaries

Let L be an NP language, we call RL the corresponding poly-time relation. We denote the security parameter
as λ.We work over bilinear groups gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1λ). G(1λ) is a generator algorithm that on
input the security parameter, outputs the description of a bilinear group. We call such description group
key gk. Ĝ, Ȟ,T are prime p order groups, ĝ, ȟ are generators of Ĝ, Ȟ respectively, and e : Ĝ × Ȟ → T is
a non-degenerate bilinear map. In this paper, we will use additive notation for the group operations and
multiplicative notation for the bilinear map e. Moreover, in some cases, we specify the randomness rand
used by an algorithm A on an input x during the execution writing A(x; rand). For details on standard tools
(e.g., commitment schemes, public key encryption, non-interactive proof systems, and Groth-Sahai proofs)
see App. A.

Assumption 1 (DDH) The Decisional Diffie-Hellman (DDH) holds in Ĝ if for all PPT adversaries A, the
probability that A distinguishes the two distributions (ĝ, ξĝ, ρĝ, ξρĝ) and (ĝ, ξĝ, ρĝ, κĝ), where ξ, ρ, κ←$ Zp is
negligible. Tuples of the form (ĝ, ξĝ, ρĝ, ξρĝ) are called Diffie-Hellman (DH) tuples. The DDH problem in Ȟ
is defined in a similar way.

For the sake of convenience, we state the following assumption that we call Extended DDH. Notice that
the Extended DDH assumption can be tightly reduced to DDH.

Assumption 2 (Extended DDH) The Extended Decisional Diffie-Hellman (EDDH) holds in Ĝ if for all
PPT adversaries A, the success probability in the experiment of figure Fig. 1 is

Pr
[
ExpExtDDH

A,Ĝ (λ) = win
]
≤ 1

2
+ negl(λ).

6

ExpExtDDH
A,Ĝ (λ)

1 : b←$ {0, 1}, a←$ Zp, â = aĝ

2 : b′ ← AC(b,a)(â)

3 : if b′ = b :

4 : return win

5 : else : return lose

C(b, a)

1 : t←$ Zp, t̂ = tĝ

2 : if b = 0 :

3 : ẑ = at̂

4 : else :

5 : z ←$ Zp, ẑ = zĝ

6 : return (t̂, ẑ)

Fig. 1. Extended DDH experiment.

Assumption 3 (Type 2 Extended DDH) The Type 2 Extended Decisional Diffie-Hellman holds in Ĝ if
for all PPT adversaries A, the success probability in the experiment of figure Fig. 2 is

Pr
[
ExpExtDDH-2

A,Ĝ (λ) = win
]
≤ 1

2
+ negl(λ).

ExpExtDDH-2
A,Ĝ (λ)

1 : b←$ {0, 1}, a←$ Zp, â = aĝ

2 : b′ ← AC(b,a,·)(â)

3 : if b′ = b :

4 : return win

5 : else : return lose

ODDH(b, a, honest)

1 : t←$ Zp, t̂ = tĝ

2 : if honest = 1 ∨ b = 0 :

3 : ẑ = at̂

4 : else :

5 : z ←$ Zp, ẑ = zĝ

6 : return (t̂, ẑ)

Fig. 2. Type 2 Extended DDH experiment.

Theorem 1. If Ass. 2 holds w.r.t. Ĝ, then Ass. 3 also holds w.r.t. Ĝ.

Proof. We construct an adversary B for Ass. 3 which internally runs A that breaks Ass. 2 with probability
noticeably bigger than 1

2 . B forwards to A the â that it gets in input. Then, B replies to oracle queries made
by A by making a query to its own C oracle. Finally, B outputs whatever A outputs. B perfectly simulates
the view of an A playing in ExpExtDDH

A,Ĝ (λ) and thus wins in its game with the same advantage that A has in
winning the ExpExtDDH

A,Ĝ (λ) game.

Assumption 4 (SXDH) The Symmetric eXternal Diffie-Hellman (SXDH) assumption holds relative to G
if there is no PPT adversary A that breaks the DDH problem in both Ĝ and Ȟ for gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)←
G(1λ).

Assumption 5 (Co-CDH) The Co-Computational Diffie-Hellman assumption holds relative to G if for
all PPT adversary A that are given (ĝ, ξĝ, ρĝ, ρȟ), where ξ, ρ ←$ Zp, the probability that A outputs ŝ s.t.
ξĝ · ρȟ = ŝ · ȟ is negligible.

We also state the following two assumptions which we rely on in Sec. 8, namely the subset permutation
pairing assumption and the subset simultaneous pairing assumption. They are inspired (and clearly implied)

7

by their non-subset (i.e., when k = n) analogues introduced in [36] for symmetric bilinear groups. The
permutation pairing assumption was adapted to the asymmetric setting by González [35]. We adapt the
simultaneous pairing assumption to the asymmetric setting as well.

Assumption 6 (Subset Permutation Pairing Assumption) We say that the subset permutation pair-
ing assumption holds if for gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)← G(1λ), for all n ∈ N, k ≤ n, and for all PPT adversaries
A we have:

Pr


({ǎi}, {b̌i}, {ĉi})← A(gk, k, {ĝi}, {γ̂i}, {ȟi}, {δ̌i})∑k

i=1 ǎi =
∑k

i=1 ȟi,
∑k

i=1 b̌i =
∑k

i=1 δ̌i
∀i ∈ [k] ĝ · ǎi = ĉi · ȟ, ĝ · b̌i = ĉi · ǎi

{ǎi}, {b̌i} are not a permutation of {ȟi}, {δ̌i}

∣∣∣∣∣∣∣∣
x1, . . . , xn ← Zp,

{ĝi} = {xiĝ}, {γ̂i} = {2xiĝ}
{ȟi} = {xiȟ}, {δ̌i} = {2xiδ̌}

 ≤ negl(λ).

Assumption 7 (Subset Simultaneous Pairing Assumption) We say that the subset simultaneous
pairing assumption holds if for gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ), for all n ∈ N, k ≤ n, and for all PPT
adversaries A we have:

Pr

{µ̂i} ← A(gk, k, {ĝi}, {γ̂i}, {ȟi}, {δ̌i})∑k
i=1 µ̂i · ȟ = 0T,

∑k
i=1 µ̂i · δ̌i = 0T

∃i : µ̂i ̸= 0̂

∣∣∣∣∣∣
x1, . . . , xn ← Zp

{ĝi} = {xiĝ}, {γ̂i} = {2xiĝ}
{ȟi} = {xiȟ}, {δ̌i} = {2xiδ̌}

 ≤ negl(λ).

3 Traceable Extendable Threshold Ring Signatures

A Tetris scheme consists of the following PPT algorithms and a poly-time relation RTetris
key . We model

signatures as a pair σ = (µ, tinfo), where we call tinfo tracing information as it is used by the Trace algorithm.

– (pp, td)← Setup(1λ): outputs public parameters pp and trapdoor td.6
– (pk, sk)← KeyGen(): generates a new public and secret key pair.
– σ ← Sign(τ,m, {pki}i∈R , sk): on input a topic τ , a message m, a secret key sk corresponding to a public

key pki with i ∈ R, returns a signature σ.
– 0/1 ← Verify(t, τ,m, {pki}i∈R , σ): on input a signature σ, a message m, a topic τ , a threshold t, and a

set of public keys {pki}i∈R ; it outputs 1 to accept, and 0 to reject.
– σ′ ← Join(τ,m, {pki}i∈R , sk, σ): on input a signature σ for message m and topic τ produced w.r.t. ring
R with threshold t, and the new signer secret key sk (whose pk is in R), outputs a new signature σ′ with
threshold t+ 1.

– σ′ ← Extend(τ,m, σ, {pki}i∈R , {pki}i∈R′): extends σ with threshold t for ring R into a new signature σ′

with threshold t for ring R∪R′.
– T ← Trace(τ,m1,m2, tinfo1, tinfo2, {pki}i∈R1

, {pki}i∈R2
): It is a deterministic algorithm. On input a

topic τ , two messages and tracing information pairs (m1, tinfo1), (m2, tinfo2), it outputs T that takes one
of the following values: (i) indep; (ii) (linked, n); (iii) a set PK = {pki}i∈R⊆R1∩R2 . Where indep means
that there are no common signers, (linked, n) means that m1 = m2 and there are n common signers, and
when m1 ̸= m2, PK is the set of traced keys.

We use the notion of ladder introduced in [5]. A ladder lad is a sequence of tuples (action, input), where
action takes a value in the set {Sign, Join,Extend} and the value of input depends on the value of action. If
action = Sign, then input is a pair (R, i), where R is the ring for the signature and i is the signer’s identity. If
action = Join, then input is an identifier i that identifies the signer joining the signature. If action = Extend,
then input is a ring R that is the ring to use to extend the previous one. We use lad.S to indicate the set of
signers of a ladder lad. We notice that a ladder unequivocally determines a sequence of signatures, each one
with a specific ring and threshold value. We also define the Proc algorithm, whose description is in (Fig. 3).
Proc takes as input a topic, a message, a ladder, and a list of keys, and outputs the sequence of all the
signatures corresponding to each step of the ladder. It outputs ⊥ whenever the ladder is malformed. A Tetris
must satisfy all the following properties, in Fig. 4 we list the oracles used by our definitions.
6 The public parameters pp produced by Setup are implicitly available to all the other algorithms.

8

Proc(τ,m, Lkeys, lad)

1 : Σ ← ∅, t = 0,Th← ∅

2 : parse lad = ((action1, input1), . . . , (actionl, inputl))

3 : if action1 ̸= Sign : return ⊥
4 : else :

5 : parse input1 = (R1, i1)

6 : for j ∈ R1;

7 : if (j, pkj , ·) /∈ Lkeys : return ⊥

8 : if ski1 = ⊥ ∨ i1 /∈ R1 : return ⊥

9 : R← R1,S ← {i1}
10 : σ ← Sign(τ,m, {pkj}j∈R , ski1)

11 : Σ ← Σ ∪ {σ}, t← 1,Th← Th ∪ {t}
12 : for l′ ∈ [2, . . . , l] :

13 : if actionl
′
= Sign : return ⊥

14 : else :

15 : if actionl
′
= Join :

16 : parse inputl
′
= (il

′
)

17 : if il
′
/∈ R ∨ il

′
∈ S : return ⊥

18 : σ ← Join(τ,m, {pkj}j∈R , sk
l′

i , σ)

19 : Σ ← Σ ∪ {σ},S ← S ∪ {il
′
}, t← t+ 1,Th← Th ∪ {t}

20 : if actionl
′
= Extend :

21 : parse inputl
′
= (Rl′)

22 : for j ∈ Rl′ :

23 : if (j, pkj , ·) /∈ Lkeys : return ⊥
24 : σ ← Extend(τ,m, σ, {pkj}j∈R , {pkj}j∈Rl′)

25 : R← R∪Rl′ , Σ ← Σ ∪ {σ},Th← Th ∪ {t}
26 : else : return ⊥
27 : return (Σ,Th,R)

Fig. 3. The algorithm Proc for Tetris.

9

OSign(τ,m,R, i)

1 : if i ∈ Lcorr ∨ i /∈ R : return ⊥
2 : for j ∈ R :

3 : if (j, pkj , ·) /∈ Lkeys : return ⊥
4 : σ ← Sign(τ,m, {pkj}j∈R , ski)

5 : Lsign ← Lsign ∪ {(τ,m,R, i, σ)}
6 : return σ

OJoin(τ,m,R, i, σ)

1 : if i ∈ Lcorr : return ⊥
2 : for j ∈ R :

3 : if (j, pkj , ·) /∈ Lkeys : return ⊥
4 : σ′ ← Join(τ,m, {pkj}j∈R , ski, σ)

5 : Ljoin ← Ljoin ∪ {(τ,m,R, i, σ)}
6 : return σ′

OKey(i, pk)

1 : if pk = ⊥ :

2 : (pki, ski)← KeyGen()

3 : Lkeys ← Lkeys ∪ {(i, pki, ski)}
4 : else :

5 : Lcorr ← Lcorr ∪ {i}, pki ← pk

6 : Lkeys ← Lkeys ∪ {(i, pki,⊥)}
7 : return pki

OCorr(i)

1 : if (i, pki, ski) ∈ Lkeys ∧ ski ̸= ⊥ :

2 : Lcorr ∪ {i}
3 : return (pki, ski)

4 : return ⊥

Fig. 4. Oracles for the security definitions of Tetris.

Definition 1 (Correctness). For all λ ∈ N, any message m, any topic τ , any ladder lad of polynomial
size ℓ identifying a ring R:

Pr


(

ℓ∧
j=1

Verify(tj , τ,m, {pki}i∈R , σj) = 1

)
∨(Σ,Th,R) = ⊥

∣∣∣∣∣∣∣∣∣∣
(pp, td)← Setup(1λ);

Lkeys ← {KeyGen()}i∈R;
(Σ,Th,R)← Proc(τ,m, Lkeys, lad);

{σ1, . . . , σℓ} = Σ;
{t1, . . . , tℓ} = Th;

 = 1.

Definition 2 (Verifiability of Keys). For all λ ∈ N, (pp, td) ← Setup(1λ), it holds that (pk, sk) ∈
KeyGen() iff (pk, sk) ∈ RTetris

key . We also require that for all pk there exists a unique sk s.t. (pk, sk) ∈ RTetris
key .

We define tracing correctness to model that, on honestly generated signatures, Trace should return the
expected output (e.g., the set of common public keys if m1 ̸= m2). Precisely, below we give a strong version of
this notion that considers adversarially generated keys. This strong notion will be useful in our constructions
and clearly implies the weaker one using honestly generated keys.

Definition 3 (Tracing Correctness). For all PPT A and all λ ∈ N the success probability in the
experiment ExpTcorr

A,Tetris(λ) (Fig. 5) is Pr
[
ExpTcorr

A,Tetris(λ) = win
]
≤ negl(λ).

On defining traceability. Previous definitions for t = 1 [30] require the adversary to output a topic τ , a ring
R of size n, and n + 1 accepting message/signature pairs w.r.t. τ and R. A generates all the keys by itself
and wins the game if the signatures it produces look signed by different signers according to Trace. If the
scheme is traceable, the adversary should not be able to win as there must exist at least a pair of signatures
sharing the same signer. However, modeling traceability for general t ≥ 1 is far more complicated. One may
adapt the definition of [30] requiring A to provide enough signatures so that at least two of them must have
at least c overlapping signers. However, unlike the t = 1 case where the size of the overlap is fixed, A may
produce signatures with c′ > c overlapping signers. Therefore, such a definition would allow schemes tracing
c keys while we want to identify all the c′ > c malicious signers. We solve this issue proposing a definition
featuring an extractor Ext which is able to perfectly identify the guilty signers and whose output should
match the one of Trace. In the following definition, we require the existence of such extractor.

10

ExpTcorr
A,Tetris(λ)

1 : (pp, td)← Setup(λ)

2 : (τ,m0,m1, lad0, lad1, Lkeys)← A(pp)
3 : ∀(i, pki, ski) ∈ Lkeys ∧ ski ̸= ⊥ :

4 : if (ski, pki) /∈ R
Tetris
key : return lose

5 : ∀(i, pki, ski), (j, pkj , skj) ∈ Lkeys ∧ ski, skj ̸= ⊥ ∧ i ̸= j :

6 : if pki = pkj : return lose

7 : ∀b ∈ {0, 1} : valb ← Proc(τ,mb, Lkeys, ladb)

8 : if ∃b ∈ {0, 1} : valb = ⊥ return lose

9 : ∀b ∈ {0, 1} : parse valb = (Σb,Thb,Rb)

10 : ∀b ∈ {0, 1} : parse Σb = {σb
1, . . . , σ

b
ℓb = (µb, tinfob)}

11 : T ← Trace(τ,m0,m1, tinfo0, tinfo1, {pkj}j∈R0 , {pkk}k∈R1)

12 : if lad0.S ∩ lad1.S = ∅ ∧ T ̸= indep : return win

13 : if m0 ̸= m1 ∧ T ̸= lad0.S ∩ lad1.S : return win

14 : if m0 = m1 ∧ T ̸= (linked, (|lad0.S ∩ lad1.S|) : return win

15 : return lose

Fig. 5. Tracing correctness game of Tetris. Tracing correctness game of Tetris. In line 6, if public keys are tuples, we
say that two public keys are equal if they are equal in at least one position. This is justified as sampling the same
value in the public key tuple basically requires sampling the same value in the secret key tuple (e.g., DL of a group
element).

In the following definition, we require the existence of such extractor. On input the trapdoor and a valid
signature, Ext must extract the signers of the signature. The existence of Ext is crucial to design a traceability
experiment which is able to determine the right winning condition for its adversary.

Definition 4 (Signers Extraction). There exists a PPT algorithm Ext that for all λ ∈ N, (pp, td) ←
Setup(1λ), Λ = (t, τ,m, {pki}i∈R , σ = (µ, tinfo)) s.t. Verify(pp, Λ) = 1 works as follows:

Ext(td, Λ) =

{
⊥

(PK, Ind).

Additionally, we require the following two properties to hold:

1. Whenever Ext does not return ⊥, it holds that:

Pr[(Λ,PK) ∈ LExt | (PK, Ind)← Ext(td, Λ)] = 1.

Where PK[i] = pkInd[i] for i ∈ [t], and pkInd[i] ∈ {pki}i∈R . Moreover, the language LExt = {x =

(Λ,PK)|∃w = (skInd[1], . . . , skInd[t], lad, rand) s.t. (∀i ∈ [t] (skInd[i], pkInd[i]) ∈ RTetris
key) ∧ P(x,w) = 1}, where

P(x,w) computes:
(a) Lkeys = [(j, pkj , skj)j∈R] as

(j, pkj , skj) =

{
(j, pkj , skInd[j]) for j ∈ Ind

(j, pkj ,⊥) for j ∈ R \ Ind,

(b) (Σ,Th,R) = Proc(τ,m, Lkeys, lad; rand).
(c) Return 1 iff Σ = [·, . . . , (µ′, tinfo′)] and tinfo′ = tinfo, where σ = (µ, tinfo).

11

2. For all λ ∈ N, (pp, td)← Setup(1λ), for all PPT A it holds that:

Pr

[
Verify(pp, Λ) = 1 ∧
Ext(td, Λ) = ⊥

∣∣∣∣ (Λ)← A(pp)] ≤ negl(λ).

Intuitively, the property (1) above ensures that the extractor finds valid public keys, and that from their
unique secret keys it is possible to generate signatures with the same tracing information tinfo′ as the one
in input, tinfo. Property (2) instead models that a PPT adversary cannot find a tuple that correctly verifies
and makes the extractor fail.

We define traceability with a simple game that requires the adversary to output a pair of signatures and
keys of its choice. The adversary wins the game if the output of Trace does not agree with the information
derived from running Ext on both signatures.7 Notice that A does not need any oracle in this game as it can
adversarially sample keys with the knowledge of their secret key.

Definition 5 (Traceability). There exists a PPT algorithm Ext s.t. for all PPT A and all λ ∈ N, the
success probability in ExpTrace

Ext,A,Tetris(λ) (Fig. 6) is Pr
[
ExpTrace

Ext,A,Tetris(λ) = win
]
≤ negl(λ).

Finally, we define anonymity and exculpability. The former models that an adversary should not learn
which keys were used to generate a signature. Notably, we do this by letting the adversary choose two ladders
and see the full evolution of the signature. The latter models that an adversary cannot falsely accuse a honest
user of producing two signatures on the same topic, if the user did not do it. Slightly below we give more
details on the checks performed in the experiments.

Definition 6 (Anonymity). For all PPT A and all λ ∈ N the success probability in ExpAnon
A,Tetris(λ) (Fig. 6)

is Pr
[
ExpAnon

A,Tetris(λ) = win
]
≤ 1

2 + negl(λ). The ladders output by A are well-formed if all the actions in the
ladders are pairwise of the same type and they have the same ring as input.

Definition 7 (Exculpability). For all PPT A and all λ ∈ N the success probability in ExpExculp
A,Tetris(λ)

(Fig. 7) is Pr
[
ExpExculp

A,Tetris(λ) = win
]
≤ negl(λ).

On the admissible adversaries of anonymity and exculpability. In our definitions there are some obvious checks
that are performed by the experiment to exclude adversaries winning the game by just making use of the
oracles. However, there is a less obvious check (line 10 of ExpExculp

A,Tetris(λ) (Fig. 7) and line 11 of ExpAnon
A,Tetris(λ)

(Fig. 6). Namely, any key for which A asked two queries over the same topic τ and two different messages
m0 ̸= m1 is considered as if it was corrupted. This is because, since the aim of traceable signatures is to
prevent such behaviour, we allow for constructions with the additional feature that every signer who signs
different messages loses any security guarantee. Finally, the check of line 10 of ExpAnon

A,Tetris(λ) (Fig. 6) excludes
adversary that can easily distinguish both ladders using Trace.

Additional definitions and lemmas. We now give the definition of unforgeability and show that a Tetris
which is both traceable and exculpable is also unforgeable. Additionally, we show that tracing correctness
and signers extraction imply traceability. As [5,8], we do not model malicious signers trying to prevent others
from joining a signature.

Definition 8 (Unforgeability). For all PPT adversaries A and for all λ ∈ N the success probability in the
experiment ExpcmEUF

A,Tetris(λ) of Fig. 8 is

Pr
[
ExpcmEUF

A,Tetris(λ) = win
]
≤ negl(λ).

7 Notice that the Ext required in this definition operates as the extractor of signers extraction (Def. 4).

12

ExpAnon
A,Tetris(λ)

1 : b←$ {0, 1}, Lkeys, Lcorr, Lsign, Ljoin ← ∅

2 : (pp, td)← Setup(1λ)

3 : O← {OSign,OKey,OCorr,OJoin}

4 : (τ∗,m∗, lad∗0, lad
∗
1)← AO(pp)

5 : Σ ← Chalb(τ
∗,m∗, lad∗0, lad

∗
1)

6 : b∗ ← AO(Σ)

7 : if ∃ i ∈ lad∗0.S ∪ lad∗1.S s.t. i ∈ Lcorr :

8 : return lose

9 : for i ∈ lad∗0.S ∪ lad∗1.S :

10 : if ∃ (τ∗, ·, ·, i, ·) ∈ Lsign ∪ Ljoin : return lose

11 : if ∃ (τ,m1, ·, i, ·), (τ,m2, ·, i, ·) ∈
Lsign ∪ Ljoin ∧m1 ̸= m2 : return lose

12 : if b∗ ̸= b : return lose else : return win

Chalb(τ
∗,m∗, lad∗0, lad

∗
1)

1 : if (lad∗0, lad
∗
1) is not well-formed :

2 : return ⊥
3 : if ∃ i ∈ lad∗0.S s.t. i ∈ Lcorr :

4 : return ⊥
5 : if ∃ i ∈ lad∗1.S s.t. i ∈ Lcorr :

6 : return ⊥
7 : val0 ← Proc(τ∗,m∗, Lkeys, lad

∗
0)

8 : val1 ← Proc(τ∗,m∗, Lkeys, lad
∗
1)

9 : if val0 = ⊥ ∨ val1 = ⊥ :

10 : return ⊥
11 : parse val0 = (Σ0,Th0,R0)

12 : parse val1 = (Σ1,Th1,R1)

13 : return Σb

ExpTrace
Ext,A,Tetris(λ)

1 : (pp, td)← Setup(1λ)

2 : (τ, t0, t1, {pki}i∈R0 , {pki}i∈R1 ,m0,m1, σ0, σ1)← A(pp, td)
3 : if ∃b ∈ {0, 1} s.t. Verify(tb, τ,mb, {pki}i∈Rb , σb) = 0 : return lose

4 : ∀b ∈ {0, 1} : outb ← Ext(td, τ,mb, tb, {pki}i∈Rb , σb)

5 : if ∃b ∈ {0, 1} s.t. outb = ⊥ : return win

6 : ∀b ∈ {0, 1} : parse outb = (PKb, Indb)

7 : ∀b ∈ {0, 1} : parse σb = (µb, tinfob)

8 : T ← Trace(τ,m0,m1, tinfo0, tinfo1, {pkj}j∈R0 , {pkk}k∈R1)

9 : if PK = PK0 ∩ PK1 = ∅ ∧ T ̸= indep : return win else : return lose

10 : if m0 ̸= m1 :

11 : if PK ̸= T : return win else : return lose

12 : else :

13 : parse T = (linked, n)

14 : if n ̸= |PK| : return win else return lose

Fig. 6. Anonymity and traceability games of Tetris.

13

ExpExculp
A,Tetris(λ)

1 : Lkeys, Lcorr, Lsign, Ljoin ← ∅,O← {OSign,OKey,OCorr,OJoin}

2 : (pp, td)← Setup(1λ)

3 : (τ∗, t∗0, t
∗
1,R∗

0,R∗
1,m

∗
0,m

∗
1, σ

∗
0 , σ

∗
1)← AO(pp)

4 : if ∃b ∈ {0, 1} Verify(t∗b , τ∗,m∗
b , {pki}i∈R∗

b
, σ∗

b) = 0 : return lose

5 : PK← Trace(τ∗,m∗
0,m

∗
1, σ

∗
0 , σ

∗
1 , {pki}i∈R∗

0
, {pki}i∈R∗

1
)

6 : if PK = indep ∨ PK = (linked, ·) :
7 : return lose

8 : ∀ pki ∈ PK :

9 : if pki ∈ Lcorr : PK = PK \ pki
10 : elseif ∃(τ,m0,R′, σ′, j), (τ,m1,R′′, σ′′, j) ∈ Lsign ∪ Ljoin s.t.

m0 ̸= m1 ∧ j ∈ R0 ∧ j ∈ R1 ∧ pki = pkj :

11 : PK = PK \ pki
12 : if PK = ∅ : return lose else : return win

Fig. 7. Exculpability game of Tetris.

Lemma 1. If a Tetris is both exculpable (Def. 7) and traceable (Def. 5) then it is also unforgeable.

Proof. Let us assume that there exists an adversary A that breaks the unforgeability property with non-
negligible probability. We build an adversary B that wins the exculpability game with the same probability.
Let C be the challenger of the exculpability game, B replies to all the oracle calls made by A by forwarding
such calls to C. B stores all the queries made by A along with the corresponding replies from C. Let
(t∗, τ∗,m∗,R∗, σ∗) be the forgery output by A. Let us focus on the queries that A performs on the public
keys contained in R∗.8 The number of these queries is given by q = c + q1 + q2 where c is the number of
corrupted keys in R∗, q1 is the number of Join/Sign queries over (τ∗,m∗), and q2 is the number of pairs
of Join/Sign queries over the same topic and different messages made w.r.t. the same public key. Let us
call any of the above queries a compromising query, and let us refer to the public key of such a query as
a compromised key. Notice that q < t∗, therefore, the maximum number of public keys in R∗ on which
A performed a compromising query is t∗ − 1, thus there must exist a set P ⊆ R∗ containing at least one
not compromised key. Since the signature scheme achieves signer extraction (Def. 4), the probability that
there are no public keys in P which is also in the set of signers9 of σ∗ is negligible (the reduction to signers
extraction is very straightforward). For each pkj ∈ P , B looks at the queries made by A for a Join/Sign
query involving (τ∗,m, j), with m ̸= m∗. If such a query exists, let σj ,Rj , tj be the signature, the ring, and
the threshold resulting from the reply of C to such query. Otherwise, B queries C to generate a signature
on (τ∗,m,R∗, j), for arbitrary m ̸= m∗ receiving back a signature σj over ring Rj = R∗ with threshold
tj = 1. For each pkj ∈ P , B runs PKj ← Trace(τ∗,m∗,m, tinfo∗, tinfoj ,R∗,Rj), where tinfo∗ and tinfoj are
taken from σ∗ and σj respectively. Thanks to traceability (the reduction is very straightforward), there must
exist at least one pkj ∈ P such that pkj ∈ PKj , therefore B sends (τ∗, t∗, tj ,R∗,R∗,m∗,m, σ∗, σj) to C.
Assuming that the queries made by B do not cause the removal of any pkj ∈ P from PK in lines 9 and 10
of the exculpability experiment (Fig. 7), then B wins the exculpability game with the same probability of
A winning the unforgeability game. It remains to show that the queries carried out by B do not cause the
removal of any pkj ∈ P from PK in lines 9 and 10 of the exculpability experiment (Fig. 7). To show this, we
observe that since pkj ∈ P the following facts about the queries performed by A over pkj hold:

8 For simplicity, we say that a public key belongs to the ring instead of saying that it belongs to the set {pkj}j∈R∗ .
9 More precisely, there exists a ladder that includes this public key in the set of signers and leads to the tinfo∗

contained in σ∗.

14

ExpcmEUF
A,Tetris(λ)

1 : Lkeys, Lcorr, Lsign, Ljoin ← ∅

2 : (pp, td)← Setup(1λ)

3 : O← {OSign,OKey,OCorr,OJoin}

4 : (t∗, τ∗,m∗,R∗, σ∗)← AO(pp)

5 : L← Lsign ∪ Ljoin

6 : q1 ← |{(τ∗,m∗, ·, i, ·) ∈ L : i ∈ R∗}|
7 : q2 ← |{(τ,m1, ·, i, ·), (τ,m2, ·, i, ·) ∈ L :

m1 ̸= m2 ∧ i ∈ R∗}|
8 : if |R∗ ∩ Lcorr|+ q1 + q2 ≥ t∗ :

9 : return lose

10 : if Verify(t∗, τ∗,m∗, {pkj}j∈R∗ , σ∗) = 0 :

11 : return lose

12 : return win

OSign(τ,m,R, i)

1 : if (i ∈ Lcorr ∨ i /∈ R) : return ⊥
2 : for j ∈ R :

3 : if (j, pkj , ·) /∈ Lkeys :

4 : return ⊥
5 : σ ← Sign(τ,m, {pkj}j∈R , ski)

6 : Lsign ← Lsign ∪ {(τ,m,R, i, σ)}
7 : return σ

OKey(i, pk)

1 : if pk = ⊥;
2 : (pki, ski)← KeyGen()

3 : Lkeys ← Lkeys ∪ {(i, pki, ski)}
4 : else :

5 : Lcorr ← Lcorr ∪ {i}
6 : pki ← pk

7 : Lkeys ← Lkeys ∪ {(i, pki,⊥)}
8 : return pki

OCorr(i)

1 : if (i, pki, ski) ∈ Lkeys ∧ ski ̸= ⊥ :

2 : Lcorr ∪ {i}
3 : return (pki, ski)

4 : return ⊥

OJoin(τ,m,R, i, σ)

1 : if i ∈ Lcorr : return ⊥
2 : for j ∈ R :

3 : if (j, pkj , ·) /∈ Lkeys :

4 : return ⊥
5 : σ′ ← Join(τ,m, {pkj}j∈R , ski, σ)

6 : Ljoin ← Ljoin ∪ {(τ,m,R, i, σ)}
7 : return σ′

Fig. 8. Unforgeability game for Tetris (security experiment and oracles).

15

– pkj was never corrupted;
– no query over (τ∗,m∗) was ever asked for pkj ;
– no pair of Join/Sign queries over the same topic and different messages were ever made for pkj .

B does not perform any corruption query and it only asks, if not previously asked by A, a query over (τ∗,m)
with m ̸= m∗. As a result, pkj will not have pairs of Join/Sign queries over the same topic and different
messages and it will not be removed from PK in lines 9 and 10 of the exculpability experiment (Fig. 7).

Lemma 2. Every Tetris which has verifiability of keys (Def. 2), tracing correctness (Def. 3) and signers
extraction (Def. 4) is traceable (Def. 5).

Proof. The probability of A winning ExpTrace
Ext,A,Tetris(λ) is at most the sum of the probabilities of A being able

to satisfy one of the following conditions:

1. A makes Ext output ⊥ (i.e., line 4 of ExpTrace
Ext,A,Tetris(λ) (Fig. 6));

2. A outputs two signatures σ0, σ1 s.t. PK extracted by Ext is empty but Trace does not output indep (i.e.,
line 9 of ExpTrace

Ext,A,Tetris(λ)).
3. A outputs two signatures σ0, σ1 on different messages m0 ̸= m1 which trace to a set of keys T different

from the set of keys PK extracted by Ext (i.e., lines 10 and 11 of ExpTrace
Ext,A,Tetris(λ));

4. A outputs two signatures σ0, σ1 on the same message (i.e. m0 = m1) on which Trace returns
(linked, n), but n is not equal to |PK|, where PK is the set of keys extracted by Ext (i.e., lines 13-14
of ExpTrace

Ext,A,Tetris(λ)).

We argue that A is able to satisfy each of the above conditions only with negligible probability.
Let us consider case 1. The probability of A satisfying case 1 is negligible, otherwise we can break the

signers extraction of Tetris (Def. 4) by simply using one of the two signatures given in output by A.
Let us now analyze the remaining cases. Since Tetris satisfies signers extraction, we have that, there must

exist two valid ladders, that, generate (via Proc), using the secret keys corresponding to the public keys
extracted by Ext, two signatures containing exactly tinfo0 and tinfo1. Thus, due to tracing correctness of
Tetris (Def. 3) and the fact that Trace is deterministic, given σ0 and σ1 output by A, the output of Trace
is consistent with the one derived from Ext with overwhelming probability. Therefore, the probability of A
satisfying one of case 2, 3, 4 is negligible.

4 Extendable Non-Interactive Proof Systems

We propose a more expressive poly-time relation than [8] called generalized threshold relation RGT containing
triples (ck, x, w), where Comck is a commitment scheme with parameters ck and F is a (hard) predicate.

RGT ={(ck, x = (k, x1, . . . , xn, c̃1, . . . , c̃n, e1, . . . , ek), w = (ϕ,w1, . . . , wk, r̃1, . . . , r̃n))|
∀i ∈ [n] ∃ biti : c̃i ← Comck(biti; r̃i) ∧ biti ∈ {0, 1} ∧

∑n
i=1 biti = k ∧

∀kj=1(bitϕ(j) = 1 ∧ F (ck, xϕ(j), ej , wj) = 1) ∧ ϕ : [k]→ [n] ∧ ϕ is injective}.

Two important specific cases are:

– By setting ∀i ∈ [k] ei to be empty strings and F (ck, x, ·, w) = RL′(x,w), we retrieve the threshold
relation over RL′ .

– By setting F (ck, x, e, w) to be the predicate that returns 1 iff x = Comck(e;w), we retrieve the extendable
shuffle relation (see relation (1)).

We call {c̃i}i∈[n] commitments to switch variables and {ei}i∈[k] clear-text elements. Additionally, we
call the set {xϕ(j)}j∈[k] active statements, while {xi}i∈[n] \ {xϕ(j)}j∈[k] inactive. Let RL be an instantiation
of RGT where Comck and F are concretely specified. An extendable non-interactive proof system EP also
comes with addition (AddT = (AddTx,AddTw)) and extension (ExtT = (ExtTx,ExtTw)) transformations.

16

For example, AddTx(ck, x, e, α, wα, r̃α; r) is a transformation, with randomness r, that takes a statement
x = (k, x1, . . . , xn, c̃1, . . . , c̃n, e1, . . . , ek−1), and transforms it to x′ = (k + 1, x′1, . . . , x

′
n, c̃

′
1, . . . , c̃

′
n, e1, . . . ,

ek−1, e). Namely, after an addition (or extension) operation the parts of the statement related to the threshold
and the clear-text elements are deterministically modified independently from the randomness in input to
the transformation, while the commitments and the base statements can be updated depending on the
randomness (e.g., re-randomized). Analogously, AddTw, on input the same transformation randomness given
to AddTx, transforms a witness w s.t. (ck, x, w) ∈ RL into a witness w′ s.t. (ck, x′, w′) ∈ RL. An EP for
RL consists of the following PPT algorithms along with transformations ExtTx,ExtTw,AddTx,AddTw. The
group key gk← G(1λ) is considered as an implicit input to all algorithms:

– (crs, td)← CRSSetup(gk): generates crs and trapdoor td.
– ck← ComSetup(gk): generates the commitment key ck.
– c ← Comck(m; r): on input a message m and a randomness r, given the commitment key ck, returns a

commitment c.
– (Π, (aux1, . . . , auxn)) ← Prv(crs, ck, x, w): on input statement x = (k, x1, . . . , xn, c̃1, . . . , c̃n, e1, . . . , ek),

witness w = (ϕ,w1, . . . , wk, r̃1, . . . , r̃n), s.t. (ck, x, w) ∈ RL outputs a proof Π and auxiliary values
(aux1, . . . , auxn). Each auxi is used later on to perform an add operation using a witness for a not
previously used statement xi.

– 0/1← PVfy(crs, ck, x,Π): on input statement x, and a proof Π, outputs 1 to accept and 0 to reject.
– (Π ′, x′, auxn+1, (r1, . . . , rn+1))← PExt(crs, ck, x, xn+1, r̃n+1, Π, r): on input statements x, xn+1, random-

ness r̃n+1 (used to commit to bitn+1 = 0), a proof Π for x ∈ L, and transformation randomness r, outputs
an updated statement x′ = (k, x′1, . . . , x

′
n+1, c̃

′
1, . . . , c̃

′
n, e1, . . . , ek), an updated proof Π ′ for x′ ∈ L, and

randomnesses r1, . . . , rn+1.
– (Π ′, x′, aux′α, (r1, . . . , rn)) ← PAdd(crs, ck, x, w′, α, e, r̃α, auxα, Π, r): on input statement x, witness w′,

index α, element e, randomness r̃α (used to commit to bitα = 1), auxiliary value auxα, proof
Π for x ∈ L, and transformation randomness r, outputs an updated statement x′ = (k +

1, x′1, . . . , x
′
n+1, c̃

′
1, . . . , c̃

′
n, e1, . . . , ek, e), an updated proof Π ′ for x′ ∈ L, an updated auxiliary value

aux′α, and randomnesses (r1, . . . , rn).
– aux′i ← AuxUpd(crs, ck, Π, auxi, ri): on input proof Π previous to addition or extension, the auxiliary

value auxi, and update randomness ri, outputs updated auxiliary value aux′i. AuxUpd is used to update
the auxiliary values after an extend/add operation. The randomness given in input is the one given in
output by either PExt or PAdd. To simplify the notation, we write AUX′ ← AuxUpd(crs, ck, x,Π,AUX, r)
to indicate that a list of auxiliary values is updated by appropriately parsing AUX and r and running
the update operation on each element of the list.

– 0/1 ← AuxVerify(crs, ck, x, w, (aux1, . . . , auxn), Π): on input statement x, witness w, auxiliary values
(aux1, . . . , auxn), and proof Π, outputs 1 if the auxiliary values are consistent with the statement, the
proof, and the witness. Returns 0 otherwise. If AuxVerify returns 1, we are guaranteed that the subsequent
extend/add operations can be correctly performed10.

An EP has to satisfy: (1) completeness, i.e., honestly generated proofs are always accepting and result
in correct auxiliary values (w.r.t. AuxVerify); (2) soundness, i.e., it is unfeasible to produce accepting proofs
for false statements; (3) admissible transformations, i.e. transforming (ck, x, w) ∈ RL using AddT or ExtT
with the intended inputs always gives (ck, x′, w′) ∈ RL; (4) transformation completeness, i.e., addition and
extension operations always give an accepting proof and correct auxiliary values when executed with the
intended inputs. Furthermore, AddTx (ExtTx) and PAdd (PExt) must give the same x′ in output when given
in input the same r and x. Finally, Comck must be perfectly binding and computationally hiding.

Definition 9 (Binding and Hiding of Comck). For all λ ∈ N, gk ← G(1λ), ck ← ComSetup(gk), Comck

is a perfectly binding and computationally hiding commitment scheme.

10 We introduce AuxVerify merely as an internal utility to simplify the description of our definitions.

17

Definition 10 (Completeness). An EP for RL is complete if ∀λ ∈ N, gk ← G(1λ), ck ← ComSetup(gk),
(crs, td)← CRSSetup(gk), (ck, x, w) ∈ RL, and (Π,AUX)← Prv(crs, ck, x, w) it holds that

Pr[PVfy(crs, ck, x,Π) = 1 ∧ AuxVerify(crs, ck, x, w,AUX, Π) = 1] = 1

Definition 11 (Admissible Transformations). The transformations AddTx, AddTw, ExtTx and ExtTw

have the following properties:

– AddTx is a transformation that on input (ck, x, e, α, w∗, r̃∗α; r), where x = (k, x1, . . . , xn, c̃1, . . . , c̃n, e1, . . . ,
ek−1), e is the added element, α is an index, w∗ is the witness for position α, r̃∗α is a randomness, and
r is the randomness of the transformation, output x′ = (k + 1, x′1, . . . , x

′
n, c̃

′
1, . . . , c̃

′
n, e1, . . . , ek−1, e).

– AddTw is a transformation that on input (ck, w, w∗, α, r̃∗α; r), where w = (ϕ,w1, . . . , wk−1, r̃1, . . . , r̃n),
output w′ = (ϕ′, w′

1, . . . , w
′
k−1, w

∗′, r̃′1, . . . , r̃
′
n), where ϕ′ = ϕ ∪ {k + 1→ α}11.

– Given ck, x, e, w,w∗, α, r̃∗α, r, if (ck, x, w) ∈ RL, x′ ← AddTx(ck, x, e, α, w
∗, r̃∗α; r), and w′ ←

AddTw(ck, w, w
∗, α, r̃∗α; r), F (ck, x′α, e, w′∗) = 1, then it holds that (ck, x′, w′) ∈ RL.

– ExtTx is a transformation that on input (ck, x, xn+1, r̃n+1; r) output x′ = (ck, k, x′1, . . . , x
′
n, x

′
n+1, c̃

′
1, . . . ,

c̃′n, c̃
′
n+1, e1, . . . , ek) where x = (ck, k, x1, . . . , xn, c̃1, . . . , c̃n, e1, . . . , ek).

– ExtTw is a transformation that on input (ck, w, r̃n+1; r) output w′ = (ϕ,w′
1, . . . , w

′
k, r̃

′
1, . . . , r̃

′
n+1) where

w = (ϕ,w1, . . . , wk, r̃1, . . . , r̃n+1).
– Given ck, x, xn+1, c̃n+1, r̃n+1, r, if (ck, x, w) ∈ RL, x′ ← ExtTx(ck, x, xn+1, r̃n+1; r) and w′ ← ExtTw(ck,
w, r̃n+1; r), then it holds that (ck, x′, w′) ∈ RL.

Definition 12 (Transformation Completeness). An EP for RL is transformation complete if ∀λ ∈ N,
gk ← G(1λ), ck ← ComSetup(gk), (crs, td) ← CRSSetup(gk), (ck, x, w) ∈ RL, where x = (k, x1, . . . , xn,
c̃1, . . . , c̃n, e1, . . . , ek) and w = (ϕ,w1, . . . , wk, r̃1, . . . , r̃n), for all randomnesses r, and (Π,AUX) such that
PVfy(crs, ck, x,Π) = 1 and AuxVerify(crs, ck, x, w,AUX, Π) = 1 the following holds with probability 1:

– For all e, w∗, α, r̃∗α s.t. α ∈ [n], ϕ(i) ̸= α for all i ∈ [k], if (Π ′, x′, aux′α, r
′) ←

PAdd(crs, ck, x, w∗, α, e, r̃∗α,AUX[α], Π, r) and F (ck, x′α, e, w
′) = 1 then PVfy(crs, ck, x′, Π ′) = 1 and

AuxVerify(crs, ck, x′, w′,AUX′, Π ′) = 1. The inputs to AuxVerify and F are obtained as follows:
• x′ ← AddTx(ck, x, e, α, w

∗, r̃∗α; r)
• w′ ← AddTw(ck, w, w

∗, α, r̃∗α; r)
• AUX′ is obtained as follows: AUX′′ is obtained by replacing auxα with aux′α in AUX, and AUX′ ←
AuxUpd(crs, ck, x′, Π ′,AUX′′, r′)

– For all xn+1, r̃n+1, r, if (Π ′, x′, auxn+1, r
′)← PExt(crs, ck, x, xn+1, r̃n+1, Π, r), then PVfy(crs, ck, x′, Π ′) =

1, and AuxVerify(crs, ck, x′, w′,AUX′, Π ′) = 1, The inputs to AuxVerify are obtained as follows:
• x′ ← ExtTx(ck, x, xn+1, r̃n+1; r)
• w′ ← ExtTw(ck, w, r̃n+1; r)
• AUX′ is obtained as follows: AUX′′ is obtained by adding auxn+1 to AUX, and AUX′ ←
AuxUpd(crs, ck, x′, Π ′,AUX′′, r′).

Definition 13 (Soundness). An EP for RL is sound if for all PPT A and ∀λ ∈ N, gk ← G(1λ), ck ←
ComSetup(gk), (crs, td) ← CRSSetup(gk), the probability that A(crs, ck) outputs (x,Π) such that x /∈ L but
PVfy(crs, ck, x,Π) = 1 is negligible.

We also require addition and extension privacy. That is, proofs updated with PAdd (or PExt) are
indistinguishable from proofs done from scratch using Prv.

Definition 14 (Addition Privacy). Consider the following experiment:

– gk← G(1λ), ck← ComSetup(gk), (crs, td)← CRSSetup(gk)
– (x,w, e∗, w∗, α, r̃α, Π

∗,AUX∗, r)← A(crs, ck)
11 Notice that it must hold that for each i ∈ [k], ϕ(i) ̸= α.

18

– If (ck, x, w) /∈ RL or PVfy(crs, ck, x,Π∗) = 0 or AuxVerify(crs, ck, x, w,AUX∗, Π∗) = 0 or α ∈ Im(ϕ)(with
ϕ taken from w) output ⊥ and abort. Otherwise, sample b←$ {0, 1} and do the following:
• If b = 0, x′ ← AddTx(ck, x, e

∗, α, w∗, r̃∗α, r), w′ ← AddTw(ck, w, w
∗, α, r̃∗α; r) (Π,AUX) ←

Prv(crs, ck, x′, w′)
• If b = 1, (Π,x′, aux∗, r′) ← PAdd(crs, ck, x, w∗, α, e∗, r̃∗α,AUX

∗[α], Π∗, r). Replace in AUX∗ the value
auxα with aux∗. AUX← AuxUpd(crs, ck, x,Π,AUX∗, r′)

– b′ ← A(x′, Π,AUX).

For every PPT A and λ ∈ N, Pr[b = b′] ≤ 1/2 + negl(λ).

Definition 15 (Extension Privacy). Consider the following experiment:

– gk← G(1λ), ck← ComSetup(gk), (crs, td)← CRSSetup(gk)
– (x,w, xn+1, r̃n+1, Π

∗,AUX∗, r)← A(crs, ck)
– If (ck, x, w) /∈ RL or PVfy(crs, ck, x,Π∗) = 0 or AuxVerify(crs, ck, x, w,AUX∗, Π∗) = 0 output ⊥ and

abort. Otherwise, sample b←$ {0, 1} and do the following:
• If b = 0, x′ ← ExtTx(ck, x, xn+1, r̃n+1; r), w′ ← ExtTw(ck, w, r̃n+1; r) (Π,AUX)← Prv(crs, ck, x′, w′)
• If b = 1 (Π,x′, aux∗, r′)← PExt(crs, ck, x, xn+1, r̃n+1, Π

∗, r). Append the value aux∗ to AUX∗, AUX←
AuxUpd(crs, ck, x′, Π,AUX∗, r′)

– b′ ← A(x′, Π,AUX).

For every PPT A and λ ∈ N, Pr[b = b′] ≤ 1/2 + negl(λ).

An EP may also satisfy (some of) the following additional properties.
Perfect ∆-Extraction is a perfect but mild extraction property. Indeed, instead of extracting the full

witness, there exists an extractor which perfectly extracts the active indices and a function ∆ of the rest of
the witness.

Definition 16 (Perfect ∆-Extraction). There exists a PPT extractor Ext that for all λ ∈ N, gk← G(1λ),
ck← ComSetup(gk), (crs, td)← CRSSetup(gk), and all (x,Π) s.t. PVfy(crs, ck, x,Π) = 1 it hold that:

Pr[(ck, (x, ϕ′, w′)) ∈ L′ | (ϕ′, w′ = (w′
1, . . . , w

′
k)))← Ext(crs, td, ck, x,Π)] = 1.

Where L′ = {(ck, (k, x1, . . . , xn, c̃1, . . . , c̃n, e1, . . . , ek, ϕ, w′)))|∃w = (w1, . . . , wk,

bit1, . . . , bitn, r̃1, . . . , r̃n) s.t. ∀i ∈ [n] biti ∈ {0, 1} ∧ c̃i ← Comck(biti; r̃i)∧∑n
i=1 biti = k ∧ ∀kj=1(bitϕ(j) = 1 ∧ F (ck, xϕ(j), ej , wj) = 1) ∧ w′ = ∆(w)}.

We now define three WI variants useful in security proofs. Such flavors have some similarities but do not
seem to imply each other.

Witness addition indistinguishability (WAI) ensures that two addition operations over the same α, but
with different witnesses for xα are indistinguishable.

Definition 17 (WAI). Consider the following experiment:

– gk← G(1λ), ck← ComSetup(gk), (crs, td)← CRSSetup(gk)

– (x,Π, α, auxα, e, w0, w1, r̃′α, r)← A(crs, ck)
– If F (ck, xα, e, w0) = 0 or F (ck, xα, e, w1) = 0 or PVfy(crs, ck, x,Π) = 0 output ⊥ and abort. Otherwise,

sample b←$ {0, 1} and do the following:
– Parse x = (k, x1, . . . , xn, c̃1, . . . , c̃n, e1, . . . , en) and compute:
• (Π ′, x′, aux′α, (r1, . . . , rn))← PAdd(crs, ck, x, wb, α, e, r̃′α, auxα, Π, r)

– b′ ← A(x′, Π ′, aux′α, (r1, . . . , rn)).

For every PPT A and λ ∈ N, Pr[b = b′] ≤ 1/2 + negl(λ).

Fixed position witness indistinguishability (FPWI) guarantees that two proofs done for the same
statement with two different witnesses sharing the same injective map ϕ are indistinguishable.

19

Definition 18 (FPWI). Consider the following experiment:

– gk← G(1λ), ck← ComSetup(gk), (crs, td)← CRSSetup(gk)
– (x,w0, w1)← A(crs, ck)
– Parse wi = (ϕi, wi

1, . . . , w
i
k, r̃

i
1, . . . , r̃

i
n) for i ∈ {0, 1}.

– If (ck, x, w0) /∈ RL or (ck, x, w1) /∈ RL or ϕ0 ̸= ϕ1 output ⊥ and abort. Otherwise, sample b ←$ {0, 1}
and compute (Π,AUX)← Prv(crs, ck, x, wb).

– b′ ← A(Π,AUX).

For every PPT A and λ ∈ N, Pr[b = b′] ≤ 1/2 + negl(λ).

Extended witness indistinguishability (EWI) guarantees that two proofs for the same statement generated
using different witnesses are indistinguishable. Importantly, this holds even if the adversary gets the auxiliary
values corresponding to the statements that are inactive w.r.t. both witnesses. Additionally, the switch
variables are committed by the experiment.

Definition 19 (EWI). Consider the following experiment:

– gk← G(1λ), ck← ComSetup(gk), (crs, td)← CRSSetup(gk)
– (x′, w′

0, w
′
1)← A(crs, ck)

– Parse x′ = (k, x1, . . . , xn, e1, . . . , ek)
– Parse w′

b = (ϕb, wb
1, . . . , w

b
k) with b ∈ {0, 1}

– If ∃b ∈ {0, 1}, j ∈ [k] : F (ck, xϕb(j), ej , w
b
j) = 0 output ⊥ and abort.

– Sample b′ ←$ {0, 1} and do the following:
• Construct xb′ = (k, x1, . . . , xn, c̃b

′
1 , . . . , c̃

b′
k , e1, . . . , ek), and wb′ = (ϕb

′
, wb′

1 , . . . , w
b′

k , r̃
b′
1 , . . . , r̃

b′
n),

where, for i ∈ [n], for randomly sampled r̃b
′

i , set c̃b′i ← Comck(1; r̃b
′

i) if i ∈ Im(ϕb
′
(i)), and

c̃b
′

i ← Comck(0; r̃b
′

i)
• (Π, (aux1, . . . , auxn))← Prv(crs, ck, xb′ , wb′)
• Set S = ([n] \ (Im(ϕ0) ∪ Im(ϕ1))), and AUX = {auxi}i∈S

– b∗ ← A(xb′ , Π,AUX).

For every PPT A and λ ∈ N, Pr[b∗ = b′] ≤ 1/2 + negl(λ).

Extended zero knowledge (EZK) requires the existence of a simulator that, using a trapdoor, can simulate
a proof and the auxiliary values of inactive statements.

Definition 20 (EZK). Let OEZK(b, crs, ck, x, w) be defined as follows:

– Parse w as (ϕ,w1, . . . , wk, r̃1, . . . , r̃n)
– If (ck, x, w) /∈ RL return ⊥
– Else:
• If b = 0, (Π, (aux1, . . . , auxn))← Prv(crs, ck, x, w)
• If b = 1, (Π, (aux1, . . . , auxn))← Sim1(crs, ck, td, x)

– Set S = [n] \ Im(ϕ) and AUX = {auxi}i∈S, with ϕ taken from w
– Return (Π,AUX).

There exists a polynomial time simulator Sim = (Sim0,Sim1) such that for every PPT A and λ ∈ N,
considering the following game:

– gk← G(1λ), ck← ComSetup(gk), (crs, td)← Sim0(gk), b←$ {0, 1}
– b′ ← AOEZK(b,crs,ck,·,·)(crs, ck)

Pr[b = b′] ≤ 1/2 + negl(λ). Moreover, the crs output by Sim0 is computationally indistinguishable to the crs
output by CRSSetup.

20

5 Doubly-Authentication-Preventing Tags

A doubly-authentication-preventing tag (DAPT) consists of the following PPT algorithms and a poly-time
relation Rkey. Let gk ← G(1λ) be an implicit input to all algorithms. Given gk, a topic space T , a message
space M, and a tag space E are implicitly defined.

– (pk, sk)← KeyGen(gk): outputs a pair of public and secret keys (pk, sk).
– e← Tag(sk, τ,m): it is a deterministic algorithm that on input the secret sk, topic τ ∈ T , and message
m ∈M, outputs a tag e ∈ E .

– 0/1 ← TagTrace(e0, e1,m0,m1, pk): it is a deterministic algorithm that on input two tags e0, e1 ∈ E on
the same topic τ ∈ T and different messages m0 ̸= m1 ∈ M, outputs 1 iff both tags were generated
w.r.t. public key pk.

A DAPT has to satisfy all the following properties.

Definition 21 (Verifiability of Keys). For all λ ∈ N and gk← G(1λ), it holds that (pk, sk) ∈ KeyGen(gk)
iff (pk, sk) ∈ Rkey. Additionally, we require that for all pk there exists a unique sk s.t. (pk, sk) ∈ Rkey.

Definition 22 (Tag Traceability). For all λ ∈ N, for any topic τ ∈ T , for any pair of messages m0 ̸=
m1 ∈M it holds that, for any (pk, sk) ∈ Rkey:

Pr

[
1← TagTrace(e0, e1,m0,m1, pk)

∣∣∣∣ e0 ← Tag(sk, τ,m0)
e1 ← Tag(sk, τ,m1)

]
≥ 1− negl(λ).

Additionally, for all PPT A and λ ∈ N let us consider the following game:

(τ,m0,m1, pk0, pk1, sk0, sk1)← A(λ)
e0 ← Tag(sk0, τ,m0)
e1 ← Tag(sk1, τ,m1)

We say that A wins the above game if sk0 ̸= sk1 ∧ (pk0, sk0) ∈ Rkey ∧ (pk1, sk1) ∈ Rkey ∧ (1 =
TagTrace(e0, e1,m0,m1, pk0)) ∨ (1 = TagTrace(e0, e1,m0,m1, pk1)). We require that the probability of A
winning the above game be negl(λ).

Definition 23 (Pseudo-randomness). For every PPT A and λ ∈ N, the success probability in
ExpTagPR

A,DAPT(λ) (Fig. 9) is Pr
[
ExpTagPR

A,DAPT(λ) = win
]
≤ 1/2 + negl(λ).

Notice that, in Fig. 9, A can ask for honestly computed tags via the flag honest = 1, independently of the
value of b. The flag abrt is defined for convenience and can be ignored (i.e., A loses as soon as it makes an
oracle call with abrt = 1).

Definition 24 (Non-Frameability). For every PPT A and λ ∈ N, the success probability in ExpTagNF
A,DAPT(λ)

(Fig. 10) is Pr
[
ExpTagNF

A,DAPT(λ) = win
]
≤ negl(λ).

6 Our Tetris

Before giving our construction, we define some useful poly-time relations. We first define the disjunctive
relation RD. The statement contains a commitment c, a DAPT public key pkT, a topic τ , a message m, and
a trapdoor theorem xtrap. A witness for such relation may be a tuple (e, r, skT) such that (e, r) is an opening
of c and e is a correctly computed tag over the pair (τ,m) and the secret key skT. Alternatively, the witness

21

ExpTagPR
A,DAPT(λ)

1 : Ltag ← ∅, b←$ {0, 1}

2 : SKcorr = 0, gk← G(1λ)
3 : (pk, sk)← KeyGen(gk)

4 : b′ ← AOTag(b,sk,·,·,·,·)(pk)

5 : if SKcorr = 1 :

6 : return lose

7 : ∀(τ ′,m′, ·), (τ,m, ·) ∈ Ltag :

8 : if τ ′ = τ ∧m′ ̸= m :

9 : return lose

10 : if b′ = b :

11 : return win

12 : else : return lose

OTag(b, sk, τ,m, abrt, honest)

1 : if abrt = 1 :

2 : SKcorr = 1

3 : return sk

4 : if ∃(τ ′,m′, e) ∈ Ltag ∧ τ ′ = τ ∧m′ = m :

5 : return e

6 : if honest = 1 :

7 : e← Tag(sk, τ,m)

8 : Ltag ← Ltag ∪ {(τ,m, e)}
9 : return e

10 : if b = 0 : e← Tag(sk, τ,m) else : e←$ E
11 : Ltag ← Ltag ∪ {(τ,m, e)}
12 : return e

Fig. 9. Tag pseudo-randomness game of DAPT.

can just be wtrap such that (xtrap, wtrap) ∈ RLtrap , where Ltrap is a language in NP∩ co-NP. The introduction
of xtrap is instrumental to prove security of our Tetris.

RD ={(ck, x = (c, pkT, τ,m, xtrap), w)|(w = (e, r, skT) ∧ e← Tag(skT, τ,m)∧
c← Comck(e; r) ∧ (pkT, skT) ∈ Rkey) ∨ (w = wtrap ∧ (xtrap, wtrap) ∈ RLtrap)}.

(2)

Then, we define the threshold relation over RD as follows.

RDtr ={(ck, x = (k, x1, . . . , xn, c̃1, . . . , c̃n), w = (ϕ,w1, . . . , wk, r̃1, . . . , r̃n))|
∀i ∈ [n] ∃ biti : c̃i ← Comck(biti; r̃i) ∧ biti ∈ {0, 1} ∧

∑n
i=1 biti = k

∧ ∀ki=1(bitϕ(i) = 1 ∧ (ck, xϕ(i), wi) ∈ RD) ∧ ϕ is an injective map [t]→ [n]}
(3)

Additionally, we define the extendable shuffle relation as

RSH = {(ck, x = (k, c1, . . . , cn, c̃1, . . . , c̃n, e1, . . . , ek), w = (ϕ, r1, . . . , rk, r̃1, . . . , r̃n))|
∀i ∈ [n] ∃ biti : c̃i ← Comck(biti; r̃i) ∧ biti ∈ {0, 1} ∧

∑n
i=1 biti = k∧

∀ki=1(bitϕ(i) = 1 ∧ (cϕ(i) ← Comck(ei, ri))) ∧ ϕ is an injective map [k]→ [n]}.
(4)

The components of our Tetris are the following: (i) a doubly-authentication-preventing tag DAPT; (ii) an
extendable non-interactive proof system for RDtr that we call EP; (iii) an extendable non-interactive proof
system for RSH that we call SH; (iv) an IND-CPA public key encryption scheme PKE in which every public
key has a unique secret key. Additionally, PKE must be homomorphic w.r.t. EP.AuxUpd and SH.AuxUpd.
Notice that the algorithm PKE.Eval1 (PKE.Eval2) homomorphically evaluates EP.AuxUpd (SH.AuxUpd). We
require EP and SH to work over the same commitment scheme Comck.

Our Tetris is shown in Fig. 11 and in Fig. 12. We refer to Sec. 1.2 for an intuitive description of our Tetris.
For the sake of space, we omit the setup algorithm from the description of our Tetris. Tetris.Setup just runs
the setup algorithm of all the used building blocks. Additionally, it samples a random instance xtrap such
that xtrap /∈ Ltrap

12. All the public parameters are generally omitted from the input of the algorithms. In our
construction, it is crucial that EP and SH share the same lists of commitments C = {ci}i∈[n] and C̃ = {c̃i}i∈[n].

12 This can be done efficiently by sampling an instance in the complement of Ltrap.

22

ExpTagNF
A,DAPT(λ)

1 : Ltag ← ∅, gk← G(1λ)
2 : (pk, sk)← KeyGen(gk)

3 : (e0, e1,m0,m1)← AOTag(sk,·,·)(pk)

4 : if m0 = m1 :

5 : return lose

6 : b′ ← TagTrace(e0, e1,m0,m1, pk)

7 : ∀(τ ′,m′), (τ,m) ∈ Ltag :

8 : if τ ′ = τ ∧m′ ̸= m :

9 : return lose

10 : if b′ = 1 : return win else : return lose

OTag(sk, τ,m)

1 : e← Tag(sk, τ,m)

2 : Ltag ← Ltag ∪ {(τ,m)}
3 : return e

Fig. 10. Tag non-frameability game of DAPT.

Moreover, the addition and the extension operations on EP and SH must preserve such connection. Therefore,
every time we perform an addition or an extension with EP, we re-use the same transformation randomness
for SH. In this way, we end up with two updated proofs that are still talking about two updated statements
sharing the same common part (i.e., C ′ and C̃ ′). We use the square brackets notation to denote an element
of a list, using 1 as the index of the first element. We treat sets as ordered lists, meaning that the elements
of a set can be accessed, via the square bracket operator, in the same order they were added to the set. The
relation RTetris

key is defined as RTetris
key = {pk = (pkT, pke), sk = (skT, ske)|(pkT, skT) ∈ Rkey ∧ (pke, ske) ∈ RPKE

key },
where Rkey and RPKE

key are the poly-time relation verifying well-formed DAPT and PKE keys respectively.

Instantiating our Tetris. We use the ElGamal encryption in Ĝ and Ȟ as a perfectly binding commitment
Comck, in Sec. 8 we build an extendable shuffle for such commitments, in App. C we present a EP for relation
RDtr that is a simple adaptation of [8] and we set Ltrap to be the language of Diffie-Hellman tuples. We point
out that the property of perfect ∆-extraction is not defined in [8], therefore we prove it in App. C, intuitively
we set ∆((êj , rẑj , sk

j
T)j∈[k]) = (ê1, . . . , êk), and the property holds thanks to the perfect F-extraction of GS

(see [28, Def. 3]). Finally, in Sec. 7 we propose a DAPT. All the components are instantiated from the same
bilinear groups and thus work well with each other. Additionally, since in both EP and SH, updating the
auxiliary values (AuxUpd) simply consists of applying the group operation between two elements of Ĝ or Ȟ,
we can use ElGamal instantiated in Ĝ and Ȟ as PKE. We point out that since the setup of our SH bounds
the length of the commitments list, our Tetris supports rings of bounded size. Getting a linear-size Tetris
without this bound is an open problem. We rely on the SXDH (Ass. 4), Co-CDH (Ass. 5), subset permutation
pairing (Ass. 6), and subset simultaneous pairing (Ass. 7) assumptions, along with the random oracle model
(ROM).

6.1 Security of Our Tetris

In this section, we prove the security of our Tetris via the following theorem.

Theorem 2. Let DAPT be defined as in Sec. 5. Let EP be defined as in Sec. 4 for relation RDtr with
WAI (Def. 17), FPWI (Def. 18), EWI (Def. 19), perfect ∆-extraction (Def. 16) where ∆ is defined as
∆((êj , rẑj , sk

j
T)j∈[k]) = (ê1, . . . , êk). Let SH be defined as in Sec. 4 for relation RSH with EZK (Def. 20). Let

PKE be an IND-CPA public key encryption scheme which is homomorphic w.r.t. EP.AuxUpd and SH.AuxUpd.
Then, the scheme in Fig. 11,12 is a Tetris.

We prove Thm. 2 via the following lemmas. Verifiability of keys (Def. 2) follows from the verifiability of
keys of underlying schemes (Def. 21 and Def. 27).

23

Sign(τ,m, {pki}i∈R , sk)

1 : AEP ← ∅,ASH ← ∅,E← ∅
2 : parse {pki}i∈R = (pk1, . . . , pkn)

3 : ∀ i ∈ [n] : parse pki = (pkie, pk
i
T)

4 : parse sk = (ske, skT)

5 : if ̸ ∃ pkjT, j ∈ [n] s.t. (pkjT, skT) ∈ Rkey :

6 : return ⊥
7 : E← E ∪ (e← Tag(skT, τ,m))

8 : rj , r̃j ←$ {0, 1}λ

9 : cj ← Comck(e; rj), c̃j ← Comck(1; r̃j)

10 : for i ̸= j ∧ i ∈ [n] :

11 : ri, r̃i ←$ {0, 1}λ

12 : ci ← Comck(0; ri), c̃i ← Comck(0; r̃i)

13 : ∀i ∈ [n] : xi ← (ci, pk
i
T, τ,m, xtrap)

14 : w′ ← (e, rj , skT)

15 : C ← (ci)i∈[n], C̃ ← (c̃i)i∈[n]

16 : R← (ri)i∈[n], R̃← (r̃i)i∈[n]

17 : xEP ← (1, x1, . . . , xn, C̃)

18 : xSH ← (1, C, C̃,E)

19 : ϕ(1)← j

20 : (Π1,AUXEP)← EP.Prv(xEP, (ϕ,w
′, R̃))

21 : (Π2,AUXSH)←

SH.Prv(xSH, (ϕ,R, R̃))

22 : for i ∈ [n] :

23 : if i = j :

24 : AEP[i]← PKE.Enc(⊥, pkie)

25 : ASH[i]← PKE.Enc(⊥, pkie)
26 : else :

27 : AEP[i]← PKE.Enc(AUXEP[i], pk
i
e)

28 : ASH[i]← PKE.Enc(AUXSH[i], pk
i
e)

29 : σ ← (1, ΠEP, ΠSH,AEP,ASH, C, C̃,E)

30 : return σ

KeyGen()

1 : (pke, ske)← PKE.KeyGen()

2 : (pkT, skT)← DAPT.KeyGen()

3 : (pk← (pke, pkT), sk← (ske, skT))

4 : return (pk, sk)

Join(τ,m, {pki}i∈R , sk, σ)

1 : parse {pki}i∈R = (pk1, . . . , pkn)

2 : ∀ i ∈ [n] : parse pki = (pkie, pk
i
T)

3 : parse sk = (ske, skT)

4 : if ̸ ∃ pkjT, j ∈ [n] s.t. (pkjT, skT) ∈ Rkey :

5 : return ⊥

6 : parse σ = (k,ΠEP, ΠSH,AEP,ASH, C, C̃,E)

7 : E← E ∪ (e← Tag(skT, τ,m))

8 : rj , r̃j ←$ {0, 1}λ

9 : cj ← Comck(e; rj), c̃j ← Comck(1; r̃j)

10 : auxEP ← PKE.Dec(AEP[j], ske)

11 : auxSH ← PKE.Dec(ASH[j], ske)

12 : xi ← (C[i], pkiT, τ,m, xtrap) ∀i ∈ [n]

13 : w′ ← (e, rj , sk
j
T)

14 : xEP ← (k, x1, . . . , xn, C̃)

15 : xSH ← (k, C, C̃,E)

16 : Sample transformation randomness RAdd

17 : (Π ′
EP, x

′
EP, aux

′
j , REP)←

EP.PAdd(xEP, w, j, ·, r̃j , auxEP, ΠEP, RAdd)

18 : (Π ′
SH, (k + 1, C′, C̃′,E), aux′j , RSH)←

SH.PAdd(xSH, rj , j, e, r̃j , auxSH, ΠSH, RAdd)

19 : AEP[j]← PKE.Enc(⊥, pkje)

20 : ASH[j]← PKE.Enc(⊥, pkje)
21 : for i ∈ [n] :

22 : AEP[i]← PKE.Eval1(ΠEP,AEP[i], REP, pk
i
e)

23 : ASH[i]← PKE.Eval2(ΠSH,ASH[i], RSH, pk
i
e)

24 : σ ← (k + 1, Π ′
EP, Π

′
SH,AEP,ASH, C

′, C̃′,E)

25 : return σ

Fig. 11. KeyGen, Sign, and Join algorithms of our Tetris.

24

Extend(τ,m, σ, {pki}i∈R , pk
∗)

1 : if pk∗ ∈ {pki}i∈R : return ⊥
2 : parse {pki}i∈R = (pk1, . . . , pkn)

3 : ∀ i ∈ [n] : parse pki = (pkie, pk
i
T)

4 : parse pk∗ = (pkn+1
e , pkn+1

T)

5 : parse σ = (k,ΠEP, ΠSH,AEP,ASH, C, C̃,E)

6 : ∀i ∈ [n] : xi ← (C[i], pkiT, τ,m, xtrap)

7 : xEP ← (k, x1, . . . , xn, C̃)

8 : rn+1, r̃n+1 ←$ {0, 1}λ

9 : cn+1 ← Comck(0; rn+1)

10 : c̃n+1 ← Comck(0; r̃n+1)

11 : xSH ← (k, C, C̃,E)

12 : Sample transformation randomness RExt

13 : (Π ′
EP, x

′
EP, auxEP, REP)←

EP.PExt(xEP, xn+1, r̃n+1, ΠEP, RExt)

14 : (Π ′
SH, (k, C

′, C̃′,E), auxSH, R2)←
SH.PExt(xSH, cn+1, r̃n+1, ΠSH, RExt)

15 : AEP[n+ 1]← PKE.Enc(auxEP, pk
n+1
e)

16 : ASH[n+ 1]← PKE.Enc(auxSH, pk
n+1
e)

17 : for i ∈ [n+ 1] :

18 : AEP[i]← PKE.Eval1(Π1,AEP[i], R1, pk
i
e)

19 : ASH[i]← PKE.Eval2(Π2,ASH[i], R2, pk
i
e)

20 : σ ← (k,Π ′
EP, Π

′
SH,AEP,ASH, C

′, C̃′,E)

21 : return σ

Verify(t, τ,m, {pki}i∈R , σ)

1 : parse {pki}i∈R = (pk1, . . . , pkn)

2 : ∀ i ∈ [n] : parse pki = (pkie, pk
i
T)

3 : parse σ = (k,ΠEP, ΠSH,AEP,ASH, C, C̃,E)

4 : if k < t :

5 : return 0

6 : else :

7 : ∀ i ∈ [n] : xi ← (C[i], pkiT, τ,m, xtrap)

8 : xEP ← (k, x1, . . . , xn, C̃)

9 : xSH ← (k, C, C̃,E)

10 : return (EP.PVfy(xEP, ΠEP)∧
SH.PVfy(xSH, ΠSH))

Trace(τ,m1,m2, σ1, σ2, {pki}i∈R1 , {pki}i∈R2)

1 : PK1 ← {pki}i∈R1 ∩ {pki}i∈R2

2 : PK2 ← ∅, n = 0

3 : parse σ1 = (k1, Π
1
EP, Π

1
SH,A

1
EP,A

1
SH, C1, C̃1,E1)

4 : parse σ2 = (k2, Π
2
EP, Π

2
SH,A

2
EP,A

2
SH, C2, C̃2,E2)

5 : ∀pk ∈ PK1, e1 ∈ E1, e2 ∈ E2 :

6 : parse pk = (pke, pkT)

7 : if m1 = m2 :

8 : if e1 = e2 :

9 : n← n+ 1

10 : else if TagTrace(e1, e2,m1,m2, pkT) = 1 :

11 : PK2 ← PK2 ∪ pk

12 : if |PK2| > 0 :

13 : return PK2

14 : if n > 0 :

15 : return (linked, n)

16 : return indep

Fig. 12. Extend, Verify, and Trace algorithms of our Tetris.

25

Lemma 3. Let EP be defined as in Sec. 4 for relation RDtr, and let SH be defined as in Sec. 4 for relation
RSH. Then the scheme in Fig. 11,12 is correct (Def. 1).

Proof. Let us assume that lad is not well-formed, then Proc (Fig. 3) would return ⊥ as required by the
definition. On the other end, if the ladder is well-formed, Proc will return a triple (Σ,Th,R), where
Σ = {σ1, . . . , σℓ}, Th = {t1, . . . , tℓ}. Recall that for each element in ti ∈ Th with i ∈ [ℓ], we have
that t1 = 1 and ti = ti−1 if actioni = Extend, and ti = ti−1 + 1 if actioni = Join. We now argue that
ℓ∧

j=1

Verify(tj , τ,m, {pki}i∈R , σj) = 1 (Fig. 12). Let us now consider all the possible actions contained in the

ladder:

1. action1 of lad is always a Sign action, which produces a signature of the format σ1 ← (k =

1, Π ′
EP, Π

′
SH,AEP,ASH, C

′, C̃ ′,E). Therefore, the check of line 4 (Fig. 12) of Verify(t1, τ,m, {pki}i∈R , σ1)
will not return 0.

2. If actioni of lad is an Extend action, it produces a signature of the format σi ← (k =

ti−1, Π
′
EP, Π

′
SH,AEP,ASH, C

′, C̃ ′,E). Therefore, the check of line 4 (Fig. 12) of Verify(ti, τ,m, {pki}i∈R , σ1)
will not return 0, since ti = ti−1.

3. If actioni of lad is a Join action, it produces a signature of the format σi ← (k = ti−1 +

1, Π ′
EP, Π

′
SH,AEP,ASH, C

′, C̃ ′,E). Therefore, the check of line 4 (Fig. 12) of Verify(ti, τ,m, {pki}i∈R , σ1)
will not return 0, since ti = ti−1 + 1.

It remains to notice that in all of the above cases, the proof generation (in Proc) and verification (in Verify)
algorithms of EP and SH are used with the intended inputs. Therefore, the completeness of EP and SH
guarantees that the check of line 10 of Verify (Fig. 12) returns 1.

Lemma 4. Let DAPT be defined as in Sec. 5. Then, the scheme in Fig. 11,12 has tracing correctness (Def. 3).

Proof. We have to consider the following cases:

1. if the set of overlapping signers is empty (i.e., lad0.S ∩ lad1.S = ∅), then Trace must return indep with
overwhelming probability;

2. if m0 ̸= m1, then Trace must return the set of overlapping signers lad0.S ∩ lad1.S with overwhelming
probability;

3. if m0 = m1, then Trace must return (linked, n) where n is the number of overlapping signers (i.e.,
n = |lad0.S ∩ lad1.S|) with overwhelming probability.

We now argue that the above requirements hold:

1 : Let us assume that there exists a PPT adversary A that returns (τ,m0,m1, lad0, lad1, Lkeys) such that
lad0.S ∩ lad1.S = ∅, but Trace does not return indep. Trace returns a value different from indep if
and only if TagTrace(e0, e1,m0,m1, pkT) = 1 for some pkT (line 10 of Trace Fig. 12). Let pkT, e0,
e1, m0, m1 be the values in the loop at line 5 of Trace (Fig. 12) in the algorithm Trace for which
TagTrace(e0, e1,m0,m1, pkT) = 1. Notice that, due to the check at line 6, of ExpTcorr

A,Tetris(λ) (Fig. 5) if
lad0.S ∩ lad1.S = ∅ then there is only one signer that has public key containing pkT. Since all pkT are
different, we look for all skiT, sk

j
T ∈ Lkeys such that e0 ← Tag(skiT, τ,m0) and e1 ← Tag(skjT, τ,m1). We use

A to define an adversary B that breaks tag traceability of DAPT with the same probability of A winning
in the tracing correctness game. B runs A and outputs (τ,m0,m1, pk

i
T, pk

j
T, sk

i
T, sk

j
T), where pkiT, pk

j
T are

the public keys associated with skiT, sk
j
T. Notice that B wins the tag traceability game, with the same

advantage of A, since the secret and public keys used by A belong to RTetris
key , otherwise the check at line

4 of ExpTcorr
A,Tetris(λ) (Fig. 5) fails.

2 : Let us assume that there exists a PPT adversary A that returns, with non-negligible probability,
(τ,m0,m1, lad0, lad1, Lkeys) such that m0 ̸= m1 and lad0.S ∩ lad1.S ̸= ∅, but Trace returns PK ̸=
lad0.S ∩ lad1.S. Let tinfob, for b ∈ {0, 1}, be the tracing information produced by Proc(τ,mb, Lkeys, ladb).
For each public key pkT ∈ lad0.S ∩ lad1.S such that pkT /∈ PK, let eb ← Tag(skT, τ,mb), where

26

skT is the secret key associated with pkT taken from Lkeys, it must be that eb ∈ tinfob. Therefore,
TagTrace(e0, e1,m0,m1, pkT) = 0 only with negligible probability due to tag traceability (Def. 22),
implying that the check of line 10 of Trace (Fig. 12) can fail on input (e0, e1,m0,m1, pkT) only with
negligible probability. Thus, A can win only with the same probability, reaching a contradiction.

3 : The analysis is identical to the previous case.

Lemma 5. Let DAPT be defined as in Sec. 5. Let EP be defined as in Sec. 4 for relation RDtr with perfect
∆-extraction (Def. 16) where ∆ is defined as ∆((êj , rẑj , sk

j
T)j∈[k]) = (ê1, . . . , êk). Let SH be defined as in

Sec. 4 for relation RSH. Then, the scheme in Fig. 11,12 has signers extraction (Def. 4).

Proof. Let ∆ be defined as follows:

(e1, . . . , ek) = ∆(ϕ, (ej , rj , sk
j
T)j∈[k], (r̃i)j∈[n]) (5)

Let (pp = (xtrap, crsSH, crsEP), td = (tdSH, tdEP)) be the public parameters and trapdoor of our Tetris. The
extractor Ext(td, τ,m, t, {pki}i∈R , σ) is defined as follows:

– Parse σ = (µ = (t,ΠEP, ΠSH,AEP,ASH, C, C̃), tinfo = E).
– Let xEP = (t, x1, . . . , xn, C̃) where xi = (C[i], pkiT, τ,m, xtrap) be the statement of EP.
– (ϕ,E′ = (e′1, . . . , e

′
k))← EP.Ext(crsEP, tdEP, ck, ΠEP, x) (executed with function ∆).

– If E′ is a permutation of E do the following:
• Initialize PK, Ind← ∅; for all i ∈ [t] Ind← Ind ∪ ϕ(i) and PK← PK ∪ pkϕ(i).
• Return (PK, Ind).

– Else return ⊥.

First, let us analyse the case in which Ext returns (PK, Ind). According to relations RD (see (2)) and RDtr

(see (3)) ΠEP proves that:

1. for all i ∈ [n], C̃[i] is either a commitment to 1 (if i is a signer), or to 0 (if i is not a signer);
2. the sum of the values committed in C̃ is t;
3. if i is a signer, C[i] is a commitment of a tag e with e ← Tag(skiT, τ,m), where skiT is the DAPT secret

key of the signer i.

This follows from the fact that xtrap /∈ Ltrap, thus the disjunctive relation (2) can only be satisfied by correctly
generated tags. Recall that EP has perfect ∆-extraction and Comck is perfectly binding. Therefore, the range
of the extracted ϕ is uniquely determined and corresponds to the indices of the active signers. Observe that
each element in E is produced by the deterministic algorithm Tag and every DAPT public key has only one
corresponding secret key, therefore each element e in E (i.e., tinfo) is uniquely determined by (pk, ϕ, τ,m) for
some pk ∈ PK. We can therefore conclude that every accepting signature σ = (µ, tinfo) has a unique tinfo
determined by t, τ,m, and the set of signers. Thus, there must exist a ladder lad producing a final signature
σ′ = (µ′, tinfo′) with tinfo′ = E = tinfo. This ladder contains sign and join operations which are done using,
in an appropriate order, the signers with indices in Ind.

Let us now consider the case in which Ext returns ⊥ (i.e.,ΠEP andΠSH verifies, but E′ is not a permutation
of E that happens if the elements in the SH statements are not the one committed in EP). Assume that there
exists a PPT A producing an accepting signature that makes Ext return ⊥ with non-negligible probability.
According to relation RSH (see relation (4)), ΠSH proves that the following tuple xSH = (k,C, C̃,E) has the
following properties:

1. for all i ∈ [n], C̃[i] is either a commitment to 1 (if i is a signer), or to 0 (if i is not a signer);
2. the sum of the values committed in C̃ is t;
3. ϕ : [t]→ [n] is injective;
4. for all i ∈ [t], C[ϕ(i)] is a commitment to E[i].

Observe that Ext returns ⊥ if and only if the point 4 above is not satisfied. However, this means that
xSH /∈ LSH but ΠSH is accepting, contradicting the (computational) soundness of SH.

27

Lemma 6. Let DAPT be defined as in Sec. 5. Let EP be defined as in Sec. 4 for relation RDtr with WAI
(Def. 17), FPWI (Def. 18), EWI (Def. 19). Let SH be defined as in Sec. 4 for relation RSH with EZK
(Def. 20). Let PKE be an IND-CPA scheme which is homomorphic w.r.t. EP.AuxUpd and SH.AuxUpd. Then
the scheme in Fig. 11,12 is anonymous (Def. 6).

Proof. Let B be the reduction that internally runs A. Every Hi is identical to Hi−1 except the changes
that are explicitly reported in the description of Hi.

H0: This is exactly the anonymity game of Fig. 6 with b = 0.
H1: Instead of sampling xtrap such that xtrap /∈ Ltrap, B samples (xtrap, wtrap) ∈ RLtrap . This hybrid is

computationally indistinguishable from the previous one thanks to the hardness of Ltrap.
H2: B switches the common reference string crsSH to (crsSH, tdcrsSH)← SH.Sim0(gk). This hybrid is

computationally indistinguishable from the previous one because of the computational
indistinguishability of honest and simulated crsSH imposed by EZK (Def. 20) of SH. B includes the
crsSH to be distinguished in the public parameters given to A. Then, B replies to all queries of A by
simply running SH.Prv. Notice that B perfectly simulates the view of A in both hybrids, thus B can use
the output of a successful distinguisher to win in the EZK game with the same success probability.

H3: B replies to OSign(τ,m, i,R) queries using wtrap instead of skiT as a witness to compute the proof ΠEP.
This hybrid is computationally indistinguishable from the previous one thanks to the FPWI property
(Def. 18) of EP. Let C be the challenger of Def. 18. Upon a sign query, B creates ci ← Comck(ei; ri) with
ei ← Tag(skiT, τ,m), c̃i ← Comck(1; r̃i), c̃j ← Comck(0; r̃j) and cj ← Comck(0; rj) for j ∈ [n] \ i. B then
sets xj = (cj , pk

j
T, τ,m, xtrap) with j ∈ [n]. Since each OSign queries are performed only on not

corrupted indices i, it holds that B can choose the secret keys for the signer with index i. B sends
(1, x1, . . . , xn, c̃1, . . . , c̃n, w0, w1) to C with w0 = (ϕ, (ei, ri, sk

i
T), r̃1, . . . , r̃n), w1 = (ϕ,wtrap, r̃1, . . . , r̃n),

and ϕ = {1→ i}. C replies with a proof ΠEP, and a list of auxiliary values AUX. B can now construct a
reply to the sign query σ = (1, ΠEP, ΠSH,AEP,ASH, C, C̃, {ei}) where ΠEP is the one received by C, the
auxiliary values related to ΠEP received from C are encrypted by B in AEP, C and C̃ contain the
commitments computed as above, ΠSH with its encrypted auxiliary values are regularly computed by
B, while ei ← Tag(skiT, τ,m). B perfectly simulates the view of A in both hybrids and thus B can use
the output of a successful distinguisher to win in the FPWI game with the same success probability.

H4: B replies to OJoin(τ,m,R, i, σ) queries using wtrap instead of skiT as a witness to compute the add
operation over the proof ΠEP contained in σ.
This hybrid is computationally indistinguishable from the previous one thanks to the WAI (Def. 17) of
EP. Let C be the challenger of the WAI game. Upon a join query, B parses the queried
σ = (k,ΠEP, ΠSH,AEP,ASH, C, C̃,E) and decrypts the auxiliary value auxi in AEP[i] (recall that signer
with index i is not corrupted, therefore B knows his secret keys). Then B defines x = (k, x1, . . . , xn, C̃)
with xj = (cj , pk

j
T, τ,m, xtrap) where cj is the j-th element of C, for all j ∈ [n]. B samples a randomness

r̃′i and transformation randomness RAdd and sends (x,ΠEP, i, auxi, ei, w0, w1, r̃′i, RAdd) to C, where
w0 = (ei, ri, sk

i
T) and w1 = wtrap. Then, B gets x′, Π ′

EP, aux
′
i, (r1, . . . , rn) from C. B now computes the

reply to the query σ′ = (k + 1, Π ′
EP, Π

′
SH,A

′
EP,A

′
SH, C

′, C̃ ′,E′) in the following way. It sets Π ′
EP as the

one received from C, it updates the auxiliary values in AEP using (r1, . . . , rn) and PKE.Eval1, it sets C ′

and C̃ ′ as the one contained in x′. It computes all the elements related to the shuffle proofs as in the
previous hybrid, using commitment randomness r̃′i and transformation randomness RAdd. B perfectly
simulates the view of A in both hybrids and thus B can use the output of a successful distinguisher to
win in the WAI game with the same success probability.

H5: When processing lad0, B processes the sign action in the ladder with the same modification of H3.
Indistinguishability from the previous hybrid can be argued as above.

H6: When processing the ladder, B processes the join actions in the ladder with the same modification of
H4. Indistinguishability from the previous hybrid can be argued as above.

H7: Let s be the index of the first signer in lad0. After that A returns (τ∗,m∗, lad∗0, lad
∗
1) (line 4 of

ExpAnon
A,Tetris(λ)), the first action of lad0 that is Sign(τ∗,m, s,R) is processed by B setting e as e←$ E

instead of e← Tag(sksT, τ
∗,m). This hybrid is computationally indistinguishable from the previous one

28

thanks to the pseudo-randomness property of the DAPT (Def. 23). Let C be the challenger of Def. 23.
Every time A makes a KeyGen query with index i, B generates the pkiT starting a new interaction with a
pseudo-randomness tag game. Every time A makes a Sign or a Join query on an index i with public key
pkiT for a topic τ at line 4 of ExpAnon

A,Tetris(λ), B queries OTag (Fig. 9) to obtain the tag for (skiT, τ,m) to
compute the signature. Notice that for each different index i, B is interacting with a different OTag in
order to obtain the output of OTag(skiT, τ,m, abrt = 0, honest = 1). Once A returns (τ∗,m∗, lad∗0, lad

∗
1),

B sets s as the index of the first signer in lad0. B generates Σ in line 5 of ExpAnon
A,Tetris(λ) interacting with

OTag as follows: for each index i ̸= s, A obtains the tag calling OTag(skiT, τ
∗,m∗, abrt = 0, honest = 1);

while for each action of type Join(τ∗,m∗,R, s, σ) and Sign(τ∗,m∗, s,R), A obtains the tag calling
OTag(sksT, τ

∗,m∗, abrt = 0, honest = 0). B returns Σ to A and replies all queries in line 6 of
ExpAnon

A,Tetris(λ) from A as follows. For Sign and Join queries on all positions i ̸= s, B uses a tag obtained
by OTag(skiT, τ,m, abrt = 0, honest = 1). For sign and join operations on position s, B uses a tag
obtained by OTag(sksT, τ,m, abrt = 0, honest = 1). For each corruption query on i ̸= s, B calls
OTag(⊥,⊥,⊥, abrt = 1,⊥) and returns skiT to A. Notice that by construction, an admissible A makes B
ask exclusively admissible queries in the tag pseudo-randomness game w.r.t. pksT. B perfectly simulates
H6 if C always honestly generated tags (i.e., b = 0 in ExpTagPR

A,DAPT(λ) w.r.t. pksT Fig. 9) and perfectly
simulates H7 if C always returns (when honest = 0) random tags (i.e., b = 1 in ExpTagPR

A,DAPT(λ) w.r.t. pksT
Fig. 9). Thus, a successful distinguisher between the two hybrids can be used to break the tag
pseudo-randomness of DAPT with the same success probability.

H8: B modifies the tag for the second signer in lad0 to be e←$ E for the Join action done while computing
the signatures in Σ associated to lad0. Moreover, we implicitly add another set of hybrids, one for each
of the additional signers in lad0. For each of these hybrids, B sets e←$ E for the current signer. All
these hybrids are indistinguishable for the same argument of indistinguishability between H7 and H6.

H9: When processing the ladder, for every join action on an index i, B uses (EP.AddTx,EP.AddTw,EP.Prv)
instead of EP.PAdd. Additionally, instead of performing AuxUpd, each element of AEP is replaced with a
fresh encryption of the auxiliary values output by the Prv algorithm, except in the signer’s ciphertexts
where B keeps encrypting ⊥. This hybrid is computationally indistinguishable from the previous one
thanks to the addition privacy (Def. 14) of EP. Whenever B has to perform a Join action on a signature
σ = (k,ΠEP, ΠSH,AEP,ASH, C, C̃,E), B sets x = (k, x1, . . . , xn, C̃) with xj = (cj , pk

j
T, τ,m, xtrap) where

cj is the j-th element of C. B sets w = (ϕ, {wtrap}k, r̃1, . . . , r̃n) that is the witness that was used to
compute ΠEP. B sets w∗ = wtrap and sends (x,w,w∗, i, r̃′i, ΠEP,AUXEP, RAdd) where AUXEP is known to
B since it processed all the ladders by itself, while r̃′i and RAdd are uniformly sampled commitment
randomness and transformation randomness. B now computes the next signature in the ladder
σ′ = (k + 1, Π ′

EP, Π
′
SH,A

′
EP,A

′
SH, C

′, C̃ ′,E′) in the following way. It sets Π ′
EP as the one received from C,

it updates the auxiliary values in A′
EP by encrypting the auxiliary values received by C in the

non-signers’ positions (and ⊥ in the signers’ ones), sets C ′ and C̃ ′ as the one contained in x′. It
computes all the elements related to the shuffle proofs as in the previous hybrid, using commitment
randomness r̃′i and transformation randomness RAdd. B perfectly simulates the view of A in both
hybrids and thus B can use the output of a successful distinguisher to win in the addition privacy game
with the same success probability.

H10: When processing the ladder, B uses (EP.ExtTx,EP.ExtTw,EP.Prv) instead of EP.PExt. Additionally,
instead of performing AuxUpd, each element of AEP is replaced with a fresh encryption of the auxiliary
values in output of Prv algorithm. This hybrid is computationally indistinguishable from the previous
one thanks to the extension privacy of EP. Indistinguishability can be argued in a similar way to as was
done in H9.

H11: B uses (SH.AddTx,SH.AddTw,SH.Prv) instead of SH.PAdd. Additionally, instead of performing AuxUpd,
each element of ASH is replaced with a fresh encryption of the auxiliary values in output of SH.Prv
algorithm. This hybrid is computationally indistinguishable from the previous one thanks to the
addition privacy of SH. Indistinguishability can be argued in a similar way to as was done in H9.

29

H12: B uses (SH.ExtTx,SH.ExtTw,SH.Prv) instead of SH.PExt. Additionally, instead of performing AuxUpd,
each element of ASH is replaced with a fresh encryption of the auxiliary values in output of Prv
algorithm. This hybrid is computationally indistinguishable from the previous one thanks to the
extension privacy of SH. Indistinguishability can be argued in a similar way to as was done in H9.

H13: When processing the ladders, B encrypts ⊥ in all the signers’ ciphertexts of AEP and ASH. Notice that,
at this point, B is already not using any auxiliary value. Recall that an admissible A cannot corrupt
any of the signers in lad0 or lad1. This hybrid is computationally indistinguishable from the previous
one thanks to the IND-CPA property of the encryption scheme.

H14: When processing the ladder, B uses SH.Sim1 instead of SH.Prv when producing ΠSH and associated
auxiliary values. This hybrid is computationally indistinguishable from the previous one thanks to the
EZK property (Def. 20) of SH. Let C be the challenger of the EZK game. Whenever B has to compute a
shuffle proof to process the ladder, it simply forwards (xSH, wSH) to C and puts in the next signature in
the ladder ΠSH received from C, ASH is computed by encrypting the non-signers’ auxiliary values AUX
received from C and encrypting ⊥ in the signers’ auxiliary values. The remaining parts of the signatures
are computed as in the previous hybrid. B perfectly simulates the view of A in both hybrids and thus B
can use the output of a successful distinguisher to win in the EZK game with the same success
probability.

H15: Let Ci be the list of commitments to tags contained in σi (i.e. the i-th signature in Σ). For all i ∈ [ℓ],
where ℓ is the length of the ladder, B now creates Ci by committing to 0 in all positions. This hybrid is
computationally indistinguishable from the previous one thanks to the computational hiding of Comck.
Let C be the challenger of the computational hiding game. For every Sign or Join action in the ladder
that adds an additional signer with index j, B, instead of directly creating the j-th commitment within
Ci, for i ∈ ℓ, by directly committing to ej , it queries C with (ej , 0). Then, B puts the received
commitment in Ci[j]. Notice that at this point B does not need the opening of any of the commitments
to compute any of the proofs. B perfectly simulates the view of A in both hybrids and thus B can use
the output of a successful distinguisher to win in the computational hiding game with the same success
probability.

H16: Let Ci be the list of commitments to tags contained in σi. For all i ∈ [ℓ], B now creates the Ci by
committing to the tags implicitly specified by lad1. Indistinguishability can be shown as done in H15.

H17: Let Ei be the list of clear-text tags contained in σi. B now computes the clear-text tag to be (if needed)
added to each Ei as the corresponding tags from lad1. This hybrid is indistinguishable from the
previous one thanks to the tag pseudo-randomness of DAPT. Indistinguishability can be argued in the
same way as H7 and H8.

H18: B uses the DAPT secret keys related to lad1 to compute the EP proofs. In particular, at the i-th step of
the ladder with i ∈ [ℓ], B creates the commitments in C̃ are according to the signers of the i-th step in
lad1. This hybrid is computationally indistinguishable from the previous one thanks to the EWI of EP
(Def. 19). Let C be the challenger of the EWI game. Let us consider the first step y in which the signers
are different in lad0 and lad1. B sets x = (k, x1, . . . , xn, {⊥}k), with xj = (cj , pk

j
T, τ,m, xtrap) where cj is

the j-th element of C computed as in the previous hybrid. B sets w0 = (ϕ0, {wtrap}k), and
w1 = (ϕ1, {(ej , skϕ1(j)

T , rϕ1(j))}j∈[k]) where ϕ0 and ϕ1 are the mappings induced by lad0 and lad1

respectively. B sends (x,w0, w1) to C and gets back ΠEP,AUXEP, C̃. B then computes the signature
σy = (k,ΠEP, ΠSH,AEP,ASH, C, C̃,E) where ΠEP and C̃ are the ones received from C, AUXEP includes all
the auxiliary values of non-signers’ positions which can be encrypted by B and included in AEP, while
the other positions are still encrypting ⊥. The shuffle proofs can be computed as before as they are
simulated and B does not need the openings of C̃. B perfectly simulates the view of A in both hybrids
and thus B can use the output of a successful distinguisher to win in the extended witness
indistinguishability game with the same success probability.

H19: We start a sequence of hybrids that progressively removes the use of SH.Sim, wtrap and that switches
back to using the extension and addition algorithms for Extend and Join queries/operations. To do that,
we undo the changes from H14 to H9 and from H6 to H1. All of these hybrids are indistinguishable for
the same reasons argued above. The final hybrid is exactly ExpAnon

A,Tetris(λ) with b = 1.

30

Lemma 7. Let DAPT be defined as in Sec. 5. Let EP be defined as in Sec. 4 for relation RDtr with WAI
(Def. 17) and FPWI (Def. 18). Then, the scheme in Fig. 11,12 is exculpable (Def. 7).

Proof. Let us call B the reduction that runs A internally. The proof uses the following indistinguishable
hybrids.

H0: This is exactly the experiment of Fig. 7.
H1: Instead of sampling a xtrap such that xtrap /∈ Ltrap, B samples (xtrap, wtrap) ∈ RLtrap . This hybrid is

computationally indistinguishable from the previous one thanks to the hardness of Ltrap.
H2: This is equivalent to H1 except that B guesses an index i∗ such that pki∗ ∈ PK at the end of

exculpability experiment (see Fig. 7). The index i∗ must exist, otherwise A would not win the
exculpability game. From now on, every corruption query on i∗ results in an abort of the experiment.
Indeed, under the condition that i∗ is correctly guessed, A cannot corrupt pki∗ to win the exculpability
game. Thus, the probability that B does not abort in this hybrid is at least 1

qKG+1 , where qKG is a
polynomial bound on the number of key generation queries A can do.

H3: B replies to Sign(τ,m, i∗,R) queries using wtrap instead of ski
∗

T as a witness to compute the proof ΠEP.
This hybrid is indistinguishable from the previous thanks to the FPWI of EP (Def. 18). The proof is
identical to the one of H3 of the proof of anonymity.

H4: B replies to Join(τ,m,R, i∗, σ) queries using wtrap instead of ski
∗

T as a witness to compute the add
operation over the proof ΠEP contained in σ. This hybrid is indistinguishable from the previous thanks
to the WAI of EP (Def. 17). The proof is identical to the one of H4 of the proof of anonymity (Lem. 6).

H5: Let C be the challenger of the tag non-frameability game ExpTagNF
A,DAPT(λ) (Fig. 10). Whenever asked to

generate a key for index i∗, B forwards such KeyGen query to C and uses its reply to answer A.
Whenever A asks for a Sign or Join query over index i∗, B queries C to get the corresponding tag
needed to answer the queries. Notice that at this point, B does not need ski

∗

T to answer any query
involving i∗. Whenever A outputs (τ, t0, t1,R0,R1,m0,m1, σ0, σ1), B looks for a pair e0, e1
(respectively contained in tinfo0 of σ0 and tinfo1 of σ1) such that TagTrace(e0, e1,m0,m1, pk

i∗

T) = 1 and
sends (e0, e1,m0,m1) to C. Conditioned on correctly guessing i∗, B wins the tag non-frameability game
with the same probability with which A wins the exculpability game. Notice that all the queries
forwarded to C are admissible for a B playing the tag non-frameability game.

Lemma 8. Let DAPT be defined as in Sec. 5. L Let EP be defined as in Sec. 4 for relation RDtr with perfect
∆-extraction (Def. 16) where ∆ is defined as ∆((êj , rẑj , sk

j
T)j∈[k]) = (ê1, . . . , êk). Let SH be defined as in

Sec. 4 for relation RSH. Then, the scheme in Fig. 11,12 is traceable (Def. 5).

Proof. It follows from Lem. 4, Lem. 5, and Lem. 2.

7 Our DAPT

Let gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ) where gk←$ G(1λ). The topic space is {0, 1}∗, the message space is Zp, and the
tag space is Ĝ. The algorithms work as follows:

– (pk, sk) ← KeyGen(gk): Sample random x, y ←$ Zp, compute pk = (p̂k1 = ĝx, p̂k2 = yĝ, p̌k2 = ȟy) and
set sk = (x, y).

– ê← Tag(sk, τ,m): Let τ̂ ← H(τ) output ê = τ̂x+ p̂k2mx.
– 0/1← TagTrace(ê0, ê1,m0,m1, pk): If (ê0 − ê1) · ȟ = p̂k1 · (m0 −m1)p̌k2 return 1, else return 0.
– Rkey = {((p̂k1, p̂k2, p̌k2), (x, y))|p̂k1 = xĝ, p̂k2 = ĝy, p̌k2 = ȟy}.

Theorem 3. If the DDH and the Co-CDH assumptions hold relative to G, then the scheme above is a DAPT
in the ROM.

Proof. We prove the above theorem via the following three lemmas.

31

Lemma 9. The DAPT described above enjoys verifiability of keys (cfr, Def. 21).

Proof. Given the poly-time relation Rkey, one can check by inspection that the following three conditions
hold.

1. For every (pk, sk)← KeyGen(gk), it hold that (pk, sk) ∈ Rkey.
2. Every (pk, sk) ∈ Rkey lies in the output space of KeyGen(gk).
3. For a given pk, there exists a unique sk such that (pk, sk) ∈ Rkey. This is because the exponentiation is

a unique map.

Lemma 10. The DAPT described above enjoys tag traceability (cfr, Def. 22).

Proof. First, let us consider two honestly generated tags ê0, ê1 w.r.t. the same key (pk, sk), the same topic τ ,
and messages m0,m1. We have that ê0 = τ̂x+ p̂k1m0x and ê1 = τ̂x+ p̂k1m1x. We have that (ê0 − ê1) · ȟ =

p̂k1x(m0 −m1) · ȟ = xyĝ(m0 −m1) · ȟ. On the other hand, p̂k0 · (m0 −m1)p̌k1 = ĝx · (m0 −m1)ȟy.
Second, let us consider an A winning the game of Def. 22 with non-negligible probability. A outputs

(τ,m0,m1, pk0, pk1, sk0, sk1) such that sk0 = (x0, y0), sk1 = (x1, y1), pk0 = (x0ĝ, y0ĝ, ȟy0) and pk1 =
(x1ĝ, y1ĝ, ȟy1). Additionally, given ê0 = τ̂x0 + ĝy0m0x and ê1 = τ̂x1 + ĝy1m1x, where τ̂ = H(τ), it holds
that either TagTrace(ê0, ê1,m0,m1, pk0) = 1 or TagTrace(ê0, ê1,m0,m1, pk1) = 1. Let us assume, without
loss of generality, that TagTrace(ê0, ê1,m0,m1, pk0) = 1. This means that:

(τ̂x0 + ĝy0m0x0 − τ̂x1 − ĝy1m1x1) · ȟ = ĝx0y0(m0 −m1) · ȟ
τ̂(x0 − x1) · ȟ = ĝm1(x0y0 − x1y1) · ȟ
uĝ(x0 − x1) · ȟ = ĝm1(x0y0 − x1y1) · ȟ
u = m1(x0y0 − x1y1)(x0 − x1)−1

Recall that we know that x0 ̸= x1 ∧ y0 ̸= y1. Basically, given an A winning with non-negligible probability,
it is possible to find the discrete logarithm (DL) of H(τ) with the same probability. It is straightforward to
build a reduction breaking the DL problem by making it program oracle queries with DL challenges.

Lemma 11. If the EDDH assumption holds in G (Ass. 2), the DAPT described above enjoys pseudo-
randomness (Def. 23) in the random oracle model.

Proof. To prove this lemma we will transition, through a series of indistinguishable hybrids, from the
experiment run with b = 0 to the experiment run with b = 1.

H0: This is exactly the pseudo-randomness experiment of Fig. 9 with b = 0.
H1: This is equivalent to H0 except that, when B is queried to produce a tag on the pair (τ,m), instead of

computing it as ê = H(τ)x+ p̂k1my, the reduction outputs ê = r̂τ + p̂k1my with r̂τ ←$ G. The
reduction uses the same r̂τ in case the same τ is queried again.

H2: This is equivalent to H1 except that, when B is queried to produce a tag on the pair (τ,m), the
reduction samples a random ê←$ G. This is exactly the pseudo-randomness experiment of Fig. 9 with
b = 1.

We now show that all the consecutive hybrids are indistinguishable:

– H0 and H1 are indistinguishable under the Type 2 EDDH assumption (which is implied by the EDDH
assumption). Indeed, we can use a distinguisher D that, on input the view of A, distinguishes between
H0 and H1 with probability ϵ, to build an adversary B that breaks the EDDH assumption with the
same probability. B creates pk = (p̂k1, p̂k2, p̌k2) as follows. It sets p̂k1 = â, with â that it gets from the
EDDH game, while it samples y ←$ Zp to create p̂k2 = yĝ and p̌k2 = ȟy. Whenever A calls OTag with
input a not previously queried (τi,mi) and honest = 1, B calls the ODDH with honest = 1 and gets
(t̂i, ẑi). Then, it programs the random oracle on input τi to give t̂i as output. Finally, it replies to the
query computing êi = ẑi + p̂k1miy. Similarly, whenever A calls OTag with with input a not previously
queried (τi,mi) and honest = 0, B calls the ODDH oracle of the EDDH game and gets (t̂i, ẑi). Then, it
programs the random oracle on input τi to give t̂i as output. Finally, it replies to the query computing
êi = ẑi + p̂k1miy. B outputs whatever D outputs. Notice that B perfectly simulates H0 whenever the
type 2 EDDH experiment is run with b = 0, and it perfectly simulates H1 otherwise.

32

– H1 and H2 are perfectly indistinguishable if A never queries (τ,m1) and (τ,m2) with m1 ̸= m2. Indeed,
in this case, r̂τ acts as a random mask that is only used once and perfectly hides the group element that
is added to it.

Lemma 12. If the EDDH (Assumption 2) and the Co-CDH (Assumption 5) assumptions hold relative to
G, the DAPT described above enjoys tag non-frameability (Def. 24) in the random oracle model.

Proof. To prove this lemma we will transition through a series of indistinguishable hybrids. Then, in the
final hybrid we will use the output of the adversary A of the tag non-frameability experiment to break the
Co-CDH assumption.

H0: This is exactly the tag non-frameability experiment of Fig. 10.
H1: This is equivalent to H0 except that, when queried to produce a tag on the pair (τ,m), instead of

computing it as ê = H(τ)x+ p̂k1my, the reduction outputs ê = r̂τ + p̂k1my with r̂τ ←$ G. The
reduction uses the same r̂τ in case the same τ is queried again.

H2: This is equivalent to H1 except that the reduction computes the tags simply as random elements of G.
The reduction keeps track of these values and returns the same value if the same pair (τ,m) is queried
again.

The indistinguishability of all the hybrids can be argued as it was shown while proving the tag
indistinguishability property. The key point now is that in H2, B can reply to the tag generation queries
without knowing any part of the secret key. Therefore, B will set the public key to give to A as the Co-CDH
challenge. Then whenever A outputs (ê0, ê1,m0,m1) s.t. (ê0 − ê1) · ȟ = p̂k1 · (m0 −m1)p̌k2, B will output
(ê0−ê1)
m0−m1

. It follows that B wins the Co-CDH game with the same probability with which A wins the tag
non-frameability game.

Remark 1. As shown in the above security proof, given two tags ê0 and ê1 w.r.t. the same topic τ and
m0 ̸= m1 it is possible to compute t̂ = (ê0−ê1)

m0−m1
. It is also possible to compute τ̂x = ê0 − t̂m0. Given this

information, it is easy to issue tags for the topic τ and any message m by computing t̂m+ τ̂x.

8 Our Extendable Shuffle Argument

Our extendable shuffle argument (Sec. 1.2) is an EP with EZK for relation RSH:

RSH = {(ck, x = (k, ẑ1, . . . , ẑn, m̌1, . . . , m̌n, ê1, . . . , êk), w = (ϕ, r1, . . . , rk,

rm̌1
, . . . , rm̌n

))|∀i ∈ [n] m̌i ← Comck(biti; rm̌i
) ∧ biti ∈ {0, 1} ∧

∑n
i=1 biti = k∧

∀ki=1(bitϕ(i) = 1 ∧ (ẑϕ(i) ← Comck(êi; ri))) ∧ ϕ is an injective map [k]→ [n]}.

As commitment scheme, we use ElGamal with commitment keys ĉk and čk:

– To commit to a group element Ê using randomness rẑ , compute ẑ = (ẑ1, ẑ2) = (rẑ ĝ, Ê + rẑ ĉk).
– To commit to a bit bit with randomness rm̌ , compute m̌ = (m̌1, m̌2) = (rm̌ ȟ, bitȟ+ rm̌ čk).

We construct ΠSH for relation RSH by defining a set of equations and proving their satisfiability with
the GS proof system. Let ψ be a committed variable that is 1 on a regular crsSH and can be equivocated to
0 with the simulation trapdoor; such a variable is implicitly available in the crs of GS [36]. The variable ψ
is only needed to achieve EZK, so it can be ignored in the following overview in which we describe all the
equations we prove and why they give a shuffle argument.

In order to prove the correctness of the switch variables {biti : i ∈ [n]}, i.e., that ∀i ∈ [n] : biti ∈
{0, 1} ∧

∑n
i=1 biti = k, we define the equations Bi : biti(1− biti) = 0 and K :

∑n
i=1 biti = kψ.

The main challenge is to devise a set of equations whose satisfiability, proven with GS, implies the
statement in the third line of RSH. Towards this goal, we first introduce new auxiliary variables Êi, fi, rẑi
and define the following equations (with public constants ĉk, čk, ĝ, ȟ, ẑi, m̌i):

(∀i) D1
i,1 : fiẑi

1 = rẑi ĝ, D1
i,2 : fiẑ

2
i = fiÊi + rẑi ĉk, Fi : fi = bitiψ

33

(∀i) D2
i,1 : ψm̌1

i = rm̌i ȟ, D2
i,2 : ψm̌2

1 = bitiȟ+ rm̌i čk.

The equations in the first line guarantee that the prover can open k commitments to tags, while the
equations in the second line guarantee that the i-th switch variable biti is correctly committed in m̌i.

In order to prove the shuffle w.r.t. the k public values (ê1, . . . , êk), we extend the techniques of Groth and
Lu [36] as follows. We introduce new variables {ǎi, ǎ′i, b̌i, b̌′i, ĉi : i ∈ [n]} and define the following equations
(with public constants ĝ, ȟ, ȟi, δ̌i), where all ȟi, δ̌i with i ∈ [n] are part of crsSH and are generated as stated
in Ass. 6.

Q1
i : ǎi = bitiǎ′i (∀i) Q2

i : b̌i = bitib̌′i

S1 :
∑n

i=1 ǎi =
∑k

i=1 ψȟi S2 :
∑n

i=1 b̌i =
∑k

i=1 ψδ̌i

(∀i) V1
i : ĝ · ǎi = ĉi · ȟ (∀i) V2

i : ĝ · b̌i = ĉi · ǎi
The above equations formulate a subset permutation pairing problem over the variables {ǎi, b̌i} as stated

in Assumption 6. In particular, for all i ∈ [n] the equations Q1
i ,Q2

i , together with equations Bi and K
guarantee that at least k of the variables ǎi and b̌i are set to 0̌. Additionally, if the equations S1,S2,V1,V2 are
satisfied then, thanks to the subset permutation assumption, there exists except with negligible probability
a set of indices J = {α1, . . . , αk} with 1 ≤ αi ≤ n s.t. {(ǎαi

, b̌αi
)}i∈[k] is a permutation of {(ȟi, δ̌i)}i∈[k].

Namely, the switch variables biti modify the equations in such a way that setting biti = 1 implies
that i ∈ J . Finally, we define the following equations with variables ô, ô′, ψ, Êi, ǎi, b̌i and public constants
êi, ȟ, δ̌i, ȟi.

E1 : ô · ȟ+
∑n

i=1 Êi · ǎi =
∑k

i=1 êi · ȟi, E2 : ô′ · ȟ+
∑n

i=1 Êi · b̌i =
∑k

i=1 êi · δ̌i

P2 : ψô = 0̂ P3 : ψô′ = 0̂

As for ψ, the introduction of the variables ô and ô′ is only useful to the simulator. Let us look at the
equations in the first line, we have that

∑n
i=1 Êi · ǎi =

∑k
i=1 êi · ȟi and

∑n
i=1 Êi · b̌i =

∑k
i=1 êi · δ̌i. Given that

{(ǎαi
, b̌αi

)}i∈[k] is a permutation of {(ȟi, δ̌i)}i∈[k], there must exist a permutation π such that
∑k

i=1(Êαπ(i)
−

êi) · ȟi = 0̂ and
∑k

i=1(Êαπ(i)
− êi) · δ̌i = 0̂. This constitutes a subset simultaneous pairing problem (see

Assumption 7), and assuming its computational hardness, we can infer that Êαπ(i)
= êi for all i ∈ [k]. To

prove all the above equations the prover assigns the value to the variables in the following way:

– For all i ∈ [n] set rm̌i
as the value given in the witness.

– Set I ← ∅. For all j ∈ [k] let ϕ(j) = i, set ǎi = ǎ′i = ȟj , b̌i = b̌′i = δ̌j , ĉi = ĝj , Êi = êj , biti = 1, f1 =
1, rẑi = rj , I ← I ∪ {i}.

– For all i ∈ [n] \ I, set ǎi = ǎ′i = 0̌, b̌i = b̌′i = 0̌, ĉi = 0̂, Êi = 0̂, biti = 0, fi = 0, rẑi = 0.

The simulation trapdoor consists of the trapdoor of the GS proof system, that allows equivocating ψ to 0,
and the discrete logs {pi}i∈[n] of the elements {ĝi}i∈[n]. Indeed, to simulate a proof without knowledge of
the witness it suffices to set variables ô =

∑k
i=1 piêi, ô

′ =
∑k

i=1 2piêi, (∀i) ǎi = ǎ′i = 0̌, b̌i = b̌′i = 0̌, ĉi =

0̂, Êi = 0̂, biti = 0, fi = 0, rẑi = 0, rm̌i
= 0. The extended zero knowledge property follows from the witness

indistinguishability of GS proofs and from the fact that the variables corresponding to the inactive positions
are assigned in the same way both for real and simulated proofs.

Extend and add operations can be implemented with the same techniques of [8] since, as for their
ENIWI, they only involve adding/removing the contribution of certain variables within a set of equations
(i.e., K,S1,S2, E1, E2). Whenever an extend/add operation is performed, the lists of commitments {ẑi}i∈[n]

to group elements and commitments {m̌i}i∈[n] to switch variables are also re-randomized (ElGamal is re-
randomizable). Applying this re-randomization and updating the GS proofs consequently is straightforward
given the malleability of the ElGamal encryption and of GS proofs. We defer to App. B for a detailed
description of the construction and its security proofs.

34

References

1. Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASI-
ACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (Dec 2002). https://doi.org/10.1007/3-540-
36178-2_26

2. Aguilar Melchor, C., Cayrel, P.L., Gaborit, P.: A new efficient threshold ring signature scheme based on
coding theory. In: Buchmann, J., Ding, J. (eds.) Post-quantum cryptography, second international workshop,
PQCRYPTO 2008. pp. 1–16. Springer, Heidelberg (Oct 2008). https://doi.org/10.1007/978-3-540-88403-3_1

3. Aranha, D.F., Baum, C., Gjøsteen, K., Silde, T., Tunge, T.: Lattice-based proof of shuffle and applications to
electronic voting. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 227–251. Springer, Heidelberg
(May 2021). https://doi.org/10.1007/978-3-030-75539-3_10

4. Aranha, D.F., Hall-Andersen, M., Nitulescu, A., Pagnin, E., Yakoubov, S.: Count me in! extendability for
threshold ring signatures. Cryptology ePrint Archive, Paper 2021/1240 (2021), https://eprint.iacr.org/2021/
1240, https://eprint.iacr.org/2021/1240

5. Aranha, D.F., Hall-Andersen, M., Nitulescu, A., Pagnin, E., Yakoubov, S.: Count me in! Extendability for
threshold ring signatures. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) PKC 2022, Part II. LNCS, vol.
13178, pp. 379–406. Springer, Heidelberg (Mar 2022). https://doi.org/10.1007/978-3-030-97131-1_13

6. Attema, T., Cramer, R., Rambaud, M.: Compressed Σ-protocols for bilinear group arithmetic circuits and
application to logarithmic transparent threshold signatures. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021,
Part IV. LNCS, vol. 13093, pp. 526–556. Springer, Heidelberg (Dec 2021). https://doi.org/10.1007/978-3-030-
92068-5_18

7. Au, M.H., Liu, J.K., Susilo, W., Yuen, T.H.: Secure id-based linkable and revocable-iff-linked ring signature with
constant-size construction. Theor. Comput. Sci. 469, 1–14 (2013)

8. Avitabile, G., Botta, V., Fiore, D.: Extendable threshold ring signatures with enhanced anonymity. In: Boldyreva,
A., Kolesnikov, V. (eds.) PKC 2023, Part I. LNCS, vol. 13940, pp. 281–311. Springer, Heidelberg (May 2023).
https://doi.org/10.1007/978-3-031-31368-4_11

9. Avitabile, G., Botta, V., Friolo, D., Visconti, I.: Efficient proofs of knowledge for threshold relations. In: Atluri,
V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ESORICS 2022, Part III. LNCS, vol. 13556, pp. 42–62. Springer,
Heidelberg (Sep 2022). https://doi.org/10.1007/978-3-031-17143-7_3

10. Backes, M., Döttling, N., Hanzlik, L., Kluczniak, K., Schneider, J.: Ring signatures: Logarithmic-size, no setup -
from standard assumptions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp.
281–311. Springer, Heidelberg (May 2019). https://doi.org/10.1007/978-3-030-17659-4_10

11. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham, H.: Randomizable proofs and
delegatable anonymous credentials. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer,
Heidelberg (Aug 2009). https://doi.org/10.1007/978-3-642-03356-8_7

12. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified
requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 614–629. Springer, Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-9_38

13. Bettaieb, S., Schrek, J.: Improved lattice-based threshold ring signature scheme. In: Gaborit, P. (ed.) Post-
Quantum Cryptography - 5th International Workshop, PQCrypto 2013. pp. 34–51. Springer, Heidelberg (Jun
2013). https://doi.org/10.1007/978-3-642-38616-9_3

14. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: Logarithmic (linkable) ring signatures from
isogenies and lattices. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 464–492.
Springer, Heidelberg (Dec 2020). https://doi.org/10.1007/978-3-030-64834-3_16

15. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear
maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (May 2003).
https://doi.org/10.1007/3-540-39200-9_26

16. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully dynamic group signatures. In:
Manulis, M., Sadeghi, A.R., Schneider, S. (eds.) ACNS 16. LNCS, vol. 9696, pp. 117–136. Springer, Heidelberg
(Jun 2016). https://doi.org/10.1007/978-3-319-39555-5_7

17. Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on
DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E.R. (eds.) ESORICS 2015, Part I. LNCS, vol. 9326, pp. 243–265.
Springer, Heidelberg (Sep 2015). https://doi.org/10.1007/978-3-319-24174-6_13

18. Branco, P., Mateus, P.: A traceable ring signature scheme based on coding theory. In: Ding, J., Steinwandt, R.
(eds.) Post-Quantum Cryptography. pp. 387–403. Springer International Publishing, Cham (2019)

35

https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/978-3-540-88403-3_1
https://doi.org/10.1007/978-3-030-75539-3_10
https://eprint.iacr.org/2021/1240
https://eprint.iacr.org/2021/1240
https://eprint.iacr.org/2021/1240
https://doi.org/10.1007/978-3-030-97131-1_13
https://doi.org/10.1007/978-3-030-92068-5_18
https://doi.org/10.1007/978-3-030-92068-5_18
https://doi.org/10.1007/978-3-031-31368-4_11
https://doi.org/10.1007/978-3-031-17143-7_3
https://doi.org/10.1007/978-3-030-17659-4_10
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-642-38616-9_3
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1007/978-3-319-39555-5_7
https://doi.org/10.1007/978-3-319-24174-6_13

19. Branco, P., Mateus, P.: A traceable ring signature scheme based on coding theory. In: Ding, J., Steinwandt,
R. (eds.) Post-Quantum Cryptography - 10th International Conference, PQCrypto 2019. pp. 387–403. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-030-25510-7_21

20. Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M.
(ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (Aug 2002). https://doi.org/10.1007/3-
540-45708-9_30

21. Catalano, D., Fuchsbauer, G., Soleimanian, A.: Double-authentication-preventing signatures in the standard
model. In: Galdi, C., Kolesnikov, V. (eds.) SCN 20. LNCS, vol. 12238, pp. 338–358. Springer, Heidelberg (Sep
2020). https://doi.org/10.1007/978-3-030-57990-6_17

22. Chakraborty, S., Hofheinz, D., Langrehr, R., Nielsen, J.B., Striecks, C., Venturi, D.: Malleable SNARKs and their
applications. Cryptology ePrint Archive, Paper 2025/311 (2025), https://eprint.iacr.org/2025/311

23. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems and applications. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg
(Apr 2012). https://doi.org/10.1007/978-3-642-29011-4_18

24. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Succinct malleable NIZKs and an application to
compact shuffles. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 100–119. Springer, Heidelberg (Mar 2013).
https://doi.org/10.1007/978-3-642-36594-2_6

25. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT’91. LNCS, vol. 547, pp.
257–265. Springer, Heidelberg (Apr 1991). https://doi.org/10.1007/3-540-46416-6_22

26. Derler, D., Ramacher, S., Slamanig, D.: Generic double-authentication preventing signatures and a post-quantum
instantiation. In: Baek, J., Susilo, W., Kim, J. (eds.) ProvSec 2018. LNCS, vol. 11192, pp. 258–276. Springer,
Heidelberg (Oct 2018). https://doi.org/10.1007/978-3-030-01446-9_15

27. Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C.,
Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (May 2004).
https://doi.org/10.1007/978-3-540-24676-3_36

28. Escala, A., Groth, J.: Fine-tuning Groth-Sahai proofs. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
630–649. Springer, Heidelberg (Mar 2014). https://doi.org/10.1007/978-3-642-54631-0_36

29. Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. In: Kiayias, A. (ed.) CT-RSA 2011.
LNCS, vol. 6558, pp. 393–415. Springer, Heidelberg (Feb 2011). https://doi.org/10.1007/978-3-642-19074-2_25

30. Fujisaki, E., Suzuki, K.: Traceable ring signature. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 181–200. Springer, Heidelberg (Apr 2007). https://doi.org/10.1007/978-3-540-71677-8_13

31. Fujisaki, E., Suzuki, K.: Traceable ring signature. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 91-
A(1), 83–93 (2008). https://doi.org/10.1093/IETFEC/E91-A.1.83, https://doi.org/10.1093/ietfec/e91-a.
1.83

32. Ghadafi, E.: Efficient distributed tag-based encryption and its application to group signatures with efficient
distributed traceability. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 327–
347. Springer, Heidelberg (Sep 2015). https://doi.org/10.1007/978-3-319-16295-9_18

33. Ghadafi, E., Smart, N.P., Warinschi, B.: Groth-Sahai proofs revisited. In: Nguyen, P.Q., Pointcheval, D. (eds.)
PKC 2010. LNCS, vol. 6056, pp. 177–192. Springer, Heidelberg (May 2010). https://doi.org/10.1007/978-3-642-
13013-7_11

34. Goel, A., Green, M., Hall-Andersen, M., Kaptchuk, G.: Stacking sigmas: A framework to compose Σ-protocols
for disjunctions. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part II. LNCS, vol. 13276, pp.
458–487. Springer, Heidelberg (May / Jun 2022). https://doi.org/10.1007/978-3-031-07085-3_16

35. González, A.: Shorter ring signatures from standard assumptions. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I.
LNCS, vol. 11442, pp. 99–126. Springer, Heidelberg (Apr 2019). https://doi.org/10.1007/978-3-030-17253-4_4

36. Groth, J., Lu, S.: A non-interactive shuffle with pairing based verifiability. In: Kurosawa, K. (ed.) ASI-
ACRYPT 2007. LNCS, vol. 4833, pp. 51–67. Springer, Heidelberg (Dec 2007). https://doi.org/10.1007/978-3-
540-76900-2_4

37. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (Apr 2008). https://doi.org/10.1007/978-3-
540-78967-3_24

38. Haque, A., Scafuro, A.: Threshold ring signatures: New definitions and post-quantum security. In: Kiayias,
A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part II. LNCS, vol. 12111, pp. 423–452. Springer,
Heidelberg (May 2020). https://doi.org/10.1007/978-3-030-45388-6_15

39. Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended
abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 04. LNCS, vol. 3108, pp. 325–335. Springer,
Heidelberg (Jul 2004). https://doi.org/10.1007/978-3-540-27800-9_28

36

https://doi.org/10.1007/978-3-030-25510-7_21
https://doi.org/10.1007/3-540-45708-9_30
https://doi.org/10.1007/3-540-45708-9_30
https://doi.org/10.1007/978-3-030-57990-6_17
https://eprint.iacr.org/2025/311
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-36594-2_6
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-030-01446-9_15
https://doi.org/10.1007/978-3-540-24676-3_36
https://doi.org/10.1007/978-3-642-54631-0_36
https://doi.org/10.1007/978-3-642-19074-2_25
https://doi.org/10.1007/978-3-540-71677-8_13
https://doi.org/10.1093/IETFEC/E91-A.1.83
https://doi.org/10.1093/ietfec/e91-a.1.83
https://doi.org/10.1093/ietfec/e91-a.1.83
https://doi.org/10.1007/978-3-319-16295-9_18
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-642-13013-7_11
https://doi.org/10.1007/978-3-031-07085-3_16
https://doi.org/10.1007/978-3-030-17253-4_4
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/978-3-540-76900-2_4
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-030-45388-6_15
https://doi.org/10.1007/978-3-540-27800-9_28

40. Malavolta, G., Schröder, D.: Efficient ring signatures in the standard model. In: Takagi, T., Peyrin,
T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 128–157. Springer, Heidelberg (Dec 2017).
https://doi.org/10.1007/978-3-319-70697-9_5

41. Munch-Hansen, A., Orlandi, C., Yakoubov, S.: Stronger notions and a more efficient construction of threshold
ring signatures. In: Longa, P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 363–381. Springer,
Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-88238-9_18

42. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498.
Springer, Heidelberg (Aug 2002). https://doi.org/10.1007/3-540-45708-9_31

43. Neff, C.A.: A verifiable secret shuffle and its application to e-voting. In: Reiter, M.K., Samarati, P. (eds.) ACM
CCS 2001. pp. 116–125. ACM Press (Nov 2001). https://doi.org/10.1145/501983.502000

44. Petzoldt, A., Bulygin, S., Buchmann, J.: A multivariate based threshold ring signature scheme. Appl. Algebra
Eng. Commun. Comput. 24(3-4), 255–275 (2013)

45. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 552–565. Springer, Heidelberg (Dec 2001). https://doi.org/10.1007/3-540-45682-1_32

46. Russo, A., Anta, A.F., Vasco, M.I.G., Romano, S.P.: Chirotonia: A Scalable and Secure e-Voting Framework
based on Blockchains and Linkable Ring Signatures. In: 2021 IEEE International Conference on Blockchain
(Blockchain). pp. 417–424 (2021)

47. Scafuro, A., Zhang, B.: One-time traceable ring signatures. In: Bertino, E., Shulman, H., Waidner,
M. (eds.) ESORICS 2021, Part II. LNCS, vol. 12973, pp. 481–500. Springer, Heidelberg (Oct 2021).
https://doi.org/10.1007/978-3-030-88428-4_24

48. Thyagarajan, S.A.K., Malavolta, G., Schmid, F., Schröder, D.: Verifiable timed linkable ring signatures for scalable
payments for monero. In: Atluri, V., Di Pietro, R., Jensen, C.D., Meng, W. (eds.) ESORICS 2022, Part II. LNCS,
vol. 13555, pp. 467–486. Springer, Heidelberg (Sep 2022). https://doi.org/10.1007/978-3-031-17146-8_23

49. Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. In: Deng, R.H., Bao, F.,
Pang, H., Zhou, J. (eds.) Information Security Practice and Experience, First International Conference, ISPEC
2005, Singapore, April 11-14, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3439, pp. 48–60. Springer
(2005), https://doi.org/10.1007/978-3-540-31979-5_5

50. Xu, S., Yung, M.: Accountable ring signatures: A smart card approach. In: Quisquater, J.J., Paradinas, P.,
Deswarte, Y., El Kalam, A.A. (eds.) Smart Card Research and Advanced Applications VI. pp. 271–286. Springer
US, Boston, MA (2004)

51. Yuen, T.H., Esgin, M.F., Liu, J.K., Au, M.H., Ding, Z.: DualRing: Generic construction of ring signatures with
efficient instantiations. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 251–281.
Springer, Heidelberg, Virtual Event (Aug 2021). https://doi.org/10.1007/978-3-030-84242-0_10

52. Yuen, T.H., Liu, J.K., Au, M.H., Susilo, W., Zhou, J.: Efficient Linkable and/or Threshold Ring Signature
Without Random Oracles. Comput. J. 56(4), 407–421 (2013)

37

https://doi.org/10.1007/978-3-319-70697-9_5
https://doi.org/10.1007/978-3-030-88238-9_18
https://doi.org/10.1007/3-540-45708-9_31
https://doi.org/10.1145/501983.502000
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/978-3-030-88428-4_24
https://doi.org/10.1007/978-3-031-17146-8_23
https://doi.org/10.1007/978-3-540-31979-5_5
https://doi.org/10.1007/978-3-030-84242-0_10

Appendices

A Standard Tools and Definitions

A.1 Commitment Schemes

A non-interactive commitment is a pair of PPT algorithms (Setup,Com), where Setup takes as input 1λ

and returns a commitment key ck and Com take as input a message m, and outputs a commitment
Com = Comck(m; r), where r is the randomness used to generate Com. The pair (m, r) is called the opening.
Intuitively, a commitment satisfies two properties called binding and hiding. The first property says that it
is hard to open a commitment in two different ways. The second property says that a commitment hides the
underlying message.

Definition 25 (Perfect Binding). We say that a non-interactive commitment is perfectly binding if
∄ m0 ̸= m1, r0, r1 s.t. Comck(m0; r0) = Comck(m1; r1), where ck← Setup(1λ).

Definition 26 (Computational Hiding). We say that a non-interactive commitment is computationally
hiding if for all PPT adversaries A the following quantity is negligible∣∣∣Pr[AO(ck,0,·,·)(1λ, ck) = 1

]
− Pr

[
AO(ck,1,·,·)(1λ, ck) = 1

]∣∣∣ ,
where the oracle O(ck, b, ·, ·) with hard-wired b ∈ {0, 1} and ck← Setup(1λ) takes as input a pair of messages
m0,m1, and outputs Comck(mb).

A.2 Public Key Encryption

A public key encryption scheme is a set of PPT algorithms PKE = (Setup,KeyGen,Enc,Dec)

– pp← Setup(1λ): outputs public parameters pp.
– (pk, sk)← KeyGen(): generates a new public and secret key pair.
– a← Enc(m, pk): on input a message m, and a public key pk, output a ciphertext a.
– m← Dec(a, sk) on input a ciphertext a, and a secret key sk, output a message m.

Additionally, a public key encryption scheme is homomorphic w.r.t a function f , if there exists a PPT
algorithm that works as follows.

– a′ ← Eval(a, x, pk): on input a ciphertext a, a message x, and the public key pk. Let y ← Dec(a, sk), it
returns a ciphertext a′ s.t. f(y, x) = Dec(a′, sk).

A public key encryption scheme is is IND-CPA secure if the probability that a PPT adversary A wins the
following game is negligibly close to 1

2 . The game involves the following steps: (i) A has access to the public
key and outputs two messages m0 and m1; (ii) the challenger encrypts one of the two messages; (iii) A has
to guess which message was encrypted.

ElGamal Encryption. The ElGamal encryption scheme is a public key encryption scheme with the
following algorithms. The public parameters pp produced by Setup are implicitly available to all other
algorithms:

– pp← Setup(1λ): on input the security parameter, sample a cyclic group Ĝ of prime order p, a generator
ĝ. Output pp = (Ĝ, ĝ).

– (pk, sk) ← KeyGen(): sample an element ζ ←$ Z∗
p. Define public key as pk = v̂ = (ζĝ, ĝ)⊤ ∈ Ĝ2×1 and

sk = ζ = (−ζ−1, 1). Output (pk, sk).

38

– â← Enc(m̂, pk): with input the public key and a message m̂ ∈ Ĝ, sample r ←$ Zp and output ciphertext
â = e⊤m̂+ v̂r ∈ Ĝ2×1, where e = (0, 1).

– m̂← Dec(â, sk): with input the secret key and a ciphertext a ∈ Ĝ2×1, output m̂ = ζâ.

The ElGamal encryption scheme is also homomorphic, with the function f being the group operation. In
more detail:

– a′ ← Eval(a1, m̂2, pk): compute a2 = Enc(m̂2, pk), output a′ = a1 + a2. If the ciphertexts contained
messages m̂1 and m̂2, the output ciphertext will contain message m̂1 + m̂2.

The ElGamal encryption is IND-CPA secure if the DDH assumption holds in Ĝ. Additionally, ciphertexts
updated with Eval are identically distributed to freshly generated ciphertexts.

We also add the following definition.

Definition 27 (Verifiability of Keys). For all λ ∈ N, (pp, td) ← Setup(1λ), it holds that (pk, sk) ∈
KeyGen() iff (pk, sk) ∈ RPKE

key . We also require that for all pk there exists a unique sk s.t. (pk, sk) ∈ RPKE
key .

Note that the ElGamal encryption scheme satisfies Def. 27 for RPKE
key = {(pk, sk)|∃ζ ∈ Z∗

p s.t. pk =

(ζĝ, ĝ)⊤ ∧ sk = (−ζ−1, 1)}. Indeed, it holds that:

1. For every (pk, sk)← KeyGen(), it hold that (pk, sk) ∈ RPKE
key .

2. Every (pk, sk) ∈ RPKE
key lies in the output space of KeyGen().

3. For a given pk, there exists a unique sk such that (pk, sk) ∈ RPKE
key . This is because the exponentiation is

a unique map.

A.3 Non-Interactive Proof Systems

Let us consider an NP language L with associated poly-time relation RL. A non-interactive proof system for
RL consists of the following algorithms. The group key gk← G(1λ) is considered as an implicit input to all
algorithms.

– (crs, xk)←$ CRSSetup(gk): on input the group key, output a common reference string crs ∈ {0, 1}λ, and
an extraction trapdoor xk.

– Π ← Prv(crs, x, w): on input statement x and witness w s.t. (x,w) ∈ RL, output a proof Π.
– 0/1← PVfy(crs, x,Π): on input statement x and proof Π, output either 1 to accept or 0 to reject.
– Π ′ ← RandPr(crs, x,Π): on input statement x and proof Π for x ∈ L, output a randomized proof Π ′.

A non-interactive proof system is said to be witness indistinguishable (NIWI) if all the properties below
are satisfied.

Definition 28 (Completeness). A proof system for RL is complete if ∀λ ∈ N, gk ← G(1λ), crs ←$

CRSSetup(gk), (x,w) ∈ RL, and Π ← Prv(crs, x, w) it holds that Pr[PVfy(crs, x,Π) = 1] = 1.

Definition 29 (Witness Indistinguishability). We say that the proof system is witness indistinguishable
(WI) if the following holds. For all (x,w1, w2) such that (x,w1), (x,w2) ∈ RL, the tuples (crs, Π1) and
(crs, Π2), where crs←$ CRSSetup(gk), gk← G(1λ) and for i ∈ [2], Πi ← Prv(crs, x, wi), are computationally
indistinguishable. If the two tuples are identically distributed, we say that the proof system is perfect WI.

Definition 30 (Soundness). For all PPT A, and for crs ←$ CRSSetup(gk), gk ← G(1λ), the probability
that A(crs) outputs (x,Π) such that x /∈ L but PVfy(crs, x,Π) = 1, is negligible.

Additionally, a NIWI is said to be a NIWI proof of knowledge (PoK) if the property below is also satisfied.

Definition 31 (Adaptive Extractable Soundness). There exists a polynomial-time extractor Ext =
(Ext0,Ext1), for all gk← G(1λ), with the following properties:

39

– Ext0(gk) outputs (crsExt, xk) such that crsExt is indistinguishable from crs obtained running crs ←$

CRSSetup(gk).
– For all PPT A, the probability that A(crsExt, xk) outputs (x,Π) such that PVfy(crsExt, x,Π) = 1 and

(x,w) /∈ RL where w ← Ext1(crsExt, xk, x,Π) is negligible.

We can also consider a stronger notion than witness indistinguishability called zero knowledge.

Definition 32 (Zero Knowledge). There exists a polynomial-time simulator algorithm Sim = (Sim0,Sim1)
such that Sim0(gk) outputs (crs, td), and Sim1(crs, td, x) outputs a value π such that for all (x,w) ∈ RL
and PPT adversaries A, the following two interactions are indistinguishable: in the first, we compute crs←$

CRSSetup(gk) and give A both crs and oracle access to Prv(crs, ·, ·) (where Prv will output ⊥ on input (x,w) /∈
RL); in the second, we compute crs as (crs, td) ← Sim0(gk), and give A such crs and oracle access to
Sim2(crs, td, ·, ·), with the exception that it outputs ⊥ whenever (x,w) /∈ RL.

An extra property of a proof system is re-randomizability, which we state below. In our paper, when
talking about a proof system we usually refer to a re-randomizable proof system.

Definition 33 (Re-Randomizable Proof System). Consider the following experiment:

– gk← G(1λ)
– crs←$ CRSSetup(gk)
– (x,w,Π)← A(crs)
– If either PVfy(crs, x,Π) = 0 or (x,w) /∈ RL output ⊥ and abort. Otherwise, sample b←$ {0, 1}
• If b = 0 Π ′ ← Prv(crs, x, w)
• If b = 1 Π ′ ← RandPr(crs, x,Π)

– b′ ← A(Π ′).

We say that the proof system is re-randomizable if for every PPT A, there exists a negligible function ν(·),
such that Pr[b = b′] ≤ 1/2 + ν(λ).

A.4 Groth-Sahai Proofs

The Groth-Sahai (GS) proof system [37] is a proof system for the language of satisfiable equations (of types
listed below) over a bilinear group gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ) ← G(1λ). The prover wants to show that there
exists an assignment of all the variables that satisfies the equation. Such equations can be of four types:

Pairing-product equations (PPE): For public constants âj ∈ Ĝ, b̌i ∈ Ȟ, γij ∈ Zp, tT ∈ T:∑
i x̂i · b̌i +

∑
j âj · y̌j +

∑
i

∑
j γij x̂i · y̌j = tT.

Multi-scalar multiplication equation in Ĝ (MEĜ): For public constants âj ∈ Ĝ, bi ∈ Zp, γij ∈ Zp,
t̂ ∈ Ĝ:

∑
i x̂ibi +

∑
j âjyj +

∑
i

∑
j γij x̂iyj = t̂.

Multi-scalar multiplication equation in Ȟ (MEȞ): For public constants aj ∈ Zp, b̌i ∈ Ȟ, γij ∈ Zp,
ť ∈ Ȟ:

∑
i xib̌i +

∑
j aj y̌j +

∑
i

∑
j γijxiy̌j = ť.

Quadratic equation in Zp (QE): For public constants aj ∈ Zp, bi ∈ Zp, γij ∈ Zp, t ∈ Zp:
∑

i xibi +∑
j ajyj +

∑
i

∑
j γijxiyj = t.

We use the notation and formalization of the GS proof system proposed in [28]. The GS proof system is
a commit-and-prove system. Each committed variable is also provided with a public label that specifies the
type of input (i.e., scalar or group element). Accordingly, the prover algorithm takes as input a label L which
indicates the type of equation to be proved (i.e., L ∈ {PPE,MEĜ,MEȞ,QE}). GS features the following
PPT algorithms, the common reference string crs and the group key gk are considered as implicit input of
all the algorithms.

40

– crs←$ CRSSetup(gk): on input the group key, output the common reference string. The common reference
string defines the parameters of the commitment scheme.

– (l, c) ← Com(l, w; r): return a commitment (l, c) to message w according to the label l and randomness
r.

– π ← Prv(L, x, (l1, w1, r1), . . . , (ln, wn, rn)): consider statement x as an equation of type specified by L,
and on input a list of commitment openings produce a proof π.

– 0/1← PVfy(x, (l1, c1), . . . , (ln, cn), π): given committed variables, statement x, and proof π, output 1 to
accept and 0 to reject.

– ((l1, c
′
1), . . . , (ln, c

′
n), π

′) ← RandPr(L, (l1, c1), . . . , (ln, cn), π; r): on input equation type specified by L,
a list of commitments, a proof π, and a randomness r, output a re-randomized proof along with the
corresponding list of re-randomized commitments.

GS can also be used to prove that a set of equations S, with possibly shared variables across the equations,
has a satisfying assignment. To do so, the prover reuses the same commitments for the shared variables
while executing the Prv algorithm for each individual equation. Notice that a commit-and-prove system can
always fit the interface of a regular proof system by including both the commitments and proof elements in
the proof itself.

The GS proof system is a NIWI for all types of the above equations under the SXDH assumption. In
addition, it is a PoK for all equations involving solely group elements. To be more specific, Escala and Groth
formulated the notion of F -knowledge [28] for a commit-and-prove system (a variation of adaptive extractable
soundness). In a nutshell, it requires the existence of an Ext2 algorithm that, on input a valid commitment
and the extraction key produced by an algorithm Ext1 which is also producing the crs, outputs a function
F of the committed value. They prove that GS enjoys F -knowledge. For commitments to group elements,
F is the identity function. Regarding commitments to scalars, F is a one-way function (i.e., exponentiation)
that uniquely determines the committed value. Additionally, GS proofs are zero knowledge for equations of
type MEĜ,MEȞ, QE, and for pairing-product equations in which tT = 0T and no public constants are paired
with each other. However, zero knowledge can be achieved if a representation of tT in terms of the source
groups is known. If this representation is known in terms of ĝ and ȟ, zero knowledge comes basically at no
extra cost.

An important feature of GS is that it follows the dual-mode paradigm. Basically, the CRS can be set in
two modes that are indistinguishable under the SXDH assumption. In perfect binding mode, the CRS can be
sampled with a trapdoor that allows for extraction and thus defines a perfectly binding commitment scheme
giving a perfect proof of knowledge with computational zero knowledge. On the contrary, the perfect hiding
mode CRS comes with a trapdoor that allows simulation and thus defines a perfectly hiding commitment
scheme giving perfect WI (or ZK) and computational extractable soundness.

Internals of GS proofs. In [28], the authors provide a very fine-grained description of GS proofs. In this
description, we report only the aspects that are relevant to our constructions. It is possible to write the
equations of Sec. A.4 in a more compact way. Consider x̂ = (x̂1, . . . , x̂m) and y̌ = (y̌1, . . . , y̌n), which may be
both public constants (i.e., written before as âj , b̌i) or secret values. Let Γ = {γij}m,n

i=1,j=1 ∈ Zm×n
p . We can

now write a PPE as x̂Γ y̌ = tT. Similarly, a MEĜ, a MEȞ, and a QE can be written as x̂Γy = t̂, xΓ y̌ = ť,
and xΓy = t. This holds for x̂ ∈ Ĝ1×m, y̌ ∈ Ȟn×1,x ∈ Z1×m

p ,y ∈ Zn×1
p . The structure of the crs is clear

from Fig. 13, where the generation of perfectly binding crs (i.e., via Ext0) and of a perfectly hiding crs (i.e.,
via Sim0) are shown.

In Fig. 14, we report the commitment labels and corresponding commit algorithm that are of interest
for this work. Commitments of type unitĜ, baseĜ, unitȞ, and baseȞ have a distinctive feature that is crucial
for simulation. The simulation trapdoor specifies ρ such that û = ρv̂ and e⊤ĝ = ρv̂ − ŵ. This means
that commitments of types baseĜ and unitĜ can be equivocated as either commitments to ĝ and 1 or as
commitments to 0̂ and 0. The same holds for commitments of type unitȞ and baseȞ.

In Fig. 15 and in Fig. 16, we report the prover and verifier algorithm respectively. In Fig. 17 we report
the proof re-randomization algorithm.

41

(crs, xk)← Ext0(gk)

1 : Parse gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)
2 : ρ←$ Zp, ξ ←$ Z∗

p and σ ←$ Zp, ψ ←$ Z∗
p

3 : v̂ = (ξĝ, ĝ)⊤ and v̌ = (ψȟ, ȟ)

4 : ŵ = ρv̂ and w̌ = σv̌

5 : û = ŵ + (0̂, ĝ)⊤ and ǔ = w̌ + (0̌, ĝ)

6 : ξ = (−ξ−1 mod p, 1) and

7 : ψ = (−ψ−1 mod p, 1)⊤

8 : crs = (û, v̂, ŵ, ǔ, v̌, w̌)

9 : xk = (ξ,ψ)

10 : return (crs, xk)

(crs, td)← Sim0(gk)

1 : Parse gk = (p, Ĝ, Ȟ,T, e, ĝ, ȟ)
2 : ρ←$ Zp, ξ ←$ Z∗

p and σ ←$ Zp, ψ ←$ Z∗
p

3 : v̂ = (ξĝ, ĝ)⊤ and v̌ = (ψȟ, ȟ)

4 : ŵ = ρv̂ − (0̂, ĝ)⊤ and w̌ = σv̌ −+(0̌, ĝ)

5 : û = ŵ + (0̂, ĝ)⊤ and ǔ = w̌ + (0̌, ĝ)

6 : crs = (û, v̂, ŵ, ǔ, v̌, w̌)

7 : td = (ρ, σ)

8 : return (crs, td)

Fig. 13. Generation of the CRS along with either the extraction key or the trapdoor key in the GS proof system.

Input Randomness Output
pubĜ, x̂ r = 0, s = 0 ĉ = e⊤x̂

comĜ, x̂ r, s←$ Zp ĉ = e⊤x̂+ v̂r + ŵs

baseĜ, ĝ r = 0, s = 0 ĉ = e⊤ĝ

scaĜ, x r ←$ Zp, s = 0 ĉ = ûx+ v̂r

unitĜ, 1 r = 0, s = 0 ĉ = û

Input Randomness Output
pubȞ.y̌ r = 0, s = 0 ď = y̌e

comȞ, x̌ r, s←$ Zp ď = y̌e+ rv̌ + sw̌

baseȞ, ȟ r = 0, s = 0 ď = ȟe

scaȞ, y r ←$ Zp, s = 0 ď = yǔ+ rv̌

unitȞ, 1 r = 0, s = 0 ď = ǔ

Fig. 14. GS commit labels and corresponding commit algorithm, e = (0, 1).

For the sake of simplicity, we omit the explicit description of Sim1 which can be found in [28]. In a
nutshell, the simulator sets all of the committed variables to the corresponding neutral element with the goal
of using a trivial assignment to satisfy the equation. Having the trapdoor, the simulator can equivocate the
commitments of type baseĜ, unitĜ, baseȞ, unitȞ to the neutral element. This gives the simulator a satisfying
witness, and using this simulated witness it can now create the proof as an honest prover would do.

Prv(L, Γ, {(lxi , xi, (rxi , sxi))}mi=1, {(lyj , yj , (ryj , syj))}nj=1)

if x ∈ Ĝm define Ĉ = e⊤x+ v̂rx + ŵsx else if x ∈ Zm
p define Ĉ = ûx+ v̂rx

if y ∈ Ȟn define Ď = e⊤y + ryv̌ + syw̌ else if y ∈ Zn
p define Ď = ǔy + ryv̌

Set α = β = γ = δ = 0

if L = PPE α, β, γ, δ ←$ Zp

if L = MEĜ α, β ←$ Zp

if L = MEȞ α, γ ←$ Zp

if L = QE α←$ Zp

π̌v̂ = rxΓĎ + αv̌ + βw̌ π̂v̌ = (Ĉ − v̂rx − ŵsx)Γry − v̂α− ŵγ

π̌ŵ = sxΓĎ + γv̌ + δw̌ π̂w̌ = (Ĉ − v̂rx − ŵsx)Γsy − v̂β − ŵδ
return π = (π̌v̂, π̂v̌, π̌ŵ, π̂w̌)

Fig. 15. Prover algorithm of the GS proof system.

42

PVfy(L, Γ, {(lxi , ĉi)}mi=1, {(lyj , ďj)}nj=1),π, t)

Check that the equation has a valid format.

Check Ĉ = (ĉ1 . . . ĉm) ∈ Ĝ2×m and Ď = (ď1 . . . ďn)
⊤ ∈ Ȟn×2

Check π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌) ∈ Ȟ2×1 × Ȟ2×1 × Ĝ1×2 × Ĝ1×2

if L = PPE Check that t ∈ T and compute lT = e⊤te

if L = MEĜ Check that t ∈ Ĝ and compute lT = e⊤tǔ

if L = MEȞ Check that t ∈ Ȟ and compute lT = ûte

if L = QE Check that t ∈ Zp and compute lT = ûtǔ

Check ĈΓ Ď = v̂π̌v̂ + ŵπ̌ŵ + π̂v̌v̌ + π̂w̌w̌ + lT

return 1 if and only if all checks pass and 0 otherwise.

Fig. 16. Verifier algorithm of the GS proof system.

(Ĉ′, Ď′, π′)← RandPr(L, Γ, {(lxi , ĉi)}mi=1, {(lyj , ďj)}nj=1,π; r)

Parse r = (rx, sx, ry, sy)

Define Ĉ = (ĉ1 . . . ĉm) ∈ Ĝ2×m, Ď = (ď1 . . . ďn)
⊤ ∈ Ȟn×2and parse π = (π̌v̂, π̌ŵ, π̂v̌, π̂w̌)

if x ∈ Ĝm define Ĉ′ = Ĉ + v̂rx + ŵsx else if x ∈ Zm
p define Ĉ′ = Ĉ + v̂rx

if y ∈ Ȟn define Ď′ = Ď + ryv̌ + syw̌ else if y ∈ Zn
p define Ď′ = Ď + ryv̌

if L = PPE α, β, γ, δ ←$ Zp

if L = MEĜ α, β ←$ Zp

if L = MEȞ α, γ ←$ Zp

if L = QE α←$ Zp

π̌v̂
′ = π̌v̂ + rxΓĎ

′ + αv̌ + βw̌ π̂v̌
′ = π̂v̌ + ĈΓry − v̂α− ŵγ

π̌ŵ
′ = π̌ŵ + sxΓĎ

′ + γv̌ + δw̌ π̂w̌
′ = π̂w̌ + ĈΓsy − v̂β − ŵδ

return (Ĉ′, Ď′, π′ = (π̌v̂
′, π̂v̌

′, π̌ŵ
′, π̂w̌

′))

Fig. 17. Proof re-randomization algorithm of the GS proof system.

B Details on Our Extendable Shuffle

We build our extendable shuffle argument building upon the shuffle argument of [36], which is based on
Groth-Sahai proofs. In particular, we commit to elements êi and to the bits biti using as a commitment
scheme the ElGamal encryption in Ĝ and Ȟ respectively. In the following, given a vector v we indicate is i-th
component as vi. Additionally, we use the following notation to refer to the GS commitment to a variable
v. If the GS commitment to v is in group Ĝ we write ĉv. If the GS commitment to v is in group Ȟ we write
ďv. We use the same convention for the randomness r and s used to generate the GS commitment. The
algorithms of our extendable shuffle argument are the following:

43

– (crs, td) ← CRSSetup(gk, N): run (crs1, xk1) ← GS.Ext0(gk). Sample p1, . . . , pN ←$ Zp, compute sets
{ĝi} = {ĝpi}, {γ̂i} = {ĝ2pi}, {ȟi} = {piȟ}, {δ̌i} = {2piȟ}. Set crs2 = ({ĝi}, {γ̂i}, {ȟi}, {δ̌i}). Return
(crs = (crs1, crs2), td = xk1).

– ck = ComSetup(gk): sample ĉk←$ Ĝ and čk←$ Ȟ. Return ck = (ĉk, čk).
– ẑ ← Comĉk(ê; r): return ẑ = (ĝr, ê+ ĉkr).
– m̌← Comčk(bit; r): Return m̌ = (rȟ, bitȟ+ rčk).
– (Π, aux1, . . . , auxn)← ShPrv(crs, ck, x, w): See Fig. 18 for a detailed description of the prover algorithm.
– 0/1← ShVerify(crs, ck, x,Π): reconstruct equations as shown in Fig. 18, appropriately parse Π, and for

every equation run GS.PVfy with the obvious inputs.
– (Π ′, x′, auxn+1, r)← ShExtend(crs, ck, x, ẑn+1, rm̌n+1

, Π):
1. Parse Π in terms of its commitments and proof elements lists.
2. Parse x as (k, ẑ1, . . . , ẑn, m̌1, . . . , m̌n, ê1, . . . , êk).
3. For each of the equation types D1,D2,F ,B,Q1,Q2,V1,V2, add a new equation by defining the

corresponding new independent variables, rẑn+1
= 0, fn+1 = 0, bitn+1 = 0, ǎ′n+1 = ǎn+1 = 0̌, b̌′n+1 =

b̌n+1 = 0̌, ĉn+1 = 0̂, Ên+1 = 0̂. The value of the variable rm̌n+1
is set as the one given in input.

4. Compute m̌n+1 = (rm̌n+1
ȟ, bitn+1ȟ+ rm̌n+1

ck).
5. Compute GS commitments to new variables and appropriately add them to the corresponding

commitment lists.
6. Compute the related new GS proofs and add them to the corresponding proof element lists.
7. Compute auxiliary value auxn+1 = (auxn+1

K , auxn+1
S1 , auxn+1

S2 , auxn+1
E1 , auxn+1

E2)

• auxn+1
K = (auxπ̌v̂) with auxπ̌v̂ = (rbitn+1ǔ

1, rbitn+1ǔ
2).

• auxn+1
S1 = (auxπ̂v̌ , auxπ̂w̌) with auxπ̂v̌ = (rǎn+1û

1, rǎn+1û
2), auxπ̂w̌ = (sǎn+1û

1, sǎn+1û
2).

• auxn+1
S2 = (auxπ̂v̌ , auxπ̂w̌) with auxπ̂v̌ = (rb̌n+1

û1, rb̌n+1
û2), auxπ̂w̌ = (sb̌n+1

û1, sb̌n+1
û2).

• auxn+1
E1 = (auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌) with auxπ̌v̂ = (rÊn+1

ď1
ǎn+1

, rÊn+1
ď2
ǎn+1

), auxπ̂v̌ =

(0̂, 0̂), auxπ̌ŵ = (0̂, 0̂), auxπ̂w̌ = (sÊn+1
ď1
ǎn+1

, sÊn+1
ď2
ǎn+1

).
• auxn+1

E2 = (auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌) with auxπ̌v̂ = (rÊn+1
ď1
b̌n+1

, rÊn+1
ď2
b̌n+1

), auxπ̂v̌ =

(0̂, 0̂), auxπ̌ŵ = (0̂, 0̂), auxπ̂w̌ = (sÊn+1
ď1
b̌n+1

, sÊn+1
ď2
b̌n+1

).

8. Parse πK as (π̌v̂, π̂v̌, π̌ŵ, π̂w̌) and update π̌v̂ as π̌v̂ = π̌v̂ + auxπ̌v̂ , with auxπ̌v̂ taken from auxn+1
K .

9. Parse πS1 as (π̌v̂, π̂v̌, π̌ŵ, π̂w̌) and update π̂v̌ = π̂v̌ + auxπ̂v̌ , π̂w̌ = π̂w̌ + auxπ̂w̌ π with auxπ̂v̌ , auxπ̂w̌

taken from auxn+1
S1 .

10. Parse πS2 as (π̌v̂, π̂v̌, π̌ŵ, π̂w̌) and update π̂v̌ = π̂v̌ + auxπ̂v̌ , π̂w̌ = π̂w̌ + auxπ̂w̌ π with auxπ̂v̌ , auxπ̂w̌

taken from auxn+1
S2 .

11. Parse πE1 as (π̌v̂, π̂v̌, π̌ŵ, π̂w̌) and update π̌v̂ = π̌v̂ + auxπ̌v̂ , π̂v̌ = π̂v̌ + auxπ̂v̌ , π̌ŵ = π̌ŵ +
auxπ̌ŵ , π̂w̌ = π̂w̌ + auxπ̂w̌ with auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌ taken from auxn+1

E1 .
12. Parse πE2 as (π̌v̂, π̂v̌, π̌ŵ, π̂w̌) and update π̌v̂ = π̌v̂ + auxπ̌v̂ , π̂v̌ = π̂v̌ + auxπ̂v̌ , π̌ŵ = π̌ŵ +

auxπ̌ŵ , π̂w̌ = π̂w̌ + auxπ̂w̌ with auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌ taken from auxn+1
E2 .

13. Randomize the statement and adjust the related GS commitments as follows for all i ∈ [n+ 1]:
• Compute ẑ′

i = ẑi + (ĝr′ẑi , ĉkr
′
ẑi
) with uniformly sampled r′ẑi (i.e, obtain a commitment to the

same value with randomness rẑi + r′ẑi).
• Compute m̌′

i = m̌i + (r′m̌i
ȟ, r′m̌i

čk) with uniformly sampled r′m̌i
.

• Adjust GS commitments ďrẑi
to variables rẑi as ďrẑi

= ďrẑi
+ûr′ẑi (i.e, obtain a GS commitment

with the same randomness but to value rẑi + r′ẑi).
• Adjust GS commitments ďrm̌i

to variables rm̌i
as ďrm̌i

= ďrm̌i
+ ûr′m̌i

.
Set x′ = (k, ẑ′

1, . . . , ẑ
′
n+1, m̌

′
1, . . . , m̌

′
n+1, ê1, . . . , êk).

14. Run GS.RandPr on each of the proofs, appropriately fixing the random coins when re-randomizing
proofs related to equations involving shared variables (i.e., s.t. we end up again with shared variables
having the exact same commitments). Let r = (r1, . . . , rn+1) with ri = (rǎi

, sǎi
, rb̌i , sb̌i , rÊi

, sÊi
, rbiti).

Namely, ri contains all the randomnesses used to re-randomize the GS commitments to the
corresponding i-th variables. Let randomized proof elements and commitments be contained in Π ′.

44

15. Output (Π ′, x′, auxn+1, r).
– (Π ′, x′, aux′α, r)← ShAdd(crs, ck, x, rẑα , α, êk+1, auxα, Π):

1. Parse Π in terms of its commitments and proof elements lists.
2. Parse x as (k, ẑ1, . . . , ẑn, m̌1, . . . , m̌n, ê1, . . . , êk).
3. Replace m̌α with a freshly computed m̌α = (rm̌α

ȟ, bitαȟ + rm̌α
čk) with bitα = 1 and uniformly

sampled rm̌α
.

4. Replace ẑα with a freshly computed ẑα = (ĝrẑα , ê+ ĉkrẑα).
5. For each of the equation types D1,D2,F ,B,Q1,Q2,V1,V2, replace the variables in equations related

to position α (i.e, D1
·,α,D2

·,α,Fα,Bα,Q1
α,Q2

α,V1
α,V2

α) as follows: fα = 1, bitα = 1, ǎα = ǎ′α =

ȟk+1, b̌α = b̌′α = δ̌k+1, ĉα = ĝk+1, Êα = êk+1. The value of the variable rẑα is set as the one
taken in input. The value of the variable rm̌α

is set as the one sampled at step 3.
6. Replace the GS commitments related to equations D1

·,α,D2
·,α,Fα,Bα,Q1

α,Q2
α,V1

α,V2
α with freshly

generated ones updating the corresponding commitment lists accordingly.
7. Replace the GS proof elements related to equations D1

·,α,D2
·,α,Fα,Bα,V1

α,V2
α with freshly generated

ones updating the corresponding proof element lists accordingly.
8. Parse auxα = (auxαK, aux

α
S1 , auxαS2 , auxαE1 , auxαE2)

9. Compute aux′α = (auxα
′

K , aux
α′

S1 , auxα
′

S2 , auxα
′

E1 , auxα
′

E2)

• auxα
′

K = (aux′π̌v̂
) with aux′π̌v̂

= (rbitiǔ
1, rbitiǔ

2).
• auxα

′

S1 = (aux′π̂v̌
, aux′π̂w̌

) with aux′π̂v̌
= (rǎi

û1, rǎi
û2), aux′π̂w̌

= (sǎi
û1, sǎi

û2).
• auxα

′

S2 = (aux′π̂v̌
, aux′π̂w̌

) with aux′π̂v̌
= (rb̌iû

1, rb̌iû
2), aux′π̂w̌

= (sb̌iû
1, sb̌iû

2).
• auxα

′

E1 = (aux′π̌v̂
, aux′π̂v̌

, aux′π̌ŵ
, aux′π̂w̌

) with aux′π̌v̂
= (rÊi

ď1
ǎi
, rÊi

ď2
ǎi
), auxπ̂v̌ = (0, rǎiÊi), aux

′
π̌ŵ

=

(0, sǎi
Êi), aux

′
π̂w̌

= (sÊi
ď1
ǎi
, sÊi

ď2
ǎi
).

• auxα
′

E2 = (aux′π̌v̂
, aux′π̂v̌

, aux′π̌ŵ
, aux′π̂w̌

) with aux′π̌v̂
= (rÊi

ď1
b̌i
, rÊi

ď2
b̌i
), auxπ̂v̌ = (0, rb̌iÊi), aux

′
π̌ŵ

=

(0, sb̌iÊi), aux
′
π̂w̌

= (sÊi
ď1
b̌i
, sÊi

ď2
b̌i
).

10. Parse πK as (π̌v̂, π̂v̌, π̌ŵ, π̂w̌) and update π̌v̂ as π̌v̂ = π̌v̂ − auxπ̌v̂ + aux′π̌v̂
, with auxπ̌v̂ taken from

auxiK and aux′π̌v̂
taken from auxα

′

K .
11. Parse πS1 as (π̌v̂, π̂v̌, π̌ŵ, π̂w̌) and update π̂v̌ = π̂v̌ − auxπ̂v̌ + aux′π̂v̌

, π̂w̌ = π̂w̌ − auxπ̂w̌ + aux′π̂w̌
,

with auxπ̂v̌ , auxπ̂w̌ taken from auxiS1 and aux′π̂v̌
, aux′π̂w̌

taken from auxα
′

S1 .
12. Parse πS2 as (π̌v̂, π̂v̌, π̌ŵ, π̂w̌) and update π̂v̌ = π̂v̌ − auxπ̂v̌ + aux′π̂v̌

, π̂w̌ = π̂w̌ − auxπ̂w̌ + aux′π̂w̌
,

with auxπ̂v̌ , auxπ̂w̌ taken from auxiS2 and aux′π̂v̌
, aux′π̂w̌

taken from auxα
′

S2 .
13. Parse πE1 as (π̌v̂, π̂v̌, π̌ŵ, π̂w̌) and update π̌v̂ = π̌v̂−auxπ̌v̂ +aux′π̌v̂

, π̂v̌ = π̂v̌−auxπ̂v̌ +aux′π̂v̌
, π̌ŵ =

π̌ŵ − auxπ̌ŵ + aux′π̌ŵ
, π̂w̌ = π̂w̌ − auxπ̂w̌ + aux′π̂w̌

with auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌ taken from auxiE1

and aux′π̌v̂
, aux′π̂v̌

, aux′π̌ŵ
, aux′π̂w̌

taken from auxα
′

E1 .
14. Parse πE2 as (π̌v̂, π̂v̌, π̌ŵ, π̂w̌) and update π̌v̂ = π̌v̂−auxπ̌v̂ +aux′π̌v̂

, π̂v̌ = π̂v̌−auxπ̂v̌ +aux′π̂v̌
, π̌ŵ =

π̌ŵ − auxπ̌ŵ + aux′π̌ŵ
, π̂w̌ = π̂w̌ − auxπ̂w̌ + aux′π̂w̌

with auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌ taken from auxiE2

and aux′π̌v̂
, aux′π̂v̌

, aux′π̌ŵ
, aux′π̂w̌

taken from auxα
′

E2 .
15. Randomize the statement and adjust the related GS commitments as follows for all i ∈ [n+ 1]:

• Compute ẑ′
i = ẑi + (ĝr′ẑi , ĉkr

′
ẑi
) with uniformly sampled r′ẑi (i.e, obtain a commitment to the

same value with randomness rẑi + r′ẑi).
• Compute m̌′

i = m̌i + (r′m̌i
ȟ, r′m̌i

čk) with uniformly sampled r′m̌i
.

• Adjust GS commitments ďrẑi
to variables rẑi as ďrẑi

= ďrẑi
+ûr′ẑi (i.e, obtain a GS commitment

with the same randomness but to value rẑi + r′ẑi).
• Adjust GS commitments ďrm̌i

to variables rm̌i as ďrm̌i
= ďrm̌i

+ ûr′m̌i
.

Set x′ = (k + 1, ẑ′
1, . . . , ẑ

′
n, m̌

′
1, . . . , m̌

′
n, ê1, . . . , êk+1).

16. Run GS.RandPr on each of the proofs, appropriately fixing the random coins when re-randomizing
proofs related to equations involving shared variables (i.e., s.t. we end up again with shared variables
having the exact same commitments). Let r = (r1, . . . , rn) with ri = (rǎi , sǎi , rb̌i , sb̌i , rÊi

, sÊi
, rbiti).

Namely, ri contains all the randomnesses used to re-randomize the commitments to the corresponding
i-th variables. Let randomized proof elements and commitments be contained in Π ′.

45

17. Output (Π ′, x′, aux′i, r).
– aux′i ← ShAuxUpd(crs, x,Π, auxi, ri): Parse ri = (rǎi , sǎi , rb̌i , sb̌i , rÊi

, sÊi
, rbiti). Parse Π to get

commitments ďǎi
, ď

b̌i
, ĉ

Êi
, ĉbiti . Set ď′

ǎi
= ďǎi

+ rǎi
v̌ + sǎi

w̌, ď′
b̌i

= ď
b̌i

+ rb̌i v̌ + sb̌iw̌. Then run the
same procedure of GS.RandPr but component-wise.
1. Parse auxi = (auxiK, aux

i
S1 , auxiS2 , auxiE1 , auxiE2).

2. Parse auxiK = (auxπ̌v̂) and compute auxKi
′ = (aux′π̌v̂

) with aux′π̌v̂
= auxπ̌v̂ + rbitiǔ.

3. Parse auxiS1 = (auxπ̂v̌ , auxπ̂w̌) and compute auxi
′

S1 = (aux′π̂v̌
, aux′π̂w̌

) with
• aux′π̂v̌

= auxπ̂v̌ + ûrǎi
.

• aux′π̂w̌
= auxπ̂w̌ + ûsǎi

.
4. Parse auxiS2 = (auxπ̌v̂ , auxπ̂v̌ , auxπ̂w̌) and compute auxi

′

S2 = (aux′π̌v̂
, aux′π̂v̌

, aux′π̂w̌
) with

• aux′π̂v̌
= auxπ̂v̌ + ûrb̌i .

• aux′π̂w̌
= auxπ̂w̌ + ûsb̌i .

5. Parse auxiE1 = (auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌) and compute auxi
′

E1 = (aux′π̌v̂
, aux′π̂v̌

, aux′π̌ŵ
, aux′π̂w̌

) with
• aux′π̌v̂

= auxπ̌v̂ + rÊi
ď′
ǎi

.
• aux′π̌v̂

= auxπ̌v̂ + sÊi
ď′
ǎi

.
• aux′π̂v̌

= auxπ̂v̌ + ĉ
Êi
rǎi

.
• aux′π̂w̌

= auxπ̂w̌ + ĉ
Êi
sǎi

.

6. Parse auxiE2 = (auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌) and compute auxi
′

E2 = (aux′π̌v̂
, aux′π̂v̌

, aux′π̌ŵ
, aux′π̂w̌

) with
• aux′π̌v̂

= auxπ̌v̂ + rÊi
ď′
b̌i

.
• aux′π̌v̂

= auxπ̌v̂ + sÊi
ď′
b̌i

.
• aux′π̂v̌

= auxπ̂v̌ + ĉ
Êi
rb̌i .

• aux′π̂w̌
= auxπ̂w̌ + ĉ

Êi
sb̌i .

Output aux
′

i = (auxi
′

K, aux
i′

S1 , auxi
′

S2 , auxi
′

E1 , auxi
′

E2).
– 0/1← ShAuxVerify(crs, x, w, aux1, . . . , auxn, Π): Parse the proof Π in terms of its commitments and proof

elements lists and parse each auxiliary value auxi = (auxiK, aux
i
S1 , auxiS2 , auxiE1 , auxiE2). For all i ∈ [n] set

the variables biti, ǎi, b̌i, ĉi, Êi as follows:
• Set I ← ∅
• For all j ∈ [k] let ϕ(j) = i, set biti = 1, ǎi = ȟj , b̌i = δ̌j , Êi = êj , I ← I ∪ {i}.
• For all i ∈ [n] \ I, set biti = 0, ǎi = 0̌, b̌i = 0̌, Êi = 0̂, ĉi = 0̂.

Do the following checks, where all the ďǎi
, ď

b̌i
, ĉbiti are taken from the commitment lists in Π (i.e, run

the verification of the GS proof system but for individual variables).
1. Equation K: for all i ∈ [n] parse auxiK = (auxπ̌v̂) and check that ĉbitiǔ = v̂auxπ̌v̂ + bitiûǔ.
2. Equation S1: for all i ∈ [n] parse auxiS1 = (auxπ̂v̌ , auxπ̂w̌) and check that ûďǎi

= auxπ̂v̌ v̌+auxπ̂w̌w̌+
(0T, ûǎi).

3. Equation S2: for all i ∈ [n] parse auxiS2 = (auxπ̂v̌ , auxπ̂w̌) and check that ûď
b̌i

= auxπ̂v̌ v̌+auxπ̂w̌w̌+

(0T, ûb̌i).
4. Equation E1: for all i ∈ [n] parse auxiE1 = (auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌) and check that ĉ

Êi
ďǎi

=

auxπ̂v̌ v̌ + auxπ̂w̌w̌ + v̂auxπ̌v̂ + ŵauxπ̌ŵ + (0T, Êi · ǎi).
5. Equation E2: for all i ∈ [n] parse auxiE2 = (auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌) and check that ĉ

Ê2
ď
b̌i

=

auxπ̂v̌ v̌ + auxπ̂w̌w̌ + v̂auxπ̌v̂ + ŵauxπ̌ŵ + (0T, Êi · b̌i).
– (crs, td) ← Sim0(gk, N): run (crs1, td1) ← GS.Sim0(gk). Sample p1, . . . , pN ←$ Zp, and set td2 =

(p1, . . . , pn). Compute sets {ĝi} = {ĝpi}, {γ̂i} = {ĝ2pi}, {ȟi} = {piȟ}, {δ̌i} = {2piδ̌}. Set crs2 =
({ĝi}, {γ̂i}, {ȟi}, {δ̌i}). Return (crs = (crs1, crs2), td = (td1, td2)).

– (Π, aux1, . . . , auxn)← Sim1(crs, td, x): The description of this algorithm is reported in Fig. 19.
– The transformation AddT = (AddTx,AddTw) works as follows:
• x′ ← AddTx(ck, x, êk+1, α, rẑα , rm̌α

; r′):
∗ Parse x as (k, ẑ1, . . . , ẑn, m̌1, . . . , m̌n, ê1, . . . , êk).
∗ Parse r′ as (r′ẑ1 , . . . , r

′
ẑn
, r′m̌1

, . . . , r′m̌n
).

46

∗ Replace m̌α with a freshly computed m̌α = (rm̌α ȟ, bitαȟ+ rm̌α čk). with bitα = 1.
∗ Replace ẑα with a freshly computed ẑα = (ĝrẑα , êk+1 + ĉkrẑα).
∗ For all i ∈ [n], compute ẑ′

i = ẑi + (ĝr′ẑi , ĉkr
′
ẑi
).

∗ For all i ∈ [n], compute m̌′
i = m̌i + (r′m̌i

ȟ, r′m̌i
čk).

∗ Set x′ = (k + 1, ẑ′
1, . . . , ẑ

′
n, m̌

′
1, . . . , m̌

′
n, ê1, . . . , êk+1).

• w′ ← AddTw(ck, w, rẑα , α, rm̌α
; r′)

∗ Parse w = (ϕ, r1, . . . , rk, rm̌1
, . . . , rm̌n

).
∗ Parse r′ as (r′ẑ1 , . . . , r

′
ẑn
, r′m̌1

, . . . , r′m̌n
).

∗ For all i ∈ [n], compute r∗m̌i
= rm̌i

+ r′m̌i
.

∗ For all i ∈ [k], compute r′i = ri + r′ẑϕ(i)
.

∗ Compute r′k+1 = rẑα + r′ẑα .
∗ Compute ϕ′ = ϕ ∪ {k + 1→ α}.
∗ Set w′ = (ϕ′, r′1, . . . , r

′
k+1, r

∗
m̌1
, . . . , r∗m̌n

).
– The transformation ExtT = (ExtTx,ExtTw) works as follows:
• x′ ← ExtTx(ck, x, ẑn+1, rm̌n+1 ; r

′):
∗ Parse x as (k, ẑ1, . . . , ẑn, m̌1, . . . , m̌n, ê1, . . . , êk).
∗ Parse r′ as (r′ẑ1 , . . . , r

′
ẑn
, r′m̌1

, . . . , r′m̌n+1
).

∗ Compute m̌n+1 = (rm̌n+1 ȟ, rm̌n+1 čk).
∗ Compute ẑ′

i = ẑi + (ĝr′ẑi , ĉkr
′
ẑi
).

∗ Compute m̌′
i = m̌i + (r′m̌i

ȟ, r′m̌i
čk).

∗ Set x′ = (k, ẑ′
1, . . . , ẑ

′
n+1, m̌

′
1, . . . , m̌

′
n+1, ê1, . . . , êk).

• w′ ← ExtTw(ck, w, rm̌n+1 ; r
′):

∗ Parse w = (ϕ, r1, . . . , rk, rm̌1
, . . . , rm̌n

).
∗ Parse r′ as (r′ẑ1 , . . . , r

′
ẑn
, r′m̌1

, . . . , r′m̌n+1
).

∗ For all i ∈ [n+ 1], compute r∗m̌i
= rm̌i + r′m̌i

.
∗ For all i ∈ [k], compute r′i = ri + r′ẑϕ(i)

.
∗ Set w′ = (ϕ, r′1, . . . , r

′
k+1, r

∗
m̌1
, . . . , r∗m̌n+1

).

Parse Trapdoor: Parse td = (td1, td2) where td1 = (ρ, σ) and td2 = (p1, . . . , pn).

Use the trapdoor to create a satisfying assignment: Set variables ô =
∑k

i=1 piêi, ô
′ =

∑k
i=1 2piêi,

(∀i) ǎ′i = ǎi = 0̌, b̌′i = b̌i = 0̌, ĉi = 0̂, Êi = 0̂, biti = 0, fi = 0, rẑi = 0, rm̌i = 0. To commit to ψ we use the unit
commitments with trivial randomness û or ǔ already available in crs1.

Proof and auxiliary values generation: Compute the proof and the auxiliary values with the above
assignment as the prover algorithm would do with the following exceptions:

– Use the value ψ = 1 and the trivial commitment randomness while proving equation P1.
– Use the value ψ = 0 with randomness the GS simulation trapdoors (i.e., (ρ, 0) or (σ, 0)) while proving all

the other equations involving ψ.

Fig. 19. Simulator of our extendable shuffle argument.

Theorem 4. The construction above is an extendable non-interactive proof system for RSH with extended
zero knowledge under the SXDH assumption13, the subset permutation pairing assumption (Ass. 6), and the
subset simultaneous pairing assumption (Ass. 7).
13 Under this assumption GS is non-interactive proof system (Sec. A.3) with a dual-mode CRS.

47

Set variables: Set the following variables ∀i ∈ [n]:
rẑi , rm̌i , biti, fi, ǎi, ǎ

′
i, b̌i, b̌′i, ĉi, Êi and the following other variables ψ, ô, ô′.

Set equations: Set the following equations:

(∀i) D1
i,1 : fiẑi

1 = rẑi ĝ, D
1
i,2 : fiẑ

2
i = fiÊi + rẑi ĉk, Fi : fi = bitiψ

(∀i) D2
i,1 : ψm̌1

i = rm̌i ȟ, D2
i,2 : ψm̌2

1 = bitiȟ+ rm̌i čk

(∀i) Bi : biti(1− biti) = 0 (∀i) Q1
i : ǎi = bitiǎ′i (∀i) Q2

i : b̌i = bitib̌′i

K :
∑n

i=1 biti = kψ S1 :
∑n

i=1 ǎi =
∑k

i=1 ψȟi

S2 :
∑n

i=1 b̌i =
∑k

i=1 ψδ̌i (∀i) V1
i : ĝ · ǎi = ĉi · ȟ (∀i) V2

i : ĝ · b̌i = ĉi · ǎi

E1 : ô · ȟ+
∑n

i=1 Êi · ǎi =
∑k

i=1 êi · ȟi E2 : ô′ · ȟ+
∑n

i=1 Êi · b̌i =
∑k

i=1 êi · δ̌i

P1 : ψ = 1 P2 : ψô = 0̂ P3 : ψô′ = 0̂

Map witness to satisfying assignment: For all i ∈ [n] set the variables rẑi , rm̌i , biti, fi, ǎi, ǎ
′
i, b̌i, b̌′i, ĉi, Êi as

follows:

– For all i ∈ [n] set rm̌i as the value given in input.
– Set I ← ∅.
– For all j ∈ [k] let ϕ(j) = i, set ǎ′i = ǎi = ȟj , b̌′i = b̌i = δ̌j , ĉi = ĝj , Êi = êj , biti = 1, f1 = 1, rẑi = rj , I ←
I ∪ {i}.

– For all i ∈ [n] \ I, set ǎ′i = ǎi = 0̌, b̌′i = b̌i = 0̌, ĉi = 0̂, Êi = 0̂, biti = 0, fi = 0, rẑi = 0.

Set ψ = 1, ô = 0̂, and ô′ = 0̂.
Proof and auxiliary values generation:

1. Generate GS proof elements and GS commitments for all the above equations. Let Π contain all the GS
commitments and proofs elements related to each equation. Note that û and ǔ (available in the crs) are
already a commitment to 1 with trivial randomness, therefore the prover does not have to compute GS
commitments to ψ nor to explicitly prove equation P1.

2. Define AUX = (auxi)i∈[n], with auxi = (auxiK, aux
i
S1 , aux

i
S2 , aux

i
E1 , aux

i
E2) where:

– auxiK = (auxπ̌v̂) with auxπ̌v̂ = (rbiti ǔ
1, rbiti ǔ

2)
– auxiS1 = (auxπ̂v̌ , auxπ̂w̌) where auxπ̂v̌ = (rǎi û

1, rǎi û
2), auxπ̂w̌ = (sǎi û

1, sǎi û
2).

– auxiS2 = (auxπ̂v̌ , auxπ̂w̌) where auxπ̂v̌ = (rb̌i û
1, rb̌i û

2), auxπ̂w̌ = (sb̌i û
1, sb̌i û

2).
– auxiE1 = (auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌) where auxπ̌v̂ = (rÊi

ď1
ǎi
, rÊi

ď2
ǎi
), auxπ̂v̌ = (0̂, rǎiÊi), auxπ̌ŵ =

(sÊi
ď1
ǎi
, sÊi

ď2
ǎi
), auxπ̂w̌ = (0̂, sǎiÊi).

– auxiE2 = (auxπ̌v̂ , auxπ̂v̌ , auxπ̌ŵ , auxπ̂w̌) where auxπ̌v̂ = (rÊi
ď1
b̌i
, rÊi

ď2
b̌i
), auxπ̂v̌ = (0, rb̌iÊi), auxπ̌ŵ =

(sÊi
ď1
ǎi
, sÊi

ď2
ǎi
), auxπ̂w̌ = (0, sb̌iÊi).

3. Output (Π,AUX).

Fig. 18. Prover algorithm of our extendable shuffle argument.

48

We prove the above theorem via the following lemmas. The specific assumptions used in each lemma can
be deduced from its proofs.

Lemma 13. Comck is a perfectly binding and computationally hiding commitment scheme.

Proof. It trivially follows from the IND-CPA security of the ElGamal encryption.

Lemma 14. SH is complete (Def. 10).

Proof. It follows from the completeness of the GS proof system and from the fact that correctly computed
auxiliary values satisfy the verification equation checked by AuxVerify.

Lemma 15. SH has admissible transformations (Def. 11).

Proof. AddTx updates the statement by just replacing commitments to bits and elements in position α with
freshly computed ones to 1 and freshly added êk+1 respectively. Then it re-randomizes all the commitments in
the statement. Finally, it includes the freshly added êk+1 in the clear-text elements. AddTw just updates the
opening randomness of the commitments according to the re-randomization factors that were previously used.
Finally, it just updates the mapping ϕ to include the newly added êk+1. Simple inspection and completeness
of the re-randomization procedure shows that if (ck, x, w) ∈ RSH then (ck, x′, w′) ∈ RSH. An analogous
discussion applies to (ExtTx,ExtTw).

Lemma 16. SH is transformation complete (Def. 12).

Proof. We now show that the first requirement of transformation completeness is always satisfied. The
discussion for the second requirement is basically the same. PAdd does the following operations:

– It replaces old GS commitments and proof elements related to equationsD1
·,α,D2

·,α,Fα,Bα,Q1
α,Q2

α,V1
α,V2

α

with new ones producing accepting GS commitments/proof elements for such equations. This follows from
the completeness of GS (steps 1-8).

– It removes the contribution of old committed variables from the proof elements related to equations
K,S1,S2, E1, E2 and adds the contribution of the freshly committed variables. Then, it re-randomizes
the commitments ẑi, m̌i with i ∈ [n] (as AddTx would do) and adjusts the GS commitments ďrẑi

, ďr,i

with i ∈ [n] to contain the updates randomness. Since in equations D1
·,i,D2

·,i the variables rẑi and rm̌i

only multiply public constants, there is no need to update any of the related proof elements. The overall
process (step 9 to 15) produces accepting GS proofs w.r.t. the new statement x′. This follows from the
linearity of the GS proof generation and verification equation.

– Finally, all the GS commitments and proof elements are re-randomized by calling GS.RandPr. This
produces accepting proofs w.r.t. x′. This follows from the completeness of GS.

Notice that by construction AddTx and PAdd produce the same updated statement x′ when they are run
with the same transformation randomness. Then, AddTw, as argued before, produces a valid witness for
x′. Additionally, AuxUpd just shifts the auxiliary values in the same way the proof elements are shifted by
GS.RandPr. As a result, the checks done by AuxVerify will still pass with the updated information as the
addition operation exactly matches the computation of a fresh proof over (x′, w′).

Lemma 17. SH is sound (Def. 13).

Proof. Recall that crs1 is generated as a perfectly binding string of the GS proof system. Consequently, the
proofs related to all equations are perfectly sound proofs certifying that the committed variables satisfy such
equations. Recall that Comck is perfectly binding, and thus there is only one possible satisfying assignment
for variables Êi and biti. Additionally, we can perfectly extract all the variables that are group elements.
Therefore, we can extract all the variables ǎi, b̌i, ĉi, Êi with i ∈ [n]. Then given such variables, we can compute
the set of indexes J = {α1, . . . , αk} such that

∑
i∈J ǎi =

∑k
i=1 ȟi and

∑
i∈J b̌i =

∑k
i=1 δ̌i. Therefore,

{ǎαi
}i∈[k] and {b̌αi

}i∈[k] satisfy a subset permutation pairing problem meaning that with overwhelming

49

probability {(ǎαi , b̌αi}i∈[k]) is a permutation of {(ȟi, δ̌i)}. We also have that ψ = 1 which implies ô = ô′ = 0̂.
It follows that

∑
i∈J Êi · ǎi =

∑k
i=1 êi · ȟi and

∑
i∈J Êi · b̌i =

∑k
i=1 êi · δ̌i. By rewriting such equations taking

into consideration that {(ǎαi , b̌αi)}i∈[k] is a permutation of {(ȟi, δ̌i)} we have that there exists a permutation
π such that

∑k
i=1(Êαπ(i)

− êi) · ȟi = 0T and
∑k

i=1(Êαπ(i)
− êi) · δ̌i = 0T. This gives us a subset simultaneous

pairing problem that implies that, except with negligible probability, Êαπ(i)
= êi for all i ∈ [k].

Lemma 18. SH is addition private (Def. 14).

Proof. Let us point out the differences between the experiment executions with b = 0 and b = 1. In both
cases, as argued before, the statement x′ that is handled to A is exactly the same. Let us now look at the
distribution of (Π,AUX) in both experiment. When b = 0 both Π and AUX are freshly computed using the
witness provided by A. When b = 1 the GS commitments to variables fα, bitα, ǎα, ǎ′α, ȟk+1, b̌α, b̌′α, ĉα, Êα

are freshly computed, as well as the proof elements related to equations D1
·,α,D2

·,α,Fα,Bα,V1
α,V2

α that are
re-computed running GS.Prv. The distribution of these GS commitments and proof elements is identical in
both cases.

The remaining proof elements and GS commitments are taken form Π∗ before being updated/re-
randomized. The auxiliary values are taken from AUX∗. The list AUX∗ contains group elements satisfying the
verification equations checked by AuxVerify14. Let us first focus on equations K,S1,S2, E1, E1 (i.e, the ones
that come with associated auxiliary values). It straightforward to see that after all the GS commitments
related to the variables involved in such equations have been re-randomized by GS.RandPr, we get new
commitments that are equally distributed by freshly generated ones. Auxiliary values are updated as random
group elements, using the same randomness previously used to re-randomize the commitments. As already
shown in previous works [37,11,23], re-randomized proof elements are distributed as randomly chosen proof
elements from the space of all valid proof elements, given that the GS commitments to the involved variables
are fixed. Since the GS commitments are fully re-randomized, the result is a randomly chosen proof given
a fixed solution, along with auxiliary values related to the randomly chosen commitments so that the
verification check of AuxVerify is successful. It follows that, the joint distribution of GS commitments, proofs
elements, and AUX is identically distributed both when b = 0 and b = 115. Finally, for all the other equations
not involving such variables it suffices to reduce to the re-randomization of GS proofs.

Lemma 19. SH is extension private (Def. 15).

Proof. The proof basically mirrors the one of addition privacy.

Lemma 20. SH is extended zero knowledge (Def. 20).

Proof. We first change the way crs1 is generated by generating it as a perfectly hiding string of the GS
proof system. By the SXDH assumption perfect binding and perfect hiding common reference strings for the
GS proof system are computationally indistinguishable, so the adversary’s success probability only changes
negligibly. The sole distinction between an actual proof and a simulated proof lies in the witness provided
to the GS prover. Due to the perfect witness indistinguishability of the GS proof over a perfectly hiding crs,
genuine proofs and simulated proofs are indistinguishable. It remains to argue that the auxiliary values A
receives do not give A any advantage in distinguishing honest and simulated proofs. It is straightforward
to notice that also the auxiliary values are identically distributed in both cases. Indeed, the variables
biti, ǎi, b̌i, Êi, ĉi for i ∈ [n] \ Im(ϕ) are set to neutral elements in both cases, and thus the auxiliary values
related to such variables just allow A to verify that they are set as expected. Moreover, such auxiliary values
are completely independent to the values (and GS commitment openings) of the above variables for indexes
j ∈ Im(ϕ), which is the only difference between honest and simulated proofs.

14 We are guaranteed of that since otherwise A would not be admissible.
15 In particular, notice that after the invocation of PAdd, the proofs for all equations are accepting.

50

C The EP used in our Tetris

In this section, we describe our instantiation of the EP used in our Tetris. It uses similar techniques to our
extendable shuffle argument and the ENIWI of [8]. We set Ltrap to be the language of DH tuples, and let
xtrap = (â, b̂, ĉ). The relation of our EP is defined below.

RDtr ={(ck, x = (k, x1, . . . , xn, m̌1, . . . , m̌n), w = (ϕ,w1, . . . , wk, rm̌1 , . . . , rm̌n))|

∀i ∈ [n] ∃ biti : m̌i ← Comck(biti; rm̌i
) ∧ biti ∈ {0, 1} ∧

n∑
i=1

biti = k∧

∀ki=1(bitϕ(i) = 1 ∧ (ck, xϕ(i), wi) ∈ RD) ∧ ϕ is injective},

where

RD ={(ck, x = (ẑ, pkT, τ̂ ,m, xtrap), w)|(w = (ê, rẑ , skT) ∧ e← Tag(skT, τ̂ ,m)∧
ẑ ← Comck(ê; rẑ) ∧ (pkT, skT) ∈ Rkey) ∨ (w = wtrap ∧ (xtrap, wtrap) ∈ RLtrap)}.

In Fig. 20 we report the prover algorithm of our EP.
As all of the other algorithms are almost identical to the ones presented in SH, we just briefly describe

the other algorithms of our EP:

– CRSSetup just runs the setup algorithm of GS.
– The commitment scheme is the same used in SH.
– The transformations (AddT,ExtT) are identical to the ones of SH, except they do not consider any

clear-text element.
– PVfy just runs the verifier algorithm of GS.
– PExt works similarly to ShExtend. It creates new variables, GS commitments, and proof elements for all

equations but K. It computes the new auxiliary value auxn+1
K and updates the proof elements related to

K in the same way of ShExtend. It re-randomizes the statement and adjusts the related GS commitments
as in step 13 of ShExtend and runs GS.RandPr.

– PAdd works similarly to ShAdd. It replaces all the variables in position α with fresh ones re-computing
the related GS commitments and the proof elements of the corresponding equations, except for K. It
updates the proof for K in the same way ShAdd does. It re-randomizes the statement and adjusts the
related GS commitments in the same way ShAdd does.

– AuxUpd and AuxVerify work in the same way as the corresponding algorithms of SH. The only difference
is that here only equation K is involved in the process.

Proof Intuition. Given the similarity with SH and with the ENIWI of [8] here we give a proof sketch of why
EP is an extendable non-interactive proof system with WAI (Def. 17), FPWI (Def. 18), and EWI (Def. 19),
under the SXDH assumption. We focus on WAI, FPWI, and EWI, as the other properties can be proven
with a discussion that basically mirrors the one already done for SH.

1. Witness addition indistinguishability: It suffices to observe that x′ is identical in both cases. The
distribution of the re-randomization factors is identical. The only difference is that two different witness
are used to perform an addition over the same position α, but with a different witness. The distribution
of the auxiliary values is also identical in both executions, as after re-randomization it only depends on
the active indexes, that are identical in both cases. It remains to argue that the distribution of Π is
indistinguishable in both executions. This basically from from the re-randomization property of GS, as
two accepting GS proofs are indistinguishable after their re-randomization.

2. Fixed position witness indistinguishability: Since the active indexes are the same in both cases,
it follows that the auxiliary values are identically distributed, as they are independent from the used
witness. Therefore to argue that the two experiment executions are indistinguishable it suffices to reduce
to the witness indistinguishability of GS.

51

Set variables: Define the following variables ∀i ∈ [n] : rẑi , Êi, rm̌i , biti, fi, s
0
i , s

1
i , sk

i
T, ai, bi. Finally, define the

variable ψ.
Set equations:

(∀i) D1
i,1 : s0i ẑ

1
i = ĉkrẑi (∀i) D1

i,2 : s0i ẑ
2
i = s0i Êi + ĝrẑi

(∀i) D2
i,1 : ψm̌1

i = rm̌i čk (∀i) D2
i,2 : ψm̌2

1 = bitiȟ+ rm̌i ȟ

(∀i) Fi : fi(1− fi) = 0 (∀i) Bi : biti(1− biti) = 0 (∀i) U1
i : s0i = biti(1− fi)

(∀i) U2
i : s1i = bitifi (∀i) Ti : s0i Êi = τ̂skiT + ˆpki2mskiT (∀i) Yi : s

0
i
ˆpki1 = ĝskiT

(∀i)M1
i : s1i â = ĝai (∀i)M2

i : s1i b̂ = ĝbi (∀i)M3
i : biâ = ĉs1i

K :
∑n

i=1 biti = kψ P : ψ = 1.

Map witness to satisfying assignment: For all i ∈ [n] set the variables as follows:

– For all i ∈ [n] set rm̌i as the value given in input.
– Set I ← ∅.
– For all j ∈ [k] let ϕ(j) = i, set rẑi = rj , Êi = êj , biti = 1, fi = 0, s0i = 1, s1i = 0, skiT = skjT, ai = 0, bi = 0
I ← I ∪ {i}.

– For all i ∈ [n] \ I, set rẑi = 0, Êi = 0̂, biti = 0, fi = 0, s0i = 0, s1i = 0, skiT = 0, ai = 0, bi = 0.

Set ψ = 1. Notice that variable fi can be set to 1 whenever the prover wants to use a witness for xtrap.
Proof and auxiliary values generation:

1. Generate GS proof elements and GS commitments for all the above equations and put them in Π.
2. Define AUX = (auxi)i∈[n], with auxi = auxiK, where auxiK = (auxπ̌v̂) with auxπ̌v̂ = (rbiti ǔ

1, rbiti ǔ
2).

Fig. 20. Proving algorithm of our EP.

52

3. Extended witness indistinguishability: We sketch a sequence of indistinguishable hybrids that go
from the experiment execution with b = 0 to the experiment execution with b = 1. We first switch the crs
of the GS proof system to a hiding crs generated with the trapdoor (computational indistinguishability
of the crs). We then use the trapdoor to prove all the equations except P by setting ψ = 0 as well as all
the other variables (witness indistinguishability of GS). Then, we compute the commitments m̌i with
i ∈ [n] with the bits induced from ϕ1 (hiding of Comck). Finally, we compute the proof using w1 (witness
indistinguishability of GS).

Lemma 21. Our EP achieves perfect ∆-extraction (Def. 16).

Proof. Let ck ← ComSetup(gk), and (crs, td) ← CRSSetup(gk) and let GS.Ext be the extractor
of GS [28]. We define the following extractor Ext that takes in input a statement (crs, td, ck, x =
(k, x1, . . . , xn, m̌1, . . . , m̌n), ΠEP)), with xi = (ẑi, pk

i
T, τ̂ ,m, xtrap). Recall that xtrap /∈ Ltrap, thus Ext runs

GS.Ext on input the proof, extracting the group elements and the group-element representation (i.e.,
exponentiation in either Ĝ or Ȟ) of the scalars that are in the witness w = (ϕ,w1, . . . , wk, rm̌1 , . . . , rm̌n)
for x. That is, for each i ∈ [n], GS.Ext extracts ȟrm̌i

, and ȟbiti, while for each j ∈ [k] and wj = (êj , rẑj , sk
j
T)

it extracts êj , ĝrẑj , ĝsk
j
T. Ext defines the function (ê1, . . . , êk) = ∆((êj , rẑj , sk

j
T)j∈[k]). Ext computes ϕ′ as

follows:

c← 1

for j ∈ [k] :

flag = 0

while c < n ∧ flag = 0 :

if ȟbitc = ȟ :

phi′(j)← c

flag = 1

c← c+ 1

return ϕ′

Ext returns (ϕ′, w′ = (ê1, . . . , êk)). Notice that the CRS of our EP is generated as in the binding mode of
GS, so for perfect F-knowledge of GS, it holds that each biti ∈ {0, 1},

∑n
i=1 biti = k, the values rm̌1 , . . . , rm̌n

in w are such that m̌1 ← Comck(biti; rm̌i), ∀kj=1(bitϕ(j) = 1 ∧ F (ck, xϕ(j), ej , wj) = 1). The only thing that
remains to show is that w′ = ∆(w1, . . . , wk), which holds by construction.

Remark 2. The relation Rkey of our DAPT (Sec. 7) contains a part that it is publicly verifiable that simply
consists in checking that a pairing equation holds between the two group elements in the public key. Therefore,
we do not include this check in the equation proved by the prover and assume it is verified by the verifier
for every public key included in the statement.

53

	Tetris! Traceable Extendable Threshold Ring Signatures and More

