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Abstract. Proxy re-encryption (PRE) schemes allow a delegator to des-
ignate a proxy to re-encrypt its ciphertext into a ciphertext that the
delegatee can decrypt. In contrast, the proxy gains nothing helpful from
this transformation. This decryption-power transfer is proper in applica-
tions of encrypted email forwarding, key escrow, and publish/subscribe
systems.
The security notions for PRE are inherited from the standard public
key encryption (PKE) schemes, i.e., indistinguishability under chosen-
plaintext attacks (CPA) and security under chosen-ciphertext attacks
(CCA). A recently popular notion, indistinguishability under honest re-
encryption attacks (HRA), was proposed by Cohen in 2019, indicating
that CPA security is insufficient for PRE because some CPA-secure PRE
leaks the secret key of the delegator. Many post-quantum secure PRE
schemes have recently been designed under the HRA security model.
However, HRA security differs from traditional CCA security, and there
is no known reduction between them. The existing results show they ap-
pear to be incompatible. This paper aims to bridge those two security
notions via reductions. In addition, we found that many existing HRA-
secure schemes are vulnerable to collusion. We provide a generic transfor-
mation from a CPA-secure PRE to a collusion-resistant and CPA-secure
PRE. This transformation also applies to HRA-secure PREs.

Keywords: Honest re-encryption attack · Proxy re-encryption · Collu-
sion resistance.

1 Introduction

A proxy re-encryption (PRE) scheme can be considered an extension of the
traditional public key encryption (PKE) scheme. The additional re-encryption
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functionality enables a proxy to transform a ciphertext encrypted under a del-
egator’s public key to a decryptable ciphertext for a delegatee, while the proxy
gains nothing about the secret or plaintext from the procedure. Bidirectional and
unidirectional PREs are defined according to the direction of ciphertext trans-
formation by the re-encryption key. We focus on the unidirectional PREs since
the delegator can generate the re-encryption key without the secret key from
the delegatee (non-interactive). This kind of scheme admits many interesting
applications, such as encrypted email forwarding [3], key escrow [16], distributed
file system [2], and publish/subscribe systems [24].

The security of PRE is defined accordingly by PKE. The standard and basic
security notion for an encryption scheme is ciphertext indistinguishability, which
is often described in a security game against chosen plaintext attacks (IND-CPA)
or ciphertext attacks (IND-CCA). We only consider ciphertext indistinguisha-
bility in this paper, so we will omit the prefix IND and use CPA or CCA to
indicate the corresponding security notion. With the function of re-encryption,
the PRE adversary is provided an additional re-encryption key generation oracle
in both CPA and CCA games and a decryption oracle for the CCA game.

Cohen [10] found that the current CPA game for PRE [1] fails in capturing
adversarial delegatee, who is often named Bob in the literature, corresponding to
the question of the beginning of the paper’s title, “What about Bob?” To be more
precise, in some CPA-secure PREs, Bob can decrypt all ciphertexts encrypted
under Alice’s public key, the delegator, just given an honest re-encrypted cipher-
text. This is not desirable for many applications, where the delegation should be
handled by Alice and the proxy, not the silent recipient, Bob! We can think of
this error as violating the principle of least privilege. The re-encrypted ciphertext
should give Bob only the message decrypted from it, and should be nothing else.
Cohen named this attack an honest re-encryption attack (HRA) and found that
a published work [24] is vulnerable to HRA and studied a property, re-encryption
simulatability, for upgrading CPA-secure PRE to an HRA-secure one.

1.1 Research Questions

HRA security is becoming a new standard for PRE schemes. We found many
lattice-based PRE schemes [11, 17, 27, 30] are constructed and proved secure in
the HRA game. However, there is no existing work addressing the reduction from
HRA to CCA, although the CCA game is seemingly stronger. The initial study
shows that those two security notions are probably incompatible [10]. Therefore,
this paper aims to address the following question:

Can we reduce the HRA to CCA for PRE?

Single-hop PREs are sufficient for many applications [2, 23, 29, 31], and col-
lusion resistance is a desirable security property for protecting the first-level
ciphertext (that cannot be re-encrypted more). We also found that some PRE
schemes proved HRA-secure suffers collusion [10,11,26] in the single-hop setting,
where a proxy and a delegatee conspire to compute the delegator’s secret (secret
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key or messages that are unwilling to disclose). Therefore, this paper tries to
work out the second question:

How to generically construct collusion-resist HRA single-hop PRE?

1.2 Related Works

Nuñez, Agudo, and Lopez [21] defined a framework for systematically classify-
ing PRE schemes according to the oracle access period in the security model.
More specifically, compared with basic CPA security, “full” CCA security pro-
vides decryption and re-encryption oracles for the adversary. Those two oracles
are accessible before the challenge or always accessible, according to the specifi-
cations of the security game. They use two subscripts to indicate the time when
these two oracles are accessible. For example, CCA1,2 means the decryption or-
acle is accessible before the challenge (only phase 1), and the re-encryption is
always accessible (both phase 1 and phase 2); therefore, CCA2,2 represents the
full CCA game (all oracles are accessible in all phases), and CCA0,0 represents
the basic CPA game (no re-encryption and decryption oracles). One of their
results is that the decryption oracle is simulatable by the re-encryption oracle
in multi-hop PREs, i.e., CCA0,2 is equivalent to CCA2,2. However, this frame-
work was designed before the HRA security model; it tells nothing about the
relationship between HRA and CCA security.

Contrary to some functions of proxy application scenarios, a CPA secure
PRE might enable the delegatee to obtain the secret key of the delegator. Cohen
[9, 10] proposed an HRA security game for capturing this potential threat from
the curious delegatee. HRA security is not needed when the delegation mode
is “all or nothing”, i.e., once the delegator agrees to transfer the decryption
rights, all ciphertexts should be decryptable by the designated delegatee. But if
this authorization needs to be really re-encrypted by the proxy, HRA plays a
role. This characteristic, protecting un-re-encrypted ciphertext, is similar to the
notion of master secret security [2]. However, master secret security describes the
security of the delegator’s secret key after collusion between proxy and delegatee,
so this notion is parallel to an honest re-encryption attack.

Since HRA is a popular model for PRE, it is desirable to construct the
generic transformation from HRA to CCA. To the best of our knowledge, al-
though the re-encryption oracle in HRA is similar to the CCA’s, except the
HRA game forbids adversarial re-encryption, there is no generic transforma-
tion toward CCA security. Recently, Sato and Shikata [25] studied the prob-
lem and proposed two generic transformations from a CPA-secure PRE to a
bounded CCA-secure one. They borrowed the design idea of the first CCA-secure
PRE [7], which further stemmed from the concept of CCA-secure identity-based
encryption [6]. They applied their transformation to a CPA-secure PRE based on
CRYSTALS-Kyber [5] (Kyber’s IND-CPA-secure encryption, not the Fujisaki-
Okamoto [14] transformed one). Before their generic transformation, Nuñez,
Agudo, and Lopez [22] studied the same transformation from CPA to CCA,
but they only got a weaker form from CCA0,1 to CCA2,1. They also investigated



4 H. Yin et al.

the infeasibility of directly applying a generic transformation from traditional
PKE (such as the Fujisaki-Okamoto transform) on PRE schemes.

Many PRE schemes [11, 13, 19, 26, 27, 29, 30] are proposed under the HRA
security model. Even though the post-quantum and bounded CCA-secure PRE
from generic transformations is proposed [25], no analysis is conducted on the
relationship between the HRA and CCA security. Is the CCA security really
incompatible with the HRA security as Cohen initially studied [9]? Do we also
need to prove that a CCA-secure PRE is also HRA-secure? Our answers are
both negative.

Zhao et al. [28] are concerned with collusion due to the semi-trust third-party
proxy. But their PRE is multi-hop; to the best of our knowledge, we believe that
collusion in the context of PRE (between the proxy and the delegatee) is not
applicable to multi-hop scenarios. The collusion resistance was first defined by
Ateniese et al. [2]. We found some HRA-secure single-hop PRE schemes [10,11,
26] are vulnerable to collusion attacks.

1.3 Contribution

For the first research question, we will discuss the solution in two cases: single-hop
PRE and multi-hop PRE. The number of re-encryptions a scheme can perform
will affect whether the game simulation can be run flawlessly and the types of
ciphertext that can be queried (to prevent trivial attacks). We found that the
HRA game can be reduced to the CCA game losslessly since the definition for the
derivative of challenge ciphertext is equivalent in a single-hop setting. We just
need to simulate the re-encryption in the multi-hop security game to finish the
reduction. For the second research question, we will design a generic construction
to provide collusion resistance based on the idea of [2]. The contribution can be
concluded as follows:

– Reducing HRA security to CCA security perfectly.
– Constructing a generic transformation for CPA/HRA secure PRE with col-

lusion resistance at the cost of doubling the key length.

1.4 Road map

The rest of this paper is organized by the following sections: Section 2 gives
the preliminary knowledge; Section 3 reduces HRA to CCA security; Section 4
constructs the generic transformation for providing collusion resistance; Section
5 provides some future works.

2 Preliminaries

This section introduces the PRE definitions and security notions.
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2.1 Proxy Re-Encryption

We first adapt the definition for multi-hop PRE schemes [7].

Definition 1 (Multi-hop PRE scheme). A multi-hop proxy re-encryption
scheme mhPRE is a tuple of algorithms (Setup,KeyGen,ReKeyGen,Enc,ReEnc,Dec) :

– Setup → pp. The setup algorithm outputs a public configuration/parameter
pp, which serves as an implicit input of the following algorithms.

– KeyGen → (pki, ski). The key generation algorithm outputs a pair of public
and secret keys (pki, ski) for user i.

– ReKeyGen(pki, ski, pkj)→ rki→j. On input the pair of public and secret keys
(pki, ski) for user i and the public key pkj for user j, the re-encryption key
generation algorithm outputs a re-encryption key rki→j.

– Enc(pki,m) → cti. On input a public key pki and a message m ∈ M, the
encryption algorithm outputs a ciphertext cti.

– ReEnc(rki→j , cti)→ ctj . On input a re-encryption key from i to j rki→j and
a ciphertext cti, the re-encryption algorithm outputs a ciphertext ctj or the
error symbol ⊥.

– Dec(skj , ctj)→ m. Given a secret key skj and a ciphertext ctj, the decryption
algorithm outputs a message m ∈M or the error symbol ⊥.

Based on the above multi-hop setting, we define the single-hop PRE [2] by in-
troducing additional encryption and decryption algorithms to restrict the re-
encryption depth.

Definition 2 (Single-hop PRE scheme). A single-hop proxy re-encryption
scheme shPRE is a tuple of algorithms (Setup,KeyGen,ReKeyGen,Enct,ReEnc,Dect)
where t ∈ {1, 2}:
– Setup→ pp. Same as the multi-hop setting.
– KeyGen→ (pki, ski). Same as the multi-hop setting.
– ReKeyGen(pki, ski, pkj)→ rki→j. Same as the multi-hop setting.
– Enc1(pki,m) → cti. On input a public key pki and a message m ∈ M,

the encryption algorithm outputs a first-level ciphertext cti. This ciphertext
cannot be re-encrypted.

– Enc2(pki,m) → cti. On input a public key pki and a message m ∈ M, the
encryption algorithm outputs a second-level ciphertext cti. This ciphertext
can be re-encrypted to a first-level ciphertext.

– ReEnc(rki→j , cti)→ ctj . On input a re-encryption key from i to j rki→j and
a second-level ciphertext cti, the re-encryption algorithm outputs a first-level
ciphertext ctj or the error symbol ⊥.

– Dec1(skj , ctj) → m. Given a secret key skj and a first-level ciphertext ctj,
the decryption algorithm outputs a message m ∈M or the error symbol ⊥.

– Dec2(skj , ctj)→ m. Given a secret key skj and a second-level ciphertext ctj,
the decryption algorithm outputs a message m ∈M or the error symbol ⊥.

Note that our definition of ciphertext follows the initial definition of Ateniese et
al. [2] (second-level ciphertext can be re-encrypted to a first-level one), different
from Zhou et al. [31] (opposite to ours). This is just a difference in naming, they
are essentially equivalent definitions.
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2.2 Security Notions

The main differences between models are the definition of trivial attacks and
oracles. Trivial attacks are captured by the rejection condition of oracles, e.g., a
decryption query to the challenge ciphertext should be rejected by the decryption
oracle. Stronger models usually equip more powerful and prolific oracles, which
provide the adversary with more information and fewer restrictions.

We first describe the security game for Honest Re-encryption attacks [10].

Definition 3 (Security Game for HRA). Let λ be the security parameter
and A be an oracle Turing machine. HRA game consists of an execution of A
with the following oracles:
Phase 1:

– Setup: The public parameters are generated and given to A. A counter numKeys
is initialized to 0, and the sets Hon (of honest, uncorrupted indices) and Cor
(of corrupted indices) are initialized to be empty. Additionally, the following
are initialized: A counter numCt to 0, a key-value store C to empty, and a
set Deriv to be empty. This oracle is executed first and only once.

– Honest Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and give pknumKeys to A. The current value of numKeys is added
to Hon and numKeys is incremented.

– Corrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and give the key pair to A. The current value of numKeys is
added to Cor and numKeys is incremented.

Phase 2: For each pair i, j ≤ numKeys, compute the re-encryption key rki→j ←
ReKeyGen(ski, pkj).

– Re-encryption Key Generation OReKeyGen : On input (i, j) where i, j ≤ numKeys,
if i = j or if i ∈ Hon and j ∈ Cor, output ⊥. Otherwise return the re-
encryption key rki→j .

– Encryption OEnc: On input (i,m), where i ≤ numKeys, compute ct← Enc(pki,m)
and increment numCt. Store the value ct in C with key (i, numCt). Return
(numCt, ct). This oracle takes extra identifier for specifying the encryption
algorithm in single-hop settings.

– Challenge Oracle: On input (i,m0,m1) where i ∈ Hon and m0,m1 ∈M, sam-
ple a bit b ← {0, 1} uniformly at random, compute the challenge ciphertext
ct∗ ← Enc(pki,mb) (use Enc2 for single-hop PREs), and increment numCt.
Add numCt to the set Deriv. Store the value ct∗ in C with key (i, numCt).
Return (numCt, ct∗). This oracle can only be queried once.

– Re-encryption OReEnc: On input (i, j, k) where i, j ≤ numKeys and k ≤
numCt, if j ∈ Cor and k ∈ Deriv return ⊥ . If there is no value in C
with key (i, k), return ⊥ . Otherwise, let cti be that value in C, let ctj ←
ReEnc(rki→j , cti), and increment numCt. Store the value ctj in C with key
(j, numCt). If k ∈ Deriv, add numCt to the set Deriv. Return (numCt, ctj).

Phase 3:
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– Decision: On input a bit b′ ∈ {0, 1}, return win if b = b′.

The HRA advantage of A is defined as

AdvAhra(λ) = Pr[win],

where the probability is over the randomness of A and the oracles in HRA game.

To facilitate reduction, we modify the formalization of CCA security model
[7]. We dropped the decryption oracle since the reduction does need this oracle
(in [21]’s nomenclature, our CCA model is CCA0,2). The definition of derivatives
of the challenge is adapted in that we use the indices of users and ciphertexts
but not their value. In addition, we use a set Deriv to store the derivatives of the
challenge just like HRA game.

Definition 4 (Security Game for CCA). Let λ be the security parameter
and A be an oracle Turing machine. CCA game consists of an execution of A
with the following oracles, which can be invoked in any order, subject to the
constraints below:
Phase 1:

– Setup: The public parameters are generated and given to A. Counters numKeys
and numCt are initialized to 0, the sets Hon, Cor and Deriv are initialized to
be empty, and key-value stores Deriv, ReKeys, and C to be empty. This oracle
is executed first and only once.

– Honest key generation: Obtain a new key pair (pknumKeys, sknumKeys)← KG(pp)
and give pknumKeys to A. The current value of numKeys is added to Hon and
numKeys is incremented.

– Corrupted key generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KG(pp) and given to A. The current value of numKeys is added to Cor and
numKeys is incremented.

Phase 2:

– Re-encryption Key Generation OReKeyGen : On input (i, j) where i, j ≤ numKeys,
if i = j or if i ∈ Hon and j ∈ Cor, output ⊥. If OR has not been ex-
ecuted on input (i, j), i.e., (i, j) /∈ ReKeys, compute and store rki→j ←
ReKeyGen(ski, pkj). Output the re-encryption key rki→j. Add ((i, j), rki→j)
to ReKeys.

– Challenge Oracle: On input (i,m0,m1) where i ∈ Hon and m0,m1 ∈M, sam-
ple a bit b ← {0, 1} uniformly at random, compute the challenge ciphertext
ct∗ ← Enc(pki,mb) (use Enc2 for single-hop PREs), and increment numCt.
Add (i, numCt) to set Deriv. Store the value ct∗ in C with key (i, numCt).
Return (numCt, ct∗). This oracle can only be queried once.

– Re-encryption OReEnc: On input (i, j, k) where i, j ≤ numKeys and k ≤
numCt. If j ∈ Cor and (i, k) ∈ Deriv, return ⊥. Let ctj ← ReEnc(rki→j , cti),
and increment numCt. If

(i, k) ∈ Deriv, (1)
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or
(i, j) ∈ ReKeys ∧ Dec(j, ctj) ∈ {m0,m1} ∧ (i, ⋆) ∈ Deriv, (2)

add (j, numCt) to Deriv. Return (numCt, ctj).

Phase 3:

– Decision: On input a bit b′ ∈ {0, 1}, return win if b = b′.

The CCA advantage of A is defined as

AdvAcca(λ) = Pr[win],

where the probability is over the randomness of A and the oracles in CCA game.

Remark 1 (Subtle about the formalization of HRA and CCA games). In the CCA
game, we use key-value store Deriv, in which we only store the ciphertext iden-
tifier in the HRA game. The reason is that the definition of derivatives requires
both the ciphertext and the owner of the encryption key. This makes sense
because a wrong-paired re-encryption query should give no advantage to the ad-
versary (given legal challenge (i∗, k∗), query ReEnc(i, j, k∗), where i ̸= i∗). This
kind of query is forbidden in the HRA game because only owner-ciphertext pairs
that are generated honestly from Enc oracle might be accepted by ReEnc. This
difference does not affect our reduction from HRA to CCA security.

Remark 2 (Phases of CCA game). We define the CCA game in phases similar to
the HRA game to provide a convenient reduction. The original CCA definition
has no phases. However, this modification does not weaken our definition since
both models have selective corruption (our model has selective “key generation”).
The only difference between the two models is whether the adversary must query
key generations before other queries. Since the adversary runs within probabilis-
tic polynomial time, we can prepare polynomially many key pairs to simulate the
“adaptive key generation”. Or, we can remove the predestined number of honest
and corrupted users by a simple machine in Appendix A. Also, this paper does
not discuss the adaptive corruption [13,17].

The adapted definition4 for derivatives of the challenge (pk∗, ct∗) is defined
inductively as the following rules:

1. (pk∗, ct∗) is a derivative of itself.
2. If (pk, ct) is a derivative of (pk∗, ct∗) and (pk′, ct′) is a derivative of (pk, ct),

then (pk′, ct′) is a derivative of (pk∗, ct∗).
3. If A has issued a re-encryption query (pk, pk′, ct) and obtained a ciphertext

(ct′) as a response, then (pk′, ct′) is a derivative of (pk, ct).
4. IfA has issued a re-encryption key generation query (pk, pk′), and Dec(pk′, ct′) ∈
{m0,m1}, then (pk′, ct′) is a derivative of (pk, ct) fo all ct.

4 In original paper [7], the derivatives of the challenge are defined for bidirectional
PRE.
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Next, we will show that our adaptation and formalization are proper, i.e.,
they are equivalent. We claim the above inductive definition restricts the same
queries as the CCA game in the Definition 4. For each rule,

– Rule 1: This is equivalent when we add the current ciphertext identifier and
challenge ciphertext to Deriv in the challenge oracle;

– Rule 2&3: We add the derivative pairs to Deriv that satisfy the assertion (1);
– Rule 4: This is the most complex one. We first check if the corresponding

re-encryption key is queried ((i, j) ∈ ReKeys), then if the decryption is one of
the challenge messages ((j, ctj) ∈ {m0,m1}), and if any delegator’s ciphertext
is a derivative of the challenge ((i, cti) ∈ Deriv), then we put (j, numCt) in
Deriv. This is exactly what the conjunction (2) expresses.

3 Reduction from HRA to CCA Security

We use two lemmas to build the main theorem. For simplicity, we use the notation
G.O to indicate the oracle O of game G.

3.1 Reduction for Single-Hop PRE

Lemma 1 (CCA ⇒ HRA for Single-Hop PRE). For a single-hop PRE, the
security defined by the CCA game implies the security defined by the HRA game.

Proof. Suppose there is an HRA adversary A such that AdvAhra(λ) ≥ 1/poly(λ) for
some polynomial function poly(λ), we will show that there exists an adversary
B who wins the CCA game with same probability.

– On setup oracle query, B calls its CCA setup oracle, and maintains numKeys,
Hon, Cor, numCt, Deriv, and C for A.

– On honest, corrupted, and re-encryption key generation oracles queries, B
can perfectly simulate them by calling its own CCA oracles.

– On encryption oracle queries, B computes the ciphertext locally by and be-
haves just like oracle HRA.OEnc.

– On challenge oracle query, B transfers the input of A to its own challenge
oracle and returns what the challenge ciphertext from the query with the
identifier numCt maintained by B.

– On re-encryption oracle with query (i, j, k), B checks if the key pairs of user
i and j are generated and if the ciphertext is generated via the encryption
oracle HRA.OEnc by checking local store C. We claim that CCA.OReEnc accepts
the query if HRA.OReEnc accepts the query. Next, we check the condition
where those two re-encryption oracles would reject the query. The single-
hop setting makes the two assertions (1)(2) redundant since the ciphertext
cannot be re-encrypted more than once. Therefore, the ciphertext in Deriv
that is being re-encrypted could only be the challenge ciphertext. So, there is
no need to check if the input ciphertext is a derivative of the challenge except
for the challenge ciphertext itself. The oracle CCA.OReEnc will reject query
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(i, j, k) where (i, k) is the challenge and j ∈ Cor. The oracle HRA.OReEnc will
reject any query (i, j, k) such that j ∈ Cor∧ k ∈ HRA.Deriv or (i, k) /∈ C. Let
the challenge ciphertext identifier be k∗, and the challenge user is i∗; their
acceptance is shown in Table 1.

Table 1. Acceptance between re-encryption oracles of HRA and CCA

i j k CCA.OReEnc HRA.OReEnc

Case 1 = i∗ ∈ Cor = k∗ Reject Reject
Case 2 ∈ Hon ∈ Cor = k∗ Accept Reject
Case 3 ∈ Cor ∈ Cor = k∗ Accept Reject

The above three cases show that the CCA.OReEnc accepts more queries than
HRA.OReEnc when the ciphertext is the challenge, where only Case 1 both
oracles reject because the query is identified as an illegal re-encryption of
the challenge’s derivative (see Remark 1 for Case 2 and Case 3). Therefore,
B can use its own CCA.OReEnc to perfectly simulate HRA.OReEnc.

– On the decision oracle, B transfers the input of A to its own decision oracle.

In conclusion, B perfectly simulates the HRA security game for A, i.e., AdvBcca ≥
AdvAhra. □

This result shows that, in a single-hop setting, although CCA has a seemingly
over-inclusive definition of derivatives [9, Appendix B.2], the actual restriction
is the inverse (in Table 1, HRA.OReEnc rejects more queries). This result partially
answers the unsolved question of whether CCA security implies HRA security:
in single-hop setting, CCA security actually implies HRA, without re-encryption
simulatability (a reduction chain from the facts that CCA ⇒ CPA, and a CPA-
secure and re-encryption simulatable PRE is HRA secure [10, Theorem 5]).

3.2 Reduction for Multi-Hop PRE

In Canetti and Hohenberger’s original CCA security game [7], the re-encryption
oracle rejects all ciphertexts that could possibly be re-encrypted from the chal-
lenge. The HRA game uses Enc oracle records the honest encrypted ciphertext
that can be re-encrypted, no matter whether the encrypted message is the chal-
lenge message or not. This difference also stops the initial reduction by Co-
hen [9, Appendix B.2].

In our reduction, we found that those rejected ciphertexts by CCA are simu-
latable.

Lemma 2 (CCA⇒ HRA in Multi-Hop Setting). For a multi-hop PRE, the
security defined by the CCA game implies the security defined by the HRA game.

Proof. This reduction is analogous to Lemma 1 for single-hop setting. B will
simulate a HRA security game for adversary A with winning probability greater
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than 1/poly(λ) for some polynomial poly. We omit the simulation of setup, key
generation, encryption, challenge, and decision oracles, cause those oracles are
simulatable by B with its CCA oracles.

– On re-encryption oracle with query (i, j, k), B rejects with ⊥ if j ∈ Cor and
k ∈ Deriv. If (i, k) /∈ C, B also rejects and return ⊥. Otherwise, B find the
value cti with indices k. We only care about the situation when HRA.OReEnc

accepts while CCA.OReEnc rejects. The second assertion (2) of CCA.OReEnc

bring extra ciphertexts into CCA.Deriv compared with HRA.Deriv. More
specifically, A can re-encrypt other encryptions of the challenge messages
as long as those encryptions were generated independently from the chal-
lenge ciphertext in HRA game. Fig. 1 shows the difference between those
two oracles’ acceptance.

Challenge oracle

and

Fig. 1. Acceptance example of CCA.OReEnc and HRA.OReEnc. In particular, denotes
the oracles; denotes the ciphertexts that are in Deriv for both CCA.OReEnc and
HRA.OReEnc; denotes the ciphertexts that are in CCA.Deriv but not HRA.Deriv;

denotes the simulated ciphertexts

In this figure, ct0 is a ciphertext of a challenge message that some user of
Deriv honestly encrypts; ct1 is a derivative in CCA.Deriv because its gener-
ation (from ct0 to ct1) satisfies the assertion (2); therefore, ct2 can only be
generated via HRA.ReEnc, i.e., the query (i′, j, ct1) will be rejected by oracle
CCA.ReEnc. We can simulate ct2 by ct′2, which can be legally generated by
oracle CCA.ReEnc.

This simulation of re-encryption will work because ReKeyGen(i, j′) will be
rejected since the game rejects re-encryption key generation from an honest user
to a corrupted user; therefore, this promises the output of the re-encryption
oracle, ct′1, will not be recognized as a derivative of the challenge ciphertext.

Therefore, a CCA adversary B can successfully simulate the HRA security
game for A perfectly. □

Remark 3 (Indistinguishability of the simulated ciphertext). An implicit assump-
tion in the proof is that the ciphertext under the same public key and the same
message is indistinguishable. We omitted to claim it explicitly since it is naturally
captured by the basic security of PRE. More precisely, user j (or the adversary
A) is given ct′2 = ct2 if the re-encryption algorithm is deterministic; otherwise,
given the randomness of ct′2, user j (or the adversary A) still cannot distinguish
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if ct′2 is re-encrypted from ct1 or ct′1 without the randomness of those two ci-
phertexts (and/or the randomness of the re-encryption algorithm). This can be
formalized as a simulation algorithm ReEncSim with only public information (no
secret key and no message) as inputs. A much weaker assumption compared to
re-encryption simulatability [10].

This proof shows some connection to replayable CCA [8], see Appendix B.

3.3 Summary of Reductions

Now, we can claim our main theorem.

Theorem 1 (CCA⇒ HRA). A CCA-secure PRE is also HRA-secure.

In summary, we obtain the diagram for the relations between security models
in Figure. 2.

Theorem 1

Theorem 5 of [11]
and re-encryption simulatability

Fig. 2. Summary of our reduction. Our new theorem provides a new reduction that
replaces the original reductions from Cohen [10] indicated by gray arrows

4 Collusion Resistant PRE

Collusion resistance (CR) is an entirely different security notion from HRA se-
curity. It provides protection for the ciphertext against the adversary who ob-
tained both the delegatee’s secret key and the re-encryption key. Honest re-
encryption attack security ensures the delegatee (adversarial) can only decrypt
the re-encrypted ciphertext.

4.1 Definition

We adapt the definition of collusion-safety from [31] to a selective corruption
model.
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Definition 5 (Security Game for CR). Let λ be the security parameter and
A be an oracle Turing machine. CR game consists of an execution of A with the
following oracles:

– Setup: The public parameters are generated and given to A. A counter numKeys
is initialized to 0, and the sets Hon and Cor are initialized to be empty. This
oracle is executed first and only once.

– Honest Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and give pknumKeys to A. The current value of numKeys is added
to Hon, and numKeys is incremented.

– Corrupted Key Generation: Obtain a new key pair (pknumKeys, sknumKeys) ←
KeyGen(pp) and give the key pair to A. The current value of numKeys is
added to Cor, and numKeys is incremented.

– Re-encryption Key Generation OReKeyGen: On input (i, j) where i, j ≤ numKeys,
if i = j, output ⊥. Otherwise return the re-encryption key rki→j ← ReKeyGen(ski, pkj).

– Challenge Oracle: On input (i,m0,m1) where i ∈ Hon and m0,m1 ∈M, sam-
ple a bit b ← {0, 1} uniformly at random, compute the challenge ciphertext
ct∗ ← Enc1(pki,mb). Return ct∗. This oracle can only be queried once.

– Decision: On input a bit b′ ∈ {0, 1}, return win if b = b′.

The CR advantage of A is defined as

AdvAcr = Pr[win],

where the probability is over the randomness of A and the oracles in CR game.

Remark 4 (Leveled ciphertexts). The challenge oracle returns a first-level cipher-
text (cannot be re-encrypted) in the CR game, and all re-encryption key gener-
ations are queryable to A. This game captures the situation when a corrupted
user conspires with the proxy, the first-level ciphertext is still indistinguishable.

4.2 Collusion Attacks

Next, we will show that those schemes are not collusion-resistant. In order to
grasp the main idea and facilitate presentation, we ignore the details of the
scheme design and settings, such as parameters and dimensions.

PRE from FHE Cohen [10] proved the PRE from fully homomorphic encryp-
tion (FHE) [15] with property circuit privacy.

Let FHE := (Setup,KeyGen,Enc,Dec,Eval) be an FHE scheme, the re-encryption
key generation algorithm is defined as

ReKeyGen(ski, pkj)→ rki→j := Enc(pkj , ski)∥pkj .

In a CR game, the adversary can get the rki→j to some corrupted user j via
OReKeyGen and decrypt the ciphertext Enc(pkj , ski) with secret key skj to get
ski. Since this is all secret user i has, all its ciphertexts are decryptable to the
adversary.
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PRE from LWE Susilo et al. [26] designed an HRA-secure and attribute-based
PRE from the learning with errors (LWE) assumption. Different from the other
trapdoor-based schemes [12,30,31] (sampling short matrix using the trapdoor),
their re-encryption key are a kind of encryption of the secret key.

We briefly introduce the trapdoor generators and related algorithms here.
Let G be the gadget matrix and TG be the basis of Λ⊥

q (G) [20]:

1. Randomized trapdoor generation algorithm TrapGen(n,m, q) → (A,TA),
where A is a close-to-uniform matrix in Zn×m

q , and TA is a basis of Λ⊥
q (A).

2. Trapdoor delegation algorithm ExtendRight(A,TA,B) → T(A|B), where B

is full-rank matrix, and T(A|B) is a of Λ⊥
q (A|B).

3. Trapdoor generation from the gadget matrix ExtendLeft(A,G,TG,R) →
TM, where M = (A|G+AR), TM is a basis of Λ⊥

q (M).
4. Sampling algorithm SampleD(A,TA,U)→ X, where X satisfies AX = U.
5. Re-randomizing trapdoor algorithm RandBasis(A,TA) → T′

A, where T′
A a

basis of Λ⊥
q (A).

For x ∈ Zq,B ∈ Zn×m
q , s ∈ Zn

q , define

Es(x,B) := {(xG+B)⊤s+ e ∈ Zm
q }.

Let F = {f : Zℓ
q → Zq} be the key policy function family, x = (x1, x2, . . . , xℓ)

be the attribute vector, the ciphertext are decryptable using skf such that f(x) =
0. The evaluation algorithm for FHE [4] are defined as:

1. Evalpk(f, {Bi}ℓi=1)→ Bf , where f ∈ F .
2. Evalct(f, {xi,Bi, cti}ℓi=1)→ ctf , where cti ∈ Es(xi,Bi), ctf ∈ Es(f(x),Bf ),Bf ←

Evalpk(f, {Bi}ℓi=1),x = (x1, . . . , xℓ).

Let P2 be the power-of-two algorithm takes a matrix s ∈ Zn
q , outputs (1, 2, . . . , 2ℓ)⊤⊗

s. PRE algorithms (Setup,KeyGen,ReKeyGen) are constructed as follows [26]:

– Setup(λ, ℓ)→ pp. Generate a matrix and its trapdoor (A0,TA0)← TrapGen(n,m, q);
choose ℓ+ 1 random matrices A1,A2, . . . ,Aℓ,U; output the public param-
eters pp := {A0,A1, . . . ,Aℓ,U,G} and the master key msk := TA0

.
– KeyGen(msk, f)→ skf . Evaluate Af ← Evalpk(f, {Ai}ℓi=1). Compute T(A0|Af ) ←

ExtendRight(A0,Af ,TA0
). Sample Rf ← SampleD

(
[A0|Af ],T(A0|Af ),U

)
.

Output the secret key skf := Rf for the policy f .
– ReKeyGen(skf , f, g) → rkf→g. Let Rf ← skf , select an attribute set y =

(y1, . . . , yℓ) such that g(y) = 0. Construct Hy := [A0 | y1G + A1 | · · · |
yℓG+Aℓ]. Choose uniformly random matrices R1,R2,R3. Construct the re-

encryption key rkf→g :=

[
(R1Hy +R2) (R1U+R3 − P2(Rf ))

0 I

]
. Output

(rkf→g,y).

Given (rkf→g,y) and Rg, the adversary can “decrypt” the Rf accordingly. Let
the i-th row of R1Hy+R2 be r⊤1,iHy+r⊤2,i, transpose it to H⊤

y r1,1+r2,1, and parse
the transpose to (ctin, ct1, . . . , ctℓ). Evaluate ctg ← Evalct(g, {yt,At, ctt}ℓt=1).
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Let ct′g ← [ctin | ctg]. For the i-th row of R1U+R3−P2(Rf ), let it’s transpose
be ctout, compute rf,i ← ctout−R⊤

g ct
′
g. Combine all rf,i’s, the adverary obtain

−P2(Rf )
⊤, and computes P2−1

((
P2(Rf )

⊤)⊤) to get the full secret key Rf for
policy f (with some rounding for canceling the noise).

PRE from RLWE Cohen et al. [11] designed a homomorphic PRE based on
BGV homomorphic encryption. Their re-encryption relies on the key-switching
mechanism. The re-encryption key an encryption of the delegator’s secret key:

ReKeyGen(ski, pkj) := Enc(pkj ,PW(ski)).

Therefore, the adversary can decrypt and invert the digit decomposition function
PW to get i’s secret key.

4.3 Generic Construction

CR can be achieved by a generic construction inspired by [2]. We generate two
pairs of keys, one for generating/decrypting the first-level ciphertext and the
other one for generating/decrypting the second-level ciphertext. This method
isolates the ciphertext from the first-level and second-level, rendering the collu-
sion attack infeasible.

Theorem 2. Given a CPA-secure single-hop PRE scheme PRE, there is a CR
and CPA-secure single-hop PRE scheme PRE′.

Proof. Let the CPA-secure single-hop PRE scheme be

PRE := (Setup,KeyGen,ReKeyGen,Enc1,Enc2,ReEnc,Dec1,Dec2).

We construct the scheme

PRE′ := (Setup′,KeyGen′,ReKeyGen′,Enc′1,Enc
′
2,ReEnc

′,Dec′1,Dec
′
2)

from PRE:

– Setup′ := Setup.
– KeyGen′ → (pki, ski). Run twice KeyGen to get two key pairs (pk(1)i , sk

(1)
i ), (pk

(2)
i , sk

(2)
i ),

return (pki, ski)←
(
(pk

(1)
i , pk

(2)
i ), (sk

(1)
i , sk

(2)
i )

)
.

– ReKeyGen′(pki, ski, pkj)→ rki→j . Parse
(
(pk

(1)
i , pk

(2)
i ), (sk

(1)
i , sk

(2)
i )

)
← (pki, ski),

(pk
(1)
j , pk

(2)
j ) ← pkj . Compute rk

(2→1)
i→j ← ReKeyGen(pk

(2)
i , sk

(2)
i , pk

(1)
j ), and

return rki→j ← rk
(2→1)
i→j .

– ReEnc′ := ReEnc,Enc′1 := Enc1,Enc
′
2 := Enc2,Dec

′
1 := Dec1,Dec

′
2 := Dec2.

It follows immediately that, PRE′ is CPA-secure if PRE is CPA-secure.
Next, we reduce the security of CPA to the security of CR. Given a CR ad-

versary A, CPA adversary B simulates a CR game for it:
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– Setup: The same as B’s own CPA setup oracle. B maintains a local key-value
store Keys for key pairs.

– Honest Key Generation: B calls its CPA honest key generation oracle and
gets pk′. Then, B generates another key pair (pk′′, sk′′) by itself and set pk←
(pk′, pk′′), sk ← (⊥, sk′′). The current value of numKeys is added to Hon,
(numKeys, (pk, sk)) is added to Keys, and numKeys is incremented. Return
(numKeys, pk).

– Corrupted Key Generation: Similar to honest key generation. B calls its CPA
corrupted key generation oracle and gets (pk′, sk′) and generates (pk′′, sk′′)
by itself. Set pk← (pk′, pk′′), sk← (sk′, sk′′). The current value of numKeys is
added to Cor, (numKeys, (pk, sk)) is added to Keys. Return (numKeys, (pk, sk)).

– OReKeyGen: On input (i, j) where i, j ≤ numKeys, if i = j, output ⊥. Other-
wise, find key pairs of i and j in Keys and parse the keys

(
(pk

(1)
t , pk

(2)
t ), (sk

(1)
t , sk

(2)
t )

)
←

(pkt, skt), where t ∈ {i, j}. B computes the re-encryption key locally by
ReKeyGen(pk

(2)
i , sk

(2)
i , pk

(1)
j ) and returns the result.

– Challenge Oracle: B relays the input from A and the response from CPA’s
challenge oracle.

Once A calls the decision oracle, B outputs what A inputs. The simulation is
perfect. □

Remark 5. CR security is only meaningful for single-hop settings. If the PRE
scheme is multi-hop, there is no second encryption algorithm since defining the
final delegation of ciphertext is hard. In the email forwarding system [3], where
the delegator’s ciphertexts are generated by the sender. So, this protection en-
ables the sender to decide whether the email sent can be re-encrypted/forwarded
to another user.

This construction applies to the HRA-secure schemes [10, 11, 26] since HRA
security implies CPA security, rendering them with CR at the cost of doubling
the public and secret key sizes.

5 Future Works

The existing generic construction from CPA-secure PRE to CCA-secure PRE [25]
is relatively inefficient in both key size and computation, and it is proved under
the bounded CCA model. It’s unknown if we can build a generic construction
from HRA-secure PRE to CCA-secure PRE, although the honest re-encryption
oracle in the HRA game [10] is the same as CCA-secure PRE except that the ci-
phertext can be adaptively chosen [7]. We must somehow enable the ciphertext’s
self-proved validity or be honestly constructed to provide a CCA secure PRE,
where the proxy can reject the invalid ciphertext for re-encryption [22]. Also,
there is no CCA secure and post-quantum secure PRE scheme (CCA1-secure
PRE of [18] has a flaw in its proof; CCA-secure PRE in [12] uses a non-standard,
tag-based CCA security model). Constructing a CCA and post-quantum secure,
efficient PRE is a promising future work.
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A Transform Machine for Adaptive Key Generation

We show how to construct a B with two-phase CCA games to simulate an un-
phased CCA game to any adversary A by replicating the state of CCA. More
specifically, B maintains two copies of a phased CCA machine, CCA0 and CCA1,
with the same state and randomness in the beginning. B will simulate an un-
phased CCA game upCCA that is identical to CCA, but the adversary is allowed
to query user key generation oracles adaptively. Then, B starts HRA0 machine
and A to proceed the reduction. When B receives the first non-key generation
query, it copies the state of CCA0 to CCA1, CCA0 enters phase 2, and deals with
the query on CCA0. Afterward, when the next key generation query is received,
B generates this key on CCA1 and keeps dealing with key generation queries on
this machine. When the next non-key generation query is received, B copies the
state of CCA1 to CCA0 (the previous state will be overwritten), executes all non-
key generation queries on CCA1, and keeps dealing with key generation queries
on this machine. When the next key generation query is received, B switches to
CCA0 and proceeds with a similar operation. We assume the oracles are with
independent randomness as input, rendering this switching feasible. The Fig. 3
shows the state machine transition process.

Setup

Start

Phase 1
Decision

 Phase 2

 Phase 1

Decision

 Phase 2

End

Fig. 3. Simulation of un-phased upCCA with two-phased CCA. In particular, query
denotes the type of oracle query from a upCCA adversary, ΩKeyGen is a set comprised of
honest and corrupted key generation oracle, and ΩOthers = {OReKeyGen,OReEnc,OChallenge}.
Only one machine is active at a time, and every query in ΩOthers are loaded in a ordered
local store SOthers. The replication between CCA0 Phase 1 and CCA1 Phase 1 is triggered
by a query query ∈ ΩOthers; the replica will proceed to the next phase and execute queries
that were previously loaded in SOthers, and finally execute the trigger query. When any
machine is in phase 2, any key generation query will cause it to terminate and continue
key generation in phase 1 on another machine
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B Replayable CCA

The definition of the CCA game for PRE [7] was inspired by the relaxation of
CCA security for PKE [8], so-called replayable CCA. In a relaxed CCA game,
the decryption oracle rejects any ciphertext decryption if the obtained plaintext
is in {m0,m1}. This captures the intuition that the ability to generate different
ciphertexts that decrypt to the same values as a given ciphertext should not
help the adversary win the game. In this aspect, we know that relaxed CCA is
strictly weaker than CCA. However, relaxed CCA security is adequate for most
typical encryption applications, e.g., non-interactive secure communication, key
exchange and authenticators, and hybrid encryption. The main reason behind
the usage is that the security of those applications stems from the secrecy of
the plaintext but not the ciphertext strings. For the common applications of
HRA-secure PRE, e.g., encrypted email forwarding, allowing multi-ciphertext
generation on the same message harms nothing if the encryption algorithm is
probabilistic (a ciphertext from a deterministic encryption algorithm is distin-
guishable in even CPA game). This is more of a model difference and does not
reflect a real weakness or attack. Our proof also confirms that this relaxation
does not pose a real threat because they can be transformed into each other
through a perfect simulation.
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