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Abstract. The major Fully Homomorphic Encryption (FHE) schemes
guarantee the privacy of the encrypted message only in the honest-but-
curious setting, when the server follows the protocol without deviating.
However, various attacks in the literature show that an actively malicious
server can recover sensitive information by executing incorrect functions,
tampering with ciphertexts, or observing the client’s reaction during de-
cryption.
Existing integrity solutions for FHE schemes either fail to guarantee
circuit privacy, exposing the server’s computations to the client, or in-
troduce significant computational overhead on the prover by requiring
proofs of FHE operations on ciphertexts.
In this work, we present Fherret, a novel scheme leveraging the MPC-in-
the-Head (MPCitH) paradigm to provide a proof of correct-and-honest
homomorphic evaluation while preserving circuit privacy. This proof guar-
antees that the client can safely decrypt the ciphertext obtained from the
server without being susceptible to reaction-based attacks, such as verifi-
cation and decryption oracle attacks. Additionally, this proof guarantees
that the server’s evaluation maintains correctness, thereby protecting the
client from IND-CPAD-style attacks.
Our solution achieves a prover overhead of 4λ homomorphic evaluations
of random functions from the function space F , while retaining a com-
petitive verifier overhead of 2λ homomorphic evaluations and a commu-
nication size proportional to

√
2λ times the size of a function from F .

Furthermore, Fherret is inherently parallelizable, achieving a parallel
computation overhead similar to a homomorphic evaluation of a random
function from F for both the prover and the verifier.

Keywords: Fully Homomorphic Encryption, Reaction-Based attacks, IND-CPAD

security, MPC-in-the-Head

1 Introduction

Fully Homomorphic Encryption (FHE) is a cryptographic primitive that en-
ables computation on encrypted data without requiring decryption. Specifically,
a client encrypts a message m and sends the ciphertext to a server. The server,



having chosen a function f , evaluates it homomorphically on the ciphertext and
returns a result that decrypts to f(m).

The major FHE schemes ([BGV12],[FV12],[DM15],[CGGI20]) guarantee the
privacy of the encrypted message only in the honest-but-curious setting, when
the server follows the protocol without deviating. However, various attacks in
the literature have shown that an actively malicious server can recover sensitive
information by executing an incorrect function or tampering with ciphertexts.

In this setting, security concerns arise when a dishonest server attempts to
extract information by observing the client’s reaction during decryption. These
attacks can be described by giving a verification oracle to the adversary.

Verification oracle attacks are well-known in the FHE literature: in [LMSV12]
and [ZPS12] an adversary can construct a decryption oracle by observing the
reactions of the decrypting party. In [CGG16] and [CCCM22], the secret key
gets recovered in a similar way. Analogous attacks were studied for the case
of client-aided outsourced computations in [AGHV22] and [AV21]. Here, the
attacker substitutes the ciphertexts with freshly encrypted ones during the in-
teractions with the client to learn the encrypted message without any decryption
happening.

Another attack strategy involves breaking the correctness of the computation.
Li and Micciancio [LM21] present a key recovery attack on certain approximate
FHE schemes that do not satisfy the IND-CPAD security definition they intro-
duce. This definition is theoretically equivalent to IND-CPA for exact schemes.
While their attack only applies to approximate schemes like CKKS, this attack
has recently been extended to exact schemes [CCP+24,CSBB24] where adver-
saries compromise correctness by manipulating function evaluations. These new
IND-CPAD-style attacks against exact schemes can be viewed as reaction-based
attacks, exploiting the client’s response when correctness is violated.

A common countermeasure to reaction-based attacks is to require a proof
of the correct behavior of the server. This allows the user to refuse to decrypt
unverified ciphertexts. However, most existing proofs require that the function
f which is evaluated homomorphically by the server is also known by the client.

In many FHE applications, such as private set intersection, privacy-preserving
neural network inference, and genomic data analysis, the server must keep the
evaluated function secret. While standard FHE ensures the confidentiality of
user inputs, it does not inherently protect f . In other words, the ciphertext
returned by the server may leak information about the function. To prevent
this, specialized variants of FHE enforce circuit privacy.

Circuit privacy is a crucial property in FHE, ensuring that the ciphertext
produced by the server reveals no information about f beyond the fact that it
decrypts to f(m).

Currently, the only known techniques for proving correct FHE evaluation
while preserving circuit privacy rely on zk-SNARKs. However, this approach
suffers from significant overhead, as the prover must account for all FHE op-
erations that do not directly affect the plaintext but only the ciphertext (e.g.,
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bootstrapping, modulus switching, noise flooding, and relinearization). As a re-
sult, the computational cost of generating the proof becomes prohibitively high.

1.1 Our Contributions

In this paper, we present Fherret (FHE coRREcT-and-Honest Evaluation Proof),
a new scheme designed to protect FHE schemes against reaction-based attacks
in settings where the evaluated functions need to remain confidential. Our con-
tributions can be summarized as follows:

A Novel Approach to FHE Integrity: We present a new method for
ensuring the integrity of homomorphic computations while preserving circuit
privacy. Unlike previous methods that relied on zk-SNARKs of the homomorphic
evaluation circuit, we leverage the MPC-in-the-Head (MPCitH) paradigm among
N parties using τ rounds. Our approach operates in the random oracle model
(ROM) and can be applied to any circuit-private FHE scheme without additional
assumptions.

Operations are performed in the plaintext space: Rather than prov-
ing the evaluation of the FHE circuit itself, Fherret constructs proofs directly
within the FHE scheme. This approach allows us to bypass the need for proving
computation-heavy tasks that do not affect the encrypted message, such as boot-
strapping, modulus switching, and noise flooding. These operations are simply
executed as part of the protocol, significantly improving efficiency.

Scalability with FHE efficiency: The efficiency of proof generation and
verification scales directly with the performance of the underlying FHE scheme.
As a result, our approach benefits from any hardware acceleration designed to
optimize FHE computations. Furthermore, Fherret is inherently parallelizable,
enabling both the prover and verifier to achieve computational performance com-
parable to that of homomorphically evaluating a random function from F .

Scheme Universality: Fherret is agnostic to the specific FHE scheme used
and can be applied to any non-approximate FHE scheme. This also means it does
not interfere with packing, SIMD, modified bootstrapping, NTT/RNS optimiza-
tions, or scheme switching. The only requirements are correctness and circuit
privacy.

Security against reaction-based attacks: Fherret provides security
against verification oracle attacks, ensuring that reaction-based adversaries can-
not exploit the decryption process to recover sensitive information. More than
that, it guarantees that correctness is preserved through all the server’s homo-
morphic evaluation, preventing the FHE scheme from becoming approximate and
protecting it from IND-CPAD-style attacks.

Publicly Verifiable: The verification of the proof can be performed by any
user who has access to the public key of the FHE scheme, to the input ciphertext
of the client, and the proof itself. Even without the secret key and without
learning anything about the function that was evaluated or about the result of
the evaluation, any third party can still verify the proof.

Implementation: We provide a proof of concept implementation of our
scheme in C++ applied to the BGV-RNS scheme, as implemented in the OpenFHE
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library. We also discuss implementation-related optimizations that allows to
strongly reduce the number of FHE evaluations needed in the scheme.

1.2 Related Work

Verifiable computation A significant line of research focuses on enhancing
FHE schemes with additional guarantees. One prominent direction is the inte-
gration of verifiable computation (VC) into FHE.

These methods ensure that the decrypted message corresponds to the hon-
est homomorphic evaluation of a function that is known by the verifier, mak-
ing them incompatible with circuit privacy. Examples include Homomorphic
Message Authentication Codes ([GW13], [CF13], [FGP14], [CKP+24]), Zero-
Knowledge Proofs ([GGW24], [CCC+25], [ABPS24]), and Trusted Execution En-
vironments ([NLDD21]). A more comprehensive survey can be found in [VKH23].

Some ZK-based VC schemes allow the function to be partially or fully private.
While these could be analyzed within our framework, our focus differs funda-
mentally from VC. VC aims to minimize verifier costs, often achieving sublinear
or even constant verification complexity. In contrast, our approach prioritizes
protection against a dishonest server, accepting a linear verification cost.

The majority of the ZK-based VC schemes for FHE that support the evalua-
tion of a private function ([FNP20], [BCFK21], [GNS21], [ABPS24]) require the
prover to prove the correct execution of the FHE evaluation circuit itself. As pre-
viously discussed, operating in the ciphertext space significantly increases com-
putational complexity due to the inclusion of FHE maintenance operations (e.g.,
bootstrapping, modulus switching, and relinearization). Consequently, prover
overhead remains high even for simple functions. For instance, in [VKH23],
functions with a homomorphic evaluation time of 10–15 milliseconds require
proof generation times of 5–7 minutes in the most optimized cases. Moreover, to
achieve reasonable efficiency, most VP constructions are tailored to specific FHE
schemes.

Finally, some ZK-based VC schemes for FHE support the evaluation of a
private function while operating in the plaintext space ([ACGS24], [GGW24],
[GBK+24]). Unfortunately, these schemes rely on evaluating a zk-SNARK ho-
momorphically within the FHE scheme. This approach makes the constructions
vulnerable to reaction-based attacks, as the proof must be decrypted before ver-
ification, which renders these schemes susceptible to attacks from a dishonest
server. A detailed discussion on verification attacks against such constructions
is provided in [ZWL+25], highlighting their incompatibility with our security
model.

Achieving stronger security definitions. While IND-CCA2 security is unattain-
able for malleable encryption schemes like FHE, researchers have explored several
intermediate security notions. Numerous studies have investigated IND-CCA1 se-
curity for FHE schemes. Recently, Manulis and Nguyen showed that IND-CCA1
security can be achieved even in the presence of a bootstrapping key [MN24].
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Although IND-CCA1 security allows an attacker access to a decryption oracle,
this oracle is unavailable during the challenge phase. As a result, reaction-based
attacks remain effective against IND-CCA1 schemes (see [DSA13] for further de-
tails).

A stronger definition, vCCA, which provides security against verification or-
acle attacks, was introduced in [MN24]. Their construction embeds the FHE
scheme into an IND-CCA2-secure framework for robustness and applies SNARKs
to the homomorphic evaluation for integrity. However, this approach is primarily
of theoretical interest and remains impractical.

2 Preliminaries

2.1 Notations

We denote the target security level of our scheme by λ. For any positive integer
n ∈ Z+, we denote the set {0, . . . , n − 1} by [n]. For n > 1, we denote the
set {1, . . . , n − 1} by [n]∗. For any finite set D, we use the notation s ←$ D
to indicate that s is sampled uniformly at random from D. We place ourselves
in the random oracle model and assume that each hash function H is modeled
by a random oracle. When dealing with a nondeterministic algorithm A(input),
we sometimes write A(σ; input) to consider explicitly the random coins σ of the
algorithm and treat it as deterministic. Throughout the paper, we denote the
base-2 logarithm by log.

2.2 Fully Homomorphic Encryption ([Riv87])

We recall the definition of Fully Homomorphic Encryption in the public key
setting.

Definition 1 (Fully Homomorphic Encryption). We define a fully homo-
morphic encryption scheme FHE as a tuple of four algorithms FHE = (KeyGen,
Enc, Eval, Dec) with the following syntax.

KeyGen(λ)→ (sk, pk): Given a security parameter λ, returns a secret key sk and
a public key pk.

Enc(pk,m)→ ct: Given a public key pk and a message m, returns a ciphertext
ct.

Eval(pk, f, ct)→ ctout: Given a public key pk, a function f , and a vector of
ciphertexts ct, returns a ciphertext ctout.

Dec(sk, ct)→ m: Given a secret key sk and a ciphertext ct, returns a message
m.

A FHE scheme is said to be correct if, for any pair (sk, pk) output by KeyGen,
for any function f and for any vector of plaintexts m, where the number of
elements in the vector is equal to the number of inputs of f , the following holds:

Dec(sk, (Eval(pk, f, ct))) = f(m),

where ct is the vector of the encryptions of elements of m, i.e., cti ← Enc(pk,mi).
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2.3 Security Definitions for FHE

We recall the definition of IND-CPA security.

Definition 2 (IND-CPA security). Let FHE = (KeyGen, Enc, Eval, Dec) be
a fully homomorphic encryption scheme. We define the IND-CPA game as the
experiment ExpIND-CPA, where A = (A1,A2) is an adversary. The experiment is
defined as follows:

ExpIND-CPA[A](λ) : (pk, sk)← KeyGen(λ)

(m0,m1, s)← A1(pk)

b←$ {0, 1}, c∗ ← Enc(pk,mb)

b′ ← A2(pk, s, c
∗)

return b = b′

We say that a FHE scheme is IND-CPA-secure if any PPT adversary A =
(A1,A2) has a negligible advantage. The advantage here is defined as

AdvIND-CPA[A](λ) =
∣∣∣∣Pr[ExpIND-CPA[A](λ) = 1]− 1

2

∣∣∣∣ .
Definition 3 (Circuit Privacy). An FHE scheme is called Circuit Private on
F if there is a probabilistic polynomial-time simulator SCP, such that, for any
vector of valid ciphertexts ct,

{sk,SCP(pk,mout)}
c
≈ {sk, Eval(pk, f, ct)},

where f ∈ F , mout ← f(Dec(sk, ct)) and (pk, sk)← KeyGen(λ).

2.4 Multi-Party Computation

This section introduces the notations we use forMulti-Party Computation (MPC)
protocols. Throughout this paper, we use additive sharings of polynomials over
rings. Let N be the number of parties that interact in the MPC protocol. An
N−sharing of a finite ring element x ∈ R is an N -tuple

JxK =
(
xJ0K, . . . , xJN−1K

)
such that

x =

N−1∑
i=0

xJiK (in R).

We call xJiK the i-th share of x. In the protocols we consider, each party Pi for
i ∈ [N ], receives one share xJiK for each shared value x. Using their shares, the
parties can then perform computations independently.
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In practice, a sharing JxK is usually obtained by computing N − 1 random
values xJ0K, . . . , xJN−2K, and setting

xJN−1K = x−
N−2∑
i=0

xJiK

afterwards to obtain a valid sharing JxK of x.
During the MPC protocol, the parties can perform different computations

with their respective shares to compute the output g(x) for some function g. In
this setup, Pi outputs its own value of g, which we denote by gi.

With these sharings, the parties can perform different computations indepen-
dently. Assume that party Pi receives the shares xJiK and yJiK corresponding to
sharings of x and y, and let α ∈ R be a constant. With these shares, the parties
can perform the following computations:

– Addition: They can compute Jx+ yK by locally setting

(x+ y)
JiK

= xJiK + yJiK

for i ∈ [N ].
– Multiplication by a constant: They can compute αJxK = JαxK by locally

setting

(αx)
JiK

= αxJiK

for i ∈ [N ].

2.5 The MPCitH Paradigm

The construction of our protocol relies on the MPC-in-the-Head (MPCitH)
paradigm, which was introduced in [IKOS07]. We consider an MPC protocol
between N parties P0, . . . ,PN−1, that securely and correctly computes the out-
put of a function g, given a secret input x. In this setting, the secret x is given by
a sharing JxK, where party i receives the i-th share xJiK. The function g outputs
either 1 or 0, corresponding to accept or reject, respectively. In our protocol, we
require that the MPC protocol is (N−1)-private, meaning that the views of any
N − 1 out of N parties reveal no information about the secret x. With this type
of MPC protocol, a prover P can convince a verifier V that she knows a witness
x with g(x) = 1 by constructing a Zero-Knowledge protocol as follows:

– P generates a random sharing JxK of x.
– P simulates (”in the head”) all parties of the MPC protocol and sends com-

mitments to each party’s view to the verifier.
– V randomly selects N − 1 parties whose views the prover must reveal.
– The verifier checks whether these revealed views are consistent with an hon-

est execution of the MPC protocol and the prover’s commitments.
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Because the MPC protocol is (N − 1)-private, opening the views of all but one
party reveals no information about the secret x. Since the choice of the N − 1
opened parties is random, a malicious prover can cheat with probability 1

N by
corrupting the computation of the unopened party. Thus, the soundness error
of a protocol based on the MPCitH paradigm is (at least) 1

N . To amplify the
soundness to the required security level of λ bits, we use τ repetitions of the
protocol, resulting in a soundness error of N−τ .

2.6 Hypercube Folding

To reduce computational overhead, MPCitH protocols commonly use the hyper-
cube technique, introduced in [AGH+23].

Assume the number of parties in the MPC protocol is a power of two, i.e.,
N = 2D. The hypercube technique transforms one instance of an MPC protocol
between N parties into D instances of the MPC protocol between 2 parties.

By computing D instances in parallel, the total soundness error of 1
N = 1

2D
=

( 12 )
D is the same as in the original protocol between N parties.

The process of converting a sharing between N = 2D parties into D sharings
between 2 parties is called folding of the shares. Consider a sharing of x of the
form x =

∑N−1
i=0 xJiK. Let Bj(i) denote the j-th bit of the binary decomposition

of an integer i. For any fixed j ∈ [D], we see that

x =
∑

Bj(i)=0

xJiK +
∑

Bj(i)=1

xJiK (1)

is a sharing of x between 2 parties. In this setting, the first party receives the
share

x
J0K
j =

∑
Bj(i)=0

xJiK,

while the second party receives the share

x
J1K
j =

∑
Bj(i)=1

xJiK.

This holds for every j ∈ [D], resulting in D sharings of x of the form x =

x
J0K
j + x

J1K
j . We refer to this construction by(

x
J0K
j , x

J1K
j

)
j∈[D]

← Folding
(
xJ0K , . . . , xJN−1K

)
.

In practice, we can use the folding algorithm with running time O(N) introduced
in [HJ24a, Section 6].
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2.7 Reducing the Communication Cost

To reduce the communication cost of our protocol, we use a state-of-the-art
technique applied to various MPCitH protocols, called puncturable pseudoran-
dom functions (PPRFs).

Definition 4. A family G of puncturable PRFs over [N ] is a PRF family G
indexed by a key K with domain [N ], satisfying the following conditions:

– For each key K and index i∗ ∈ [N ], there exists a punctured key Ki∗ and an
algorithm A such that

for each j ∈ [N ] \ {i∗} : A(Ki∗ , j) = GK(j).

– The punctured key Ki∗ reveals no information about GK(i∗).

GGM trees. A common method to instantiate PPRFs in practice is the tree-
based PRF construction by Goldreich, Goldwasser and Micali, known as GGM
trees [GGM86]. This construction builds a binary tree of depth ⌈log(N)⌉ with N
leaves, where the root node is labeled with a master root seed. Each node’s left
and right children are labeled inductively using a length-doubling pseudorandom
generator (PRG) on the respective parent node. In our scheme, we use a (salted)
hash function with domain separation to instantiate this descent function. The
N leaves of this tree represent the N shares of the value x that we use in the
MPCitH protocol. Given a root seed r, we denote the described expansion of this
root into N leaves by

(
xJ0K , . . . , xJN−1K

)
← GGM(r,N). To reveal all N leaves

except one leaf i∗ in a GGM tree, it suffices to reveal the labels of the siblings
of the nodes on the path from the root to the leaf i∗. This way, all leaves except
the leaf at position i∗ can be reconstructed by communicating ⌈log(N)⌉ nodes,
instead of N − 1 leaves.

To obtain a valid sharing of the value x, we need an offset δx if we use this
basic GGM tree construction. This offset is computed as

δx = x−
N−1∑
i=0

xJiK

and is broadcast to all parties.

Consistency for large values. In MPCitH schemes, the bitsize of the tree
nodes is typically set to λ, while also using a salt of 2λ bits in the derivation
function. Given salt← {0, 1}2λ and a hash function H, we define Hsalt(msg):=
H(salt ∥msg) for any msg ∈ {0, 1}∗. If we use the salted hash function for the
GGM tree derivation, we use the notation GGMsalt instead. For our scheme, we
require sharings of functions f ∈ F . We can use the GGM tree construction
for f by using internal nodes of the tree with the same bitsize as elements in
F . Since this bitsize is often much larger than the desired security parameter
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λ, a GGM construction using such large inner nodes is expensive. Instead, we
can use the standard GGM tree construction described above with inner nodes
of just λ bits. For these trees, we can expand each leaf to more than λ bits
using a pseudorandom generator to achieve the desired bitsize of elements in
F . These additional bits require offsets and we have to ensure that the same
value is consistently shared among all trees. Indeed, if we use τ rounds of the
MPCitH protocol, we obtain τ such trees Tj , each having one offset value δfj for
j ∈ [τ ]. The leaves of each such tree, together with the offset value, correspond
to a function

fj =

N−1∑
i=0

f
JiK
j + δfj .

However, from the verifier’s perspective, these fj do not have to be equal across
rounds. A state-of-the-art method for ensuring the desired consistency of shar-
ings across multiple rounds was introduced by Baum et al. in [BBD+23]. The
idea is to use a non-interactive version of the SoftspokenOT technique [Roy22]
to ensure that the prover provides offsets resulting in a sharing of the same el-
ement across multiple rounds based on a probabilistic check. This technique is
utilized in many schemes that employ a similar paradigm to MPCitH, known
as VOLEitH (Vector Oblivious Linear Evaluation in the Head), such as in
[CLY+24], [BFG+24], [Bui24].

In our scheme, we use a subroutine for the consistency check based on the
techniques introduced in [HJ24b]. We explain this consistency check in detail in
Section 3.3.

3 The Scheme

In this chapter, we construct a proof of the correct-and-honest homomorphic
evaluation of a private function from F on a known ciphertext.

In Section 3.1, we introduce a basic version of the Fherret scheme to illustrate
its fundamental mechanics, although this version is neither secure nor optimized.
In Sections 3.2 and 3.3, we explain the attacks against the basic version and
describe the modifications required to make it secure. In Section 3.4, we present
the adapted scheme constructed to prevent attacks from Sections 3.2 and 3.3
and prove its security.

3.1 A Simple but Insecure Version of the Scheme

We construct an interactive protocol to prove the correct-and-honest homomor-
phic evaluation of a private function f ∈ F on a vector of ciphertexts ct. The pro-
tocol runs between a prover/client P and a verifier/server V, using the MPCitH
paradigm. This initial version of the scheme is neither secure nor optimized but
is designed to demonstrate the core principles.

The prover computes a random sharing JfK of f between N parties and then
evaluates each share f JiK on the ciphertext ct, obtaining cti for i ∈ [N ]. After
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Inputs:

– Public key pk, function f , vector of ciphertexts ct (Prover)
– Secret key sk, public key pk, vector of ciphertexts ct (Verifier)

Step 1: Commitment

1. Let f be a polynomial in F
2. For j ∈ [τ ]:

– For i ∈ [N − 1]: Sample fj
JiK ←$ F

– Compute the missing share fj
JNK ← f −

∑
i∈[N−1] fj

JiK

– For i ∈ [N ]: Compute cti,j ← Eval(σi,j ; pk, fj
JiK , ct) and hi,j ← H(i ∥ j ∥

cti,j)
– Compute Xj ←

⊕
i∈[N ] cti,j

3. Compute com← H
(
(hi,j)(i,j)∈[N ]×[τ ]

)
4. Send (com, X0, . . . , Xτ−1) to the verifier

Step 2: Challenge

1. For j ∈ [τ ]: sample i∗j ←$ [N ]
2. Send (i∗0, . . . , i

∗
τ−1) to the prover

Step 3: Response

1. Send (fj
JiK , σi,j) for all (i, j) ∈ [N ] × [τ ] except for the pairs (i∗j , j) for all

j ∈ [τ ] to the verifier

Step 4: Verification

1. For j ∈ [τ ] :
– For i ∈ [N ] \ {i∗j}: Compute cti,j ← Eval(σi,j ; pk, fj

JiK , ct) and h′
i,j ←

H(i ∥ j ∥ cti,j).
– Compute cti∗j ,j ←

⊕
i ̸=i∗j

cti,j
⊕

Xj and h′
i∗j ,j
← H(i∗j ∥ j ∥ cti∗j ,j)

– Compute mout,j ←
∑

i∈[N ] Dec(sk, cti,j)

2. Compute h′ ← H
((

h′
i,j

)
(i,j)∈[N ]×[τ ]

)
3. If h′ = com and all mout,j for j ∈ [τ ] are equal, output accept. Otherwise,

output reject

Fig. 1. Illustration of the basic ideas of the Fherret scheme (insecure)

that, P commits to them by hashing all of these ciphertexts and then computes
X as the bitwise XOR of all the cti.

After receiving the commitment and X, V samples a random index i∗ ∈ [N ]
and sends it to P. The prover responds by revealing every share of f , and the
related random coins σi, except f Ji∗K and σi∗ to the verifier. Since the use of
random shares ensures that the protocol is N−1 private, V gains no information
about f .
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Using these shares and these random coins, the verifier recomputes the eval-
uations of f JiK on the ciphertext ct, obtaining cti for i ̸= i∗. Using X, V can
also recompute the homomorphic evaluation of f Ji∗K on ct. After doing this, V
checks if the hashes of the cti match the commitment and obtains the result
of the decryption of the homomorphic evaluation by decrypting all the cti and
summing them together. A description of the τ round basic scheme is provided
in Figure 1.

A malicious prover P ′ who attempts to use an invalid sharing must cheat
in at least one position. This remains undetected by the verifier only if the
cheating position equals i∗. By repeating this protocol for multiple rounds, we
can decrease the cheating probability until it is negligible.

While this protocol already limits the ability of a malicious prover by checking
the honesty of many of its computations, the verifier is still vulnerable to weaker
versions of reaction-based attacks. In the following sections, we describe these
attacks and outline how to fully protect the scheme against them.

3.2 Simple Error Correction During Decryption

The basic scheme in Figure 1 is still vulnerable to verification oracle attacks.
The weakness that an attacker can exploit arises from the construction of the
verification process.

In the final step, the user checks whether all mout,j for j ∈ [τ ] are equal. If
they are, the verifier accepts; otherwise, verification fails. Thus, for the prover to
modify the outcome, they need to alter only one value among all mout,j , which
can be done with a non-negligible probability of 1

N . Consequently, this scheme
only reduces the effectiveness of the verification oracle by a factor of N while
still permitting the same attacks (such as [ZPS12], [CCP+24], [CSBB24]) based
on the user’s reaction during decryption.

To see this, consider an FHE scheme with RLWE ciphertexts ct = (a, b).
Assume a server is executing the scheme with f being the identity function for
τ − 1 rounds. In the last round, after computing all the cti,τ−1 for i ∈ [N ],
the server modifies one of them, say the I-th, by introducing some extra noise
e to the b component and computing ct′I,τ−1 = ctI,τ−1 + (0, e). It also adjusts

Xτ−1 and hI,τ−1 accordingly. With probability 1
N , the challenge i∗τ−1 is equal

to I. This implies that the final hash check succeeds because the user does not
recompute cti∗τ−1,τ−1 but retrieves it from Xτ−1. As a result, the final output of
the verification depends only on the unanimity check, which succeeds if and only
if Dec(ct′I,τ−1) = Dec(ctI,τ−1). This allows the attacker to gather information
about the magnitude of the RLWE error of ctI,τ−1, potentially compromising the
security of the FHE scheme.

To counteract these types of attacks, we modify the final check such that the
verifier accepts if and only if more than half of the mout,j are equal. This forces
an adversary to manipulate at least τ

2 rounds to alter the verification result.
To achieve this without failing the hash commitment check, the attacker would
need to guess the verifier’s challenge correctly for each of these rounds, which
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happens with a negligible probability of
(

1
N

) τ
2 . This implies that we can safely

omit the equal majority check, because if the commitment check succeeds, the
probability of the second check failing is negligible. Therefore, we can always
expect that more than half of the mout,j are equal with probability almost 1.

To express this concept more easily in the protocols, we define the majority
of any finite list L as:

maj(L) =

{
the element in L that appears more than |L|/2 times

⊥ , if such an element does not exist.

3.3 Adding a Consistency Check

Another problem with the scheme in Figure 1 is that the verifier cannot check
if the prover is always computing shares of the same function during different
rounds. Potentially, the prover could use different functions for different rounds
without detection.

Even if the prover does not know the message m that is encrypted in ct,
having access to a verification oracle could still allow the prover to obtain addi-
tional information about m. In particular, even considering the majority check
from Section 3.2, the prover could choose two functions f0 and f1 and perform
τ
2 rounds of the protocol by computing shares of f0 and τ

2 rounds using shares
of f1. If the verification oracle outputs accept, this reveals that f0(m) = f1(m),
providing additional information about m.3

Hypercube version of the scheme. We can reduce the computational over-
head for the prover and verifier by using the hypercube version of the scheme. In
particular, we can transform τ parallel instances of the protocol between N = 2D

parties into τ ·D parallel instances of the protocol between 2 parties. In the basic
version of the scheme, the prover has to do τ · N evaluations on ct, while the
verifier has to do τ · (N − 1) such evaluations. By considering the hypercube
version instead, we can reduce this to 2τD evaluations on ct for the prover and
τ ·D evaluations on ct for the verifier.

To achieve this, we use the hypercube folding algorithm on the leaves of each
GGM tree we computed before to obtain τ ·D sharings of f between two parties.
Since we need to send one XOR Xj of all cti,j per sharing to the verifier, the
communication for the hypercube version increases by a factor of D = log(N).
Indeed, we need to send τ ·D values Xi,j in the hypercube version instead of τ
values Xj in the base scheme from Figure 1.

VOLE consistency check As discussed in Section 2.7, we reduce computa-
tional overhead by using internal GGM tree nodes of size λ, initializing each tree

3 When working on a field, the set where two polynomials are equal is small by the
Schwartz–Zippel lemma. Instead, when working modulo a power of 2 this set might
grow noticeably and allow for easier attacks.
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Inputs:

– Public key pk, function f , vector of ciphertexts ct (Prover)
– Secret key sk, public key pk, vector of ciphertexts ct (Verifier)

Step 1: Commitment (Prover)

1. Let f be a polynomial in F of degree d with k variables
2. For (i, j) ∈ [D]×[τ ] : Sample random coins σi,j for the FHE Eval and compute

hσ
i,j ← H(i ∥ j ∥ σi,j)

3. Compute hσ ← H
((

hσ
i,j

)
i,j∈[D]×[τ ]

)
4. Sample salt←$ {0, 1}2λ for the GGM tree derivation
5. For j ∈ [τ ]:

– Sample u⃗j ←$ {0, 1}λ

– Compute Tu⃗j :
(
u⃗

J0K
j , . . . , u⃗

JN−1K
j

)
← GGMsalt (u⃗j , N)

– For i ∈ [N ]: Compute f⃗
JiK
j ← PRG0

(
u⃗

JiK
j

)
and zj

JiK ← PRG1

(
u⃗

JiK
j

)
–

(
f⃗

J0Ki
j , f⃗

J1Ki
j

)
i∈[D]

← Folding
(
f⃗

J0K
j , . . . , f⃗

JN−1K
j

)
–

(
zj

J0Ki , zj
J1Ki

)
i∈[D]

← Folding
(
zj

J0K , . . . , zj
JN−1K

)
6. Compute z0 ←

∑N−1
i=0 z0

JiK

7. For j ∈ [τ ]:

– Compute δf⃗j ← f⃗ −
∑N−1

i=0 f⃗
JiK
j and δzj = z0 −

∑N−1
i=0 zj

JiK

– For i ∈ [D]:

• Let fj
J0Ki ← f⃗

J0Ki
j and fj

J1Ki ← f⃗
J1Ki
j + δf⃗j

• Compute ct
(0)
i,j ← Eval

(
σi,j ; pk, fj

J0Ki , ct
)

and ct
(1)
i,j ←

Eval
(
σi,j ; pk, fj

J1Ki , ct
)

• Compute h
(0)
i,j ← H

(
i ∥ j ∥ ct(0)i,j

)
and h

(1)
i,j ← H

(
i ∥ j ∥ ct(1)i,j

)
• Compute Xi,j ← ct

(0)
i,j ⊕ ct

(1)
i,j

8. Compute

com← H
(
salt ∥ hσ ∥

(
h
(0)
i,j , h

(1)
i,j

)
(i,j)∈[D]×[τ ]

∥
(
δf⃗j

)
j∈[τ ]

∥
(
δzj

)
j∈[τ ]∗

)

9. Send commit ←
(
com, salt, hσ, (Xi,j)(i,j)∈[D]×[τ ] ,

(
δf⃗j

)
j∈[τ ]

,
(
δzj

)
j∈[τ ]∗

)
to

the verifier

Fig. 2. Commitment of the hypercube Fherret scheme including the consistency check

Tj with uj ←$ {0, 1}λ. After expanding each tree to N leaves, we apply a PRG
G: {0, 1}λ → F to obtain shares in F , then compute offsets δfj to correct the
sum to match a common f . To ensure the consistency of the functions across
all τ subtrees to the verifier and to avoid the attack explained above, the prover
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Step 2: First Challenge (Verifier)

1. Sample µ⃗←$ (Fpl)
|F|

2. For m ∈ [τ ·D]: Sample αm ←$ Fpl

3. Send µ⃗, (αm)m∈[τ ·D] to the prover

Step 3: First Response (Prover)

1. Compute c← z0 + f⃗ · µ⃗
2. For j ∈ [τ ]:

– Compute A⃗
(j)
G

f⃗
←

∑D−1
i=0 αj·D+i f⃗

J0Ki
j

– Compute A⃗
(j)
Gz
←

∑D−1
i=0 αj·D+i zj

J0Ki

– Compute a(j) ← A⃗
(j)
Gz

+ A⃗
(j)
G

f⃗
· µ⃗

3. Send c,
(
a(j)

)
j∈[τ ]

to the verifier

Step 4: Second Challenge (Verifier)

1. For (i, j) ∈ [D]× [τ ]: Compute b∗i,j ←$ {0, 1}
2. Send

(
b∗i,j

)
(i,j)∈[D]×[τ ]

to the prover

Step 5: Second Response (Prover)

1. Compute the PPRF key K ← K(b∗i,j)(i,j)∈[D]×[τ]

2. Send K, (σi,j)i,j for all (i, j) ∈ [D] \ {i∗0, . . . , i∗τ−1} × [τ ] and the hashes(
hσ
i∗j ,j

)
j∈[τ ]

to the verifier

Fig. 3. Interactive version of the Challenges and Responses

needs to do some extra work to convince the verifier by adding a consistency
check. To do that, we adopt a VOLE-in-the-head–style check [BBD+23,HJ24b].

Consider the function f⃗ ∈ F with log(|F|) > λ. We use vectorial notation
to be consistent with VOLE literature. Let u⃗j ←$ {0, 1}λ. First, we compute a
GGM tree family (T0, . . . , Tτ−1) for the small value u⃗j as described in Section 2.7
to obtain the leaves(

u⃗
J0K
j , . . . , u⃗

JN−1K
j

)
← GGMsalt (u⃗j , N) for j ∈ [τ ].

After computing the hypercube folding of each such sharing, we obtain(
u⃗

J0Ki
j , u⃗

J1Ki
j

)
i∈[D]

← Folding
(
u⃗

J0K
j , . . . , u⃗

JN−1K
j

)
for each j ∈ [τ ], where D = log(N). In total, we obtain τ · D such hypercube
sharings. For each such sharing, the prover knows both shares, while the verifier
learns only one of the two from the PPRF key. Indeed, the verifier learns all
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Step 2: First Challenge (Prover)

1. Compute µ⃗, (αm)m∈[τ ·D] ← H (commit)

Step 3: First Response (Prover)

1. Compute c← z0 + f⃗ · µ⃗
2. For j ∈ [τ ]:

– Compute A⃗
(j)
G

f⃗
←

∑D−1
i=0 αj·D+i f⃗

J0Ki
j

– Compute A⃗
(j)
Gz
←

∑D−1
i=0 αj·D+i zj

J0Ki

– Compute a(j) ← A⃗
(j)
Gz

+ A⃗
(j)
G

f⃗
· µ⃗

Step 4: Second Challenge (Prover)

1. For (i, j) ∈ [D]× [τ ]:

b∗i,j ← H
(
commit ∥ µ⃗ ∥ (αm)m∈[τ ·D] ∥ c ∥

(
a(j)

)
j∈[τ ]

)
Step 5: Second Response (Prover)

1. Compute the PPRF key K ← K(b∗i,j)(i,j)∈[D]×[τ]

2. Send K, c and
(
a(j)

)
j∈[τ ]

, the random coins (σi,j)i,j for all (i, j) ∈ [D] \

{i∗0, . . . , i∗τ−1} × [τ ] and the hashes
(
hσ
i∗j ,j

)
j∈[τ ]

to the verifier

Fig. 4. Non-interactive version of the Challenges and Responses

leaves of Tj except one leaf u⃗
Ji∗K
j . Therefore, by using the folding algorithm,

the verifier cannot recompute the hypercube shares that contain u⃗
Ji∗K
j in the

summation (1), depending on the bit decomposition of the index i∗.

To derive the shares corresponding to f⃗ , we use a PRG on the leaves of each
subtree. In particular, we derive these shares using

f⃗
JiK
j ← PRG0

(
u⃗

JiK
j

)
for each (i, j) ∈ [N ] × [τ ], where PRG0: {0, 1}λ → (Fp)

|F| is a pseudorandom
generator. To correct these pseudorandom values in order to obtain a sharing of
f⃗ , we compute the offset values

δf⃗j = f⃗ −
N−1∑
i=0

f⃗
JiK
j

for each j ∈ [τ ]. For the consistency check described in [HJ24b], we also need
to derive an additional value from the leaves. In particular, we derive zj

JiK ←
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Step 6: Verification and Decryption (Verifier)

1. Use K and salt to recompute and fold all trees (with one missing leaf each)
and expand the leaves using PRG0,PRG1

2. For (i, j) ∈ [D] \ {i∗0, . . . , i∗τ−1} × [τ ]: Compute hσ
i,j ← H (i ∥ j ∥ σi,j)

3. Compute hσ′
← H

((
hσ
i,j

)
i,j∈[D]×[τ ]

)
4. For (i, j) ∈ [D]× [τ ]:

– Denote the known bit position of the respective hypercube sharing of f⃗
J·Ki
j

by bi,j ← 1− b∗i,j

– Recompute fj
Jbi,jKi ← f⃗

Jbi,jKi
j + bi,j δf⃗j

– ct
(bi,j)

i,j ← Eval
(
σi,j ; pk, fj

Jbi,jKi , ct
)

– h
(bi,j)

i,j ← H
(
i ∥ j ∥ ct(bi,j)i,j

)
– ct

(1−bi,j)

i,j ← ct
(1−bi,j)

i,j ⊕Xi,j

– h
(1−bi,j)

i,j ← H
(
i ∥ j ∥ ct(1−bi,j)

i,j

)
5. Set δz0 ← 0
6. For j ∈ [τ ]:

– Compute ∆∗
j ←

∑D−1
i=0 αj·D+i bi,j

– Compute G⃗
(j)

f⃗
(∆∗

j )←
∑D−1

i=0 αj·D+i

(
f⃗

Jbi,jK
j + bi,j δf⃗j

)
– Compute G⃗

(j)
z (∆∗

j )←
∑D−1

i=0 αj·D+i

(
zj

Jbi,jK + bi,j δzj

)
7. Compute h′ ← H

(
salt ∥ hσ′

∥
(
h
(0)
i,j , h

(1)
i,j

)
(i,j)∈[D]×[τ ]

∥
(
δf⃗j

)
j∈[τ ]

∥
(
δzj

)
j∈[τ ]∗

)
8. If G⃗

(j)
z (∆∗

j ) + G⃗
(j)

f⃗
(∆∗

j ) · µ⃗ = a(j) + c∆∗
j for all j ∈ [τ ], hσ′

= hσ and h′ = com

output accept. Otherwise, output reject.

9. Compute mout,i,j ← Dec
(
sk, ct

(bi,j)

i,j

)
+ Dec

(
sk, ct

(1−bi,j)

i,j

)
10. Output mmaj ← maj

(
{mout,i,j}(i,j)∈[D]×[τ ]

)

Fig. 5. Verification of the hypercube Fherret scheme including the consistency check

PRG1

(
u⃗

JiK
j

)
for each (i, j) ∈ [N ] × [τ ], where PRG1: {0, 1}λ → Fpl is a pseu-

dorandom generator. We discuss the required size of l depending on p and λ
in Section 4. We set z0 =

∑N−1
i=0 z0

JiK and compute the offset values δzj =

z0 −
∑N−1

i=0 zj
JiK for j ∈ [τ ]∗.

By construction, we obtain τ values of f⃗j and zj from the GGM tree family
and the offset values, one for each of the τ subtrees. In particular, we have that

f⃗j =

N−1∑
i=0

f⃗
JiK
j + δf⃗j and zj =

N−1∑
i=0

zj
JiK + δzj

for j ∈ [τ ], where δz0 = 0. The idea of the consistency check is to convince the

verifier that the values of (f⃗j , zj) are equal across all rounds j ∈ [τ ]. In particular,
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we want that (f⃗j , zj) = (f⃗ , z) for j ∈ [τ ]. The purpose of z is to act as a one

time pad to hide the value of f⃗ in the equality test. In the hypercube setting,
each subtree Tj induces a vectorial function of the form

g⃗i,j(b) =
(
f⃗

J0Ki
j , zj

J0Ki
)
+ b ·

(
f⃗j , zj

)
,

where the verifier chooses bi,j and learns g⃗i,j(bi,j) =
(
f⃗

Jbi,jKi
j , zj

Jbi,jKi
)
. Using

this representation, we can pick random coefficients αm ∈ F2l for m ∈ [τ · D]
and define the function

G⃗
(j)

f⃗ ,z
(∆j) =

D−1∑
i=0

αj·D+i g⃗i,j(bi,j)

=

D−1∑
i=0

αj·D+i

(
f⃗

J0Ki
j , zj

J0Ki
)
+∆j ·

(
f⃗j , zj

)
,

corresponding to each the subtree Tj , where ∆j =
∑D−1

i=0 αj·D+i bi,j . We can
write this function as

G⃗
(j)

f⃗ ,z
(∆j) = A⃗

(j)
G

f⃗,z
+∆j · (f⃗j , zj), (2)

where A⃗
(j)
G

f⃗,z
= G⃗

(j)

f⃗ ,z
(0). Note that each G⃗

(j)

f⃗ ,z
is an affine function known by the

prover, while the verifier chooses the evaluation point ∆∗
j and learns the value

G⃗
(j)

f⃗ ,z
(∆∗

j ) using the PPRF key. After the prover has committed to the GGM tree

family, the verifier computes a random vector µ⃗ ∈ (Fpl)|F| and sends it to the
prover. The consistency check relies on the following Lemma:

Lemma 1 ([HJ24b]). Let f⃗ , f⃗ ′ ∈ (Fp)
|F|

and z, z′ ∈ Fpl with (f⃗ , z) ̸= (f⃗ ′, z′)

and let µ⃗←$ (Fpl)|F|. Then Pr[z+ µ⃗ · f⃗ = z′+ µ⃗ · f⃗ ′] ≤ p−l, where the probability
is on the choice of µ⃗.

Multiplying (2) by (µ⃗, 1), we obtain

G⃗
(j)

f⃗ ,z
(∆j) · (µ⃗, 1) = A⃗

(j)
G

f⃗,z
· (µ⃗, 1) + ∆j(f⃗j , zj) · (µ⃗, 1)

= A⃗
(j)
G

f⃗,z
· (µ⃗, 1) + ∆j [zj + f⃗j · µ⃗]

Note that, if all (f⃗j , zj) are indeed equal for all rounds, then the values

zj + f⃗j · µ⃗ are identical for all j ∈ [τ ]. Therefore, the prover responds by sending

the coefficients a(j) = A⃗
(j)
G

f⃗,z
· (µ⃗, 1) ∈ Fpl for j ∈ [τ ] and just one coefficient

c = z + f⃗ · µ⃗ to the verifier. With the PPRF key, the verifier can recompute ∆∗
j

and recompute the values of G⃗
(j)

f⃗ ,z
(∆∗

j ) for j ∈ [τ ]. Finally, the verifier checks if

G⃗
(j)

f⃗ ,z
(∆∗

j ) · (µ⃗, 1) = a(j) + c∆∗
j
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for all j ∈ [τ ]. If this consistency check succeeds, the verifier proceeds with the
protocol, otherwise the verifier rejects.

As shown in [HJ24b], the false positive rate of this consistency check is
bounded by τ2p−l. We provide the pseudocode for the Fherret scheme includ-
ing the consistency check. In Figure 2, we describe the adapted Commitment
scheme including the consistency check. In Figure 3, we describe the respective
Challenge and Response algorithms between prover and verifier. In Figure 4, we
provide the non-interactive version of theses algorithms by using the random or-
acle H with proper domain separation to derive the challenges. The Verification
algorithm including the consistency check is given in Figure 5.

Remark 1. (Using AES in the tree derivation.) As explained above, using in-
ternal nodes of just λ bits reduces the size of the PPRF key of our scheme
compared to a version using big internal nodes of size |F|. For λ = 128, using
internal nodes of size λ bits has another advantage: We can use an internal tree
derivation function based on the AES block cipher instead of using a (salted)
hash function, which is a technique introduced in [BCC+24]. This allows us to
take advantage of the AES instruction set used in many recent CPU architec-
tures, resulting in an improvement of the running time of our scheme. For the
adapted tree derivation based on AES, we need two AES keys K0 and K1 to de-
rive the children of a node on a given level of the tree in the cGGM setting. The
left child of a node Y is set to AESK0

(Y )⊕ AESK1
(Y ), while the right child is

given by Y ⊕AESK0(Y )⊕AESK1(Y ) to achieve a XOR preserving construction.
Instead of sending the salt of size 2λ bits, we send the two keys K0,K1 of size λ
bits each in this version. Therefore, the communication cost remains the same.

3.4 A Secure Version of the Scheme

In this section, we prove the security of the scheme.

Prover privacy In many works on verifiable computation (VC) over fully homo-
morphic encryption (FHE), circuit privacy has been modeled as a context-hiding
property of the VC scheme [BCFK21,GNS23]. While this model is useful for de-
scribing security when applying zk-SNARKs in the ciphertext space, recent VC
works that operate in the plaintext space [ACGS24] have introduced the notion
of honest-verifier prover privacy (HVPP) to describe the security of the prover’s
function.

We adapt this definition to prove that, any information a semi-honest verifier
V can compute by participating in the protocol, V could compute using only its
input and prescribed output. To show this we provide a simulator S that is able
to produce an output computationally indistinguishable from a transcript of the
real protocol using only elements that are already known to V. We remark that
considering a semi-honest verifier is in line with the majority of the works on
circuit privacy. 4

4 This definition (and the security of our scheme) can be adapted to the malicious ver-
ifier setting by considering malicious circuit private FHE schemes ([DD22,OPP14]).
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Definition 5 (Honest-verifier prover-privacy (HVPP), adapted from
[ACGS24]). A protocol is said to satisfy honest-verifier prover privacy if there
exists a probabilistic polynomial-time (PPT) simulator S such that for every
function f ∈ F , the following distributions are computationally indistinguishable:

{sk,S(λ, pk,m, ct, f(m))} ≈c {sk,ViewV(λ, sk, pk,m, ct, f)}

where (sk, pk) ← KeyGen(λ) and ViewV denotes the view of the V during an
execution of the protocol on client’s input (m, ct), where ct ← Enc(sk,m), on
server’s input f and security parameter λ.

Theorem 1. The scheme from Figure 2 satisfies HVPP.

Proof. Deferred to Appendix A.

Verifier security. To protect the verifier from malicious behavior, we must
prove that an adversary cannot exploit the decryption or verification process
extract sensitive information. In particular, such attacks require the adversary
to create a dependency between the verifier’s output and private components,
such as the verifier’s secret key sk or the message m encrypted in the ciphertext
ct.

In cryptographic literature, reaction-based attacks are typically modeled us-
ing ideal oracles which provide abstract interfaces to the verifier’s behavior.
These oracles allow us to reason about what an attacker could learn under well-
defined access patterns.

To establish the security of our scheme against such attacks, we show that the
outputs of these oracles can be efficiently simulated using only public information
and the expected output of the protocol. This implies that an adversary cannot
obtain any additional useful information beyond what is provided as input to
the simulator.

To support these claims, we begin by proving the following theorem on the
scheme from Figure 2 .

Theorem 2 (Function Commitment). Let the verifier’s output be not ⊥.
Then, in the Random Oracle Model (ROM), there exists a polynomial-time ex-
tractor that can recover the function f ∈ F used by the server with negligible fail-
ure probability. Furthermore, except with negligible probability, the output mmaj

computed by the verifier satisfies:

mmaj = f(m),

where m is the message encrypted in the input ciphertext, f is the extracted
function.

Proof. Deferred to Appendix B.

This theorem establishes two essential properties:

1. The prover is bound to a specific function f ∈ F in order for the verifier to
produce a valid output.

2. The protocol’s output consistently corresponds to the evaluation of f on the
original message m.
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Verifier security against IND-CPAD-style attacks and verification oracle
attacks. Correctness oracles reveal to the attacker when the result of the homo-
morphic evaluation of a function f on a ciphertext encrypting m gets decrypted
to something different from f(m).

Verification oracles are used to describe when the ciphertext returned by the
prover is tampered with in a way that might change the verifier’s output of the
protocol.

We show that both of these oracles can be simulated from elements already
available to the prover.

Theorem 3. Considering the protocol from Figure 2, there exist two probabilis-
tic polynomial-time (PPT) simulators SVer and SCorr, such that

OVer(sk, T )
c
≈ SVer(pk, T ) and OCorr(sk, T )

c
≈ SCorr(pk, T ),

where we define the transcript of a protocol as

T ← TrV(pk, ct, f),

and OVer,OCorr as the verification oracle and as the correctness oracle.

Proof. Deferred to Appendix C.

To illustrate this more concretely, we refer to the attack strategies in [CCP+24],
[CSBB24]. The adversary encrypts zero and then maliciously evaluates a func-
tion homomorphically. For example, the adversary homomorphically multiplies
the ciphertext for a large power of two without bootstrapping, despite the FHE
evaluation algorithm requiring it. This breaks correctness, yielding a nonzero
result.

However, in our scheme, the verifier detects inconsistencies by comparing
the expected ciphertexts from honest homomorphic evaluation against those
produced by the adversary’s modified evaluation. So, the verifier rejects these
ciphertexts without decrypting them.

Thus, with these two oracles, an attacker gains no information about the
secret key sk or the original message m.

Verifier security against Decryption Oracle attacks Decryption oracles
reveal to the attacker the output of the protocol, typically the decryption of
the ciphertext returned by the prover, asking the attacker to infer additional
information from this, such as attempting to recover the challenger’s secret key
sk.

We show that, in our scheme, we can describe in detail the leakage deriving
from a decryption oracle.

Theorem 4. Considering the protocol from Figure 2, there exists a probabilistic
polynomial-time (PPT) simulator SDec , such that

ODec(sk, T )
c
≈ SDec(pk, T , f(m)),
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where we define the transcript of a protocol as

T ← TrV(pk, ct, f),

f as the (extractable) function used by the prover, m as the message encrypted
in the input ciphertext from the verifier and ODec as the decryption oracle.

Proof. Deferred to Appendix C.

As expected in such an attack, this reveals f(m) and provides some informa-
tion about m. However, crucially, the output remains independent of the secret
key sk.

Public Verifiability. We observe that the verification protocol (Figure 5) can
be carried out almost entirely, specifically points 1 to 8, without requiring access
to sensitive elements from either the verifier or the prover. In particular, the
verifier’s secret key sk, input message m, and the prover’s function f are not
needed.

This property allows the verifier to delegate the computationally expensive
portion of the verification process to an external trusted party. The trusted party
can independently verify the prover’s honest behavior, compute the intermediate
ciphertexts up to step 8, and then return these ciphertexts to the verifier. The
verifier can then complete the protocol by simply decrypting the final ciphertexts.

4 Parameters and Implementation

Fherret is not scheme-specific and can be applied to any (non-approximate) FHE
scheme. While we make particular choices regarding schemes and parameters,
these choices are not mandatory for implementing Fherret. In this proof of con-
cept, we focus on estimating the runtime for both the prover and the verifier,
and we discuss implementation-related optimizations.

4.1 Setting Fherret Parameters

Depending on the efficiency of the hash function used in the tree derivation,
many MPCitH schemes can feasibly compute sharings for up to N = 216 parties
within a reasonable computation time. To reduce the communication cost of
Fherret, it is desirable to use a large number of parties N and a small number
of rounds τ . In contrast, the computational overhead for both the prover and
the verifier in constructing the trees is reduced when using a smaller number of
parties N and a larger number of rounds τ .

To achieve a desired security level of λ bits, we must choose N and τ such
that log(N) · τ2 ≥ λ. Therefore, depending on the desired trade-offs in efficiency
and communication, the user can select these parameters accordingly.

Including the consistency check, we must choose parameters N = 2D and τ
such that the overall security of the scheme is at least λ bits.

22



Table 1. Running times of Fherret for λ = 130 and (D, τ) = (13, 20) using twin AMD
EPYC 9374F processors running at 3.85 GHz.

Commitment (Prover) Verification (Verifier)

MPCitH FHE total MPCitH FHE total

Fd,k GGM PRG+ Fold H Monomials Coeff GGM PRG+ Fold H Monomials Coeff

Single core

F2,4 0.4 s 3.2 s 4.2 s 0.12 s 29.4 s 37.5 s 0.4 s 3.0 s 4.2 s 0.12 s 14.7 s 22.5 s

F2,10 0.4 s 15.7 s 4.3 s 0.67 s 130 s 151 s 0.4 s 14.9 s 4.4 s 0.67 s 65 s 86 s

F2,20 0.4 s 67 s 4.6 s 2.5 s 458 s 534 s 0.4 s 49 s 4.7 s 2.6 s 235 s 291 s

F3,4 0.4 s 7.5 s 4.4 s 0.4 s 80 s 93 s 0.4 s 7.8 s 4.5 s 0.4 s 38 s 51 s

F4,4 0.4 s 14.6 s 4.4 s 1.1 s 166 s 187 s 0.4 s 13.9 s 4.4 s 1.1 s 84 s 104 s

F5,4 0.4 s 24.7 s 4.5 s 2.5 s 323 s 356 s 0.4 s 22.6 s 4.4 s 2.5 s 160 s 189 s

F6,4 0.4 s 41.6 s 8.6 s 9.3 s 1576 s 1639 s 0.4 s 34.4 s 8.6 s 9.3 s 659 s 714 s

Using 128 threads in parallel for the FHE evaluation

F2,4 0.4 s 3.2 s 4.2 s 0.12 s 1.8 s 9.6 s 0.4 s 3.0 s 4.2 s 0.12 s 0.93 s 8.8 s

F2,10 0.4 s 15.7 s 4.3 s 0.67 s 7.1 s 28 s 0.4 s 14.9 s 4.4 s 0.67 s 3.7 s 25 s

F2,20 0.4 s 67 s 4.6 s 2.5 s 24.4 s 103 s 0.4 s 49 s 4.7 s 2.6 s 12.4 s 72 s

F3,4 0.4 s 7.5 s 4.4 s 0.4 s 4.9 s 17.7 s 0.4 s 7.8 s 4.5 s 0.4 s 2.5 s 15.6 s

F4,4 0.4 s 14.6 s 4.4 s 1.1 s 11.7 s 32.6 s 0.4 s 13.7 s 4.4 s 1.1 s 6.0 s 25.9 s

F5,4 0.4 s 24.7 s 4.5 s 2.5 s 24.9 s 58 s 0.4 s 22.6 s 4.4 s 2.5 s 12.3 s 43 s

F6,4 0.4 s 41.6 s 8.6 s 9.3 s 74 s 135 s 0.4 s 34.4 s 8.6 s 9.3 s 37 s 92 s

F8,4 0.4 s 94 s 8.7 s 31 s 239 s 379 s 0.4 s 75 s 9.0 s 31 s 123 s 244 s

F10,4 0.4 s 200 s 9.0 s 72 s 587 s 879 s 0.4 s 159 s 9.3 s 71 s 303 s 553 s

By the union bound, the cheating probability of a malicious prover is upper
bounded by 1

Nτ/2 + τ2p−l, where p is the plaintext modulus of the FHE scheme.
For λ = 128, we can, for instance, set l = ⌈256/log(p)⌉ to achieve a negligible
failure probability in the consistency check. The total communication cost of the
Fherret scheme is given by

size ≈ 9λ+ 4τλ+ 8λ2 + 2λ · |ct|+2τ · |f |.

For a computation of this size, see Appendix D.

A comparison of the resulting bit-security level and communication size for
various values of D and τ is provided in Table 2.

4.2 Choosing F

In the definition of circuit privacy, the choice of the function space from which
the evaluated function is drawn is crucial. Most works on circuit privacy consider
function spaces consisting of all polynomials with a fixed degree d and a fixed
number of variables k. We denote this space as Fd,k.
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Table 2. Examples of parameter choices for D and τ and the resulting bit security
and communication size of the Fherret protocol using l = ⌈2λ/log(p)⌉.

D τ bit security level size (bits)

15 18 135 270 · |ct|+36 · |f |+156735

14 19 133 266 · |ct|+38 · |f |+152817

13 20 130 260 · |ct|+40 · |f |+146770

12 22 132 264 · |ct|+44 · |f |+152196

11 24 132 264 · |ct|+48 · |f |+153252

10 26 130 260 · |ct|+52 · |f |+149890

In Fd,k, each function contains
(
d+k+1
k+1

)
monomials. Therefore, the size of its

description is proportional to the number of monomials, multiplied by the bit
length of the message space (that in our case is the bit size of the plaintext
modulus).

In specific applications, the topology of the function (i.e., the structure of
the monomials) may not need to remain hidden, and only the coefficients are
considered sensitive. In such cases, the additive sharing can be performed over a
significantly smaller function space F . This allows the performance of homomor-
phic evaluation over a random function in F to better approximate the actual
cost of evaluating the prover’s function.

However, we stress that this optimization is not suitable for all scenarios.
It can only be safely applied to function spaces that are large enough to resist
attacks capable of recovering the function with a limited number of queries.

4.3 Improving the Timings for Repeated FHE Evaluations

In Step (7) of the commitment phase (Figure 2) and Step (4) of the verification
phase (Figure 5), we require the homomorphic evaluation of a total of 4λ and
2λ random functions from F , respectively.

We can significantly reduce the runtime of these evaluations by leveraging the
structure of the function space Fd,k. Specifically, each polynomial in Fd,k can be
expressed as a sum of monomials of the form xi1

1 . . . xik
k , for 0 ≤ i1+ · · ·+ ik ≤ d,

each multiplied by its corresponding coefficient ci1,...,ik .

Crucially, the homomorphic evaluation of these monomials is independent
of the coefficients and thus common to all the functions being evaluated. This
allows us to compute all relevant monomials once and reuse them across all
function evaluations.

This reuse strategy becomes especially impactful when F includes polynomi-
als of high degree or a large number of variables. In such cases, amortizing the
cost of monomial evaluations significantly reduces the overall overhead associ-
ated with repeated FHE evaluations.
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4.4 Implementation and Running Times

We provide the running times of our scheme based on a proof-of-concept im-
plementation in C++. As the underlying FHE scheme, we use the BGV-RNS
scheme, as implemented in the OpenFHE library [BAB+22]. We use a plaintext
modulus p = 65537 and perform a packing of 12 messages per ciphertext.

Currently, the major FHE libraries supporting BGV and BFV do not pro-
vide implementations that guarantee circuit privacy. Therefore, our proof-of-
concept implementation ensures security only for the verifier. Nonethe-
less, since Fherret’s overhead is proportional to the cost of FHE evaluations, the
relative impact on performance would remain comparable even when circuit pri-
vacy is enforced.

Our implementation targets the λ = 128 bit security level, leveraging the
optimizations discussed in Section 3.3. Among the various parameter choices
listed in Table 2, the configuration (D, τ) = (13, 20) offered the best trade-off
between tree generation and FHE evaluation costs. This choice resulted in the
shortest overall running times for both the prover and the verifier.

In Table 1, we report the running times of Fherret for various choices of
the function space F . Specifically, we consider executions that guarantee circuit
privacy over function spaces Fd,k, defined by polynomials of fixed depth d and
a fixed number of variables k.

The table includes partial timings to illustrate the asymptotic scaling behav-
ior of different components of the protocol. Notably, the tree derivation process
depends only on the security parameter and is independent of F . In contrast,
the PRG expansion and hypercube folding steps scale linearly with the number
of monomials in F . The column labeled H aggregates the timings for all steps
occurring after the FHE evaluations; this includes hashing, the generation (or
verification) of the VOLE proof, and the construction of the PPRF key. Among
these, the hashing time is the dominant factor and also scales linearly with the
number of monomials.

We also break down the FHE evaluation timings into two components: the
evaluation of monomials and the evaluation of the 4λ sets of coefficients (2λ for
the verifier). By examining single-core timings, we quantify the impact of the
optimization introduced in Section 4.3. Without this optimization, monomial
evaluation would be redundantly performed 520 times by the prover and 260
times by the verifier. By sharing monomial computations across evaluations, we
reduce the total homomorphic evaluation time by approximately 67% to 80%,
with the savings increasing as the size of F grows.

Finally, we also report timings using 128 parallel threads for FHE evaluations,
demonstrating the scalability of Fherret. This parallelization enables efficient
evaluation even for functions with large depth or high number of variables.

5 Conclusion

In this work, we introduced Fherret, a novel proof system for FHE schemes
that leverages the MPC-in-the-Head (MPCitH) paradigm to certify that the
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homomorphic evaluation was performed correctly and honestly. Fherret protects
the verifier from reaction-based attacks and preserves circuit privacy for the
evaluated function.
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Elias Suvanto. Attacks against the IND-CPAD security of exact FHE
schemes. In Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie,
editors, ACM CCS 2024, pages 2505–2519. ACM Press, October 2024.

CF13. Dario Catalano and Dario Fiore. Practical homomorphic MACs for arith-
metic circuits. In Thomas Johansson and Phong Q. Nguyen, editors, EU-
ROCRYPT 2013, volume 7881 of LNCS, pages 336–352. Springer, Berlin,
Heidelberg, May 2013.

CGG16. Ilaria Chillotti, Nicolas Gama, and Louis Goubin. Attacking FHE-based
applications by software fault injections. Cryptology ePrint Archive, Report
2016/1164, 2016.

CGGI20. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of Cryp-
tology, 33(1):34–91, January 2020.

CKP+24. Sylvain Chatel, Christian Knabenhans, Apostolos Pyrgelis, Carmela Tron-
coso, and Jean-Pierre Hubaux. VERITAS: Plaintext encoders for practical
verifiable homomorphic encryption. In Bo Luo, Xiaojing Liao, Jun Xu, En-
gin Kirda, and David Lie, editors, ACM CCS 2024, pages 2520–2534. ACM
Press, October 2024.

CLY+24. Hongrui Cui, Hanlin Liu, Di Yan, Kang Yang, Yu Yu, and Kaiyi Zhang.
ReSolveD: Shorter signatures from regular syndrome decoding and VOLE-
in-the-head. Cryptology ePrint Archive, Paper 2024/040, 2024. https:

//eprint.iacr.org/2024/040.
CSBB24. Marina Checri, Renaud Sirdey, Aymen Boudguiga, and Jean-Paul Bultel.

On the practical CPAD security of “exact” and threshold FHE schemes and
libraries. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024,
Part III, volume 14922 of LNCS, pages 3–33. Springer, Cham, August 2024.
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Appendix

A Proof of Theorem 1

We write explicitly ViewV(λ, sk, pk,m, ct, f) as(
pprf˙keys, offsets, (Xj)j∈[τ ], com

)
,

where
pprf˙keys = {(i∗j )j∈[τ ],Ki∗pre ,K(i∗0 ,...,i

∗
τ−1)

, salt},
and

offsets = {(δf )j∈[τ ], (δz)j∈[τ ]∗ , (a
(j))j∈[τ ], c}.

We can construct S(λ, pk,m, ct, f(m)) in the following way:

1. Sample g ←$ F and compute ḡ ← g + (f(m)− g(m)).
2. Follow honestly the protocol by using pk, ct, ḡ up to step (6).
3. In step (7), looking at the second challenge (b∗i,j)(i,j)∈[D]×[τ ], substitute the

ciphertexts that are hidden to the verifier by using the simulator from circuit
privacy

ct
¯b∗i,j

i,j ← SCP(pk, f
J ¯b∗i,jKi
j (m)).

4. Complete the rest of the protocol honestly.

Having a look at the outputs of the simulator we have that:

1. The pprf˙keys and offsets behave like random elements in the ROM.
2. (Xj)j∈[τ ] and com are computationally indistinguishable from a real execu-

tion of the protocol because of the circuit privacy simulator.
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B Proof of Theorem 2

Having a meaningful output means that the VOLE check and the hash checks
are successful. If the VOLE check is true, the function

f
J0Ki
j + f

J1Ki
j + δfj

is always the same for each j ∈ [τ ] and i ∈ [D], where the f
JbKi
j are the functions

reconstructed during verification from pprf˙keys. Since each f
JbKi
j is computed by

using a PRF, that we model as a random oracle, the probability of constructing
a working VOLE proof compatible with pprf˙keys without querying the random

oracle to obtain the f
JbKi
j is negligible.

This means that we can recover all of the f
JbKi
j by reading the random oracle

memory. Now, since the hash checks verify, we know that the offsets sent by the
verifier are the same ones used in the VOLE proof. Since this proof also verifies
we can extract the prover’s function as the common value

f := f
J0Ki
j + f

J1Ki
j + δfj .

Finally, thanks to the hash checks, we know that all the ciphertexts queried
in a challenge are computed correctly as

ct
b∗i,j
i,j ← Eval(σi,j ; pk, f

Jbi,jKi
j , ct),

therefore the probability of modifying the majority of these ciphertexts without
the hash check failing is negligible.

This implies that at least half of the decrypted ciphertexts will correctly
decrypt to f(m).

C Proof of Theorems 3 and 4

We observe that the verification protocol (Figure 5) can be carried out almost
entirely, specifically steps (1) to (8), without requiring access to sensitive ele-
ments from either the verifier or the prover. In particular, the verifier’s secret
key sk, input message m, and the prover’s function f are not needed.

We refer to this partial verification, which performs only the VOLE and hash
checks, as Vpub(pk, T ), where we define T as the transcript of the protocol

T ← TrV(pk, ct, f).

We define the three oracles as follows:

SVer(pk, T ) = SCorr(pk, T ) =

{
true if Vpub(pk, T ) = true

false if Vpub(pk, T ) = false
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SDec(pk, T , f(m)) =

{
f(m) if Vpub(pk, T ) = true

⊥ if Vpub(pk, T ) = false

Theorem 2 grants us that, except for a negligible probability, the output of
the protocol is f(m) if Vpub(pk, T ) = true and is ⊥ otherwise. This means that
these simulators will behave in the same way as the oracles they simulate.

D Communication Cost

The total communication cost of Fherret includes:

– a global commitment hash com of size 2λ
– a salt of size 2λ
– a commitment to the random coins of size 2λ
– τ ·D = 2λ ciphertexts cti,j
– τ offsets f⃗j and (τ − 1) offsets zj of size τ · |f |+(τ − 1) · 2λ
– the vector µ⃗ ∈ (Fpl)|F| can be recomputed using a PRG on a seed of size λ
– the elements (αm)m∈[τ ·D] of size τ ·D · 2λ ≈ 4λ2

– the vectors
(
a(j)

)
j∈[τ ]

of size ≈ τ · |f |
– one element c of size 2λ
– a PPRF key of size τ · λD ≈ 2λ2

– the random coins σi,j of size (τ − 1) ·D · λ ≈ 2λ2

– the hashes (hσ
i∗j ,j

)j∈[τ ] of size τ · 2λ

In all computations, we use that τD ≈ 2λ. This yields a total communication
size in bits of

size ≈ 9λ+ 4τλ+ 8λ2 + 2λ · |ct|+2τ · |f |.
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