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Abstract. We present concrete techniques for adapting the protocols
of Mohassel et al (CCS 2020) and Badrinarayanan et al (CCS 2022) for
compute SQL-like querying operations on secret shared database tables
to the two party setting. The afore mentioned protocols are presented
in a generic setting with access to certain idealized functionalities, e.g.
secret shared permutations. However, they only instantiate their proto-
cols in the honest majority three party setting due to other settings being
considered too inefficient. We show that this is no longer the case. In par-
ticular, the recent work of Peceny et al. (eprint 2024) gives a concretely
efficient two party permutation protocol. Additionally, we give a new and
highly efficient protocol for evaluating the strong PRF recently proposed
by Alamati et al. (Crypto 2024). Building on these advancements, along
with a variety of protocol improvements and significant cryptographic
engineering, our open source implementation demonstrate concretely ef-
ficient two party SQL-like querying functionality on secret shared data.
We focus on the two party setting with secret shared input and output
tables. The first protocol ΠJoin-OO is designed for the setting where the
join keys are unique, similar to Private Set Intersection (PSI) except
that the inputs and output are secret shared. This protocol is constant
round and O(n) running time. The secret protocol ΠJoin-OM allows one
of the tables to contain repeating join keys. Our instantiations achieves
O(n logn) running time and O(logn) rounds of interaction.

1 Introduction

In this work we focus on performing composable SQL-style join operations on
secret shared input databases in the semi-honest two-party setting. Given two
secret shared database tables, our protocols constructs a secret shared table con-
taining a join of the two tables. These protocols reveal no information about the
underlying databases apart from the number of rows they contain and informa-
tion about the schema.

The first protocol is the most efficient but is restricted to the setting where
both tables are being joined on unique primary keys. The advantage of this ap-
proach is that the protocol executes in constant round and with linear overhead.
The second protocol allows one of the tables to contain duplicate join keys. This
added flexibility comes at the cost of a overall running time of O(n log n) and
O(log n) rounds to join two tables with n rows. Compared to prior works [4,30],
our protocols are conceptually very similar with the main innovation being the



ability to efficiently instantiate them in the two party setting, as opposed to
the honest majority three party setting. Our innovations are predicated on the
recent improvements to two party secure permutations [32].

In recent years, numerous exciting works [10,11,20–23,30,31,33–36,38,40,41]
have focused on private computation tasks such as set intersection, union, in-
ner join, secret sharing of set intersections, and related functionalities, showing
strong potential for practical deployment. Most of these works target the special-
ized scenario of private set intersection (PSI), which essentially reveals the full
result of an inner join. However, real-world applications often demand a broader
set of properties:

– Running any join/functionality without revealing the full result, thus en-
abling further joins, filtering, or aggregate computations.

– Secret-shared inputs (since data might be the output of a prior MPC com-
putation).

– Support for non-unique keys, which is critical for real-world datasets.

Developing protocols that securely handle these general, composable SQL-
like operations—complete with secret-shared inputs, outputs, and potentially re-
peated join keys—is considerably more challenging, and existing PSI techniques
do not straightforwardly extend to this setting.

Our protocols fill this gap by ensuring that input and output data remain
secret-shared, which allows them to be chained together. The output of one join
can seamlessly serve as the input to the next, supporting sophisticated queries
and post-processing. This composability is crucial for practical use cases such as
privacy-preserving machine learning [14, 17, 29, 39, 43] , which typically assume
the training data is already joined and curated. Without our approach, it remains
unclear how to securely perform these intermediate filtering and joining steps
on real-world data.

Although earlier work [4] have addressed subsets of these challenges, we are
the first to achieve all of these properties in the two-party setting. Doing so
required substantial crypto-engineering to integrate diverse protocol components
efficiently. Our open-source code reflects years of optimization effort, right down
to leveraging SIMD instructions for maximum performance.

By supporting secret-shared inputs, our protocols also enable an outsourced
secure-computation model. In this approach, two (or more) non-colluding servers
are set up, and any input data—whether from these servers themselves or from
external parties—is secret-shared among them, preserving confidentiality. This
paradigm has been gaining traction in industry. For example, Mozilla recently
deployed a service to collect Firefox telemetry data [42] using two non-colluding
servers running the Prio protocol [13]. Additional use cases include privacy-
preserving machine learning frameworks such as Facebook’s Crypten for PyTorch
[17] and Cape Privacy’s FTEncrypted for TensorFlow [14], both of which leverage
secret-shared inputs.

Database Joins. We assume the two parties have constructed secret shared
table X,Y . Let us denote Xi, Yi as indexing the row i of X,Y respectively.
Let key(Xi) and key(Yi) denote the join key being joined on for the ith rows.



The result of a join should contain (Xi||Yj) for all i, j with matching keys, i.e.
key(Xi) = key(Yj). If it is known that {key(Xi)}i and {key(Yi)}i each do not
contain duplicates, we say the join is one-to-one. If one table can have duplicate
join keys, then the join is one-to-many. Finally, if both tables can contain dupli-
cates its a many-to-many join. In this work to focus on the most common case
of obliviously computing joins which have a one-to-one or one-to-many relation.
Let’s look at works that are closely related to ours.

Our Contributions

Our contributions can be summarized as follows:

– We are the first to present secure protocols for performing SQL-style join
operations on secret-shared databases in the two-party semi-honest setting,
covering both one-to-one and one-to-many join scenarios.

– Our protocols are extended to support a wide range of SQL-style queries, in-
cluding aggregate operations such as GROUP BY, AVERAGE, MIN, MAX,
and more. This extension allows for complex data analytics to be performed
securely on secret-shared data without revealing any sensitive information.

– We develop composable protocols where both the input and output tables
are secret-shared, enabling the integration of additional secret-shared com-
putations. This composability allows for executing subqueries and complex
query sequences, significantly enhancing the functionality and flexibility of
our protocols.

– We implement our protocols in the two-party honest-majority setting and
achieve running times competitive with existing n-party protocols. Notably,
we can complete a one-to-one join on two tables—each containing one million
(220) rows—in about two minutes.

2 Related Work

The last decade has seen tremendous improvements to our ability to efficiently
compute various private database operations such as set intersection, union, in-
ner join, secret-shares of set intersection and related functionalities, which have
shown great promise for practical deployment [4, 10, 11, 20–23, 30, 31, 33–36, 38,
40,41]. The bulk of the focus has been been private set intersection (PSI), where
there are two parties and each holds a set of identifiers. After the protocols
is executed, one of the parties learn the common identifiers and nothing else.
While PSI has been applied to numerous problems, stronger security guarantees
are sometimes required. For example, PSI is not suitable if the input sets are
already secret shared. Moreover, PSI also reveals the intersection in the clear.
This prevents post processing the result using additional secure computation
techniques. These limitations have been lifted by [4,30] which can perform vari-
ous types of join operations with secret shared inputs and output. However, their
techniques appeared to not result in efficient protocols in the two party setting.



Ion et al. presented a private set intersection sum protocol [20] that is used
by Google Adwords to correlate online advertising with offline sales in a privacy
preserving manner. This protocols does not have shared input but supports some
computation on the output. Pinkas et al. [34] gives a PSI protocol with plaintext
input and secret shared output.

The first protocol to consider the fully secret shared setting is by Blanton
et al. [5]. This protocols achieves O(n log n) communication and computation
complexity, where n denote the number of records. This work only considers
one-to-one joins and utilizes an oblivious sorting subroutine.

Laur et al. in [24] present a protocol for database joins/unions in the honest
majority setting with secret-shared input databases. Their approach is concep-
tually simple but leaks the size of the join and only supports one-to-one joins.

Liagouris et al. in [26] proposed a generic MPC-based framework for per-
forming a wide range of SQL queries. Their framework is fully composable and
supports duplicates keys. However, their actual protocol is rather primitive in
that the join is perform by comparing all O(n2) pairwise rows between X and
Y . On the other hand, their general framework is also compatible with the more
optimized join protocols presented here and in the other related works.

The first one-to-one joins protocols with linear overhead and no leakage was
presented by [30]. Their protocol is general but at the time was only practical
in the three party honest majority setting. Their protocol is composable in that
the output of a join can serve as the input for the next join operation enabling a
sequence of SQL join computations. Our first protocol can be thought of as an
optimized version for the two party setting.

[4] provides the first protocol for handling composable secure joins for one-
to-many joins and many-to-many joins. As with [30], their protocols are general
but only had efficient instantiations for the three-party honest majority setting.
Their one-to-many join protocol leaks no information while their many-to-many
join protocol optionally allows a bound on the output table size to be leaked.
This is because in general many-to-many joins result in an output table of size
O(n2) which is thought to be impractical for typical values of n. Their many-
to-many protocols allows for a upper bound d on the output table size to be
revealed and thereby avoiding quadratic overhead. Their protocols are based on
sorting and inherit the O(n log n) running time that sorting implies. Our second
protocol heavily relies on their one-to-many join protocol and can be thought of
as an optimized two-party version.

Recently, [19] similarly capable composable joins protocols but with a re-
ported running time of O(n log2 n). However, this is only due to their choice of
a less efficient sorting protocol which can be replaced with the one used here
to achieve O(n log n) time. This work considers the malicious setting but with
an three-party honest-majority. Due to the stronger requirements of malicious
security their protocol is less efficient than [4].

[28] proposes another composable joins protocol in the semi-honest honest-
majority three-party setting. Their protocol is similar to [4]. The critical different
being the claim that the sorting subroutine of [4] can be replaced by a custom



group-by operation that can be computed in linear time. While sorting can be
replaced, we are not able to verify the security of this new group-by operation
and leave it as an open question if their techniques can be used to optimized the
two-party protocols we present here.

3 Preliminaries

3.1 Notation.

We use x := y to [re]define the variable x with the value of y. x = y denotes
mathematical equality or the bit b which is 1 iff x, y hold the same value. Let ·
denote the dot product and ⊙ denote component-wise multiplication. For binary
operator ⋆ ∈ {+,−, ·,⊙}, let x ⋆p y denote (x ⋆ y mod p). Let [m,n] denote the
“inclusive” range {m,m + 1, 2, ..., n} and [n] as shorthand for [1, n]. We also
define (m,n] as the “left-exclusive” range {m+ 1, 2, ..., n}, [m,n) as the “right-
exclusive” {m,m+ 1, 2, ..., n− 1} and (n], [n) as the shorthands for (1, n], [1, n),
respectively. Let V be a vector with elements V = (V1, ..., Vn). A subvector can
be indexed using V[m,n] to denote (Vm, ..., Vn). For a matrix or tableM we denote
the ith row as Mi and the jth column as M∗,j . The element in row i and column
j is indexed as Mi,j . We also denote a submatrix by sub-scripting it with the
row/column set. Let || and // denote the horizontal and vertical concatenation
of two matrices, respectively.

Typically X,Y will refer to the input tables that are being joined. We use n
to represent the number of rows a table has, which for simplicity will assume to
be the same for X,Y . When performing a join, a specific column will be used as
the join key column. We will denote the column as key(X), key(Y ) to denote the
respective join columns while key(Xi), key(Yi) denotes the join key element of
the ith row, respectively. Additionally, each row of a table will contain a special
secret shared flag denoting whether it is null. Null rows rows are place holder
rows used to hide cardinality of the tables, i.e. padding. We use IsNull(X) to
refer to the column of null flags and IsNull(Xi) to refer to a bit that is 1 if the
ith row is null. We use Xi := Null to denote that Xi should be assign the row
of zeros with the null bit set to 1.

We define a permutation of size m as an bijective function π : [m] → [m].
We extend this definition such that when π is applied to a vector V of m ele-
ments, then π(V ) = (Vπ(1), ..., Vπ(m)). Parties are referred to as P0, P1. We use
κ to denote the computational security parameter, e.g. κ = 128, and λ as the
statistical security parameters, e.g. λ = 40.

3.2 Secure Computation Framework

We make use of three types of secret shares: binary shares denoted as [[x]], and a
permutation sharing ([π]) discussed below. The share held by party Pi is denoted
as [[x]]i, ([π]). The bracket notations, e.g. [[x]] denotes that distribution that party
P0 holds a random share, e.g. [[x]]0 ∈ F2, while party P1 holds another share, e.g.



Functionality FMPC(C, [[X]]) :

Return to the parties the secret sharing share(C(x)).

Fig. 1. Secure Computation ideal functionality FMPC

[[x]]1 ∈ F2, such that the shares add to the underlying value, e.g. x = [[x]]0⊕ [[x]]1.
We extend this notation to vectors and other structured objects in the natural
way, e.g. [[V ]] is the sharing of vector V ∈ Gn for G = {0, 1}m.

We define FMPC in Figure 1 which takes a circuit C and secret shares [[x]]i
as inputs, and outputs new shares [[y]]i, where y is the output of the circuit
C applied to the reconstructed input x. We assume the functionality can take
any type of secret share input. Our implementation realizes FMPC using the
GMW [18] protocol with silent OT prepressing [9, 37]. Each AND gate in the
circuit will consume two random OT instances which can be efficiently generated
with an amortized communication of less than one bit per OT.

3.3 Functionalities

We describe our protocols in the hybrid model where we assume the presence
of idealized third parties called functionalities. Each functionality performs a
predefined operation on inputs from the real parties. A functionality is denoted
with F with subscript containing its name. A real implementation would then
implement these functionalities using a concrete protocol, i.e. no trusted third
party. We refer to [27] for a more detailed description.

For a secret shared [[x]], we use the shorthand F([[x]]) to denote invoking F
on input [[x]]i from Pi. If a specific party, say P0, additionally provides private
input y to F , we denote this as F([[x]], P0 : y). Finally, public input z is denoted
as F([[x]], P0 : y, z). When shares are input to a functionality, the functionality
gains access to the underlying values, e.g. x, via the reconstruction procedure.
Similarly, when a functionality say to output a sharing [[x]], we mean [[x]]i is
output to party Pi.

3.4 Secret-Shared Aggregation Trees

[4] and concurrently in [44], presents a useful functionality FAgg called an aggre-
gation tree or segmented prefix sum. This functionality takes as input a shared
list X and a shared bit vector B. The list is logically divided up into blocks with
the start of a block being denoted by Bi = 0. For each block, the functionality
will independently apply a prefix sum to the block for some associative sum
operator ⋆. For example, if a block begins at i and is of size 3, then the output Z
will contain Zi := Xi, Zi+1 := Xi ⋆Xi+1, Zi+2 := Xi ⋆Xi+1 ⋆Xi+2. The operator
⋆ can be any associative operator. [4, 44] gives a protocol for implementing this
that takes O(n · ⋆time) time and O(log n · ⋆rounds) rounds, where ⋆time, ⋆rounds are
the time and round complexity of computing the ⋆ circuit. We will make use of a



duplication tree where ⋆ is defined as ⋆(x1, x2) := x1. That is, it simply returns
the first argument and the overall effect is that the first element of each block is
copied into the rest of the block.

Functionality FAgg([[X]], [[B]], ⋆) :

Upon input vector [[X]] ∈ Dn and control bits [[B]] ∈ {0, 1}n and associative operator ⋆
from the parties, define pre-ind(i) ∈ [i] to be the maximum value such that Bpre-ind(i) = 0.
Output [[X ′]]← share(X ′) where X ′

i :=
i
j=pre-ind(i) Xj .

Fig. 2. Functionality FAgg for secret-shared aggregation.

3.5 Secret-Shared Permutations

In our protocols we need two permutation functionalities, FSelect in Figure 3 and
FPerm in Figure 4. The former takes as input an arbitrary function σ : [m] → [n]
from one party and a secret shared vector [[X]] from both, where X is size n. It
outputs [[Xσ(1), ..., Xσ(m)]]. Typically σ will be a permutation but in general σ
can be any function with prescribed domain and range.

The second functionality, FPerm, takes an input a secret shared permutation
([π]) from the parties as well as a secret shared vector [[X]]. It permutes the vector
X by the permutation π and returns a sharing of the result. The notation ([π]) is
referred to as a secret shared permutation and denotes that P0 holds permutation
([π])0 ∈ ([n] → [n]) while P1 holds ([π])1 ∈ ([n] → [n]) such that π = ([π])1 ◦ ([π])0.
That is, they each hold a permutation such that if you first permute X by ([π])0
and then by ([π])1, the effect is permuting X by π, i.e. π(X) = ([π])1(([π])0(X)).
Individually, each permutation share ([π])p looks like a random permutation and
therefore does not reveal anything about π. We refer to [32] for more details.

Functionality FSelect(p, Pp : σ, [[X]]) :

Upon input of selection function π : [m] → [n] from Pp and shared input vector
[[X]] ∈ Dn, output [[Y ′]]← share(Y ′) where Yi := Xσ(i) for i ∈ [m].

Fig. 3. Functionality FSelect for secret-shared selection.

We also make use of a sorting functionality FSort as illustrated in Figure 5.
The sorting functionality outputs a secret shared permutation ([π]) that can be
applied to a secret shared vector to permute the vector using FPerm functionality
as presented in Figure 4. One could implement FSort,FPerm using FMPC but often
there are more efficient protocols, e.g. [12, 32].



Functionality FPerm(([π]), [[X]]) :

Upon shared input permutation π : [n] → [n] and shared input vector [[X]] ∈ Dn,
output [[Y ′]]← share(Y ′) where Yi := Xπ(i) for i ∈ [m].

Fig. 4. Functionality FPerm for secret-shared permutation.

Functionality FSort([[X]]):

Upon shared input vector X of length n, let π : [n] → [n] be the stable sorting
permutation of X. Output ([π])← permShare(π).

Fig. 5. Secret-shared Sorting ideal functionality Fsort.

3.6 SQL-like Join Functionality

In this paper, we describe the protocol to obliviously compute the inner join of
two tables X,Y . The inner join between X,Y is defined as the table Z where
Z contains

⋃
k{Xi | key(Xi) = k} × {Yi | key(Yi) = k}. The ideal functionality

FJoin for secret shared joins in given in Figure 6. It takes as input two secret
shared tables as well as public customization functions that determine how to
pad the resulting table and the order it should be returned in.

Our protocols naturally support other types of join operations, left join, full
join, union, etc. We refer the reader to [30] for a detailed description on how
to perform these as well as other operations such as aggregations (sum , count,
max value) and filtering using the where clause.

Functionality FJoin([[X]], [[Y ]], pad, ordering):
Upon input tables, X,Y and customization functions pad, ordering, perform the
following:

1. For i ∈ [n], and each j ∈ [n] such that (key(Xj) = key(Yi)) ∧ (isNull(Yi) =
False) ∧ (isNull(Xj) = False), set Zd := (Xj ||Yi) and then d = d+ 1.

2. Add dummy/null rows to Z until it has D := pad(d) rows.
3. Let π := ordering(X,Y ) be a permutation of D items and permute Z as Z :=

π(Z).
4. Output [[Z]]← share(Z).

Fig. 6. Functionality FJoin for secret shared Join for tables X and Y .

3.7 Cuckoo Hash Tables

The core data structure that our protocols employ is a cuckoo hash table which
is parameterized by a capacity n, two (or more) hash functions h0, h1 and a
vector T which has m = O(n) slots, T1, ..., Tm. For any x that has been added



to the hash table, there is an invariant that x will be located at Th0(x) or Th1(x).
Testing if an x is in the hash table therefore only requires inspecting these
two locations. x is added to the hash table by inserting x into slot Thi(x) where
i ∈ {0, 1} is picked at random. If there is an existing item at this slot, the old item
y is removed and reinserted at its other hash function location. Given a hash
table with m ≈ 1.3n slots and three hash functions, then with overwhelming
probability n items can be inserted using O(n) insertions [15]. For technical
reasons we require hi(x) ̸= hj(x) for all x and i ̸= j. This can be achieved by
defining hj(x) over the range [m]\{hi(x)}i<j .

4 One-to-one Joins ΠJoin-OO

4.1 Overview

In [30], the authors presented an O(n) computation and communication protocol
ΠJoin-OO in constant-rounds to compute joins over secret-shared input database
tables. First, we review the join algorithm without any privacy and then we will
discuss how this translates to the secret shared setting. Figure 7 depicts the
algorithm with the following phases:

1. Construct a cuckoo hash table T containing the rows of Y based on the join
keys. That is, row Yi is inserted at Tj for some j ∈ {h0(key(Yi)), h1(key(Yi))}.

2. To determine the matching rows of X, each Xi needs to be compared with
the rows Tj for j ∈ {h0(key(Xi)), h1(key(Xi))}. This comparison is facilitated
by mapping these T rows to row Xi. That is, Th0(key(Xi)) is mapped to a new
row S0

i and Th1(key(Xi)) to S1
i .

3. If there is a matching row Yj for some Xi, then this Yj row will be have been
copied to either S0

i or S1
i . As such, Xi can be compared with S0

i and S1
i . If

there is a match, then the output row Zi is constructed as Xi concatenated
with the matching Sj

i . Otherwise Zi is assigned Null.

…

…

… … …

[[Y ]] XT = Cuckoo(Y ) S0 S1

1) Cuckoo hash Y

using oblv. permutation.

∃j s.t. Thj(key(Yi)) = Yi.

2) Select Cuckoo locations Thj(key(Xi))

using oblv. switching network.

Sj
i = Thj(key(Xi)).

3) Compare S0
i , S

1
i w/ Xi

using MPC circuit and

construct output row.

Fig. 7. Overview of the one-to-one join protocol ΠJoin-OO, diagram from [30].



Given that the input tables are fully secret shared, its not immediately obliv-
ious how to translate this algorithm into a secure protocol. The main challenges
are that the rows of X and Y need to be rearranged in an input dependent order.
Moreover, this order is determined by the cuckoo hashing algorithm which is not
conducive to being run efficiently in MPC. [30] gives a cleaver transformation
that avoids these expensive operations.

First, [30] observes that since the join keys are unique, if one first applies a
keyed hash to each join keys, then the resulting values for each table individually
will be uniformly distributed. As such, party P0 could learn the hash values for,
say, Y while P1 learns them for X. Party P0 with the hashes for Y can then
run the plaintext cuckoo hashing algorithm to construct T using these hashes.
A secret sharing of T can then be constructed by permuting the shares of Y by
some plaintext permutation held by P0, i.e. by invoking FSelect.

Similarly, P1 can then assign the correct values out of T to S0
i and S1

i based
on the hashes they obtained for X. Again, this assignment can be achieved using
the FSelect functionality where P1 inputs the plaintext select function while both
parties input the shares of T . The final set is to simply compare Xi and S0

i , S
1
i

using the generic FMPC functionality.

[30] suggest implementing the keyed hash using the LowMC [3] block cipher.
However, very recently [1] proposed a very efficient MPC friendly PRF which we
choose to use instead. The one challenge to using this PRF is that [1] only gave
MPC protocols for the setting with plaintext inputs. We address this next by
expending their protocols to our settings where the inputs and outputs are secret
sharing. Another difference when comparing to [30] is that that our protocol does
not match use of a so called oblivious switching network. This was a 6 round
protocol that implemented the FSelect functionality in the three party setting.
We observe that this can be replaced with a single round permutation protocol
of [32].

4.2 Implementing the PRF

The recent work of [1] presents a highly efficient PRF based on the alternating
moduli class of assumptions. Essentially, this construction takes as input a key
k ∈ Fn

2 , a value x ∈ F d
2 and multiples them by various matrices modulo two

different primes, i.e. 2 and 3. More concretely, their strong PRF is defined as

F (k, x) := B ·2 (A ·3 [k ⊙2 (G ·2 [x||1])])

where G ∈ Fn×d+1
2 ,A ∈ Fm×n

3 ,B ∈ F t×m
2 are uniformly distributed. In partic-

ular, we make use of the parameterization d = κ, n = 4κ,m = 2κ, t = κ which
impliesG is an expanding matrix,A is a square matrix, while B is a compressing
matrix. Without the alternating moduli this function is trivial to invert. How-
ever, by switching moduli between subsequent matrix multiplication, the overall
function becomes highly nonlinear when viewed with over F2 or F3. [1, 2, 8, 16]
provide various evidence that this function is thought to be a strong PRF.



While [1] proposed several efficient protocols, these all target the evaluation
of their weak PRF construction. That is,

F ′(k, x) := B ·2 (A ·3 [k ⊙2 x]).

This simplified function is assumed to be a weak PRF in that result need only
looks random if x is chosen uniformly at random. For many application this
suffices, however, we will require the result to look random when x is chosen
arbitrarily. Moreover, their protocols also assumes x is known to P0 and k is
known to P1. We fill these gaps by extending their protocols to support their
full strong PRF construction with secret shared inputs.

Their protocol for the weak PRF F ′ works by first computing a secret sharing
[[w]] over Fn

3 where w = k⊙x. The parties can then locally apply the linear map
A, i.e. v := A ·3 w ∈ Fm

3 . They then use a specialized protocol for computing
a sharing [[u]] such that u = v mod 2. Finally, the parties locally applying the
linear map B to obtain the a sharing of final result F ′(k, x). We will reuse
the bulk of their protocol but change the computation of [[w]] such that the
protocol takes as input the shares of k and x and computes a F3 sharing of
w = k ⊙2 (G ·2 [x||1]).

Starting with a F d
2 sharing of x, the parties can locally compute [[x′]] := G ·2

[[x]]. The core challenge is then to compute shares of k⊙x′. For our applications,
we will evaluate F on many x’s and a fixed key k. We decompose this task into
two subprotocols, key multiplication and corrections.

Key multiplication. As a building block, we fix some p ∈ {0, 1} and begin with
the restriction [[x′]]p = 0 and therefore x′ = [[x′]]p is held in the clear by Pp, while
k remains secret shared and unknown to either party. For i ∈ [n], the parties
will generate an OT with random F3 messages hi,0, hi,1 ∈ F3, where Pp will use
their key share bit [[ki]]p as the choice bits to learn hi,[[ki]]p . For i ∈ [n], Pp can
compute

[[vi]]p := [[x′
i]]p[[ki]]p −3 hi,0

δi := hi,0 −3 hi,1 +3 (1− 2[[ki]]p)[[x
′
i]]p

and send δ to Pp who computes

[[vi]]p := hi,[[ki]]p +3 [[ki]]pδi.

Observe that if [[ki]]p = 0 then

[[vi]]p + [[vi]]p =[[x′
i]]p[[ki]]p − hi,0 + hi,[[ki]]p + [[ki]]pδi

=x′
i[[ki]]p − hi,0 + hi,[[ki]]p + [[ki]]p(hi,0 − hi,1 + (1− 2[[ki]]p)x

′
i)

=x′
i[[ki]]p

=x′
iki



and otherwise

=x′
i[[ki]]p − hi,0 + hi,1 + hi,0 − hi,1 + (1− 2[[ki]]p)x

′
i

=x′
i[[ki]]p + (1− 2[[ki]]p)x

′
i

=x′
i(1− [[ki]]p)

=x′
iki

Correction. Given that this protocol works when one party holds x′ in the clear,
a nature suggestion would be to run it twice, for compute shares of [[x′]]0[[k]],
then shares of [[x′]]1[[k]] and add them together. However, due to the result being
a sharing over F3 while x′ is shared over F2, the result is ([[x′]]0 +3 [[x′]]1)[[k]]
which when both ares are 1 results in a sharing of 2[[k]] as opposed to zero. We
correcting this discrepancy by multiplying bits [[x′

i]]0 and [[x′
i]]1 to obtains a F3

sharing and then subtracting off two times the result.

Full PRF Protocol. We are now ready to describe the full protocol for computing
the Strong PRF F (k, x) of [1] with fully secret shared input and output. The
formal description is in Figure 8. In a small preprocessing, an OTs is performed
for each bit of [[k]]0 and [[k]]1 as the choice bit. The main phase beings by expand-
ing the input [[x]] into its expanded form [[x′]] = G ·2 [[[x]]||1]. The preprocessed
key OTs are then derandomized to perform the computation

[[wp]] = [[k]]p ⊙ [[x′]]

for p ∈ {0, 1}. When summed with two times the correction term [[c]] = [[x]]0⊙[[x]]1
and then multiplying by A results in a secret sharing [[w]] = A([[x′]]⊙ [[k]]). The
remainder of the protocol follows the same structure as specified for the weak
PRF of [1]. In particular, modulus conversion from F3 to F2 is performed to
obtain [[v]] = [[w]] mod 2, followed by compression by B.

Security. One can construct a simulator for this protocol using standard tech-
niques in a relatively mechanical. Privacy follows from the fact that the OT
receiver only having one out of two OTs message which allows the values asso-
ciated with the other message to be pseudo random.

4.3 One-to-One Join Protocol ΠJoin-OO Details.

The full protocol is specified in Figure 9. The overview of the protocol is given
above. Compared to the overview the full protocol deals with the added com-
plexity of more than two hash functions and the case of null input rows. Nullity
is handled by replacing the key for any null row with some large public random
value. This ensures that with overwhelming probability the null row will have a
unique random.

Theorem 1. Conditions on X,Y having unique join keys, ΠJoin-OO realizes the
FJoin functionality in the semi-honest two-party hybrid setting with pad(d) = |X|
and ordering returning the permutation that orders according to X.



Parameters: A stateful PRNG algorithm PRNG.

Setup: The parties input their key sharing [[k]] ∈ Fn
2 . For p ∈ {0, 1},

1. The parties perform n random OTs where Pp is OT receiver with choice bit
[[ki]]p. Pp receives two random strings σp,i,0, σp,i,1 ∈ {0, 1}κ and Pp receives
σp,i,ki .

2. Let Gp,i,0 := PRNG(σp,i,0), Gp,i,1 = PRNG(σp,i,1) denote stateful PRNGs with
F3 output held by Pp.

3. Let G′
p,i := PRNG(σp,i,ki) denote the stateful PRNG with F3 output held by

Pp.

Eval: The parties input [[x]] ∈ Fn
3 .

1. Let [[x′]] := G ·2 ([[x]]||1)
2. For p ∈ {0, 1}:

(a) Pp computes
i. hp,0,i ← Gp,i,0 for i ∈ [n]
ii. hp,1,i ← Gp,i,1 for i ∈ [n]
iii. δp := hp,0 −3 hp,1 +3 (1− 2[[k]]p)⊙ [[x′]]p
iv. [[wp]]p := A ·3 ([[x′]]p ⊙ [[k]]p +3 hp,0)
and sends δp to Pp.

(b) Pp computes
i. ti ← G′

p,i for i ∈ [n]
ii. [[wp]]0 := A ·3 (([[k]]p ⊙ δp) +3 t)

3. For i ∈ [n], the parties generate a random OT, where P0 gets random strings
s0,i, s1,i ∈ F3 and for choice bit b := [[x′

i]]1, P1 learns string sb,i. P0 defines
[[ci]]0 := −s0,i sends δ := s0,i +3 s1,i +3 [[xi]]0 to P1 who defines [[ci]]1 := sb,i +3

[[xi]]1δ.
4. Let [[w]] := [[wp]] +3 [[w1]]−3 2[[c]].
5. The parties invoke F2,3-Conv on input [[w]] ∈ Fm

3 and receive [[v]] ∈ Fm
2 in re-

sponse.
6. Outputs B · [[v]].

Fig. 8. OT based protocol for the [1] Strong PRF with shared input/output.



Proof (proof sketch).
The simulation of these protocols directly follow from the composibility of

the subroutines FPRF, FPerm and FMPC. First, the output of FPRF simply outputs
random strings and it is therefore straightforward to simulate. This follows from
the fact that the input is unique except for possible the null rows. These are
however assigned random keys and therefore the probability of a collision is
negligible. FPerm and FMPC both output secret shared values and therefore are
trivial to simulate. Finally, correctness is straight forward to analysis and holds so
long as there is no encoding collisions and cuckoo hashing succeeds. Parameters
are chosen appropriately so these failure events happen with probability at most
2−λ.

Protocol ΠJoin-OO([[X]], [[Y ]]):

1. [PRF] The parties sample a shared PRF key [[k]] along with random public
matrices r, r′ ∈ {0, 1}n×κ. For i ∈ [n], parties invoke Fprf([[k]], [[key(Xi)]] ⊕ ri ·
IsNull([[Xi]])),Fprf([[k]], [[key(Yi)]] ⊕ r′i · IsNull([[Yi]])) and receive [[EX,i]], [[EY,i]] in
response. [[EX,i]] is revealed to P0 and [[EY,i]] is revealed to P1.

2. [Build Cuckoo] P1 samples cuckoo hash functions h1, ..., hw and constructs a
cuckoo hash table t for the set EY s.t. for some j ∈ {h1(EY,i), ..., hw(EY,i)},
EY,i = tj . P1 defines π0 such that π0(j) = i where EY,i = tj . The parties invoke
FSelect(π0, [[Y ]]) and receive [[T ]] in response. Note, π0 is the private input of P1.

3. [Select Cuckoo] P0 defines π1, ..., πw such that πl(i) = j where hl(EX,i) = j.
For l ∈ [w], the parties invoke FSelect(πl, [[T ]]||[[EY]]) and receive [[Sl]]||[[El

S]] in
response.

4. [Compare] For i ∈ n, if ∃j ∈ [w] s.t. [[IsNull(Sj
i )]] = 0 and [[EX,i]] = [[El

S,i]] then

[[Zi]] := [[Xi]]||[[Sj
i ]]. Otherwise [[Zi]] := Null.

5. [Output] Return [[Z]].

Fig. 9. Join protocols Πjoin-oo for one-to-one relations.

5 One to Many Join - ΠJoin-OM

Overview The core of this protocol was first described in [4]. Compared to
ΠJoin-OO, it relaxes the restriction that the joins keys are unique by allowing
one table, denoted as Y , to have duplicates in the join-key column. The other
table, X, must have unique join-keys. The protocol first combines the two tables
as

Z :=

[
key(X) X 0
key(Y ) 0 Y

]
The protocol stable sorts the rows of Z by the join key. The row Xi will therefore
appear before the matching rows from Y . For example, if Xi matches rows
Yj1 , ..., Yjt then at some position ℓ will appear the row Zℓ = [key(Xi), Xi, 0]
immediately followed by Zℓ+k = [key(Yjk), 0, Yjk ] for k ∈ [t]. The core task of



the protocol is to then construct the pair [Xi, Yj1 ], ..., [Xi, Yjt ] from this sequence.
In the plaintext setting this can simply be accomplished by copying the Xi value
into the next t rows.

The first task to achieve this in the secret shared setting is to determine
which rows should be copied into the next. We achieve this by comparing the
key for the current row Zℓ with the join key for the next row Zℓ+1. If they are
equal then the Zℓ row’s X columns should be copied into Zℓ+1.

As described this strategy might appear to require O(n) rounds of interaction
as the prior row must be copied before the next row can be copied. However, the
technique known as an aggregation tree [4] gives a O(log n) rounds protocol for
copying all of these values. Finally, the output table is obtained by unpermuting
the rows of Z by the sorting permutation and returning the last n rows.

Comparison. Compared to the prior work [4], the differences of our protocol is
largely just the replacement of the implementation of the ideal functionalities.

One-to-Many Join Protocol ΠJoin-OM Details. The full protocol is specified in Fig-
ure 10. The overview of the protocol is given above. Compared to the overview
the full protocol deals with the added complexity of more than two hash func-
tions and the case of null input rows. Nullity is handled by replacing the key
for any null row with some large public random value. This ensures that with
overwhelming probability the null row will have a unique random.

Theorem 2. Conditions on X having unique join keys, ΠJoin-OM realizes the
FJoin functionality in the semi-honest two-party hybrid setting with pad(d) = |Y |
and ordering returning the permutation that orders according to Y .

Proof (proof sketch).
The simulation of these protocols directly follow from the composibility of the

subroutines FPerm,FSort and FMPC. Correctness is straight forward to analysis.

6 Group-by and Reduce

Let’s assume that after the join operation, the resulting table formed is X, which
is secret shared between the parties. The resulting table X can be grouped by
a specified column using the group-by function in SQL. Group-by functionality
can be applied using FSort on the group-by Columns. Once the table is grouped,
aggregate functions such as SUM, COUNT, MAX, etc., can be applied to each
group. These functions compute a single value for each group based on the val-
ues within the group. The full protocol is described in Figure 12. The ideal
functionality FGroupBy for secret-shared group-by-and-reduce is described in Fig-
ure 11. It takes as input a secret-shared table X, an aggregation operator ⋆,
and a group-by column K, and outputs a secret-shared table Z containing the
aggregated results. Because Z is secret-shared, subsequent operations—such as



Protocol ΠJoin-OM([[X]], [[Y ]]):

1. [Sort keys] Let [[K]] = key([[X]])//key([[Y ]]). The parties invoke ([π]) :=
FSort([[K]]).

2. [Dummy rows] Locally, the parties prepend n Null rows to [[X]] to obtain
[[X ′]].

3. [Permute X] The parties invoke [[X ′′||K′′]] := FPerm(([π]), [[X
′]]||[[K]]).

4. [Control bits] Let [[β1]] := [[0]]. For i ∈ [2n − 1] the parties invoke [[βi+1]] :=
FMPC(C, ([[K′′

i ]], [[K
′′
i+1]])) where C : K ×K → {0, 1} is the equality circuit.

5. [Duplicate] The parties invoke [[X ′′′]] := FAgg(Prefix, dup, [[X
′′]], [[β]]) where

dup(x0, x1) := x0.
6. [Unpermute X] The parties invoke [[X∗]] := FPerm(([π

−1]), [[X ′′′]]).
7. [Combine] For i ∈ [n], the parties set [[Zi]] := ([[X∗

n+i]], [[Yi]]) if ¬isNull([[X∗
n+i]])∧

¬isNull([[Yi]]) and Null otherwise. The parties output [[Z]].

Fig. 10. Protocol ΠJoin-OM for secret shared Join for one table X with unique join keys.

a where clause or another join—can be easily chained together, showcasing the
composability of our protocol.

To improve performance, we introduce a concept called ”remove dummies.”
As the name suggests, remove dummies eliminates null rows, unmatched rows,
and intermediate aggregation rows. Removing these rows during each stage of the
protocol reduces the size of the input being processed at that stage. However, re-
moving dummies comes with the consequence of leaking some information about
the table’s size. If we choose to remove dummies, we can skip the unpermute
step mentioned in each protocol because we shuffle the resultant table using a
random permutation that is unknown to both parties.

Functionality FGroupBy([[X]], [[K]], ⋆):
Upon Aggregation columns X and group by column K and aggregation functions
⋆, perform the following:

1. Let π := sort(K)
2. Let (X ′||K′) := π(X||K)
3. Let g := {i ∈ [n] | i = 1 ∨X ′

i−1 ̸= X ′
i}

4. For i ∈ g, let X ′′
i := (X ′

i ⋆ ... ⋆ X ′
j) s.t. K′

i = ... = K′
j and X ′′

ℓ := Null for
ℓ ∈ {i+ 1, ..., j}.

5. Let Z := π−1(X ′′).
6. Output [[Z]]← share(Z).

Fig. 11. Functionality FGroupBy for secret shared groupby and reduce.



Protocol ΠGroupBy([[X]], [[K]], ⋆):

1. [Sort] The parties invoke ([π]) := FSort([[K]]).
2. [Permute X] The parties invoke [[X ′||K′]] := FPerm(([π]), [[X]]||[[K]]).
3. [Control bits] Let [[β1]] := [[0]]. For i ∈ [n − 1] the parties invoke [[βi+1]] :=
FMPC(C, ([[K′′

i ]], [[K
′′
i+1]])) where C : K ×K → {0, 1} is the equality circuit.

4. [Aggregate] The parties invoke [[X ′′]] := FAgg(Prefix, agg, [[X
′′]], [[β]]) where

agg(x0, x1) := x0 ⋆ x1.
5. [Unpermute X] The parties invoke [[X∗]] := FPerm(([π

−1]), [[X ′′]]).
6. [Combine] For i ∈ [n], the parties set [[Wi]] := [[X∗

i ]] if ¬isNull([[X∗
i ]]) ∧ ¬([[βi]])

and Null otherwise. The parties output [[W ]].

Fig. 12. Protocol for groupby and reduce functionality.

7 Evaluation

All experiments for us and [30] were performed on a consumer grade laptop
with a Apple M3 Pro with 36GB of RAM. Networking was performed using
10+ gigabyte throughput via localhost with sub millisecond latency. A single
thread per party was used. All cryptographic operations are performed with
computational security parameter κ = 128 and statistical security λ = 40. We
consider set/table sizes of n ∈ {212, 216, 220}. In our Join protocols, each table
has two columns: one 32-bit join key column, and an additional column whose
sizes are 16 and 7 bits. For benchmarking the Where protocol, we use a table
with two 32-bit columns and apply a ‘column 1 ¿= column 2’ filter. Finally, the
Average protocol is evaluated on a table with three 32-bit columns, where the
first column is used for the GroupBy operation, and the remaining two are used
for the Aggregate (Average) calculation.

In Table 1 we report our performance numbers and comparison to proto-
col describe in [4]. Although this protocol computes the same functionality as
ΠJoin-OM, it is in the honest majority setting and therefore is expected to be
significantly faster than our dishonest majority protocol. Despite this, we choose
to compare with [4] due it it being the closest alternative. As expected, their end
to end running time is faster than us. However, note that up until 216 our online
running time is very competitive with [4] which demonstrates the effectiveness
of our techniques.

We also observe that our ΠJoin-OO protocol is approximately 3 times faster
than our more general ΠJoin-OM protocol. In more detail, ΠJoin-OM begins by
sorting both tables together which has nk overhead where n is size of table
and k is bit length. Although this pre-sorting enables more efficient operations
for the rest of the protocol, it also introduces additional overhead at the start.
By contrast, ΠJoin-OO avoids sorting altogether, which lowers the initial over-
head and results in faster overall performance. Additionally, ΠJoin-OM incurs an
O(D logD) overhead from its duplication process. In contrast, we replace that
step with straightforward comparison circuits that cost only O(D), yielding fur-
ther performance gains.



Protocol
Size Offline Online

n Time(sec) Com(MB) Time(sec) Com(MB)

[4]

212 - - 0.21 22.8

216 - - 1.3 364

220 - - 21.6 5,560

Join OO

212 0.53 54 0.07 27

216 7 714 0.66 432

220 119 11,278 16 6,904

Join OM

212 1.4 141 0.1 82

216 23 2,381 1.6 1,336

220 295 32,372 99 21,633

Where

212 0.04 5.6 0.008 2.3

216 0.67 72 0.05 36

220 10.4 1,133.4 1 577

Average

212 1 111 0.07 52.2

216 16 1,778 0.92 838

220 377 29,362 36.5 13,556

Table 1. The above table mentions both running time & communication time for
both online and offline phase for one to one join, one to many join, applying where
clause and applying average with group by clause where n is the size of the table and
join\groupby column size is 32 bits.

In Table 1, we see a substantial difference in both communication and running
costs between the offline and online phases. The primary overhead in the offline
phase stems from generating large numbers of OTs for the protocol which are
then concerted into binary beaver triples. However, recent works such as [6, 7,
25] have demonstrated that it is practical to generate beaver triples directly
without the need to first construct OTs. Although more work is still required
to fully realize these improvements, one can theoretically obtain a O(κ) runtime
improvement via these new PCG protocols. Therefore, we expect our offline time
to continue to decrease “for free” over the next few years. This suggests that the
gap between honest majority protocols and two-party protocols is narrowing,
even for advanced MPC protocols like ours.

Due to the need to sort the join column and this being the main overhead
for ΠJoin-OM, this protocol scales almost linearly in the column bit length. For
example, increasing it from 32 to 64 in our experiments should roughly double the
overhead. Moreover, if the key length gets too long then they can be compressed



using a randomized encoding technique as described in [30]. This effectively
ensures that the bit length of the join column can never be larger than λ+2 log n.

In all the benchmarks shown in Table 1, we disabled the ‘remove dummies’
flag that removes inactive rows generated during protocol execution; enabling
this flag would likely yield additional speedups. We also tested our protocol in
a multi-threaded setup using four threads, achieving a 2.5× performance boost.
However, increasing the thread count beyond four did not provide further gains
because the workload was insufficient to keep additional threads fully occupied.
With a more robust parallel implementation, we expect further performance
gains. For instance, we can distribute OT generation across multiple threads,
each handling a share of OTs in the offline phase. During the online phase,
data can be partitioned and processed concurrently, either through thread pools
or by using SIMD instructions to handle operations in bulk. While we already
employ SIMD instructions at various stages, there is still room to refine their
usage—and potentially adopt newer instruction sets to achieve even better per-
formance. Carefully balancing workloads across threads or hardware accelerators
(e.g., GPUs) can significantly reduce runtime, especially as datasets grow larger.
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