
Arbigraph: Verifiable Turing-Complete Execution Delegation

Michael Mirkin1, Hongyin Chen1,2,
Ohad Eitan1, Gal Granot1, and Ittay Eyal1

1Technion – Israel Institute of Technology
2Peking University

Abstract

Dependence on online infrastructure is rapidly growing as services like online payments
and insurance replace traditional options, while others, like social networks, offer new capabil-
ities. The centralized service operators wield unilateral authority over user conflicts, content
moderation, and access to essential services. In the context of payments, blockchains pro-
vide a decentralized alternative. They also enable decentralized execution of stateful programs
called smart contracts. But those lack the contextual understanding and interpretative ca-
pabilities that would enable reasoning about complex scenarios. Advancements in machine
learning (ML) are raising interest in actually-smart contracts, but blockchain computation
constraints prohibit direct ML inference execution. While many projects deploy computation
delegation mechanisms, they lack Turing-completeness, prohibit parallel computation, or suffer
from high overhead.

We present Arbigraph, a blockchain-based execution delegation protocol. Like previous
optimistic solutions, the parties submit their computation results, allowing a smart contract to
arbitrate in case of dispute. But Arbigraph employs a novel dual-graph data structure and takes
advantage of the nature of the dispute process to achieve Turing completeness, constant-time
memory access, and parallel execution. We formalize the problem and show that Arbigraph
guarantees completeness, soundness, and progress. Experiments on LLM inference as well as
matrix multiplication, which is at the core of ML inference, demonstrate that parallelization
speedup grows linearly with matrix dimensions. We demonstrate Arbigraph’s practical cost
with a deployment on the Avalanche blockchain. Arbigraph thus enables decentralized, context-
aware decision-making and unlocks unprecedented use cases for blockchains.

1 Introduction

The proliferation of digital services has fundamentally changed how we interact with everyday
life. Traditional methods—from payment systems to insurance claims—are increasingly being re-
placed by online platforms. Meanwhile, social networks have created entirely new forms of digital
interaction. However, this digital transformation comes with significant concerns: these services
operate under centralized control, with providers often exercising power without adequate account-
ability [1, 2]. While users can seek recourse through external jurisdictions, this process is both
expensive and time-consuming, often failing to prevent harm before it occurs [3, 4, 5, 6]. Notable
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examples include the censorship of content by social media platforms [7, 8, 9, 10], inadequate han-
dling of copyright claims [11], and the bias of insurance companies against low-income patients [12].

A promising path to an automatic alternative, not subject to human bias, is to use Blockchains,
which are decentralized and censorship-resistant platforms. They were originally introduced for
currency transactions and evolved to enable smart contracts—stateful programs that enforce simple
conditions [13]. However, smart contracts lack the contextual understanding and interpretative
capabilities that would enable reasoning about complex, ambiguous real-world scenarios. Machine
learning (ML) algorithms, particularly Large Language Models (LLMs) [14, 15, 16], exhibit exactly
these capabilities. However, implementing these computationally intensive tasks within a smart
contract introduces prohibitive complexity, since blockchain systems require all their operators to
replicate all computations.

Previous work (§2) aims to extend blockchain computational capabilities while maintaining
decentralization. Some (e.g., [17, 18]) use cryptographic ZK proofs; however, they incur overhead
for each operation, inappropriate for computationally intensive ML tasks, and require precomputed
lookup tables to support non-linear operations, with compounding accuracy loss. Others follow an
optimistic approach, incurring overhead only in case of foul play. But existing protocols (e.g. [19,
20, 21, 22]) either restrict parallelism, impose logarithmic overhead on memory access, or lack
Turing-completeness, as they prohibit dynamic control flows. Note that parallelism and efficient
memory access are critical for optimistic-protocol security, as resource-rich attackers can exclude
legitimate users with limited capabilities from participating in the protocol.

Our approach belongs to the second category, where the problem is that of Optimistic Execution
Delegation (OED) (§3). Two parties wish to agree on the result of a program using a smart
contract as an arbitrator. Both parties know the program, while the smart contract maintains a
commitment thereof. Each party submits the result and, in the absence of dishonest behavior,
the protocol terminates with the smart contract outputting the result. In case of a dispute, the
smart contract acts as an arbitrator and outputs the correct result and the dishonest party, which
might be penalized. A protocol solving the problem must satisfy (1) completeness, ensuring that
if both parties follow the protocol, the smart contract outputs the correct result; (2) soundness,
guaranteeing that if exactly one party is dishonest, they are detected and the smart contract outputs
the correct result; and (3) progress, ensuring that the dispute resolution time is logarithmic in the
program size. This simple two-party model is trivially extendable to any number of participants.

We present Arbigraph (§4), a Turing-complete optimistic execution delegation protocol that
enables constant-time dynamic memory access and parallel execution. Arbigraph utilizes a novel
dual-graph data structure: A symbolic graph specifies the program with its operations and control
flow as graph nodes, and their dependencies as edges. A matching execution graph records the
runtime trace of the program with nodes mapped from the symbolic graph and instantiated with
values.1 This dual-graph architecture captures the program’s execution structure while eliminating
the need to know even the program size in advance.

The smart contract maintains a commitment to the symbolic graph, which is used to verify
the correctness of the execution graph during disputes. Each party independently executes the
program and commits its output value to the smart contract. In the common case when no dispute
occurs, Arbigraph incurs no overhead. If the outputs differ, it triggers a dispute. Because node
execution follows a predefined order imposed by the symbolic graph, there must exist a first point
of disagreement between parties—the dispute node. Arbigraph first uses the Bisection protocol [20,
23, 24] to identify the dispute node. This protocol either (1) directly identifies the cheater—

1We show in Appendix C this computational model is Turing-complete.
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revealing the honest party’s output as correct—or (2) has both parties commit to a common prefix
of the execution, isolating a single disputed node. In the latter case, the parties submit proofs of
correctness for that node. The smart contract validates the proofs, determines the correct result,
and identifies the cheater.

Previous optimistic approaches use either a single memory-state structure, incurring logarithmic
overhead for each memory write operation and prohibiting parallel execution, or a static graphical
structure, prohibiting dynamic control flows. Our dynamic execution presents a new challenge: The
contract must verify the disputed node’s variable reads observe the most recent writes, which is not
enforced by a global state or by a static graph. To address this, we observe that at the point of
dispute the parties have already committed to a common prefix of the execution. Our dual-graph
data structure thus allows Arbigraph to employ a recency rule, which favors the party referencing
the more recent writes.

Arbigraph satisfies the three essential properties of optimistic execution delegation (§5). Com-
pleteness holds because if both parties submit the same output, the smart contract accepts it
without dispute. To show that soundness holds, we use the bisection protocol guarantees to iden-
tify the first dispute node. The malicious party can alter the dispute node in two main ways: (1) by
changing its structure—the static properties dictated by the symbolic graph—or (2) by falsifying its
value—representing the dynamic computation results. To detect structural tampering, the smart
contract verifies the relevant Merkle proofs linking the dispute node to the Merkle root commit-
ment, showing that its structure is correct and that it is the next node to be executed after the
common prefix. To detect value tampering, the smart contract verifies the disputed node’s dynamic
value based on its dependencies, which reside in the common prefix, allowing for the straightforward
recalculation of the correct values. The recency rule further guarantees that all computations ref-
erence the correct state. Finally, the protocol ensures progress, as the Bisection protocol operates
with logarithmic complexity relative to the computation size, and the validation of the disputed
node requires a single message per party.

Unlike previous Turing-complete approaches [20, 19, 21], Arbigraph enables parallel execution:
As there is no unified state structure, different threads can read and write to different nodes with-
out conflicts. To demonstrate this advantage (§6), we first implemented a translation layer that
converts C++ code into a symbolic graph for commitment and executes it, building its execution
graph. We implemented the arbitrator smart contract and deployed it on the Avalanche Fuji test-
net, demonstrating that the dispute resolution cost is under $1. For performance evaluation, we
first focus on the core of general ML workloads, namely matrix multiplication. We evaluate Arbi-
graph’s parallelization speedup in dispute resolution compared to serial multiplication (along with
execution graph generation). The speedup grows linearly with matrix dimensions, reaching 20x.
This demonstrates the significance of parallelization for blockchain-validated ML applications. We
demonstrate Arbigraph’s efficacy by executing full LLM inference based on the Llama2 frame-
work [25] using three public models with millions of parameters, achieving a 7x speedup. Several
practical challenges remain for broad deployment, including implementing existing solutions for de-
terministic execution across different architectures [26, 27] and leveraging GPUs for a higher degree
of parallelism.

In summary, our main contributions are:

• a novel dual-graph data structure that enables constant-time memory access and dynamic
control flows,

• a formal model of optimistic execution delegation (OED),
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• a framework transforming C++ code into a dual graph,

• Arbigraph, a Turing-complete OED protocol,

• proof that Arbigraph is secure,

• a scalable matrix multiplication OED implementation, and

• a scalable LLM inference OED implementation.

Arbigraph opens the door to embedding ML inference directly into smart contracts, enabling
decentralized alternatives to centralized digital services. These actually smart contracts can move
funds based on nuanced real-world conditions, adjudicate insurance claims objectively, enforce
intellectual property rights with contextual understanding, and provide fair, transparent governance
for the digital platforms that increasingly mediate our daily interactions.

2 Related Work

Classical work on verifiable-computation [28, 29, 30, 31] optimize for cryptographic minimalism and
theoretical verifier efficiency—but they often clash with on-chain gas budgets, prover scalability,
high cost of interactive proofs, and trust assumptions that most blockchain systems require.

Several approaches aim to extend the computational capabilities of blockchain systems while
maintaining security and verification guarantees. These approaches broadly fall into three cate-
gories: VM-based, zero-knowledge proof, and circuit-based.

Arbitrum [20] and Optimism [19] implement so-called optimistic rollups to move computation
off-chain while providing mechanisms for fraud proofs on-chain. They employ virtual machines that
emulate physical CPU architectures.

Both systems leverage a Merklized memory structure for state management. This structure
enables verification through cryptographic proofs. However, each memory write requires an O(log n)
overhead to update the Merkle commitment. Arbigraph also follows the optimistic approach, but
it avoids the memory access overhead inherent in VM-based designs.

StarkNet [32], zkSync [17], and Polygon zkEVM [33] utilize proof systems to verify computation
integrity. Instead of disputes they generate cryptographic proofs that smart contracts can verify.
Like optimistic approaches, proof system, based approaches such as those implemented in Cairo [34]
and Miden [18], commit state in Merkle trees to facilitate proof generation. This design incurs an
O(logn) overhead for each memory access due to the required tree traversal. A major drawback
of proof system based approaches is that they require precomputed look-up tables [35, 36] when
implementing non-linear operations, which limits the computation accuracy. Additionally, gener-
ating proofs for every computation introduces substantial overhead, which is significant for high
complexity computations. In contrast, Arbigraph supports non-linear operations and only imposes
overheads during disputes, eliminating computational overhead during normal operation.

Recent years are seeing a rush for protocols to validate ML computations on blockchains.
Agatha [22] relies on fixed-size circuits, which requires all execution paths to be pre-unrolled.
This limits expressiveness and scalability, prohibiting dynamic, data-dependent computations.
Verde [27], is another optimistic protocol that assumes fixed size circuits. Unlike Agatha, Verde
divides ML inference or training into large computation units and uses a refereed delegation to
resolve disputes. It assumes that referees hold the entire program and can compute large pro-
grams such as matrix multiplications, which makes it not trivially suitable for smart contracts.
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Edge Types: Primary ancestors (AIDs) Alternative ancestors (ÃIDs) Control flow (IDOnTrue)

Program:

int i = 0;

array[i] = 2;

do{
i + +;

}while(i < 2);

Root
ID: 1

Value: 0

Root
ID: 2

Value: 2

Tensor
ID: 3

Op: write

Operation
ID: 4

Op: i+1

Operation
ID: 5

Op: i < 2

Control
ID: 6

Cond: 5

Figure 1: Symbolic graph representation of a simple program.

Root
ID: 1

Value: 0
Order : 1

Root
ID: 2

Value: 2
Order : 2

Tensor
ID: 3

Op: write
Value: 2
Order : 3

Operation
ID: 4

Op: i+1
Value: 1
Order : 4

Operation
ID: 5

Op: i < 2
Value: true
Order : 5

Control
ID: 6

Cond: 5
Value: 4
Order : 6

Operation
ID: 4

Op: i+1
Value: 2
Order : 7

Operation
ID: 5

Op: i < 2
Value: false
Order : 8

Control
ID: 6

Cond: 5
Value: 0
Order : 9

Figure 2: Execution graph of the program in Fig. 1

OPML [21] is ongoing open-source project that employs an optimistic MIPS-like virtual machine;
to minimize computational overhead, it partitions programs into small units, pinpointing the dis-
puted unit before compiling it into low-level commands for verification; this allows for parallel
evaluation of decoupled computation units rather than local parallelization, such as matrix mul-
tiplications. However, each memory write still requires an O(logn) overhead due to the Merkle
tree-based state management, and the MIPS architecture does not support parallelization, which
limits scalability, for certain workloads, specifically for large matrix operations. Unlike Agatha and
Verde, Arbigraph supports dynamic control flows; moreover, whereas Verde requires the referee
to hold the entire program, Arbigraph requires it to hold only a constant size commitment to the
program; finally, in contrast to OPML, Arbigraph enables efficient local parallelization, particularly
for computationally intensive operations such as matrix multiplications.

3 Model

The system comprises two participants, H and M, and a smart contract C (a stateful automaton
with a clock). The system operates in two phases: a program commitment phase and an input
processing phase.

Program Commitment Phase. In this initial phase, a trusted third party publishes a pro-
gram Φ of size k to all participants. The execution trace of the program, denoted by Φ̃, can have
size n where n might be much larger than k. A trusted party initializes the smart contract C with
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a commitment commit1(Φ), which requires O(k) computation time.2

Processing Phase. Subsequently, the adversary chooses an input x of size m and the trusted
third party sends it to both participants H and M. It also submits a commitment commit2(x) to
the smart contract C, which requires O(m) computation time.

For simplicity of presentation, hereinafter we combine the program and input into a single
program entity. This simplification maintains generality because we can incorporate the input
into the program, forming a new program whose commitment is the concatenation of the original
program and input commitment. We denote this combined entity by Φ, its output as ϕ and the
combined commitment as commit(·) with runtime O(k + m), where it is possible that k + m ≪ n.

Participants can send and receive messages to and from the smart contract C. The network
delivers any message to or from the smart contract within at most ∆ time units.

Commit-Execution-Verification Framework. The processing phase follows a commit-then-
verify protocol as follows:

1. Initialization: Both parties receive the program Φ, and the smart contract stores its commit-
ment commit(Φ).

2. Execution: Each party independently executes the program according to protocol specifica-
tions, producing the trace Φ̃.

3. Result Commitment : The parties commit to their execution outcomes by sending them to the
smart contract.

4. Dispute Resolution: In case of a disagreement, the smart contract determines the correct
result and identifies the dishonest party.

Regardless whether there is a dispute or not, the execution ends once the smart contract C
outputs a tuple (y, cheater). The enforcement of penalties against the identified dishonest party
falls beyond the scope of our formal analysis.

Standard cryptographic assumptions hold2: Both participants possess a unique identity using a
Public Key Infrastructure (PKI) and a public-private key pair (pk, sk) for signing messages. Hash
is a cryptographic collision-resistant hash function.

We now define an optimistic execution delegation that ensures completeness, soundness, and
progress.

Definition 1 (Optimistic Execution Delegation). A protocol Π is an optimistic execution delega-
tion if it comprises functions defining the commitment, participant and smart contract actions, and
satisfies the following three properties.

1. Completeness: For any program Φ, if both H and M follow the protocol Π, the smart
contract C does not output anything but (ϕ,⊥).

When considering adversarial behavior, we assume, without loss of generality, that H acts according
to the protocol specification, thus we call it the honest party, and that M acts arbitrarily, in a
Byzantine manner, thus we call it the malicious party.

2We omit for brevity the standard dependence on the system’s security parameter.
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2. Soundness: For any program Φ, if H follows the protocol Π and M commits on an output
different from ϕ, then the smart contract C outputs (ϕ,M), correctly identifying M as the
malicious party.

3. Progress: For any program Φ with an execution trace of size n, the protocol terminates
within O(log(n)) time units.

4 Arbigraph

Arbigraph utilizes a novel dual-graph data structure (§4.1) that enables cryptographic proofs (§4.2)
that an execution step is valid. The protocol (§4.3) uses this to implement OED.

4.1 Dual-Graph Architecture

Arbigraph employs two interdependent graphs: a symbolic graph defines the program’s structure
and an execution graph captures the dynamic runtime trace with computed values. We illustrate
with an example of a simple program and its matching graphs (Fig. 1).

Symbolic Graph Arbigraph represents operations as interconnected data structures called nodes.
Each node N has a unique identifier ID(N). It also has ID references to nodes that N depends on,
called ancestors. There are four types of nodes, where the type of node N is Type(N).

Root Nodes (ROOT) initialize computation with predefined values, denoted Val(N) (nodes with
IDs 1 and 2 in Fig. 1).

Operation Nodes (OPER) perform computational operations using an operation descriptor Op(N)
applied to ancestor values. The values can be scalars, vectors, or matrices, and operations can
be addition, multiplication, and division (IDs 4 and 5 in Fig. 1). They can also be more complex
operations like convolution and activation functions (e.g., ReLU).

Control Nodes (CTRL) manage conditional branching by referencing a condition node Condition
and two target identifiers: IDOnTrue and IDOnFalse. Their output value equals the selected branch
identifier (ID 6 in Fig. 1).

Tensor Nodes (TSR) manipulate tensors, which are a dynamic memory, through three operations:
read (accessing values at specific index of the tensor), write (storing values at index), and root
(initializing entire array state). Each tensor node contains a tensor ID and references a node with
the index to access. Write operations also reference a node that holds the value to store (ID 3
in Fig. 1).

Due to conditional branches, the execution might depend on different ancestors, for example, in
the program in Fig. 1, the ancestor of ID 4 node in the first loop iteration is the ID 1 node, whereas
in the second loop iteration, it is ID 4 node itself. Therefore, when the execution encounters a node
with a given identifier for the first time, it uses the primary ancestor ID vector, denoted by AIDs(N),
to locate the most recent instances of that node’s ancestors. If the node is revisited (e.g., after a
loop), the execution uses an alternative ancestor vector, denoted by ÃIDs(N), which identifies the
most recent execution state rather than relying on the original AIDs(N).
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The symbolic graph thus defines a program Φ by encoding the set of operations and their
execution order. This allows a party to execute the program in a deterministic way, going by the
order of the nodes, except when encountering a control node, in which case the party jumps to the
symbolic node with identifier matching the control node’s output value.

A symbolic graph S = (V,E) is thus a directed acyclic graph, where V is a set of n nodes
defining the static structure of a program, and E ⊆ V × V is a set of directed edges. Each
node N symb ∈ V has a unique topological order index OS(N symb) ∈ {1, 2, . . . , n}. For any edge

(N symb
1 , N symb

2 ) ∈ E, node N symb
1 , whose ID is in AIDs(N symb

2 )∪ÃIDs(N symb
2 ), is an ancestor of node

N symb
2 , meaning that the computation at N symb

2 depends on the value of N symb
1 . The field set of

a symbolic node N symb, denoted by Fields(N symb), includes ID(N symb), Type(N symb), OS(N symb),
Op(N symb), AIDs(N symb), ÃIDs(N symb), for root nodes, the field set also includes Val(N symb).

We are interested in symbolic graph that represents a valid program.

Definition 2 (Valid Program). A program Φ represented by a symbolic graph S = (V,E) and a
canonical ordering function OS(·) : V → N, is a valid program if it satisfies the following properties:

Well-formedness: For all nodes N ∈ S: If ID is the set of all valid identifiers, N
has a unique identifier ID(N) ∈ ID. N conforms to exactly one of the defined node types:
Type(N) ∈ {ROOT,OPER,CTRL,TSR,END} and contains all required fields Fields(N) of
Type(N).

Topological ordering: For any distinct nodes N,N ′ ∈ S it holds that OS(N) ̸= OS(N ′) and
for all nodes N ∈ S and ancestor identifiers ID(Na) ∈ AIDs(N) ∪ ÃIDs(N), it holds that Na ∈ S
and OS(Na) < OS(N).

Type consistency and determinism: For all nodes N ∈ S, the operation Op(N) is compatible
with the types of its ancestor nodes, that is, if AIDs(N) = (ID(Na1

), . . . , ID(Nak
)), then Op(N) is

compatible for input types Type(Na1), . . . ,Type(Nak
), and similarly for ÃIDs(N). For any fixed set

of input values, the operation Op(N) produces a unique, deterministic output value.

A consequence of the above definition is that the output ϕ of a valid program Φ (described by
S) is deterministic.

Execution Graph The execution graph captures the execution trace Φ̃ of a program Φ with
computed values at each step.

An execution graph G = (Vϵ, Eϵ) is a directed acyclic graph where each node Nexe ∈ Vϵ

holds an ID ID(Nexe), ancestors references vector AIDs(Nexe), and a unique execution order index
OG(Nexe) ∈ {1, 2, . . . , |Vϵ|}, that is part of the field set Fields(Nexe). The node at index i in the
execution graph G is denoted by G(i). Each node contains a computed value Val(Nexe) determined,
for non-root nodes, by applying its operation Op(Nexe) to the values of its ancestors. For any edge
(Nexe

1 , Nexe
2 ) ∈ Eϵ, node Nexe

1 , whose ID is in AIDs(Nexe
2 ), is an ancestor of node Nexe

2 , indicating
that the computation at Nexe

2 depends on the value of Nexe
1 .

Each execution node Nexe includes all the fields of a corresponding symbolic node N symb, but
also holds a computed value Val(Nexe). This value is determined during execution, and is present
even in non-root nodes. The execution graph forms by iterating over symbolic graph nodes according
to their order, executing each node’s operation in combination with the most recent ancestor values.
Each node in the execution graph is added to a vector of nodes, which forms the order of the
execution graph. Upon encountering a control node, execution jumps to the symbolic node with
identifier matching the control node’s output value. Tensor operations maintain memory consistency
through linking of reads to their most recent same-index writes or root tensor nodes. As a result
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of the above process, each node in the execution graph Nexe ∈ G shares its ID with a node in
the symbolic graph N symb ∈ S. The detailed algorithm for this deterministic construction is
in Appendix A.

Node Equivalence We define two notions of equivalence between nodes. Two nodes are equiv-
alent if they are identical in all attributes and structurally equivalent if they are identical in all
attributes except maybe for the computed value.

Definition 3 (Node Equivalence). Two execution nodes Nexe
1 and Nexe

2 are said to be equivalent,
denoted by Nexe

1 ≡f Nexe
2 , if

∀f ∈ Fields(Nexe
1 ) ∪ Fields(Nexe

2 ), f(Nexe
1 ) = f(Nexe

2 ).

Two nodes, N1 and N2 (each either symbolic or execution), are structurally equivalent, denoted by
N1 ≡s N2, if

∀f ∈ Fields(N1) ∪ Fields(N2) \ {value}, f(N1) = f(N2).

Note that each execution node is structurally equivalent to a symbolic node with the same ID.
Moreover, any two honestly generated execution nodes Nexe

1 and Nexe
2 , are structurally equivalent

if and only if they share the same identifier: ID(Nexe
1 ) = ID(Nexe

2 ) ⇐⇒ Nexe
1 ≡s N

exe
2 .

Dispute Identification When two executions graphs are not identical, the first point of dis-
agreement is called the earliest dispute node. We denote by Nexe ≺G ˜Nexe that Nexe has lower
index than ˜Nexe in G.

Definition 4 (Earliest Dispute Node). Let G and G̃ be two different execution graphs.
The earliest dispute node of G and G̃, denoted by Nexe

D (G, G̃), is the first node only in G, that
is, the unique node in G satisfying both Nexe

D (G, G̃) /∈ G̃, and

∀Nexe ∈ (G \ G̃) \ {Nexe
D (G, G̃)} : Nexe

D (G, G̃) ≺G Nexe.

Denote the index of the dispute node by I.
The common prefix vector is the vector of the execution graph G nodes, sorted by the canonical

ordering, that are identical in both execution graphs, with the last node called the last common
node.

Definition 5 (Common Prefix Vector and Last Common Node). The common prefix vector of G
and G̃, denoted by A(G, G̃), consists of the first I − 1 nodes of the honest execution graph:

A(G, G̃) =
(
G(1), . . . ,G(I − 1)

)
=

(
G̃(1), . . . , G̃(I − 1)

)
.

The last common node Nexe
L is defined as:

Nexe
L (G, G̃) = G(I − 1) = G̃(I − 1).

Note that it holds that I(G, G̃) = |A(G, G̃)| + 1. For simplicity, we denote by A, Nexe
L , and I

the common prefix vector, the last common node, and the dispute index of the execution graphs
of both parties and by Nexe

D (H) and Nexe
D (M) the early dispute nodes of the honest and malicious

parties, respectively.

9



4.2 Proof Structure and Verification

The dual-graph of the Arbigraph protocol allows an arbitrator to verify the correctness of the
disputed node given the common prefix and dispute node.

A central data structure the proof uses is a Merkle tree [37] that acts as a commitment to
the symbolic and execution graphs. A Merkle tree T over a vector of nodes (N1, . . . , Nn) defines
a root RT that commits to the entire dataset. Each node has an efficient O(log(n)) inclusion
proof PT (N) that the smart contract can verify in logarithmic time, called a Merkle proof. But a
computationally-bounded adversary cannot forge a Merkle proofs for a node and its location in the
vector. Arbigraph uses a novel concept of recency rule to ensure that when multiple instances of
the same node ID exist, to prevent a malicious party from providing a less recent version of a node,
a smart contract can compare the order of the nodes to identify the misbehaving party.

Definition 6 (Proof Structure). A proof for the dispute node Nexe
D by party P, denoted by ProofP ,

compromises the following components:

Node Representation: The disputed execution node Nexe
D and its fields,

Execution Merkle Proof (Pexe(N
exe
D ,RE)): A Merkle proof of the inclusion of Nexe

D in the
execution Merkle tree with root RE,

Symbolic Node (N symb
D ): The symbolic node corresponding to Nexe

D ,

Symbolic Merkle Proof (Psymb(N symb
D ),Rsym(S)): A Merkle proof demonstrating the inclusion

of N symb
D in the system constant symbolic Merkle root Rsym(S).

Adjacency Proof (JRE
(Nexe

L , N symb
D )): A proof that confirms the disputed node is the correct

successor of Nexe
L , decided by the execution of the program. The proof contains the previous node

Nexe
L , its corresponding symbolic node N symb

D , and their Merkle proofs. This proof proves only the
structural correctness of node selection—whether the execution properly followed sequential ordering
for operation nodes or branch selection for control nodes—while deferring value verification to a
separate step. When Nexe

L is control node, it confirms that N symb
D has the same ID as the value

of the control node; For other cases, it uses Merkle paths to verify proper ordering in the symbolic
graph.

Tensor Read Proof (TensorProof(Nexe
D )): For tensor read nodes, a proof includes the most

recent tensor operation (write or root) with matching tensor ID and index from the common prefix,
with its Merkle proof. To validate that the attached tensor operation is the most recent one, a
smart contract compares the sequence number of both parties, and in case of dispute, it uses the
recency rule to determine the correct operation. This enforces memory consistency by ensuring
reads access only the latest valid state, preventing use of stale values while enabling constant-time
memory writes.

Ancestors Proofs: A set of proofs for the input nodes required to compute the disputed node’s
value, accompanied by a useAlternativeAncestors flag. This flag indicates whether to use the primary
ancestor vector AIDs(Nexe

D ) or the alternative set ÃIDs(Nexe
D ), enabling proper handling of loops

and repeated node executions. For each ancestor ID, the proof includes the specific ancestor node
instance and its Merkle proof demonstrating inclusion in the execution graph’s common prefix. While
ancestor nodes must exist in the common prefix, a malicious party might attempt to reference older
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instances of nodes with the same identifier that were executed earlier in the trace. The protocol’s
recency rule prevents this attack by requiring that when multiple instances of a node with the same
ID exist, the verification always uses the most recent instance from the common prefix, ensuring
that an honest party correctly referencing the freshest ancestors prevails in any dispute.

Collectively, these proof components ensure that Nexe
D has the correct structure, i.e., all fields

except for the value are correct. To complete the verification, the smart contract computes the
value Val(Nexe

D ) using the operation Op(Nexe
D ) and the values of its ancestors ANexe

D
(or ÃNexe

D
, if

useAlternativeAncestors is true).

4.3 Protocol Execution

Having defined its core data structures, we now describe how the Arbigraph smart contract orches-
trates the protocol execution from initialization through dispute resolution.

4.3.1 Initialization

At initialization, parties H and M receive Φ as the symbolic graph S. The smart contract C receives
its Merkle root commitment Rsym(S).

4.3.2 Execution Phase

Once the symbolic graph is committed, each party independently executes the computation accord-
ing to the protocol specification. The computation process of each party forms the execution graph,
GH
S , where the number of nodes in the graph is |GH

S |. Each party forms a vector of the nodes in the
execution graph according to the order of the nodes in the canonical ordering. The execution graph
commitment is created using a Merkle tree that each party forms using the vector of nodes, where
RH and RM are the Merkle roots of the execution graphs of the honest and malicious parties,
respectively.

4.3.3 Commit and Verify Phase

After execution, each party commits on their output values and sends the commitment to C. If the
parties disagree on the output, the contract requests their execution graph Merkle roots, and the
sizes of their execution graphs.

4.3.4 Dispute Phase - Common Prefix Identification

In the event of a disagreement on the program result, the protocol enters the dispute phase. The
smart contract utilizes a Bisection protocol [20, 23, 24] to efficiently identify the index of the
disputed node. This interactive protocol requires active participation from both parties and yields
a tuple consisting of either a dispute index or identification of a misbehaving party. If one of the
parties misbehaves during the Bisection protocol, the smart contract returns the identity of the
misbehaving party P and outputs (ϕ,P) (Algorithm 1, line 13). To account for arbitrary behavior
by the attacker during the Bisection protocol, we define the notion of a prefix commitment, which
ensures that the attacker is bound to a common prefix of the execution graph.
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Definition 7 (Prefix Commitment). Let G be an execution graph and let RM be a Merkle root
claimed to commit to it. We say that RM is a (I,G) prefix commitment if the following holds.

For every index j < I, a computationally bounded adversary, except with negligible probability,
cannot produce a valid Merkle proof under RM that verifies a value different from Val(Nj) at
position j. At index I, the adversary may produce at most one valid Merkle proof for any value.

The Arbigraph protocol ensures that if no cheating is detected during the Bisection protocol,
the malicious party is bounded to all nodes with index less than the disputed index.

Definition 8 (Bisection Protocol Guarantee). Consider parties executing the Arbigraph protocol
where an honest party H provides execution Merkle root RH derived from execution graph GH

S and a
malicious computationally-bounded party M provides a value RM. If the Bisection protocol returns
(I,⊥), then RM is an (I,GH

S ) prefix commitment. If the Bisection protocol completes with (⊥,P),
then P did not follow the protocol.

The details of the mostly standard Bisection protocol are provided in Appendix B, for com-
pleteness.

4.3.5 Dispute Phase - Node Dispute Resolution

If the Bisection protocol completes with a dispute index, it means that the smart contract identifies
the first disputed node; therefore, it initiates the node dispute resolution phase (Arbitrate func-
tion Algorithm 1, line 16), where it verifies the proofs for the disputed nodes, Nexe

D (H) and Nexe
D (M)

respectively, and determines the identity of the misbehaving party, and by elimination the correct
output, it proceeds as follows. The smart contract first verifies the correctness of the proofs (Algo-
rithm 2, lines 6–7), this includes verifying Merkle proofs, the adjacency proof that proves that the
structure of the dispute node is correct and computation of the value of the disputed node. If one
of the proofs is invalid, the smart contract returns the output of the other party and the identity of
the misbehaving party. If both proofs are valid, it means that one of the parties provided wrong an-
cestors, thus the smart contract proceeds to identify the misbehaving party using the recency test,
that is, it determines the correct party using the more recent version of ancestors of the disputed
node.

5 Security Analysis

We show that the Arbigraph protocol meets the three security properties: (1) Complete-
ness (Lemma 5.1), (2) Soundness (Lemma 5.5), and (3) Progress (Lemma 5.6).

5.1 Completeness

We show that the Arbigraph protocol is complete, meaning that if both parties follow the protocol
correctly, they produce the same output.

Lemma 5.1 (Completeness). For any valid program Φ (Definition 2) represented by a symbolic
graph S with Merkle root Rsym(S) committed to the smart contract, if both parties H and M follow
the Arbigraph protocol, then: Both parties produce the same output: ϕ(H) = ϕ(M) and the smart
contract outputs (ϕ(H),⊥) = (ϕ(M),⊥).
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Proof. Let S be a valid program Φ according to Definition 2. By the properties of valid programs:
The symbolic graph S is well-formed, with each node having a unique identifier and conforming to
a defined node type with all required fields,

there exists a canonical topological ordering of nodes in S such that all ancestors of a node
precede it in this ordering, and for all node N ∈ S, the operation Op(N) is type-compatible with
its ancestors and produces a unique, deterministic output for any fixed set of input values.

Since both parties H and M follow the Arbigraph protocol faithfully, each party: constructs
an execution graph by sequentially evaluating nodes in the canonical topological order defined
by S, computes the value of each node deterministically using its operation descriptor Op(N)
applied to the values of its ancestor nodes, and handles control flow identically because control
node evaluations, which determine execution paths, are deterministic functions of their conditions.

Given that both parties follow the exact same deterministic process with the same program Φ,
they produce identical execution graphs GH

S = GM with identical Merkle roots RH = RM, and
identical final outputs ϕ(H) = ϕ(M).

Since both parties produce the same output ϕ(H) = ϕ(M), no dispute is triggered at Algo-
rithm 1, and the smart contract immediately outputs (ϕ(H),⊥), where ⊥ indicates that no party
is identified as malicious.

5.2 Soundness

We establish the soundness of the Arbigraph protocol by proving that any malicious behavior is
detected.

5.2.1 Supporting Lemmas

Before proving the soundness, we establish a several guarantees of the Arbitrate function in the face
of specific deviations.

Lemma 5.2 (Detection of Structural Discrepancies). For all valid symbolic graphs S, if an adver-
sary computes RM and ProofM such that: Rsym(S) is the Merkle root of S; RH is a Merkle root
corresponding to a correct execution of GH

S , RM is an (I,GH
S ) prefix commitment provided by the

computationally-bounded malicious party M that has access to S; ProofH is a proof (Definition 6)
for a node Nexe

D (H) at position I in the execution graph corresponding to RH; ProofM is a valid
proof data structure that was created by M and does not contain a valid proof for any node Nexe

D (M)
at position I such that Nexe

D (H) ≡s Nexe
D (M) (it might not contain a proof or be corrupted in an

arbitrary way). Then Arbitrate (Algorithm 2) outputs ϕ.

Proof. Assume by contradiction that Arbitrate does not output (ϕ,M). We show this means that
ProofM must successfully pass all verification steps in the Arbitrate function, leading to a contra-
diction.

First, when execution graphs differ in length, the protocol handles this by having the party
with the shorter graph provide a dummy node at the dispute point. Regardless of whether it is H
with the dummy node and M with an invalid proof, or M with the dummy node and H with a
valid node, the verification conditions (Algorithm 2, lines 8–11) correctly identify M as cheating,
contradicting our assumption. Thus, neither party provides a dummy node at the dispute position.

If either of the proofs Nexe
D (M) or N symb

D (M) are invalid, verification fails (Algorithm 3, lines 5
and 7) and Arbitrate outputs (ϕ,M), contradicting our assumption. Thus, both proofs are valid.
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If Nexe
D (M) is not structurally equivalent to N symb

D (M), verification fails (Algorithm 3, line 9)
and Arbitrate outputs (ϕ,M), contradicting our assumption.

Thus, the execution node provided by M has the same structure (same ID, operation type,
ancestor references, etc.) as its claimed symbolic counterpart.

If N symb
D (M) is not the correct successor to Nexe

L in the symbolic graph, verification fails and
Arbitrate outputs (ϕ,M), contradicting our assumption.

Since H follows the protocol correctly, Nexe
D (H) is structurally equivalent to the symbolic node

that correctly follows Nexe
L . Due to the deterministic nature of the execution graph, there is exactly

one symbolic node that can correctly follow Nexe
L . Therefore, N symb

D (M) and the symbolic node
corresponding to Nexe

D (H) must be the same node in the symbolic graph. This verification is
performed in VerifyAdjacency (Algorithm 4), for control Nexe

L Verification checks that the dispute
node’s ID matches the expected branch value (Algorithm 4, lines 9–16). For other types of Nexe

L

Verification ensures the dispute node is the correct next node in the canonical ordering (Algorithm 4,

lines 6–8). Thus, N symb
D (M) is the symbolic node corresponding to the successor of Nexe

L .
This leads directly to a contradiction: Since an execution node that is structurally equiva-

lent to N symb
D (M) is the proper successor of Nexe

L that M committed to (from steps 1 and 3),

Nexe
D (M) ≡s N symb

D (M) (from step 2), Nexe
D (H) ≡s N symb

D (H) ≡s N symb
D (M) (by honest execu-

tion), it follows that Nexe
D (M) ≡s N

exe
D (H).

However, the lemma explicitly states that ProofM does not contain a valid proof for any node
structurally equivalent to Nexe

D (H). This directly contradicts our derived conclusion.
Therefore, our initial assumption must be false, and Arbitrate must output (ϕ,M).

Lemma 5.3 (Ancestor Integrity Verification). For all valid symbolic graphs S, if an adversary
computes RM and ProofM such that: Rsym(S) is the Merkle root of a valid symbolic graph S,
RH is a Merkle root corresponding to a correct execution of GH

S , RM is an (I,GH
S ) prefix com-

mitment provided by the computationally-bounded malicious party M that has access to S; ProofH
contains a correct proof (as required by Definition 6) for a node Nexe

D (H) at position I in the exe-
cution graph corresponding to RH; ProofM contains a proof for a node Nexe

D (M) at position I with
Nexe

D (H) ≡s N
exe
D (M) (i.e., the nodes are structurally equivalent), ProofM does not provide a valid

set of ancestors that matches those in ProofH. Then Arbitrate (Algorithm 2) outputs (ϕ,M).

Proof. Assume by contradiction that Arbitrate does not output (ϕ,M). This means that ProofM
must successfully pass all verification steps in the Arbitrate function, despite containing invalid
ancestors. We show this leads to a contradiction.

Given that ancestor validity is essential for verification, we must consider exactly what makes
ancestors valid in Arbigraph. The ancestor ID uniquely determines structure, while the protocol
requires using the most recent matching instance from the common prefix vector. Since M fails to
provide valid ancestors matching those in ProofH, this deviation must occur in one of the following
precisely defined ways, each of which our verification steps explicitly detect:

Case 1: Incorrect set of ancestor IDs. If M provides a set of ancestors whose IDs
do not match the required set (AIDs(N symb

D (M)) or ÃIDs(N symb
D (M))), verification fails (Al-

gorithm 3, line 13), since the provided ancestor IDs do not match the required set based on
useAlternativeAncestors. This leads Arbitrate to output (ϕ,M), contradicting our assumption.
Thus, the provided ancestor IDs must match the required set.
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Case 2: Inclusion of malformed ancestors. If M provides ancestors with malformed struc-
ture or garbage data, verification fails (Algorithm 3, line 16), where the ValidateAncestorStructure
function explicitly checks that each ancestor has a valid structure. This leads Arbitrate to output
(ϕ,M), contradicting our assumption. Thus, the provided ancestors must have valid structure.

Case 3: Ancestors with invalid Merkle proofs or not in the common prefix vector. If
M provides ancestors that do not have valid Merkle proofs in the execution graph, verification
fails (Algorithm 3, line 18). If the ancestor is not in the common prefix vector (Definition 7),
verification fails (Algorithm 3, line 20). Either failure leads Arbitrate to output (ϕ,M), contradicting
our assumption. Thus, the provided ancestors must be in the common prefix vector.

Case 4: Provision of older ancestor versions. Even if M provides the correct set of ancestor
IDs with well-formed nodes and valid Merkle proofs, they might still provide older versions of correct
ancestors. Let Nexe

A∗ be an ancestor in ProofM and Nexe
A be the corresponding ancestor in ProofH

with the same ID. If Nexe
A∗ ≺GH

S
Nexe

A , then Nexe
A∗ is strictly older than Nexe

A . By the protocol’s recency
rule, the most recent version in the common prefix vector must be used. The CompareAncestors
function (Algorithm 2, line 26) detects this discrepancy and returns A MORE RECENT, causing
Arbitrate to output (ϕ(H),M), contradicting our assumption. Thus, the provided ancestors must
be the most recent versions.

Since the provided ancestors are the correct and most recent versions, the set in ProofM must
match the set in ProofH, which contradicts our assumption. Therefore, Arbitrate must output
(ϕ,M) when the conditions of the lemma are met.

Building on ancestor integrity, the next lemma addresses the most direct form of computational
fraud: falsifying the final computed result. It proves that even when structure and ancestors
appear valid, any deviation in the output value is detected. This completes our security framework
by ensuring computational accuracy at every step.
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Algorithm 1: Commit and Verify

1. Function CommitAndVerify (outputA, outputB):
2. Rsym ← getGlobalSymbolicMerkleRoot()

// Check for initial output agreement

3. if outputA = outputB then
// No dispute, return agreed result

4. return (outputA,⊥)
// Outputs differ, request execution graph commitments

5. dataA← RequestData(A)
6. dataB← RequestData(B)

// Extract execution roots and sizes from submitted data

7. RA ← dataA.merkleRoot
8. sizeA← dataA.size
9. RB ← dataB.merkleRoot

10. sizeB← dataB.size
// Initiate dispute resolution

11. I,P ← BisectionProtocol(RA,RB , sizeA, sizeB)
12. if P ̸= ⊥ then

// Bisection identified a cheating party directly

13. return (ϕ(OtherParty(P)),P)
// Extract proofs for disputed node

14. ProofA ← dataA.proofs[I]
15. ProofB ← dataB.proofs[I]

// Arbitrate between the proofs

16. return Arbitrate(ProofA, ProofB , Rsym, RA, RB , I)
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Algorithm 2: Single Step Dispute Resolution

1. Function Arbitrate (ProofA, ProofB, Rsym, RA, RB, I):
2. if ¬ ValidateProofStructure (ProofA) then
3. return (ϕ(B), A)

4. if ¬ ValidateProofStructure (ProofB) then
5. return (ϕ(A), B)

6. validA← VerifyProof (ProofA, Rsym, RA, I)
7. validB← VerifyProof (ProofB , Rsym, RB , I)

// party with dummy node loses if other party is valid

8. if validB ̸= false and validA ̸= true then
9. return (ϕ(B), A)

10. else if validA ̸= false and validB ̸= true then
11. return (ϕ(A), B)
12. else if validA and validB then

// Both proofs valid, check recency

13. nodeA← ProofA.node
14. nodeB← ProofB .node
15. if Type(nodeA) = TSR and nodeA.op = READ then

// Verify tensor read recency

16. writeNodeA← ProofA.recentWrite
17. writeNodeB← ProofB .recentWrite
18. if ¬ VerifyPathAndIdx (writeNodeA, writeNodeA.idx, ProofA.writePath, RA) then
19. return (ϕ(B), A)
20. if ¬ VerifyPathAndIdx (writeNodeB, writeNodeB.idx, ProofB .writePath, RB) then
21. return (ϕ(A), B)
22. if writeNodeA.idx > writeNodeB.idx then
23. return (ϕ(A), B)
24. else if writeNodeB.idx > writeNodeA.idx then
25. return (ϕ(B), A)

// Compare recency of common ancestors

26. result← CompareAncestors (ProofA, ProofB)
27. if result ̸= EQUAL then

28. return

{
PartyA Correct, if result = A MORE RECENT

PartyB Correct, otherwise
// This point should never be reached in practice

29. return (ϕ(A),⊥)
30. Function CompareAncestors (ProofA, ProofB):
31. commonIDs← GetCommonAncestorIDs(ProofA, ProofB)
32. foreach id ∈ commonIDs do
33. ancA← FindAncestorByID (id, ProofA.ancestors)
34. ancB← FindAncestorByID (id, ProofB .ancestors)
35. if ancA.idx > ancB.idx then
36. return A MORE RECENT
37. if ancB.idx > ancA.idx then
38. return B MORE RECENT

39. return EQUAL

40. Function FindAncestorByID(id, ancestors):
41. foreach anc ∈ ancestors do
42. if ID(anc.node) = id then
43. return anc.node

44. return null
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Algorithm 3: Proof Verification

1. Function VerifyProof (proof, Rsym, exeRoot, I):
2. node← proof.node
3. sym← proof.symNode
4. useAlt← proof.useAlternativeAncestors

// 1. Check Merkle proofs

5. if ¬ VerifyPathAndIdx (node, I, proof.exePath, exeRoot) then
6. return false

7. if ¬ VerifyPathAndIdx (sym, node.idx, proof.symPath, Rsym) then
8. return false

// 2. Check structural match

9. if ¬ AreEquivalent (node, sym) then
10. return false

// 3. Check ancestors

11. requiredIDs←
{
ÃIDs(node), if useAlt

AIDs(node), otherwise
// Check that the ancestor IDs match exactly the required set

12. providedIDs← {ID(anc.node) | anc ∈ proof.ancestors}
13. if providedIDs ̸= requiredIDs then
14. return false // Ancestors don’t match required set exactly

// Check each ancestor’s validity

15. foreach anc ∈ proof.ancestors do
16. if ¬ ValidateAncestorStructure (anc) then
17. return false

18. if ¬ VerifyPathAndIdx (anc.node, anc.node.idx, anc.path, exeRoot) then
19. return false

20. if anc.node.idx ≥ node.idx then
21. return false // Ancestor must precede current node

// 4. For tensor read, check recent write

22. if Type(node) = TSR and node.op = READ then
23. writeNode← proof.recentWrite
24. if ¬ VerifyPathAndIdx (writeNode, writeNode.idx, proof.writePath, exeRoot) then
25. return false
26. if writeNode.idx ≥ node.idx then
27. return false // Write must precede read

28. if writeNode.tid ̸= node.tid or writeNode.idx ̸= proof.ancestors.idxID then
29. return false // Write must match tensor and index

30. if writeNode.op ̸= WRITE and writeNode.op ̸= ROOT then
31. return false // Node must be a write operation

// 5. Check adjacency

32. adjacencyResult← VerifyAdjacency (node, sym, proof.prevAgreedNode, proof.prevAgreedSymNode, proof,
I)

33. if adjacencyResult = ⊥ then
34. return DUMMY NODE // Special return value for dummy nodes

35. else if ¬adjacencyResult then
36. return false

// 6. Check computation

37. if ¬ CheckComp (node, sym, proof.ancestors, proof.recentWrite) then
38. return false

39. return true
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Algorithm 4: Verify Adjacency

1. Function VerifyAdjacency (node, sym, prevNode, prevSym, proof, I):
2. if ¬ VerifyPathAndIdx (prevNode, I − 1, proof.exePath, exeRoot) then
3. return false

// Check if node is a dummy node

4. if IsDummyNode (node) then
5. return ⊥ // Indicate this is a dummy node

6. if Type(prevNode) ̸= CTRL then
// Check that the symbolic index numbers are sequential

7. if sym.idx ̸= prevSym.idx+ 1 then
8. return false

9. else
// For control nodes, check branch outcome matches

10. cond← proof.ancestors.cond
11. if cond then
12. expectedBranch← prevNode.IDOnTrue
13. else
14. expectedBranch← prevNode.IDOnFalse
15. if ID(node) ̸= expectedBranch then
16. return false

17. return true

Algorithm 5: Node Computation Verification

1. Function CheckComp (node, sym, ancs, recentWrite):
2. switch Type(node) do
3. case ROOT do
4. return Val(node) = Val(sym)

5. case OPER do
6. ins← {Val(anc) | anc ∈ ancs}
7. return Val(node) = Op(node)(ins)

8. case CTRL do
9. cond← ancs.cond if cond then

10. exp← node.IDOnTrue
11. else
12. exp← node.IDOnFalse
13. return Val(node) = exp

14. case TSR do
15. switch node.op do
16. case ROOT do
17. return Val(node) = Val(sym)

18. case WRITE do
19. val← GetValue(node.valID, ancs)
20. return Val(node) = val

21. case READ do
22. return Val(node) = Val(recentWrite)

23. return false

Lemma 5.4 (Detection of Value Tampering). For all valid symbolic graphs S, if an adversary
computes RM and ProofM such that: Rsym(S) is the Merkle root of a valid symbolic graph S, RH
is a Merkle root corresponding to a correct execution of GH

S , RM is an (I,GH
S ) prefix commitment

provided by the computationally-bounded malicious party M that has access to S; ProofH contains
a correct proof (as required by Definition 6) for a node Nexe

D (H) at position I in the execution graph
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corresponding to RH; ProofM contains a valid proof for a node Nexe
D (M) at position I where:

Nexe
D (H) ≡s Nexe

D (M) (the nodes are structurally equivalent), and Val(Nexe
D (H)) ̸= Val(Nexe

D (M))
(the computed values differ). Then Arbitrate (Algorithm 2) outputs (ϕ,M).

Proof. Assume by contradiction that Arbitrate does not output (ϕ,M). This means that ProofM
must successfully pass all verification steps in the Arbitrate function, despite having an incorrect
computed value. We show this leads to a contradiction.

Since Nexe
D (H) ≡s Nexe

D (M) (as stated in the lemma), the nodes are structurally equivalent—
they have the same ID, operation descriptor, and ancestor references, differing only in their com-
puted values. By Lemma 5.3, the ancestors provided by both parties are valid and consistent, as
otherwise the smart contract detects the discrepancy and outputs (ϕ(H),M), contradicting our as-
sumption. As a result, for the remaining proof, we assume that the operation descriptor Op(Nexe

D )
and the values of its ancestor nodes, denoted by {Val(Na1), . . . ,Val(Nak

)}, are uncontested. Given
these fixed inputs, the correct output value is deterministically computable.

As shown in Algorithm 3, the smart contract performs computation verification using the
CheckComp function in Algorithm 3. We analyze each possible node type:

Case 1: Operation Node. For an operation node, the expected computed result is:

Val(Nexe
D )expected = Op(Nexe

D )
(
Val(Na1

), . . . ,Val(Nak
)
)
.

Since both Op(Nexe
D ) and the input values are agreed upon, Val(Nexe

D )expected is uniquely deter-
mined. The verification (Algorithm 5, line 5) detects if Val(Nexe

D (M)) ̸= Val(Nexe
D )expected, causing

Arbitrate to output (ϕ,M), contradicting our assumption.

Case 2: Control Node. For a control node, the expected value is:

Val(Nexe
D )expected =

{
IDOnTrue, if Val(Condition) = 1,

IDOnFalse, otherwise.

The verification (Algorithm 5, line 8) detects if Val(Nexe
D (M)) ̸= Val(Nexe

D )expected, causing
Arbitrate to output (ϕ,M), contradicting our assumption.

Case 3: Tensor Node. For tensor nodes, we have three subcases:
Root Node: The value is directly verified against the symbolic node (Algorithm 5, line 16).

Any deviation causes Arbitrate to output (ϕ,M), contradicting our assumption.
Write Node: The expected value is verified (Algorithm 5, line 18) to be the same as the relevant

ancestor’s value. Any deviation causes Arbitrate to output (ϕ,M), contradicting our assumption.
Read Node: The expected value is verified (Algorithm 5, line 21) to match the value from the

most recent write. If M provides an older write node or a write node not in the common prefix
vector, the verification (Algorithm 2, lines 15–25) detects this, causing Arbitrate to output (ϕ,M),
contradicting our assumption.

Conclusion. Since we have exhaustively covered all node types and shown that any deviation in
the computed value is detected, leading to a contradiction of our assumption, the original assump-
tion must be false. Therefore, Arbitrate must output (ϕ,M).
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5.2.2 Soundness Theorem

Lemma 5.5 (Soundness). For any valid program Φ represented by a symbolic graph S with Merkle
root Rsym(S) committed to the smart contract, the following holds: Let H be a party that follows the
Arbigraph protocol, producing a correct execution graph GH

S with Merkle root RH and submitting the
correct output ϕ, and let M be a computationally-bounded party that deviates from the protocol and
submits an output ϕM where ϕM ̸= ϕ. Then, upon completion of the Arbigraph protocol, the smart
contract outputs (ϕ,M), correctly identifying the malicious party and returning the valid result.

Proof. Assume by contradiction that upon completion of the Arbigraph protocol, the smart contract
does not output (ϕ,M). We show that this leads to a contradiction for all possible cases.

Commitment and Bisection Phases: Given that M submits ϕM ̸= ϕ while H submits the
correct output ϕ, a dispute is triggered (Algorithm 1, line 3). The contract then requests execution
graph commitments from both parties to initiate the dispute resolution process. The protocol
proceeds with the Bisection protocol (§4.3.4, Algorithm 1, line 11).

If M fails to send messages in time during bisection or during the initial commitment phase,
the protocol identifies M as the cheater due to the timeout mechanism §3. The contract then
returns (ϕ,M) (Algorithm 1, lines 12–13), contradicting our assumption. Therefore, the Bisection
protocol completes successfully and returns (I,⊥) (guaranteed by the Bisection protocol §4.3.4),
identifying the index where the parties first diverge. Importantly, the Bisection protocol guarantees
that all nodes with indices less than I form an identical common prefix vector for both parties,
but makes no guarantees about the validity or well-formedness of any nodes at or after index I,
including the disputed node itself.

Arbitration Phase: Following the successful bisection, both parties should submit proofs ProofH
and ProofM to the Arbitrate function (Algorithm 2, line 1).

Case 1: Refusal to Provide Proof or Timeout. If M fails to submit ProofM within the re-
quired timeframe ∆, the timeout mechanism identifies M as the cheater (§3). This results in (ϕ,M),
contradicting our assumption.

Therefore, M submitted a proof within the required timeframe.

Case 2: Submission of Invalid or Garbage Data. A proof is well-formed if it has all the
required fields, even if they are incorrect. If M submits ProofM, a proof that is not well-formed,
i.e., it does not conform to the proof structure (Definition 6), the Arbitrate function detects this
during validation (Algorithm 2, lines 2 and 4), contradicting our assumption. Thus ProofM is a
valid proof data structure.

Case 3: Structural Tampering with Valid Proof Format. Let us examine the case where M
submits a well-formed proof but for a node Nexe

D (M) that is structurally different from the correct
node Nexe

D (H) at position I. The conditions of Lemma 5.2 are satisfied:
Rsym(S) is the Merkle root of the symbolic graph S (given in the theorem statement), RH

corresponds to a correct execution of S (since H follows the protocol), I identifies the earliest
disputed node (returned by the Bisection protocol), guaranteeing identical common prefix vectors,
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RM is an (I,GH
S ) prefix commitment provided by the computationally-bounded M that has ac-

cess to S;and RH (by assumption), ProofH contains a correct proof for node Nexe
D (H) (since H

follows the protocol), and ProofM does not contain a valid proof for any node Nexe
D (M) such that

Nexe
D (H) ≡s N

exe
D (M) (this is the case we are examining).

All conditions are satisfied. Therefore, by Lemma 5.2, the Arbitrate function outputs (ϕ,M),
contradicting our assumption.

Therefore, Nexe
D (M) must be structurally equivalent to Nexe

D (H).

Case 4: Ancestor Tampering with Structurally Correct Node. If M submits a proof for
a structurally correct node but with invalid ancestors, all conditions of Lemma 5.3 are satisfied:

Rsym(S) is the Merkle root of a valid symbolic graph S (given in the theorem statement), RH
corresponds to a correct execution of S (since H follows the protocol), I identifies the earliest
disputed node (returned by the Bisection protocol), guaranteeing identical common prefix vectors,
RM is an (I,GH

S ) prefix commitment provided by the computationally-bounded M that has access
to S;(by assumption), ProofH contains a correct proof for node Nexe

D (H) (since H follows the pro-
tocol), and ProofM contains a proof for a node Nexe

D (M) where Nexe
D (H) ≡s N

exe
D (M) (established

in Case 3), and ProofM does not provide a valid set of ancestors that matches those in ProofH (this
is the case we are examining).

Therefore, by Lemma 5.3, the Arbitrate function outputs (ϕ(H),M), contradicting our assump-
tion. Thus, M must provide valid and consistent ancestors in ProofM.

Case 5: Value Tampering. If M submits a proof for a structurally correct node
with valid ancestors but an incorrect computed value (i.e., Nexe

D (H) ≡s Nexe
D (M) but

Val(Nexe
D (M)) ̸= Val(Nexe

D (H))), all conditions of Lemma 5.4 are satisfied:
Rsym(S) is the Merkle root of a valid symbolic graph S (given in the theorem statement), RH

corresponds to a correct execution of S (since H follows the protocol), I identifies the earliest
disputed node (returned by the Bisection protocol), guaranteeing identical common prefix vectors,
RM is an (I,GH

S ) prefix commitment provided by the computationally-bounded M that has access
to S;(by assumption), ProofH contains a correct proof for node Nexe

D (H) (since H follows the
protocol), ProofM contains a proof for a node Nexe

D (M) where Nexe
D (H) ≡s Nexe

D (M) (established
in Case 3), and Val(Nexe

D (H)) ̸= Val(Nexe
D (M)) (this is the case we are examining). Thus, by

Lemma 5.4, the Arbitrate function outputs (ϕ(H),M), contradicting our assumption.
Therefore, after considering all possible cases, the contradiction assumption is wrong, and upon

completion of the Arbigraph protocol, the smart contract outputs (ϕ,M), correctly identifying the
malicious party and returning the valid result.

5.3 Progress

Lemma 5.6 (Progress). For any valid program Φ represented by a symbolic graph S with Merkle
root Rsym(S) committed to the smart contract, the following holds: Let H be a party that follows the
Arbigraph protocol, producing a correct execution graph GH

S of size n with Merkle root RH, let M
be a byzantine computationally-bounded party. Then, the Arbigraph protocol terminates within at
most time O(log(n)).

Proof. Let n be the total number of nodes in the final execution graph. If outputs differ, the
protocol requests execution data from both parties, after which the Bisection protocol halves the
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search space at each iteration. It takes log(n) rounds to isolate a single node of disagreement. Each
round must complete within 2 time units otherwise the smart contract identifies the stalling party
as the cheater and outputs (ϕ(H),M). Thus, in the worst case of a single dispute, the protocol
finalizes in O(log(n)) time. If a malicious party stalls or fails to respond, the smart contract
eventually outputs (ϕ(H),M).

5.4 Security of Arbigraph

The security of Arbigraph follows directly from the established properties of complete-
ness (Lemma 5.1), soundness (Lemma 5.5), and progress (Lemma 5.6).

Theorem 5.7 (OED Security). The Arbigraph protocol satisfies the optimistic execution delegation
security properties.

6 Evaluation

To evaluate Arbigraph, we implement the graph generation and dispute process (§6.1). We use it to
demonstrate the scalability of matrix multiplication, which is the core building block of general ML
workloads (§6.2), and of a full LLM implementation (§6.3). A practical deployment would call for
some additional considerations (§6.4).

6.1 Implementation

To evaluate Arbigraph, we first implemented a C++ library that allows developers to write C++
code, simply replacing primitive types with template counterparts. Operator overloading allows
the library to transparently track the program without requiring developers to learn specialized
languages or frameworks. To form the symbolic graph, the library traces the possible execution
paths of the C++ program. Then, the program can be executed as usual, with nominal overhead,
to compute its result. In case of a dispute, running the program again, the library transparently
constructs the execution graph. This approach permits the use of flexible programming constructs
including dynamic loops, conditional branches, and complex data structures. We further imple-
mented the dispute process user-side code in C++ and the arbitration in a Solidity smart contract.
We deployed the contract to the Avalanche [38] Fuji testnet.3. The cost of the bisection protocol
would translate to a cost of under $0.03 for both parties per round in the Avalanche C-chain, where
the number of rounds is log2(n) + 1. The cost of the dispute resolution would be under $0.30 for
both parties.

6.2 Marix Parallelization

To evaluate the advantage of parallelization on ML tasks, we focus on scaling matrix operations.
Beside the algebraic operation, Arbigraph requires the disputing parties to generate nodes for each
operation, serialize them, and form a Merkle commitment.

We use a pool of worker threads fed by a main program and set CPU affinity to ensure effective
parallelization. To achieve a deterministic order of operations independent of race conditions with-
out preallocating all Arbigraph nodes, we employ a trie-like lock-free structure [39, 40]: The main

3The contract can be found by the contract address 0x1ab3afaF2265118791B22e499f9B52E2C50d9742
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program forms an array of nodes. When enqueuing a task for worker threads, the main thread
pushes a pointer to the workers’ nodes into the array; done recursively, we obtain a trie. The
canonical node order is an ordered traversal of the leaves.

All experiments run on a Linux machine (Ubuntu 24.04.2) with 256 logical cores @ 2.25 GHz in
two AMD EPYC 7742 CPUs and with 2TB of RAM.

We demonstrate the scalability of Arbigraph. Figure 3 illustrates how execution time drops with
the number of worker threads. A setup with zero worker threads is a serial execution of the code,
which we compare with parallel executions to compute speedup. With more worker threads runtime
drops until saturation. As expected, larger matrices take longer to multiply, but can utilize higher
degrees of concurrency as they require more independent computations—they reach saturation with
more worker threads.

As the matrix size grows from 100 × 100 to 1800 × 1800, the shortest execution time grows
with matrix dimensions (Figure 4b); fortunately, we observe a linear improvement (R2 = 0.98) in
speedup (Figure 4a), ranging from 2.2× to 20.1×. The trend indicates parallelization will become
even more effective with larger matrices.

6.3 LLM Implementation

We demonstrate the efficacy of Arbigraph with a complete Llama2 architecture implementation [25]
and using our parallel OED matrix multiplication implementation. We use three public models [41],
a 260K parameter model (matrix size 64 × 64), 15M (288 × 288), and 42M (512 × 512).

Like many ML workloads, LLM performance relies heavily on matrix multiplication, and there-
fore benefits from concurrency. Figure 5 shows that the saturation points and speedups of the LLM
models match those of the matrix experiments. Here we measure performance with a single thread
in the thread pool and observe the parallelization introduces a runtime overhead, which is quickly
overcome by the substantial performance gains with more threads.

24



(a)

0 500 1,000 1,500
0

5

10

15

20

S
p

ee
d

u
p

Linear Regression (R2 = 0.98)

(b)

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
0

0.5

1

1.5
·104

Matrix Size

R
u

n
ti

m
e

[s
]

Figure 4: Optimal (a) Speedup and (b) Runtime of MATMUL.

6.4 Practical Considerations

Beyond this proof-of-concept implementation that demonstrates the qualitative advancement of
Arbigraph, practitioners can further improve performance by taking advantage of GPU acceleration
to further parallelize matrix operations. Additionally, a deployment of Arbigraph should ensure
deterministically bitwise-identical execution across different hardware. The determinism can be
enforced by our overloaded operations; the technique depends on the architecture. For example,
CPU floating-point operation ordering can be controlled with the help of the RepOps library [27]
and GPU execution can use hardware-level techniques like GPUDet [26].

7 Conclusion

Arbigraph is a novel protocol for verifiable Turing-complete execution delegation on blockchain
systems. Its dual-graph architecture separates the program structure from the execution trace,
enabling dynamic branching and loops. Its recency rule eliminates the logarithmic overhead of
Merkle-based approaches and enables constant-time access to memory. Arbigraph enables paral-
lelization; our implementation demonstrates 7x speedup for transformer inference with small public
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models. Moreover, focusing on matrix multiplication, which is at the core of many ML work-
loads, we demonstrate speedups scaling linearly with matrix dimensions—our experiments reach
a 20x speedup, demonstrating significance of parallelization for ML computation delegation. We
demonstrate with a deployment on Avalanche that the cost of the dispute resolution is under $1
for realistic workloads.

As natural language models and machine learning systems are becoming more complex and
increasingly central to societal functions, Arbigraph offers a path toward trustworthy AI computa-
tion in decentralized environments. It can lead blockchain technology into domains where objective
agreed-upon models can replace human oversight by providing transparent, auditable reasoning
that establishes trust in automated systems.
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Appendices

A Execution Graph Construction

Definition 9 (Execution Graph Construction). The execution graph G is constructed through the
following deterministic process:

1. Initialize an empty execution graph G = ∅.

2. Initialize an execution pointer execPtr to the symbolic node with the smallest OS(·) value.

3. While execPtr does not point to an index greater than n:

• Let N symb be the symbolic node pointed to by execPtr.

• Create a new execution node Nexe with structural properties matching N symb.

29

https://polygon.technology/polygon-zkevm
https://polygon.technology/polygon-zkevm


• Determine the ancestor vector to use:

– Let S = {Nj ∈ G | ID(Nj) = ID(N symb)} be the set of previously executed nodes
with the same ID.

– If S = ∅ (first execution of this node), use AIDs(N symb).

– If S ̸= ∅ (repeated execution), use ÃIDs(N symb).

• Compute Val(Nexe) based on the node type:

– If N symb is a root node, set Val(Nexe) = Val(N symb).

– If N symb is an operation node or tensor node:

∗ Let A = {Na ∈ G | ID(Na) ∈ selected ancestor IDs}.
∗ If any required ancestor Na ∈ A has Val(Na) = ⊥ or if any required ancestor
does not exist yet (forward jump), set Val(Nexe) = ⊥.

∗ Otherwise, compute Val(Nexe) = Op(N symb)({Val(Na) | Na ∈ A}).

– If N symb is a control node:

∗ Let Nc be the ancestor node representing the condition, where
ID(Nc) = Condition.

∗ If Val(Nc) = 1 (true), set Val(Nexe) = IDOnTrue.

∗ If Val(Nc) = 0 (false), set Val(Nexe) = IDOnFalse.

∗ If Val(Nc) = ⊥, set Val(Nexe) = ⊥.

• Add Nexe to G with execution order OS(Nexe) = |G|.
• Update the execution pointer execPtr:

– If Nexe is a control node and Val(Nexe) ̸= ⊥:

∗ Set execPtr to the symbolic node Nj ∈ S where ID(Nj) = Val(Nexe).

– Otherwise:

∗ Increase execPtr by 1.

This construction guarantees that for a given symbolic graph and input, the resulting execution
graph is deterministic. The propagation of ⊥ values ensures that executions with invalid control
flow or missing dependencies are handled consistently.

B Bisection Protocol Specification

For efficient bisection, the Merkle trees representing execution graphs are structured to accommo-
date binary search, even when the number of nodes is not a power of two. This is achieved without
materializing unnecessary placeholder nodes. Specifically, for a graph with n nodes, the Merkle tree
is logically structured as if it contained 2⌈log2 n⌉ nodes by using virtual placeholders only at tree
levels where an odd number of nodes exists. For example, with 220 + 1 nodes, virtual placeholders
are added only at specific points in the tree where needed for pairing, rather than materializing all
221−1− (220 + 1) extra nodes. If parties have different-sized execution graphs, the smaller graph is
logically extended to match the larger one’s power-of-two ceiling using this same virtual placeholder
technique.

The protocol operates as follows:
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1. Both parties initially submit only their program output values

2. If the outputs differ, both parties submit their Merkle root commitments RH and RM re-
spectively, and the sizes of their execution graphs.

3. The bisection process proceeds on the virtual power-of-two-sized trees:

• Both parties submit Merkle hashes for the corresponding left and right child nodes at
each step

• The protocol identifies which subtree contains the discrepancy

• This binary search continues until reaching an index of a leaf node, identified as I

4. At each step, parties must respond within timeout period ∆

5. If a party fails to respond within ∆, they are automatically designated as the cheating P and
forfeit their collateral

C Turing-Completeness of Arbigraph

The Unlimited Register Machine (URM) model [42] consists of an infinite sequence of registers
R0, R1, R2, . . ., each capable of storing an arbitrarily large natural number, and a small set of prim-
itive instructions: zeroing a register (Z(n)), incrementing a register (S(n)), copying the contents
of one register to another (T (m,n)), and conditionally jumping to a specified instruction based on
register equality (J(m,n, q)).

Arbigraph simulates this model using its symbolic and execution graphs as follows. Registers
are mapped to fixed indices in a tensor; register Ri is represented as the i-th index of a tensor node.
The root tensor node can initializes all registers to zero. Arbigraph’s tensor operations enable
arbitrary-index read and write capabilities, which map exactly to the URM’s memory model.

The operation nodes encode the arithmetic instructions Z, S, and T , while control nodes im-
plement the conditional jumps J by dynamically selecting the next instruction node. The current
instruction number is implicitly maintained by Arbigraph’s execution algorithm, i.e., conversion
from symbolic graph to execution graph.

Therefore, any URM program can be translated into an Arbigraph symbolic graph with equiv-
alent behavior, demonstrating that Arbigraph is at least as expressive as the URM and hence is
Turing-complete.
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