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Abstract. Sampling a non degenerate (that is, invertible) square matrix
over a finite field is easy, draw a random square matrix and discard if the
determinant is zero. We address the problem in higher dimensions, and
sample non degenerate boundary format tensors, which generalise square
matrices. Testing degeneracy is conjectured to be hard in more than
two dimensions [10, Conj. 13.1(i)], precluding the “draw a random tensor
and discard if degenerate” recipe. The difficulty is in computing hyper-
determinants, higher dimensional analogues of determinants. Instead, we
start with a structured random non degenerate tensor and scramble it
by infusing more randomness while still preserving non degeneracy. We
propose two kinds of scrambling. The first is multiplication in each di-
mension by random invertible matrices, which preserves dimension and
format. Assuming pseudo randomness of this action, which also underlies
tensor isomorphism based cryptography, our samples are computation-
ally indistinguishable from uniform non degenerate tensors. The second
scrambling employs tensor convolution (that generalises multiplication
by matrices) and can increase dimension. Inspired by hyperdeterminant
multiplicativity, we devise a recursive sampler that uses tensor convolu-
tion to reduce the problem from arbitrary to three dimensions.

Our sampling is a candidate solution for drawing public keys in tensor iso-
morphism based cryptography, since non degenerate tensors elude recent
weak key attacks targeting public key tensors either containing geometric
structures such as “triangles" [19] or being deficient in tensor rank [7]. To
accommodate our sampling, tensor isomorphism based schemes need to
be instantiated in boundary formats such as (2k+1)× (k+1)× (k+1),
away from the more familiar k × k × k cubic formats. Our sampling
(along with the recent tensor trapdoor one-way functions [15]) makes an
enticing case to transition tensor isomorphism cryptography to boundary
formats tensors, which are true analogues of square matrices.

Keywords: tensors · finite fields · post-quantum cryptography

1 Introduction

1.1 Cryptographic context and consequences

Tensor isomorphism based cryptography. A three dimensional tensor can
be transformed into another by a triple of invertible square matrices, by multi-
plying in each dimension. The action is symmetric: if a triple of matrices takes
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a tensor A to B, then the triple of inverses of those matrices takes B to A. Two
tensors that can be transformed into each other are called isomorphic. The de-
cision version of the tensor isomorphism problem (TI) is given two tensors over
a finite field to tell if they are isomorphic. The promise search version asks for
an isomorphism (a triple of invertible matrices) between two given isomorphic
tensors over a finite field. The tensor isomorphism problem is complete for the
complexity class TI which contains other cryptographically important problems
such as cubic polynomial equivalence, matrix code equivalence, alternating tri-
linear form equivalence (ATFE) etc. and longstanding group theoretic problems
such as p-group isomorphism [9]. Many of these problems are connected by tight
nearly linear or quadratic time complexity reductions. Matrix code equivalence
is in fact the same as TI, merely phrased differently. ATFE is TI restricted to
alternating tensors with the same invertible matrix acting in all three dimen-
sions, and remains TI-complete. Cubic polynomial equivalence is TI restricted
to symmetric tensors. These problems may be phrased in arbitrary dimensions,
but they remain hard even when restricted to three dimensions. With a difficult
to find isomorphism problem at hand, it is hard not to design a zero knowledge
identification scheme using the Goldreich-Micali-Wigderson construction, which
yields signature schemes through the Fiat-Shamir transform. Following this mo-
tif, Patarin in his pioneering work on multivariate cryptography proposed a
signature scheme based on the hardness of cubic polynomial equivalences [18].
Recently, NIST first round on-ramp signature schemes MEDS [3] and ALTEQ [1]
are built on TI and ATFE respectively, with competitive efficiency and signature
sizes. Beyond efficiency, part of the appeal of tensor isomorphism problems is
that there is strong evidence of average case hardness. Further, attempts to solve
it using extensions of Shor’s algorithm on a quantum computer must confront
the hidden subgroup problem over (products of) general linear groups, believed
to be among the hardest [8]. But recently the following weak key vulnerability
was identified, warranting caution in the key generation algorithms of tensor
isomorphism based cryptosystems.

Weak key attacks on tensor isomorphism based cryptosystems. The
public verification key in MEDS was a random (k+1)× (k+1)× (k+1) tensor.
But very recently, in reaction to a cryptanalytic attack by Narayanan, Qiao and
Tang [16], MEDS adopted a (k1+1)× (k2+1)× (k3+1) format where k1, k2, k3
are not all equal, but still fairly balanced. We will informally call it a nearly cubic
format. For levels I,III and V, the respective choices are 26×25×25, 35×34×34
and 45× 44× 44 [19, Table 7]. The private signing key is a triple of matrices. In
ALTEQ, the public key is a random (k+1)×(k+1)×(k+1) alternating tensor and
the private key is an invertible matrix. Recently, Ran and Samardjiska identified
tensors that have certain geometric structures called “triangles" for MEDS and
3-dimensional 2-singularity for ALTEQ as weak public keys [19]. Heuristically,
a public key has a triangle (or a 3-dimensional 2-singularity) with probabil-
ity roughly 1/q, where q is the field size. They further devised Gröbner basis
algorithms (augmented with equations encoding the triangle/ 3-dimensional 2-
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singular structure) to compute such a triangle (or a 3-dimensional 2-singularity),
which upon finding reveals a secret key. Conditioned on a weakness being present,
their algorithm can detect and find the weakness faster than previously known
(but still in exponential time, so there is no contradiction to the belief that test-
ing singularity is hard). For MEDS, since the underlying prime 4093 is small,
taking the conservative assumption that weak keys are likely, the triangle finding
algorithm takes away 6 bits of security [19, Table 6]. For ALTEQ, the algorithm
to find 3-dimensional 2-singular structures is much faster, exploiting the anti-
symmetry of the alternating tensors and the fact that the same matrix acts in
all three dimensions. In fact, for ALTEQ level I parameters, the weakness (if
it exists) can be found fast in practice. Luckily for ALTEQ, the field size is a
large prime close to 232. Therefore, the probability of drawing a weak key is
heuristically at most 2−32. In the future, ALTEQ has the choice of doubling the
bit length of the current prime, and safely ignoring the weak key issue as a rare
occurrence that only happens with probability within the NIST accepted bound
of 2−64. Beyond signature schemes, certain commitment schemes were also un-
der attack, exploiting the chance that the public key is tensor rank deficient
[7]. We will focus on evading the attacks on MEDS as the testing ground. Since
non degeneracy is a stronger guarantee than tensor rank, the attacks on the
commitment scheme in [7] is also evaded by our sampling algorithm for MEDS.
Sampling for ALTEQ is complicated by the antisymmetry. Symmetric tensors
(polynomials) and antisymmetric tensors have hyperdeterminants that split into
irreducible factors indexed by the symmetries [17]. A modified version of our
construction taking this splitting into account might work for ALTEQ, but we
defer that to future work.

Security boost by non degenerate sampling in boundary formats. In-
creasing the field size to dodge the weak key attacks on MEDS seems natural.
Yet to be certain it works, the heuristic weak key probability estimate of 1/q
needs to be proven. In validating the need for their weak key attack, [19] proved
a lower bound on the weakness probability. But to be certain that increasing the
field sizes is a provable remedy to the weak key attacks, we need an upper bound.
Such a rigorous upper bound using hyperdeterminants and counting points on
projective varieties over finite fields was proven in [11]. Consequently, increasing
the field size to be exponentially large is a provably sound strategy against the
weak key attacks. But increasing the field size q comes at the cost of efficiency
and signature sizes, both of which grow roughly as log q. For instance, if ALTEQ
were to double the bit length of their field size, then the signature sizes would
double too. We present a sampling algorithm for boundary formats that applied
in the MEDS context samples exclusively from strong public keys, evading the
weak key attacks. The sampling algorithm works for boundary formats in arbi-
trary dimensions, accommodating any future applications in cryptography and
beyond. In the MEDS context, the existence of “triangles" coincides precisely
with degeneracy and we merely need to specialize our algorithm to the three di-
mensional and move the nearly cubic MEDS format (k1+1)×(k2+1)×(k3+1) to
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a boundary format of the form (k2+k3+1)× (k2+1)× (k3+1). The public keys
sampled are indistinguishable from uniformly drawn strong public keys assuming
hardness of the tensor isomorphism problem. Therefore, the sampling sidesteps
the weak key issue without the need of any new assumptions. We gain back the
bits of security lost to the weak key attacks and further open up the possibility
of instantiating MEDS and similar schemes over small field sizes. More generally,
there is a recent trapdoor construction from tensors that works exclusively in
boundary formats [15]. We anticipate future cryptographic constructions set in
boundary formats, for which our sampling algorithms apply in full generality in
arbitrary dimensions. A high level description of the non degenerate tensor sam-
pling problem and our sampling algorithms follows, aided by illustrative small
examples in three dimensions.

1.2 The non degenerate tensor sampling problem.

Sampling a non degenerate matrix over a finite field is easy: draw a random
square matrix and test if the determinant is non zero. We next take time to
informally state its higher dimensional generalisation, sampling non degenerate
tensors of three or more dimensions, as solving it is our primary goal.

Degeneracy. An r dimensional tensor to us is an element A in the tensor
product of (dual) vector spaces of dimensions k1 + 1, k2 + 1, . . . , kr + 1 over a
finite field Fq. We also think of such a tensor as a multilinear form given by
a (k1 + 1) × (k2 + 1) × . . . × (kr + 1) format r-dimensional matrix. We will
call kj + 1 as the length in the j-th dimension. The lengths kj + 1 have a plus
one for convenience, as working in kj dimensional projective space will make
kj appear often in formulae. Square matrices correspond to the r = 2, k1 = k2
with the same length in both dimensions. A square matrix being degenerate
corresponds to its determinant vanishing. Since the determinant is polynomial
time computable, it is easy to test for degeneracy. Further, the determinant is
a monic irreducible polynomial in the entries of the square matrix. Therefore,
the set of degenerate matrices forms a closed sub variety, in fact a hypersurface.
A generic matrix lies outside this hypersurface. Therefore, drawing a generic
matrix and testing if the determinant is non-zero samples from non degenerate
square matrices. Consider the following algebraic definition of degeneracy of
square matrices: A matrix A is degenerate if there is a pair of non zero vectors
(wleft, wright) such that wleftA and Awright are both zero vectors. The definition
may seem atypical, but is clarified by thinking of (wleft, wright) as a pair of left
and right kernel vectors. It is this motif that easily generalises in the following
definition for three dimensional tensors. A three dimensional tensor A (trilinear
form) is degenerate, if there exists a triple (w(1), w(2), w(3)) of non zero kernel
vectors such that evaluating the trilinear form at all but one (so, two) of the
vectors results in the all zero dual vector. That is,

A
(
∗, w(2), w(3)

)
= 0, A

(
w(1), ∗, w(3)

)
= 0, A

(
w(1), w(2), ∗

)
= 0,
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are zero (dual) vectors in the first, second and third dimension respectively.
Likewise, an r dimensional tensor is degenerate if there is an r-tuple of non zero
vectors such that evaluating the r-linear form at all but one of the vectors gives
the zero (dual) vector. See [5, Chap. 4](also § 2) for a formal algebraic definition
and also an equivalent analytic definition in terms of singularity. Singular and
degenerate are equivalent in our contexts.

Hyperdeterminants and tensor formats. Cayley discovered an analogue of
the determinant for the 2× 2× 2 format, depicted below with the vertices of the
cube indexing the tensor entries [2].

a000

a001

a010

a011

a100

a101

a110

a111
Hyperdeterminant= a2000a

2
111 + a2001a

2
110 + a2010a

2
101 + a2011a

2
100

−2(a000a001a110a111 + a000a010a101a111 + a000a011a100a111

+a001a010a101a110 + a001a011a110a100 + a010a011a101a100)

+4(a000a011a101a110 + a001a010a100a111).

Nearly two centuries later, Gelfand, Kapranov and Zelevinsky generalised Cauchy’s
construction to arbitrary r dimensional formats satisfying the convexity condi-
tion

kj ≤
∑
ℓ ̸=j

kℓ, ∀1 ≤ j ≤ r

under the name of hyperdeterminants. Analogous to the determinant, the hyper-
determinant is an integer polynomial in the entries of the tensor that vanishes
precisely when the tensor is singular. However, the hyperdeterminant is con-
jectured to be hard (VNP hard to compute, NP hard to zero test) in three or
more dimensions [10]. Therefore, it is unlikely for the strategy of generating a
random tensor and testing for its hyperdeterminant to be non zero to work effi-
ciently. Formats satisfying the convexity condition satisfies as a strict inequality
for all dimensions j are called interior formats. Formats satisfying the convex-
ity condition with equality for at least one dimensions j are called boundary
formats. We will call formats not satisfying the convexity condition as exterior
formats. Interior and boundary formats have an associated hyperdeterminant,
to help reason about degeneracy. Degenerate tensors of an exterior format form
a variety of co-dimension more than one, meaning there is no single polynomial
such as a hyperdeterminant to characterise degeneracy. Across all formats, non
degenerate tensors form a Zariski closed set of co-dimension at least one. There-
fore, most tensors are non degenerate.

The Problem: Given an r-dimensional format (k1+1)×(k2+1)×. . .×(kr+1)
and a finite field Fq, sample a non degenerate tensor of that format over Fq.



6 Anonymous

1.3 Our contribution: Sampling algorithms for boundary formats

We present two families of sampling algorithms for boundary and exterior for-
mats. The first step in the first family of algorithms is to construct a structured
random non degenerate tensor of the desired format, leveraging the theory of
hyperdeterminants. The structures we exploit vary across interior, boundary
and exterior formats and all the necessary mathematical ingredients were de-
veloped by Gelfand-Kapranov-Zelevinsky [6,5], Weyman-Zelevinsky [22], Kaji
[12], Dionisi-Ottaviani [4], and others. We are merely identifying their relevance
to cryptography and putting the ingredients together. Once such a non degen-
erate diagonal tensor is at hand, we scramble it by acting on each dimension
with multiplication by a non-singular matrix, as the second step. This scram-
bling is precisely the same action intrinsic to the definition of the tensor iso-
morphism problem. Crucially, scrambling preserves the non-singularity of the
tensors we so carefully constructed. Beyond non degeneracy (and other similar
hard to compute tensor isomorphism invariants), the scrambling hides struc-
ture of the tensor we started with. The resulting tensor is non degenerate and
indistinguishable from random tensors under the tensor isomorphism hardness
assumption. Even finding one non degenerate tensor of the given format is in-
teresting! But, we want to sample from a distribution with support close to the
number q(k1+1)(k2+1)...(kr+1) of tensors of that format. We set logq(|Support|)
as a coarse estimate of the sampler’s “degrees of freedom" and try to maximise
it, hoping to approach Θ((k1 + 1)(k2 + 1) . . . (kr + 1)). This is a crude metric,
since a true measure of pseudo randomness would judge the distribution of our
samples across the orbits of the scrambling action. But this is difficult to gauge,
given the difficulty of the tensor isomorphism problem and we leave it for future
work.

We next sketch the main ideas of the first step for interior, boundary and
exterior formats, with the aid of illustrative small examples.

Diagonal interior and boundary format tensors. For every interior or
boundary format, Weyman and Zelevinsky defined a notion of diagonal tensors.
The diagonal entries are easiest to describe for three dimensional boundary for-
mats (k1 + 1) × (k2 + 1) × (k3 + 1), say with k1 = k2 + k3. In this case, the
diagonal entries are those whose first coordinate index is the sum of the rest of
the coordinate indices. A 3× 2× 2 boundary format diagonal tensor is pictured
below, with only the diagonal entries labeled and visible.

a000

a101

a110

a211
Hyperdeterminant = ±a×000a

×
101a

×
110a

×
211,

where a “×" denotes some positive exponent.
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The description of diagonal entries for interior formats needs a little more nota-
tion and we defer it to later sections. Either way, for all interior and boundary
formats, there is a simple rule to identify which tensor coordinates are diagonal.
Weyman and Zelevinsky proved that hyperdeterminants of interior or boundary
format have a monomial lying as a vertex of the Newton polytope, consisting
purely of positive powers of all the diagonal entries [22][Theorem 7.1]! Further, a
boundary format tensor whose diagonal entries are precisely the non-zero entries
is non degenerate. This leads to a simple sampling algorithm. Pick a diagonal
boundary format tensor with random non zero diagonal entries. The remedy for
the weak key attacks on MEDS is thus simple, to merely sample the public key
tensors this way and scramble. For the MEDS relevant (2k+1)×(k+1)×(k+1)
boundary formats, the degrees of freedom is Θ(k2). For interior format diagonal
tensors, we can write down a monomial in the hyperdeterminant involving all
the diagonal entries. But there could be other monomials making it difficult to
find an assignment of diagonal entries such that the hyperdeterminant provably
does not vanish. The obvious question we leave open is if there is a polynomial
time algorithm to sample non degenerate interior format tensors, even when re-
stricted to cubic three dimensional formats. We work out some small examples
and hint at the possibility of using diagonal tensors towards this goal.

Vandermonde-Weyman-Zelevinsky boundary format tensors. Bound-
ary formats accomodate a curious alternative to diagonal tensors, albeit with
much fewer degrees of freedom. Weyman and Zelevinsky constructed boundary
format analogues of Vandermonde matrices, which we propose to use to generate
non-singular tensors [22]. Classical Vandermonde matrices are structured square
matrices completely described by a vector of entries, whose singularity is char-
acterised by the distinctness of the entries of the vector. Weyman and Zelevin-
sky constructed structured boundary format tensors completely characterised by
r − 1 vectors, packaged as the columns of a defining matrix. Its degeneracy is
characterised by the distinctness of the column entries of the description matrix.
We will call such tensors Vandermonde-Weyman-Zelevinsky (VWZ) tensors. By
simply drawing a description matrix whose columns each have distinct elements,
we construct a non-singular boundary format tensor. This construction works in
arbitrary dimension. As an example, a 2× 3 matrix defines a 3× 2× 2 boundary
format VWZ tensor, as in figure 1.

Binet-Cauchy and high dimensional boundary format tensors. As the
second family of samplers, we propose a recursive algorithm for constructing
high dimensional non degenerate boundary format tensors from fewer dimen-
sional ones by exploiting the multiplicativity of hyperdeterminants. Dionisi and
Ottaviani’s [4] high dimensional analogue of the the Binet-Cauchy theorem is
key to preserving non degeneracy during the recursion. This may be seen as a
reduction of the non-singular tensor sampling problem (for boundary formats)
from arbitrary to three dimensions. The smaller dimensional problems may be
solved by sampling diagonal tensors, Vandermonde-Weyman-Zelevnisky tensors
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λ0,1 λ0,2

λ1,1 λ1,2

λ2,1 λ2,2

⇝
1

λ0,1

λ0,2

1

λ1,1

λ1,2

1

λ2,1

λ2,2

λ0,1λ0,2 λ1,1λ1,2 λ2,1λ2,2

Fig. 1. A 3× 2× 2 Vandermonde-Weyman-Zelevinsky tensor.

or by other methods devised in the future. Further, if the smaller dimensional
instance is of small enough format, it can be solved exhaustively or using the
algorithms in [11]. Curiously, the scrambling we do in the recursive framework
at the interior vertices of the recursion tree can scramble the tensors across
the orbits of the tensor isomorphism action. Therefore, this is a robust frame-
work promising pseudorandom boundary format non degenerate tensors. Tensor
isomorphism based cryptography is based on the action of random tuples of in-
vertible matrices multiplying in each dimension. In our recursive sampling, we
identify a more general scrambling action by convolution of non degenerate ten-
sors. It is a fascinating open problem to construct cryptographic primitives using
convolution of non degenerate tensors. A challenge or an opportunity in using
convolution of non degenerate tensors is that the tensor dimension increases.

Exterior format tensors as boundary format slices. For exterior formats,
we start with a non degenerate boundary format tensor in one higher dimension.
This boundary format is chosen to envelope the target exterior format, such
that the slices of the boundary format in the longest dimension are of the target
exterior format. Non degeneracy of the enveloping boundary format ensures non
degeneracy of every slice in the longest dimension.

1.4 Nuances in positive characteristic.

Evidently, the theory of hyperdeterminants developed by Gelfand, Kapranov
and Zelevinsky [6][5, Chap. 14] play a central role in our constructions, along-
side further developments by Weyman and Zelevinsky [22]. But these founda-
tional works built the theory over the complex numbers. We need the theory to
hold in positive characteristic. We could look to generic model theoretic tools
such as Lefschetz principle to lift the theory from complex numbers to positive
characteristic, say to an algebraic closure of our finite field. But such a generic
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method would exclude a finite set of primes from being the characteristic, with-
out explicit knowledge of which primes are exclude. This is unsatisfactory for
cryptography, where we need to know if the theorems work for our chosen char-
acteristic. Further, the very definition of hyperdeterminants uses geometric tools
(such as tangency and projective duality) that need great care while translating
to positive characteristic [13,14]. Thankfully, Kaji proved that the hyperdetermi-
nant theory does indeed translate to every prime characteristic [12]. We take this
for granted and invoke theorems from hyperdeterminant theory originally stated
in characteristic zero without further clarification. One exception is the degen-
eracy characterisation of Vandermonde-Weyman-Zelevinsky tensors [22, Prop.
7.3]. We observe that only one direction of this characterisation is needed by us.
For this direction, we present a self contained elementary exposition of Weyman
and Zelevinsky’s proof in theorem 1, making it apparent that is works in all
characteristics.

2 Sampling non degenerate tensors

Let Fq denote the finite field with q elements. For positive numbers k1, k2, . . . , kr,
an r-dimensional tensor over Fq of format (k1 +1)× (k2 +2) . . .× (kr +1) is an
element

A ∈
(
Fk1+1
q

)∗ ⊗ (Fk2+1
q

)∗ ⊗ . . .⊗
(
Fkr+1
q

)∗
in the tensor product of dual vector spaces. We will use j exclusively to index di-
mensions {1, 2, . . . , r}. Fix a coordinate system x(j) = (x

(j)
0 , x

(j)
1 , . . . , x

(j)
kj

) for the

jth-vector space Fkj+1
q , or equivalently an ordered basis for the dual

(
Fkj+1
q

)∗
.

Then, identify A with the r-dimensional matrix

A = (ai1,i2,...,ir , 0 ≤ i1 ≤ k1, 0 ≤ i2 ≤ k2, . . . , 0 ≤ ir ≤ kr) .

Associated with A is the multilinear form

fA : Fk1+1
q × Fk2+1

q × . . .× Fkr+1
q −! Fq(

w(1), w(2), . . . , w(r)
)
7−!

∑
0≤i1≤k1

...
0≤ir≤kr

ai1,i2,...,irw
(1)
i1

w
(2)
i2

. . . w
(r)
ir

.

There is a trichotomy of tensor formats depending on the convexity constraint

∀j ∈ {1, 2, . . . , r}, kj ≤
∑
ℓ ̸=j

kℓ. (2.1)

Formats that satisfy equation 2.1, with the further assurance that there is at
least one j satisfying the equation with equality are called as boundary formats.
Formats that satisfy equation 2.1 that are not boundary are called as interior.
We call all other formats exterior.
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Degeneracy and hyperdeterminants. Call the tensor A degenerate if and
only if there is an r-tuple of non zero vectors

(
w(1), w(2), . . . , w(r)

)
∈ Fk1+1

q ×
Fk2+1
q × . . .× Fkr+1

q such that in every dimension j ∈ {1, 2, . . . , r},

∑
0≤ij≤kj

 ∑
0≤i1≤k1

...
0≤ir≤kr

ai0,i1,...,irw
(0)
i0

w
(1)
i1

. . . w
(j−1)
ij−1

w
(j+1)
ij+1

. . . w
(r)
ir

x
(j)
ij

= 0
(
∈
(
Fkj+1
q

)∗)
.

(2.2)
The inner summation is over all dimensions except j. That is,∑
0≤i0≤k0

...
0≤ir≤kr

ai0,i1,...,irw
(0)
i0

w
(1)
i1

. . . w
(j−1)
ij−1

w
(j+1)
ij+1

. . . w
(r)
ir

= 0, ∀0 ≤ j ≤ r, 0 ≤ ij ≤ kj ,

(2.3)
where again the summation is over all dimensions except j. This notion of de-
generacy is identical to that in [5], except that there it is stated in terms of an
r-tuple of projective vectors instead of non zero vectors. It is also identical to the
existence of “triangles" in [19]. Consider a format (k1+1)× (k2+2) . . .× (kr+1)
that is either interior or boundary. The hyperdeterminant

Det ∈ Fq[ai1,i2,...,ir , 0 ≤ i1 ≤ k1, 0 ≤ i2 ≤ k2, . . . , 0 ≤ ir ≤ kr.]

is an element in the coordinate ring of the tensor that vanishes precisely when
A is degenerate. In particular, it is a monic irreducible polynomial in the entries
of the tensor whose degree can be exponential in the lengths of the dimensions,
even for three dimensions. Each boundary or interior format has an associated
hyperdeterminant polynomial, but we suppress this from the notation for hyper-
determinants, as it will be clear from the context. We refer the reader to [5] for a
comprehensive treatment on hyperdeterminants. The most critical fact we use is
that a boundary or interior format A is degenerate precisely when Det(A) = 0.

Tensor isomorphism. An r-tuple

(X1, X2, . . . , Xr) ∈ GLk1+1(Fq)×GLk2+1(Fq)× . . .×GLkr+1(Fq)

of invertible matrices acts on (k1 + 1) × (k2 + 2) . . . × (kr + 1) format tensors
A by multiplication in the respective dimensions. We denote the result of the
action by (X1, X2, . . . , Xr) ◦ A. To clarify, the multilinear form f(X1,X2,...,Xr)◦A
associated with (X1, X2, . . . , Xr) ◦A is(

w(1), w(2), . . . , w(r)
)
7−!

∑
0≤i1≤k1

...
0≤ir≤kr

ai1,i2,...,irX1w
(1)
i1

X2w
(2)
i2

. . . Xrw
(r)
ir

.

We call two tensors A,B isomorphic if there exists

(X1, X2, . . . , Xr) ∈ GLk1+1(Fq)×GLk2+1(Fq)× . . .×GLkr+1(Fq)
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such that
B = (X1, X2, . . . , Xr) ◦A.

If B = (X1, X2, . . . , Xr) ◦ A, then A =
(
X−1

1 , X−1
2 , . . . , X−1

r

)
◦ B. Therefore,

tensor isomorphism is symmetric and an equivalence relation. The tensor iso-
morphism problem is to decide if two given tensors are isomorphic, which is
believed to be hard. Grochow and Qiao built an intricate web of hard problems
that reduce to tensor isomorphism, including some longstanding hard problems
that lay at the foundation of multivariate cryptography. Complexity theoreti-
cally, the tensor isomorphism problem is NP ∩ co-AM , and believed to be hard
on average in theory and practice [9]. The best known run time of pO(n11/6) is
through Sun’s p-group isomorphism algorithm [20] (in conjunction with a reduc-
tion in [9]). The promise search version, asks for an isomorphism (an r-tuple of
invertible matrices) between two given two isomorphic tensors. Spurred on by
this hardness, several post-quantum digital signature schemes including MEDS
[3] and ALTEQ [1,21] have recently been proposed and part of NIST’s first round
of on-ramp post-quantum signatures, all reliant on tensor isomorphism hardness
assumptions, or hardness assumptions that reduce to tensor isomorphism.

2.1 Diagonal non degenerate tensors

We next describe the sampling algorithm based on the diagonal tensor theory of
Weyman and Zelevinsky [22]. For a dimension r, define the semigroup

Φr :=

(ℓ1, ℓ2, . . . , ℓr) ∈ Z≥0 × Z≥0 × . . .× Z≥0 | ∀ 0 ≤ j ≤ r, ℓj ≤
∑
j′ ̸=j

ℓj′


of all non negative index r-tuples satisfying the convexity constraint. Consider
r-dimensional formats (k1+1)× (k2+2) . . .× (kr +1) that are either interior or
boundary. That is, (k1, k2, . . . , kr) ∈ Φr. The set of all diagonal indices for the
format (k1 + 1)× (k2 + 2) . . .× (kr + 1) is defined as

IDiagonal
(k1+1)×(k2+2)×...×(kr+1) := {(ℓ1, ℓ2, . . . , ℓr) ∈ Φr | (k1 − ℓ1, k2 − ℓ2, . . . , kr − ℓr) ∈ Φr} .

For boundary formats with k1 = k2 + k3 + . . .+ kr, this simplifies to

IDiagonal
(k1+1)×(k2+2)×...×(kr+1) = {(ℓ1, ℓ2, . . . , ℓr) | ℓ1 = ℓ2 + ℓ3 + . . .+ ℓr} .

As an example, the diagonal 3 × 3 × 3 interior format tensor looks as in figure
2, with only the diagonal entries visible and labeled. The hyperdeterminant of
the 3 × 3 × 3 format was determined in [22, 7.11] using the computer algebra
package MACAULAY as

Det(A) =(a000a222)
8(a110a101a011a112a121a211)

2[a2000a
4
111a

2
222 (2.4)

+ 8a000a
2
111a222(a000a112a121a211 + a222a110a101a011) + 16(a000a112a121a211)

2

+ 16(a222a110a101a011)
2 − 32a000a110a101a011a112a121a211a222].
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a000

a111

a222

a211

a121

a112

a011

a101

a110

Fig. 2. A 3× 3× 3 diagonal tensor.

Apparent from the 3× 3× 3 example, the hyperdeterminant of the interior for-
mat diagonal tensors is not a monomial. Therefore, merely picking a diagonal
tensor with non zero diagonal entries does not imply non degeneracy for interior
formats. For 3 × 3 × 3 formats, it is easy to sample non degenerate diagonal
tensors: set all but one of the diagonal entries to be random non zero elements,
and set the remaining diagonal entry such that equation 2.4 is non zero. For this
strategy to generalise, one needs to compute the hyperdeterminant of interior
format diagonal tensors, which remains a curious open problem. By [22, Theo-
rem 7.1], the hyperdeterminant (for both interior and boundary formats) has a
monomial

±1
∏

(i1,i2,...,ir)∈IDiagonal
(k1+1)×(k2+2)×...×(kr+1)

a>0
(i1,i2,...,ir)

lying as a vertex of the Newton polytope, consisting purely of positive powers
of all the diagonal entries with coefficient ±1. Further, the exponents can be
determined [22, Remark 7.2(b)]. For the 3 × 3 × 3 example, this corresponds
to the monomial a10000a4111a10222(a110a101a011a112a121a211)2. Knowing there is such
a monomial lying as a vertex of the Newton polytope may be a first step in
sampling non degenerate interior format tensors. But we leave this as an open
problem. However, hyperdeterminants of boundary format diagonal tensors only
consist of this monomial, as observed by Weyman and Zelevinsky [22, Remark
7.3(c)], which we exploit in the following sampling algorithm.
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Sampling non degenerate diagonal boundary format tensors.
Input: A finite field Fq and a boundary tensor format (k1+1)×(k2+2) . . .×(kr+1)
with k1 = k2 + k3 + . . .+ kr.

1. Construct a tensor A by setting all the off diagonal entries(
a(i1,i2,...,ir), (i1, i2, . . . , ir) /∈ IDiagonal

(k1+1)×(k2+2)...×(kr+1)

)
to zero and drawing the diagonal elements(

a(i1,i2,...,ir), (i1, i2, . . . , ir) ∈ IDiagonal
(k1+1)×(k2+2)×...×(kr+1)

)
uniformly and independently at random from Fq \ {0}.

2. Draw a uniformly random r-tuple

(X1, X2, . . . , Xr) ∈ GLk1+1(Fq)×GLk2+1(Fq)× . . .×GLkr+1(Fq)

and output
(X1, X2, . . . , Xr) ◦A.

Lemma 1. The output (X1, X2, . . . , Xr) ◦A is non degenerate.

Proof. Weyman and Zeleinsky [22, Remark 7.3(c)] remark that the hyperde-
terminant of the boundary format diagonal tensors under consideration is the
monomial

±1
∏

(i1,i2,...,ir)∈IDiagonal
(k1+1)×(k2+2)×...×(kr+1)

a>0
(i1,i2,...,ir)

consisting purely of positive powers of all the diagonal entries, defined in [22,
Theorem 7.1]. To see why, they refer to the remarkable fact proven by Gelfand-
Kapranov-Zelevinsky ([6, Theorem 4.3] or [5, Theorem 3.3]) that boundary for-
mat tensors have a hyperdeterminant that is the identical to the determinant
of a certain (exponentially sized in k1) square matrix (see also [4], for an al-
ternate proof). When the relation is specialised to diagonal boundary format
tensors, the associated exponentially large square matrix has as its diagonal
entries, precisely the diagonal entries of the tensor (with possible repetition).
Therefore, it is clear that hyperdeterminant of diagonal boundary format ten-
sors is a monomial. Therefore, it must be the monomial whose existence is proven
in theorem [22, Theorem 7.1]. In summary, by construction Det(A) ̸= 0, mean-
ing A is non degenerate. The hyperdeterminant is not an invariant under the
GLk1+1(Fq) × GLk2+1(Fq) × . . . × GLkr+1(Fq) action. It is only an invariant
under the SLk1+1(Fq)× SLk2+1(Fq)× . . .× SLkr+1(Fq) action. But the hyper-
determinant is a relative invariant under the GLk1+1(Fq)×GLk2+1(Fq)× . . .×
GLkr+1(Fq) [5, Chap 14, Prop. 1.4], which implies that

Det(A) = 0 ⇔ Det ((X1, X2, . . . , Xr) ◦A) = 0.

Therefore, the output (X1, X2, . . . , Xr) ◦A is non degenerate. ⊓⊔
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For the 3-dimensional (2k + 1) × (k + 1) × (k + 1) boundary format, we get
Θ(k2) degrees of freedom, which is fewer in comparison to the number Θ(k3)
of tensor entries. More generally, for balanced r-dimensional boundary formats
((r − 1)k + 1)× (k + 1)× . . .× (k + 1), we get a commendable Θ(kr−1) degrees
of freedom compared to the Θ(kr) entries. Here, we assume q > 2, for otherwise
there is only one non zero element to place as the diagonal entries.

2.2 Vandermonde-Weyman-Zelevinsky non degenerate tensors

While constructing a Vandermonde matrix, one starts with a vector and ends
up with a square matrix whose determinant vanishes precisely when the vector
entries are distinct. Weyman and Zelevinsky constructed higher dimensional
analogues of Vandermonde matrices for boundary format tensors. Consider a
(k1 + 1)× (k2 + 2) . . .× (kr + 1) boundary format with k1 = k2 + k3 + . . .+ kr.
Start with a (k1 + 1)× (r − 1) matrix

Λ = (λi1,j)0≤i1≤k1,2≤j≤r,

and define the Vandermonde-Weyman-Zelevinsky tensor AΛ with entries(
aΛi1,i2,...,ir := λi2

i1,2
λi3
i1,3

. . . λir
i1,r

)
0≤i1≤k1,0≤i2≤k2,...,0≤ir≤kr

.

Theorem 1. [Weyman-Zelevinsky [22, Prop. 7.3]] If ∀j ∈ {2, 3, . . . , r}, (λi1,j , 0 ≤
i1 ≤ k1) are distinct (that is, if each column of the starting matrix Λ consists of
distinct elements), then AΛ is non degenerate.

Proof. Let ∀j ∈ {1, 2, . . . , r}, (λi,j , 0 ≤ i ≤ k1) be distinct. Assume that AΛ

is degenerate. For AΛ to be degenerate, there is an r-tuple of non zero vectors(
w(2), w(3), . . . , w(r)

)
∈ Fk2+1

q × Fk3+1
q × . . .× Fkr+1

q such that∑
0≤i2≤k2

...
0≤ir≤kr

aΛi1,i2,...,irw
(2)
i2

w
(3)
i3

. . . w
(r)
ir

= 0, ∀ 0 ≤ i1 ≤ k1. (2.5)

indexed by the first dimension vanish. To see why, the constraints in equation
2.5 form a subset of the constraints in the defining equation 2.2 of degeneracy.
Substituting aΛi1,i2,...,ir = λi2

i1,2
λi3
i1,3

. . . λir
i1,r

, we get∑
0≤i2≤k2

...
0≤ir≤kr

λi2
i1,1

λi3
i1,2

. . . λir
i1,r

w
(2)
i2

w
(3)
i3

. . . w
(r)
ir

= 0, ∀ 0 ≤ i1 ≤ k1,

which decouples into products as(
k2∑

i2=0

w
(2)
i2

λi2
i1,2

)(
k3∑

i3=0

w
(3)
i3

λi3
i1,3

)
. . .

(
kr∑

ir=0

w
(r)
ir

λir
i1,r

)
= 0, ∀ 0 ≤ i1 ≤ k1.
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For 2 ≤ j ≤ r, consider the following polynomials

Pj(Λj) :=

kj∑
ij=0

w
(j)
ij

Λ
ij
j ∈ Fq[Λj ]

in commuting indeterminates Λj with the coordinates of w(j) as the coefficients.
Every Pj(Λj) is a non zero polynomial, since each one has coefficients encoding
coordinates of non zero vectors. The constraints in equation 2.5 are equivalent
to the system of polynomial equations

P2(λi1,2)P3(λi1,3) . . . Pr(λi1,r) = 0, ∀0 ≤ i1 ≤ k1. (2.6)

For 2 ≤ j ≤ r, let Ij := {i1 | Pj(λi1,j) = 0} be the set of sub indices of the roots
of Pj(Λj). To satisfy equation 2.6, it is necessary that

I2 ∪ I3 ∪ . . . ∪ Ir = {1, 2, . . . , k1}.

Therefore,

|I2 ∪ I3 ∪ . . . ∪ Ir| = k1 + 1 = k2 + k3 + . . .+ kr + 1,

implying there is at least one dimension j such that |Ij | > kj . But then, the
non-zero polynomial Pj(Λj) has more roots than its degree kj , a contradiction
in any field, irrespective of the characteristic. Therefore our assumption is wrong
and AΛ is indeed non-singular. ⊓⊔

Sampling non degenerate Vandermonde-Weyman-Zelevinsky tensors.
Input: A finite field Fq and a boundary tensor format (k1+1)×(k2+2) . . .×(kr+1)
with k1 = k2 + k3 + . . .+ kr and q ≥ k1 + 1.

1. Draw a (k1 + 1)× (r − 1) matrix

Λ = (λi1,j)0≤i1≤k1,2≤j≤r ∈ F(k1+1)×(r−1)
q

uniformly with the restriction that each column has distinct entries. Let AΛ

be the Vandermonde-Weyman-Zelevinsky tensor AΛ associated with Λ. That
is, (

aΛi1,i2,...,ir := λi2
i1,1

λi3
i1,3

. . . λir
i1,r

)
0≤i1≤k1,0≤i2≤k2,...,0≤ir≤kr

.

2. Draw a uniformly random r-tuple

(X1, X2, . . . , Xr) ∈ GLk1+1(Fq)×GLk2+1(Fq)× . . .×GLkr+1(Fq)

and output
(X1, X2, . . . , Xr) ◦AΛ.

By theorem 1, AΛ is non degenerate. As before, since the hyperdeterminant is a
relative invariant of the GLk1+1(Fq)×GLk2+1(Fq)×. . .×GLkr+1(Fq) action, the
output (X1, X2, . . . , Xr) ◦ AΛ is non degenerate. The degrees of freedom of the
Vandermonde-Weyman-Zelevinsky sampler for boundary formats whose largest
dimension has length k1 + 1 is Θ(rk1) is small, in comparison to the number of
tensor entries. The later can be as big as Θ((k1/r)

r).
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2.3 Sampling exterior format non degenerate tensors

The difficulty with sampling non degenerate exterior format tensors is that they
do not have an associated hyperdeterminant polynomial characterising degen-
eracy. Our insight is to first look up to appropriate boundary formats in one
higher dimension and project back down to a slice in an appropriate dimension.

Sampling non degenerate exterior format tensors.
Input: A finite field Fq and an exterior tensor format (k1+1)×(k2+2) . . .×(kr+1).

1. Without loss of generality, assume that the first dimension is the longest,
that is, k1 ≥ kj ,∀2 ≤ j ≤ r. Set kr+1 := k1 −

∑r
j=2 kj to ensure that

(k1 + 1)× (k2 + 1)× . . .× (kr + 1)× (kr+1 + 1)

is a boundary format in one higher dimension.
2. Sample a non degenerate tensor A of boundary format (k1 + 1) × (k2 +

1) × . . . × (kr + 1) × (kr+1 + 1), either by the diagonal sampler, or the
Vandermonde-Weyman-Zelevinsky sampler, or by any other means.

3. Draw a uniform ir+1 ∈ {0, 1, . . . , kr+1} and set Aslice as the ir+1-th slice of
A in the last dimension. That is,

aslicei1,i2,...,ir := ai1,i2,...,ir,ir+1
,∀0 ≤ i1 ≤ k1, 0 ≤ i2 ≤ k2, . . . , 0 ≤ ir ≤ kr.

4. Draw a uniformly random r-tuple

(X1, X2, . . . , Xr) ∈ GLk1+1(Fq)×GLk2+1(Fq)× . . .×GLkr+1(Fq)

and output
(X1, X2, . . . , Xr) ◦Aslice.

Non degeneracy of A follows from [5, Cor. 3.11]. As before, since the hyperdeter-
minant is a relative invariant of the GLk1+1(Fq)×GLk2+1(Fq)×. . .×GLkr+1(Fq)
action, the output (X1, X2, . . . , Xr) ◦Aslice is non degenerate.

3 Recursive sampling using tensor convolution

Gelfand, Kapranov and Zelevinsky considered a high dimensional analogue of
matrix multiplication, which they called convolution [5]. It is a binary operation
that takes an r dimensional tensor and an s dimensional tensor to result in an
r + s − 2 dimensional tensor. As the number of columns of the left matrix and
number of rows of the right matrix has to agree in usual multiplication, the two
dimensions involved in tensor convolution have to be of the same length.
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Convolution of tensors. Let A and B be tensors of formats (k1 + 1)× (k2 +
1) × . . . × (kr + 1) and (ℓ1 + 1) × (ℓ2 + 1) × . . . × (ℓs + 1) respectively, with
two distinguished dimensions (j1, j2) such that kj1 = ℓj2 . Their convolution
A ⋆(j1,j2) B in the (j1, j2)-th dimension is defined as the r + s − 2-dimensional
tensor with entries

kj1∑
ij1=0

ℓj2∑
i′j2

=0

ai1,i2,...,ij1 ,...,irbi′1,i′2,...,i′j2 ,...,i
′
s
,

0 ≤ i1 ≤ k1, 0 ≤ i2 ≤ k2, . . . , 0 ≤ ij1−1 ≤ kj1−1, 0 ≤ ij1+1 ≤ kj1+1, . . . , 0 ≤ ir ≤ kr,

0 ≤ i′1 ≤ ℓ1, 0 ≤ i′2 ≤ ℓ2, . . . , 0 ≤ i′j2−1 ≤ ℓj2−1, 0 ≤ i′j2+1 ≤ ℓj2+1, . . . , 0 ≤ i′s ≤ ℓs.

We can think of it as an inner product coupling the j1-th dimension of A with
the j2-th dimension of B, which are of the same length. To simplify the tedious
notation, here on, we will (i) restrict to boundary formats with the implicit
assumption that the longest dimension is the first, and (ii) fix j2 = 1. Therefore,
we are only considering convolutions involving the longest dimension on the right
side tensor. Let A be a (k1+1)× (k2+1)× . . .× (kr+1) boundary format tensor
with k1 = k2+k3+ . . .+kr. Let B be (ℓ1+1)× (ℓ2+1)× . . .× (ℓs+1) boundary
format tensor with ℓ1 = ℓ2 + ℓ3 + . . .+ ℓs. The convolution

A ⋆j B

with respect to a dimension j (implicitly, on the left) such that kj = ℓ1 is the

(k1 + 1)× (k2 + 1)× . . .× (kj−1 + 1)× (kj+1 + 1) . . .× (kr + 1)×
(ℓ2 + 1)× (ℓ3 + 1)× . . .× (ℓs + 1)

format r + s− 2-dimensional tensor with entries

kj∑
ij=0

ℓ1∑
i′1=0

ai1,i2,...,ij ,...,irbi′1,i′2,...,i′s ,

0 ≤ i1 ≤ k1, 0 ≤ i2 ≤ k2, . . . , 0 ≤ ij1−1 ≤ kj1−1, 0 ≤ ij1+1 ≤ kj1+1, . . . , 0 ≤ ir ≤ kr,

0 ≤ i′2 ≤ ℓ2, 0 ≤ i′3 ≤ ℓ3, . . . , 0 ≤ i′s ≤ ℓs.

Note that the resulting convolution is again of boundary format with the first
dimension being the longest,

k1 = k2 + k3 + . . .+ kj−1 + kj+1 + . . .+ kr + ℓ2 + ℓ3 + . . .+ ℓs,

consistent with our implicit notation.

Multiplicativity of hyperdeterminants of boundary format. The de-
terminant of a product of square matrices is the product of the determinants.
Binet-Cauchy generalises this multiplicativity of determinants when the matri-
ces multiplied are not necessarily square. Dionisi and Ottaviani proved a high



18 Anonymous

dimensional analogue of Binet-Cauchy for hyperdeterminants, which when spe-
cialised to boundary format tensors gives the following multiplicative property
of hyperdeterminants.

Theorem 2. [Dionisi-Ottaviani [4]] Let A and B be non degenerate boundary
format tensors of formats (k1+1)× (k2+1)× . . .× (kr +1) and (ℓ1+1)× (ℓ2+
1)× . . .× (ℓs + 1) respectively. For every dimension j such that kj = ℓ1,

Det(A ⋆j B) = Det(A)(
ℓ1

ℓ2,ℓ3,...,ℓs
)Det(B)

( k1+1
k2,k3,...,kj−1,kj+1,...,kr

)
,

where the exponents on the right are multinomial coefficients. In particular, if
Det(A) and Det(B) are non zero, then so is Det(A ⋆j B).

This suggests a recipe to build non degenerate boundary format tensors of high
dimension from non degenerate boundary format tensors of fewer dimensions.

Sampling across isomorphism orbits. Let us begin to explore this idea with
sampling in 4-dimensions. Let A and B be non degenerate boundary format ten-
sors of formats (3k + 1) × (2k + 1) × (k + 1) and (2k + 1) × (k + 1) × (k + 1)
respectively. Then A⋆2B is a non degenerate (3k+1)××(k+1)×(k+1)×(k+1)
boundary format tensor. We can then scramble A⋆2 B to try to hide the convo-
lution structure, if it were visible at all.

We can do better! Draw (X1, X2, X3) ∈ GL2k+1(Fq)×GLk+1(Fq)×GLk+1(Fq)
uniformly at random and scramble B before convolving. The resulting convolu-
tions are likely

A ⋆2 B ̸∼= A ⋆2 ((X1, X2, X3) ◦B),

where ̸∼= denotes that they are not isomorphic (unless by extraordinary chance,
such as picking a triple of identity matrices to scramble.). This is because
(X1, X2, X3) couples the third and fourth dimensions of A⋆2 ((X1, X2, X3)◦B)1.
Therefore, there is no reason for A ⋆2 B and A ⋆2 ((X1, X2, X3) ◦B to be in the
same GL3k+1(Fq)×GLk+1(Fq)×GLk+1(Fq)×GLk+1(Fq)-orbit. Yet, by theorem
2, A ⋆2 B and A ⋆2 ((X1, X2, X3) ◦B are both non degenerate. Therefore convo-
lution goes beyond scrambling (which is merely a sequence of convolutions with
2-dimensional non degenerate boundary format tensors, that is, invertible square
matrices). Scrambling woven into the fabric of a recursive convolution algorithm
therefore promises pseudorandom non degenerate tensors with equidistribution
across isomorphism orbits.

We next outline the framework for a recursive algorithm, leaving precise
instantiations to the future. The reason is that there is great flexibility in how
the problem is divided, which can and should be tailored to the needs of the
application.
1 The coupling is in the third and fourth dimensions because by convention, during

convolution, we append the dimensions coming from tensor on the right to the end.
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Recursive sampling for boundary formats.
Input: A finite field Fq and a boundary format (k1 + 1)× (k2 + 2) . . .× (kr + 1)
such that k1 = k2 + k3 + . . .+ kr.

1. If r = 3, output a non degenerate tensor of the input format using a sampling
technique that works for 3-dimensional boundary formats, such as using
diagonal tensors or Vandermonde-Weyman-Zelevnisky tensors.

2. Else, partition the dimensions 2 through r into two non-empty subsets

{2, 3, . . . , r} = Jleft
⊔

Jright,

such that Jleft has at least one element and Jright has at least two elements.
Such a partition always exists since since r > 3.

3. Order the sets Jleft and Jright arbitrarily2. Set ℓ1 :=
∑

j∈Jright
kj . Recursively

solve the problem (over the same field) for boundary formats

(k1 + 1)× (ℓ1 + 1)×
∏

j∈Jleft

(kj + 1) and (ℓ1 + 1)×
∏

j∈Jright

(kj + 1),

receiving non degenerate boundary format tensors Aleft and Aright as the
respective outputs of the recursive calls.

4. Compute the convolution
Aleft ⋆2 Aright.

5. Draw a uniformly random r-tuple

(X1, X2, . . . , Xr) ∈ GLk1+1(Fq)×GLk2+1(Fq)× . . .×GLkr+1(Fq)

and output
(X1, X2, . . . , Xr) ◦ (Aleft ⋆2 Aright).

A high level depiction of the recursive sampler framework is in figure 3.

As before, non degeneracy is preserved by the matrix multiplications in the
last step (of each recursive call) due to the relative invariance of the hyperdeter-
minant. Non degeneracy is preserved by convolutions by theorem 2. Therefore,
non degeneracy is preserved by compositions of matrix multiplications and con-
volutions, ensuring the output is non degenerate.

Implicit in the construction is proof that we can hit every desired boundary
format in every desired dimension using this recursive technique. One can bal-
ance the split in step 2 by demanding that Jleft and Jright are roughly the same
size. This ensures that there are at most r log r recursive calls, which we have
2 The ordering is not important here, but is there merely to conform to notation since

formats are ordered. After the convolution, by the notational convention, all the
dimensions indexing Jright and Jleft will be appended to the end of the format.
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Sample((k1 + 1)× (k2 + 2) . . .× (kr + 1))

Split dimensions 2 through r into formats
(∏

j∈Jleft
(kj + 1),

∏
j∈Jright

(kj + 1)
)

and set ℓ1 =
∑

j∈Jright
kj .

Aleft  Sample
(
(k1 + 1)× (ℓ1 + 1)×

∏
j∈Jleft

(kj + 1)
)

Aright  Sample
(
(ℓ1 + 1)×

∏
j∈Jright

(kj + 1)
)

Convolve Aleft ⋆2 Aright

Draw a uniformly random r-tuple (X1, X2, . . . , Xr) ∈ GLk1+1(Fq)×GLk2+1(Fq)× . . .×GLkr+1(Fq)
and return the scrambled convolution (X1, X2, . . . , Xr) ◦ (Aleft ⋆2 Aright).

Fig. 3. Recursive sampler, with the field and the base 3-dimensional case implicit.

not tried to optimise.

One shortcoming of this convolution based sampling algorithm is that at
each convolution, the degrees of freedom add up (as opposed to multiplying up).
Therefore, in terms of degrees of freedom, convolution is comparable to sampling
using Vandermonde-Weyman-Zelevinsky tensors and is inferior to diagonal sam-
plers. But scrambling in the interior nodes of the recursion tree help increase
the degrees of freedom. Further, merely comparing degrees of freedom may not
be fair measure to the recursive sampler, since it scrambles across isomorphism
orbits.

Recursive sampling for exterior formats. The recursive sampling technique
using convolutions is of no use for interior formats, since the multiplicativity of
hyperdeterminants can fail for interior formats [4]. But for exterior formats, we
can can invoke the lifting strategy from § 2.3. In particular, given a target exte-
rior format, lift the problem to a boundary format in one higher dimension as
detailed in § 2.3, solve it using the recursive sampler and take a random slice to
descend back to the target exterior format.

References

1. Bläser, M., Duong, D.H., Narayanan, A.K., Plantard, T., Qiao, Y., Sipasseuth,
A., Tang, G.: The alteq signature scheme: Algorithm specifications and supporting
documentation (2023), https://pqcalteq.github.io/ALTEQ_spec_2023.09.18.pdf

https://pqcalteq.github.io/ALTEQ_spec_2023.09.18.pdf


Strong keys for tensor isomorphism cryptography 21

2. Cayley, A.: On the theory of elimination. Dublin Math. J. p. 116–120 (1848)
3. Chou, T., Niederhagen, R., Persichetti, E., Randrianarisoa, T.H., Reijnders, K.,

Samardjiska, S., Trimoska, M.: Take your meds: Digital signatures from matrix
code equivalence. In: El Mrabet, N., De Feo, L., Duquesne, S. (eds.) Progress
in Cryptology - AFRICACRYPT 2023. pp. 28–52. Springer Nature Switzerland,
Cham (2023)

4. Dionisi, C., Ottaviani, G.: The binet–cauchy theorem for the hyperdeterminant of
boundary format multi-dimensional matrices. Journal of Algebra 259(1), 591–644
(2003). https://doi.org/https://doi.org/10.1016/S0021-8693(02)00537-9, https://
www.sciencedirect.com/science/article/pii/S0021869302005379

5. Gelfand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidi-
mensional Determinants. Modern Birkhäuser Classics, Birkhäuser Boston (2009),
https://books.google.es/books?id=ZxeQBAAAQBAJ

6. Gelfand, I., Kapranov, M., Zelevinsky, A.: Hyperdeterminants. Advances
in Mathematics 96(2), 226–263 (1992). https://doi.org/https://doi.org/10.
1016/0001-8708(92)90056-Q, https://www.sciencedirect.com/science/article/pii/
000187089290056Q

7. Gilchrist, V., Marco, L., Petit, C., Tang, G.: Solving the tensor isomorphism prob-
lem for special orbits with low rank points: Cryptanalysis and repair of an asiacrypt
2023 commitment scheme. In: Reyzin, L., Stebila, D. (eds.) Advances in Cryptology
– CRYPTO 2024. pp. 141–173. Springer Nature Switzerland, Cham (2024)

8. Grigni, M., Schulman, L., Vazirani, M., Vazirani, U.: Quantum mechanical al-
gorithms for the nonabelian hidden subgroup problem. In: Proceedings of the
Thirty-Third Annual ACM Symposium on Theory of Computing. p. 68–74. STOC
’01, Association for Computing Machinery, New York, NY, USA (2001). https:
//doi.org/10.1145/380752.380769, https://doi.org/10.1145/380752.380769

9. Grochow, J., Qiao, Y.: On the complexity of isomorphism problems for tensors,
groups, and polynomials i: Tensor isomorphism-completeness. SIAM Journal on
Computing 52(2), 568–617 (2023). https://doi.org/10.1137/21M1441110, https://
doi.org/10.1137/21M1441110

10. Hillar, C.J., Lim, L.H.: Most tensor problems are np-hard. J. ACM 60(6) (nov
2013). https://doi.org/10.1145/2512329, https://doi.org/10.1145/2512329

11. Joux, A., Narayanan, A.K.: A High Dimensional Cramer’s Rule Connecting
Homogeneous Multilinear Equations to Hyperdeterminants. In: Meka, R. (ed.)
16th Innovations in Theoretical Computer Science Conference (ITCS 2025).
Leibniz International Proceedings in Informatics (LIPIcs), vol. 325, pp. 62:1–
62:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany
(2025). https://doi.org/10.4230/LIPIcs.ITCS.2025.62, https://drops.dagstuhl.de/
entities/document/10.4230/LIPIcs.ITCS.2025.62

12. Kaji, H.: On the duals of segre varieties. Geometriae Dedicata 99(1), 221–229
(Jun 2003). https://doi.org/10.1023/A:1024968503486, https://doi.org/10.1023/
A:1024968503486

13. Kleiman, S.: Tangency and Duality. Københavns Universitet. Matematisk Institut
(1985), https://books.google.es/books?id=M9MlrgEACAAJ

14. Kleiman, S., Piene, R.: On the inseparability of the gauss map. American Journal
of Mathematics. 123, 107–129 (1991)

15. Narayanan, A.K.: Trapdoor one-way functions from tensors. Cryptology ePrint
Archive, Paper 2025/624 (2025), https://eprint.iacr.org/2025/624

16. Narayanan, A.K., Qiao, Y., Tang, G.: Algorithms for matrix code and alter-
nating trilinear form equivalences via new isomorphism invariants. In: Advances

https://doi.org/https://doi.org/10.1016/S0021-8693(02)00537-9
https://doi.org/https://doi.org/10.1016/S0021-8693(02)00537-9
https://www.sciencedirect.com/science/article/pii/S0021869302005379
https://www.sciencedirect.com/science/article/pii/S0021869302005379
https://books.google.es/books?id=ZxeQBAAAQBAJ
https://doi.org/https://doi.org/10.1016/0001-8708(92)90056-Q
https://doi.org/https://doi.org/10.1016/0001-8708(92)90056-Q
https://doi.org/https://doi.org/10.1016/0001-8708(92)90056-Q
https://doi.org/https://doi.org/10.1016/0001-8708(92)90056-Q
https://www.sciencedirect.com/science/article/pii/000187089290056Q
https://www.sciencedirect.com/science/article/pii/000187089290056Q
https://doi.org/10.1145/380752.380769
https://doi.org/10.1145/380752.380769
https://doi.org/10.1145/380752.380769
https://doi.org/10.1145/380752.380769
https://doi.org/10.1145/380752.380769
https://doi.org/10.1137/21M1441110
https://doi.org/10.1137/21M1441110
https://doi.org/10.1137/21M1441110
https://doi.org/10.1137/21M1441110
https://doi.org/10.1145/2512329
https://doi.org/10.1145/2512329
https://doi.org/10.1145/2512329
https://doi.org/10.4230/LIPIcs.ITCS.2025.62
https://doi.org/10.4230/LIPIcs.ITCS.2025.62
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.62
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.62
https://doi.org/10.1023/A:1024968503486
https://doi.org/10.1023/A:1024968503486
https://doi.org/10.1023/A:1024968503486
https://doi.org/10.1023/A:1024968503486
https://books.google.es/books?id=M9MlrgEACAAJ
https://eprint.iacr.org/2025/624


22 Anonymous

in Cryptology – EUROCRYPT 2024: 43rd Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zurich, Switzerland,
May 26–30, 2024, Proceedings, Part III. p. 160–187. Springer-Verlag, Berlin, Hei-
delberg (2024). https://doi.org/10.1007/978-3-031-58734-4_6, https://doi.org/10.
1007/978-3-031-58734-4_6

17. Oeding, L.: Hyperdeterminants of polynomials. Advances in Mathematics
231(3), 1308–1326 (2012). https://doi.org/https://doi.org/10.1016/j.aim.2012.06.
023, https://www.sciencedirect.com/science/article/pii/S0001870812002447

18. Patarin, J.: Hidden fields equations (hfe) and isomorphisms of polynomials (ip):
Two new families of asymmetric algorithms. In: Maurer, U. (ed.) Advances in
Cryptology — EUROCRYPT ’96. pp. 33–48. Springer Berlin Heidelberg, Berlin,
Heidelberg (1996)

19. Ran, L., Samardjiska, S.: Rare structures in tensor graphs - bermuda triangles
for cryptosystems based on the tensor isomorphism problem. Cryptology ePrint
Archive, Paper 2024/1396 (2024), https://eprint.iacr.org/2024/1396

20. Sun, X.: Faster isomorphism for p-groups of class 2 and exponent p. In: Proceedings
of the 55th Annual ACM Symposium on Theory of Computing. p. 433–440. STOC
2023, Association for Computing Machinery, New York, NY, USA (2023). https:
//doi.org/10.1145/3564246.3585250, https://doi.org/10.1145/3564246.3585250

21. Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practical
post-quantum signature schemes from isomorphism problems of trilinear forms.
Eurocrypt 2022 (2022), https://eprint.iacr.org/2022/267

22. Weyman, J., Zelevinsky, A.: Singularities of hyperdeterminants. Annales de
l’Institut Fourier 46(3), 591–644 (1996). https://doi.org/10.5802/aif.1526, http:
//www.numdam.org/articles/10.5802/aif.1526/

https://doi.org/10.1007/978-3-031-58734-4_6
https://doi.org/10.1007/978-3-031-58734-4_6
https://doi.org/10.1007/978-3-031-58734-4_6
https://doi.org/10.1007/978-3-031-58734-4_6
https://doi.org/https://doi.org/10.1016/j.aim.2012.06.023
https://doi.org/https://doi.org/10.1016/j.aim.2012.06.023
https://doi.org/https://doi.org/10.1016/j.aim.2012.06.023
https://doi.org/https://doi.org/10.1016/j.aim.2012.06.023
https://www.sciencedirect.com/science/article/pii/S0001870812002447
https://eprint.iacr.org/2024/1396
https://doi.org/10.1145/3564246.3585250
https://doi.org/10.1145/3564246.3585250
https://doi.org/10.1145/3564246.3585250
https://doi.org/10.1145/3564246.3585250
https://doi.org/10.1145/3564246.3585250
https://eprint.iacr.org/2022/267
https://doi.org/10.5802/aif.1526
https://doi.org/10.5802/aif.1526
http://www.numdam.org/articles/10.5802/aif.1526/
http://www.numdam.org/articles/10.5802/aif.1526/

	Strong keys for tensor isomorphism cryptography

