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1 Abstract

This document is a preliminary version of what is intended to be submitted to NIST by Zama as part of
their threshold call. The document also serves as partial documentation of the protocols used in the
ZamaMPC system for threshold TFHE.

However, note that the Zama software includes many optimizations built on top of the simple specifi-
cations given here. In particular the TFHE parameters given here are larger than those used by the Zama
software. This is because the Zama TFHE library contains optimizations which are beyond the scope
of this document. Thus the parameters given in this document are compatible with the description of
TFHE given here, and take no account of the extra optimizations in the Zama software.

Also note that we describe more protocols than that provided in the Zama software. In particular
this document describes BGV and BFV threshold implementations, MPC-in-the-Head based proofs of
correct encryption.

We present mechanisms to perform robust threshold key generation and decryption for Fully Homo-
morphic Encryption schemes such as BGV, BFV and TFHE, in the case of super honest majority, t < n/3,
or t < n/4, in the presence of malicious adversaries.

The main mechanism for threshold decryptions follow the noise flooding principle, which we argue is
sufficient for BGV and BFV. For TFHE amore subtle technique is needed to apply noise flooding, since
TFHE parameters are small. To deal with all three FHE scheme, and obtain a unified framework for all
such schemes, we are led to consider secret sharing over Galois Rings and not just finite fields.

We consider two sets of threshold profiles, depending on whether
�n
t

�

is big or small. In the small
casewe obtain for all schemes an asynchronous protocol for robust threshold decryption, andwe obtain
a robust synchronous protocol for threshold key generation; both with t < n/3. For the large case we
only support TFHE, and our protocols require an “offline phase” which requires synchronous networks
and can “only” tolerate t < n/4.

The threshold key generation operation, and the above mentioned offline phase, require access to a
generic offline MPC functionality over arbitrary Galois Rings. This functionality is fully specified here.

Finally, we present Zero-Knowledge proof techniques for proving the valid encryption of an FHE
ciphertext. These proofs are important in a number of application contexts.
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2 Executive Summary

In this document we discuss methodologies for threshold decryption and threshold key generation
for the popular Fully Homomorphic Encryption (FHE) schemes of BGV [BGV12], BFV [FV12, Bra12]
and TFHE [CGGI16, CGGI20, BdBB+25]; although our focus is mainly on threshold protocols suitable
for TFHE. We provide robust protocols1 , i.e. they can recover from injected adversarial errors, which
guarantee output delivery. Our protocols utilize an asynchronous network in the online phase of the
protocols. For some threshold profiles (for when either the number of players is large or for threshold
key generation) we require an offline phase; in such situations the offline phase needs to assume a
synchronous network.

The protocols are built upon a (relatively) generic, robust Multi-Party Computation (MPC) function-
ality which works over Galois Rings. Forn players and t corruptions, this comes in two variants:

1. A variant, for when
�n
t

�

is small, which utilizes pseudo-random secret sharing. We support in this
parameter region threshold decryption for BGV, BFV and TFHE. The threshold decryption works
over asynchronous networks and requires t < n/3. For threshold key generation we require an
offline phase, which also requires t < n/3, but which requires a synchronous network.

2. A variant, for when
�n
t

�

is large. We support in this threshold protocols only for TFHE; both threshold
decryption and threshold key generation use an online phase which works over asynchronous
networks and requires t < n/3. However, both also require an offline phase which requires t < n/4
and synchronous networks.

In addition we provide three forms of zero-knowledge proofs for the correct encryption of FHE
ciphertexts in the above schemes. Such proofs are needed to ensure that any input ciphertexts to
a protocol are not adversarially generated. This is a major issue when building MPC-like protocols
utilizing FHEwhichmay have adversarially generated input, see [Sma23] for a full discussion of such
protocols. We provide three such forms of Zero-Knowledge proofs; two which are pre-quantum secure
(for soundness but not zero-knowledge), have short proofs, but a relatively long prover time, and a third
variant which is fully post-quantum secure, has longer proofs, but a shorter prover time. We note, a more
efficient (in terms of proof size and prover time) post-quantum proof system may be possible using
systems such as Ligero [AHIV17, AHIV23, BFH+20].

For the rest of this section we outline the document in these four directions: MPC over Galois Rings,
threshold decryption, threshold key generation, and zero-knowledge proofs in more detail.

2.1 Generic MPC over Galois Rings

To enable the our threshold operations for FHEwe require an MPC engine which works either modulo
q = 2k or modulo q = p1 . . . pk (where p are largish primes). The former is for TFHE and the latter is for
BGV and BFV. Most work on MPC considers MPC defined over a finite field, and in neither of the cases of
interest to us is Z/(q) a finite field. This leads us to need to build an MPC engine over a Galois Ring.

This has been done before (theoretically) in the literature in various cases [ACD+19, JSvL22]. These
latter works usually consider q = 2k , generalizing them to the case of q = p1 . . . pk is relatively straight
forward. We adapt these prior works, and apply them to the [DN07] robust MPC protocol. The [DN07]
MPC protocol was originally defined for finite fields; we provide the relatively trivial generalization to
arbitrary Galois Rings for our choices of q.

As described above, in doing so we introduce two classes of threshold profiles (see Table 1 later for a
concise overview):

• For small values of
�n
t

�

(we call such profiles nSm) we obtain (apart from a small setup procedure)
a robust MPC protocol, which works over asynchronous networks, and requires t < n/3. This

1Sometimes in the literature what we refer to as robust protocols are called protocols with Guaranteed Output Delivery (GOD-
protocols)
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protocol is new, but a relatively simple adaption of existing techniques.
• For large values of

�n
t

�

(called profiles nLrge) we obtain, using a direct application of themethod of
[DN07], a robust MPC protocol which works over asynchronous networks in the online phase, and
requires t < n/3. However, the offline phase works only over synchronous networks and requires
t < n/4.

One could produce in the nLrge regime a protocol which works for t < n/3 in the offline phase, by fully
adapting the methodology in [DN07]. However, the dispute resolution system for such a protocol is
relatively complex, and so we decided not to pursue this extension.

2.2 Threshold FHE Decryption

The problem of threshold decryption for FHE schemes, henceforth called threshold-FHE, is as old as
FHE itself. The problem is for a set ofn parties to have a secret sharing of the underlying FHE secret key
so that they can between them decrypt a given FHE ciphertext correctly, in the case where at most t of
the parties are corrupt. Indeed, Gentry’s original thesis [Gen09] mentioned threshold-FHE as a way of
utilizing FHE to perform a very low round complexity semi-honest MPC protocol.

To understand the technical problem with threshold-FHE it is worth considering the “format” of a
simple FHE scheme. To explain we utilize the format of BFV/TFHE [FV12, CGGI16, CGGI20, BdBB+25]
ciphertexts, but a similar discussion can be provided for other FHE schemes such as BGV. Consider
encrypting an elementm ∈ Z/(P), using a standard Learning-With-Errors (LWE) ciphertext of the form
(, b)with ciphertext modulus q , where  ∈ (Z/(Q))ℓ and b ∈ Z/(Q), using the equation

b =  · s + e + Δ ·m (mod Q)

where Δ = bQ/Pc , e is some “noise” term and s ∈ (Z/(Q))ℓ is the secret key. Usually, in the FHE setting, s
is chosen to be a vector with small norm, for example s ∈ {0,1}ℓ .

To enable threshold-FHE we first secret share the secret key s among n parties, a process which we
shall denote by 〈s〉 to signal a sharing modulo Qwith respect to a threshold t < n linear secret sharing
scheme. On input of the ciphertext (, b)we can then produce trivially a secret sharing of the value
e + Δ ·m by computing

〈t〉 = b −  · 〈s〉 = 〈e + Δ ·m〉.

By opening the value of 〈t〉, all parties can then perform rounding to obtainm. However, this reveals the
value of e, which combinedwith the ciphertext and themessage, will reveal information about the secret
key s.

There are two ways around this problem. The first is to add some additional noise into the secret
sharing before opening (a process called noise flooding), the second method is to extract the message
m from the shared value 〈t〉 using a generic MPC protocol.

2.2.1 Threshold Decryption via Noise Flooding

In this method the decrypting parties somehow generate an additional secret shared noise term 〈E〉,
and the value which is opened is now

〈t〉 = b −  · 〈s〉 + 〈E〉 = 〈e + E + Δ ·m〉.

We require that E should introduce enough randomness to mask the e value after the shared value
〈t〉 is opened. If E is too small then too much information about e is revealed, if E is too big then the
final rounding will not reveal the correct value ofm. Diagrammatically we can consider this process as
approximated by the diagram in Figure 1.
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“noise gap”
︷ ︸︸ ︷

m e
+

E
=

m E+e

Figure 1: Representation of the noise addition for threshold decryption.

To mask, statistically, all information in ewe would (naively) require E to be chosen uniformly from a
range which is 2dst larger than e. Thus if we can bound the ciphertext noise by |e| < B, then wewould
require E to be chosen uniformly in the range [−2dst · B, . . . ,2dst · B] . This process is often dubbed
“noise flooding” in the literature. However, thiswouldmeanwe require Δ > 2dst ·B, which in turn seems to
imply that the ciphertext modulus Q needs to be “large”. The work effort of the adversary to distinguish
the distributions in the underlying security proof is then 2dst . Prudently this would lead us to select
dst = 80.

In [DDE+23] it is shown that by adding an E term on, which is itself the addition of at least two
uniform distributions in the range [−2stt · B, . . . ,2stt · B] , the resulting work effort of the adversary
to distinguish the distributions becomes 22·stt . We can, hence, obtain enough security by selecting
stt ≈ 40, and so reduce the need for very much larger Q values.

In theory it may be possible to select E from a smaller range, and rely on some computational
assumptions in order to argue about security. This approach is taken in two recent papers, [BS23]
and [CSS+22], via the Renyi divergence. This methodology enables parameters to be chosen in which
Q is much smaller than the above analysis would require. However, this leads to additional problems in
the larger protocols in which we embed our threshold decryption, see Section 4.10.1 for a full discussion
on this. Thus the use of Renyi divergence is not without problems in this situation.

We contend that what seems like an increase in the size of Q is not a problem in practice.
• When using BFV/BGV in an SHE leveled mode the problem does not occur. In such schemes each
level essentially adds an extra 20-40 bits (depending on the implementation) into the noise gap.
Thus by simply decreasing the number of usable levels by a small constant (say, one or two) one
can obtain a noise gap which is enough to apply the flooding technique. Thus in such schemes our
methodology can be applied, without any need for prior processing of a ciphertext.

• When using BFV/BGV in amodewhich enables the use of bootstrapping (whichwe do not consider
in this document) we also do not need to increase the size ofQ. Bootstrapping enables us to reduce
the size of the noise e in the ciphertext (, b) to be as small as possible. Thus if bootstrapping is
performed, and the FHE scheme is such that the noise gap between e andm in Figure 1 is large
enough, then the noise flooding methodology will work “out-of-the-box”.

• Thus the only place where noise flooding is in practice a problem is when the FHE parameters are
such that the noise gap is tiny, even after a bootstrapping operation is performed. This is exactly
the situation in TFHE, where one (usually) selects a relatively small Q value (for example Q = 264).
This small Q value, and associated small LWE dimension ℓ, requires the size of the noise even after
bootstrapping to be around 230 in order to ensure security. This means the noise gap is too small,
but only by tens of bits. In such a situationwe apply, following themethod of [DDE+23] a switch of
the parameters (Q, ℓ) to slightly larger ones (Q, ℓ)where Q = 2128 . Combined with a bootstrapping
operation, which is relatively efficient using TFHE, one obtains a noise gap which is suitable for use
with the noise flooding approach.

With thesemethodswe obtain a fully robust, one-round, threshold decryption protocolwhichworks over
asynchronous networks for our threshold profile nSm, using no offline phase. For our threshold profiles
nLrge the online phase of this threshold decryption protocol is also one round-and asynchronous, but
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we requires a multi-round offline phase which requires us to assume synchronous networks.

2.2.2 Threshold Decryption via Generic-MPC

The above outlined approaches for BGV and BFV are perfectly acceptable in almost all situations. For
TFHE the necessity to apply a bootstrap for the parameters (Q, ℓ) can add an unwanted latency to
the entire threshold decryption process. For Local Area Network (LAN) type applications, with short
ping-times, one can trade computation for communication. In particular one can apply generic “bit-
extraction” techniques from standardMPC-protocols in order to extract themessagem from the sharing
〈t〉, without needing to apply to noise flooding.

This means we can keep all operations using the smaller modulus Q = 264 , instead of Q = 2128 .
However, thismethod requiresmultiple rounds of communication between the parties. Since each round
costs us a latency of (at least) the parties ping-times, such a methodmay not be suitable in all situations.

Themethod of robust threshold decryption via generic-MPC for TFHE can be applied in both our two
sets of threshold profiles nSm and nLrge. With the final threshold decryption protocol inheriting the
properties of the underlying MPC protocol (namely the required threshold and the assumptions with
respect to network synchronicity).

2.3 Threshold Key Generation

Our methodology for threshold key generation is to utilize the generic MPC functionality described
above. This is to enable the resulting FHE keys to have as close a noise distribution as possible to the
non-threshold versions. One could apply a form of Multi-Party or Multi-Key FHE (MP-FHE/MK-FHE) style
protocol to obtain a threshold key generation, but these are (usually) not robustly secure (which is our
primary security target) and in addition they result in slightly different noise distributions. Such MP-FHE
schemes are also usually for full threshold access structures (and hence cannot produce schemeswhich
have robust threshold decryption). Having the noise distribution close to the optimal of the standard
non-threshold scheme is also important for schemes such as TFHE, where small parameters are chosen
and the parameters are highly optimized to obtain efficient bootstrapping operations.

To produce threshold FHE key generation within an MPC engine the main issue is how does one
sample the small noise distributions for the underlying LWE problems. These usually come from discrete
Gaussian distributions. Sampling from such distributions is inefficient within an MPC engine. Thus we
replace the standard discrete Gaussian distributions with either the NewHope distribution [PAA+19] (in
the case of BGV and BFV), or small uniform distributions in the case of TFHE. The use of the NewHope
distribution is relatively standard for BGV and BFV. For TFHE the error distributions require far larger
standarddeviations (due to the smaller parameters), thus a uniformerror distribution is easier to dealwith.
This makes very little difference to resulting security (as the lattice estimator [APS15] demonstrates),
and also makes little difference in the final parameters. The number of secret shared random bits can be
quite high, so in an Appendix we sketch a method which uses less secret shared random bits; but which
pushes the FHE parameters slightly higher.

Asnoticed for keygeneration forBGVSPDZkeys in [RST+22], thekeygenerationmethod is essentially
just linear operations after one has determined secret sharings of the small LWE noise samples and the
associated secret keys. This observation applies also to BFV and TFHE. Thus threshold key generation is
obtained by a relatively simple MPC program for all cases, once enough random secret shared bits have
been generated.

2.4 Zero-Knowledge Proofs

When deploying multi-party FHE solutions (i.e. protocols which utilize threshold decryption) a key
security requirement is to provide zero-knowledge proofs of knowledge of correct encryptions for fresh
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FHE ciphertexts. In this document we provide three forms of such zero-knowledge proofs. The first
two are pre-quantum secure, they derive fromwork in [Lib24, BEL+24], and are based on pairings on
elliptic-curve groups; they provide very short proofs but the time to generate a proof can be long. A
quantum computer is able to break the soundness of these first proofs, but not the zero-knowledge
property. Thus privacy of the inputs ismaintained in the presence of a quantumcomputer, but a quantum
adversary will be able to prove invalid statements. The third are fully post-quantum, and are based on
MPC-in-the-Head techniques; they provide longer proof, but a shorter prover time. The MPC-in-the-
Head proofs are based on the techniques from [FMRV22, FR23], which are themselves based on the
technique from [KKW18]. Again, we note, more efficient post-quantum proof systemmay be possible
using systems such as Ligero [AHIV17, AHIV23, BFH+20].

The first two (pre-quantum) proofs are more suitable for TFHE style FHE, as they require pairing
friendly elliptic curves whose group order is larger than the ciphertext modulus, whereas the third
(post-quantum) proofs can be applied to any form of FHE scheme. Our second pre-quantum proof is
more efficient than the first, but it proofs a statement which has some soundness slack from the desired
input statement. Such soundness slack needs to be factored into the parameters for the FHE scheme.

7



3 Index

1 Abstract 2

2 Executive Summary 3
2.1 Generic MPC over Galois Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Threshold FHE Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Threshold Decryption via Noise Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Threshold Decryption via Generic-MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Threshold Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Index 8

4 Clarification of Prior Work 22
4.1 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Security Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Actively Secure Robust MPC over Galois Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 General Introduction to MPC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 The Choice of Damgård–Nielsen as the Base MPC Protocol . . . . . . . . . . . . . . . . . . . 26
4.3.3 Extending Damgård–Nielsen to Galois Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.4 Threshold Profiles nSm and nLrge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.5 Alternative, discounted, MPC Choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.5.1 Using an Active-with-Abort Offline Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.5.2 Using an Active-with-Abort Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.5.3 Using a Monolithic Active-with-Abort Protocol . . . . . . . . . . . . . . . . . . . . . . 29
4.3.5.4 Using Full Threshold Active-with-Abort Protocol . . . . . . . . . . . . . . . . . . . . 29
4.3.5.5 Mixed Adversary MPC and MPCwith Frieds and Foes . . . . . . . . . . . . . . . . 29

4.3.6 MPC-Based Bit Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3.7 MPC Protocols for Bit Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4.1 BGV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.2 BFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.3 TFHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Reed–Solomon Codes and Shamir Secret Sharing over Galois Rings . . . . . . . . . . . . . . . . . 37
4.7 Verifiable Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Threshold FHE as a Basis for MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.9 Threshold FHE Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.9.1 Multi-Key FHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.9.2 Multi-Party FHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.9.3 Resharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.10 Threshold FHE Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.10.1 Threshold Decryption via Noise-Flooding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8



4.10.2 Threshold Decryption via Generic MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.11 Zero-Knowledge Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.11.1 Soundness Slack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.11.2 The Zero-Knowledge Proofs Considered as Subset-Sum Problems . . . . . . . . . . . . 46
4.11.3 ZKPoKs Based on Vector Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.11.4 ZKPoKs Based on MPC-in-the-Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.12 Putting it all Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conventional Primitives and Schemes 50
5.1 Extendable Output Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 (Generalized) (Ring) Learning with Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Ring Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3.1 FFT Based Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 NTT Based Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3.3 The FFT/NTT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Norms and Noise Analysis of LWE Ciphertexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.1 Norms of Elements in Z/(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.2 Norms of Elements in RQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4.3 Ciphertext “Noise” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Modulus Switching of Ring-LWE Ciphertexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6 Fully Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6.1 BGV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6.1.1 The BGV Scheme Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.6.1.2 The BGV Scheme Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.6.1.3 BGV Scheme Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6.1.4 Standard BGV Parameter Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.1.5 Enabling Threshold Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.6.1.6 Threshold BGV Parameter Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6.2 BFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.6.3 TFHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6.3.1 The TFHE Scheme Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.6.3.2 Public Key Compression via a XOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6.3.3 TFHE Public Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.6.3.4 Dimension Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6.3.5 TFHE Public Key Encryption and Decryption . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6.3.6 Homomorphic Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.6.3.7 Key Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.6.3.8 Modulus Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6.3.9 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6.3.10 PBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6.3.11 Switch-n-Squash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6.3.12 Optimization Using FFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6.3.13 Admissible Linear Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.6.3.14 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.6.3.15 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6.3.16 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9



6 System model 99
6.1 Threshold Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.2 Initialization/SetUp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3 Cryptographic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Offline–Online Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.5 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5.1 Secure Authenticated Point To Point Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.2 Synchronous Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.3 Asynchronous Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Protocol description 103
7.1 Layer Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1.1 Galois Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.1.2 Reed–Solomon Codes over Galois Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1.2.1 Error Correction over Finite Fields via Berlekamp–Welch . . . . . . . . . . . . . . 110
7.1.2.2 Error Correction over Finite Fields via Gao . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.1.2.3 Error Correction over Rings via Berlekamp–Welch/Gao . . . . . . . . . . . . . . . 111
7.1.2.4 Syndrome Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1.3 Shamir Secret Sharing over Galois Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.1.3.1 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1.3.2 Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.1.3.3 Randomness Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.4 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.1.5 Bit Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1.5.1 Soe() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.1.5.2 Sqrt(, p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.1.5.3 Random Bits p Odd Prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.1.5.4 Random Bits q Power of Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.1.6 TreePRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2 Layer One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.1 Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.2.2 Dispute Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2.3 Robust Opening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.3.1 Optimization via the King Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.2.4 Verifiable Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.2.5 Agree on a Random Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2.6 Generating Random Shamir Secret Sharings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.6.1 PRSS Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.6.2 PRSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.6.3 PRZS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.2.6.4 PRSS-Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2.7 CoinFlip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.3 Layer Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.3.1 Offline MPC Protocol for Threshold Profile Category nSm . . . . . . . . . . . . . . . . . . . 135
7.3.2 Offline MPC Protocol for Threshold Profile Category nLrge . . . . . . . . . . . . . . . . . . 138

7.3.2.1 A “Batched” Statistical VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.3.2.2 Randomness Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3.2.3 Offline Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

10



7.4 Layer Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.4.1 Online MPC Protocol for All Threshold Profile Categories . . . . . . . . . . . . . . . . . . . . . 144

7.4.1.1 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4.1.2 MPC.Msk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
7.4.1.3 MPC Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.4.1.4 Bit Generation when q = 2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.4.1.5 Bit Generation when q = p1 · · ·pk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.5 Layer Four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.5.1 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.5.2 BGV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.5.2.1 Threshold Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.5.2.2 Threshold Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5.3 BFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.5.3.1 Threshold Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.5.3.2 Threshold Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5.4 TFHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.5.4.1 Threshold Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.5.4.2 Threshold Decryption Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.5.4.3 Threshold Decryption Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.5.5 Resharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.6 Layer Five . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.6.1 Interpreting Encryption as a Subset Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.6.1.1 BGV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.6.1.2 BFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.6.1.3 TFHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.6.2 Pairing Based Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
7.6.3 ZKPoKs Based on Vector Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.6.3.1 Required Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.6.3.2 CRS and the CRS SetUp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.6.3.3 Method 1 Proof Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.6.3.4 Method 2 Proof Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.6.4 ZKPoKs Based on MPC-in-the-Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.6.4.1 Method 1: Full Threshold Based Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.6.4.2 Method 2: Full Threshold Based Proofs - Hyper-Cube Variant . . . . . . . . . . 179
7.6.4.3 Method 3: Shamir Based Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

8 Security analysis 185
8.1 Layer Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.1.1 Galois Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.1.2 Reed–Solomon Codes over Galois Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.1.2.1 Error Correction over Finite Fields via Berlekamp–Welch . . . . . . . . . . . . . . 186
8.1.2.2 Error Correction over Finite Fields via Gao . . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.1.2.3 Error Correction over Rings via Berlekamp–Welch/Gao . . . . . . . . . . . . . . . 186
8.1.2.4 Syndrome Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.1.3 Shamir Secret Sharing over Galois Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.1.3.1 Error Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.1.3.2 Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.1.3.3 Randomness Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.1.4 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

11



8.1.5 Bit Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.1.5.1 Soe() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.1.5.2 Sqrt(, p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.1.5.3 Random Bits p Odd Prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.1.5.4 Random Bits q Power of Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.1.6 TreePRG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.2 Layer One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.1 Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.2.2 Dispute Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.2.3 Robust Opening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2.3.1 Optimization via the King Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.2.4 Verifiable Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.2.5 Agree on a Random Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.2.6 Generating Random Shamir Secret Sharings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.2.6.1 PRSS Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.2.6.2 PRSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
8.2.6.3 PRZS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.2.6.4 PRSS-Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.2.7 CoinFlip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.3 Layer Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.3.1 Offline MPC Protocol for Threshold Profile Category nSm . . . . . . . . . . . . . . . . . . . 191
8.3.2 Offline MPC Protocol for Threshold Profile Category nLrge . . . . . . . . . . . . . . . . . . 193

8.3.2.1 A “Batched” Statistical VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.3.2.2 Randomness Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.3.2.3 Offline Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8.4 Layer Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.4.1 Online MPC Protocol for All Threshold Profile Categories . . . . . . . . . . . . . . . . . . . . . 194

8.4.1.1 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.4.1.2 MPC.Msk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
8.4.1.3 MPC Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.4.1.4 Bit Generation when q = 2k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
8.4.1.5 Bit Generation when q = p1 · · ·pk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

8.5 Layer Four . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.5.1 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.5.2 BGV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.5.2.1 Threshold Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
8.5.2.2 Threshold Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.5.3 BFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.5.3.1 Threshold Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.5.3.2 Threshold Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.5.4 TFHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.5.4.1 Threshold Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.5.4.2 Threshold Decryption Method 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
8.5.4.3 Threshold Decryption Method 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.5.5 Resharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.6 Layer Five . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.6.1 Interpreting Encryption as a Subset Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.6.2 Pairing Based Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
8.6.3 ZKPoKs Based on Vector Commitments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

12



8.6.3.1 Required Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.6.3.2 CRS and the CRS SetUp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.6.3.3 Method 1 Proof Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.6.3.4 Method 2 Proof Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

8.6.4 ZKPoKs Based on MPC-in-the-Head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
8.6.4.1 Method 1: Full Threshold Based Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
8.6.4.2 Method 2: Full Threshold Based Proofs - Hyper-Cube Variant . . . . . . . . . . 207
8.6.4.3 Method 3: Shamir Based Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

9 Analytic complexity 209
9.1 Conventional Algorithm Complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

9.1.1 BGV.KeyGen(N,Q, P, B, R), BGV.Enc(m,pk) and BGV.Dec(ct,sk) . . . . . . . . . . . . . . 209
9.1.2 ModStchQ→q(,b) and BGV.Sce(ct, ℓ′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.1.3 BGV.KeyStch((d0,d1,d2), ℓ, Bnpt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.1.4 BGV.Add(ct, ctb) and BGV.Mt(α, ct) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.1.5 BGV.Mt(ct, ctb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.1.6 BFV.KeyGen(N,Q, P, B, R), BFV.Enc(m,pk) and BFV.Dec(ct,sk) . . . . . . . . . . . . . . . 210
9.1.7 BGV.toBFV(ct) and BFV.toBGV(ct′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.1.8 EncLWE(m,s; . . .) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.1.9 EncGLWE(m, (s0, . . . ,s−1); . . .) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.1.10 EncLe(m,s; . . .) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.1.11 EncGLe(m, (s0, . . . ,s−1); . . .) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
9.1.12 EncGGSW(m, (s0, . . . ,s−1); . . .) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.13 TFHE.KeyGen(. . .) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.14 TFHE.Decompose(,Q, β, ν) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.15 TFHE.DmensonStch(ct, PKSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.16 TFHE.Enc-Sb(m,pk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.17 TFHE.Enc(m,pk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.18 TFHE.Dec(ct,sk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.19 TFHE.Add(ct1, ct2), TFHE.ScrMt(α, ct) and TFHE.ModStch(ct) . . . . . . . . . 211
9.1.20 TFHE.Ftten(ct) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.21 TFHE.KeyStch(ct, KSK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
9.1.22 TFHE.EternProdct(ct, CT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
9.1.23 TFHE.BootStrp(ct, ƒ , BK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
9.1.24 TFHE.PBS(ct, ƒ , BK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
9.1.25 TFHE.StchSqsh(ct, BK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
9.1.26 Conventional Algorithm Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9.2 Layer Zero Algorithm Complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.2.1 BW(c, e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.2.2 Go(c, e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.2.3 ErrorCorrect(q,c, e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
9.2.4 SynDecodeF(p, Se(Z)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.2.5 CorrectF(p,e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.2.6 SynDecodeGR(q, Se(Z)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.2.7 CorrectGR(q,e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.2.8 Shre() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.2.9 OpenShre({〈〉}∈S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.2.10 Commt(m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.2.11 Verƒy(c, o,m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

13



9.2.12 Soe() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
9.2.13 Sqrt(, p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.2.14 TreePRG.Gen(seed, d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.2.15 TreePRG.GenSb(seed, b, d, ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.2.16 TreePRG.Pnc(seed, d, T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.2.17 TreePRG.PncSb(D, b, T, ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.2.18 TreePRG.GenPnc(D,T, d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
9.2.19 Layer Zero Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9.3 Layer One Algorithm and Protocol Complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.3.1 Synch-Brodcst(S,m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.3.2 RobstOpen(P, 〈〉d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
9.3.3 RobstOpen(S, 〈〉d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.3.4 BtchRobstOpen((〈〉d)ℓ=1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.3.5 VSS(Pk , s, t, Corrpt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.3.6 AgreeRndom(S, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.3.7 AgreeRndom--Abort(S, k) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.3.8 AgreeRndom-Robst(S, k, 〈r〉) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
9.3.9 PRSS.nt() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.3.10 PRSS.nt(Corrpt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.3.11 PRSS.Net() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.3.12 PRSS.Check(cnt, Corrpt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.3.13 PRZS.Net() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.3.14 PRSS.Check(cnt, Corrpt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.3.15 PRSS-Msk.Net(Bd, stt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.3.16 ConFp(Corrpt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.3.17 Layer One Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

9.4 Layer Two Algorithm and Protocol Complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.4.1 MPCS.nt() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.4.2 MPCS.GenTrpes(Dspte) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.4.3 MPCS.NetRndom(Dspte) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.4.4 ShreDspte(P, s, d,Dspte) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
9.4.5 LocSngeShre(P, (s1, . . . , sℓ), Dspte) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
9.4.6 LocDobeShre(P, (s1, . . . , sℓ), Dspte) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.4.7 SngeShrng.nt(Dspte)/DobeShrng.nt(Dspte) . . . . . . . . . . . . . . . . . . 222
9.4.8 SngeShrng.Net(Dspte)/DobeShrng.Net(Dspte) . . . . . . . . . . . . . . . . 222
9.4.9 MPCL.nt(Dspte) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.4.10 MPCL.GenTrpes(Dspte) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.4.11 MPCL.NetRndom(Dspte) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
9.4.12 Layer Two Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

9.5 Layer Three Algorithm and Protocol Complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.5.1 MPC.Open(〈〉) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.5.2 MPC.Mt(〈〉, 〈y〉) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.5.3 MPC.GenBts() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
9.5.4 Layer Three Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.6 Layer Four Algorithm and Protocol Complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.6.1 MPC.NeHope(N,B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.6.2 MPC.TUnƒorm(N, −2b,2b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
9.6.3 BGV.Threshod-KeyGen(. . .) and BFV.Threshod-KeyGen(. . .) . . . . . . . . . . . . . . . 224
9.6.4 BGV.Threshod-Dec(ct, 〈sk〉) and BFV.Threshod-Dec(ct, 〈sk〉) . . . . . . . . . . . . . . . 225

14



9.6.5 TFHE.Threshod-KeyGen(. . .) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.6.6 TFHE.Threshod-Dec-1(ct, PK, 〈sk〉) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
9.6.7 XOR(〈〉, 〈b〉) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.6.8 BtAdd((〈〉)K−1=0 , (〈b〉)

K−1
=0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

9.6.9 BtSm((〈〉)k−1=0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.6.10 BtDec(〈〉) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.6.11 TFHE.Threshod-Dec-2(ct, 〈sk〉) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.6.12 ReShre(S1, S2, 〈sk〉S1 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.6.13 Layer Four Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
9.6.14 Concrete Complexity of Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

9.7 Layer Five Algorithm and Protocol Complexities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.7.1 CRS-Gen.nt(sec, q̄, d̄, B̄) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.7.2 CRS-Gen.Updte(ppj−1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.7.3 CRS-Gen.Otpt() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
9.7.4 VC-Proe-1(p, (A,s),b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.7.5 VC-Verƒy-1(p, (A,s), prƒ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.7.6 VC-Proe-2(p, (A,s),b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.7.7 VC-Verƒy-2(p, (A,s), prƒ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.7.8 MPCtHed-Proe-1((A,s),b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.7.9 MPCtHed-Verƒy-1((A,s), prƒ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.7.10 MPCtHed-Proe-2((A,s),b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.7.11 MPCtHed-Verƒy-2((A,s), prƒ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.7.12 XOF-Shre(,XOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.7.13 MPCtHed-Proe-3((A,s),b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.7.14 MPCtHed-Verƒy-3((A,s), prƒ ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
9.7.15 Layer Five Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

10 Notation 233
10.1 Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
10.2 Mathematical Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
10.3 Algorithms and Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

11 Acknowledgements 239

References 239

Appendix 250

A Security Parameter Tables 250

B A Modified Threshold Key Generation 252
B.1 Changes to BGV/BFV Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
B.2 Changes to TFHE Parameter Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

15



List of Figures

1 Representation of the noise addition for threshold decryption . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Typical execution path of BFV operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Definition of the XOF Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4 Non-Exact FFT-Based Ring Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5 Exact NTT-Based Ring Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6 The Forward and Inverse FFT/NTT Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7 ModStchQ→q(,b) for Type-I Ring-LWE Ciphertexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8 The BGV Leveled Homomorphic Encryption Scheme – Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
9 The BGV Leveled Homomorphic Encryption Scheme – Part II . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10 The BGV Leveled Homomorphic Encryption Scheme – Part III . . . . . . . . . . . . . . . . . . . . . . . . . 67
11 Conversion from BGV to BFV and vice versa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
12 The BFV Leveled Homomorphic Encryption Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
13 TFHE Flattening Algorithm fromGLWE to F-GLWE (also called sample extract) . . . . . . . . . . . . 76
14 The Basic TFHE Operations: key Gen Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
15 The Basic TFHE Operations: Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
16 The Basic TFHE Operations: Part III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
17 The Public Key TFHE Scheme: Key Gen I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
18 The Public Key TFHE Scheme: Key Gen II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
19 TFHE Decomposition Algorithm mapping an integer modulo Q to its decomposition of length

ν and base β . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
20 TFHE Dimension Switching Algorithmmapping an LWE ciphertext of dimension ℓ̂ to an LWE

ciphertext of dimension d. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
21 The Public Key TFHE Scheme: Encryption and Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
22 The Basic Homomorphic Operations: Addition and Scalar Multiplication . . . . . . . . . . . . . . . . . . 87
23 TFHE Key Switching Algorithmmapping a F-GLWE ciphertext to an LWE one . . . . . . . . . . . . . 89
24 TFHEModulus Switching Algorithm from Q to 2 ·N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
25 TFHE External Product Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
26 TFHE Bootstrapping Algorithm Applying the Negacyclic Function ƒ . . . . . . . . . . . . . . . . . . . . . . 92
27 The Full TFHE PBS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
28 The TFHE Switch-n-Squash Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
29 Reed–Solomon Decoding using Berlekamp–Welch for the Finite Field Fpd . . . . . . . . . . . . . . . . 110
30 Reed–Solomon Decoding using Gao Decoding for the Finite Field Fpd . . . . . . . . . . . . . . . . . . . . 111
31 Reed–Solomon Error Correction for the Galois Ring GR(q, F) . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
32 Decoding via Syndromes for Reed–Solomon Codes for the Finite Field Fpd . . . . . . . . . . . . . . . . 113
33 Decoding via Syndromes for Reed–Solomon Codes for the Galois Ring GR(q, F). . . . . . . . . . . . 114
34 The Secret Sharing Scheme 〈〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
35 Commitment Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
36 Solving X2 + X =  (mod q) Using Hensel Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
37 Finite Field Square Root Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
38 Random Bit Generation when p is an Odd Prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
39 Random Bit Generation when q is Even . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
40 Tree-based Pseudo-randomGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
41 Different versions of PRSS.nt in the Threshold Profile Category nSm. These protocols

assume synchronous networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
42 Variant of Bracha’s Reliable Broadcast Protocol for Synchronous Networks. . . . . . . . . . . . . . . . 123
43 Variant of Synchronous Reliable Broadcast which updates the set Corrpt . . . . . . . . . . . . . . . 124
44 Robust Opening Protocol when d + 2 · t < n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

16



45 Robust Batch Opening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
46 Verifiable Secret Sharing. This is used for protocols in for the nLrge threshold profiles. . . . . . 126
47 Protocol AgreeRndom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
48 Protocol AgreeRndom--Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
49 Protocol AgreeRndom-Robst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
50 Initialization of the Non-Interactive Pseudo-RandomSecret Sharing. This is used for protocols

in for the nSm threshold profiles. We give two variants, one active-with-abort secure, and
one robust. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

51 Non-Interactive Pseudo-Random Secret Sharing. This is used for protocols in for the nSm

threshold profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
52 Non-Interactive Pseudo-Random Zero Sharing. This is used for protocols in for the nSm

threshold profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
53 Pseudo-Random Secret Sharing PRSS-Msk for use in Threshold Profiles in Category nSm 133
54 Coin Flip Protocol. This is used for protocols in for the nLrge threshold profiles. . . . . . . . . . . . 134
55 Offline MPC Protocols for Threshold Profile Category nSm. These protocols assume syn-

chronous networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
56 Offline MPC Protocols for Threshold Profile Category nLrge. These protocols assume syn-

chronous networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
57 The Offline Procedures for Threshold Profiles in Category nSm . . . . . . . . . . . . . . . . . . . . . . . 136
58 Passive Securely Input a Sharing Disputes. This is used for protocols in for the nLrge thresh-

old profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
59 The Hash FunctionHLDS(, g, ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
60 Locally Produced, by P , Checked Single Sharing of Multiple Values with Disputes. This is used

for protocols in for the nLrge threshold profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
61 Locally Produced, by P , Checked Double Sharing of Multiple Values with Disputes. This is used

for protocols in for the nLrge threshold profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
62 Interactive Single and Double Sharing. This is used for protocols in for the nLrge threshold

profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
63 The Offline Procedures for Threshold Profiles in Category nLrge . . . . . . . . . . . . . . . . . . . . . . . 143
64 Online MPC Protocols for All Threshold Profile Categories and q = 2k . Those protocols marked

MPCO come from the offline phase; thus depending on the profile one replace O with S or
L. The protocols in the online phase can work in asynchronous networks, even though the
offline phase assumes synchronous networks. Depending on the implementation choices,
one could considerMPC.GenBts as actually part of the Offline phase. . . . . . . . . . . . . . . . . . . . 143

65 Online MPC Protocols for nSm Threshold Profile Categories when q = p1 . . . pt . Those
protocols marked MPCS come from the offline phase. The protocols in the online phase
can work in asynchronous networks, even though the offline phase assumes synchronous
networks. Depending on the implementation choices, one could consider MPC.GenBts as
actually part of the Offline phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

66 Online MPC Protocols for nLrge Threshold Profile Category when q = p1 · · ·pk . Those pro-
tocols marked MPCL come from the offline phase. The protocols in the online phase can
work in asynchronous networks, even though the offline phase assumes synchronous net-
works. There is noMPC.GenBts protocol here, thus this set of protocols are just for expository
purposes. They are not used in any of our threshold protocols. . . . . . . . . . . . . . . . . . . . . . . . . . 144

67 Online MPC Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
68 Threshold Key Generation for Threshold Profile Category nSm (BGV/BFV). These protocols

can work in asynchronous networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
69 Threshold Decryption for Threshold Profile Category nSm (BGV/BFV). These protocols can

work in asynchronous networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

17



70 Threshold Key Generation for all Threshold Profile Categories (TFHE). These protocols can
work in asynchronous networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

71 ThresholdDecryption (Version 1) forThresholdProfileCategorynSm (TFHE). Theseprotocols
can work in asynchronous networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

72 Threshold Decryption (Version 1) for Threshold Profile Category nLrge (TFHE). These proto-
cols can work in asynchronous networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

73 Threshold Decryption (Version 2) for All Threshold Profile Categories (TFHE). These protocols
can work in asynchronous networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

74 Resharing Protocol for all Threshold Profiles. These protocols work in synchronous networks. 148
75 Protocols to Secret Shared Samples from NeHope(N,B) and TUnƒorm(N, −2b,2b) . . . . . . 149
76 BGV Threshold Key Generation, for Threshold Profile nSm . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
77 BGV Threshold Decryption, for Threshold Profile nSm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
78 BFV Threshold Key Generation, for Threshold Profile nSm . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
79 BFV Threshold Decryption, for Threshold Profile nSm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
80 The MPC Internal TFHE Encryption Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
81 TFHE Threshold Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
82 TFHE Threshold Decryption - Version 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
83 MPC Bit Manipulation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
84 MPC Bit Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
85 TFHE Threshold Decryption - Version 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
86 ReShre(S1, S2, 〈sk〉S1 ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
87 Hash functions for use in the VC-based ZKPoKs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
88 CRS Generation for the Vector-Commitment-Based NIZK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
89 Ceremony for the CRS Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
90 The First Vector-Commitment-Based NIZK Prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
91 The First Vector-Commitment-Based NIZK Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
92 The Second Vector-Commitment-Based NIZK Prover – Part I . . . . . . . . . . . . . . . . . . . . . . . . . . 169
93 The Second Vector-Commitment-Based NIZK Prover – Part II . . . . . . . . . . . . . . . . . . . . . . . . . 170
94 The Second Vector-Commitment-Based NIZK Prover – Part III . . . . . . . . . . . . . . . . . . . . . . . . 171
95 The Second Vector-Commitment-Based NIZK Prover – Part IV . . . . . . . . . . . . . . . . . . . . . . . . 172
96 The Second Vector-Commitment-Based NIZK Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
97 H5 andH6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
98 KKW Protocol for Multiple Subset Sum Equations: Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
99 KKW Protocol for Multiple Subset Sum Equations: Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
100KKW Protocol for Multiple Subset Sum Equations - Verification . . . . . . . . . . . . . . . . . . . . . . . . . 178
101 KKW Protocol Phase 2 HyperCube Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
102 KKW Protocol HyperCube Variant - Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
103 Subroutine XOF-Shre(,XOF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
104 H7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
105 Shamir Based KKW Protocol for Subset Sums - Proof Generation . . . . . . . . . . . . . . . . . . . . . . . 182
106 Shamir Based KKW Protocol for Subset Sums - Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
107 The ideal functionality FAgreeRndom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
108 The MPC Offline Ideal Functionality FPrep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
109 The MPC Ideal Functionality FMPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
110 Additional Command for Threshold Profile nSm for Functionality FMPC . . . . . . . . . . . . . . . . . 195
111 Additional Command for Functionality FMPC . This command is only added when q = 2k or in

threshold profile nSm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
112 The Ideal Functionality for Distributed Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
113 The Ideal Functionality for Distributed Key Generation and Decryption . . . . . . . . . . . . . . . . . . . 200

18



114 Simulator for TFHE.Threshod-Dec-1(ct = (, b), PK, 〈s〉). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
115 BGV Threshold Key Generation V2, for Threshold Profile nSm . . . . . . . . . . . . . . . . . . . . . . . . 254
116 BFV Threshold Key Generation V2, for Threshold Profile nSm . . . . . . . . . . . . . . . . . . . . . . . . . 255
117 TFHE Threshold Key Generation V2, for Threshold Profile nSm . . . . . . . . . . . . . . . . . . . . . . . . 256

19



List of Tables

1 Summary of Protocol Choices and Their Benefits. Here the protocol name refers to a
suitably obvious generalization of the protocol specified. The value A-w-A means Active-
with-Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Lower bounds on n for (t, th)-Mixed and (t, th)-FaF security compared to normal MPC
security, i.e. (t,0) security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Properties of the zero-knowledge proofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4 Table of values of − log2( erƒc(c/

p
2) ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 Sample parameters for Threshold BGV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6 Description of the function ƒ× . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7 Sample parameters for TFHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8 Summary of Threshold Profiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9 Summary of Protocols. All protocols are robust, unless marked A-w-W or Semi-Honest.

An All(*) means all except nLrgewhen q = p1 · · ·pk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
10 Table of irreducible polynomials F(X) to be used when q = 2k . . . . . . . . . . . . . . . . . . . . . . . . 106
11 Computational Complexity of the Conventional Algorithms for FHE. . . . . . . . . . . . . . . . . . . 213
12 Complexity of Layer Zero Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
13 Complexity of Layer One Algorithms and Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
14 Complexity of Layer Two Algorithms and Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
15 Complexity of Layer Three Algorithms and Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
16 Complexity of Layer Four Algorithms and Protocols. The top complexities for each row

are for the profiles nSm, whereas the bottom of each row are for the profiles nLrge. . 227
17 Number of Triples Required for Threshold Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 228
18 Number of Bits, Triples and Disitribution Samples Required for Threshold Key Generation

When Using Less Offline Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
19 Complexity of Layer Five Algorithms and Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
20 Table of Acronyms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
21 Table of Mathematical Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
22 Table of Algorithms and Protocols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
23 BGV/BFV Style Parameters. Secret key distribution NeHope(N,1), noise distribution

NeHope( ·N,B), ·N a multiple of 5000, and large Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
24 TFHE Style Parameters. Secret key distribution {0,1}N , noise distribution TUnƒorm( ·

N, −2b,2b), restricted ·N to a multiple of 256when Q = 2128 . . . . . . . . . . . . . . . . . . . . . . 252
25 Summary of all the parameters for BGV/BFV in this document for a plaintext modulus of

P = 65537. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
26 Summary of all the parameters for TFHE in this document. . . . . . . . . . . . . . . . . . . . . . . . . . 259

20



List of Design Decisions

1 Static vs Adaptive Adversaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Proactive Security via Resharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 Level of Active Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 Computationally and Statistically Secure MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Dividing MPC Protocols into Offline and Online Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6 MPCwith no Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 No King Version of Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8 Asynchronous vs Synchronous Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9 Threshold on Adversaries for MPC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
10 Size of nSmBnd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
11 An Honest Majority Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
12 (t, th)-Mixed/FaF Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
13 Shared Bits Modulo q = p1 · · ·pk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
14 Threshold Profiles for BGV and BFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
15 Bit Generation in the Online Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
16 Design Choice for BGV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
17 Primary Design Choice for BFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
18 Design Choice for BFV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
19 Design Choice for TFHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
20 Choice of Synchronous Broadcast Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
21 Choice of q in MPC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
22 Threshold Key Generation via Generic MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
23 Simulation Security vs Game Based Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
24 Restrictions on Q for NTT Based Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
25 Ring-LWE Ring Constant Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
26 Restrictions on Q for BGVModulus Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

List of Parameter Choices

1 Security Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2 Largest Prime Factor of q = p1 · · ·pk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3 Size of d (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4 Size of d (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5 BGV Level 1 Modulus Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6 Size of ℓ in LocSngeShre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

21



4 Clarification of Prior Work

In this section we enumerate all the building blocks wewill be using from the existing literature. All of
these building blocks are fully specified below in order to understand our full protocol stack.

4.1 Conventions

This document uses the following basic conventions and notations:
• For a set S, we denote by ← S the process of drawing  from Swith a uniform distribution on the
set S.

• If S contains a single element, i.e. S = {s}, then we sometimes use the shorthand ← s, instead of
← S.

• If D is a probability distribution, we denote by  ← D the process of drawing  with the given
probability distribution.

• For a probabilistic algorithm A, we denote by  ← A the process of assigning  the output of
algorithm A, with the underlying probability distribution being determined by the random coins of
A.

• An array of bytes is indexed with zero being the least significant byte. Thus the integer 65534
consists of two bytes, b1|b0 with b1 being equal to the byte FE in hex, or 254 in decimal.

• A byte has eight bits b7|b6| . . . |b1|b0 with the least significant bit being b0 . Thus the byte value 17
has b0 = 1 and b7 = 0.

• The bit representation of an integer has the least significant bit in the right most position. Thus
shifting the bit representation to the right is equivalent to dividing the integer by two.

• In converting an integer (u32, u128 etc) to a byte representation we assume a little-endian con-
vention (compatible with x86 architectures).

• In converting a byte string to bits we interpret the bytes in left to right order, thus the array of bytes
‘3210’ corresponds to the bit string ‘00000011|00000010|00000001|00000000’.

• If  is a vector of N elements then wewrite  = (1, . . . , N), however wemay also write [ ] to
denote  . This is useful if we have a vector of vectors, i.e. we have ℓ vectors 1, . . . ,ℓ andwewrite
the j-th component of the -th vector as [ j] .

• We use the notation Z/(m) = Z/mZ to denote the ring of integers modulom. The notation Zp is
reserved for the ring of p-adic integers, where p is a prime. This latter ring is the ring of formal
power series in p, i.e.

Zp =
¦

∞
∑

=0

 · p :  ∈ [0, . . . , p − 1]
©

where the set is equipped with the natural addition andmultiplication operations.
• When using a ring such as Z/(m) = Z/mZwewill take a centred representation of the values, i.e.

Z/(m) = {−dm/2e + 1, . . . , bm/2c}.

• Whenworkingwith a ring such as Z/(pk), one can view it as workingwith Zp but restricting oneself
to working with a p-adic precision of k digits. This view is convenient as we can simply take results
for the p-adic ring, and then reduce them modulo q = pk to obtain an associated result for the ring
Z/(q) = Z/(pk).

• To enable domain separation for functions inputs are often prefixed or suffixed with a byte string of
a small number of characters. We shall denote this prefix/suffix by DSep(str). So for example the
byte string produced by DSep(ABCD) is 041424344.
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4.2 Security Levels

Weutilize threedistinct security parameters in this document sec, dst and stt. Weoutline theirmeaning
here:

• sec is a traditional computational security parameter. It is used for primitives such as public-key
encryption, block-ciphers and hash functions. A work effort of 2sec is needed to effect a complete
break of the underlying primitive.

• dst is a traditional statistical security parameter. It measures distances between distributions, i.e.
wemay require two distributionsD1 andD2 to liewithin a statistical distance of 2−dst of each other,
or perhaps there is a random event which may leak information to the adversary which happens
with probability 1/2dst , or the correctness of some algorithm is only ensured with probability
1 − 2−dst .

• stt is a parameter which is used to mask a distribution in a way which requires the attacker to
expend at least 22·stt effort in order to distinguish the masked distribution from a random one. In
practice wewould set stt = dst/2.

It is common these days to target a computational security level of sec = 128. Some parts of the
academic Multi-Party Computation (MPC) literature target a statistical security level of dst = 40,
however, we do not feel this is prudent and so prefer to set dst = 80. Which leaves us with setting
stt = dst/2 = 40.

Parameter Choice 1: Security Parameters

We target values of sec = 128, dst = 80 and stt = 40 in this document. Higher values are
possible if desired.

4.3 Actively Secure Robust MPC over Galois Rings

At the core of our protocols for threshold decryption and key generation, is a robust MPC protocol. An
MPC protocol is parameterized by the number of playersn and the threshold t of bad players which can
be tolerated. Note, one can have MPC protocols which tolerate non-threshold adversary structures; for
simplicity in this document we only consider threshold adversary structures.

4.3.1 General Introduction to MPC Protocols

MPC protocols have various design requirements; the basic ones being
1. Correctness: If all the parties follow the protocol then the parties obtain the correct evaluation of

the function on their private inputs.
2. Privacy: The honest players private inputs are private (exceptwhat can bededuced from the output

value) with respect to a given adversarial strategy (semi-honest vs active, static vs adaptive).
3. Robustness: If the dishonest parties are active (i.e. they are allowed to deviate from the protocol)

then we require that the honest parties still receive the correct function output. Sometimes this
property is called Guaranteed-Output-Delivery, or GOD.

These three properties, of correctness, privacy and robustness, can be obtained under three different
security “levels”.

1. Perfect Security: All three properties hold with probability one, irrespective of the power of the
adversary.

2. Statistical Security: All three properties hold with probability exponentially close to one, irrespec-
tive of the power of the adversary.

3. Computational Security: The properties hold assuming some computational assumption on the
adversary.
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The first two of these levels are often combined and referred to as information theoretic security.
To complicate the design space even more we can divide adversaries into static ones (in which

the adversary decides which parties to corrupt at the start of the protocol) versus adaptive ones (in
which the adversary can decide which parties to corrupt as the protocol progresses). To provide simpler
protocols, and avoid the need for things such as non-committing encryption in the private channels
linking the parties in our MPC protocols we adopt an MPCmodel which assumes static corruptions.

Design Decision 1: Static vs Adaptive Adversaries

We assume static adversaries in our MPC security models.

However, in practice adversaries may not decide to play ball with such an assumption. Thus for our
threshold FHE protocols we provide resharing algorithms, which allow a set of parties to either update
the secret sharing amongst themselves, or transfer the secret sharing to a completely different set of
parties (with a potentially different size, but still supporting t < n/3). Combined with mechanisms to
perform secure erasures of existing secret shared data, this provides a form of pro-active security.

Design Decision 2: Proactive Security via Resharing

We provide protocols for resharing the underlying secret shared secret key for our threshold FHE
protocols. This enables (when combined with a form of secure erasure) a pro-actively secure
system to be deployed.

We can also make different assumptions on the underlying network; whether it is synchronous in
nature versus whether it is asynchronous, and whether a broadcast channel is made available to the
parties “for free”. In practice broadcast channels do not come for free, one needs to built them out of
point-to-point channels.

The classical MPC literature deals with MPC over finite fields. Our MPC protocols are based on secret
sharing, of which the initial work, for finite fields, goes back to the BGW and CCD protocols in 1988,
[BGW88] [CCD88]. The BGW and CCD protocols provide robust information theoretically secure
protocols in the case of t < n/3. The BGW protocol is perfectly secure, whereas CCD is statistically
secure. The bound of t < n/3 is theoretically the best possible for robust information theoretic protocols.
If one is willing to assume computational assumptions then the theoretical bound of t < n/3 can be
extended to t < n/2, whilst still obtaining robust security. A protocol realizing such a bound is the classic
GMW protocol from 1987, [GMW87]. The bound of t < n/2 can also be obtained in the statistically
secure scenario if one assumes a broadcast channel is provided to the parties, see [RB89]. Note, to
concretely obtain such a broadcast channel in this scenario one, however, would need to assume t < n/3,
due to classical bounds on Byzantine agreement.

The above works assume synchronous networks, if one wishes to examine asynchronous networks
then the theoretical bounds become weaker. For example in [BCG93] it is shown one can obtain
perfectly secure, robust, protocolswhen t < n/4 (and this is again a theoretical limit) in the asynchronous
setting. If one is willing to relax to statistically secure robust protocols then one can obtain t < n/3 in
the asynchronous setting, see [BKR94]. Relaxing to computational security also allows one to obtain
t < n/3 as the best possible result in the asynchronous setting. This last result was demonstrated by
[HNP05].

It is possible to weaken the active security guarantees from guaranteed output delivery, i.e. robust
protocols, to a situation where, if the adversary deviates from the protocol, the honest parties abort. A
variant of active-with-abort protocols are ones in which any aborting party is identified. This provides
so-called active-with-identifiable-abort security. Protocols which are secure with respect to active-
with-identifiable-abort are important if one wishes to stop active-with-abort protocols from suffering
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from Denial-of-Service attacks. As our protocols are fully robust we automatically identify dishonest
parties as the protocol progresses.

For active-with-abort protocols one can also obtain security for larger threshold, indeed all thresholds
up to t < n, see for example the SPDZ family of protocols [DPSZ12, CDE+18]. Actively secure protocols
with identifiable-abort are often more complex to instantiate, so we do not consider them further here;
after all our robust protocols automatically identify cheating parties in any case.

An even weaker form of security is to provide no security guarantees when a party deviates from
the protocol, so called semi-honest security. One can obtain active-with-abort security for most MPC
protocols at little additional marginal cost over semi-honest protocols. For example, in the regime
of t < n/2, the protocol of [CGH+18] provides active-with-abort security at a cost of running the
underlying semi-honest protocol twice.

We aim for robustness, as we feel that in real applications active-with-abort it not enough (even if
we have identifiable abort). If one does not have robustness of the underlying MPC protocol, then it
needs to be left to a higher level application as to what to do when an adversary tries to deviate, or fails
to respond, in a protocol. This can be difficult for the higher level application to deal with, or reason about,
thus it makes sense to solve this problem at the underlying MPC protocol layer.

Design Decision 3: Level of Active Security

We aim for fully robust protocols, which guarantee output delivery, over protocols which are
active-with-abort, or which have identifiable abort.

Our MPC protocols are going to be used to thresholdize a Fully Homomorphic Encryption (FHE)
scheme, thus we are already going to make computational assumptions. However, MPC protocols
which mainly use information theoretic constructs are often much faster than those requiring heavy
computational assumptions. Thus we focus on MPC protocols whichmake limited use of computational
assumptions; mainly lightweight cryptographic primitives such as hash functions and block-ciphers,
and which have negligible error probabilities.

Design Decision 4: Computationally and Statistically Secure MPC

To achieve efficient protocols we are happy with protocols which have a negligible probability of
error, and which utilize lightweight cryptographic assumptions.

The “modern” approach to secret sharing based MPC protocols is to divide the protocol into two
phases; an offline phase (which is input independent) and an online phase (which does depend on the
inputs). Such a division is made highly efficient using so-called Beaver Triples, which themselves are
derived from thecircuit-randomization techniqueof Beaver [Bea92]. The ideaof splitting intophases can
be dated back to other works of Beaver [Bea95, Bea97]; although the division into phases seems first to
have been formally presented in [HN06] in the case of computationally secure protocols, and by [DN07]
for information theoretically secure protocols. Practical instantiations of the offline/online paradigm
date back to the start of practical MPC protocols; for example [DGKN09] present an offline/online
protocol which is almost an asynchronous protocol (this seems to be the earliest record of a concrete
implementation of a protocol using the offline/online paradigm).

Design Decision 5: Dividing MPC Protocols into Offline and Online Phases

Our MPC protocols are divided into a function independent offline phase and an online phase
which executes the desired functionality.

As a final note on general MPC protocols; standalone MPC protocols for general application need
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input sub-protocols to enable players to enter their data into the MPC system. In our application of MPC,
players will have no inputs coming from outside the system, all values within the MPC systemwill be
generated fromwithin the MPC system. Thus we can simplify the design space by not needing to deal
with input protocols in our underlying MPC system.

Design Decision 6: MPC with no Input

Our MPC protocols do not require any input sub-protocols to enter players private inputs into the
system.

4.3.2 The Choice of Damgård–Nielsen as the Base MPC Protocol

Our core full MPC protocol is based on the protocol from [DN07], which is a robust protocol in the
synchronous network setting. The basic strategy in designing our MPC protocol is to adopt the method-
ology from [DN07], which utilizes Damgård–Nielsen multiplication as opposed to Maurer multiplication
to produce triples. With Damgård–Nielsen multiplication we do not need to protect against each player
dealing an invalid Maurer sharing, this makes the robust triple generation protocol, in the case of t < n/4,
very simple. Extending this bound to t < n/3 requires utilizing a more elaborate form of dispute control;
which we decide to forego in general. We however provide a simple form of dispute control in our setting
where

�n
t

�

is small.
The protocol of [BTH08], is perhaps conceptually simpler and avoids the need for probabilistic

checks. But, the yield of triple production is much less in [BTH08] compared to [DN07]. Thus, the
protocol in [DN07] is chosen as a basis, over the protocol of Beerliová-Trubíniová and Hirt [BTH08], as
it offers very high yield in terms of triple production. We feel that in practice an improved efficiency of
using [DN07] is more beneficial than a stronger (relatively theoretical) security guarantee of avoiding
probabilistic correctness checks.

The work of Goyal et al, [GLS19], provides a more efficient (in terms of communication complexity)
versionof themethodsof [BTH08,DN07]. However, this comesat theexpenseof someaddedcomplexity
in terms of the overall construction on the “happy path” (when there are no errors introduced by the
adversary). The simpler communication complexity only applies on the “unhappy path”. Given “most”
instances are likely to always stay on the happy path, as adversaries are actually rare (especially as we
can identify who committed any adversarial behavior), we expect the happy path complexity to be the
most important factor in determining system performance. Thus, we optimize for happy path complexity
over dealing with the unhappy path. A similar low complexity on the unhappy path, robust protocol, in
the case of t < n/2 is given in [GSZ20].

To provide even greater performance improvements we make minor tweaks to the [DN07] protocol
by assuming the security of various lightweight cryptographic primitives, such as hash-functions, block-
ciphers and so forth.

We also, to simplify exposition and also to reduce round complexity, use a non-batched/non-king
version of the protocol in [DN07]. In practice this may bemore efficient, at least for smallish values of
n, than the batched version. This is because the batched version requires two rounds of interaction,
whereas the non-batched version requires one round. The batched version also requires additional
processing (to batch and unbatch the data). However, the batched version reduces the total amount of
communication being sent by all parties. In Section 7.2.3.1 we give the modifications needed for the
batched version, which should be asymptotically more efficient whenn grows. The exact cross over
point depends on the network latency and other factors.
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Design Decision 7: No King Version of Protocols

Wechoose not to use the king paradigm for batched openings in ourmain exposition, this enables
us to reduce round complexity, at the expense of increased communication complexity.

A problem with utilizing the protocol of [DN07] as a basis is that whilst the online phase is fully
asynchronouswhen t < n/3, the offline phase requires synchronous networks. Finding a truly practically
efficient asynchronous offline phase is a work of ongoing research, thus we settle (reluctantly) for a
synchronous offline phase; for all protocols which require an offline phase (which is not all of them). One
can (partially) justify such a synchronicity assumption for the offline phase, by assuming that the offline
phase can be executed with a much larger packet timeout than the online phase; and thus messages
from honest but slow parties can be assumed to be delivered in the offline phase.

Design Decision 8: Asynchronous vs Synchronous Communication

Our main MPC protocol is built using a synchronous offline phase and an asynchronous online
phase.

4.3.3 Extending Damgård–Nielsen to Galois Rings

However, unlike [DN07], we require MPC protocols where the base arithmetic structure is not a finite
field but a Galois Ring. In particular a ring such as Z/(q)where q = 2k , or q = p1 · · ·pk . This change in the
protocol if [DN07] is accomplished by changing the secret sharing scheme from one over a field, to one
over a Galois Ring (a topic which we shall return to below).

The MPC protocol for finite fields from [DN07] can be easily mapped to the setting of secret sharing
schemes over Galois Rings, using the same techniques as in [ACD+19]. This is done in much the same
way as [ACD+19] used their techniques to map the related protocol of [BTH08] to the case of q = 2k .

To utilize [DN07] we need to use many of the same tricks from [ACD+19], and in addition extend the
probabilistic check from [DN07] to the ring setting (which we provide a security proof for in Theorem 5).
This results in a Galois Ring based MPC protocol, which inherits the properties of the [DN07] protocol;
namely that it is highly efficient on the so-called happy path (when no errors are detected).

4.3.4 Threshold Profiles nSm and nLrge

We consider two families of threshold profiles, depending on the number of combinations of selecting
t items from n things, i.e.

�n
t

�

. One profile in which
�n
t

�

is “small”. Such profiles we say are in threshold
profile nSm. The other profiles are where

�n
t

�

is “large”; for which wewill call such threshold profiles
nLrge. See Section 6.1 for a full discussion on these threshold profiles.

Design Decision 9: Threshold on Adversaries for MPC Protocols

We identify two different cases:
• When

�n
t

�

is “small” we target robust security with a threshold bound of t < n/3. We call
such profiles nSm.

• When
�n
t

�

is “large” we target robust security with a threshold bound of t < n/4. We call such
profiles nLrge.

The division between the nSm and nLrge regimes will be defined by a value nSmBnd, with
�n
t

�

< nSmBnd denoting the regime for the nSm threshold profiles.

The dispute resolution framework is particularly simple in threshold profile nSm, so in this case
we present a novel dispute control methodology which allows us to achieve t < n/3. In particular, we
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describe a methodology to ensure that the multiplication triples produces are robust which is simpler
than themore general approachwhen

�n
t

�

is large; this makes use of the fact that the productionmethod
inherent in the Pseudo-Random Secret Sharing (PRSS) construction is essentially self-authenticating
(as t < n/3). This check, see Figure 57 for details, we cannot find in the prior literature, but it is obvious
and trivial.

In threshold profile nLrge, we only target t < n/4, as the dispute control methodology when
n/4 ≤ t < n/3 is relatively complex (see [DN07] for the outline of how this could be implemented). Our
protocols could be extended to support t < n/3 in the nLrge threshold profile setting, but we feel the
added complication is not worth it in practice (especially given our choice for nSmBnd below).

There are other trade-offs between the nSm and nLrge settings, apart from the whether we can
support t < n/3 or t < n/4:

1. The nSm settings requires a set-up phase of complexity O(
�n
t

�

) = O(nSmBnd).
2. The nLrge settings require an expensive offline phase for all threshold FHE operations.
3. The nSm setting enables a simple threshold decryption protocol, with no offline phase, for BGV,

BFV and TFHE.
4. The nSm setting allows the easy the generation of shared randombits when theMPCmodulus is

an odd composite number, and hence easy threshold key generation for BGV and BFV. In contrast
for nLrgewe do not provide a threshold key generation or decryption method for BGV and BFV.

5. The nLrge setting allows a simple offline phase to produce secret shared random bits, when the
MPCmodulus is a power of two. This enables the use of our the nLrge profile for our threshold
key generation and decryption methodologies for TFHE.

In any specific instantiation these trade-offscouldmean that thenSmprotocols are tobepreferred
over the nLrge protocols; or vice versa. However, in terms of this document the main distinction is
that the choice of the cut-off, i.e. the value of nSmBnd, will affect the parameter choices for the
underlying FHE scheme. The slightly altered parameter choices enable us to support our threshold
decryption procedures in the nSm setting. Thus to fix parameterswe need to select amaximum value
of nSmBnd.

Design Decision 10: Size of nSmBnd

We fix our FHE threshold parameters so that one can tolerate nSmBnd = 10,000, however an
implementation may decide to choose a smaller value of this bound.

4.3.5 Alternative, discounted, MPC Choices

Themain complexity in our offline phase comes from the need to obtain robustness. If we relaxed this
then other possibilities are available. On the other hand we could also strengthen the requirements,
opening up other protocol choices. In this section we briefly discuss some of these options, and why
we decided to not gowith them. To help summarize some of these choices we refer to Table 1. The value
in blue is where our protocol sits.

Offline Online
Protocol

�n
t

�

Threshold Network Security Threshold Network Security
[DN07]/This Work nSm n/3 Synch Robust n/3 Async Robust
[DN07]/This Work nLrge n/4 Synch Robust n/3 Async Robust
[DN07]/This Work nSm n/3 Synch Robust n/2 Sync A-w-A
[DN07]/This Work nLrge n/4 Synch Robust n/2 Sync A-w-A
Protocol 1 [JSvL22] All n/2 Synch A-w-A n/3 Async Robust

[CGH+18]/Protocol 5 [JSvL22] All - - - n/2 Sync A-w-A
[DPSZ12, CDE+18] All n Synch A-w-A n Sync A-w-A

Table 1: Summary of Protocol Choices and Their Benefits. Here the protocol name refers to a suitably obvious
generalization of the protocol specified. The value A-w-Ameans Active-with-Abort.
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4.3.5.1 Using an Active-with-Abort Offline Phase: It is relatively straight forward to replace our
(robust) offline protocol with (for example) the onemarked Protocol 1 from [JSvL22]; which provides
active-with-abort security. The offline Protocol 1 from [JSvL22] uses a passively secure multiplication
protocols, essentially “Maurer multiplication”2 , and these are then checked using the Offline 2 protocol
from [JSvL22], which adapts the checking procedure from [KOS16, CDE+18]. The security of the
offline phase of Protocol 1 of [JSvL22] is in the regime t < n/2, and it is the offline phase which has
active-with-abort security. The online phase is by default robustly securewhen t < n/3 as it is the same
as our online phase.

The paper [JSvL22] looks at q = 2k only, but extending this to q = p1 · · ·pk is easy to do. The paper
also considers what we call the nSm regime (as they use PRSS operations extensively in the offline
phase). The use of PRSS could be removed for the nLrge regime, at someminor cost in performance.
The need for a complex dispute resolution framework is not needed, as the offline phase of Protocol 1 of
[JSvL22] gives only active-with-abort security.

4.3.5.2 Using an Active-with-Abort Online Phase: We could also achieve t < n/2 in the online
phase, in an active-with-abort security model with a synchronous network assumption, by replacing the
robust reconstruction in our method RobstOpenwith an abort when an error is detected. However,
our offline phase would only provide security for t < n/3 due to the need to open a sharing of degree
2 · twith error-detection; thus a different offline phase (such as that alluded to above) would be needed.
Wewill not pursue these option further in this document however. The alterations needed to achieve
t < n/2 and active-with-abort security in the online phase are obvious. This leads to the decision

Design Decision 11: An Honest Majority Option

When no offline phase is needed our protocols can operate in the t < n/2 regime in an active-
with-abort MPC model assuming a synchronous online phase. We will not discuss this further in
the document, except to say it is easily enabled with obvious changes.

4.3.5.3 Using a Monolithic Active-with-Abort Protocol: An alternative to our MPC protocols would
be to not work in an offline/online paradigm. In which case one can obtain, in the case of active-with-
abort security (and t < n/2), protocols which are around 50% more efficient (if one adds the cost of
the online and offline together), but are around twice as expensive (if one only compared the online
costs) compared to say Protocol 1 from [JSvL22]. Here the most efficient solution would be to adapt
the protocol of Chida et al. [CGH+18], which was presented as Protocol 5 in [JSvL22] for the case of
Galois Rings.

4.3.5.4 Using Full Threshold Active-with-Abort Protocol: A final alternative would be to utilize
the SPDZ and SPDZ2k protocols [DPSZ12, CDE+18]. These provide, over synchronous networks, an
active-with-abort secure protocol, which is secure for t < n. Extending the SPDZ/SPDZ2k protocols to
work for q = p1 · · ·pk is relatively straight forward. However, this protocol is very inefficient, compared to
ones which are not full threshold, if one takes into account the amount of time needed to execute the
offline phase.

4.3.5.5 Mixed Adversary MPC and MPC with Frieds and Foes: As we are dealing with robust MPC
there is a “quirk” of the MPC security model which we feel should be discussed. The MPC security model
says nothing about the privacy of the data between the honest parties, after all the truly honest parties
are not even considered to be curious. In other words if honest parties obtain the private information of
other honest parties it is not considered a privacy breach.

2By which wemean the classical multiplication method of Schur-Multiplication, Reshare, Recombine.
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This results in the following two related considerations:
1. An active adversary which controls t parties could send all the secret shares they hold to one (or

more) of the honest parties. The receiving honest partywould nowhave t+1 shares and, if a Shamir
sharing of degree twas being used, they could then reconstruct all of the secret data. This is not
considered a privacy breach in the normal MPC securitymodel, as it is an honest player who obtains
the data and not the adversary. In the discussion which follows we refer to this as an adversarial
privacy breach.

2. On the other hand many robust MPC protocols, especially those using the player elimination
framework or the dispute resolution framework, work by identifying bad players and then removing
them from the computation. This could be by explicitly removing them from the protocol by
reducing n and the associated degree t of the Shamir sharing, or by implicitly removing them
by setting their share values to zero (as is done in [DN07]. Indeed some protocols, for example
[BGIN19], proceed by open all remaining secret shared values to the honest players, once all bad
players have been identified. The honest players then compute the final result “in the clear”. In both
cases this results in the honest players obtaining some, or all, information held in the secret shares,
and thus could be considered a privacy breach; although it again is not an privacy breach in the
normal MPCmodel. In the discussion which follows we refer to this as a protocol privacy breach.

Note, one can consider a protocol which exhibits protocol privacy breaches as enabling a form of
adversarial privacy breach, in which the adversarial transfer of information from the active adversarial
parties to semi-honest adversarial parties is done via the protocol as opposed to being done directly.
Thus for many protocols, such as the twomentioned [BGIN19, DN07], the two notions are equivalent.

These issues have been known since the early days of MPC. Indeed, it is discussed in [RB89], where
a “remedy” of running the a protocol using a Shamir sharing of degree t + 1 to protect against t active
adversaries is suggested. This increases the minimum number of parties (as a function of the bound on
the number of adversarial parties t) needed to execute the protocol. It turns out such an increase in the
number of parties is unavoidable, as we shall now recap.

Over time these forms of privacy breach have resulted in the literature creating two related but
distinct forms of security model: A model called the mixed adversary model, which was introdoced
in [FHM99], and a model called MPC with Friends and Foes, which as introduced in [AOP20]. Both
models are parameterized by two values t and th . The value t indicates how many adversarial parties
are (statically) actively corrupted, whilst th indicates howmany parties are (statically) corrupted in an
honest-but-curious fashion.

In the mixed adversarial model there is a single monolithic adversary controlling the t + th bad
parties, resulting in a notionwe shall denote by (t, th)-Mixed security. In theMPCwith Friends and Foes
model there are two distinct adversaries, oneA controlling the t active parties and oneAh controling
the th semi-honest parties, a notion we shall denote by (t, th)-FaF security. Technically, to capture the
adversarial privacy breachmentioned above the (t, th)-FaF security model requries the simulator for
Ah to obtain the ideal world view of the simulator forA .

Note that (t, th)-Mixed security neither implies, nor is implied by, (t, th)-FaF security. Thus the
two notions are incomparable. However, both (t,0)-Mixed security and (t,0)-FaF security are the
standard notions of robust MPC against t active adversaries.

The limitations of (t, th)-FaF security, and someconstructions, have alsobeenconsidered in [ABO23,
MRY23]. There has also been a consideration of potentially practical (t, th)-FaF for ring-based MPC for
small values of t, th and n in works such as [HKK+22, KKPG22].

The main problem with dealing with (t, th)-Mixed and (t, th)-FaF security is that these models
imply larger lower bounds on the number of parties; after all we havemore adversaries so to counter
this we require most truly honest parties. See Table 2 for a quick summary of these lower bounds on n.

Normal MPC Active Security (t, th)-Mixed/FaF Security
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Computational MPC n > 2 · t n > 2 · t + th
Statistical MPCwith Broadcast Channel n > 2 · t n > 2 · (t + th)

Statistical MPCwith no Broadcast Channel n > 3 · t n >mx(2 · (t + th),3 · t)
Perfect MPCwith Broadcast Channel n > 3 · t n > 3 · t + 2 · th

Table 2: Lower bounds on n for (t, th)-Mixed and (t, th)-FaF security compared to normal MPC security, i.e.
(t,0) security.

This leads us to the following design decision related to these notions; as we want to be able to
support a small number of parties we focus on the standard MPC active security definition. However,
system implementors need to be aware that the adversarial privacy breachmentioned above is therefore
always possible.

Design Decision 12: (t, th)-Mixed/FaF Security

We do not consider the notiona of (t, th)-Mixed/FaF security in this document due the larger
implied lower bounds on the number of partiesn.

4.3.6 MPC-Based Bit Generation

Themain use of our MPC protocols is to generate shared random bits. We do these via classical/folk-lore
methodswhichwe describe in Section 7.1.5 and Section 7.4.1. The goal is to produce a shared bit modulo
q.

The method for power-of-two q appeared first in [OSV20], however we use a simplification which
first appeared in [DDE+23]. The work of [OSV20] considers bit generation only in Z/(q), however it is
trivial to see that the method also applies in the more general context of Galois Rings.

Generating bits when q = p1 · · ·pk is a product of primes ismore complex. Themethod for odd prime
qwe think first appeared in the MPC context in [DKL+13]. When q is a product of odd primes then the
usual method (usually denoted by dabit/mabit generation) is to generate shared bit in k MPC engines
(one for each prime divisor p). As we are using Shamir Sharing modulo q this is equivalent to finding a
shared bit modulo q via the CRT. The problem is that whilst it is easy to generate a bit modulo p , it is
more tricky to generate the same bit modulo each p .

Prior work, based on dabits and mabits e.g. in [RST+22, RW19, EGK+20], are in the security model of
active-with-abort; whereas we are targeting fully robust security. Thus it appears that the methods
do not directly apply to our situation without significant changes. However, in the case of our nSm

threshold profiles there is a simple trick to obtain shared bits using the PRSS functionality. Finding a
suitably efficient robust bit generation method for when q = p1 · · ·pk in the nLrge setting we leave as
an open research question.

Design Decision 13: Shared Bits Modulo q = p1 · · ·pk

In thecasewhereq = p1 · · ·pk weonlypresent amethod for sharedbit generation in the threshold
profile nSm.

This decision creates the following knock on issue, that we do not deal with BGV and BFV at all in the
threshold profiles nLrge.

Design Decision 14: Threshold Profiles for BGV and BFV

Weonlypresent threshold keygeneration anddecryption forBGVandBFV in thenSm threshold
profiles.
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Themethod for bit generation when q = p1 · · ·pk requires us to make an assumption on the largest
prime divisor pL of q, namely that it is “suitably” large. This is to enable a mask to be applied to a shared
bit modulo pL , with the mask being large enough to mask the shared bit, but small enough not to wrap
around modulo pL . In our applications such an assumption will be automatically satisfied, so it is not
really a constraint, but worth keeping in the back of ones mind when reading further.

Parameter Choice 2: Largest Prime Factor of q = p1 · · ·pk

In the case of our MPC protocols for threshold profile nSm, and the case where q = p1 · · ·pk ,
we assume that the largest prime factor pL of q satisfies pL > nSmBnd · 2stt+3 .

Traditionally in the MPC literature the generation of bits has been considered part of the offline phase.
For our MPC protocol we consider bit generation as part of the online phase. This is because our bit
generation methods are secure over asynchronous networks, and not the synchronous networks we
assume for the offline phase. Obviously this is a purely conceptual choice, and an implementation may
choose to consider bit generation as part of the offline phase in terms of system construction. Indeed
for the threshold decryption and key generation it makes more sense to consider bit generation as part
of the offline phase.

Design Decision 15: Bit Generation in the Online Phase

We consider bit generation as part of the online phase due to the underlying networking assump-
tions when considering the MPC protocol itself. When considering the threshold key generation
and decryption protocols later it maymakemore sense to think of bit generation as part of the
offline phase.

4.3.7 MPC Protocols for Bit Decomposition

When using TFHE we can execute a high round MPC protocol for message extraction, which avoids the
noise flooding approach discussed below. To implement this variant we utilize some standard generic
MPC routines for bit-manipulation within an MPC engine. These algorithms are based on the methods in
the documents [CdH10], [DFK+06], [NO07] and [sec09]. Our bit decompositionmethod is information
theoretically secure (i.e. the method itself reveals no more information than the information revealed by
the underlying MPC system). Thus we avoid the statistically secure methods from the literature. We
also utilize logarithmic round protocols for these tasks, as opposed to the (in practice) more expensive
constant round protocols.

4.4 Fully Homomorphic Encryption

Wedescribe in this document very simple variants of the BGV, BFV and TFHE encryption schemes. These
descriptions are purely given to enable our threshold key generation and decryption to be described fully.
We do not claim that our description of these conventional (i.e. non-threshold) schemes are efficient
in terms of the homomorphic operations. There are many optimizations to all schemes which can be
applied, which we do not discuss in this document.

In this document our FHE schemes will have plaintext modulus P and ciphertext modulus Q. This
is to distinguish the moduli used in the FHE scheme (i.e. P and Q) from the modulus used in the MPC
scheme (i.e. q). Sometimes wewill have q = Q, but not always.
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4.4.1 BGV

We present a variant of the BGV scheme [BGV12], which follows the description in [GHS12, HS20].
We present a leveled version of the scheme, which does not support arbitrary depth computations.
This is because bootstrapping for BGV is relatively slow; and we do not need to present it to describe
our threshold protocols. An implementation can add bootstrapping functionality to the scheme in the
normal way if desired.

We touch upon specific optimizations for the BGV scheme, such as the use of Number Theoretic
Transforms (NTTs) via theDouble-CRT representation (DCRT)which is common inmost implementations;
but only as a methodology to implement the underlying ring multiplication efficiently. We do not cover
optimizations, such as keeping some levels of the DCRT representation in the NTT domain and some
levels in the coefficient domain. Again this is because this is orthogonal to what is needed to describe
our threshold protocols.

As is standard we assume a form of circular security, in that we allow a ciphertext to encrypt bits of
the underlying secret key. This assumption can be removed, by utilizing a chain of public keys (one per
level), if desired. Assuming circular security enables us to provide a more concise presentation of the
scheme.

Themain divergence from some treatments, is that we utilize the NeHope noise distribution for our
LWE parameters. By the NeHope noise distribution wemean the following approximation to a Discrete
Gaussian Distribution, parameterized by a value B ∈ N. On calling NeHope(1, B) a set of 2 · B random
bits (b, b′ )

B
=1 are selected and then the value

s =
B
∑

=1

b − b′

is computed and returned. This produces a random variable with mean zero and standard deviation
σB =

p

B/2. When called with the syntax NeHope(N,B), a vector of N such random variables are
produced. This distribution is particularly useful in our situation as BGV requires noise distributions
with small standard deviation, and such a distribution is easy to generate inside our basic MPC engine.
The NeHope(N,B) noise distribution in full generality seems to have been first used in the context of
general LWE encryption in [ADPS16], although NeHope(N,1)was used for the noise distribution in
the BGV description given in [GHS12].

A major divergence, in terms of performance, of our presentation of BGV compared to that in say
[GHS12, HS20], comes from us sampling a secret key for BGV from the distribution NeHope(N,1).
This results in larger bounds on the noise in the error analysis than given in [GHS12] and [HS20]. The
main difference being the noise formulae depend on N in our treatment and not

p
N. The reason for this

increase, from
p
N to N, is due to the way the secret key is generated: In [GHS12] it is chosen to be

of fixed HammingWeight, whilst in [HS20] it is chosen by rejection sampling until something of small
canonical norm is selected. The reason for this divergence is that generating secret shared samples of
the distribution NeHope(N,1) is relatively simple; whereas generating secret shared samples from
the distributions used in [GHS12] and [HS20] is relatively hard. Thus to simplify our threshold key
generation for BGVwe pay a cost in terms of the parameters of the resulting BGV scheme.

In summary:
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Design Decision 16: Design Choice for BGV

For ease of exposition we present a BGV schemewhich
• Is leveled and does not support bootstrapping.
• Requires a circular security assumption.
• Various implementation optimizations (such as detailed manipulation of the DCRT represen-
tation) are not explained.

• Noise distributions come from the noise distribution NeHope(N,B).
• The secret key is chosen according to the distribution NeHope(N,1).

4.4.2 BFV

We present a variant of the BFV scheme [FV12, Bra12]. The BGV and BFV schemes are closely related.
The most important difference is their plaintext encoding: BGV encodes the plaintext in the “least
significant bits” of the ciphertext whereas BFV encodes the plaintext in the “most significant bits”. There
are twoways one can deal with this difference. The first is to define BFV analogues of all the routines
for the BGV scheme. The second is to apply a conversion routine from BFV to BGV, and vice-versa, in
order that one can apply homomorphic operations to BFV style ciphertexts via the BGV routines. This
conversion routine, which works when the plaintext and ciphertext moduli are co-prime, was first given
in [AP13].

The second approach, via ciphertext conversion, results in identical noise growth for both schemes.
A typical BFV application could then be implemented as in Figure 2. It is this second approach which
we adopt for ease of exposition, and in addition because BGV has simpler noise formulae in the case of
large P, when compared to BFV [CS16].

Design Decision 17: Primary Design Choice for BFV

We describe BFV homomorphic operations via conversion to the BGV scheme.

BFV.Enc BFV.toBGV
BGV Homomorphic

Operations

BGV.toBFV BFV.Dec

BGV.Dec

Figure 2: Typical execution path of BFV operations.

One could ask then, why would one want to even consider BFV as a separate scheme? Why would
one then not use BGV all the time? This is a good question, which we leave to implementers. There may
be some advantages in using a BFV encryption procedure which are specific to an application.

Given this second approach, we make exactly the same choices as we did above for BGV, for exactly
the same reasons. In particular:
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Design Decision 18: Design Choice for BFV

For ease of exposition we present a BFV schemewhich
• Is leveled and does not support bootstrapping.
• Requires a circular security assumption.
• Various implementation optimizations (such as detailed manipulation of the DCRT represen-
tation) are not explained.

• Noise distributions come from the noise distribution NeHope(N,B).
• The secret key is chosen according to the distribution NeHope(N,1).

4.4.3 TFHE

The TFHE scheme [CGGI16, CGGI20, CLOT21, BdBB+25] has very different properties from BGV and
BFV. To perform any homomorphic operations one needs access to a bootstrapping functionality. On the
other hand bootstrapping in TFHE is very efficient and it enables arbitrary look-up tables to be computed
during the execution of the bootstrapping operation (so called programmable bootstrapping). Indeed
our main low-round threshold decryption protocol will use a variant of the bootstrapping operation.

We describe a variant of TFHE which assumes a circular security assumption. The method of TFHE
public key encryption that we employ is that described in [Joy24], which utilizes a Ring-LWE instance
in order to generate many (standard) LWE instances. This avoids the need to have a public key which
contains a large number of encryptions of zero, allowing for more compact public keys. It is also
conceptually related to the public key encryption methods used in BGV and BFV.

However, the resulting LWE dimension of the output ciphertext of public key encryption is ℓ̂, which is
required to be a power of two. The internal LWE ciphertexts for the main homomorphic algorithms of
TFHE can bemademore efficient if they are done with a dimension ℓwhich is not a power of two; and
potentially smaller. Thus we introduce a key-switch from the LWE dimension ℓ̂ to an LWE dimension
ℓ after the application of the public key encryption methodology of [Joy24]. Wewill call this specific
key-switch a dimension-switch later, to avoid confusion with the more standard use of key-switching in
TFHE.

A key aspect, whichmakes TFHE bootstrapping so fast, is the fact that TFHE ciphertexts are relatively
small. In particular the LWE dimension and ciphertext modulus are relatively small. This means that
noise distributions for the underlying LWE problems can no longer have small standard deviations, in
order to ensure security via the lattice-estimator.

To ensurewe can generate the noise distributions efficientlywithin ourMPC system, for threshold key
generation, we (as we did for BGV and BFV) avoid the use of discrete Gaussians as the noise distribution.
However, even the distributionNeHope(N,B) is too costly, due to the large standard deviations needed
for TFHE keys and encryption. Insteadwe use for the noise distributions a “tweaked” uniformdistribution
on the interval [−2b, . . . ,2b] for some integer value of b; whichwe shall denote by TUnƒorm(1, −2b,2b).
When we call TUnƒorm(N, −2b,2b) we obtain a vector of N such random variables. This change in
distribution makes very little difference to the overall security analysis of TFHE, as experiments with the
lattice estimator confirm.

The distribution TUnƒorm(1, −2b,2b) is defined as follows, any value in the interval (−2b, . . . ,2b) is
selected with probability 1/2b+1 , with the two end points −2b and 2b being selected with probability
1/2b+2 . A value fromthis distributioncanbeselectedbydrawingb+2 uniformly randombitsb0, . . . , bb+1 ,
and then computing the value

 =

 

b
∑

=0

b · 2
!

− 2b + bb+1.

Thus the resulting variable has mean zero, and variance (22·b+1 + 1)/6. This last fact can be established
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by writing
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where B are independent uniform random variables on {0,1}.
In summary

Design Decision 19: Design Choice for TFHE

For ease of exposition we present a TFHE schemewhich
• Has plaintext and ciphertext moduli a power of two.
• Supports programmable bootstrapping.
• Requires a circular security assumption.
• Various implementation optimizations are not explained; however the use of FFT is (as it
affects parameter sizes and enables efficient ring multiplication).

• Public key encryption is via Ring-LWE, as explained in [Joy24]. However, to enable efficient
parameters to be generated we follow it by a dimension switch to potentially smaller LWE
dimension.

• Noise distributions come from the noise distribution TUnƒorm(N, −2b,2b).

4.5 Broadcast

We remarked above that broadcast channels need, in practice, to be implemented over the point-to-point
channels which the basic internet protocols provide us with.

A reliable broadcast protocol is one which allows a sender S to broadcast a messagem to a set of
parties with the following guarantees:

• If one honest party terminates, then every honest party eventually terminates.
• If S is honest then every honest party eventually terminates.
• Any two honest parties that terminate output the same message, and if S is honest then that
message ism.

Note, if S is dishonest then the protocol can possibly never terminate in an asynchronous network.
Over asynchronous networks one can utilize the broadcast protocol of Bracha [Bra87], which works

when t < n/3. In this protocol the parties are assumed to be connected by authentic channels. However,
our asynchronous protocols never make use of a broadcast operation. But our synchronous protocols
will require a reliable broadcast mechanism. In a synchronous network we assume that every round
has a time-out value, Δ. Thus if a party sends a message in this round, then it will be received within Δ
“seconds”, by the receiving party. For synchronous networks we can simplify Bracha’s protocol slightly3 .
The synchronous version is also reliable when t < n/3, however with the following enhanced guarantees

• Every honest party will terminate will either a messagem, or a value ⊥.
• Any two honest parties that terminate output the same value, and if S is honest then that message
ism.

One could think that it might be more efficient to implement the Dolev-Strong protocol [DS83]. One
major advantage of using the Dolev-Strong protocol would be that it can tolerate up to t < n adversaries.

3See https://hackmd.io/@alxiong/bracha-broadcast for a discussion of this.
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In addition Dolev-Strong requires t + 1 rounds, whereas our protocol requires t + 4 rounds. However,
the main cost of Dolev-Strong is the need to generate and verify digital signatures; and indeed chains of
such signatures. Such chains can be expensive to verify, especially for large values ofn, or if one wants
to use post-quantum primitives. Since our MPC protocols only tolerate up to t < n/3 adversaries we
prefer the modified version of Bracha broadcast.

The broadcasts we perform will be within our underlying MPC protocol, which we aim to base solely
on lightweight cryptographic primitives such as symmetric key encryption, MACs and hash functions
(except for a set-up phase in which any pairwise secret keys are distributed amongst the parties).

Design Decision 20: Choice of Synchronous Broadcast Mechanism

We utilize a variant of Bracha broadcast when executing a broadcast in order to avoid the need to
verify chains of digital signatures.

4.6 Reed–Solomon Codes and Shamir Secret Sharing over Galois Rings

To deal with threshold decryption of FHE schemes in which the ciphertext modulus is not a prime, but a
power of a prime q = pk or a product of primes q = p1 · · ·pk , we need to deal with LSSS-based MPC,
and hence Shamir Secret Sharing, and hence Reed–Solomon codes over Galois Rings. The main source
we take for most of our exposition is that in the thesis [Feh98] and the paper [ACD+19]. The reader is
also referred to [QBC13] for a treatment which also includes the examination of Reed–Solomon codes
over more general (even non-commutative) rings.

In almost all prior works on Reed–Solomon codes (and Shamir Secret Sharing) over Galois Rings, the
underlying ring is a ring extension of Z/(pk). Reed–Solomon codes, and hence Shamir Secret Sharing,
over Z/(q) for q = p1 · · ·pk follow immediately from the Chinese Remainder Theorem (CRT) from the
equivalent codes over Z/(p), but they do not seem to appear in generality in the literature.

Note we deal with q = pk and q = p1 . . . pk using sometimes distinct algorithms (Hensel lifting and
the CRT) we could combine these twomethods together for a more general q of the form q = pk11 · · ·p

kt
t ;

but this added complication is not needed for our applications

Design Decision 21: Choice of q in MPC Protocols

We decide to describe our secret sharing, and hence MPC protocols, only in the context of q = pk

a power of a prime, and q = p1 · · ·pk a product of primes. One could present the protocols in a
more general context of q = pk11 · · ·p

kt
t with little added complication. We choose not to, as we do

not need this generality, and in addition we do not want to confuse the reader too much.

We utilize a ring extension
GR(q, F) = (Z/(q))[X]/F(X)

where F(X) is a degree d polynomial in Z[X] which is irreducible modulo each prime divisor of q. The
need for a ring extension of Z/(q), i.e. some ring of size qd , is to enable enough values to exist in order to
be able to define secret sharing amongstn players. In particular we impose the following constraint:

Parameter Choice 3: Size of d (1)

If p is the smallest prime dividing q then we pick d such that pd > n.

Our description of the Berlekamp–Welch algorithm for fields is the standard one [BW86]. The
discussionas tohowthis isHensel lifted toGaloisRingsoverZ/(pk) follows fromthemethod in [ACD+19].
The method to lift via the CRT for when q = p1 · · ·pk is immediate. The paper [ACD+19] essentially tells
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us that all the properties of Shamir sharing we use in MPC protocols over fields, also carry over to Galois
Rings. Including such techniques such as randomness extraction, and robust opening.

Our description of Syndrome Decoding for “traditional view” Reed–Solomon codes we take from a
set of lecture notes [Hal15]; indeed we could find little explanation of this elsewhere in down-to-earth
terms. In [Hal15] Syndrome Decoding for traditional view Reed–Solomon is presented for the finite
field case. Extending this to the Galois Ring case considered in this document is relatively simple. Our
presentation can be seen as a simplification, to the specific casewe are interested in, of themore general
presentation of Syndrome Decoding for Galois Rings presented in [GTLBNG21].

At many points in protocols we would like to generate a degree t Shamir sharing of a random value.
When

�n
t

�

is “small” (which, recall, we deem to mean less than nSmBnd) we utilize a PRSS. This is
a technique which goes back to [CDI05]. The benefit of a PRSS is that it generates random values
non-interactively, however the overall computational complexity depends on

�n
t

�

, which can become
exponentially big as n increases. The same construction of a PRSS allows us to construct a Pseudo-
Random Zero Sharing (PRZS). This is similar to a PRSS, except now the sharing is guaranteed to be of
the zero value, and the sharing is of degree 2 · t, and not t. We also utilize a PRSS to generate shares of
random values of bounded sizes in our protocols; this method enables us to mask “small” values within
our MPC engine and then open them. These are used in a number of places, to simplify protocols.

Due to their exponential asymptotic complexity we only utilize a PRSS and PRZS in threshold profiles
where

�n
t

�

is small, i.e. the profiles which we called nSm. When
�n
t

�

is large we need to utilize more
complex primitives, and hence more complex protocols.

In the case where
�n
t

�

is small we provide three different initialization routines for our PRSS: One
which is passively secure, one which is active-with-abort secure, and one which is fully robustly secure.
The robust initialization routine we could also not find in the literature, but again it is obvious and trivial.

An advantage of PRSSmethods is that they enable the generation of secret shared small elements
within the Galois Ring. The interactive equivalenet of PRSS is essentially the Verifiable Secret Sharing
(VSS) methods of the next section. For VSSmethods it appears hard to generate small values; a fact
which will add to our protocol complexity when

�n
t

�

is large.

4.7 Verifiable Secret Sharing

When
�n
t

�

is large, i.e. in the threshold profiles we are denoting nLrge, the above PRSS method to
generate random elements is not available. Thus we need a method of interactively generating a shared
random element in the Galois Ring.

We utilize two forms of verifiable secret sharing, whenworkingwith the threshold profiles in category
nLrge. The first is a traditional VSS protocol, which is perfectly secure. This first variant is only used
rarely, it is used to execute a ConFp protocol in a robust manner to generate random challenges for
our second VSS protocol. Thus for this protocol we utilize the four round VSS protocol from [GIKR01],
although we take the description from [CCP22] (where it is labeled as Protocol 4GIKR-VSS-Sh). This is
chosen as it is information theoretically secure, has a relatively small number of rounds, whilst still being
in the regime of t < n/3. To ensure that the value produced from this VSS execution has enough entropy
for the ConFpwe require that qd > 2sec . If the specific q being used for the rest of our protocols is not
this large, then one could just execute this first VSS using a temporary larger value of q.

Parameter Choice 4: Size of d (2)

We pick d such that qd > 2sec , or temporarily increase the size of qwithin the protocols for the
VSS and ConFp.

The second VSS is the one we actually use to generate random sharings in the threshold profiles
in category nLrge. It replaces the PRSS/PRZS operations used for the threshold profiles in category
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nSm for generating random (but not small) secret shared values in the Galois Ring. This second VSS is
a statistically secure batched VSS procedure, which is the natural translation to the Galois Ring setting
of the equivalent finite field based protocol from [DN07]. The key advantage of this protocol is that it
produces a large number of valid sharings in a one-shot manner.

4.8 Threshold FHE as a Basis for MPC

Threshold FHE has been considered quite a bit in the literature in the context of enabling MPC protocols.
Indeed, Gentry in his thesis [Gen09] provides a simple Secure-Function Evaluation (SFE) protocol in
which parties use an FHE algorithm to encrypt their inputs to each other, the parties then compute
independently the function output homomorphically, and then the (public) output is obtained via a
threshold decryption protocol. One can view the threshold decryption protocol in Gentry’s SFE protocol
above as a mini-MPC protocol, thus we have (in some sense) built an SFE protocol from an FHE scheme
and a mini-MPC protocol, with the key generation itself performed by another mini-MPC protocol.

MPCandFHEhavebeen combined in otherways. For example theSPDZprotocol [DPSZ12] produces
an actively-secure full threshold MPC protocol based on LSSS technology, but one which uses an FHE
scheme supporting circuits of multiplicative depth one (so called Somewhat Homomorphic Encryption
(SHE) schemes of depth one) as ameans of providing an efficient offline phase. Indeed one can view the
offline phase of SPDZ as a variant of Gentry’s FHE-basedMPC protocol for the functionality of producing
Beavermultiplication triples. To obtain active security in SPDZone needs to augment the FHE ciphertexts
with Zero-Knowledge Proofs of Knowledge (ZKPoKs). There are ZKPoKs which have been specifically
designed for this usage in the SPDZ protocol [BCS19]. We decide not to target full threshold in our
document aswe are focused on robust protocols, which are impossible in the full threshold environment.

In adifferentdirection, [CLO+13]provides a robustMPCprotocol, in thehonestmajority setting,which
utilizes an SHE scheme of a specified depth, which follows Gentry’s blueprint for SFE. The extension
from SHE to supporting any function is enabled by replacing the bootstrapping in FHE by a special
protocol based on distributed decryption; namely bootstrapping is performed by interaction. It is the
basic threshold approach of [CLO+13] which we will follow in this document for threshold profiles
nSm.

4.9 Threshold FHE Key Generation

The above works on using FHE to obtain MPC all follow the approach to key generation that we follow.
Namely they execute the threshold key generation via a generic MPC protocol. This may seem overkill,
however, as was pointed out in [RST+22] for the case of threshold key generation for the SPDZ protocol,
the key generation algorithms for FHE are particularly suited to MPC evaluation. Apart from the need to
generate “small elements” (which can be done via a random bit-sampling methodology) the entire key
generation algorithm is almost all linear. Thus almost all of the complex key generation can be performed
locally, and requires no interaction. Since FFT/NTT algorithms are also linear one can even execute the
“optimized” versions of such key generation algorithms in the FFT/NTT domain locally as well.

The advantage of the generic MPC approach is that the output of the key generation methodology is
exactly the same as if the key generation was executed by a trusted third party. For FHE key generation
this is particularly important as it means that noise distributions, which affect the performance and
evaluation potential of the final FHE scheme, are not impacted (too much) by the need to generate
the keys in a threshold manner. Thus (for example) the number of players has very little affect on the
parameter sizes being chosen. Indeed the only affect of the number of players is essentially on the
ability to implement the underlying MPC protocol in the first place.
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Design Decision 22: Threshold Key Generation via Generic MPC

We elect to implement threshold key generation via generic MPC in order to ensure FHE parame-
ters are not adversely affected by the threshold requirement.

For BGV/BFV our generic key generation methodology results in parameters enabling threshold
decryption which are roughly the same as for those requiring no threshold decryption capability4 ;
however the number of levels which can homomorphically be evaluated decreases a little. For TFHE we
find there is almost no difference in the parameters which support threshold key generation compared
to those which do not.

The required number of secret shared random bits can be quite high if we adopt a key generation
method which is compatible only with our desire to enable threshold decryption. Thus, in Appendix
B we sketch a methodwhich uses less shared random bits for the threshold profile nSm. However,
this method requires us to increase the FHE parameters by more than is strictly required just to enable
threshold decryption.

There are other approaches (in particular MK-FHE and MP-FHEwhich we outline below), however
these other approaches result in FHE schemes which are slightly different, or have slightly larger pa-
rameters, than those proposed in single party FHE. We emphasize that in our work we envisage the use
of standard FHE scheme’s with almost the same parameter sets for the single user case; but we use
them in a multi-user environment. Thus all of the optimizations in existing FHE libraries for single user
FHE schemes can be applied to applications using our threshold variants. Such an approach is vital for
schemes such as TFHE, where the fast bootstrapping operation is only available due to the very small
parameter sizes that are picked for the instantiation. For BGV this approach is not so important.

4.9.1 Multi-Key FHE

There are other approach to threshold key generation, of which the most popular is so-called Multi-Key
FHE (or MK-FHE), see for example [AJL+12, AJW11, LTV12] amongst many other works. In these works,
instead of parties generating a global single FHE key in an initialization phase (as one does using the
generic MPC approach) the parties take their existing individual (multiple) FHE key pairs and combine
them in order to perform an MPC-like computation. Whilst this provides a simpler operational setup, the
practical implementations of MK-FHE are not as efficient as single key FHE.

The papers [AJW11, AJL+12, LTV12] introduce various LWE-based FHE schemes, which are key-
homomorphic, specifically for the task of creating MK-FHE. The paper of Lopez-Alt et al [LTV12] based
it’s construction on an NTRU-like assumption, which was further extended in the YASHE FHE scheme
[BLLN13]. However, such “overstretched” NTRU-based schemes were subsequently shown to be inse-
cure [ABD16].

The key theoretical usage of MK-FHE is to produce very low roundMPC protocols. For example if one
allows the use of the Common Random String (CRS) model then MK-FHE enables two round actively
secure MPC, [MW16]. A similar result [GGHR14] is possible, without using MK-FHE, but using instead
Indistinguishability Obfuscation (iO). Assuming MK-FHE is, of course, theoretically nicer than assuming
iO, since iO is not so well established a primitive. Two rounds is thus known to be both necessary and
sufficient for MPC in the CRS model. In the plain model (i.e. without a setup assumption such as a CRS)
it was for a long time an unknown problem as to how many rounds were both necessary and sufficient
for actively secure MPC. In 2016 it was shown [GMPP16] that four rounds were necessary, and then in
2017, using MK-FHE, it was shown [BHP17] that four rounds were indeed sufficient for actively secure
MPC. If one assumes a PKI then three rounds are possible, as shown (for semi-malicious adversaries) in
[KLP18].

4Except for the increase in parameters due to the different secret key distribution which we remarked upon earlier
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Further, theoretical, work has been carried out on MK-FHE-based MPC protocols. For example,
Damgård et al [DPR16] develop a form of equivocable FHE, which enables them to extend the work of
[AJW11, AJL+12, LTV12] from the static corruption model to the adaptive model, whilst (again) giving a
secure MPC protocol in the dishonest majority setting.

Despite over ten years of research very little progress has been made on turning MK-FHE into a
practical reality, see for example [BP16, CCS19, CDKS19, CZW17, CM15, KKL+23, AKÖ23, KMS24, LP19,
PS16, YKHK18]. The extra functionality required by such MK-FHE schemes requires larger parameter
sets, andmore complex algorithms, than are needed in standard FHE schemes. For example, even the
most efficient schemes require FHE scheme parameters which scale with the number of intended users.

4.9.2 Multi-Party FHE

Another variant ofMK-FHE is that ofMulti-PartyFHE (MP-FHE). TheworkonMP-FHE ismuch likeour own
application; namely there is a distributed key generation protocol and a distributed decryption protocol.
However in MP-FHE, the key derivation is usually created directly from the underlying mathematics of
the FHE encryption scheme, as opposed to applying generic MPC technology. MP-FHE has also found
application in theoretical cryptography. For example [Coh16] constructs constant round protocols for
MPC over asynchronous networks, given an asynchronous Byzantine agreement functionality, assuming
static malicious adversaries when t < n/3. In [CsW19] a two round, semi-honest, SFE protocol is given
with sub-linear communication complexity.

4.9.3 Resharing

We also present a method for transferring a sharing from one set of parties to another, or even resharing
a value within a given set. This enables us to achieve a form of pro-active security, in which we can
reshare the underlying FHE secret key at given intervals of time.

This method is very similar to other methods for share re-randomization used in the MPC literature
(which go back to [BGW88]). The basic idea is for the players in the source set to transfer a sharing
of their shares to the players in the second set. The players in the second set then open a syndrome
polynomial, and apply syndrome decoding in order to correct any invalid shares sent.

4.10 Threshold FHE Decryption

When using threshold decryption for FHE schemes, even when using noise flooding, one needs to
worry about attack vectors related to correctness of the underlying FHE operations, so called IND-
CPAD attacks. Such attack vectors were initiated, for non-exact FHE scheme such as CKKS, in the
work of [LM21] (although attacks related to correct evaluation for LWE-based systems go back to at
least [DVV19]). In a series of papers in early 2024 these attacks were shown, in a series of papers
[CSBB24, CCP+24, ABMP24], to also apply to exact-FHE schemes (i.e. BGV, BFV and TFHE). In this
document we set the error probability for FHE operations to be exponentially small (we choose an error
probability of err ≈ 2−128 in this document), in order to render the above attack vectors computationally
infeasible.

There are two approaches to threshold FHE decryption which we examine in this document: An
approach using noise-flooding and an approach using genericMPC. The latter approach is only applicable
to TFHE in this document. Extending the generic MPC approach to BGV and BFV is possible, but we feel
not relevant given the efficiency of the noise-flooding approach for BGV and BFV.
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4.10.1 Threshold Decryption via Noise-Flooding

At about the time of Gentry’s thesis on FHE in 2009 [Gen09], the first threshold key generation and
decryption for LWE based ciphertexts was given by Bendlin and Damgård [BD10]. Their methodology
used replicated secret sharing to split the secret key, a method whose complexity scales with

�n
t

�

.
The simpler case of full-threshold, i.e. t = n − 1, decryption for LWE ciphertexts was combined with
SHE and formed the basis of the SPDZ MPC protocol [DPSZ12]. This utilized the BGV encryption
scheme, supporting circuits of multiplicative depth one, and used the noise flooding technique. The
same techniques were then used in the context of FHE by Asharov et al [AJL+12] in the full threshold
setting. A similar application and usage was also given in [CLO+13], which considered the threshold
setting of t < n/3 via Shamir sharing. In our work we shall adopt the methodology of [CLO+13] for our
main threshold decryption protocol.

A generic thresholdizer for arbitrary protocols was given by Boneh et al. in [BGG+18] using threshold-
FHE. The construction of Boneh et al. utilizes a special form of secret sharing called {0,1}-LSSS, which
is closely related to replicated sharing; and thus does not scale to more than a few players.

All of these prior works utilized noise flooding as a methodology. As remarked above this requires
a super-polynomial gap between the bound on the noise term e and the ciphertext modulus q. Such
super-polynomial blow-ups in other areas of cryptography based on LWE have recently been avoided by
utilizing the Renyi divergence [BLR+18]. This, as an approach to threshold-FHE, was recently examined
by [BS23] and [CSS+22]. The problemwith using the Renyi divergence in the context of distributed
decryption, is that the general technique of Renyi divergence is hard to apply to security problemswhich
are inherently about distinguishing one distribution from another. In [CSS+22] and [BS23] a way
around this was found by designing special security games for threshold-FHE usage, which enabled
the use of the Renyi divergence. The problem is that these games need to cope with the homomorphic
nature of the underlying encryption scheme, and thus cannot be adaptive. In applications we really
require a threshold-FHEprotocolwhich is indistinguishable, to an adversary, froma simulation interacting
with an ideal functionality. The security games presented in [CSS+22] and [BS23] do not allow such a
usage.

Design Decision 23: Simulation Security vs Game Based Security

Our threshold key generation and decryption protocols are secure in the UC (simulation based)
security model. This enables them to be arbitrarily composed in other protocols.

Simulation security for threshold LWE can be obtainedwithout using noise flooding, aswas described
in [MS23]. However, their techniqueonlycanbeapplied to traditional LWEpublic keyencryptionschemes
which do not allow any form of homomorphic operations. An interesting open research question is to
obtain simulation secure threshold homomorphic decryption without the need for noise flooding.

Thus we are led back to considering noise flooding for which simple protocols are available which
provide simulation based security. However, as detailed above, for FHE schemes such as BGV and BFV
this is not a problem. The only issue comes with schemes such as TFHE, which utilize small parameters
in order to achieve very fast bootstrapping operations.

We present a simplemethod for threshold decryption for TFHE ciphertexts in the presence of t < n/3
actively (but statically) corrupted adversarial parties. Our methodology produces a threshold decryption
functionality which is in the simulation paradigm, this makes it more amenable to being used as a black
box in larger protocols than the game-based approaches based on Renyi divergence.

Our method uses the approach of [DDE+23], which is itself based on [CLO+13], which works for
arbitrary prime power values of q, including the important case of q = 264 for TFHE. Adapting it to the
case of q = p1 · · ·pk , for use with BGV and BFV, is immediate via the Chinese-Remainder-Theorem. This
method is based on the (relatively standard) trick of applying Shamir secret sharing over Galois Rings
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mentioned above, thus the authors of [CLO+13, DDE+23] do not need to go via a replicated style secret
sharing. In Shamir secret sharing the share sizes do not grow exponentially with the value of

�n
t

�

.
When

�n
t

�

is “small” [DDE+23] applies a trick, which first appeared in [CLO+13], to enable threshold-
FHE using amodified Pseudo-RandomSecret Sharing (PRSS). In such a situation the protocol is a simple
one round protocol, which is robust5 and works over asynchronous networks when t < n/3.

When t < n/2, the authors of [DDE+23] note that, they obtain a non-robust protocol, but one which
has active-with-abort security. The proof of security in [CLO+13] has a number of minor bugs/missing
details in it, and is overly complex, thus [DDE+23] also re-proves the main threshold-FHE result from
that paper. It turns out that using two executions of a PRSS, for small values of

�n
t

�

, automatically means
we are adding a sum of at least two uniform distributions in the flooding term; and thus we can apply an
improved statistical distance analysis in this case.

When
�n
t

�

is large the method of [DDE+23] requires slightly more work; which is only sketched in
[DDE+23] but which we fully expand upon. In particular the threshold-FHE protocol is divided into two
phases, an online and an offline phase. In the offline phase a “generic” MPC protocol is used to generate
random shares of bits.

In the online phase, when
�n
t

�

is large, the threshold decryption protocol consume these random
shares of bits to perform the threshold-FHE operation. In particular the shared random bits are used to
produce two uniformly random noise flooding terms of the correct size6 . Thus again, [DDE+23] are able
to apply the improved statistical distance analysis in this case.

The security properties of the offline phase are inherited from the underlying MPC protocol used
to generate the shares of random bits. If the underlying MPC protocol is robust over asynchronous
networks then so is the offline phase of our threshold-FHE protocol. If it only provides active-with-abort
security over synchronous networks then they are the properties of our offline phase. In this document
we describe an offline protocol which is robust, secure over synchronous protocols and supports t < n/4
when

�n
t

�

is large. Our online phase is again robust andworks over asynchronous networks, when t < n/3;
and is active-with-abort secure when t < n/2.

The methodology of [DDE+23] for threshold-FHE decryption, for all values of
�n
t

�

, follows in two
conceptually simple steps:

1. We take the input ciphertext with LWE parameters (ℓ,Q) and then transform this (if needed) into a
ciphertext with LWE parameters (ℓ,Q)which encrypts the same message, with roughly the same
noise bound in the two cases.
(a) For BGV and BFV where Q is a product of primes this operation comes for free, by simply

allowing threshold decryption to consume a couple of extra levels. In this case we utilize
secret sharing/an MPC systemwith q = Q.

(b) For TFHE Q is a prime power and Q is a prime power with Q|Q. This switching to larger parame-
ters is performed during a bootstrapping operation, which enables us to simultaneously reduce
the noise, so that the noise gap is sufficiently large. We call this operation StchSqsh, as
it both switches the (ℓ,Q) values, and also squashes the noise. In this case we utilize secret
sharing/an MPC systemwith q = Q.

2. After enough noise-gap has been created, the above threshold decryption operation is performed
via noise flooding.

For TFHE in practice the value Qwill be 264 , and wewill only need to boost themodulus to a value of
Q = 2128 in order to have a sufficient noise gap to perform threshold decryption. With such a value of Q
it turns out that TFHE bootstrapping is still efficient, and thus the entire threshold decryption process
is efficient. In particular it is very low round (requiring only one round in the online phase), thus it is
often preferable to techniques based on generic MPC. In the special case when

�n
t

�

is small we obtain a

5i.e. it outputs the correct decryption even in the presence of malicious parties.
6As mentioned above bit generation can be considered as either an offline or an online procedure. As it is input independent, it

makes more sense when thinking of threshold decryption to consider it as an offline procedure.
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one-round, threshold decryption protocol which is robustly secure when t < n/3, with no offline phase,
and which assumes only asynchronous, as opposed to synchronous, networks.

4.10.2 Threshold Decryption via Generic MPC

Another approach is to apply generic MPC to the problem of threshold decryption of FHE ciphertexts.
This method is best suited for TFHE, as (as we remarked earlier) the noise-gap issue is not really an issue
for BGV and BFV. In this method we take the sharing of the pre-decryption directly, i.e. we compute

〈p〉 = b −  · 〈s〉.

One then needs to extract the messagem from the pre-decryption. The message is encoded in p, for
TFHE, in the following manner:

p = Δ ·m + e (mod Q).

We then extract the messagem via bit-decomposition with the MPC engine (as for TFHE Δ = Q/P is also
a power of two), thus onlym is revealed and the value of e remains totally hidden. Thus, using Generic
MPC, for a secret sharing system/MPC engine with q = Q, to perform the threshold decryption we do
not need to require any noise gap. Hence, there is no need for any switch to larger parameters, or a large
bootstrapping to produce a large noise gap.

The disadvantage of this method is that we really need to apply the full power of our MPC engine. We
also need the generation of random bits in order to perform the bit decomposition utilizing the standard
techniques from the MPC literature mentioned above for bit manipulations. The use of such protocols
means that threshold decryption requires a relatively large number of rounds (if Q = 264 as in TFHE,
then this is about 16 rounds). Thus this method whilst not requiring the large bootstrap, may actually be
slower, if the parties are separated by a network which requires a large ping-time.

This method requires, for all values of
�n
t

�

an offline phase, which requires synchronous channels, as
mentioned above. Thus the benefit of a purely asynchronous protocol, in threshold profile nSm, is
also lost by utilizing this secondmethod. However, we feel there are a number of places where such a
method could be useful (LAN networks for example) we decide to present this as an option.

4.11 Zero-Knowledge Proofs

In many applications, see below, we are required to provide a proof of valid encryption of an FHE
ciphertext. This not only allows the encryptor to prove that they used the correct noise distribution
(which avoids various selective failure attacks due to invalid noise values in higher level protocols), or at
least used a distribution which is not too far from the correct one. The use of zero-knowledge proofs
also allows the prover to prove that they know the underlying message (which is useful in simulation
proofs where the simulator, or proof of the simulator, needs to extract any underlying messages).

In this document we provide three forms of such zero-knowledge proofs for FHE ciphertexts.
1. The first are pre-quantum secure, and are based on pairings on elliptic-curve groups; they provide

very short proofs but the time to generate a proof can be long. The proofs are exact, in that they
exhibit no so-called soundness slack (see below).

2. The second are also pre-quantum secure, however we now allow a mild form of soundness slack.
In particular the prover is not able to prove that they actually used the exactly correct error
distributions in forming a public key encryption. This slack is relatively mild, and will need to
be coped with when setting FHE parameters. This disadvantage is compensated by the fact that
these second type of proofs are more efficient than the first.

3. The third are fully post-quantum, and are based on MPC-in-the-Head techniques; they provide
longer proofs than the first two, but exhibit a shorter prover time. In addition they exhibit no
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soundness slack.
For the first two types of proofs, we note that a quantum computer is able to break the soundness of
these first proofs, but not the zero-knowledge property. Thus privacy of the inputs is maintained in the
presence of a quantum computer, but a quantum adversary will be able to prove invalid statements.

The first two (pre-quantum) proofs are also more suitable for TFHE style FHE, as they require pairing
friendly elliptic curves whose group order is larger than the ciphertext modulus, whereas the third
(post-quantum) proofs can be applied to any form of FHE scheme. The first two require a Common
Reference String (CRS) to be securely set up via a ceremony, whilst the third does not. We summarize
the properties in the Table 3.

Soundness CRS
Proof Security Slack Applicability Required
Proof 1 Pre-Quantum None TFHE only Yes
Proof 2 Pre-Quantum Yes TFHE only Yes
Proof 3 Post-Quantum None All No

Table 3: Properties of the zero-knowledge proofs.

We explain the basic idea behind our proofs, and the potential soundness slack, using TFHE as an
example; adapting the methodology to BGV and BFV is easy but involves a introducing even more
soundness-slack, as one needs to embed the message space modulo P into a space of bits. See
Section 7.6 for further details.

4.11.1 Soundness Slack

For TFHE, as we utilize the encryption method of [Joy24] with tweaked uniform noise distributions
TUnƒorm(1, −2b,2b), the encryption equation can be expressed as follows (using the notation of
Section 5.6.3), to produce an LWE ciphertext of dimension ℓ̂. To encryptm ∈ Z/(P) one selects a vector
r ← {0,1}ℓ̂ , a vector e1 ← TUnƒorm(ℓ̂, −2bℓ̂ ,2bℓ̂ ) and a value e2 ← TUnƒorm(1, −2bℓ̂ ,2bℓ̂ ) and then
one defines

← pk �
↔
r + e1,

b← pkb · r + e2 + (Q/P) ·m.

Thus an honest prover will be providing values from the language

L =
¦

(, b) :  = pk �
↔
r + e1, b = pkb · r + e2 + (Q/P) ·m,

m ∈ Z/(P), r ∈ {0,1}ℓ̂, ‖(e1|e2)‖∞ ≤ 2bℓ̂
©

.

A zero-knowledge proofwill be said to have no soundness-slack if the statement that a dishonest prover
can pass the soundness check is exactly the statement L. However, our second type of pre-quantum
zero-knowledge proof suffers from the issue of soundness slack. These second type of proofs are more
efficient than the first type, but they allow the adversary to pass as valid a statement from the language

L′ =
¦

(, b) :  = pk �
↔
r + e1, b = pkb · r + e2 + (Q/P) ·m,

m ∈ Z/(P), r ∈ {0,1}ℓ̂, ‖(e1|e2)‖2 ≤ B
©

,

for some value of B. Using the standard norm inequalities, for vectors of size n,

‖ · ‖∞ ≤ ‖ · ‖2 ≤
p
n · ‖ · ‖∞,
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implies we have need to utilize the language L′ with B =
Æ

ℓ̂ + 1 · 2bℓ̂ . Thus we are proving statements
which the adversary could select to be from the language

L̂ =
¦

(, b) :  = pk �
↔
r + e1, b = pkb · r + e2 + (Q/P) ·m,

m ∈ Z/(P), r ∈ {0,1}ℓ̂, ‖(e1|e2)‖∞ ≤
q

ℓ̂ + 1 · 2bℓ̂
©

.

This factor difference zk-sck =
Æ

ℓ̂ + 1will be referred to as the zero-knowledge soundness slack from
now on. It is the difference in bounds that the proofs guarantee between a dishonest and an honest
encryptor/prover7 .

4.11.2 The Zero-Knowledge Proofs Considered as Subset-Sum Problems

Our first and third type of zero-knowledge proof all have zk-sck = 1, and achieve this by mapping the
input language L into a subset-sum problem. This is done, for TFHE, as follows, since P is a power of two
we can write the message as, form ∈ {0,1},

m =
log2 P
∑

=0

m · 2.

For BGV and BFVwe do not have such a nice bit-decomposition as P is odd, thus for BGV and BFVwe
need to introduce some soundness slack in terms of the underlying language in relation to the message
(as opposed to the noise distribution, which was the issue above).

Again focusing on TFHE, we can rewrite the above encryption equations into a statement about
unknown bits as follows:

 = pk �
↔
r + E1 · g − 2bℓ̂ · 1 (mod Q).

b = pkb · r +
�

e2 · g − 2bpk
�

+

 log2 p
∑

=0

m · (Δ · 2)

!

(mod Q),

where ℓ̂ is the ring dimension, � is ring multiplication,
↔
r is the reverse ordering of the vector r, g =

(1,2,4, . . . ,2bℓ̂ ,1)> and Δ = Q/P. The (other) unknown variables, apart from the bits making up the
message m, are the bit vector r ∈ {0,1}ℓ̂ , the bit matrix E1 ∈ {0,1}ℓ̂×(bℓ̂+2) , and the bit vector e2 ∈
{0,1}bℓ̂+2 . By expanding out the� operation in the above equationwe can view this as ℓ̂+1 subset-sum
equations. The prover is thus proving knowledge of the bits making up m, r, E1 and e; thus they are
proving knowledge of a simulataneous solution to a set of ℓ̂ + 1 subset-sum equations.

The total number of witness bits is given by

log2 P + ℓ̂ + ℓ̂ · (bℓ̂ + 2) + (bℓ̂ + 2) = log2 P + ℓ̂ · (bℓ̂ + 3) + (bℓ̂ + 2).

The statement size on the other hand is

(3 · ℓ̂ + 1) · log2 q,

i.e. 2 · ℓ̂ elements for the public key (pk,pkb); ℓ̂ for  and one for b.

4.11.3 ZKPoKs Based on Vector Commitments

Using vector commitments, it is possible to obtain very short NIZK proofs for subset-sum statements
as well as short statements from the language L′ above.

7In extensions to TFHEwhich we do not discuss in this document one can amortize many public key encryptions with a single
proof. With this optimization the zk-sck becomes

p

2 · ℓ̂.
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Our first type of proof based on vector commitments uses the construction of [Lib24], and relies on
a vector commitment scheme [LY10]. This proof allows one to prove that a committed vector is small
(i.e., binary, ternary, or of small infinity norm).

Our second type of proof based on vector commitments also uses the commitment scheme of
[LY10] and its short proofs of binarity [Lib24]. In order to reduce the dimension of committed vectors
and the number of exponentiations, it applies a technique from [LNS21] that consists in projecting noise
vectors to smaller dimensions before proving a loose bound on their infinity norm. While this bound
does not provide tight smallness guarantees by itself, it suffices to prove that a modular inner product of
the noise vector with itself is also its inner product over the integers (i.e., no implicit modular reduction
happens) when it comes to proving a bound on its Euclidean norm. This combination of techniques
allows proving an exact bound on the Euclidean norm of a committed noise vector and a sligthly slacky
bound on its infinity norm. In order to prove the smallness of the Euclidean norm, we can then use
an inner product argument as in [GHL22]. Instead of using BulletProofs [BBB+18] as in [GHL22],
Type-2 vector-commitment-based proofs rely on the inner product functional commitment of [LRY16]
which provides a constant number of group elements per proof. In order to avoid leaking the exact
Euclidean norm of the noise vector and maintain the zero-knowledge property, Type-2 proofs proceed
as in [GHL22] by computing the decomposition of a positive integer (namely, the difference between
the squared Euclidean norm and the square of its proven upper bound) as a sum of four squares. This
technique is a standard trick in range proofs and we use it in the sameway as in [GHL22].

In both cases our NIZK construction relies on discrete-logarithm-hard groups (G, Ĝ,GT ) of prime
order r , over which a bilinear map e : G × Ĝ→ GT is efficiently computable. The proof requires that r
is larger than the ciphertex modulus q, and thus these proofs are better suited for TFHE style FHE, for
which the ciphertext modulus q is small.

The soundness property of the NIZK construction relies on the hardness of a parameterized variant
of the standard discrete logarithm problem, called the (m,n)-Discrete Logarithm assumption.

Definition 1. Let (G, Ĝ,GT ) be pairing-friendly groups of prime order r . For integersm,n, the (m,n)-
Discrete Logarithm ((m,n)-DLOG) problem is, given (g, gα, g(α2), . . . , g(α

m), ĝ, ĝα, . . . , ĝ(α
n)), for a ran-

dom α← Z/(r), g←G, ĝ← Ĝ, to compute α.

The (m,n)-Discrete Logarithm assumption is used to prove the soundness of the scheme in the
random oracle model and in the algebraic group model [FKL18]. This is an idealized model, where all
algorithms are assumed to be algebraic. Algebraic algorithms [BV98, PV05] generalize the notion of
generic algorithms [Sho97] in that, whenever they compute a group element, they do it by taking linear
combinations of available group elements so far. Hence, when they output a group element X ∈ G,
they also output a representation {α}N=1 of X =

∏N
=1 g

α
 as a function of previously observed group

elements (g1, . . . , gN) ∈GN in the same group. In contrast with generic algorithms, algebraic algorithms
are given access to specific encodings of group elements. Of course, the (m,n)-Discrete Logarithm
problem does not resist quantum algorithms. A quantum adversary would actually be able to generate
proofs for false statements and break the soundness of the proof system. However, the zero-knowledge
property is perfect (i.e., a simulator can use α as a trapdoor to simulate proofs that have exactly the
same distribution as real proofs) and does not rely on any assumption. Consequently, if the proof system
is used to prove the validity of an LWE/RLWE ciphertext, the post-quantum security of the encryption
scheme is preserved since proofs leak no information on the witnesses.

The first vector-commitment-based construction provides the same proof length as size-optimal
pairing-based SNARKs [Gro16]. The second construction requires longer proofs (namely 13 group
elements, which fit in about 1KB on BLS12-446 curves) but are much faster to compute. For typical
parameters, the dimension of committed vectors (which linearly affects the number of group exponenti-
ations at the prover) is reduced by a factor ≈ 9. Technically, the vector-commitment-based proofs are
not SNARKs since the verification time growswith the length of thewitness. Even in the fast-verification
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variant (where the verifier computes only ≈ 128 group exponentiations), the verifier still has to com-
pute a number of field operations that linearly grows with the witness length. However, the prover is
significantly faster than in pairing-based SNARKs featuring similar proof sizes for general NP statements.
As discussed in [Lib24, Appendix G.5], for the specific task of proving the validity of a ciphertext in
Joye’s public-key scheme [Joy24], the prover would have to prove an arithmetic circuit with about
90000 multiplication gates and 280000 wires, which would cost over 500000 exponentiations. In
Type-2 vector-commitment-based proofs, the prover only computes around 60000 exponentiations in
pairing-friendly groups.

As another advantage over SNARKs, vector-commitment-based proofs extend to prove other state-
ments8 about encrypted messages without any modification in the CRS. In non-universal SNARKs like
[Gro16], this would require to generate a new CRS for each different circuit. For universal SNARKs with
pre-processing (e.g., [GWC19]), it would require a new circuit-dependent pre-processing phase.

4.11.4 ZKPoKs Based on MPC-in-the-Head

Asmentioned above we also present ZKPoKs which are post-quantum secure, and based on the MPC-
in-the-Head paradigm. These provide proofs sizes of the order of a few thousand kilobytes, thus much
larger than those based on vector commitments; however the prover time is relatively fast.

Our ZKPoKwill be based on the KKWMPC-in-the-Head protocols from [FMRV22] (for general values
of Q) and [FR23] (for the case of prime values of Q = p1 · · ·pk). We also present an optimized version of
the [FMRV22] ZKPoKs for subset-sum problems based on a nice hyper-cube trick. All these techniques
are themselves based on the classic KKW[KKW18] approach toMPC-in-the-Head. Since our encryption
scheme is essentially a linear function of random bits, our MPC-in-the-Head protocol does not need to
actually execute anymultiplication gates. We thus adopt the cut-and-choosemethodology to check
the offline phase of the MPC-in-the-Head protocol, as opposed to the sacrificing method of [HKL21];
this is because the checks using sacrificing would require multiplications and hence bemore costly in
the long run. Thus our security relies on the combinatorial arguments of the original KKW paper, despite
our “arithmetic” circuit being over a large ring Z/(Q) and not simply a binary circuit.

The core idea underlying MPC-in-the-Head proof systems is for the prover to emulate an MPC
protocol that computes the verification circuit of the decision problem at hand, where the secret that
is shared amongst the virtual parties is the witness to the statement. By emulating the MPC protocol,
the prover can commit to the view of every party towards the verifier who can in turn challenge to
open some of these views. By the correctness property of the MPC computation, examining enough
parties’ views and checking that these views are coherent with one another, convinces the verifier of the
integrity of the computation and thus of the soundness of the proof. In addition, the privacy property of
the MPC computation ensures that by keeping enough of the parties’ views secret, the verifier is not
able to reconstruct any of the secrets, providing the zero-knowledge property.

The security of the proof therefore only relies on information theoretic arguments and the ability to
compute commitments, for which we know post-quantum constructions. As such, signature schemes
that internally rely on an MPC-in-the-Head proof system to build an identification scheme have been
proposed as candidates for post-quantum signature schemes [CDG+17, BBD+23]. We can turn this
interactive process into a NIZK via the use of the Fiat-Shamir transform at the cost of being able to
claim security only in the RandomOracle model.

In contrast to SNARKs or ZKPoKs based on vector commitments, proofs generated using the MPC-
in-the-Head paradigm are not short nor are they fast to verify, but they can be faster to create the proof.
In fact, the size, as well as the proving and verification time of an MPC-in-the-Head proof, are all linear in
both the number of secret inputs and the number of multiplications in the circuit. Another advantage

8As explained in [Lib24, Appendix G.7], they make it possible to prove plaintext equalities, inequalities < between encrypted
integers, or that two plaintexts agree in certain bit positions. It is also possible to prove that atmost one-out-of-k ciphertexts encrypts
a non-zero value. For a given ciphertext, it can also prove an upper bound on the Hamming weight of the plaintext.
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of MPC-in-the-Head proofs is that despite their linear-time nature, both the proving and verification
process are highly parallelizable as each party’s view can be computed concurrently.

4.12 Putting it all Together

The reason for presenting both threshold FHE protocols and ZKPoKs of correct ciphertext encryption is
that together they enable secure, robust low communication MPC-like protocols based on FHE.

The traditional client-server application of FHE is that a client generates an FHE key, and sends the
public part (for evaluation) to the server. Then the client can send encrypted data to the server, and the
server can compute on it. The encrypted results are then passed back to the client for decryption. In
this application one assumes the server is semi-honest, and has no secret inputs. Thus the client is the
honest party, and so obtains no advantage by crafting invalid ciphertexts.

The classic usage of threshold decryption would be to enable other parties, and not just a single
client to decrypt data. In such a situation it is highly likely that other parties may be encrypting data as
well. For example consider a financial application in which customers encrypt their transaction data, the
financial company processes the transactions in encrypted form, and then each customer may request
a decryption of their balance from a network of parties implementing the threshold decryption protocols
above. In such a situation customers, i.e. encryptors, cannot be assumed to be honest, and so they need
to ensure that encrypted data entered into the system is via valid ciphertexts.

Indeed, one can consider the application of FHE in the financial sector of the previous paragraph
as an example MPC application; where the parties are the customer, the financial institution and the
parties enabling the threshold decryption to be performed. One sees that FHE enables a round efficient
MPC protocol relatively simply. Indeed, if one utilizes a multitude of parties to perform the function
evaluation (for example multiple banks in the above financial use case), one can obtain a fully malicious
MPC protocol with low round complexity; and whose communication complexity does not depend on
the complexity of the functions being evaluated.

That the FHE-enabled MPC protocol above is fully malicious is due to the combination of the robust
threshold decryption protocols and the application of ZKPoKs for correct encryption given in this
document. A complete securitymodel, and security proof, of such an FHE-enabledMPCprotocol is given
in [Sma23]. This FHE-enables MPC protocol utilizes the blueprint of Gentry’s passively secure MPC
protocol (given in [Gen09], and obtains active security by combining the basic FHE operations with
ZKPoKs of correct encryption, and a robustly secure threshold key generation and encryption method
for the FHE primitive.
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5 Conventional Primitives and Schemes

The purpose of this whole document is to specify threshold Fully Homomorphic Encryption; it is not a
document which aims to describe a potential FHE standard. Thus, following Design Decision 16, Design
Decision 18 and Design Decision 19, we only present enough FHE material in order to implement the
threshold schemes, see the subtleties needed to implement the threshold FHE schemes, and also
provide a simple FHE implementation. There are a huge number of optimizations and bells-and-whistles
one can apply in the FHE space, and we do not aim to cover them here. Our main focus is on building
threshold TFHE, thus we only present BGV and BFV (and their threshold variants) in order to show that
our techniques are general in nature. Some of our threshold techniques are not so well suited to BGV
and BFV, especially in the regime where one has a large number of parties.

5.1 Extendable Output Functions

A standard primitive from prior work which we shall also use in our work is a so-called Extendable
Output Function (XOF). A XOF is a keyed pseudo-random function (PRF), which can produce arbitrary
length outputs, see [MF21][Chapter 13.3]. The standard XOF construction is to use SHAKE-256, based
on the SHA-3 sponge to squeeze. This is defined as follows:

SHAKE-256(M,d) = Kecck[512](M‖1111, d)

where Kecck[512](m,d) is the Keccak operation with capacity c = 512 (and hence rate r = 1088)
applied to the messagem, and outputting d bits. The Kecck operation produces r bits of output in
each iteration of the squeeze. Wewrite the API for this application of Kecck as Kecck[512].nt(m)
and Kecck[512].Net(), where the latter outputs the next r bits of output.

Whilst theoretically nice, the SHAKE-256 based XOF is relatively slow, thus as a less theoretically
pleasing method, one can use an AES-CTR based approach. This approach does not produce a XOF, but
is sufficient for the applications we envisage. This method works much like CTR-DRBG, however as the
output of our XOF applications is always public we do not need to worry about the frequent rekeying
used in the CTR-DRBG standard. Thus our AES-based “XOF” is simpler in construction than CTR-DRBG.
The construction is to compress the input messagem down to a two block output using a fixed key
AES CBC-MAC. This produces a key and an IV. The key and the IV are then used in AES-CTRmode to
produce an output stream 128-bits at a time.

Whether using SHAKE-256 or an AES-based XOF, we define the base XOF object in Figure 3. It has
two functions XOF.nt(seed, str)which initializes the basic XOF object from a seed value seed and a
domain separation string str , and a function XOF.Net(n)which outputs the next n bits of output. Note,
the domain separation string str is assumed to be bounded in length by at most five characters in this
document.

To aid implementation in software our XOF objects internally process data in bytes rather than bits;
see XOF.Net(n) in Figure 3. This means if, for example, nine bits are requested from the XOF, the
algorithm internally consumes two bytes of the output, throws away seven bits, and then returns nine
bits. Alternatively, an implementation in such a situation may decide to return the full two bytes (i.e.
sixteen bits) and the application only utilizes the desired nine.

In our application of a XOFwemay want the output not to be bits, but to be a vector of N uniformly
random elements from (Z/(Q))N . When Q is a power of twowe trivially obtain this, but when Q is not a
power of two we use a method (see XOF.Net(N,Q) in Figure 3) to obtain a distribution which is within
2−dst of uniform.
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XOF

XOF.nt(seed, str):
1. If using SHAKE-256 then

(a) Kecck[512].nt(seed‖str‖1111).
2. Else

(a) Pad seed‖str with zeros to the right, in order to obtain a messagem =m1, . . . ,mt
of t > 2 128-bit blocks, with the last block being the encoding of the length of
seed‖str in bits.

(b) k← 0, c0 ← 0.
(c) For  = 1, . . . , t do c ← AESk(c−1 ⊕m).
(d) VXOF ← ct−1 .
(e) kXOF ← ct .

3. bƒ ƒXOF = ∅.

XOF.Net(n):
1. While |bƒ ƒXOF | < 8 · dn/8e do
2. If using SHAKE-256

(a) bƒ ƒXOF ← bƒ ƒXOF‖Kecck[512].Net()
3. Else

(a) bƒ ƒXOF ← bƒ ƒXOF‖AESkXOF (VXOF).
(b) VXOF ← VXOF + 1.

4. Write r||bƒ ƒ ← bƒ ƒXOF , where r is dn/8e bytes in length.
5. bƒ ƒXOF ← bƒ ƒ .
6. Return the first n bits of r , or the whole of r as desired.

XOF.Net(N,Q):
1. For  = 1, . . . , N do

(a) If Q is a power of two s← XOF.Net(log2Q).
(b) Else s← XOF.Net(dst + d log2Qe).
(c) Treating the bit-string s as an integer  ← s (mod Q).

2. Output (1, . . . , N).

Figure 3: Definition of the XOF Object.

5.2 (Generalized) (Ring) Learning with Errors

Our FHE ciphertexts will comewith plaintext modulus P, and ciphertext modulus Q = Q1 · · ·QL , where
the factors in the ciphertext modulus are co-prime, i.e. gcd(Q, Qj) = 1 for  6= j, but each Q could be a
prime power (or composite number).

We will often make use of theM-th cyclotomic ring of degree N = ϕ(M)which wewill define by

R(M) = Z[X]/(M(X)).

In “most” instances users will useM = 2n+1 , and so N = 2n , and the ring will be given by

R(M) = Z[X]/(XN + 1).

From now onwewill implicitly assume that we haveM = 2n+1 and N = 2n unless otherwise stated. In
addition, if the cyclotomic valueM is obvious from the context wewill drop the superscript and simply
write R.

The reduction of the ring modulo the ciphertext (resp. plaintext) modulus Q (resp. P) will be denoted
by

RQ = R
(M)
Q = (Z/(Q))[X]/(M(X)) ( resp. RP = R

(M)
P = (Z/(P))[X]/(M(X)) ).
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We fix the global Δ as Δ = bQ/Pc . This is the ratio between the ciphertext modulus Q, and the application
plaintext modulus P.

Elements inR (resp. RQ ,RP , etc)will be considered as vectors,b, etcwhereweapply thecomponent-
wise addition operation. However, we will let  ·b denote the dot-product of two such vectors (resulting
in an element ofZ), and�b to denote the ringmultiplication (resulting in an element ofR). Thismapping
between vectors and ring elements will be via the identification of the vector  = (0, . . . , N−1)with
the ring element

 = 0 + 1 · X + · · · + N−1 · XN−1.

We let
↔
 denote the vector with the coefficients in the reverse order, so that if  = (0, . . . , N−1) then

↔
 = (N−1, . . . , 0). An important identity, which will be used in our method for public key encryption for
TFHE is that the (N − 1)-th element in the product of the two ring elements �

↔
b is equal to the normal

dot product of the two vectors  · b. Thus we have

 · b = ( �
↔
b )N−1.

We utilize a number of variants of the Learning-with-Errors problem in this document. The (standard)
LWE problem, the Ring-LWE problem, and the Generalized Ring-LWE problem. We first define these
problems

Definition 2 (Learning-With-Errors). The (decision) standard LWE problem is to distinguish between
samples drawn from the two distributions

D1 = { (, b) : ← (Z/(Q))ℓ, b← Z/(Q) },

D2 = { (, b) : ← (Z/(Q))ℓ, e← D, b =  · s + e },

where s ∈ (Z/(Q))ℓ is a fixed (secret) value, andD is an LWE-error distribution producing “small” elements
in Z/(Q).

Definition 3 (Ring Learning-With-Errors). The (decision) Ring-LWE problem is to distinguish between
samples drawn from the two distributions

D1 = { (,b) : , b← RQ },

D2 = { (,b) : ← RQ, e← D, b =  � s + e },

where s ∈ RQ is a fixed (secret) value, and D is an LWE-error distribution producing “small” elements in
RQ .

Definition 4 (Generalized-Ring-Learning-With-Errors). The (decision) Generalized-Ring-LWE problem
is to distinguish between samples drawn from the two distributions

D1 = { (0, . . . ,−1,b) : ,b← RQ },

D2 = { (0, . . . ,−1,b) :  ← RQ, e← D, b =
∑



 � s + e },

where s0, . . . ,s−1 ∈ RQ are fixed (secret) values, and D is an LWE-error distribution producing “small”
elements in RQ .

The Generalized-Ring-LWE problemwas first introduced in [BGV12] with the nameGLWE, it is some-
times in more modern literature referred to as the Module-LWE problem [LS15]. Clearly the standard
Ring-LWE is simply the Generalized-Ring-LWE problem where we set = 1. From a cryptanalysis point
of view the best attacks on all three problems are simply to ignore the generalized/ring nature of the
problems and just to attack the underlying standard LWE problem of dimension ℓ (resp. N and ·N). To
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obtain suitable security parameters it is common to utilized the lwe-estimator [APS15], which we shall
do in this work.

As nice rules of thumb:
• For fixed ·N and Q, as we increase the standard deviation σ of the coefficients in the “noise” term
e, the security increases.

• For fixed ·N and σ , as we decrease the value of Q, the security increases.
The first rule of thumb means we only need consider security of fresh ciphertexts, as performing
homomorphic operations results in increased values of the standard deviation of the noise term. The
second rule of thumb also implies that reducing the ciphertext modulus whilst maintaining the size
of the noise, can only increase security; so again we only need consider security of fresh (or freshly
bootstrapped) ciphertexts at the top most level, in the case of BGV/BFV style systems.

It is traditional to model D as a distribution which outputs vectors of size ℓ (resp. polynomials of
degree less than N) whose elements (resp. coefficients) come from a discrete version of the Gaussian
distribution with “small” standard deviation σ . For appropriate values of the parameters (N,,Q, σ) the
problems are believed to be hard. It is conjectured (and we will assume) that the decision LWE problem
is still hard when onemakes the following alterations (all of which are standard modifications).

1. s is chosen from {0,1}N , or {−1,0,1}N (depending on the scheme).
• In the former case we select zero and one with equal probability 1/2.
• In the latter case we select zero with probability 1/2, and one/minus one each with probability
1/4. Note, this outputs entries with standard deviation σ =

p

1/2. In this document we shall
call this distribution on {−1,0,1}N by the name NeHope(N,1).

The distribution {0,1}N is usually used for the secret key distribution for TFHE, whilst the dis-
tribution NeHope(N,1) is used for the secret key distribution for schemes such as BGV and
BFV.

2. In the case of TFHE, the noise values e are chosen from the tweaked uniform distribution, on
[−2b, . . . ,2b] , introduced earlier as TUnƒorm(1, −2b,2b), with σ2 = (22·b+1 + 1)/6, i.e. we replace
the usual discrete Gaussian with standard deviation σ′ by a distribution with mean zero and with
standard deviation σ ≥ σ′ .

3. In the case of BGV/BFV, the noise values e are chosen from the set of polynomials whose vector
of coefficients is chosen via the distribution NeHope(N,B). i.e. we replace the usual discrete
Gaussian with standard deviation σ′ by a distribution with standard deviation σB =

p

B/2 ≥ σ′ .
For the TFHE parameters we have smaller values of Q and N, and hence we need larger standard
deviations in the noise. For the BGV and BFV parameters the standard deviation in the noise term can be
very small indeed, as Q and N are much bigger. This dictates the differences in noise distributions used
in both schemes.

It is (relatively) hard within an MPC engine to sample approximations to Discrete Gaussians with
large standard deviation, whereas sampling from TUnƒorm(N, −2b,2b) and NeHope(N,B) are simpler
within an MPC engine. In addition, such distributions can provide exact zero-knowledge proofs (i.e. with
no soundness slack) of correct encryption, i.e. it is also easier to utilize distributions which are easier to
sample in MPC systems with the zero-knowledge proofs.

To aid parameter generation we provide the tables in Appendix A. These list for the two different
secret key distributions and different sizes ofQ, and b, theminimum value of ·N (whichwe select to be
a multiple of 256 for the TFHE case, and a multiple of 5000 for the BGV/BFV case), for which the lattice
estimator [APS15] provides an LWE security estimate which is larger than 130, we also list (for interest)
the actual security value that the LWE estimator provides for this value of N. This gives an estimate of
howmuch security margin we have for these parameters.

For the purposes of reproducibility the security estimates were obtained using the LWE-estimator
calls:

if TFHE:
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params = LWE.Parameters(wN, Q, Xs = ND.Uniform(0,1), Xe = ND.TUniform(B))

else:

params = LWE.Parameters(wN, Q, Xs = ND.CenteredBinomial(1),

Xe = ND.CenteredBinomial(B))

if wN>10000:

est = LWE.estimate(params, deny_list = ("arora-gb", "bkw", "bdd_hybrid",

"bdd_mitm_hybrid", "dual_mitm_hybrid"))

else:

est = LWE.estimate(params, deny_list = ("arora-gb", "bkw"))

Weavoid calling the arora-gb and bkwmethods, as these are slow arnd are hardly ever the fastest attack
methods. For large dimensions we also avoid calling any hybrid methods, as they are numerical unstable
for very large values of Q, are slow, and again (for large dimension) unlikely to lead to an improvement on
other methods.

5.3 Ring Multiplication

The main computation expense in all ring-LWE based schemes is the evaluation of the product  � b for
two ring elements  and b represented as polynomials;

 = 0 + 1 · X + · · · + N−1 · XN−1,

b = b0 + b1 · X + · · · + bN−1 · XN−1.

As N is a power of two, and we are using the cyclotomic polynomial XN + 1 to define the ring RQ , the
naive method to compute this product is to evaluate

 � b =
N−1
∑

=0

 

N− −1
∑

j=0

 · bj · X+j −
N−1
∑

j=N− 
 · bj · X+j−N

!

(mod Q).

This operation requires O(N2) underlying operations modulo Q. Using Karatsuba style techniques one
could reduce this to O(Nlog2(3)). This can be reduced to O(N · logN) by use of either the FFT or NTT
algorithms.

5.3.1 FFT Based Multiplication

When Q is relatively small (in the case of TFHE), one can perform the multiplication of the polynomials by
using the standard complex FFT algorithm. We take θ to denote a complex primitive (2 ·N)-th root of
unity, and then implement the algorithm as in Figure 4.

FFT-Based  � b

c + e←  � b:
Where e is “small”. In what follows θ ∈ C is a primitive (2 ·N)-th root of unity.

1. ← FFT(, θ) ∈ CN .
2. b← FFT(b, θ) ∈ CN .
3. For  ∈ [0, . . . , N − 1] do c ←  · b .
4. t← FFT −1(c, θ).
5. Round t to an integer vector and reduce it mod Q.
6. Output t = c + e.

Figure 4: Non-Exact FFT-Based Ring Multiplication.
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However, this use of the FFT comes with some drawbacks. To perform the FFTwe utilize complex
numbers which can only be approximated within a computer, and not held exactly. Of course, if one
was willing to use very high precision real numbers then one could perform an exact evaluation of
the algorithm in Figure 4. But such use of large precision real numbers would provide a performance
bottleneck.

Thus in practice one approximates the real numbers in the FFT (and associated inverse-FFT) opera-
tions by standard IEEE floating point double precision (in the case of Q = 264), and a modification to
higher precision (in the case of Q = 2128). We call these two representations ƒ ot64 and ƒ ot128, they
are defined (in the (almost) usual way9) by

• ƒ ot64: Mantissa of 53 bits, exponent of 11 bits, and one sign bit.
• ƒ ot128: Mantissa of 106 bits, exponent of 22 bits, and one sign bit.

This means that the algorithm in Figure 4 is never evaluated exactly, but is evaluated in an approximate
manner. We say the algorithm is non-exact, and it implicitly generates an error vector e. This extra error
vector ewill turn out not to be a problem in practice, as the “noise” it creates can be absorbed into the
noise terms in the underlying LWE ciphertexts; we shall return to this point below.

5.3.2 NTT Based Multiplication

When Q is large (in the case of BGV and BFV) one can select Q = Q1 · · ·QL so that all the divisors Q are
prime, and satisfy Q ≡ 1 (mod 2 ·N). This means, via the Chinese Remainder Theorem, one can find a
value θ ∈ Z/(Q)which is a simultaneous primitive (2 ·N)-th root of unity for all primes Q dividing Q. The
exact same algorithm for evaluating the FFT can then be used in the mod-Q domain, where it is now
called the NTT. This results in amultiplication algorithm given in Figure 5. The output of thismultiplication
is however exact, unlike the case of using the FFT algorithm. In order to use this optimization, leads us
to the design decision:

Design Decision 24: Restrictions on Q for NTT Based Multiplication

We assume, for BGV and BFV, that the ciphertext modulus Q is a product of primes Q = Q1 · · ·QL ,
where the primesQ and the extra large prime R for key switching are chosen to satisfyQ ≡ R ≡ 1
(mod 2 ·N) for all .

NTT-Based  � b

c←  � b:
In what follows θ ∈ Z/(Q) is a primitive (2 ·N)-th root of unity for all primes Q dividing Q

1. ← NTT(, θ) ∈ Z/(Q)N .
2. b← NTT(b, θ) ∈ Z/(Q)N .
3. For  ∈ [0, . . . , N − 1] do c ←  · b (mod Q).
4. c + e← NTT −1(c, θ).

Figure 5: Exact NTT-Based Ring Multiplication.

5.3.3 The FFT/NTT Algorithms

Since in our application N is a power of two, the FFT and NTT algorithmwhich we utilize are relatively
simple. Indeed the same algorithm is essentially used for both the FFT and the NTT algorithm. The only

9The ƒ ot128 type is obtained (in our code) by using two ƒ ot64 types to emulate ƒ ot128, leading to a mantissa of 106 as
opposed to following “standardized” 128-bit float arithmetic, which does not have hardware support on most processors.
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difference being the domain over which the algorithm is executed, i.e. either the complex numbers C or
the ring Z/(Q). The forward and inverse algorithms are given in Figure 6.

FFT/NTT Algorithms

In what follows we use FFT and assume θ ∈ C. When θ ∈ Z/(Q) one should syntactically change
FFT to NTT below, and leave all else unchanged.
FFT(, θ):

On input  is a vector of length N, a power of two.
1. If N = 1 then return.
2. Let b and c denote vectors of length N/2.
3. For  ∈ [0, . . . , N/2 − 1] do b ← 2· and c ← 2·+1 .
4. β← θ2 .
5. b← FFT(b, β).
6. c← FFT(c, β).
7. ω← θ.
8. For  ∈ [0, . . . , N/2 − 1] :

(a) τ← ω · c .
(b)  ← b + τ.
(c) +N/2 ← b − τ.
(d) ω← ω · β.

9. Return .

FFT −1(, θ):
On input  is a vector of length N, a power of two.

1. ← FFT(, θ−2).
2. For  ∈ [0, . . . , N − 1] do  ← /N.
3. Return .

Figure 6: The Forward and Inverse FFT/NTT Algorithms.

5.4 Norms and Noise Analysis of LWE Ciphertexts

5.4.1 Norms of Elements in Z/(Q)

For a scalar value  ∈ Z/(Q)we let ‖‖ denote the absolute value of the centred reduction of , i.e. we
represent  ∈ [−Q/2, . . . , Q/2] and then output the absolute value of this representation.

In analyzing noise estimates for our schemes we estimate the standard deviation of values such as
 ∈ [−Q/2, . . . , Q/2] , and assume the value  is distributed close to a Gaussian with the given standard
deviation. In practice  will result from various operations consisting of summing large numbers of
random variables, and hence the “assumption” of Gaussian’ness is somewhat justified by the central
limit theorem. This assumptions allows us to derive high probability bounds on values such as ‖‖ in
terms of the stated standard deviations.

Suppose it is desired to obtain a given error probability err (here think of err = 2−40 or 2−64 or 2−80

or 2−128 , but due to the IND-CPAD attacksmentioned earlier we focus in this document on err = 2−128).
For this we use the complimentary error function erƒc, which is defined by

erƒc(z) = 1 −
2
p
π
·
∫ z

0
e−t

2
dt.

In particular we have the classical estimate

Pr
�

‖‖ > c · σ
�

≤ erƒc(c/
p

2),
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where σ is the standard deviation of the value  ∈ [−Q/2, . . . , Q/2] . The constant c does not need to
be that large, for example we have the values in Table 4. Thus to obtain a right hand side of the above
equation to be less than err ≈ 2−128 we can set,

cerr,1 = 13.15

as a fixed constant for c, where we use the notation cerr,1 to indicate this is for a “ring” of dimension one.
See Section 4.10 as to why we use err ≈ 2−128 and Section 5.4.2 for the generalization to large rings.

c − log2( erƒc(c/
p
2) )

4 13.9
5 20.7
6 28.9
7 38.5
8 49.5
9 61.9
10 75.8
11 91.1
12 107.8
13 125.9
14 145.5

Table 4: Table of values of − log2( erƒc(c/
p
2) ).

5.4.2 Norms of Elements in RQ

For  ∈ RQ we let ‖‖∞ denote the infinity-norm of the vector , with coefficients in (−Q/2, . . . , Q/2] ,
when considering  as a polynomial (we say  is in the polynomial-basis). The norm ‖‖∞ on RQ is
the natural one for decryption purposes in BGV and BFV. But there is a more natural one for arithmetic
purposes. Ifwe let θ1, . . . , θN denote the cyclotomic primitive roots of unity, then fromwecan consider
the canonical embedding of the elements  into N-copies of the complex numbers CN given by

 −→ cn() = ((θ1), . . . ,(θN)),

where we consider  as being a polynomial in Z[X] of degree bounded by N with coefficients in
(−Q/2, . . . , Q/2] . The canonical norm ‖‖cn of  is then the infinity norm of the vector in the canonical
embedding above, i.e. ‖‖cn = ‖cn()‖∞ .

The canonical norm is especially useful due to the following Lemma.

Lemma 1. For all ,b ∈ R and λ ∈ Zwe have that
• ‖ + b‖cn ≤ ‖‖cn + ‖b‖cn .
• ‖λ · ‖cn = λ · ‖‖cn .
• ‖ � b‖cn ≤ ‖‖cn · ‖b‖cn .

In addition, there is a constant EM (sometimes called the ring constant) such that for all  ∈ RQ we
have

‖‖∞ ≤ EM · ‖‖cn. (1)

This allows us to pass from bounds on the canonical norm, to bounds on the standard infinity-norm. The
problem is that EM for arbitrary M can be very large. In the important case when M is a prime power
we have EM = 1. For more general M one may be led to consider non-polynomial bases, for example
the so-called powerful-basis. This added complication can be done for methods in this document, see

57



[HS20] for a discussion. We will assume going forward that the ring constant EM is sufficiently small so
that we can utilize the polynomial basis.

Design Decision 25: Ring-LWE Ring Constant Size

We assume the ring R is chosen so that the ring constant EM is small. In particular by choosing R
to be a power-of-two cyclotomic ring we can assume that EM = 1.

In analyzing probabilistic bounds on the values in our schemes wemake use of the methodology
described in Appendix A of the full version of [GHS12] and in [HS20]. We note the following only
provides a crude analysis for the case of general M/N, which is suitable for our purposes (again, we
re-iterate we are not writing here a full standard/specification of Fully Homomorphic Encryption).

Let  denote some random variable in RQ whose coefficients (in the polynomial embedding) are
selected from a symmetric distribution with standard deviation σ. That the distribution is symmetric
implies that the expectation of each coefficient is zero. The value cn() is then a random variable
consisting of N complex values, whose expectation is also zero, and whose standard deviation is σcn =
σ ·
p
N. For example, if  is chosen with coefficients chosen from the distribution TUnƒorm(N, −2b,2b)

then the standard deviation of cn() is
Æ

N · (22·bℓ+1 + 1)/6. If the vector  is chosen with coefficients
chosen from the distribution NeHope(N,B) then the standard deviation of cn() is

p

B ·N/2.
We can use the erƒc function to find an upper bound on the size of the -th component of cn(),

i.e. |cn()|which holds with probability 1 − err . This can be done as the law of large number can be
applied since N is “large”, and so we expect the elements of cn() to behave as independent Gaussian
random variables. Again, we have the classical estimate

Pr
�

|cn()| > c · σcn
�

≤ erƒc(c/
p

2),

where σcn is the standard deviation of the elements of cn(). Applying the Union Bound to obtain an
upper bound on ‖‖cn =mx |cn()|we find the estimate

Pr
�

‖‖cn > c · σcn
�

≤ erƒc(c/
p

2) ·N/2,

The division by two here is because theM-th roots of unity come in complex conjugate pairs. Translating
back to the standard deviation on the polynomial embedding this becomes

Pr
�

‖‖cn > c · σ ·
p

N
�

≤ erƒc(c/
p

2) ·N/2,

In any application wewill have the bound N ≤ 220 , thus to obtain a right hand side of the above equation
to be less than err = 2−128 we can set,

cerr,N = 14.10

as a fixed constant for c for a ring of dimension N. This simplifies the analysis somewhat, with smaller
values of N one can obviously select smaller values of cerr,N if one wanted to.

Suppose we have a term of the form  � b for ,b ∈ RQ , then wewould also like to probabilistically
bound ‖ � b‖cn in terms of the standard deviations σ and σb of the coefficients in the polynomial
embedding of  and b. The probability density function of the product of twoGaussian variables is given
by

p() =
K0(

||
σ ·σb )

π · σ · σb
where Kn(z) is the modified Bessel function of the second kind. Using a known lower bound (see for
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example [YC17]) K0(z) >
p
πe−z

Ç

2·(z+ 1
4 )

we obtain

p() >
e
− ||
σ ·σb

p

2π(|| + σσb/4)σσb
. (2)

Due to equation (2) the following Lemma is seen to provide a quick, yet relatively tight, rule of thumb for
product distributions.

Lemma 2. Let ,b ∈ RQ have standard deviations of the coefficients in the polynomial embedding given
by σ and σb then, assuming N ≤ 220 ,

Pr
�

‖ � b‖cn < c2
err,N

· σ · σb ·N
�

≤≈ err = 2−128.

Proof. Nowwe know ‖ � b‖cn ≤ ‖‖cn · ‖b‖cn , thus we have

Pr
�

‖ � b‖cn ≤ c2
err,N

· σ · σb ·N
�

≥ Pr
�

‖‖cn ≤ cerr,N · σ ·
p

N
�

· Pr
�

‖b‖cn ≤ cerr,N · σb ·
p

N
�

≥
�

1 − erƒc(cerr,N/
p

2) ·N/2
�2

≥≈ 1 − 2−128 if N ≤ 220.

Note, the above bound in Lemma 2 on a product is not the same as that used in [GHS12]; this latter
reference has errors in it.

5.4.3 Ciphertext “Noise”

A Ring-LWE ciphertext will come in one of two forms, depending on whether we place the message
m ∈ RP in the “top” or the “bottom” of the ciphertext range, i.e. we either have a ciphertext of the form

(,b =  � s + P · e +m) ∈ R2
Q

or of the form
(,b =  � s + e + Δ ·m) ∈ R2

Q
,

where recall in the last equation we have Δ = bQ/Pc . We call these Type-I and Type-II.
A standard LWE ciphertext (in this document) will always be of Type-II, i.e. we have

(, b =  · s + e + Δ ·m) ∈ (Z/(Q))N+1.

The decryption of a ciphertext consists of first performing the operation

p = b −  � s (mod Q) ( resp. p = b −  · s (mod Q) ),

to producewhat is called the pre-decryption p (resp. p). Then themessage is obtained by decoding the
value p (resp. p); either by reduction modulo P in case of Type-I ciphertexts, or by rounding on division
by Δ in case of Type-II ciphertexts.

Correct decryption is guaranteed as long as the pre-decryption p does notwrap around. In particular
we require, for correct decryption, that

‖p‖∞ ≤ Q/2

in the case of Type-I ciphertexts, or

‖p − Δ ·m‖∞ ≤ Q/(2 · P) ( resp. ‖p − Δ ·m‖ ≤ Q/(2 · P))
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in the case of Type-II ciphertexts. Note, in the casewhere P divides Q (which happens in TFHE) we have
that Q/(2 · P) = Δ/2.

A standard (but crude) noise analysis technique for Ring-LWE based systems is performed as follows
(and one which will be used for BGV and BFV in our document, for TFHE we perform a slightly different
analysis):

1. One maintains with each ciphertext a bound B on the canonical norm of the error term associated
to each ciphertext. In the context of Type-I this is the pre-decryption value, and in the context of
Type-II ciphertexts this is a bound on the canonical norm of p − Δ ·m (resp. p − Δ ·m).

2. To ensure decryption is valid we need to ensure that

EM · B ≤ Q/2,

for Type-I ciphertexts, or
EM · B ≤ Q/(2 · P),

for Type-II ciphertexts; where EM is the ring constant from earlier.
3. When performing an FHE operation we update the value B using the estimates from above in

relation to the erƒc function, for the associated random variables which are added onto B, plus any
scaling of B by constants.

5.5 Modulus Switching of Ring-LWE Ciphertexts

An important operation in our methodology for threshold decryption and key generation for schemes
such as BGV and BFV is that of modulus switching. We will only utilize modulus switching in our applica-
tions later for Type-I ciphertexts; so we only explain the methodology in this situation.

Suppose we have a ciphertext (,b)with plaintext/ciphertext moduli P/Q. We wish to switch to a
newmodulus q, a process which wewill denote by

ModStchQ→q(,b).

We assume that the secret key s ∈ RQ is chosen so each component of cn(s) has zero expectation,
and whose coefficients in the polynomial embedding are bounded bymin(q,Q)/2 (this is to ensure that
the secret key is defined modulo q and Q. In practice this is a non-assumption as the secret key will be
chosen to be a polynomial whose coefficients are bounded in absolute value by one).

To ease exposition we assume that q ≡ Q (mod P); this latter restriction is not going to pose any
problems in practice. This restriction can be removed by using so-called “correction factors” which are
held with each ciphertext value; see [HS20] for details. Without the use of such correction factors we
make the following design decision which is enough for our purposes

Design Decision 26: Restrictions on Q for BGV Modulus Switching

We assume, for BGV and BFV, that the ciphertext modulus Q is a product of primes Q = Q1 · · ·QL ,
where the primesQ and the extra large prime R for key switching (see later) are chosen to satisfy
Q ≡ R ≡ 1 (mod P) for all .

We start with a ciphertext (,b) ∈ R2
Q
which satisfies

b =  � s + P · e +m (mod Q),

and we aim to output a ciphertext (′,b′) ∈ R2
q
which satisfies

b′ = ′ � s + P · e′ +m (mod q),
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We follow the method of Section 4.1 of [HS20], which we overview in Figure 7.

ModSwitch

ModStchQ→q(,b):
1. Think of ,b ∈ R and not in RQ .
2. ← d · q/Qc , b← db · q/Qc .
3. d ← q ·  − Q · , db ← q · b − Q · b.
4. e ← d/Q (mod P), eb ← db/Q (mod P).

As Q ≡ 1 (mod P) due to Design Decision 26 this is simply a reduction modulo P.
5. f ←  + e , fb ← b + eb .
6. ′ ← f (mod q), b′ ← fb (mod q).
7. Return (′,b′).

Figure 7: ModStchQ→q(,b) for Type-I Ring-LWE Ciphertexts.

Lemma 3. If Bnpt is a boundwhich holds with probability 1 − err on the canonical norm of the pre-
decryption of the input ciphertext (,b) to ModStchQ→q(,b) in Figure 7, and σsk is the standard
deviation of the coefficients of the polynomial embedding of the secret key, we can then bound the
canonical norm of the pre-decryption of the output ciphertext (′,b′) by

Botpt =
q · Bnpt

Q
+ cerr,N · (P + 1) ·

p

N/12 · (1 + cerr,N · σsk ·
p

N) (3)

with probability at least 1 − err . Thus the algorithm is correct, with probability 1 − err , assuming EM ·
Botpt < Q/2.

Proof. We first show (potential) correctness, and then we explain how this modulus switching operation
affects the noise (and the bound on Botpt needed to guarantee correctness).
Correctness Denote the pre-decryption of (,b) over R (i.e. before reduction modulo Q) by

p = b −  � s − Q · g.

Now set
p′ = fb − f � s − q · g

for the same value g. We see that, for some d,e, f etc,

q ·  = Q ·  + d ≡ Q · ( + e) = Q · f (mod P),

q · b = Q · b + db ≡ Q · (b + eb) = Q · fb (mod P).

Hence,

q · p ≡ Q · fb − Q · f � s − q ·Q · g (mod P),

≡ Q · (fb − f � s − q · g) (mod P)

≡ Q · p′ (mod P).

Thus the ciphertext (′,b′)will decrypt to the correct value as long as the “noise” value p′ is sufficiently
small, since

p′ ≡
q · p

Q
≡ p (mod P).

Noise Analysis We need to show there is no wrap around in computing p′ , and hence p′ is the pre-
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decryption of (′,b′) over R. We have over R

p′ = fb − f � s − q · g

= (b + eb) − ( + e) � s − q · g

=
�

q

Q
· b −

db

Q
+ eb

�

−
�

q

Q
·  −

d

Q
+ e

�

� s − q · g

=
q

Q
· p + Q ·

q

Q
· g −

�

db

Q
− eb

�

+
�

d

Q
− e

�

� s − q · g

=
q

Q
· p + hb − h � s.

where wewrite

h = e −
d

Q
and hb = eb −

db

Q
.

Note the coefficients of d,db lie in the interval [−Q/2, . . . , Q/2] , and the coefficients of e,eb lie in the
interval [−P/2, . . . , P/2] . Wemake the assumption that these coefficients are distributed as uniformly
random variables on these intervals10 .

If Bnpt is a bound which holds with probability 1 − err on the canonical norm of the pre-decryption
of the input ciphertext (,b), and σsk is the standard deviation of the coefficients of the polynomial
embedding of the secret key, we can then bound the canonical norm of the pre-decryption of the output
ciphertext by

Botpt = ‖
q

Q
· p + hb − h � s‖cn

≤ ‖
q

Q
· p‖cn + ‖hb‖cn + ‖h � s‖cn

≤
q · Bnpt

Q
+ ‖eb −

db

Q
‖cn + ‖(e −

d

Q
) � s‖cn

≤
q · Bnpt

Q
+ cerr,N ·

 

P ·
p

N/12 +
Q ·

p

N/12

Q

!

· (1 + cerr,N · σsk ·
p

N)

=
q · Bnpt

Q
+ cerr,N · (P + 1) ·

p

N/12 · (1 + cerr,N · σsk ·
p

N)

with probability at least 1 − err .

Thus, apart from a “small” additive term being added into the noise, the noise has beenmultiplied by a
factor of q/Q; whenQ� q this means the noise has been squashed somewhat. Wewrite, for usage later,

BSce = cerr,N · (P + 1) ·
p

N/12 · (1 + cerr,N · σsk ·
p

N).

So our about formulae becomes

Botpt =
q · Bnpt

Q
+ BSce.

5.6 Fully Homomorphic Encryption

5.6.1 BGV

In this section we give a brief overview of the BGV [BGV12] scheme. We do not provide a full optimized
specification, as that is beyond the scope of this document. We focus instead on what is needed to
understand how our threshold schemes work in the context of BGV. Note, due to the fact that our secret

10See [HS20] for a discussion on when and why these assumptions are valid.
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keys are generated inside a threshold protocol some of the optimizations presented in say [HS20] are
not applicable.

A ciphertext modulus in BGV is a product of moduli Q = Q1 · · ·QL , each one corresponding (roughly)
to a level of multiplications. As we progress through a computation the levels are peeled off, and our
ciphertext modulus decreases. We will write Q = Q(L) and Q(ℓ) = Q1 · · ·Qℓ to be the ciphertext modulus
at level ℓ. We start at level L and then decrease levels until we obtain level one.

Following Design Decision 16, Design Decision 24 and Design Decision 26, to simplify analysis we do
not consider the following aspects of BGV.

1. We present BGV as a leveled scheme, and do not describe any form of bootstrapping. Bootstrap-
pingmay be added to the scheme (if the number of levels allows this), but it is not important for
our threshold protocols in the case of BGV11 . Thus our presentation of BGV is actually as a Some-
what Homomorphic Encryption scheme only. Bootstrapping in BGV is considered costly without
hardware acceleration, and so many applications avoid it.

2. We do not consider plaintext correction factors. So in particular we require Q ≡ 1 (mod P) for
all , where P is the plaintext modulus. This implies Q() ≡ Q(j) ≡ 1 (mod P) for all , j. Relaxing the
requirement on the Q can be done by introducing correction factors as explained in [HS20].

3. We do not consider slot operations, i.e. permutations between slots. This is easily added to the
description if needed, see [HS20] for details.

The above optimizations can be added as required, with little (if any) changes to our threshold protocols.

5.6.1.1 The BGV Scheme Description: The parameters associated with our BGV scheme are as
follows (P,Q,N, L, R, B), where:

• The plaintext modulus P.
• The top ciphertext modulus Q = Q1 · · ·QL .
• The values Q are prime with Q ≡ 1 (mod 2 ·N).
• The cyclotomic ring R(M) , and its degree N = ϕ(M).
• The supported number of levels L.
• A large prime R used for key-switching. We also choose R ≡ Q ≡ 1 (mod P) to avoid some
complications in the methods below, as well as R ≡ 1 (mod 2 ·N).

• A distribution NeHope(N,B) to generate noise values, for a very small value of B (typically B = 1).
Recall, this is chosen to enable efficient key generation within an MPC engine12 .

A BGV ciphertext, at level ℓ, will consist of a tuple

ct = (c0,c1, ℓ, Bct)

where c0,c1 ∈ RQ(ℓ) and Bct is a bound on the canonical normof the pre-decryption value, i.e. c0 −sk� c1 ,
which holds with probability at least 1 − err . The ciphertext will encrypt a messagem ∈ RP .

A BGV secret key will consist of a vector sk ∈ R drawn from the distribution NeHope(N,1). The
standard deviation of the coefficients of such a distribution is σsk = 1/

p
2. This distribution is selected

for our purposes as it is easy to generate within an MPC-engine (see later), i.e. for much the same reason
as we selected NeHope(N,B) as the noise distribution.

Themain algorithms underlying BGVcan nowbedefined as in Figure 8, Figure 9 and Figure 10. The key
generation produces two Ring-LWE samples. One (pk,pkb) in the ring RQ which is used for encryption,
and one (pk′


,pk′

b
) in a larger ring RR·Q which is used for key-switching in the multiplication routines.

For ease of notation, when explaining our ZKPoKs later, we will let Apk (resp. Bpk) denote the matrix

11Bootstrapping is more fundamental to TFHE, so when we get to TFHEwewill specify how to bootstrap
12For public key encryption it is also useful as it enables efficient zero-knowledge proof’s of correctness of the underlying ciphertext;

see later.
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representation of the ring element pk (resp. pkb). With this notation we have that

pk � v = Apk · v.

BGV – Part I

BGV.KeyGen(N,Q, P, B, R):
1. sk ← NeHope(N,1), i.e. each element of the N coefficients are selected from
{−1,0,1}with probabilities Pr[0] = 1/2 and Pr[1] = Pr[−1] = 1/4.

2. pk ← RQ .
3. epk ← NeHope(N,B).
4. pkb ← pk � sk + P · epk ∈ RQ .
5. Set T ← R ·Q.
6. pk′


← RT .

7. e′
pk
← NeHope(N,B).

8. pk′
b
← pk′


� sk + P · e′

pk
− R · sk� sk ∈ RT .

9. pk← {(pk,pkb), (pk
′

,pk′

b
)}.

10. Return (pk,sk).

BGV.Enc(m,pk):
1. v← NeHope(N,1).
2. e0,e1 ← NeHope(N,B).
3. c0 ← pkb � v + P · e0 +m ∈ RQ .
4. c1 ← pk � v + P · e1 ∈ RQ .
5. Bct ← cerr,N · P ·

�
p

N/12 +
p
B · (cerr,N ·N +

p

N/2)
�

.
6. Return ct = (c0,c1, L, Bct), In some applications we will require the return of
((c0,c1, L, Bct)), (v,e0,e1)) in order to prove knowledge and correctness of the en-
cryption via the ZKPoKs in Section 7.6.

BGV.Dec(ct,sk):
1. Write ct = (c0,c1, ℓ, Bct).
2. If EM · Bct > Q(ℓ)/2 then bort (this ciphertext has too much noise).
3. p← c0 − c1 � sk (mod Q(ℓ)).
4. m← p (mod P).
5. Returnm.

Figure 8: The BGV Leveled Homomorphic Encryption Scheme – Part I.

Lemma4. In the algorithmBGV.Enc(m,pk) in Figure 8, the value ofBct is a bound on the canonical norm
of the pre-decryption value of the output (honestly generated) ciphertext which holds with probability
at least 1 − err .

Proof. This follows from the inequalities

‖c0 − sk� c1‖cn = ‖((pk � sk + P · epk) � v + P · e0 +m) − (pk � v + P · e1) � sk‖
cn

= ‖m + P · (epk � v + e0 − e1 � sk)‖cn

≤ ‖m‖cn + P ·
�

‖epk � v‖cn + ‖e0‖cn + ‖e1 � sk‖cn
�

≤ cerr,N ·
�

P ·
p

N/12

+ P ·
�

cerr,N ·
p

B ·N/2 ·
p

N/2 +
p

B ·N/2 + cerr,N ·
p

B ·N/2 ·
p

N/2
� �

= cerr,N · P ·
�
p

N/12 +
p

B · (cerr,N ·N +
p

N/2)
�
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Note, this assumes that the encryptor is honest, i.e. they are encrypting by generating the terms v,e0
and e1 according to the correct distributions. A malicious encryptor may encrypt using the extremes
of the distributions. We can always force the encryptor to encrypt with at worst these extremes, by
requiring each encryption to comewith a zero-knowledge proof of correct encryption (as in Section 7.6).

If we assume a worst case bound on the encryption noise, but assuming an average case analysis of
the noise terms in the key generation algorithm (i.e. we assume the key generation is performed honestly,
or equivalently via our threshold protocols), thenwe obtain a ciphertext noise bound of roughly the same
size (effectively it will increase by a factor of

p
12) as the same law-of-large numbers and union-bound

will ensure that the maximum of a sum of N complex numbers (needed to compute the canonical norm)
will result in roughly the same statistical analysis.

BGV – Part II

BGV.Sce(ct, ℓ′):
This transforms a ciphertext to a new lower level ℓ′ .

1. Write ct = (c0,c1, ℓ, Bnpt).
2. If ℓ = ℓ′ then return ct.
3. If ℓ < ℓ′ or ℓ < 1 then bort.
4. (c′1,c

′
0)← ModStchQ

(ℓ)→Q(ℓ′ ) (c1,c0).
5. Set Botpt as per equation (3), with σsk = 1/

p
2, q = Q(ℓ′) and Q = Q(ℓ) , i.e.

Botpt ←
Q(ℓ

′) · Bnpt
Q(ℓ)

+ BSce.

6. Return (c′0,c
′
1, ℓ
′, Botpt).

BGV.KeyStch((d0,d1,d2), ℓ, Bnpt):
1. T(ℓ) ← R ·Q(ℓ) .
2. c′0 ← R · d0 + pk

′
b
� d2 (mod T(ℓ)).

3. c′1 ← R · d1 + pk
′

� d2 (mod T(ℓ)).

4. (c1,c0)← ModStchT
(ℓ)→Q(ℓ) (c′1,c

′
0).

5. Set

Botpt ← Bnpt +
BKeyStch ·Q(ℓ)

R
+ BSce.

6. Return (c0,c1, ℓ, Botpt).

Figure 9: The BGV Leveled Homomorphic Encryption Scheme – Part II.

The key switching procedure BGV.KeyStch((d0,d1,d2), ℓ, Bnpt in Figure 9 maps a ciphertext
which decrypts via

d0 − d1 � sk − d2 � sk� sk ≡m + P · e (mod Q(ℓ))

into one which decrypts via the usual equation, where on input we are guaranteed that

‖d0 − d1 � sk − d2 � sk� sk‖ ≤ Bnpt .

The methodology used is the one presented in [GHS12]. That the methodology is correct follows from
the following Lemma:

Lemma 5. The algorithm BGV.KeyStch((d0,d1,d2), ℓ, Bnpt) in Figure 9 is correct with probability
1 − err .
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Proof. To see the correctness of this procedure first notice that

c′0 − sk� c
′
1 = R · d0 + pk

′
b
� d2 − sk� (R · d1 + pk

′

� d2)

= R · d0 + (pk
′

� sk + P · e′

pk
− R · sk� sk) � d2 − sk� (R · d1 + pk

′

� d2)

= R · (d0 − d1 � sk − d2 � sk� sk) + pk
′

� sk� d2 + P · e′pk � d2 − sk� pk

′

� d2

= R · (d0 − d1 � sk − d2 � sk� sk) + P · e′pk � d2 (mod T(ℓ))

= R · (m + P · e) + P · e′
pk
� d2 (mod T(ℓ))

Assuming both LHS and RHS are less than T(ℓ) we get an equality over R (and not just RT(ℓ) ). And
so modulo P we will obtain the correct plaintext as R ≡ Q(ℓ) ≡ 1 (mod P), after we apply the scaling
operation.

It remains to analyze the added noise, and so derive a formulae for BKeyStch . We assume that d2
behaves like a random polynomial with coefficients drawn uniformly from (−Q(ℓ)/2, . . . , Q(ℓ)/2). Thus
cn(d2) has entries which are close to a Gaussian with standard deviation Q(ℓ) ·

p

N/12. We can assume
that cn(e′

pk
) has Gaussian like entries with standard deviation

p

B ·N/2. Thus we have with probability
at least 1 − err

‖P · e′
pk
� d2‖cn ≤ c2err,N · P ·

p

B/24 ·Q(ℓ) ·N = BKeyStch ·Q(ℓ),

where
BKeyStch = c2err,N · P ·

p

B/24 ·N.

Fromwhich we derive the bound used in Figure 9

‖c0 − c1 � sk‖cn ≤
1

R
· ‖c′0 − sk� c

′
1‖

cn + BSce

≤
1

R
·
�

‖R · (d0 − d1 � sk − d2 � sk� sk)‖cn + ‖P · e′pk � d2‖
cn

�

+ BSce

≤ Bnpt +
BKeyStch ·Q(ℓ)

R
+ BSce.

Note, in the Add routine of Figure 10 one can avoid the Sce operations and just performmodular
reduction if the noise magnitude is not too large, see the Appendix B.5 of the full version of [GHS12]
for details. In the scalar and generalMt routines we apply modulus reduction to ensure the noise on
entering the multiplication is bounded by λ · BMt for two constants λ and BMt to be determined later.

5.6.1.2 The BGV Scheme Correctness: The constants λ and BMt , used in the routineMt, are the
key to the eventual correctness of the BGV scheme, and the derivation of valid parameters. Assume that
we execute circuits which consists of layers of multiplication gates, followed by layers of addition gates,
where we allow fan in two for the multiplication gates and fan in λ for the addition gates. Also assume
that the final layer is a layer of multiplication gates.

We wish to maintain the invariant that the output of the Mt operation is a ciphertext which has
noise bound less than BMt . This leads to two observations:

1. A fresh ciphertext can have noise Bct much larger than BMt , but it can be brought down to below λ ·
BMt by applying a Sce operation, whichwill consume a level, at the start of the firstmultiplication
operation.

2. For such circuits as described above, the first two lines of the algorithm Mt are no-op’s if the
output of Sce if our invariant is satisfied and the input ciphertexts are the output of an addition
layer with fan in λ.
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BGV – Part III

BGV.Add(ct, ctb):
1. ℓ←min(ℓ, ℓb), where ℓ and ℓb are the levels of the ciphertexts ct and ctb .
2. ct ← BGV.Sce(ct, ℓ).
3. ctb ← BGV.Sce(ctb, ℓ).
4. Write ct = (c0,c


1, ℓ, B).

5. Write ctb = (cb0,c
b
1, ℓb, Bb).

6. c0 ← c0 + c
b
0 (mod Q(ℓ)).

7. c1 ← c1 + c
b
1 (mod Q(ℓ)).

8. B← B + Bb .
9. ct← (c0,c1, B).

10. Return ct.

BGV.Mt(α, ct):
This is the scalar multiplication routine, for α ∈ RP .

1. Write ct = (c0,c1, B).
2. While B > λ · BMt do ct← BGV.Sce(ct, ℓ − 1), i.e. keep decreasing the level until the

noise bound in ct is less than λ · BMt . Denote the output also by (c0,c1, B).
3. c′0 ← α · c0 .
4. c′1 ← α · c1 .
5. B′ ← ‖α‖cn · B.
6. ct′ ← (c′0,c

′
1, B

′).
7. Return ct.

BGV.Mt(ct, ctb):
This is the general homomorphic multiplication routine.

1. While B > λ · BMt do ct ← BGV.Sce(ct, ℓ − 1), i.e. keep decreasing the level until
the noise bound in ct is less than λ · BMt .

2. While Bb > λ · BMt do ctb ← BGV.Sce(ctb, ℓb − 1), i.e. keep decreasing the level until
the noise bound in ctb is less than λ · BMt .

3. ℓ←min(ℓ, ℓb).
4. ct ← BGV.Sce(ct, ℓ).
5. ctb ← BGV.Sce(ctb, ℓ).
6. Write ct = (c0,c


1, ℓ, B).

7. Write ctb = (cb0,c
b
1, ℓb, Bb).

8. d0 ← c0 � c
b
0 .

9. d1 ← c0 � c
b
1 + c


1 � c

b
0 .

10. d2 ← −c1 � c
b
1 .

11. ct← BGV.KeyStch((d0,d1,d2), ℓ, B · Bb).
12. ct← BGV.Sce(ct, ℓ − 1).
13. Return ct.

Figure 10: The BGV Leveled Homomorphic Encryption Scheme – Part III.

Notice, that at the end of theMt routine we reduce the level by one, and so this enables us to evaluate
circuits of multiplicative depth at most L − 1. Recall, we loose one level as we need to consume one level
in order to reduce the noise in a fresh ciphertext.

In order to obtain the output of the multiplication operation to be less than BMt we require, for each
ℓ, that

1

Qℓ
·
�

λ2 · B2
Mt

+
BKeyStch ·Q(ℓ)

R
+ BSce

�

+ BSce ≤ BMt , (4)
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where
BSce = cerr,N · (P + 1) ·

p

N/12 · (1 + cerr,N ·
p

N/2)

and
BKeyStch = c2err,N · P ·

p

B/24 ·N.

This is because the input to the Sce operation at the end of the multiplication routine has

Bnpt = B · Bb ≤ λ2 · BMt ,

since
d0 − d1 � sk − d2 � sk� sk = (c0 − c


1 � sk) � (c

b
0 − c

b
1 � sk).

To ensure valid decryption (at any level) we require

EM · BMt < Q1/2. (5)

So we need to satisfy equations (4) and (5) whilst also maintaining security.

Wemake the simplifying assumption that all Q (except for Q1) are roughly the same size. We first
consider the quadratic equation (4), which wewrite as

λ2

Qℓ
· B2

Mt
− BMt +

�

BKeyStch ·Q(ℓ−1)

R
+
BSce

Qℓ
+ BSce

�

≤ 0.

Denote theconstant termherebyCℓ , andnotice thatCℓ increases as ℓ increases. Wehave thatCℓ > BSce ,
and wewould like CL to be as close to BSce as possible. To do this we first require that, for all ,

Q > BSce.

We can obtain CL ≈ BSce by setting R to be large enough, i.e.

R ≈
256 · BKeyStch ·Q

BSce
,

=
256 · (c2

err,N
· P ·

p

B/24 ·N) ·Q

cerr,N · (P + 1) ·
p

N/12 · (1 + cerr,N ·
p

N/2)
,

≈
256 · c2

err,N
· P ·

p

B/24 ·N ·Q

c2err,N · P ·N/
p
24

,

≈ 256 ·
p

B ·Q. (6)

To have solutions the quadratic equation above must have positive discriminant for all ℓ and so we must
have

1 − 4 ·
λ2

Qℓ
· Cℓ > 0.

Using the approximation, which we have just established, of Cℓ ≈ BSce this gives us, for all ℓ > 1,

Qℓ ≥ 4 · λ2 · BSce

= 4 · λ2 · cerr,N · (P + 1) ·
p

N/12 · (1 + cerr,N ·
p

N/2)

≈ 4 · λ2 · c2
err,N

· P ·
p

N/12 ·
p

N/2

= 2 · λ2 · c2
err,N

· P ·N/
p

6.
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Sowe set
Qℓ = 2.1 · λ2 · c2

err,N
· P ·N/

p

6. (7)

As Cℓ ≈ BSce we can ensure that equation (4) is satisfied by setting BMt = 2 ·BSce since then wewill
have

λ2

Qℓ
· B2

Mt
− BMt +

�

BKeyStch ·Q(ℓ−1)

R
+
BSce

Qℓ
+ BSce

�

≈
λ2

Qℓ
· B2

Mt
− BMt + BSce

≤
1

4 · BSce
· B2

Mt
− BMt + BSce

=
1

4 · BSce
· (BMt − 2 · BSce)2

= 0.

Finally we set
Q1 ≈ 3 · EM · BMt . (8)

Thus we have the following Lemma

Lemma 6. If equations (6), (7) and (8) are satisfied, then the BGV scheme can correctly evaluate circuits
of depth L − 1.

Note these formulae are slightly different than those in [GHS12] and [HS20]. Themain difference
being that our equations depend on N and not

p
N. Recall, the reason for this is due to the way the secret

key is generated: In [GHS12] it is chosen to be of fixed HammingWeight, whilst in [HS20] it is chosen
by rejection sampling until something of small canonical norm is selected. For threshold key generation
both of these approaches are relatively complex, thus we require (for BGV) a more simpler secret key
generation method, and thus more complex equations.

5.6.1.3 BGV Scheme Security: To ensure security of BGVwe need to assume an additional hardness
assumption. As the key-switching key contains an LWE sample of the form (for T = R ·Q)

pk′

← RT , pk′

b
← pk′


� sk + P · e′

pk
− R · sk� sk ∈ RT ,

weactually have that the public key contains an LWE “encryption”, under the secret key sk, of a “message”
R · sk� skwhich is a function of the secret key. Thus we need to make the circular security assumption
that giving out such encryptions does not weaken the security of the underlying LWE problem. We refer
to this as the BGV-Circular-Security assumption.

Definition 5 (BGV-Circular-Security Assumption). The Ring-LWE problem given by a sample of the
form

pk ← RQ, pkb ← pk � sk + P · epk ∈ RQ

for epk ← NeHope(N,B), for a fixed value sk← NeHope(N,1), is still hard in the presence of a single
sample of the form

pk′

← RT , pk′

b
← pk′


� sk + P · e′

pk
− R · sk� sk ∈ RT ,

where T = Q · R and e′
pk
← NeHope(N,B).

Assuming this we have the following theorem, which is standard

Theorem 1. The BGV scheme is an IND-CPA Somewhat Homomorphic Encryption scheme assuming
the Ring-LWE problem is hard, and the BGV-Circular-Security assumption holds.
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This circular security assumption can be removed if we are willing to have different secret keys at
each level of the BGV scheme. This however creates a huge public key which is not very practical.

Then the question arises as to what parameters can we utilize which ensures that the Ring-LWE
problem is indeed hard, and we can at the same time evaluate functions homomorphically up to a given
level?

We have already derived approximate formulae (in equations (6), (7) and (8)) for R and all theQℓ values,
depending only on the parameters N, cerr,N , P, B, and L, which ensures correct evaluation of functions up
to level L. On top of these equations we need to impose the security constraints in order to derive actual
values formulae for Q and R.

To obtain security we need to examine the most insecure Ring-LWE sample we use. This is for the
key-switching sample (pk′


,pk′

b
) in the public key, since all dimensions N are the same in every sample,

and the key-switching sample is for the largest ciphertext modulus, i.e. T = Q · R. The Ring-LWE sample
is derived from a noise distribution of NeHope(N,B), and a secret key distribution of NeHope(N,1).
For a given set of (N,B, T) values, we can then look up the maximum bit-length of T in the Table 23 and
determine whether we are in a secure range.

5.6.1.4 Standard BGV Parameter Example: We present here a simple example parameter size
evaluation.] We first select

P = 65537, N = 65536, B = 1, cerr,N = 14.10, λ = 16.

To ensure security we assume a maximum bit size of Q · R of 1536; which Table 23 tells us is secure.
Choosing N = 65536, i.e. a power of two, allows us to take EM = 1.

This allows us to find the following values, from our above equations,

BMt ≈ 238.34,

Qℓ ≈ 247.41 for ℓ > 1,

Q1 ≈ 239.92.

Given the bound on Q · R this means we can support at most L = 16 levels of multiplications, and we
then can derive the following parameter values:

Q ≈ 2751.12,

R ≈ 2759.12,

Q · R ≈ 21510.25,

BSce ≈ 237.34,

BKeyStch ≈ 237.34,

Bct ≈ 239.63.

5.6.1.5 Enabling Threshold Operations: To enable all of our threshold algorithms (which for BGV,
following Design Decision 14, we only do in the nSm threshold profiles) we need to replace equation
(5) with the following constraint

2 ·
�

n

t

�

· 2stt · EM · BMt < Q1/2.
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Parameter Choice 5: BGV Level 1 Modulus Size

To enable threshold operations for BGV in threshold profile nSmwe set Q1 ≈ 4 · nSmBnd ·
2stt · EM · BMt .

This is to ensure that we have enough space at the lowest level in order to execute noise flooding.
Imposing this constraint in the above analysis results in parameterswhich have a slightly smaller number
of levels. Thus the above constraint turns into the following parameter choice. Recall, following Design
Decision 10, we assume amaximum value of nSmBnd = 10,000 in deriving the parameters.

5.6.1.6 Threshold BGV Parameter Example: Imposing this additional constraint on the generation
of parameters for BGVwe obtain, again starting with

P = 65537, N = 65536, B = 1, cerr,N = 14.1, λ = 16,

the parameter sizes

P = 65537

λ 16
N 65536
B 1
λ 16
L 15

BMt ≈ 238.34

Qℓ (ℓ 6= 1) ≈ 247.41

Q1 ≈ 293.63

Q ≈ 2757.41

R ≈ 2765.41

Q · R ≈ 21522.83

BSce ≈ 237.34

BKeyStch ≈ 237.34

Bct ≈ 239.63

Table 5: Sample parameters for Threshold BGV.

Thuswe reduce from being able to evaluate L = 16 levels of multiplications to L = 15 levels by adding
in the capability to perform threshold operations; i.e. enabling threshold operations costs us a single
level of homomorphic evaluation.

5.6.2 BFV

In this section we give a brief overview of the BFV [Bra12, FV12] scheme. As for BGV, we do not provide
a full optimized specification, as that is beyond the scope of this document. Also, following Design
Decision 17, we present a variant of BFV which applies the homomorphic operations by passing directly
to BGV-style ciphertexts after the encryption operation.

Thus, due to Design Decision 17, we assume the same restrictions on the ciphertext modulus as in
the BGV scheme. That is, a ciphertext modulus in BFV is a product of moduli Q = Q1 · · ·QL , each one
corresponding (roughly) to a level of multiplications. As we progress through a computation the levels
are peeled off, and our ciphertext modulus decreases. Wewill write Q = Q(L) and Q(ℓ) = Q1 · · ·Qℓ to be
the ciphertext modulus at level ℓ. We start at level L and then decrease levels until we obtain level one.
Hence, the parameters associated with our BFV scheme are as follows (P,Q,N, L, R, B), where:
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• The plaintext modulus P.
• The top ciphertext modulus Q = Q1 · · ·QL .
• The values Q are prime with Q ≡ 1 (mod 2 ·N).
• The cyclotomic ring R(M) , and its degree N = ϕ(M).
• The supported number of levels L.
• A large prime R used for key-switching. We also choose R ≡ Q ≡ 1 (mod P) to avoid some
complications in the methods below, as well as R ≡ 1 (mod 2 ·N).

• A distribution NeHope(N,B) to generate noise values, for a very small value of B (typically B = 1).
Recall, this is chosen to enable efficient key generation within an MPC engine.

A BFV ciphertext, at level ℓ, will consist of a tuple

ct = (c0,c1, ℓ, Bct)

where c0,c1 ∈ RQ(ℓ) and Bct is a bound on the canonical norm of the pre-decryption of the ciphertext,
when in BGV format, which holdswith probability at least 1 − err . The ciphertextwill encrypt amessage
m ∈ RP .

The method for converting a BFV format ciphertext into a BGV one, and vice versa, is described in
[AP13]. This enables us to define the BFV scheme using BGV homomorphic operations as a sub-routine.
We therefore first explain the conversion itself before proceeding to the actual BFV operations.

Recall, a BGV ciphertext (,b) ∈ R2
Q
satisfies

b =  � s + P · e +m (mod Q), (9)

and a BFV ciphertext (′,b′) ∈ R2
Q
satisfies

b′ = ′ � s + e′ + Δ ·m (mod Q), (10)

whereweuse Δ = bQ/Pc = (Q−1)/P. Herewe assumed thatQ = 1 (mod P) as for BGV (more information
about the exact format of Q is given later). As specified in Figure 11, conversion from BGV to BFV can be
done bymultiplication with Δ. Conversely, conversion from BFV to BGV can be done bymultiplication
with −P. The conversion does not change the absolute value of the noise, since we have Δ = (Q − 1)/P.

Scheme conversion

BGV.toBFV(ct):
Conversion from BGV to BFV.

1. Write ct = (,b, ℓ, B).
2. ′ ← ((Q(ℓ) − 1)/P) ·  (mod Q(ℓ)).
3. b′ ← ((Q(ℓ) − 1)/P) · b (mod Q(ℓ)).
4. ct′ ← (′,b′, ℓ, B).
5. Return ct′ .

BFV.toBGV(ct′):
Conversion from BFV to BGV.

1. Write ct′ = (′,b′, ℓ, B).
2. ← −P · ′ (mod Q(ℓ)).
3. b← −P · b′ (mod Q(ℓ)).
4. ct← (,b, ℓ, B).
5. Return ct.

Figure 11: Conversion from BGV to BFV and vice versa.

Lemma 7. The algorithm BGV.toBFV(ct) in Figure 11 is correct.
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Proof. To prove that the conversion is correct, and does not affect the size of the noise value, assume
that we start from the BGV ciphertext from equation (9). If the input BGV ciphertext is (,b), then the
resulting converted ciphertext is given by ′ = Δ ·  (mod Q) and b′ = Δ · b (mod Q). Thus we have

b′ = Δ · ( � s + P · e +m) (mod Q)

= ′ � s + Δ · P · e + Δ ·m (mod Q)

= ′ � s + (Q − 1) · e + Δ ·m (mod Q)

= ′ � s − e + Δ ·m (mod Q).

So the noise changes in sign, but does not change in absolute value.

Lemma 8. The algorithm BFV.toBGV(ct) in Figure 11 is correct.

Proof. Similarly, if we assume that we start from a BFV ciphertext (′,b′) satisfying equation (10), then
the corresponding BGV ciphertext satisfies  = −P ·′ (mod Q) and b = −P ·b′ (mod Q). Thus we have

b = −P · (′ � s + e′ + Δ ·m) (mod Q)

=  � s − P · e′ − P · Δ ·m (mod Q)

=  � s − P · e′ − (Q − 1) ·m (mod Q)

=  � s − P · e′ +m (mod Q).

Hence, again the noise changes in sign but not in absolute value.

Themain algorithms underlying BFV can nowbe defined as in Figure 12, with the resulting parameters
being identical to those in Table 5. We keep the key-switching key (pk′


,pk′

b
) in BGV format, since we

assume all the homomorphic operations are applied to BGV format ciphertexts.
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BFV

BFV.KeyGen(N,Q, P, B, R):
1. sk ← NeHope(N,1), i.e. each element of the N coefficients are selected from
{−1,0,1}with probabilities Pr[0] = 1/2 and Pr[1] = Pr[−1] = 1/4.

2. pk ← RQ .
3. epk ← NeHope(N,B).
4. pkb ← pk � sk + epk ∈ RQ .
5. Set T ← R ·Q.
6. pk′


← RT .

7. e′
pk
← NeHope(N,B).

8. pk′
b
← pk′


� sk + P · e′

pk
− R · sk� sk ∈ RT .

9. pk← {(pk,pkb), (pk
′

,pk′

b
)}.

10. Return (pk,sk).

BFV.Enc(m,pk):
Note, the output ciphertext is in BFV format.

1. v← NeHope(N,1).
2. e0,e1 ← NeHope(N,B).
3. c0 ← pkb � v + e0 + Δ ·m ∈ RQ .
4. c1 ← pk � v + e1 ∈ RQ .
5. Bct ← cerr,N · P ·

�
p

N/12 +
p
B · (cerr,N ·N +

p

N/2)
�

.
6. Return ct = (c0,c1, L, Bct), In some applications we will require the return of
((c0,c1, L, Bct)), (v,e0,e1)) in order to prove knowledge and correctness of the en-
cryption via the ZKPoKs in Section 7.6.

BFV.Dec(ct,sk):
This assumes the input ciphertext is in BFV format.

1. Write ct = (c0,c1, ℓ, Bct).
2. If EM · Bct > Q(ℓ)/2 then bort (this ciphertext has too much noise).
3. p← c0 − c1 � sk (mod Q(ℓ)).
4. If ct is in BFV format thenm← d(P/Q(ℓ)) · pc .
5. Elsem← p (mod P).
6. Returnm.

BFV.Add(ct, ctb):
Note, the output ciphertext is in BGV format.

1. If ct is in BFV format then execute ct ← BFV.toBGV(ct).
2. If ctb is in BFV format then execute ctb ← BFV.toBGV(ct).
3. ctc ← BGV.Add(ct, ctb).
4. Return ctc .

BFV.Mt(ct, ctb):
Note, the output ciphertext is in BGV format.

1. If ct is in BFV format then execute ct ← BFV.toBGV(ct).
2. If ctb is in BFV format then execute ctb ← BFV.toBGV(ct).
3. ctc ← BGV.Mt(ct, ctb).
4. Return ctc .

Figure 12: The BFV Leveled Homomorphic Encryption Scheme.

74



5.6.3 TFHE

In this section we give a brief overview of the TFHE [CGGI16, CGGI20, CLOT21, BdBB+25] scheme.
We do not provide a full optimized specification, as that is beyond the scope of this document. We focus
instead on what is needed to understand how our threshold schemes work in the context of TFHE.
Note, due to the fact that our secret keys are generated inside a threshold protocol we need to deviate
from the “classical” representation of the scheme a little. We refer the reader to [CGGI16, CGGI20,
CLOT21, BdBB+25] for a full description of the scheme, and the associated proofs of the various formulae
presented below.

A ciphertext modulus in TFHE is a power of two Q = 2K , for some value K (usually equal to 64). The
plaintext modulus P = 2p is also a power of two. Due to our public key encryption methodology, a fresh
encryption will actually have LWE dimension ℓ̂ that will be a power of two; however this will immediately
be converted to one whose LWE dimension is either ℓ or ·N. This conversion can be performed by the
encryptor, or via the service performing the homomorphic operations. However, any zero-knowledge
proofs of correct encryption should be applied to the ciphertext of LWE dimension ℓ̂, i.e. before the key
switch operation is performed.

Our TFHE variant has multitudes of secret keys;
• A secret key ŝ ∈ {0,1}ℓ̂ which is the underlying secret key associated to the public key encryption
method.

• A secret key s ∈ {0,1}ℓ which is the underlying secret key used for the LWE ciphertexts during the
homomorphic operations.

• A set of  secret keys (s0, . . . ,s−1) with s ∈ {0,1}N which are used for the GLWE/F-GLWE
ciphertexts during the homomorphic operations.

• A set of secret keys (s0, . . . ,s−1)with s ∈ {0,1}N which are used to secure the bootstrapping
keys used in the TFHE.StchSqsh operation described below.

These secret keys end up being all inter-related via various public key switching and bootstrapping keys.
Which keys need to be kept long term in secret shared form depend on the precise method of threshold
decryption used, as well as the variant of TFHEwhich one selects to implement.

Internally, as homomorphic operations are performed, TFHE switches from LWE-style ciphertexts
of dimension ℓ, to GLWE-style ciphertexts which consists of a Ring-LWE dimension N (again a power
of two) plus a “repetition factor”/“GLWE-dimension”, to so-called flattened (or F-GLWE) ciphertexts,
which are essentially LWE-style ciphertext of dimension  · N. In all cases we will be encrypting a
message m ∈ Z/(P). An implementer needs to decide whether to use type LWE or F-GLWE as the
representation of ciphertexts for performing homomorphic operations, via a global variable which will
be denoted type below. The global type value chosen impacts on how one derives the noise formulae,
and hence parameters, where as ctType will denote the type of a specific ciphertext in the ensuing
algorithms.

• For ctType = LWE a ciphertext consists of a tuple

ct = (c0,c1)

where c0 ∈ (Z/(Q))ℓ and c1 ∈ Z/(Q). We shall refer to p = c1 − c0 · s ∈ Z/(Q) as the pre-decryption
value of this ciphertext.

• For ctType = GLWE a ciphertext consists of a tuple

ct = (c0,c1)

where c0 = (0, . . . ,−1) ∈ RℓQ and c1 ∈ RQ . Here we shall refer to p = 1 −
∑−1
=0  � s ∈ RQ as

the pre-decryption value of this ciphertext. A GLWE ciphertext can encrypt an elementm ∈ RP .
GLWE ciphertexts are not exposed externally to routines, but internally within the bootstrapping
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routines we utilize GLWE ciphertexts to process encryptions of elements in RP .
• For ctType = F-GLWE a ciphertext consists of a tuple

ct = (c0,c1)

where c0 = ((,j)N−1j=0 )
−1
=0 ∈ Z/(Q)×N and c1 ∈ Z/(Q). Here the pre-decryption value is p =

1 −
∑−1
=0

∑N−1
j=0 ,j · s[ j] ∈ Z/(Q).

We will denote the ciphertext type of a given ciphertext ct by the function ctType(ct), which will be
an element of the set {LWE,GLWE, F-GLWE}, although, as mentioned above, in practice we do not
store ciphertexts of type GLWE long term. Generally speaking setting type = F-GLWE results in a more
efficient scheme, as was demonstrated in [CJP21, BBB+23].

Note we (unlike for BGV and BFV) do not keep an estimate for the noise with the ciphertext. This is
because the noise bounds do not depend on the topology of the underlying computation being per-
formed, since all computations are performed in a relatively regular manner of linear operations followed
by a programmable bootstrap. However, for all our operations defined below on TFHE ciphertexts we
will need to keep track of how much each operation affects the mean and standard deviation of either
|p − Δ ·m| or ‖p − Δ ·m‖∞ . We will then combine these various estimates together in order to derive
equations which guarantee correctness and security, and from these wewill derive parameters.

Given a ciphertext encryptingm ∈ RP of type GLWE, we can transform it into a ciphertext of type
F-GLWE using a process called flattening, also known in the literature as the sample extract operation.
Flattening simply involves reordering of the coefficients and negating some of them as described in
Figure 13. Note that, in general, the flattening operation, goes from a GLWE ciphertext encrypting a
polynomialm ∈ RP , to an F-GLWE ciphertext encrypting only the constant term of that polynomial, i.e.
an elementm ∈ Z/(P). Thus the flattening operation, in general, is not invertible. The flattening operation
does not alter any statistical properties of the value of |p −Δ ·m|, it is purely a format conversion operation.

TFHE Flattening

The input ciphertext ct is a ciphertext of type GLWE and the output ciphertext of type F-GLWE.
If the input ciphertext is an encryption ofm, the output is an encryption ofm[0] .
TFHE.Ftten(ct;N,) :

1. Write ct = ((0, . . . ,−1),b).
2. ′ ← (0[0], −0[N − 1], . . . , −0[1], . . . ,−1[0], −−1[N − 1], . . . , −−1[1]).
3. b′ ← b[0] .
4. Return (′, b′).

Figure 13: TFHE Flattening Algorithm fromGLWE to F-GLWE (also called sample extract).

To simplify analysis we do not consider the following aspects of TFHE.
1. We do not consider any “structure” in the plaintext space (for example padding bits etc), as we leave

that as an issue for an application layer. This implies that any functionpassed into theprogrammable
bootstrapping operation (PBS) below, needs to be negacyclic on the encrypted input range (we
will discuss this in further detail below).

2. The modulus switch algorithm, in Figure 24, outputs a ciphertext whose noise is from a distribution
which is not centered around zero; it has a very small expected value, due to the rounding in the
algorithm. In our analysis we neglect the tiny change in the distributions that this induces. A more
careful analysis can remove this by using a probabilistic rounding methodology.

The above optimizations/changes can be added as required, with little (if any) changes to our threshold
protocols.

We make an implicit assumption that the noise distributions on the output of the bootstrapping and
key switching procedures are distributed roughly like a Gaussian with the given standard deviation;
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experimentally this seems to be true.

A key aspect of TFHE is the fact that one can performbootstrapping operations efficiently. In addition
one is able, during a bootstrapping operation, to evaluate an arbitrary table-look-up operation, a so called
programmable bootstrapping (PBS). To enable this we need to define various other parameters. As well
as P,Q, ℓ̂, ℓ, andN, there are additional parameters (βpksk , νpksk , βksk , νksk , βbk , νbk)whichcorrespond
to the three key-switching keys and the bootstrapping keys decomposition bases (βpksk , βksk and βbk),
as well as the key-switching keys and bootstrapping keys decomposition levels (νpksk , νksk and νbk).

One of our methodologies to perform threshold decryption requires us to change the main parame-
ters (ℓ,Q) underlying a given ciphertext ct, to a larger set (ℓ,Q). In doing so we obtain a new ciphertext
ct which encrypts the same message as ct, but with these larger switched parameters. In addition
the “noise” underlying ct has been squashed. We refer to this operation, of passing from ct to ct as
TFHE.StchSqsh. To implement TFHE.StchSqsh, see Figure 28 later, we perform a bootstrap-
ping operation with different parameters. These we denote by

N,,βbk , νbk

and we set ℓ = ·N. To indicate whether the extra data for this form of threshold decryption needs to
be produced we use a flag ƒ g, which is true when the extra data is required.

5.6.3.1 The TFHE Scheme Description: To summarize the (basic) parameters associated with our
TFHE scheme are thus as follows

( P,Q, type, ℓ, bℓ, (ℓ̂, bℓ̂, βpksk , νpksk), (N,,b·N, βksk , νksk , βbk , νbk) ),

and when using TFHE.StchSqsh to these we need to add the parameters

(N,,b·N, βbk , νbk),

where we have
• The plaintext modulus P (a power of two).
• The ciphertext modulus Q (a power of two).
• Whether we apply homomorphic operations to ciphertexts in type = LWE or type = F-GLWE

format.
• Two cyclotomic rings R(M) and R(2·ℓ̂) , with degrees N = ϕ(M) and ℓ̂ = ϕ(2 · ℓ̂), (both N and ℓ̂ are
powers of two).

• The “repetition factor” for the Generalized-LWE problem.
• The main LWE dimension ℓ used during homomorphic computations.
• A set of parameters (ℓ̂, bℓ̂, βpksk , νpksk) associated with public key encryption, via the method of
[Joy24] to create a ciphertext of LWE dimension ℓ̂ (as above), followed by the conversion to an
LWE ciphertext of dimension ℓ. These parameters are used to define the different rings and noise
distributions required to define the keys for the conversion of ciphertexts encryptedwith the public
key to ones which can be computed on homomorphically.

• A set of parameters associated with the PBS operation (N,,b·N, βksk , νksk , βbk , νbk). These
parameters are used to define the different rings and noise distributions required to define the keys
for the bootstrapping and key switching operations that we require (N is the same value as above).

• We will need to define three/four noise distributions, one to work with the LWE dimension ℓ, which
again will be chosen to be of the form TUnƒorm(·, −2bℓ ,2bℓ ). A second to work with the LWE
dimension ℓ̂, again this will be chosen to be of the form TUnƒorm(·, −2bℓ̂ ,2bℓ̂ ). Another to gener-
ate the noise distributions for the GLWE problem underlying the PBS operation, for this we also
use a noise distribution of the form TUnƒorm(·, −2b·N ,2b·N ). And potentially a fourth to deal
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with the TFHE.StchSqsh GLWE problem, for which we use the noise distribution of the form
TUnƒorm(·, −2b·N ,2b·N ). As before, these distributions are chosen to enable efficient threshold
key generation within an MPC engine.

Many of these points follow from our Design Decision 19. Note the values b? for various values of ?we
will think of as being defined by the subscript ?. So wewill not pass them as parameters to functions,
but consider them as derived from the value ? (in addition to the desired security parameter sec).

5.6.3.2 Public Key Compression via a XOF: As one can see the number of parameters is quite large,
and the resulting public keys/evaluation keys for TFHE will also be quite large. This is because we need
to store both the public key encryption keys and the keys for the PBS operations. In order to reduce
storage of public keys we use a form of public key compression via a XOF, see Section 5.1.

Use of a XOF allows us to compress the random elements in the public key into a single XOF key, and
then expand themwhen required by calling the XOF. As long as the XOF is called in the correct order
for the correct variables one will recover the correct values for the public key. This is enabled via the
functions Epnd below.

5.6.3.3 TFHE Public Key Generation: We are now in a position to define the TFHE public key. This
is built up in a sequence of steps in Figure 14–Figure 18. Notice, each encryption algorithm can either
return the components  and b, or just the component b. This depends on whether the calling algorithm
requires the expanded version of  or not; this is signaled via the flag ƒ g.

The Basic TFHE Operations: Key Gen Part I

This defines the basic (internal) TFHE symmetric key encryption operations; the encryption
functions here are not the externally exposed public key ones; they are used to define key
switching material, etc.

EncLWE(m,s;XOF, P′, Q, ℓ, ƒ g):
Form ∈ Z/(P′) and s ∈ {0,1}ℓ this produces an LWE ciphertext. Note, the plaintextmodulus
P′ can vary here; but it will always be a power of two, and less than Q.

1. ← EpndLWE(XOF,Q, ℓ).
2. e← TUnƒorm(1, −2bℓ ,2bℓ ).
3. b←  · s + e + (Q/P′) ·m (mod Q).
4. If ƒ g return (, b), else return b.

EncGLWE(m, (s0, . . . ,s−1);XOF, P′, Q,N,, ƒ g):
For R the ring of dimension N andm ∈ RP′ , s ∈ RQ this produces a GLWE ciphertext. The
same note around P′ being a power of two, less than Q applies here as well.

1. (0, . . . ,−1)← EpndGLWE(XOF,Q,N,).
2. e← TUnƒorm(N, −2b·N ,2b·N ).
3. b←

∑−1
=0  � s + e + (Q/P′) ·m (mod Q).

4. If ƒ g return (0, . . . ,−1,b), else return b.

Figure 14: The Basic TFHE Operations: key Gen Part I.
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The Basic TFHE Operations: Part II

EncLe(m,s;XOF, β,Q, ℓ, ν, ƒ g):
This will only ever be used to encrypt messages m ∈ {0,1}, thus when encrypting we
treatm as an element in Z/(β+1) in the application of EncLWE below. We also always have
s ∈ {0,1}ℓ .

1. For  ∈ [0, . . . , ν − 1] do
(a) ct ← EncLWE(m,s;XOF, β+1, Q, ℓ, ƒ g).

2. Return (ct0, . . . , ctν−1).

EncGLe(m, (s0, . . . ,s−1);XOF, β,Q,N,,ν, ƒ g):
Here we assume β is a power of two, and thatm is a message which lies in Rβν , where R is
the ring of dimension N.

1. For  ∈ [0, . . . , ν − 1] do
(a) ct ← EncGLWE(m (mod β+1), (s0, . . . ,s−1);XOF, β+1, Q,N,, ƒ g).

In practice the reduction modulo β+1 is not needed as the final reduction modulo
Qwill perform the same effect. We include it here purely tomatch up the semantics
of the plaintext spaces.

2. Return (ct0, . . . , ctν−1).

EncGGSW(m, (s0, . . . ,s−1);XOF,Q,N,, β, ν, ƒ g):
Here we assume β is a power of two, and thatm is a message which lies in {0,1}.

1. For  ∈ [0, . . . , − 1] do
(a) ct ← EncGLe(−s ·m (mod βν), (s0, . . . ,s−1);XOF, β,Q,N,,ν, ƒ g).

Again, in practice the reduction modulo βν is not needed, we only include it for
matching plaintext space semantics.

2. ct ← EncGLe(m, (s0, . . . ,s−1);XOF, β,Q,N,,ν, ƒ g).
The single bit messagem here is lifted to the constant polynomial in the ring Rβν .

3. Return (ct0, . . . , ct).

Figure 15: The Basic TFHE Operations: Part II.
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The Basic TFHE Operations: Part III

EpndLWE(XOF,Q, ℓ):
1. ← XOF.Net(ℓ,Q).
2. Return .

EpndGLWE(XOF,Q,N,):
1. For  ∈ [0, . . . , − 1] do

(a)  ← XOF.Net(N,Q).
2. Return (0, . . . ,−1).

EpndLe(XOF,Q, ℓ, ν):
1. For  ∈ [0, . . . , ν − 1] do

(a)  ← EpndLWE(XOF,Q, ℓ).
2. Return (0, . . . ,ν−1).

EpndGLe(XOF,Q,N,,ν):
Note  here is a vector of ring elements of dimension, thus we return in effect a ν × 
matrix of ring elements.

1. For  ∈ [0, . . . , ν − 1] do
(a)  ← EpndGLWE(XOF,Q,N,).

2. Return A = (0, . . . ,ν−1).

EpndGGSW(XOF,Q,N,,ν):
1. For  ∈ [0, . . . ,] do

(a) A ← EpndGLe(XOF,Q,N,,ν).
2. Return (A0, . . . ,A).

Figure 16: The Basic TFHE Operations: Part III.
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The Public Key TFHE Scheme: Key Gen I

This defines the actual public key version of the scheme.

TFHE.KeyGen(P,Q, type, ℓ̂, ℓ, N,, βpksk , βksk , βbk , νpksk , νksk , νbk , N,,Q, βbk , νbk , ƒ g, ƒ g):
1. seed← {0,1}sec .
2. XOF.nt(seed,DSep(TFHE)).
3. ŝ← {0,1}ℓ̂ .
4. s← {0,1}ℓ .
5. For  ∈ [0, . . . , − 1] do s ← {0,1}N .
6. pk ← XOF.Net(ℓ̂, Q).
7. e← TUnƒorm(ℓ̂, −2bℓ̂ ,2bℓ̂ ).

8. pkb ← pk �
↔
ŝ + e.

9. For  ∈ [0, . . . , − 1] do
(a) For j ∈ [0, . . . , N − 1] do KSK ,j ← EncLe(s[ j],s;XOF, βksk , Q, ℓ, νksk , ƒ g).

10. If ƒ g then
(a) For  ∈ [0, . . . , − 1] do s ← {0,1}N .

11. For  ∈ [0, . . . , ℓ − 1] do
(a) BK  ← EncGGSW(s[ ], (s0, . . . ,s−1);XOF,Q,N,, βbk , νbk , ƒ g).
(b) If ƒ g then BK  ← EncGGSW(s[ ], (s0, . . . ,s−1);XOF,Q,N,, βbk , νbk , ƒ g).
(c) Else BK  ←⊥.

12. If type = F-GLWE then s ← (s0[0], . . . ,s0[N − 1],s1[0], . . . ,s1[N −
1], . . . ,s−1[0], . . . ,s−1[N − 1]).

13. For  ∈ [0, . . . , ℓ̂ − 1] do
(a) If type = LWE then PKSK  ← EncLe(ŝ[ ],s;XOF, βpksk , Q, ℓ, νpksk , ƒ g).
(b) Else PKSK  ← EncLe(ŝ[ ],s;XOF, βpksk , Q, ·N,νpksk , ƒ g).

14. If ƒ g then
(a) pk← (pk,pkb).
(b) PK ← (pk,{PKSK },{KSK ,j},j,{BK },{BK }).

15. Else
(a) PKb ← (pkb,{PKSK },{KSK ,j},j,{BK },{BK }).
(b) PK ← (seed, PKb).

16. If ƒ g then sk← (s, (s0, . . . ,s−1)), else sk← (s,⊥).
17. If FFT optimizations are to be applied, then the data in BK could be translated into the

Fourier domain.
18. Return (PK,sk).

Figure 17: The Public Key TFHE Scheme: Key Gen I.
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The Public Key TFHE Scheme: Key Gen II

TFHE.Epnd(seed;Q, type, ℓ, N,,νksk , νbk , N,,Q,νbk , ƒ g):
This computes the -component for every associated element in the public key.

1. XOF.nt(seed,DSep(TFHE)).
2. pk ← XOF.Net(ℓ̂, Q).
3. For  ∈ [0, . . . , − 1] do

(a) For j ∈ [0, . . . , N − 1] do
i. KSK

,j
← EpndLe(XOF,Q, ℓ, νksk).

4. For  ∈ [0, . . . , ℓ − 1] do
(a) BK


← EpndGGSW(XOF,Q,N,,νbk).

(b) If ƒ g then BK



← EpndGGSW(XOF,Q,N,,νbk).

(c) Else BK



←⊥.

5. For  ∈ [0, . . . , ℓ̂ − 1] do
(a) If type = LWE then PKSK


← EpndLe(XOF,Q, ℓ, νpksk).

(b) Else PKSK

← EpndLe(XOF,Q, ·N,νpksk).

6. PK ← (pk,{PKSK


},{KSK,j},j,{BK



},{BK




}).

7. Return PK .

Figure 18: The Public Key TFHE Scheme: Key Gen II.
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5.6.3.4 Dimension Switching: Due to the restriction that ℓ̂ has to be a power of two, before the server
actually performs any homomorphic operations on a freshly encrypted LWE ciphertext, the server13 will
first convert the freshly encrypted ciphertext to a ciphertext of type type. Recall, if type = LWE this is
an LWE ciphertext of dimension ℓ, and if type = F-GLWE this is an F-GLWE ciphertext of dimension ·N,
which is actually an LWE ciphertext of dimension ·N.

The reason for operatingwith adifferent value ℓor·N, as opposed to ℓ̂, is that ℓ and·Nwill bechosen
to minimize the cost of performing other operations; in particular the programmable bootstrapping
which enables homomorphic operations. In the case of type = LWE this means that ℓ can be smaller
than ℓ̂, leading to more efficient homomorphic operations. In the case of type = F-GLWE this means
that ℓ̂ can be smaller than ·N, leading to more efficient zero-knowledge proofs.

We call this operation a DimensionSwitch; it takes an LWE ciphertext of dimension ℓ̂ and returns an
LWEciphertext of dimension ℓ or·N, encrypting the samemessage. The algorithm forDimensionSwitch,
given in Figure 20, makes use of a sub-procedure for integer decomposition, which is given in Figure 19.

TFHE Decomposition

TFHE.Decompose(,Q, β, ν) :
The input  is an integer in ZQ , the output is a vector x of length ν, with x[ ] ∈ [−β/2, β/2]
and

∑ν−1
=0 x[ ] ·β

ν− −1 ≡ d ·βν/Qc mod βν . This is based on [Joy21, Algorithm 3]. It uses an
internal boolean value ƒ gDecompose which is retained between calls, and which is initially
set to zero.

1. Consider  as an integer (i.e. in Z not Z/(Q)).
2. ′ ← d · βν/Qc .
3. If ′ > βν/2 then ′ ← ′ − βν .
4. If ′ = βν/2 then

(a) If ƒ gDecompose = 1 then do ′ ←  − βν .
(b) ƒ gDecompose ← 1 − ƒ gDecompose .

5. For  ∈ [0, . . . , ν − 1] do:
(a)  ← ′ mod β.
(b) ′ ← (′ − )/β.
(c) If  > β/2 or ( = β/2 and ′ mod β ≥ β/2) then

i.  ←  − β.
ii. ′ ←  + 1.

6. Return x = (ν−1, ν−2, . . . , 0).

Figure 19: TFHE Decomposition Algorithmmapping an integer modulo Q to its decomposition of length ν and
base β.

The TFHE.DmensonStch operation does not alter the mean of the value |p − Δ ·m|, however it
does increase the variance by the value σ2

DS
below. For a full derivation of this fact, and other such

derivations in this document, see [CLOT21].

σ2
DS
= ℓ̂ ·





Q2

12 · β2·νpkskpksk

−
1

12



 · (Vr(s) + Ep2(s))

+
ℓ̂

4
· Vr(s) + ℓ̂ · νpksk · σ2pksk ·

 

β2pksk + 2

12

!

=
ℓ̂

2
·





Q2

12 · β2·νpkskpksk

−
1

12





+ ℓ̂ ·

 

1

16
+ νpksk · σ2pksk ·

 

β2pksk + 2

12

!!

13This could also be carried out by the encryptor if desired.
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= ℓ̂ ·





Q2

24 · β2·νpkskpksk

+
1

48
+ νpksk · σ2pksk ·

 

β2pksk + 2

12

!



 (11)

since, for a binary secret key, we have Vr(s) = 1/4 and Ep(s) = 1/2, where

σpksk =







σbℓ =
Æ

(22·bℓ+1 + 1)/6 if type = LWE,

σb·N =
Æ

(22·b·N+1 + 1)/6 if type = F-GLWE.

TFHE Dimension Switching

TFHE.DmensonStch(ct, PKSK;Q,d, ℓ̂, βpksk , νpksk) :
The input ciphertext is an LWE ciphertext of dimension ℓ̂, the output ciphertext is an LWE
ciphertext of dimension d encrypting the samemessage.

1. Write ct = (, b).
2. Parse PKSK as {PKSK } for  ∈ [0, . . . , ℓ̂ − 1] .
3. For  ∈ [0, . . . , ℓ̂ − 1] do:

(a) d ← TFHE.Decompose([ ], Q, βpksk , νpksk).
4. For  ∈ [0, . . . , ℓ̂ − 1] do:

(a) Parse PKSK  as (PKSK ,0, . . . , PKSK ,νpksk −1) and parse PKSK ,k as
(PKSK

,k
, PKSKb

,k
) for each k ∈ [0, . . . , νpksk − 1] .

(b) Define the νpksk-by-dmatrix

M ←







PKSK
,0[0] . . . PKSK

,0[d − 1]
...

...
PKSK

,νpksk −1
[0] . . . PKSK

,νpksk −1
[d − 1]






,

where PKSK
,k
[t] is the t-th element of the vector PKSK

,k
.

(c) v ← (PKSKb,0, . . . , PKSK
b
,νpksk −1

), i.e. a νpksk-dimensional vector.

5. ′ ← −
∑ℓ̂−1
=0 d ·M .

Note this is a sum of ℓ̂ vector by matrix products.
6. b′ ← b −

∑ℓ̂−1
=0 d · v .

Note this is a sum of ℓ̂ vector by vector inner products.
7. Return (′, b′).

Figure 20: TFHE Dimension Switching Algorithmmapping an LWE ciphertext of dimension ℓ̂ to an LWE ciphertext
of dimension d..

5.6.3.5 TFHE Public Key Encryption and Decryption: In this sectionwe present amethod for public
key encryption, described in Joye [Joy24], which uses smaller public keys. The method of Joye goes via
a Ring-LWE encryption, as opposed to themultiple encryptions of zeromethodology; the latter being the
method which is more commonly used in the literature. The method works for two-power values of ℓ̂, i.e.
we have ℓ̂ = 2γ for some integer γ. The public key encryption algorithmmakes use of the cyclotomic
ring R(2·ℓ̂) of dimension ℓ̂. Thus for TFHE there are at most three cyclotomic rings, one consisting of
polynomials of degree at most ℓ̂ − 1 and one consisting of polynomials of degree at most N − 1, and
(potentially) one consisting of polynomials of degree at most N − 1. Which one is being considered at
any given point should be clear from the context and/or dimension of the elements.

The public key is created by first generating a uniform binary secret key ŝ← {0,1}ℓ̂ , then selecting
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pk ∈ (Z/(Q))ℓ̂ uniformly at random and finally generating pkb ∈ (Z/(Q))ℓ̂ via

pkb ← pk �
↔
ŝ + e

where e← TUnƒorm(ℓ̂, −2bℓ̂ ,2bℓ̂ ). Recall, here
↔
ŝ is the reverse ordering of ŝ.

The Public Key TFHE Scheme: Encryption and Decryption

TFHE.Enc-Sb(m,pk;P,Q, ℓ̂):
Here pk is the public key (pk,pkb, ) generated in the TFHE.KeyGen algorithm above. The
parameters P,Q and ℓ̂may be dropped if they can be implicitly inferred from the context.
The output is an LWE ciphertext of dimension ℓ̂.

1. r← {0,1}ℓ̂ .
2. e1 ← TUnƒorm(ℓ̂, −2bℓ̂ ,2bℓ̂ ).
3. e2 ← TUnƒorm(1, −2bℓ̂ ,2bℓ̂ ).
4. ← pk �

↔
r + e1 .

5. b← pkb · r + e2 + (Q/P) ·m.
6. Return (, b). In some applications we will require the return of ((, b), (r,e1, e2))

in order to prove knowledge and correctness of the encryption via the ZKPoKs in
Section 7.6.

TFHE.Enc(m,pk, PKSK;P,Q, type, ℓ̂):
Here pk is the public key (pk,pkb, ) generated in the TFHE.KeyGen algorithm above along-
side PKSK . The parameters P,Q, type and ℓ̂may be dropped if they can be implicitly inferred
from the context. This function can be implemented entirely by the user, or by the user
performing the first step and the server (which executes the homomorphic operations)
performing the second step. The output is an LWE ciphertext of type type.

1. ct′ ← TFHE.Enc-Sb(m,pk).
2. ct← TFHE.DmensonStch(ct′, PKSK).
3. Return ct.

TFHE.Dec(ct,sk;P,Q):
Note this works for both ctType(ct) = LWE and ctType(ct) = F-GLWE, when ctType(ct) =
type (where type is the global variable type fixed during key generation), as we fixed s
during key generation to be the appropriate key.

1. If ctType(ct) 6= type then bort.
2. Write ct = (, b) and sk = (s, (s0, . . . ,s−1)).
3. Δ← Q/P.
4. p← b −  · s (mod Q).
5. p is an integer of the form Δ ·m + e, for a “small” value of e, so we extractm by rounding

to the nearest multiple of Δ.
6. Returnm (mod P).

Figure 21: The Public Key TFHE Scheme: Encryption and Decryption.

To encrypt a messagem ∈ Z/(P) (see Figure 21) we generate values r,e1 and e2 via the distributions
r← {0,1}ℓ̂ , e1 ← TUnƒorm(ℓ̂, −2bℓ̂ ,2bℓ̂ ) and e2 ← TUnƒorm(1, −2bℓ̂ ,2bℓ̂ ) and then we produce

 = pk �
↔
r + e1,

b = pkb · r + e2 + Δ ·m.

For ease of notation, when explaining our ZKPoKs later, we will let Apk denote the matrix representation
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of the ring element pk . With this notation we have that

pk �
↔
r = Apk ·

↔
r

where the multiplication on the right is the standard matrix-vector multiplication method.
The encryption method of Joye [Joy24] encrypts each messagem ∈ Z/(P) as a pair (, b) as above.

It can be extended (see Joye [Joy24]) to encrypt up to ℓ̂ messages using a single fixed  value. i.e.
to encrypt m1, . . . ,mk , with k ≤ ℓ, one encrypts to a set (, b1, . . . , bk) with b ∈ Z/(Q). As this is not
relevant to our threshold protocols we do not describe this optimization in this document.

If the mean μct and standard deviation σct of the value |p − Δ ·m| of the input to TFHE.Dec satisfies

|μct| + cerr,1 · σct ≤ Δ/2

then decryption will be correct, as the following Lemma demonstrates.

Lemma 9. The ciphertext (, b) obtained by the method above can be decrypted via the usual method
of computing b −  · ŝ.

Proof. This follows from the equalities

b −  · ŝ = b −
�

 �
↔
ŝ
�

ℓ̂−1
,

= (pkb · r + e2 + Δ ·m) −
�

(pk �
↔
r + e1) �

↔
ŝ
�

ℓ̂−1
,

=
�

pkb �
↔
r − (pk �

↔
r + e1) �

↔
ŝ
�

ℓ̂−1
+ e2 + Δ ·m,

=
�

(pk �
↔
ŝ + e) �

↔
r − pk �

↔
r �

↔
ŝ − e1 �

↔
ŝ
�

ℓ̂−1
+ e2 + Δ ·m,

=
�

e �
↔
r − e1 �

↔
ŝ
�

ℓ̂−1
+ e2 + Δ ·m,

= e′ + Δ ·m.

For later, we will need to estimate the mean and standard deviation of the value |p − Δ ·m| of the
output of the TFHE.Enc procedure. As noted above the TFHE.DmensonStch operation does not
affect the mean, but it does add the term σ2

DS
onto the variance.

Whenanalysing TFHE.Enc-Sbweneed toconsider that theadversarymaybe theencryptor and thus
may try to encrypt using too much noise. If used with the ZKPoKs from Section 7.6, the ZKPoK prover
is applied by the encryptor to the output of TFHE.Enc-Sb to obtain the proof πct′ on the ciphertext
ct′ . The pair (ct′, πct′ ) are passed to the entity whowill use the ciphertext. This entity can then verify
the proof, and then apply TFHE.DmensonStch to the ciphertext ct′ in order to obtain the output of
TFHE.Enc. Thus the worst that the adversary can do, to maximise the noise in a ciphertext, is to pick
encryption noise values of the form r = 1, and noise values (e1|e2) ≤ zk-sck · 2bℓ̂ , where zk-sck is
the soundness slack value introduced in Section 4.11. This enables us to derive worst case expected
values for the mean and standard deviation of

e′ = b −  · ŝ − Δ ·m = (e �
↔
r − e1 �

↔
ŝ )ℓ̂−1 + e2

assuming the public key has been honestly generated, i.e. Vr(s) = 1/4 and Ep(s) = 1/2,

μPKE = Ep[e′] =
ℓ̂
∑

=1

Ep(e) + zk-sck ·
ℓ̂
∑

=1

2bℓ̂ · Ep(s) + zk-sck · 2bℓ̂
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= 0 + zk-sck · ℓ̂ · 2bℓ̂ ·
1

2
+ zk-sck · 2bℓ̂

= zk-sck ·
�

ℓ̂

2
+ 1

�

· 2bℓ̂ , (12)

σ2
PKE
= Vr[e′] =

ℓ̂
∑

=1

Vr(e) + zk-sck2 ·
ℓ̂
∑

=1

22·bℓ̂ · Vr(s)

= ℓ̂ · σ2
bℓ̂
+ zk-sck2 · ℓ̂ · 22·bℓ̂ ·

1

4

= ℓ̂ ·
�

σ2
bℓ̂
+ zk-sck2 · 22·bℓ̂−2

�

, (13)

where σbℓ̂ =
Æ

(22·bℓ̂+1 + 1)/6 is the standard deviation of the distribution TUnƒorm(1, −2bℓ̂ ,2bℓ̂ ).

5.6.3.6 Homomorphic Operations: The basic homomorphic operations in TFHE are addition and
scalar multiplication as described in Figure 22. They consist of simply adding ciphertexts component-
wise and scaling each ciphertext component by the scalar, respectively. All operations are performed
modulo Q on ciphertexts of type type. The addition of two ciphertexts results in an addition of the mean
and variance of the quantity |p − Δ ·m|.

The Basic Homomorphic Operations: Addition and Scalar Multiplication

TFHE.Add(ct1, ct2):
We have input LWE/F-GLWE ciphertexts ct1 and ct2 encrypting messagesm1 ∈ Z/(P) and
m2 ∈ Z/(P), respectively. The output LWE/F-GLWE ciphertext is an encryption ofm1 +m2 .

1. Write ct1 = (1, b1).
2. Write ct2 = (2, b2).
3. ′ ← 1 + 2 .
4. b′ ← b1 + b2 .
5. Return (′, b′).

TFHE.ScrMt(α, ct):
We have ct an LWE/F-GLWE ciphertext encryptingm ∈ Z/(P) and α ∈ Z/(P); where recall
Z/(P) = {−P/2 + 1, . . . , P/2}. The output LWE/F-GLWE ciphertext is an encryption of α ·m.

1. Write ct = (, b).
2. Consider α as an integer (i.e. in Z).
3. ′ ← α ·  (i.e. scalar multiplication of the vector  by the scalar α.
4. b′ ← α · b.
5. Return (′, b′).

Figure 22: The Basic Homomorphic Operations: Addition and Scalar Multiplication.

Further homomorphic operations in TFHE are enabled via the Programmable Bootstrapping (PBS)
operation. This function, which we shall describe in this subsection, enables two operations to be
performed at once: firstly the noise term in the FHE ciphertext is reduced, and secondly a negacyclic
function is applied to the message.

Recall for TFHE the plaintext space is Z/(P) where P is a power of two. A negacyclic function ƒ :
Z/(P) −→ Z/(P) is one which satisfies

ƒ ( + P/2) = − ƒ ()

for all  ∈ Z/(P). During homomorphic operations we may want to evaluate a function g : S −→ Z/(P) on
a subset S ⊆ Z/(P). We can evaluate g during the bootstrap operation “for free”, if there is a negacyclic
function ƒ whose domain is the whole of Z/(P)which is identical to g on the domain of g, i.e. g() = ƒ ()
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for all  ∈ S. Typically, we will want to apply an arbitrary function g : [0, . . . , P/2 − 1] −→ Z/(P) so we
simply define ƒ : Z/(P) −→ Z/(P) as

ƒ () =







g() if 0 ≤  < P/2,

−g( − P/2) if P/2 ≤  < P,

and perform the PBS using ƒ . Although sometimes efficiencies can be obtained by considering even
larger domains for g, if a suitable negacyclic function ƒ can be defined which matches g on the required
domain of g. We say ƒ is a negacyclic extension of the function g.

We let PBSƒ (ct) denote the application of a PBS operation on a ciphertext ct with respect to a
negacyclic function ƒ . To see how this enables basic homomorphic operations, over bits, consider a
plaintext space with P = 23 . We let yz ∈ Z/(P), for bits , y and z, denote the value  · 22 + y · 2 + z. If
we assume that single bits are encrypted in input ciphertexts ct1 and ct2 then homomorphic addition
modulo two, i.e. the XOR operation, can be computed by performing

PBSƒ (ct1 + ct2)

for a suitable negacyclic extension ƒ of the function g : {0,1,2} −→ Z/(P) given by g() =  (mod 2).
Thus even though g is not negacyclic on thewhole ofZ/(P)wecan still use the PBSoperation to compute
it homomorphically on the domain required.

The multiplication operation modulo two, i.e. the AND operation, can be computed by performing

PBSƒ (ct1 + ct2)

where ƒ is the negacyclic extension of the function gwhich maps the input bit string yz to 00y. Again,
we only need to apply g on the input domain {0,1,2} so PBSƒ correctly computes the AND operation.

Clearly, by having different plaintext space sizes, and utilizing different functions ƒ in the PBSoperation
one can obtain additional performance enhancements. We do not consider any of these optimizations
here, as they are best left to the application layer.

The PBS is the main operation in TFHE, it can be divided into three main steps: a modulus switch, a
chain of external products and a flatten operation. Most of the time, the PBS is used in combination with
a key switch which can be either placed after the bootstrap (as in original TFHE paper when we have
type = LWE) or before (as proposed in [BMMP18] for when we have type = F-GLWE).

5.6.3.7 Key Switch: The KeySwitch operation takes a ciphertext of type F-GLWE and outputs cipher-
text of type LWE encrypting the samemessage. One can see that it is highly similar to the operation
TFHE.DmensonStch given earlier, a fact which wewill return to below. The algorithm is presented
in Figure 23. The associated variance of the output |p − Δ ·m| is modified by the addition of the term
(again see [CLOT21] for a full derivation)

σ2
KS
= ·N ·

 

Q2

12 · β2·νkskksk

−
1

12

!

· (Vr(s) + Ep2(s))

+
 ·N

4
· Vr(s) + ·N · νksk · σ2ksk ·

 

β2ksk + 2

12

!

=
 ·N

2
·

 

Q2

12 · β2·νkskksk

−
1

12

!

+ ·N ·

 

1

16
+ νksk · σ2ksk ·

 

β2ksk + 2

12

!!
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= ·N ·

 

Q2

24 · β2·νkskksk

+
1

48
+ νksk · σ2ksk ·

 

β2ksk + 2

12

!!

(14)

since for a binary secret key we have Vr(s) = 1/4 and Ep(s) = 1/2, where

σksk = σbℓ =
q

(22·bℓ+1 + 1)/6.

TFHE Key Switching

TFHE.KeyStch(ct, KSK;Q, ℓ,N,,βksk , νksk) :
The input ciphertext is an F-GLWE ciphertext of dimension ·N, the output ciphertext is an
LWE ciphertext of dimension ℓ.

1. If ctType(ct) 6= F-GLWE then bort.
This is purely a sanity check, and can be ignored in correct implementations.

2. Write ct = (, b).
3. Parse KSK as {KSK ,j},j for  ∈ [0, . . . , − 1] and j ∈ [0, . . . , N − 1] .
4. For  ∈ [0, . . . , ·N − 1] do:

(a) d ← TFHE.Decompose([ ], Q, βksk , νksk).
5. For  ∈ [0, . . . , − 1] do:

(a) For j ∈ [0, . . . , N − 1] do:
i. Parse KSK ,j as (KSK ,j,0, . . . , KSK ,j,νksk −1) and parse KSK ,j,k as
(KSK

,j,k
, KSKb

,j,k
) for each k ∈ [0, . . . , νksk − 1] .

ii. Define the νksk-by-ℓmatrix

M,j ←







KSK
,j,0[0] . . . KSK

,j,0[ℓ − 1]
...

...
KSK

,j,νksk −1
[0] . . . KSK

,j,νksk −1
[ℓ − 1]






,

where KSK
,j,k
[t] is the t-th element of the vector KSK

,j,k
.

iii. v,j ← (KSKb,j,0, . . . , KSK
b
,j,νksk −1

), i.e. a νksk-dimensional vector.

6. ′ ← −
∑−1
=0

∑N−1
j=0 d·N+j ·M,j .

Note this is a sum of ·N vector by matrix products.
7. b′ ← b −

∑−1
=0

∑N−1
j=0 d·N+j · v,j .

Note this is a sum of ·N vector by vector inner products.
8. Return (′, b′).

Figure 23: TFHE Key Switching Algorithmmapping a F-GLWE ciphertext to an LWE one.

We now return to the similarity between TFHE.KeyStch and TFHE.DmensonStch. First note,
that one can view the output of TFHE.Enc as a flattened GLWE ciphertext of dimension ℓ̂. In particular, if
we let ζM : R(M) → R(M) be the automorphismwhich implements the map X 7→ X−1 , then ′ in Figure 13
is (ζN(0), . . . , ζN(−1)). Using the notation from Figure 21, we can define ê ← ζℓ̂(e), ê1 ← ζℓ̂(e1),
p̂kb ← ζℓ̂(pkb), p̂k ← −X·ζℓ̂(pk) and let ê2 besuch that ê2[0] = e2 . Thenwehave that p̂kb = p̂k� ŝ+ê.
Further, defining ̂← p̂k � r + ê1 and b̂← p̂kb � r + ê2 + (Q/P) ·mwe have the equality

(, b, σPKE) = TFHE.Ftten((̂, b̂, σPKE), ℓ̂,1).

Here, (̂, b̂, σPKE) is an RLWE ciphertext encrypting the constant polynomialm under the secret key ŝ, i.e.
b̂ = ̂ � ŝ + e′ + (Q/P) ·m for some e′ = ê � r − ê1 � ŝ + ê2 . Thus we can apply TFHE.KeyStch to a
fresh encryption in order to change its LWE dimension from ℓ̂ to d (where d is either ℓ or ·N) by using
the key PKSK . In particular, given the output ct from TFHE.Enc the following two calls are (essentially,
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up to the parsing of the data structure PKSK) identical

ct′ ← TFHE.KeyStch(ct, PKSK;Q,d,1, ℓ̂, βpksk , νpksk),

ct′ ← TFHE.DmensonStch(ct, PKSK;Q,d, ℓ̂, βpksk , νpksk).

5.6.3.8 Modulus Switch: This operation, presented in Figure 24, takes an LWE ciphertext, with
ciphertext modulus Q, and switches it to an LWE ciphertext with modulus 2 ·N. This algorithm is the first
stage of bootstrapping. To ensure the bootstrapping operation is correct, we need to ensure the output
of the modulus switch will not produce a decryption error. The result will be correct (with probability at
least 1 − err) if we have that

|μct| + cerr,1 ·
r

σ2ct + σ
2
MS <

Δ

2
(15)

where μct and σct are estimate of the mean and standard deviation of the noise term |p − Δ ·m| in the
input ciphertext and (again see [CLOT21])

σ2
MS
=

Q2

48 ·N2
−

1

12
+ ℓ ·

�

Q2

96 ·N2
+

1

48

�

. (16)

One can reduce this error probability to any desired value by increasing the value of cerr,1 . Note, we will
sometimes call TFHE.ModStch, see TFHE.StchSqsh below, with the larger parameter of N, in
which case one should replace Nwith N in equations (15) and (16).

TFHE Modulus Switching

TFHE.ModStch(ct;Q, ℓ,N) :
The input LWEciphertext (of dimension ℓ) iswith respect to ciphertextmodulusQ, the output
LWE ciphertext is with respect to ciphertext modulus 2 ·N.

1. If ctType(ct) 6= LWE then bort.
This is purely a sanity check, and can be ignored in correct implementations.

2. Write ct = (, b).
3. Think of  (resp. b) as in Zℓ (resp. Z) and not (Z/(Q))ℓ (resp. Z/(Q)).
4. ′ ← d · 2 ·N/Qc .
5. b′ ← db · 2 ·N/Qc .
6. Return (′, b′).

Figure 24: TFHEModulus Switching Algorithm from Q to 2 ·N.

This is the place for the TFHE algorithm where the error probability has the most effect on the
underlying parameters. By modifying the modulus switching algorithm slightly, see for example the
method in [HKLS24]or [BJSW24], onecanobtain significantlybetterparameters (andhencesignificantly
better overall performance) whilst still maintaining the same error probability of err = 2−128 . Such
optimizations are beyond the scope of this document, which purely aims to present the basic FHE
algorithms in order to describe the resulting threshold protocols fully.

5.6.3.9 Bootstrap: Bootstrapping takes a ciphertext of type LWE and outputs a ciphertext of type
F-GLWE but with (potentially) smaller noise, see Figure 26 for the pseudo-code. It is here we apply
the negacyclic function ƒ . This function calls a sub-procedure for evaluating an external product (see
Figure 25).

The first thing a bootstrap operations performs is a modulus switch, therefore the input to the
bootstrap operation (for it to be correct with a given probability) must satisfy equation (15). The noise
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TFHE External Product

TFHE.EternProdct(ct, CT;Q,β, ν) :
This takes as input a GLWE ciphertexts ct encryptingm and a GGSW ciphertext CT (with
respect to β and ν) which encrypts a bit m, both under the secret key (s0, . . . ,s−1). It
outputs a GLWE encryption ofm ·m under (s0, . . . ,s−1).

1. Parse ct as (0, . . . ,−1,b).
2. For j ∈ [0, . . . , N − 1] do:

(a) For  ∈ [0, . . . , − 1] do:
i. d,j ← TFHE.Decompose([ j], Q, β, ν).

(b) d,j ← TFHE.Decompose(b[ j], Q, β, ν).
3. For  ∈ [0, . . . ,] do:

(a) D ←
�

∑N−1
j=0 d,j[0] · X

j, . . . ,
∑N−1
j=0 d,j[ν − 1] · X

j
�

, where X is the ring indeterminate
of R.

4. Parse CT as (ct′0, . . . , ct
′

).

5. For  ∈ [0, . . . ,] do:
(a) Parse ct′


as (ct′

,0, . . . , ct
′
,ν−1) and parse ct′

,j
as (′,j,0, . . . ,

′
,j,−1,b

′
,j) for j ∈

[0, . . . , ν − 1] .
(b) Define the ν-by-( + 1)matrix over RQ

CT  ←







′,0,0 · · · ′,0,−1 b′,0
...

...
...

′,ν−1,0 · · · ′,ν−1,−1 b′,ν−1






.

6. Return
∑
=0D · CT  where the vector-matrix multiplication is performed over RQ .

Figure 25: TFHE External Product Evaluation.

output from bootstrap has mean zero and variance σ2
BS

where (again see [CLOT21])

σ2
BS
= ℓ ·

 

νbk · ( + 1) ·N ·

 

β2bk + 2

12

!

· σ2
bk

+

 

Q2 − β2·νbkbk

24 · β2·νbkbk

!

·
�

1 +
 ·N

2

�

(17)

+
 ·N

32
+

1

16
·
�

1 −
 ·N

2

�2 �

with σbk =
Æ

(22·b·N+1 + 1)/6. An important requirement for protocols is that the bootstrapping opera-
tion is deterministic.
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TFHE Bootstrapping

TFHE.BootStrp(ct, ƒ , BK;P,Q,Q′, ℓ, N,, βbk , νbk) :
This takes an input LWE ciphertext ct ∈ (Z/(Q))ℓ+1 encrypting a messagem, and produces
an F-GLWE ciphertext in (Z/(Q′))·N+1 encrypting the message ƒ (m). It uses the boot-
strapping key BK defined with respect to the modulus Q′ . It assumes ƒ is negacyclic on the
plaintext domain of ct.

1. If ctType(ct) 6= LWE then bort.
This is purely a sanity check, and can be ignored in correct implementations.

2. Parse BK as {BK } for  ∈ [0, . . . , ℓ − 1] .
3. Define R as the ring of degree Nwith ring indeterminate X.
4. Δ← Q′/P.

Note this might not be the global value of Δ.
5. (̃, b̃)← TFHE.ModStch(ct;Q, ℓ,N).
6. B← X− b̃ ·

∑N−1
j=0 Δ · ƒ (d j · P/(2 ·N)c) · Xj .

7. Define the trivial GLWE ciphertext ct′ ← (0,0, . . . ,0, B) ∈ R+1Q′ .
8. For  ∈ [0, . . . , ℓ − 1] do:

(a) ĉt← ((X̃[ ] − 1) · ct′[0], . . . , (X̃[ ] − 1) · ct′[]).
(b) ct′ ← TFHE.Add

�

TFHE.EternProdct(ĉt, BK , Q′, βbk , νbk), ct
′
�

.
9. Return (TFHE.Ftten(ct′, N,), σBS), where σBS is computed from equation (17) using

the values of (ℓ,Q′, N,, βbk , νbk) used in this call.

Figure 26: TFHE Bootstrapping Algorithm Applying the Negacyclic Function ƒ .

5.6.3.10 PBS: The full PBSoperation is thecombinationof bootstrap andkey switch, seeFigure27. We
shall refer to this operation by the notation (′, b′)← PBS((, b), ƒ , PK), or sometimesmore succinctly by
ct′ ← PBSƒ (ct). As such the operationwill be correct (with a given probability) only if the input ciphertext
noise, at the point of the internal TFHE.BootStrp call, satisfies equation (15). The order of application of
bootstrap and key switch depends on whether the input ciphertext is of type LWE or F-GLWE.

TFHE Full PBS

TFHE.PBS(ct, ƒ , PK;P,Q, ℓ, N,, βksk , βbk , νksk , νbk) :
This takes an input LWE/F-GLWEciphertext encrypting amessagem, and outputs an LWE/F-
GLWE ciphertext encrypting the message ƒ (m). It assumes ƒ is negacyclic on the plaintext
domain of ct, and that ctType(ct) = type.

1. Parse PK as (pk, PKSK, KSK,BK).
2. If ctType(ct) = LWE then

(a) ĉt← TFHE.BootStrp(ct, ƒ , BK;P,Q,Q, ℓ, N,, βbk , νbk).
(b) ct′ ← TFHE.KeyStch(ĉt, KSK;Q, ℓ,N,, βksk , νksk).

3. Else
(a) ĉt← TFHE.KeyStch(ct, KSK;Q, ℓ,N,, βksk , νksk).
(b) ct′ ← TFHE.BootStrp(ĉt, ƒ , BK;P,Q,Q, ℓ, N,, βbk , νbk).

4. Return ct′ .

Figure 27: The Full TFHE PBS Algorithm.

5.6.3.11 Switch-n-Squash: Switch-n-Squash is a special kind of bootstrap, see Figure 28. The
underlyingbootstrapping key is assumed tobe for an input ciphertext of type LWE, soweneed todoakey
switch if the input ciphertext is of type F-GLWE. We shall refer to this operation by the notation (, b)←
TFHE.StchSqsh((′, b′), BK). As such the operation will be correct (with a given probability) only
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if the input noise satisfies equation (15) with σMS a function of N,Q and ℓ, i.e. we use

σMS
2 =

Q2

48 ·N
2
−

1

12
+ ℓ ·

�

Q2

96 ·N
2
+

1

48

�

. (18)

If the noise does not satisfy this requirement then the call to TFHE.ModStchwill abort. In this algo-
rithm, we need an additional bootstrapping key BK , which was computed as part of the key generation
operation when the flag ƒ g is set at the point of calling TFHE.KeyGen.

TFHE Switch-n-Squash

TFHE.StchSqsh(ct, BK;P,Q,Q, ℓ, N,, βbk , νbk) :
This takes an input LWE/F-GLWE ciphertext encrypting a message m and a ciphertext
modulus Q. It then outputs a F-GLWE ciphertext encrypting the messagemwith an LWE
dimension of ℓ = ·N and a ciphertext modulus Q.

1. If ctType(ct) = F-GLWE then ct← TFHE.KeyStch(ct, KSK;Q, ℓ,N,, βksk , νksk).
2. ct′ ← TFHE.BootStrp(ct, ƒ , BK;P,Q,Q, ℓ, N,, βbk , νbk), where ƒ is the identity func-

tion and is negacyclic on the plaintext domain of ct.
3. Return ct′ .

Figure 28: The TFHE Switch-n-Squash Algorithm.

The TFHE.StchSqsh operation produces an LWE ciphertext ct, encrypting the samemessage
m ∈ Z/(P), however the ciphertext has an  component of dimension ℓ =  · N (being the output of
flattening aGLWEciphertext of dimension over the ring of dimensionN), and uses a ciphertextmodulus
Q. The standard deviation of the noise term |p′ − Δ ·m| in the output ciphertext is σBS , where σBS is given
by equation (17), but with each variable · replaced by it’s · version (except for the variable ℓ), i.e.

σBS
2 = ℓ ·



 νbk · ( + 1) ·N ·





βbk
2
+ 2

12



 · σbk
2

+





Q
2
− βbk

2·νbk

24 · βbk
2·νbk



 ·

 

1 +
 ·N

2

!

+
 ·N

32
+

1

16
·

 

1 −
 ·N

2

!2




where σbk =
q

(22·b·N+1 + 1)/6. The output mean of |p′ − Δ ·m| is zero.

5.6.3.12 Optimization Using FFT: The main computational costs in our TFHE operations is line 6 of
Figure 25 which computes a sum of products of terms in RQ . Recall this computes a ring multiplication,
which if we process it efficiently, via the FFT based multiplication in Figure 4, will result in an error
vector being introduced. Luckily, as we are using a Type-II ciphertext representation for TFHE, the
error introduced by the FFT and inverse-FFT operations gets “absorbed” into the noise term in the FHE
ciphertext. We simply need to find a way of measuring the extra noise resulting from these operations,
and then account for it within our noise formulae. In [Tap23][Chapter 3] experiments are carried
out in order to determine an approximate formula for the resulting additional noise term in the entire
bootstrapping operation. This is determined to be

FFTNose(Q, ℓ,,N, βbk , νbk) = 2 · ℓ · ( + 1) ·N2 · β2
bk
· νbk .
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The value  (which is a function of Q) depends on the precision being used. With a mantissa of b bits we
have  = 2 · (log2Q − b) − 2.6; so for Q = 264 and using ƒ ot64we find  = 19.4, and for Q = 2128 and
using ƒ ot128we find  = 41.4.

If the FFT algorithm is used to implement 6 of Figure 25, then FFTNose(Q, ℓ,,N, βbk , νbk) (resp.
FFTNose(Q, ℓ,,N, βbk , νbk)) needs to be added onto the value of σBS (resp. σBS) when computing the
standard deviation of noise when exiting algorithm TFHE.BootStrp.

5.6.3.13 Admissible Linear Functions: In analyzing correctness for BGV we assumed a layered
circuit of multiplication operations followed by λ fan-in addition gates. We utilize a similar analysis here,
however we instead allow a restricted class of linear operations, followed by a PBS operation. We define
a set of admissible linear functions A. Each function h ∈ A is defined by a vector  ∈ Z/(P)t for some
(function specific) value of t. The function h on ciphertexts represented by the vector  is a function
of t ciphertexts c = (ct)t=1 . We have h(c) being given by the dot-product  · c (i.e. by executing t

TFHE.ScrMt operations and t − 1 TFHE.Add operations)
For a given set of admissible functionsA in an application we define the application constant

λ =mx
∈A

‖‖2.

The reason for taking the two-norm here is that we use λ to bound the expansion in the noise term after
applying a function h ∈ A. This is because if we take two independent centered Gaussian distributions
X0, X1 of standard deviation σ and two integersω0, ω1 , the variance of the random variable Y = ω0 ·X0 +
ω1 · X1 is (ω2

0 + ω
2
1) · σ

2 = ‖(ω0, ω1)‖22 · σ
2 .

We now present some examples here of plaintext spaces of interest and the associated sets of
admissible linear functions, as well as PBS operations.

P = 23 and Binary Operations: To execute binary circuits one can select a plaintext space of 3-bits, with
binary inputs and outputs being encoded as the bit sequences 00. We can add two, three, or four
such values using the linear functions (1,1), (1,1,1) and (1,1,1,1). The result modulo two, i.e. the XOR
operation, can then be obtained by applying the PBS operation with the negacyclic function ƒ⊕ which
maps  −→  (mod 2)when  ∈ {0,1,2,3}, and  −→ −( (mod 2))when  ∈ {4,5,6,7}. Note that,
this gives the correct reduction when we perform four additions followed by the PBS, since −0 = 0.
However, if we performed five additions before applying the PBS then the output would not necessarily
lie in {0,1} as it would equal 7 if all inputs were one.

Multiplication (i.e. an AND) is performed by executing the linear function (1,1) followed by a PBSwith
the negacyclic function ƒ∧ which maps the bit sequence 00 to .

Thus, in the case, we haveA = { (1), (0), (1,1), (1,1,1), (1,1,1,1) } and so λ = 2.

P = 25 and Integers Modulo Four: We can perform arithmetic modulo four, by taking a plaintext space
of five bits, encoding inputs and outputs (modulo four) using the bit sequence 000y. The extra two bits
of “message” space, before the zero bit used for padding in PBS operations, can be used for carry bits
during our linear operations. Thus we have the admissible linear operations

A = { (1,1), (2,1, 2,2), . . . , (5,1, . . . , 5,5) }

,j ≥ 0 and for
∑
j=1 ,j ≤ 5 for  = 1,2,3,4,5. Thus λ = 5. The PBS operation following one of these

admissible operations being for the function ƒmod 4 which maps  −→  (mod 4) for values 0 ≤  ≤ 16.
Multiplication of integers modulo four is obtained using the combination of the linear map  = (4,1)

followed by the PBS defined by the negacyclic function ƒ× given by Table 6

Input Input
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Input Represents Output Input Represents Output
0 (0,0) 0 8 (2,0) 0
1 (0,1) 0 9 (2,1) 2
2 (0,2) 0 10 (2,2) 0
3 (0,3) 0 11 (2,3) 2
4 (1,0) 0 12 (3,0) 0
5 (1,1) 1 13 (3,1) 3
6 (1,2) 2 14 (3,2) 2
7 (1,3) 3 15 (3,3) 1

Table 6: Description of the function ƒ× .

5.6.3.14 Correctness: To enable homomorphic operations to proceed, with negligible probability of
error err , we require the following two equations to be satisfied

|μPKE| + cerr,1 ·
r

σ2PKE + σ
2
DS

≤







cerr,1 ·
Ç

σ2BS + FFTNose(Q, ℓ, q,N, βbk , νbk) + σ
2
KS if type = LWE,

cerr,1 ·
Ç

σ2BS + FFTNose(Q, ℓ, q,N, βbk , νbk) if type = F-GLWE;
(19)

Δ

2
>







cerr,1 ·
Ç

λ2 · (σ2BS + FFTNose(Q, ℓ,,N, βbk , νbk) + σ
2
KS) + σ

2
MS if type = LWE,

cerr,1 ·
Ç

λ2 · (σ2BS + FFTNose(Q, ℓ,,N, βbk , νbk)) + σ
2
KS + σ

2
MS if type = F-GLWE.

(20)

where σPKE is from equation (13), σDS is from (11), σMS is from equation (16), σKS is from equation (14),
and σBS is from equation (17).

The first equation here (equation 19) is to ensure a fresh ciphertext has small enough noise standard
deviation in order to be able to be further processed, i.e. the expected noise value after the application
of TFHE.Enc followed by TFHE.DmensonStch is less than the expected noise value which is output
by the full PBS operation.

The second equation (equation 20) is to ensure the PBSƒ operation does not abort. Notice the
difference in the position of the σ2

KS
term depending on the value of type, this is related to the fact

as to whether the key switching operation occurs before the admissible linear operations or after the
admissible linear operations, i.e. the order of the execution of TFHE.BootStrp and TFHE.KeyStch in
Figure 27.

For our threshold protocol to work when we have ƒ g = tre then we also require (assuming a
threshold decryption operation follows a PBS operation and not an application of a linear function h ∈ A)
that,

cerr,1 ·
r

σ2BS + FFTNose(Q, ℓ,,N, βbk , νbk) + σ
2
KS + σMS

2 <
Δ

2
, (21)

BStchSqsh = cerr,1 ·
Ç

σBS
2 + FFTNose(Q, ℓ,,N, βbk , νbk) ≤ 270. (22)

The first equation here is to ensure that the TFHE.StchSqsh operation does not abort, whilst the
second equation is to ensure that we have enough gap after a TFHE.StchSqsh operation to apply
noise-flooding in our threshold decryption operation. If equation (22) is satisfied then we have the
equation

2 · nSmBnd · 2stt · BStchSqsh <
Δ

2

for Δ = Q/Pwith Q = 2128 , P ≤ 25 , nSmBnd ≤ 10,000 and stt = 40. It is this last equation which will
imply correctness of our threshold decryption operation.
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5.6.3.15 Security: To ensure security of TFHE we need to assume, just as with BGV and BFV, an
additional hardness assumption. Recall the TFHE key generation algorithm in Figure 17 takes the under-
lying LWE secret key s, and encrypts each bit via the GGSW scheme under the key (s0, . . . ,s−1), and
(again under the GGSW scheme) under the key (s0, . . . ,s−1). These two sets of encryptions form the
standard and TFHE.StchSqsh bootstrapping keys BK and BK . In addition the keys s are encrypted
under the key s using the Le encryption scheme, to form the key-switching keys KSK and PKSK . Thus
we have a rather intertwined form of circular security.

Thus we need to make the circular security assumption that giving out such encryptions does not
weaken the security of the underlying LWE problem. We refer to this as the TFHE-Circular-Security
assumption.

Definition 6 (TFHE-Circular-Security Assumption). The Ring-LWE problem given by a sample of the
form

pk ← RQ, pkb ← pk �
↔
s + e ∈ RQ

for e← TUnƒorm(ℓ̂, −2bℓ̂ ,2bℓ̂ ), for a fixed value s← {0,1}ℓ̂ , is still hard in the presence of the KSK , PKSK ,
BK , and BK samples generated in Figure 17.

Assuming this we have the following theorem, which is standard

Theorem 2. The TFHE scheme is an IND-CPA Somewhat Homomorphic Encryption scheme assuming
the associated Ring-LWE problem, LWE problems and GLWE problems are hard, and the TFHE-Circular-
Security assumption holds.

This circular security assumption cannot be removed in TFHE as it is needed to enable bootstrapping,
and hence evaluation of functions of arbitrary depth. To ensure concrete security we simply need to
select the values bℓ , b·N and b·N appropriately from the values in Table 24.

5.6.3.16 Parameters: Then the question arises as to what parameters can we utilize which ensures
that the associated problems are indeed hard, and we can at the same time evaluate functions homo-
morphically for a given plaintext size P. We need to find parameterswhich satisfy the equations (19)–(22).
Recall, following Design Decision 10, we assume amaximum value of nSmBnd = 10,000 in deriving
the parameters for the TFHE.StchSqsh operation, i.e. , N, νbk and βbk .

There are a plethora of possible choices, but to enable as efficient an implementation as possible we
prioritize the values (,N,νbk)which minimize the expression

costks + costbs = (2 ·N · · νksk)) +
�

2.7 · ( + 1)2 · νbk ·N + ( + 1) · (νbk + 1) ·N · (3.2 + log2N)
�

.

This is a rough approximation to the cost of executing the PBS operation, see [Tap23]. We also try to
minimize the same expression when (,N,νbk) is replaced by (,N,νbk). Note that, our parameters
supporting threshold operations are the same as those for non-threshold operations (unlike in the case
of BGV and BFV).

As in our examples above, for admissible linear function, we examine the plaintext spaces P = 8
and P = 32, the first with λ = 2 and the second with λ = 5. This gives us (using the formulae and
methods of this document) the parameters in Table 7, using cerr,1 = 13.15 and stt = 40. We see that
the parameters using type = F-GLWE will produce a faster PBS operation, at the expense of larger
ciphertexts being operated on homomorphically. For all parameter sets we assume the worst possible
soundless slack of zk-sck =

p

2 · ℓ̂which can arise using the the worst zero-knowledge proof, in this
respect, and the most efficient public key encryption method known14 .

Recall, as explained on pages 41 and 90 in determining these parameters we have targetted an error
probability of err = 2−128 in order to prevent IND-CPAD attacks, using the methods described in this
document.

14Which we note is not covered in this document, but is included in the linked Rust libraries and is explained in [BdBB+25].
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This Document TFHE-rs
type = LWE type = F-GLWE type = F-GLWE

P = 8 P = 32 P = 8 P = 32 P = 32

λ 2 5 2 5 5
ℓ̂ 1024 2048 1024 2048 2048
ℓ 926 1004 848 926 918
 2 1 2 1 1
N 1024 4096 1024 4096 2048
Q 264 264 264 264 264

νpksk 2 4 1 1 4
βpksk 27 24 215 217 24

νbk 1 1 1 1 1
βbk 218 221 218 222 223

νks 2 5 2 3 4
βks 27 24 26 25 24

bℓ̂ 42 16 42 16 17
bℓ 44 42 46 44 45
b·N 16 0 16 0 17
 4 1 4 1 2
N 1024 4096 1024 4096 2048
Q 2128 2128 2128 2128 2128

νbk 3 3 3 3 3
βbk 224 224 224 224 224

b·N 27 27 27 27 30

Table 7: Sample parameters for TFHE.

In the last column of Table 7 we give the parameters for P = 32 and λ = 5 used in the Rust library
TFHE-rs. These parameters achieve computational security parameter sec = 128 and failure probability
err = 2−128 . They use type = F-GLWE, as these are the most efficient parameters. The astute reader
will notice that the parameters are slightly lower than the equivalent ones derived using the methods in
this document (in particular the values of N and N are half those of the equivalent ones in this document,
resulting in much better performance).

To achieve such improvements one needs to implement a number of optimizations to the “basic”
TFHE schemewe have described here. The main ones of these are as follows:

1. A “randomized” versionof theTFHE.ModStchoperation isneeded,which isdescribed in [BdBB+25,
BJSW24]. The introduced “drift mitigation technique” accounts for themain improvement in param-
eters in the last column of Table 7. In practice, this technique ensures that the cost of bootstrapping
with a failure probability of err = 2−128 is nearly equivalent to that of a conventional bootstrapping
with err = 2−64 . The use of this technique, however, requires some encryptions of zero to be added
into the public key material. Thus key generation becomes a little more complex than what is
described in this document.

2. In TFHE-rs a four bit integer (for example) is held as two ciphertexts which encrypt the plaintext
values 000b3b2 and 000b1b0 . The three zero bits in each ciphertext correspond to the padding bit
(needed for the PBS operation) and two bits of carry space (to enable a limited amount of efficient
linear operations as described above. However to encrypt the four bit integer, the four bits are
packed into one ciphertext which encrypts 0b3b2b1b0 . The associated ciphertext is then accom-
panied with a zero-knowledge proof of correct encryption (such as those described in Section 7.6).
On receipt of a ciphertext, the zero-knowledge proof is checked, then a TFHE.DmensonStch
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is performed to a ciphertextwith type = LWE, then two TFHE.BootStrp’s are performed to un-
pack the single ciphertext into two ciphertexts, of type = F-GLWE, encrypting the plaintext values
000b3b2 and 000b1b0 . Thismore complex procedure, than that described in this document, allows
a reduction in the amount of zero-knowledge proofs needed during encryption. However, it means
the νpksk and βpksk values in the last column of Table 7 correspond to a keyswitch to a ciphertext
of type = LWE and not type = GLWE as one would normally expect.

3. Finally, a more elaborate method to optimize for the “best” parameters is used in order to settle on
the final choice of parameters, see [Tap23] for further details.

Whendeploying a protocol basedonTFHE, one typically incorporates these optimizations and, in practice,
uses the parameters from the last column. Recall we are mainly interested in describing the threshold
protocols related to FHE, and such optimizations do not really affect our description of these protocols,
thus we do not go into further detail in this document.
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6 System model

In this section we summarize some of the more important system assumptions in one place. Some of
these assumptions and decisions have been discussed earlier.

6.1 Threshold Profiles

NIST define a number of threshold profiles, for when t < n/3; in particular nSƒH, nMƒH, nLƒH and nEƒH.
TheS,M, L andEhere refer to a small, medium, largeor enormousnumberof players, and theH refers to the
super-honestmajority of t < n/3. We require a slightlymore nuanceddescription, of the different profiles.
So we add some additional profiles into the mix, which we list in Table 8. The main two distinctions are
that our protocol choices are different depending on the size of

�n
t

�

, and on whether we assume t < n/3
or t < n/4. To ease exposition we will divide the protocol profiles we will use into “small” and “large”
families. Which we denote by

nSm = {nSƒH, nmƒH},

nLrge = {nMƒH+ , nLƒH+ , nEƒH+}.

We shall refer to the four NIST profiles for t < n/3 as the NST threshold profiles, i.e.

NST = {nSƒH, nMƒH, nLƒH, nEƒH}.

Category Profile n t
�n
t

�

NST nSƒH 4 ≤ n ≤ 8 t < n/3 -
nMƒH 9 ≤ n ≤ 64 t < n/3 -
nLƒH 65 ≤ n ≤ 1024 t < n/3 -
nEƒH n ≥ 1025 t < n/3 -

nSm nSƒH 4 ≤ n ≤ 8 t < n/3 -
nmƒH 9 ≤ n ≤ 64 t < n/3 < nSmBnd

nLrge nMƒH+ 9 ≤ n ≤ 64 t < n/4 -
nLƒH+ 65 ≤ n ≤ 1024 t < n/4 -
nEƒH+ n ≥ 1025 t < n/4 -

Table 8: Summary of Threshold Profiles.

Our extra divisions depend on whether the value of
�n
t

�

is greater than or less than nSmBnd.
When less than nSmBndwe obtain robust protocols for t < n/3 and when greater than or equal to
nSmBndwe obtain robust protocols for t < n/4. The protocols in the regime of small

�n
t

�

are based
on PRSS protocols, which provide efficient VSS protocols essentially for free. See the discussion related
to Design Decision 10, where we discuss the pro’s and con’s related to the choice of nSmBnd. Recall,
that in this document we assume than nSmBnd has a maximum value of 10,000.

Our protocols are described for PRSS instantiations based on the original presentation given in
[CDI05]; as we are working with Shamir Sharings of degree t. However, by increasing the degree, and
having a gap between the degree and the threshold value, one could potentially obtain more efficient
PRSS instantiations (with less keys) using the techniques described in [BBG+21, EHL+23] based on
covering designs. Similarly we do not utilize optimizations based on packed secret sharings.
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6.2 Initialization/SetUp

We assume implicitly a protocol, which we call SetUp, which agrees on the set of parties {P1, . . . ,Pn},
and distributes pair-wise MAC (and potentially encryption) keys between them in order to ensure that
all communication between players is over authentic channels (and potentially private channels). If
we require private channel communication in any protocol we will state so explicitly. In practice these
pair-wise authentic channels can be set up via TLS connections and a PKI, and thus one obtains private
channels in some sense “for free” (although wewill rarely use private communication). All uses of private
communication in protocols below are marked in bold.

Along with this basic setup procedure, the MPC protocols defined in Section 7 also define protocol
specific setup procedures. For example, initialization protocols for the PRSS keys (for which we provide
active-with-abort and robust versions). The MPC protocols have initialization routines which also define
various lists of data, or other parameters. Such protocol specific initialization routines could be merged
with the authenticated channel SetUp procedure in any instantiation.

6.3 Cryptographic Assumptions

We have cryptographic assumptions underlying the FHE schemes which we are providing threshold
variants of. The threshold protocols themselves are basedmainly on information theoretic constructions,
and so-called “lightweight” cryptography, i.e. the application of hash functions and pseudo-random
functions. Thus all constructions are inherently post-quantum secure, at the same level of security as
AES-128. For those wishing post-quantum security at a level equivalent to AES-256 various modifica-
tions to what follows would be needed, but these are mainly changes in security parameters and output
sizes of hash and pseudo-random functions. In particular in moving to AES-256 level of security the
underlying FHE systems would also need to have increased security parameters in any case.

The only place where we utilize pre-quantum primitives is in the ZKPoKs of correct FHE encryption
which are based on vector commitments. Here we utilize pairings on elliptic curves, which are not
post-quantum secure. However, the zero-knowledge property holds irrespective of the security of
the pairings. We only require pairing assumptions to establish soundness. The soundness of our proof
systems, in an application, may not need to hold for a long time. So it maybe argued that a pre-quantum
primitive for soundness may be sufficient in applications for the near future.

6.4 Offline–Online Paradigm

As outlined in Design Decision 5 we divide our MPC protocols into a function independent offline phase
and an online phase which executes the desired functionality. Indeed, as will be seen later, we have
an offline phase which generated multiplication triples, on top of this is another semi-offline phase
which generates shared bits, and then finally on top of this are defined the threshold decryption and key
generation procedures.

For threshold profiles nSmwe require no offline phase to execute the threshold decryption opera-
tion, and thus the offline phase (in particular the bit-generation methodology) is only needed for the key
generation procedure. These protocols work for t < n/3.

For threshold profiles nLrgewe require an offline phase to generate shared random bits for both
threshold decryption and threshold key generation. We only define a shared random bit generation
method for q a power of two; thus threshold profile nLrge can only be applied to thresholdize the TFHE
scheme; and not the BGV or BFV scheme. Generating shared random bits is possible theoretically in the
regime where q is a product of odd primes, but the protocol is relatively complex and we decided not to
include it in this document. This is captured in Design Decision 13 and Design Decision 14.
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6.5 Network model

We describe our protocols in two network models, both with secure authenticated point to point chan-
nels:

• the synchronous model for the preprocessing phase
• the asynchronous model with eventual message delivery for the online phase

We note that a protocol that works in the asynchronous can be instantiatedwith a synchronous network
as the synchronous model is more stringent.

Our underlying network is generally considered to be synchronous, however, in Section 7 we outline
when a specific protocol does not need to make this synchronicity assumption. Generally speaking the
offline phases require a synchronicity assumption, but the online phases do not.

6.5.1 Secure Authenticated Point To Point Channels

To realize the assumption that our channels are secure and authenticated, we instantiate our point to
point channels using tonc (a Rust library) implementation of gRPC’s SSL/TLS channels, and we assume
that eachparty has access to theTLScertificates of all the parties. Thequestion of how these certificates
are distributed is out of the scope of this report.

6.5.2 Synchronous Model

In our synchronous model, parties have access to bounded-delay channels with known upper bound.
This means that a message sent by an honest party is certain to be delivered within a known delay to
its recipient. In practice, this known upper bound is fixed as a configuration parameter of the protocol
and should take into account the expected round-trip time between the parties (e.g. this bound should
be bigger in a WAN than in a LAN setting) and the time to compute the message to be sent for the
current round. As such, if no message is received after this known upper bound has expired, the sender
is consideredmalicious by the receiver. In practice, when we assume synchronous networks, we set
this upper bound to ten seconds.

We note here that in models of synchronous networks, parties must ensure that the round has com-
pleted for all the honest parties before starting the next round. For practical reasons, our implementation
does not provide such guarantees as this would imply that every round has to last exactly the given
upper bound, or parties need to exchange a “proceed” message. In our implementation, parties move
on to the next round as soon as they are able to (i.e. once they have receivedmessages from all other
parties), without waiting for the upper bound to expire. This allows us to have rounds much shorter than
the worst case upper bound with the caveat that some parties may send their message for round r + 1
whilst some other parties have not yet received all their messages for round r . We include the round
number as metadata in every message sent to ensure that the receiver can handle it correctly, even if
sender and receiver are not perfectly synchronized, i.e. moved to different rounds.

In theory this simplification could result in attacks; where an adversary sends a message in round r
to one honest party in a round, making that honest party pass to round r + 1. However, the adversary
does not send a message to a second party for round r , until it has received the response in round r + 1
from the first honest party. Our protocols are designed to try and avoid such problems by relying either
on guaranteed broadcast protocols, or post-event checking of data.

6.5.3 Asynchronous Model

In our asynchronous model, parties only have access to a channel that ensures eventual delivery of the
messages. We use the same implementation as for the synchronous model, but with an upper bound
fixed to a year. However, our protocols in the asynchronous model are able to proceed faster as they are
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designed to cope with some players failing to sendmessages within a suitable time period. In particular,
when working in the asynchronous model an honest party has to move on to the computing the next
message as soon as it has received n − tmessageswhere n is the number of parties and t the corruption
threshold to guarantee eventual termination. This is because, by definition, when a message is missing,
there is no way to wait long enough to distinguish between the case where the message was indeed
sent by an honest party and took very long to arrive or if the message was never sent by a malicious
party. In practice, our realizations of the synchronous and asynchronous channels do not differ much.
This is mainly because in the synchronous setting we allow parties to move on to the next round as soon
as they are able to. However, the added benefit of working in the asynchronous model is that we can
not mistakenly consider a party adversarial because of a slower than expected network. As such, all
protocols which can be run in this asynchronous setting are run in it.

6.6 Adversary

As explained earlier, we assume a static, malicious adversary, that can corrupt up to t parties, and which
is fully malicious; i.e. when controlling a party it may arbitrarily deviate from the protocol. This deviation
can include not sending messages when required to do so.

The assumption of static adversaries is purely for modeling purposes. We conjecture that our pro-
tocols are secure even for adaptive adversaries, since they are basedmainly on information theoretic
constructions. The only places where adaptivity is a problemwould be where we send data privately
between players, as then the standard security proofs for adaptive adversaries would seem to require a
form of equivocable encryption to be used. Such private transmissions are confined to sub-procedures
in the offline phases of our protocols.

In Section 7 we also provide mechanisms for ReSharing a secret. This enables a sharing to be re-
randomized between a set of parties, or for a share to be transferred from one set of parties to another.
Such re-sharing protocols are needed in real systems to cope with parties leaving/joining a group. In
addition such ReSharing, combined with a mechanism to ensure guaranteed erasure of secret shares
from a previous time period, allows a form of proactive security to be provided. Thus if an attacker breaks
into up to t participants in one time period, this does not help him when breaking into more participants
in a future time period. Thus as long as the attacker does not compromise more than t parties per time
interval security is maintained.
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7 Protocol description

Our protocol stack is divided into a number of layers.
• At layer zero we havemethodologies and schemeswhich are not actually protocols, but algorithms.
This includes algorithms for processing elements in Galois rings, and underlying mathematical
constructs. We also assume at layer zero a SetUp process, which we outlined above in Section 6.2.

• At the bottom layer of the main stack of protocols (which we call layer one) are those protocols
related tomanaging the transmission, opening and initialization of the secret sharing schemes, plus
other “book-keeping” protocols.

• At the next layer (layer two) are those protocols related to setting up the offline data preparation of
our main core MPC protocol. This layer comes in two variants: One where

�n
t

�

is “small”, which we
denote byMPCS , and one when

�n
t

�

is “large”, which we denote byMPCL . TheMPCS protocol works
for t < n/3, whilst theMPCL protocol requires us to assume that t < n/4.

• At the next layer (layer three) are the protocols related to the online execution of the MPC. All the
protocols here are able to be run asynchronously (except for any calls to the offline phase needed).
This layer implements in essence an arithmetic black box over the underlying Galois Ring, as well
as generating the shared random bits. This layer is defined totally generically, independent of the
underlying protocols at layer two. We present the bit generation protocols in this layer, as they are
inherently asynchronous. One could consider them in the offline layer, or even a sub-procedure in
the final fourth protocol layer if desired.

• Finally we have our protocols (on layer four) for threshold key generation, threshold decryption, and
resharing of the shared secrets of the FHE schemes.

• We also provide a layer five set of protocols which allow for a user to prove in zero-knowledge that
an FHE ciphertext has been created correctly.

For every layer except layer zero, we assume the existance of a session ID (sd) and a round ID (rd) in
every protocol. For brevity, in this document, these are not explicitly given as the input to every protocol.
The session ID matches the definition of session ID in the UC framework, namely protocols running in
the same session should only accept messages that is tagged with the same session ID. The round ID
serves a similar role as the sub-session ID from the UC framework. Normally, in the context of the UC
framework, the sub-session ID enables concurrent composition of sub-protocols under the same sd.
None of our protocols use concurrent composition so we can use a counter that is incremented in every
round (rd) as the sub-session ID in our description.

In what follows wewill make extensive reference to the threshold profiles discussed in Section 6.1.
We summarize the protocols in Table 9, as well as what threshold profiles families they are used in in

our protocol stack, and whether they work over synchronous or asynchronous networks. In the notes
column we summarize exactly what properties this protocol gives us, or what requirements it has, if
used as a separate protocol.

Threshold Sync vs
Layer Protocol Profile Async Notes
Zero BW(c, e) All N/A e ≤ b(n − v)/2c

Go(c, e) All N/A e ≤ b(n − v)/2c
ErrorCorrect(q,c, e) All N/A e ≤ b(n − v)/2c
SynDecodeF(p, Se(Z)) All N/A e ≤ b(n − v)/2c
CorrectF(p, r) All N/A e ≤ b(n − v)/2c
SynDecodeGR(q, Se(Z)) All N/A e ≤ b(n − v)/2c
CorrectGR(q, r) All N/A e ≤ b(n − v)/2c
Shre() All N/A Any, Semi-Honest
OpenShre({〈〉}∈S) All N/A t < n/2, A-w-A
Commt(m) All N/A ROM
Verƒy(c, o,m) All N/A ROM
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Soe() All N/A q = 2k

Sqrt(, p) All N/A p prime
TreePRG.Gen(seed, d) All N/A -
TreePRG.GenSb(seed, b, d, ) All N/A -
TreePRG.Pnc(seed, d, T) All N/A -
TreePRG.PncSb(D, b, T, ) All N/A -
TreePRG.GenPnc(D,T, d) All N/A -

One Synch-Brodcst(S,m) All Sync t < n/3
RobstOpen(P , 〈〉d) All Any d + 2 · t < n
RobstOpen(S, 〈〉d) All Any d + 2 · t < n
BtchRobstOpen((〈〉d)ℓ=1) All Sync d + 2 · t < n
VSS(Pk , s, t, Corrpt) All Sync t < n/3
AgreeRndom(S, k) nSm Sync Any, Semi-Honest
AgreeRndom--Abort(S, k) nSm Sync Any, A-w-A
AgreeRndom-Robst(S, k, 〈r〉) nSm Any t < n/3
PRSS.nt() nSm Sync Any, A-w-A
PRSS.nt(Corrpt) nSm Sync t < n/3
PRSS.Net() nSm N/A Any
PRSS.Check(cnt, Corrpt) nSm Sync t < n/3
PRZS.Net() nSm N/A Any
PRZS.Check(cnt, Corrpt) nSm Sync t < n/3
PRSS-Msk.Net(Bd, stt) nSm N/A Any
ConFp(Corrpt) nLrge Sync t < n/3

Two MPCS.nt() nSm Sync t < n/3
MPCS.GenTrpes(Dspte) nSm Sync t < n/3
MPCS.NetRndom(Dspte) nSm N/A Any
ShreDspte(P, s, d,Dspte) nLrge Sync t < n/3
LocSngeShre(P, (s1, . . . , sℓ), Dspte) nLrge Sync t < n/3, ROM
LocDobeShre(P, (s1, . . . , sℓ), Dspte) nLrge Sync t < n/3, ROM
SngeShrng.nt(Dspte) nLrge Sync t < n/3
SngeShrng.Net(Dspte) nLrge Sync t < n/3
DobeShrng.nt(Dspte) nLrge Sync t < n/3
DobeShrng.Net(Dspte) nLrge Sync t < n/3
MPCL.nt(Dspte) nLrge Sync t < n/3
MPCL.GenTrpes(Dspte) nLrge Sync t < n/4
MPCL.NetRndom(Dspte) nLrge Sync t < n/3

Three MPC.Open(〈〉) All Any t < n/3
MPC.Mt(〈〉, 〈y〉, Corrpt) All Any t < n/3
MPC.GenBts() All(*) Any t < n/3

Four MPC.NeHope(N,B) All(*) Any t < n/3
MPC.TUnƒorm(N, −2b,2b) All(*) Any t < n/3
BGV.Threshod-KeyGen(. . .) nSm Any t < n/3
BGV.Threshod-Dec(ct, 〈sk〉) nSm Any t < n/3
BFV.Threshod-KeyGen(. . .) nSm Any t < n/3
BFV.Threshod-Dec(ct, 〈sk〉) nSm Any t < n/3
TFHE.Threshod-KeyGen(. . .) All Any t < n/3
TFHE.Threshod-Dec-1(ct, PK, 〈sk〉) All Any t < n/3
XOR(〈〉, 〈b〉) All Any t < n/3
BtAdd((〈〉)k−1=0 , (〈b〉)

k−1
=0 ) All Any t < n/3

BtSm((〈〉)k−1=0 ) All N/A -
BtDec(〈〉) q = 2k Any t < n/3
TFHE.Threshod-Dec-2(ct, 〈sk〉) All Any t < n/3
ReShre(S1, S2, 〈sk〉S1 ) All Sync t1 < n1/3, t2 < n2/3

Five CRS-Gen(sec, q̄, d̄, B̄) All Sync t < n
CRS-Gen.nt(sec, q̄, d̄, B̄) All Sync t < n
CRS-Gen.Updte(ppj−1) All Sync t < n
CRS-Gen.Otpt() All Sync t < n
VC-Proe-1(p, (A,s),b) N/A N/A ROM
VC-Verƒy-1(p, (A,s), prƒ ) N/A N/A ROM
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VC-Proe-2(p, (A,s),b) N/A N/A ROM
VC-Verƒy-2(p, (A,s), prƒ ) N/A N/A ROM
MPCtHed-Proe-1((A,s),b) N/A N/A ROM
MPCtHed-Verƒy-1((A,s), prƒ ) N/A N/A ROM
MPCtHed-Proe-2((A,s),b) N/A N/A ROM
MPCtHed-Verƒy-2((A,s), prƒ ) N/A N/A ROM
XOF-Shre(,XOF) N/A N/A -
MPCtHed-Proe-3((A,s),b) N/A N/A ROM
MPCtHed-Verƒy-3((A,s), prƒ ) N/A N/A ROM

Table 9: Summary of Protocols. All protocols are robust, unless marked A-w-W or Semi-Honest. An All(*) means
all except nLrgewhen q = p1 · · ·pk .

105



7.1 Layer Zero

7.1.1 Galois Rings

Throughout this document we let q denote the modulus for our secret sharing scheme. In applications
this is related to a ciphertextmodulus of the underlyingFHE scheme. For example in TFHE itmaybeeither
Q or Q, in BGV/BFV it can be the modulus at the lowest level, i.e. Q1 , or the highest level Q = Q1 · · ·QL .

The secret sharing modulus q will either be a prime power q = pk , or will be a product of distinct
primes q = p1 · · ·pk . In the latter case we let p denote the smallest prime dividing q. When q = pk it will
be the case, in our applications, that p is very small (usually p = 2). When q = p1 · · ·pk it will be the case,
in our applications, that p is relatively large (over 20 bits). These last facts needs to be kept in mindwhen
reading this section.

In addition, throughout this document, we let F(X) denote a monic polynomial in Z[X] which is
irreducible modulo all primes dividing q, and has degree d. We can think of F as also being defined over
Zp , or over Z/(q). That F(X) is irreducible modulo pmeans that the p-adic ring of integers

Zp[θ] = Zp[X]/F(X)

is an unramified extension of Zp of degree d. See [Cas86] for a thorough treatment of ring extensions
of Zp and further results.

Recall, by Parameter Choice 3, the degree d and the prime p are related to the number of playersn
wewill be able to support in our protocols by the equation

pd > n.

If this equation is not satisfied, then dwill need to be increased for the application.
When q = 2k , and since are only going to be interested in values of n less than 255, to fix the repre-

sentations in this document we select the irreducible polynomial F of degree dwhen q is a power of two
according to Table 10. When q = p1 · · ·pk , the value of pwill already be very large in our application, and
so, in this case, one can take d = 1 and F(X) = X.

n d Polynomial
4 ≤ n ≤ 7 3 X3 + X + 1
8 ≤ n ≤ 15 4 X4 + X + 1
16 ≤ n ≤ 31 5 X5 + X2 + 1
32 ≤ n ≤ 63 6 X6 + X + 1
64 ≤ n ≤ 127 7 X7 + X + 1
128 ≤ n ≤ 255 8 X8 + X4 + X3 + X + 1

Table 10: Table of irreducible polynomials F(X) to be used when q = 2k .

We define the Galois ring
GR(q, F) = (Z/(q))[X]/F(X).

Just as all finite fields of characteristic p and degree d are isomorphic, it turns out that all Galois rings of
degree d over Z/(q) are isomorphic. Thus one could simply talk about GR(q,d) and ignore the specific
value of F. However, as we aim to be concrete, and enable implementers to implement algorithms, we
suppose that a specific F has been chosen and that the ring GR(q,d) is explicitly represented as a
polynomial ring with arithmetic performedmodulo q and F.

When q is a prime power, i.e. q = pk , we can alternatively think of GR(q, F) as the ring Zp[θ] but held
with only k digits of p-adic precision. Indeed, in that case, we have the ring isomorphism

GR(q, F) ∼= Zp[θ]/(pk).
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Since Zp[θ] is an unramified extension we have that GR(q, F) contains a unique maximal ideal (p), i.e.
the ideal consisting of all multiples of p. In particular

GR(q, F)/(p) ∼= Fpd ,

where Fpd is the finite field of characteristic p and degree d. We let this isomorphism be denoted by

π : GR(q, F) −→ Fpd , (23)

which we refer to as the “reduction modulo pmap”. One can think of Fpd = GR(p, F) as being contained
(as a set, and not as a field) inside GR(q, F).

When q = p1 · · ·pk the Galois ring GR(q, F) is equal to Z/(q), since we pick F(X) = X in this case. In
this case we can also consider

GR(p, F) = {−dp/2e + 1, . . . , bp/2c} ∼= Fp

as being contained in GR(q, F) = Z/(q) as a set. In this case we have a map πp : GR(q, F) −→ Fp for all
prime divisors p of q.

At various points we need to convert a Galois Ring element to a bit/byte string. This is done via the
function GRencode(α). An element in GR(q, F) can be considered as a vector of d elements in Z/(q), i.e.

α = 0 + 1 · X + . . . + d−1 · Xd

with  ∈ Z/(q). Each element in Z/(q)we encode as its byte representation, consisting of exactly dq/8e
bytes. We then implement GRencode(α) as

GRencode(α) = 0‖1‖ . . . ‖d−1,

which is a byte string of length d · dq/8e .
Note a major problem, which we need to be careful to work around, is that GR(q, F) has zero-divisors,

and is hence not an integral domain. One result of this is that we need to introduce the notion of an
exceptional sequence (note in our work the order of the elements is important thus we talk about
exceptional sequences and not exceptional sets).

Definition 7 (Exceptional Sequence). Let R denote a general commutative ring, with identity. Let
E = (α1, . . . , αn) ∈ Rn denote a sequence of n elements in R. We say that the sequence is an exceptional
sequence if for all , j ∈ [1, . . . , n] with  6= jwe have that α − αj ∈ R∗ .

Definition 8 (Lenstra Constant). The Lenstra constant of a commutative ring, with identity, is the
maximum length of an exceptional sequence in R.

The Lenstra constant of our Galois rings GR(q, F), when either q = pk or q = p1 · · ·pk , is equal to pd ,
and we can take as an exceptional sequence of maximal length the subset GR(p, F) ∼= Fpd , see Lemma
11 later.

Exceptional sequences are important to us, because the process of evaluating a polynomial at the
points in an exceptional sequence is invertible. In other words given the evaluation of a polynomial
of degree less than n, at the points in an exceptional sequence of size at least n, we can interpolate
the points to recover the original polynomial. To see this one can just consider standard Lagrange
interpolation.

Theorem 3 (Lagrange Interpolation). Let E = (α1, . . . , αn) denote an exceptional sequence in a commu-
tative ring Rwith identity. Define

Lj(Z) =
∏

 6=j
(Z − αj)
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then for all polynomials ƒ (Z) of degree at mostnwith coefficients in Rwe have

ƒ (Z) =
n
∑

=1

ƒ (α) · L(Z)

L(α)
.

Proof. The theorem follows from the usual proof of Lagrange interpolation; with the fact thatwe evaluate
at an exceptional sequence being used to ensure that one can divide by L(α) in the formula.

To ease notation later we write

δ(Z) =
L(Z)

L(α)
. (24)

These polynomials have the properties:
1. δ(α) = 1.
2. δ(αj) = 0, if  6= j.
3. deg δ(X) = n − 1.

If  ⊆ {1, . . . ,n} is a subset of indices of the exceptional set then we also define, for later, the Lagrange
polynomials

L

(Z) =

∏

j∈\{}
(Z − αj)

for  ∈  . This allows us to interpolate polynomials of degree less than || from evaluations at elements in 
via

ƒ (Z) =
∑

∈
ƒ (α) · δ (Z)

where

δ

(Z) =

L (Z)

L (α)
. (25)

For later use we define the VandermondematrixMr,c of dimension r × c, for r ≥ c, with entries coming
from an exceptional sequence (α1, . . . , αr) of size r , i.e.

Mr,c =













1 α1 . . . αc−11
1 α2 . . . αc−12
...

...
...

1 αr . . . αc−1
r













The matrixMr,c is super-invertible, as it is a Vandermonde matrix generated by elements from an excep-
tional sequence. Being super-invertible means that any subset of c rows and columns ofMr,c forms an
invertible c × cmatrix. That the matrix is super-invertible follows from the fact that α − αj is invertible in
the ring.

Wewill make use of the Schwartz-Zippel Lemma over Galois Rings to bound the probability of failure
in some of our protocols. This is given by

Lemma 10 (Schwartz-Zippel Lemma over Galois Rings). Let G(X1, . . . , Xn) denote a multinomial with
coefficients in GR(q, F) of total degree d ≥ 1. Let r1, . . . , rn be selected uniformly at random from an
exceptional set S, then

Pr[ G(r1, . . . , rn) = 0 ] ≤
d

|S|

In our application we will use this for multinomials of degree one, and so the probability will be
bounded by 1/ |S|. By selecting S = GR(p, F)we obtain a bound of 1/pd . In many applications this will
not be enough to ensure an exponentially small failure probability. In such situations we apply the above
Lemmamultiple times in order to obtain any desired small probability.
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7.1.2 Reed–Solomon Codes over Galois Rings

In this work we will focus on “traditional view” Reed–Solomon codes, as they map directly onto Shamir
Secret Sharing considered later. There is another view of Reed–Solomon codes (over fields), called
the BCH view (which is the way algorithms are often represented in coding theory presentations). For
the finite field case the two views are equivalent when one takes, as an exceptional sequence the set
{α} to be a complete set of n-roots of unity. This however requires such n-roots of unity to exist in
the first place, which can be a problem in our applications. Thus we focus on general “traditional view”
Reed–Solomon codes in this work. Traditional view Reed–Solomon codes can be seen as a special case
of what are called generalized Reed–Solomon codes in [Hal15][Chapter 5].

Definition 9 (Reed–Solomon Code). For 0 ≤ v ≤ nwe define the Reed–Solomon code over the ring R,
with exceptional set E of sizen, as the set

RSn,v =
¦

(ƒ (α1), . . . , ƒ (αn)) : ƒ ∈ R[Z], deg(ƒ ) < v
©

.

The code maps polynomials of degree less than v into a vector of n ring elements. This code has
minimal distance dmn = n − v + 1, and so general coding theory tells us that we can detectn − v errors
and correct b(n − v)/2c errors. We are interested here in how this is explicitly performed.

Our Reed–Solomon code is generated by the VandermondematrixMn,v

c ∈ RSn,v ⇐⇒ c> =













1 α1 α21 . . . αv−11
1 α2 α22 . . . αv−12
...

...
...

...
1 αn α2n . . . αv−1n













·













ƒ0
ƒ1
...

ƒv−1













= Mn,v ·













ƒ0
ƒ1
...

ƒv−1













.

That decoding is possible (in the presence of no errors) follows from the fact that the matrix Mn,v is
super-invertible (or equivalently from the Lagrange interpolation formulae, given in Theorem 3 above).

Another characterization of RSn,v is the following, for r = n − v,

c ∈ RSn,v ⇐⇒
n
∑

=1

c ·
α
j


L(α)
= 0 ∀j such that 0 ≤ j ≤ r − 1, (26)

where L(Z) are the Lagrange polynomials from before. This follows from standard arguments using the
dual Generalized Reed–Solomon code, see [Hal15][Chapter 5], which are easily seen to generalize to
the Galois Ring case.

We define the syndrome polynomial of the received vector c by

Sc(Z) ≡
n
∑

=1

c

L(α) · (1 − α · Z)
(mod Zr). (27)

To detect errors in the code we simply need to compute the r linear equations, and see if they are all
zero or not. This means we can detect up to the potentially r = n − v errors. These r linear equations are
all zero, if and only if, the above syndrome polynomial is identically zero, i.e. we have c ∈ RSn,v if and only
if Sc(Z) = 0. For the proof of this see Lemma 12 later.

Assume a vector c is received, which is a noisy version of a Reed–Solomon code word. The vector
has s known erasure positions (marked with a ⊥ symbol), and at most e unknown error positions, where
2 · e + s ≤ n − v. We provide twomethods for error correction in such a situation. The first, using either
Berlekamp–Welch or Gao as a subroutine, takes as input the received vector and outputs the corrected
codeword. The secondmethod, called syndrome decoding, which we only consider in the case where
s = 0, takes as input the syndrome polynomial and outputs the error locations and the errors in those
locations. The reason for having twomethods, is that the firstmethodwill be usedwhen error-correcting

109



secret shares received from different players, whilst the secondwill be used to correct a sharing of a
sharing (which is a sub-protocol needed in some protocols such as the BGWMPC protocol [BGW88],
and for our resharing protocol later).

7.1.2.1 Error Correction over Finite Fields via Berlekamp–Welch: Our decoding algorithm will
output either the polynomial which generates the corrected codeword, or it outputs the symbol⊥, which
indicates that the input has more than e errors. It works by counting the number of erasure positions s,
and then applies the standard Berlekamp–Welch algorithm over the n − s remaining values.

Berlekamp–Welch over Fpd

BW(c, e):
1. Let s denote the number of values with c =⊥.
2. First check (if s = 0) whether c ∈ RSn,v (by computing syndromes), if it is return the

underling ƒ (Z) ∈ Fpd [Z] by Lagrange interpolation.
This step could be done for s > 0 by using different syndromes, but we ignore this
complication here.

3. LetA = {α}c 6=⊥ .
4. For ℓ ∈ [e, . . . ,0] do:

(a) Define a polynomial Q(Z) of degree less v + ℓ − 1, with unknown coefficients.
(b) Define a monic polynomial Q(Z) of degree ℓ, with unknown coefficients.
(c) Solve the system of linear equations, over Fpd ,

c · E(α) − Q(α) = 0 for α ∈ A,

Note we have at least n − s equations, in v + ℓ + ℓ = v + 2 · ℓ unknowns; and by
definition v + 2 · ℓ ≤ v + 2 · e ≤ n − s.

(d) If a solution exists and q(Z) (mod E(Z)) 6≡ 0 return ƒ (Z) = Q(Z)/E(Z).
5. Return ⊥.

Figure 29: Reed–Solomon Decoding using Berlekamp–Welch for the Finite Field Fpd .

In Figure 29 we present the “standard” Berlekamp–Welch algorithm, [BW86], for when we are
working over finite fields, i.e. GR(p, F) = Fpd . The input is a vector, c, which can contain symbols ⊥,
indicating that this location is known to be in error already; we treat such errors as erasures. In this
algorithm we map our exceptional sequence to its reduction modulo p, in order to have α ∈ Fpd . The
algorithms works by finding a monic polynomial E(Z), called the error locator polynomial, which is such
that E(α) = 0 in the positions forwhich c 6= ƒ (α) for the underlying polynomial ƒ which should define the
valid codeword. In the main loop we assume there are exactly ℓ such errors (not including the erasures).
Thus E(Z) has degree ℓ. We defineQ(Z) = ƒ (Z) ·E(Z)whichwill then have degree (v − 1) + ℓ. When c =⊥
we already know there is an error, so we can define E(α) = 0. When c 6=⊥ then we have the equation

Q(α) = ƒ (α) · E(α) = c · E(α).

Thus we have n − s linear equations in the (v + ℓ) + ℓ unknown coefficients. If there is no solution then
this says that the received vector does not contain ℓ errors. If there is a solution then by dividing the
resulting Q(Z) by E(Z) (if possible) we can determine the underlying polynomial ƒ .

7.1.2.2 Error Correction over Finite Fields via Gao: Analternative to theBerlekamp–Welch algorithm
is Gao decoding [Gao03], which also works over a finite field GR(p, F) = Fpd and which we present
in Figure 30. Gao decoding is based on the application of the extended Euclidean algorithm to the
interpolated received vector c and the polynomial that contains the α values as roots. If c contains
less than e errors, the result of Gao is the polynomial ƒ (), which generates the valid codeword and the
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polynomial (), which encodes the error locations at its roots. Otherwise the algorithm returns ⊥ to
indicate that the received vector could not be decoded successfully.

Gao Decoding over Fpd

Go(c, e):
1. Let s denote the number of values with c =⊥.
2. LetA = {α}c 6=⊥ .
3. Precompute the polynomial

g0(Z) =
∏

α∈A
(Z − α) ∈ Fpd [Z].

4. Via Lagrange interpolation find the uniquepolynomial g1(Z) ∈ Fpd [Z]with deg(g1(Z)) ≤
n − s − 1 such that, for all α ∈ A,

g1(α) = c.

5. Apply the extended Euclidean algorithm to g0(Z) and g1(Z). Stop when deg(g(Z)) <
(n − s + v)/2. This gives us

g(Z) = (Z) · g0(Z) + (Z) · g1(Z).

6. If deg((Z)) > e, then return ⊥.
7. Divide g(Z) by (Z), such that

g(Z) = ƒ (Z) · (Z) + r(Z)

where deg(r(Z)) < deg((Z)).
8. If r(Z) = 0 and deg(ƒ (Z)) < v, then return ƒ (Z).
9. Return ⊥.

Figure 30: Reed–Solomon Decoding using Gao Decoding for the Finite Field Fpd .

7.1.2.3 Error Correction over Rings via Berlekamp–Welch/Gao: Our two cases of q = pk and
q = p1 · · ·pk require two distinct methods to apply error correction. See Figure 31 for the combined
algorithm. Note, both algorithms can be applied to a non-full set of values by restricting the size of the
exceptional sequence used to the values corresponding to those in the received vector.

The algorithm of Figure 31 uses an extension to the map π from equation (23), where we define
π(⊥ /p) =⊥ for all  and also π(/p) =⊥ for all integers  6= 0 (mod p). This is done purely for ease
of exposition, an implementation may decide to just set the output of π on such input values to any
fixed value, and then rely on the error-correction properties of the underlying finite field error correction
routine to solve any ambiguities15 .

The first case, of q = pk , utilizes Hensel-lifting in order to “lift” the decoded received vector modulo pt

into a codewordmodulo pt+1 . This lifting procedure, to a code defined over GR(q, F), requires at most
k calls to the sub-procedure in Figure 29 or Figure 30 for the finite field Fpd ; see Lemma 13 later for a
justification of the correctness of the method. Note, on input to the algorithm there are known to be at
most e errors, and smissing values marked with ⊥ symbols. As each new ⊥ symbol is introduced into
the vector z by a determined error position, this means at line 1(b)iii that the number of unknown error
positions has been decreased by s′ − s. Thus, the subsequent calls to BW(z, e+s − s′) orGo(z, e+s − s′)
can utilize the fact that there are less error locations to find.

The second case, of q = p1 · · ·pk , utilizes the Chinese Remainder Theorem (CRT) to lift a solution
modulo p , for all primes p , into a solution modulo q. The solution modulo p is obtained by calling

15Although this may be slightly less efficient as then the increasing number of known erasure positions cannot be used as an
optimization in the finite field subroutine.
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Error Correction over GR(q, F)

ErrorCorrect(q,c, e): If e is not specified then we assume e = b(n − s − v)/2c , where s is the
number of positions in c set to ⊥.

1. If q = pk then
(a) y← c.
(b) For  ∈ [0, . . . , k − 1] do

i. z← π(y/p).
ii. Let s′ denote the number of values with z =⊥.
iii. Call ƒ(Z)← BW(z, e + s − s′) or Go(z, e + s − s′)with respect to Fpd .
iv. If ƒ(Z) =⊥ then return ⊥. In this case there are more than e errors.
v. For j ∈ [1, . . . , n] set tj ←

∑
=0 ƒ(αj) · p

 (mod q).
vi. y← c − t.

(c) Return
∑
=0 ƒ(Z) · p

 .
2. else

(a) For  ∈ [1, . . . , k] do
i. z← πp (c).
ii. Call ƒ(Z)← BW(z, e) or Go(z, e)with respect to Fp .
iii. If ƒ(Z) =⊥ then return ⊥. In this case there are more than e errors.

(b) Return CRT(ƒ1, . . . , ƒt).

Figure 31: Reed–Solomon Error Correction for the Galois Ring GR(q, F).

Figure 29 or Figure 30 for the finite field Fp . We let the lifting via the CRT of polynomials modulo p to a
single polynomial modulo q be denoted by CRT(ƒ1, . . . , ƒt).

7.1.2.4 SyndromeDecoding: Decoding on input of a syndrome for Reed–Solomonencoding is usually
explcitly presented for BCH-viewReed–Solomon encoding, although syndrome decoding can be applied
to any linear code. For example, this is howWikipedia presents syndrome decoding for Reed–Solomon
codes. Indeed the famous BGW paper [BGW88], on MPC, also restricts to BCH-view Reed–Solomon
codes to enable syndrome decoding. Syndrome decoding will be useful later when we need to perform
correction on a secret sharing of a secret sharing.

Since our traditional view Reed–Solomon codes are linear codes one does not need to adopt the
BCH-view to enable syndrome decoding, as is shown explicitly in Chapter 5 of [Hal15] in the case of
Reed–Solomon codes over finite fields. After presenting themethod for finite fields in Figure 32, we then
“lift” the method to perform syndrome decoding over the Galois ring in Figure 33. See Section 8.1.2.4 for
a discussion of the correctness of the methods presented here.

Note, in this section we assume that the exceptional set consists entirely of invertible elements, i.e.
we require α 6≡ 0 (mod p) for all . We also assume that the received code word contains no erasures.
In our application to Shamir Secret Sharing, this will happen by default.

We now extend the above method to codes defined over the Galois Ring GR(q, F). We do this much
as we did before, using either Hensel lifting (when q = pk) or using the Chinese Remainder Theorem
(when q = p1 · · ·pk). This method is described in Figure 33.

For the case of q = pk weutilize the following notational conventions: The syndromepolynomial Sc(Z)
is defined in exactly the sameway, and we also have the polynomials σ(Z) and ω(Z), as above, satisfying
equations (47), (48) and (49). To avoid confusion we let σ(k)(Z), ω(k)(Z) denote the polynomials when
considering the ring GR(q, F). We derive the error vector e via a form of Hensel lifting. We first determine
emodulo p, and then use this to derive emodulo p2 and so on.

Note our algorithm can correct errors, when q = pk , for which the error locations are different in e(j)

and e(j′) , as long as the number of error locations are bounded by b(n − v)/2c at each p-adic level. We
will not utilize this in applications, but this ability is explored in full generality in [GTLBNG21].
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Syndrome Decoding over Fpd

SynDecodeF(p, Se(Z)): All these operations are performedmodulo p.
1. T ← 0, T′ ← 1.
2. R← Zr , R′ ← Se(Z).
3. While deg(R) ≥ r/2

(a) Q← R/R′ .
(b) (T, T′)← (T′, T − Q · T′).
(c) (R,R′)← (R′, R − Q · R′).

4. σ(Z)← T(Z)/T(0).
5. ω(Z)← R(Z)/T(0).
6. Let B denote the indices b such that σ(1/αb) = 0.
7. For b ∈ B define

eb ←
−αb · Lb(αb) ·ω(1/αb)

σ′(1/αb)
,

where σ′(Z) is the formal derivative of σ(Z).
8. For b 6∈ B set eb ← 0.
9. Return e.

CorrectF(p, r):
1. Compute the syndrome polynomial Sr(Z) = Se(Z) via equation (27).
2. e← SynDecodeF(p, Se(Z)).
3. c← r − e.
4. Return c.

Figure 32: Decoding via Syndromes for Reed–Solomon Codes for the Finite Field Fpd ..

7.1.3 Shamir Secret Sharing over Galois Rings

A secret sharing scheme amongstn players is defined by two algorithms:
• An algorithm Shre()which outputs a share value 〈〉 for each player P .
• An algorithm OpenShre({〈〉}∈S)which takes all the share values from a given set S and returns
either the purported shared value , or an error symbol ⊥.

We denote the sharing of the value s by 〈s〉, and the individual shares by 〈s〉 .
We are interested in threshold secret sharing schemes, which are defined by a parameter t ∈

[1, . . . ,n − 1] . The security requirement is that if less than or equal to t number of players combine their
secret shares, then they can obtain no information about the underlying shared secret, but if more than t
honest players combine their shares then they can recover . In other words OpenShre should return
 if |S| > t and all input shares are honestly entered, whilst OpenShre should return ⊥ if |S| ≤ t. What
happens when |S| > t and the input set contains invalid share values depends on the precise secret
sharing scheme being used.

Over finite fields the “classic” threshold secret sharing scheme is that of Shamir [Sha79]. In this
section we define a Shamir-like Secret Sharing scheme over the Galois Ring GR(q, F) for n players with
threshold t. Wewill do this bymaking the shares be the coordinates of a codeword in the Reed–Solomon
code RSn,t+1 .

See the algorithms for sharing and reconstruction given in Figure 34. These algorithms will be used
as sub-components of other fully robust algorithms later. Notice, that the opening algorithm, given in
Figure 34, may abort if any of then-parties send in a share valuewhich is inconsistent; this is gauranteed
to happen if t < n/2. In addition OpenShre will abort if the shared value is not in Z/(q), but is in
GR(q, F) \Z/(q).

The construction in Figure 34 is justified as follows: We first take an exceptional sequence E of sizen
not containing any element equal to zero (or equal to zero mod pwhen q = pk). For example one can
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Syndrome Decoding over GR(q, F)

SynDecodeGR(q, Se(Z)):
1. If q = pk then

(a) e← 0.
(b) S(0)e (Z)← Se(Z).
(c) For j ∈ [0, . . . , k − 1] do

i. s(Z)← S
(j)
e (Z)/pj (mod p).

ii. e(j) ← SynDecodeF(p, s(Z)). Treat the resulting vector e as an error vector in
GR(q, F).

iii. e← e + pj · e(j) .
iv. Update Se(Z) via

S(j+1)
e

(Z)← S(j)
e
(Z) − pj ·





n
∑

=1

e
()
j

L(α) · (1 − α · Z)
(mod Zr)



 .

2. Else
(a) For  ∈ [1, . . . , k] do

i. e ← SynDecodeGR(p, Se(Z) (mod p)).
(b) e← CRT(e1, . . . ,et).

3. Return e.

CorrectGR(q, r):
1. Compute the syndrome polynomial Sr(Z) = Se(Z) via equation (27).
2. e← SynDecodeGR(q, Se(Z)).
3. c← r − e.
4. Return c.

Figure 33: Decoding via Syndromes for Reed–Solomon Codes for the Galois Ring GR(q, F)..

The Secret Sharing Scheme 〈〉

Shre(): Given  ∈ Z/(q) this produces a sharing, i.e. values 〈〉 ∈ R = GR(q, F)
1. Generate a random polynomial g(X) ∈ R[X] of degree at most t such that g(0) = .
2. Define 〈〉 = g(α).

OpenShre({〈〉}∈S):
1. If |S| < t the bort.
2. Compute the polynomial, where δS (Z) is from equation (25),

g(X)←
∑



〈〉 · δS (Z).

3. If degg(Z) > t then bort.
4. If g(0) 6∈ Z/(q) then bort.
5. Return g(0).

Figure 34: The Secret Sharing Scheme 〈〉.

select E as a subset of the canonical maximal exception sequence minus zero, i.e. E ⊆ GR(p, F) \ {0}.
Since we have already imposed the constraint n > pd , by Parameter Choice 3, such an exceptional
sequence exists.

To secret share an element s ∈ GR(q, F), the dealer selects t elements  ∈ GR(q, F) and forms the

114



polynomial
G(Z) = s + 1 · Z + 2 · Z2 + . . . t · Zt .

The share values are the evaluations of the polynomial G(Z) at the points {α1, . . . , αn} = E in the
exceptional sequence, i.e.

s = G(α).

The value s is given to player P . We see that the vector of share values s is a codeword in RSn,t+1 .
The reconstruction works, when the input share values into OpenShre are valid, follows from La-

grange interpolation. In addition, any subset J ⊆ {1, . . . ,n} of size less than or equal to t can determine
no information about the secret s from their shares.

Sometimes wemay share with respect to a degree different d from t, in which case wewrite 〈s〉d .
Thus 〈s〉 is a shorthand for 〈s〉t . Although now one needs d + 1 valid shares in order to reconstruct.

Thesecret sharing is linearoverGR(q, F), i.e. givensharings 〈〉 and 〈y〉 andconstantsα, β, γ ∈ GR(q, F)
one can has, for all ,

〈α ·  + β · y + γ〉 = α · 〈〉 + β · 〈y〉 + γ.

Hence, linear operations can be computed locally for “free”.
If we let b denote the number of adversaries in our set {P1, . . . ,Pn} then thismeans that, for security,

we must have
b ≤ t,

i.e. we can tolerate at most t bad guys in order to preserve privacy. The remaining issue is what happens
when bad players lie about their shares.

7.1.3.1 Error Detection: The bad-actors can of course pass on invalid shares to someone who aims
to reconstruct the secret. Thus the received share vector s, obtained by someone wishing to recover
the underlying secret, may contain errors. Thus the received vector smay not lie in RSn,t+1 at all; it may
be perturbed by an error vector. In Section 7.1.2 we saw that this can be detected if the computed
syndrome polynomial Ss(Z) is equal to zero or not.

For the sharing 〈s〉, the maximum number of errors we can detect is bounded by n − v = n − (t + 1),
thus this is also an upper bound on the number of adversaries. So if we are only interested in detecting
whether an adversary has sent an invalid share we have the upper bound

b ≤ n − (t + 1).

Combining this with the equation b ≤ t, to ensure secrecy, we find

2 · b ≤ b + t ≤ n − 1,

or b < n/2, i.e. we can tolerate at mostn/2 as adversaries if we wish to only detect errors in our secret
sharing. This is effectively what happens in algorithm OpenShre in Figure 34; if t < n/2we can detect
errors introduced by the adversary into the OpenShre algorithm.

When using the sharings 〈s〉d of degree d, we obtain the equations b ≤ n − (d + 1) and b ≤ t. In one
situation which follows wewill have d = 2 · t and so

3 · b ≤ b + 2 · t = b + d < n,

or b < n/3, i.e. we can tolerate at mostn/3 as adversaries if we wish to only detect errors in our secret
sharing of degree 2 · t.
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7.1.3.2 Error Correction: If we are interested in recovering the share, even in the presence of errors,
we need to apply the error correction methods of Section 7.1.2. This require that the number of errors is
bound by b(n − v)/2c , for our 〈s〉 sharings. In other words we have

2 · b ≤ n − (t + 1).

Again, combining this with the equation b ≤ twe find

3 · b ≤ t + 2 · b ≤ n − 1,

or b < n/3, i.e. the number of bad guys needs to be bounded byn/3.
When using the sharings 〈s〉d of degree dwe obtain the equations 2 · b ≤ n − (d + 1) and b ≤ t. In

the important case of d = 2 · t this becomes

4 · b ≤ 2 · b + 2 · t = 2 · b + d < n,

i.e. b < n/4. This is why we need to introduce the threshold profiles in the set nLrge, i.e. nMƒH+ , nLƒH+

and nEƒH+ , in Section 6.1.

7.1.3.3 Randomness Extraction: A common trick used in many MPC protocols, see for example
[DN07], is to extract c random sharings from an input set of r possibly random sharings, where r > c.
This technique was shown to extend to the Galois Ring situation in [ACD+19]. The idea being is that if at
least c of the input sharings are truly random, then all of the output sharings are random. In particular
if the input sharings are produced by r = n players independently, or which we know at most t are
potentially dishonest, then we can output n − t sharings which are random. This assumes the input
sharings are valid, i.e. valid degree t sharings, and the only thing the adversary can do is know the values
of the shared values for the t sharings that it input into the procedure.

This “randomness extraction” is performed by using the VandermondematrixMr,c from earlier, where
the entries are generated from an exceptional sequence of size r = n. Then given r input sharings
〈s1〉, . . . , 〈sr 〉 we can produce, using only local operations, the c output sharings in our randomness
extraction procedure by computing







〈t1〉
. . .

〈tc〉






= M>

r,c
·









〈s1〉
...
〈sr 〉









.

Applying the super-invertibility property, with r = n and c = n − t, and using the sub-matrix of c rows
and columns where we range over the (unknown) row set consisting of the rows corresponding to
shares which come from honest parties, we see that the output distribution is of random values. In
particular the t adversarial party has no control, or information, over the random values in the output
sharings.

7.1.4 Commitment Schemes

We will need a commitment scheme in various places. The one we choose will be secure in the Random
Oracle Model (ROM), and thus uses a hash function. The hash function

Hsh2·sec : {0,1}∗ −→ {0,1}2·sec
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has hash output length (2 · sec)-bits. As we target sec = 128 in this document, SHA2-256 or SHA3-
256 will be sufficient16 . The commitment scheme is defined in Figure 35; note, the addition of the
pre-fix DSep(COMM) for domain separation. If we want to specify the randomness externally to the
commitment then wewrite Commt(m, , sd, rd;o).

Commitment Scheme

Commt(m, , sd, rd): On input of a messagem ∈ {0,1}∗ , party ID , session ID sd and round
ID rd this proceeds as follows, to produce the commitment c and the opening information
o.

1. Generate a random bit string as opening information o← {0,1}sec .
2. Compute the commitment c← Hsh2·sec(DSep(COMM)‖sd‖rd‖m‖o).
3. Return (c, o).

Verƒy(c, o,m, , sd, rd): This verifies correctness of the commitment.
1. Compute c′ ← Hsh2·sec(DSep(COMM)‖‖sd‖rd‖m‖o).
2. If c′ 6= c then return ƒse.
3. Else return tre.

Figure 35: Commitment Scheme.

7.1.5 Bit Generation

All our MPC protocols are required to generate random bits. This is done via classical/folk-lore methods
for which we now describe the underlying mathematics (the precise implementation of this in our MPC
protocols will be delayed till later).

The goal is to produce a bit modulo q using only additions andmultiplications (to some extent). In
the prior literature, for example [DKL+13] and [OSV20], methods are given to generate bits in Z/(q)
via an MPC protocol; the first reference being when q is an odd prime, and the second reference being
for when q is a power of two. When applying these algorithms wewill be working with the Galois Ring
GR(q, F). The extension of these two prior methods to the Galois Ring context, and the optimizations
we present below from the original presentation are immediate. Note, in this section we are not thinking
of the case when q = p1 · · ·pk , as this will require a special treatment later; thus we only think of q = 2k

and q a prime.

7.1.5.1 Soe(): Before progressing we discuss solving quadratic equations in the Galois Ring, when
q is a power of two, i.e. q = 2k , see Figure 36. For our Galois Rings we define the trace and half-trace
functions by

Tr() =
(d−1)
∑

j=0

2
j
,

Tr() =
(d−1)/2
∑

j=0

2
2j
.

Our method to generate bits, when q is a power of two, requires access to a function Soe(), for
 ∈ GR(q, F), which solves the equation

X2 + X =  (mod q) (28)

16In our implementation we use SHA3-256.
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where q = 2k , assuming such a solution exists. Such a solution exists if we have Tr() = 0 (mod 2).
To solve this equations requires two steps: First we solve the equation modulo 2, i.e. in the finite field

F2d , and then we lift this solution using Hensel’s Lemma to the whole ring GR(q, F). To solve

X2 + X =  (mod 2), (29)

i.e. in F2d , we apply the classical method, to be found in [BSS99, page 26], which we denote by the
function Soe1(), which depends on the parity of d.

dOdd: In this case we compute

0 = Soe1() = Tr() (mod 2).

d Even: This case is slightly more complex. We first find an element δ ∈ F2d such that Tr(δ) = 1. This is in
fact easy, as half the elements in F2d have trace one. We then can write

0 = Soe1() =
d−2
∑

=0

�

d−1
∑

j=+1

δ2
j
�

· 2

(mod 2).

The second step is to solve lift the solution to equation (29), to a solution of equation (28) by executing
the following recursion d log2 ke times

0 = Soe1(),

n+1 =
2
n
+ 

1 + 2 · n
(mod q), for n ≥ 0.

This appears to require a full outer Newton iteration in order to find the successive  , and a full inner
Newton iteration to find the inverse of (1+2 ·n). However, this initialO(d log2 ke2) estimate of operations
can be replacedwith O(d log2 ke) iterations, using the algorithm in Figure 36. The algorithms correctness
follows from standard Hensel lifting/Newton iteration arguments.

Soe()

1. ← Soe1().
2. y← 1.
3. For  ∈ [1, . . . , d log2 ke] do

(a) m← 22
 .

(b) z← 1 + 2 ·  (mod m).
(c) y← y · (2 − z · y) (mod m).
(d) y← y · (2 − z · y) (mod m).
(e) ← ( ·  + ) · y (mod m).

4. Return  (mod q).

Figure 36: Solving X2 + X =  (mod q) Using Hensel Lifting.

7.1.5.2 Sqrt(, p): We also need to provide a method to produce a square root of an element  ∈
GR(p, F)when p is an odd prime. There are standard methods to produce square roots in the finite field
Fpd , see for example [Coh93, Sho05]. We denote these methods by Sqrt(, p). The classic algorithms
for this are given in Figure 37; the algorithm when pd ≡ 1 (mod 4) is called the Tonelli–Shanks algorithm.
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Sqrt

Sqrt(, p): Assumes p is odd prime, and  ∈ GR(p, F) is indeed a square.
1. If  = 0 then return .
2. If pd ≡ 3 (mod 4) then

(a) s← (p
d+1)/4 .

(b) Return s.
3. Else

(a) Write pd − 1 = 2S · Q with Q odd, and find an z ∈ GR(p, F) which is a quadratic
non-residue.
This step can obviously be done as pre-processing when one sets up the system.

(b) M← S, c← zQ , t← Q , r ← (Q+1)/2 .
(c) While t 6= 1 do

i. Find smallest  such that t2 = 1with 0 <  < M.
ii. b← c2

M− −1 .
iii. c← b2 .
iv. t← t · b2
v. r ← r · b.
vi. M← .

(d) Return r .

Figure 37: Finite Field Square Root Algorithm.

7.1.5.3 Random Bits p Odd Prime: This is a classic method, see Figure 38, which relies on the fact
that the squaringmap is a 2 : 1mappingwhen p is a prime. Themethod seems first to have been applied
in the MPC context in [DKL+13], in the case of prime p and the degree one Galois Ring. Extending this to
the general case of a general finite field extension Fpd = GR(p, F) is immediate, and is given in Figure 38.
Note this method is never implemented, it is just described here as a guide to explain the protocol later.

Bit Generation: p Odd Prime

1. ← GR(p, F), such that  6= 0 (mod p).
2. s← 2 (mod p).
3. c← Sqrt(s, p).
4. ← /c (mod p). This makes  equal to −1 or 1modulo q.
5. b← (1 + )./2 (mod p). The value of bwill be 0 or 1modulo p.
6. Return b.

Figure 38: Random Bit Generation when p is an Odd Prime.

Generalizing this to q = p1 . . . pk is possible by the Chinese Remainder Theorem. The obvious trick is
to first select ← GR(q, F) to be not equal to zero modulo any prime divisor of q. Then one obtains c by
applying the Chinese Remainder Theorem to the output of the t square roots modulo each prime divisor
of q, i.e. we compute Sqrt(s, q) The problem then is that the final bit bwill definitely be equal to zero or
onemodulo each prime p , but it will not necessarily equal the same bit modulo each prime divisor, i.e.
we have

b (mod p) ∈ {0,1} for all 

but not
b (mod p) = b (mod pj) for  6= j.

Thus this naive generalization does not work. Later we will find a solution to this problem in our MPC
protocol for threshold profiles nSm.
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7.1.5.4 Random Bits q Power of Two: When q is even we cannot use the above technique, since the
squaring map is now a 4 : 1mapping. Instead we utilize a technique from [OSV20], which we modify a
little. It is functionally the same but written down in a slightly different manner, which is easier for our
application. This simplification was first presented in [DDE+23]. What is nice, from an MPC perspective,
about the even q case is that we do not need to loop to produce a non-zero value. This then gives us the
algorithm given in Figure 39. Again this algorithm is never implemented explicitly, it is here to act as a
guide to the MPC implementation later.

Bit Generation: q Even

1. ← G .
2. ←  + 2 (mod q).
3. r ← Soe().
4. d← (−1 − 2 · r) (mod q).
5. b← ( − r)/d (mod q).
6. Return b.

Figure 39: Random Bit Generation when q is Even.

Example: We go through a small worked example to demonstrate this actually works using the simple
ring Z/(q), for q = 23 = 8.

1. ← Z/(23). So take, for example  = 3.
2. ←  + 2 (mod 8). So in our example  = 4.
3. Applying r ← Soe() gives us r = 3.
4. d← −1 − 2 · r , gives us d = 1.
5. b← ( − r) / d (mod 8) = (3 − 3) / 1 (mod 8) = 0.

7.1.6 TreePRG

A TreePRG this is a Key Encapsulation Mechanism (KEM) which assigns one key to each leaf of a binary
tree of depth d; where all of the leaves are derived from a single master seed seed. However, the creator
of the TreePRG can produce a punctured seed D, which is the output of TreePRG.Pnc(seed, d, T), for
some subset T ⊂ {1, . . . ,2d}. The punctured seed allows the holder to evaluate all leaf nodes except
those in T . The key advantage is that the size of the punctured seed is bounded by

|D| ≤ |T | · log2

�

2d

|T |

�

· sec. (30)

Intuitively, log2
�

2d
|T |

�

is the depth of the largest possible sub-tree that can be expanded using a seed
and there are no more than |T | of these. By ignoring leaves we can produce TreePRG’s which encode a
non-power of two number of leaves in an obvious manner.

Our description of the method, see Figure 40, for constructing a TreePRG is adapted from a version
given in the full version of [GGHAK22], where a method for sets T of size one is given. The extension to
sets T of arbitrary size is derived from the presentation in [NNL01]. The description uses of a pseudo-
random generator PRG : {0,1}sec −→ {0,1}2·sec . This is constructed as follows

PRG(seed) :=











XOF← XOF.nt(seed,DSep(TPRG))
y← XOF.Net(2 · sec)
Return y

(31)

The notation in our algorithm description makes use of labels assigned to each node of the tree. To a
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binary tree of depth dwe assign labels to each node as follows:
• The root node has an empty label∅.
• For each internal node with label b the left child node is given label b‖0 and the right child node
is given label b‖1.

• The leaf nodes have labels of binary length d and we can associate each leaf label with an integer
in the range [0, . . . ,2d−1] by treating the label as the binary representation of the given integer.
With the integers matching the leafs in consecutive order.

TreePRG

TreePRG.Gen(seed, d):
On input of seed ∈ {0,1}sec and a depth d this constructs a binary tree of depth d. The
output is the set of seeds and labels of the leaves.

1. Return TreePRG.GenSb(seed,∅, d,0).

TreePRG.GenSb(seed, b, d, ):
1. If  = d then return (seed, b).
2. (seed0, seed1)← PRG(seed).
3. ← TreePRG.GenSb(seed0, b‖0, d,  + 1).
4. b← TreePRG.GenSb(seed1, b‖1, d,  + 1).
5. Return (, b).

TreePRG.PncSb(D, b, T, ):
1. If b not the prefix of any integer in T then append the seed seedb to D and return D.
2. If  = d then return D.
3. D← TreePRG.PncSb(D, b‖0, T,  + 1).
4. D← TreePRG.PncSb(D, b‖1, T,  + 1).
5. Return D.

TreePRG.Pnc(seed, d, T):
On input of seed ∈ {0,1}sec , a depth d, and a set T ⊂ {0, . . . ,2d − 1}, this constructs a
punctured ordered list D of seeds as follows:

1. D← [] .
2. D← TreePRG.PncSb(D,∅, T,0)

TreePRG.GenPnc(D,T, d):
Given a set of punctured seeds D, which have been output by TreePRG.Pnc, for a tree of
size d and set T , this outputs the seeds corresponding to all leaves which are not in the set
T .

1. Set S← {}.
2. For each seedb in the ordered list D:

(a) Obtain the corresponding b and depth  from running the algorithm
TreePRG.Pnc(seed, d, T) “in ones head”.

(b) S← S ∪ TreePRG.GenSb(seedb, b, d, d − ).
3. Return S.

Figure 40: Tree-based Pseudo-randomGenerator.
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7.2 Layer One

We summarize the relationship between the protocols in Layer One in Figure 41. In the diagrams in this
section orange refers to a component which is not actively secure, a cyan refers to a component which
is actively secure with abort, and a green refers to a component which is robustly secure. A component
which is not a protocol, and which lives on Layer Zero, is denoted with white.

Commt/Verƒy

AgreeRndom

AgreeRndom--Abort

PRSS.nt

RobstOpen

AgreeRndom-Robst

ErrorCorrect

BW or Go

VSS

PRSS.nt

Figure 41: Different versions of PRSS.nt in the Threshold Profile Category nSm. These protocols assume
synchronous networks. .

7.2.1 Broadcast

Asdiscussed in Section 4, at various pointswe require a sub-protocolwhich provides a reliable broadcast
over a synchronous network. Bracha’s original protocol for broadcast works in asynchronous networks,
we however will only apply broadcast in synchronous networks; thus we can make some small sim-
plifications to Bracha’s original protocol [Bra87]. The modifications to Bracha’s protocol are given in
Figure 42, where we take the modifications from https://hackmd.io/@alxiong/bracha-broadcast.

To recap, from Section 4.5, the protocol in Figure 42 has the following properties, when t < n/3,
• Every honest party will terminate will either a messagem, or a value ⊥.
• Any two honest parties that terminate output the same value, and if S is honest then that message
ism.

The use of Ω(t) rounds in this case is optimal in our case of non-randomized synchronous broadcast
protocols without PKI, see for example [DS83, FL82].

The protocol should be interpreted in the followingway: Each round is processedwithin a time limit Δ,
and if no messages are received then the party moves onto the next round. Thus the protocol will
output ⊥ if the sender not only sends inconsistent values, but also sends nothing at all. To ensure parties
are in synchronization (and to avoid large time outs Δ) if in a round a player is asked to send no message,
then it simply sends ”no message” to all other players. Thus honest parties knowwhen another honest
party is not sending a message in this round.

If a party exceeds the time limit in round k without receiving data from a specific party P , then the
party should assume that P is adversarial and it should not be waited for in rounds following on from
k. To avoid sending toomany large messages in the ote phase of Figure 42we only send, and verify,
hashes of messages. These hashes are computed via the hash function Hsh2·sec .

In practice wewill usually call Synch-Brodcst in parallel, i.e. every player in the set {P1, . . . ,Pn}
will simultaneously be trying to broadcast some data. The implementation thus allows passing a set of
senders S ⊆ P while merging communication rounds across the parallel executions when possible.

The execution time of the protocol is upper bounded by Δ · (3 + t + 1), as we require executing 3 + t
rounds of communication, thus efficient implementation and a suitable choice of Δ (which is probably
network/ping-time related) is important.
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Synchronous Reliable Broadcast

Synch-Brodcst(S,m): The protocol executes in the following rounds, where r is the round
number

1. Party S sends (send,m) to P1, . . . ,Pn .
2. Party P if they receive (send,m) from S then they send (echo,m) to P1, . . . ,Pn .
3. If P receives (echo,m) from at least n − t parties, then send
(ote,Hsh2·sec(DSep(BRACH)‖m)) to P1, . . . ,Pn .

4 to 3 + t. If P has received up to this round a (ote,Hsh2·sec(DSep(BRACH)‖m)) from t+ r − 3
distinct parties (where r is the round number), and it has not voted before then, send
(ote,Hsh2·sec(DSep(BRACH)‖m)) to P1, . . . ,Pn .

3 + t + 1. If P has received the value (ote,Hsh2·sec(DSep(BRACH)‖m)) from at least n − t
distinct players then outputm, otherwise output ⊥.

Figure 42: Variant of Bracha’s Reliable Broadcast Protocol for Synchronous Networks..

The reader should note that even if one replaces the above synchronous version of Bracha with an
asynchronous version we do not obtain fully asynchronous MPC protocols. We adopt a synchronous
version of Bracha, as all our offline MPC protocols need to work over synchronous networks. We only
use a broadcast primitive in the Offline phase of our MPC protocols; thus use of a synchronous version
of Bracha’s protocol does not affect the asynchronous nature of online phase of our MPC protocol.

7.2.2 Dispute Control

Our robust MPC protocols work in the Dispute Control framework, as given in [DN07]. At all points each
party maintains two sets Dspte and Corrpt. The set Dspte consists of pairs of players {P,Pj},
with  < j, with the following properties:

• All players agree on the value of Dspte.
• If {P,Pj} ∈ Dspte then either P or Pj is corrupt.

We let Dspte be defined by

Dspte =
�

{Pj,Pk} ∈ Dspte : Pj = P or Pk = P
	

i.e. it is the set of players with which P is in dispute with. Hence, Dspte = ∪Dspte . We also set
Agree = {P1, . . . ,Pn} \Dspte . We require the following properties of our sub-protocols:

1. A protocol can never halt due to a dispute between P and Pj if {P,Pj} is already in Dspte.
2. If a protocol does not generate a dispute then it terminates with the correct result.
3. If it does generate a dispute then one can re-run the protocol with the larger set of disputes.

We also make use of a set called Corrpt. The set Corrpt details which parties the honest parties have
agreed upon to be dishonest. It has the following properties:

• All honest players agree on the value of Corrpt.
• If P ∈ Corrpt then P really is corrupt.
An important property, which wewill implicitly assume from now on, is that if ever the set Dspte

becomes so large that |Dspte| > t, then all players add P into the set Corrpt. In addition if P ∈
Corrpt then {P,Pj} ∈ Dspte for all j.

We canmodify the synchronous Synch-Brodcst(S,m) operation from Figure 42 to update the set
Corrpt. This is done in Figure 43. The logic behind this modification is that if an honest party receives
⊥ from an execution of Synch-Brodcst(S,m), then it knows the sender is dishonest, and since the
broadcast is reliable we know that all honest parties will agree on the fact that the sender is dishonest.
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Synchronous Reliable Broadcast - Modification

Synch-Brodcst(S,m,Corrpt):
1. Party S executes Synch-Brodcst(S,m).
2. Party P will receive a messagem′ .
3. If P receivesm′ =⊥ then S is added to the set Corrpt.
4. Party P acceptsm′ as the value sent.

Figure 43: Variant of Synchronous Reliable Broadcast which updates the set Corrpt.

7.2.3 Robust Opening

As well as the opening procedure OpenShre from Figure 34 we also define an opening procedure
called RobstOpen in Figure 44, whichwill robustly open the shared value, depending on the relationship
between t andn, and the underlying network properties. We present the robust opening protocol for
Shamir sharing of arbitrary degree d. When d = t robust opening is only available when t < n/3. Note
that, for asynchronous networks and d = t < n/4we can execute potentially less computational steps
than for the case d = t < n/3 by simply waiting for more data to arrive. The need for a general d is that
at some points we need to robustly open a sharing of degree d = 2 · t, despite there only being at most t
adversaries.

Note that, in the waiting steps in lines 3a and 4(a)i of protocol RobstOpen, we treat the implicit ⊥
“received” from (locally) knownmalicious parties in line 2 as actual received values. Also note, that the
call to ErrorCorrect in the algorithm can (for efficiency) also update the set of (locally) known corrupt
parties to the reconstructing party17 .

7.2.3.1 Optimization via the King Paradigm: At various points in our protocol we need to robustly
openasharing 〈〉d to all players,whichweknow is avaliddegreed ≤ 2·t sharing. In [DN07][Section4.6],
amethod is givenwhich batches ℓ = n −2 ·t −1 such operations into one operation. The advantage of this
is that it reduces bandwidth compared to our standard RobstOpenmethod above, the disadvantage is
that it costs an additional round of communication. Thus the trade off depends heavily on the associated
ping-time between the parties. In practice the increase in the number of rounds may not be so much of
a gain given the relatively small value ofnwe expect to run our MPC protocols with. The usual name for
this optimization is to use the “king-paradigm”, as messages are combined and sent to a “king” who then
opens them. For those interested we outline the optimization here, but we will not use it.

The optimization utilizes the Vandermonde matrix Mn,ℓ as an expander, instead of as a extractor.
We think of the operation y← x ·M>n,ℓ as expanding a message x ∈ Rℓ into a codeword y ∈ Rn , where
R = GR(q, F) is our Galois Ring. By the choice of parameters we know that any vector with at most t
errors can be corrected. We (by abuse of notation) refer to the associated decoding algorithm (which
can be done robustly) as x← ErrorCorrect(q,y).

17We do not need consensus on this set of corrupt parties for future calls to RobstOpen.
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RobustOpen

This protocol depends on the ratio between d, t, and n, and whether the underlying net-
work is synchronous or asynchronous. It is run either by a player P = P who already
holds their share 〈〉d . (we call this CaseA), or by an external playerP (whichwecall Case B).

RobstOpen(P , 〈〉d): In this variant only player P will obtain the value .
1. Player P sends 〈〉d privately to player P .
2. Player P assumes it received ⊥ from knownmalicious parties.
3. If d + 3 · t < n and the network is asynchronous, or d + 2 · t < n and the network is

synchronous
(a) P waits until they have received d+2 · t (case A) or d+2 · t+1 (case B) share values

{〈〉dj }j . Note, in the synchronous case if no value is sent then it is treated as ⊥.
(b) They apply the ErrorCorrect(q,s, t) algorithm from Figure 31 to the d + 2 · t + 1

shares s they hold, to obtain a Reed–Solomon codeword with v = d + 1, and hence
to robustly compute G(Z).

(c) Compute ← G(0) and return  to player P .
4. If d + 2 · t < n and the network is asynchronous

(a) For r ∈ [0, . . . , t] do
i. P waits until d + t + r (case A) / d + t + r + 1 (case B) shares have been received.
ii. Apply ErrorCorrect(q,s, r) from Figure 31 on the d+ t+ r +1 shares s they hold,

to obtain a Reed–Solomon codewordwith v = d+ 1, assuming there are r errors
in these shares, to obtain G(Z).

iii. If G(Z) is a degree d degree poly then, if there are at least d + t + 1 shares (out
of the d + t + r + 1 shares) which lie on the polynomial, then this is the correct
polynomial so output the constant term G(0) to player P and exit the loop. Note,
this step requires just scanning the d + t + r + 1 shares and counting how may
lie on the polynomial.

RobstOpen(S, 〈〉d): This is a short hand for all players executing RobstOpen(P, 〈〉d), for all
P ∈ S ⊆ {P1, . . .Pn}, in parallel. Hence, all players in S will obtain the value . In this case, the
communication of the shares in line 1 only needs to be done privately if S 6= {P1, . . . ,Pn}.

Figure 44: Robust Opening Protocol when d + 2 · t < n.

BatchRobustOpen

BtchRobstOpen((〈〉d)ℓ=1): This method assumes d ≤ 2 · t and ℓ = n − 2 · t − 1.
1. Locally compute

(〈y〉d)n=1 ← (〈〉
d)ℓ
=1 ·M

>
n,ℓ.

2. For  ∈ [1, . . . ,n] in parallel execute
(a) For all j, player Pj sends 〈y〉dj to player P .
(b) Player P executes y ← ErrorCorrect(q, (〈y〉dj )

n
j=1).

(c) Player P sends y to all players.
3. All parties compute x← ErrorCorrect(q,y).

Figure 45: Robust Batch Opening.

7.2.4 Verifiable Secret Sharing

For the thresholdprofiles in category nLrgeweneeda standardVerifiableSecret Sharing (VSS) protocol
in order to execute a ConFp protocol. In addition for the threshold profiles nSmwe need a standard
VSS algorithm to agree on a small number of random values for use in a robust protocol to set up our
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PRSS functions (see below). For threshold category nSm if we can accept an initialization routine
PRSS.nt()which is only active-with-abort secure, then the VSS is not needed.

We utilize in this work an adaption of the the four round VSS protocol from [GIKR01] for finite fields,
to theGalois Ring setting. Our presentation of the protocol follows the description from [CCP22] (where
it is labeled as Protocol 4GIKR-VSS-Sh); see Figure 46.

VSS

VSS(Pk , s, t, Corrpt). This is called by player Pk to verifiably share a secret s ∈ R = GR(q, F)
amongst the other players of degree t.

Round 1
1. Player Pk selects a bivariate polynomial F(X, Y) ∈ R[X, Y] of degree t in both variables

such that F(0,0) = s.
2. Define F(X) := F(X,α) and G(Y) := F(α, Y), for all .
3. Send F(X) and G(X) privately to player P .

Note, if P receives nothing within the round time-out time of Δ then it interprets the
result as F(X) = G(X) = 0.

4. Each P picks a random value r,j ∈ R, one for each player Pj , and it sends r,j privately to
player Pj .
Again, if Pj receives nothing within the round time-out time of Δ from player P , then it
interprets the result as r,j = 0.
Round 2

5. Player P computes ,j ← F(αj) + r,j and b,j ← G(αj) + rj, .
6. Player P executes Synch-Brodcst(P,{,j, b,j}, Corrpt).

If the broadcast fails, with P being identified as corrupt, then the receiving players
interpret the broadcast values as ,j = b,j = 0.
Round 3

7. For all P,Pj for which ,j 6= bj, execute:
(a) Player Pk executes Synch-Brodcst(Pk ,{F(αj, α)}, Corrpt).
(b) Player P executes Synch-Brodcst(P,{F(αj)}, Corrpt).
(c) Player Pj executes Synch-Brodcst(Pj,{Gj(α)}, Corrpt).
Again, if any broadcast fails we interpret the result as being the value zero being broad-
cast.
Local Computation

8. Set UnHppy = ∅.
9. For every P,Pj for which ,j 6= bj, , where Pk broadcast F(αj, α), P broadcast F(αj),

and Pj broadcast Gj(α):
(a) If F(αj) 6= F(αj, α) then add P into UnHppy.
(b) If Gj(α) 6= F(αj, α) then add Pj into UnHppy.

10. If |UnHppy| > t then add Pk into Corrpt and output the trivial zero sharing 〈0〉.
Round 4

11. For every P ∈ UnHppy and Pj 6∈ UnHppy execute:
(a) Player Pk executes Synch-Brodcst(Pk ,{F(X)}, Corrpt).
(b) Player Pj executes Synch-Brodcst(Pj,{Gj(α)}, Corrpt).
Again, if any broadcast fails we interpret the result as being the value zero being broad-
cast.
Output

12. If there exists P ∈ UnHppy for which Pk broadcast F(X), and there exists 2 · t parties
Pj 6∈ UnHppywhich broadcast Gj(α), where F(αj) 6= Gj(α), then add Pk into Corrpt
and output the trivial zero sharing 〈0〉.

13. Return the sharing of s given by 〈s〉 = F(0).

Figure 46: Verifiable Secret Sharing. This is used for protocols in for the nLrge threshold profiles..

Recall we are working in the synchronous network model, and we require robustness. This means
that an honest player will always respond, and it’s message will arrive within time-step Δ of the round.
However, a dishonest player may not only try to disrupt the protocol by sending garbage, but it may also
try to disrupt the protocol by sending nothing.
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We note that our main usage of the VSS is when we want to evaluate the VSS n-times in parallel,
with each party entering a single value into the VSS to be shared (see for example the ConFp protocol
in Figure 54). Thus when implemented, this parallel execution should be taken into account in order to
avoid unnecessary rounds. Our Rust implementation batches the protocol by executing the protocol
in parallel with each party acting as a sender andmerging the communication rounds when possible.
Hence, we execute the protocol as written in parallel, and the UC security of this protocol gives us that
this parallel composition is indeed UC secure.

An alternative to a parallel implementation is to perform VSS on a batch of secrets instead of only one.
The primary change in this implementation is that if inconsistencies are detected for one element in the
batch, then the responsible party is flagged even if other elements in the batch pass the verification. For
example, the verification in line 9a of Figure 46 will run for batch size B times, i.e., {Fk (αj) 6= Fk(αj, α) :
k ∈ [B]}, and if one failure occurs out of B, then P is added into UnHppy.

7.2.5 Agree on a Random Number

At various points a subset S ⊆ {P1, . . . ,Pn} of our set of parties need to agree on a random value in
{0,1}k , often the key for a Pseudo-Random Function (PRF) or Pseudo-Random Generator (PRG), which
is outside the control of all parties. A simple passively secure protocol for this is given by protocol
AgreeRndom in Figure 47. Note, the protocol does not verify that the players all obtain the same
random value. The idea being that if the same random value is not obtained then this should become
apparent once the value is used in a PRF. Thus this method is inherently non-robust, as it will create an
invalid execution, and hence an abort if a player deviates from the protocol, but only in a latter protocol
which uses the output from AgreeRndom. It will also fail to terminate if a player in S fails to send any
required message.

Protocol AgreeRndom(S, k)

The input is a subset S ⊆ {P1, . . . ,Pn} and a value k ∈ Nwhich is the length of the output. Let 
denote the index set of the players in S , i.e. S = {P}∈ .

1. Each P ∈ S generates s ← {0,1}k .
2. Each P ∈ S executes (c, o)← Commt(s, , sd, rd).
3. Each P ∈ S sends c to all other players in S .
4. When P has received cj from all j ∈  \ {} it sends (s, o) to all other players in S .
5. Each P ∈ S executes j ← Verƒy(cj, oj, sj, j, sd, rd) for all j ∈  \ {}.
6. If any j = ƒse then bort.
7. Each P ∈ S outputs s←

⊕

j∈ sj .

Figure 47: Protocol AgreeRndom.

As a halfway house between the above protocol, and one which is fully robust we offer an alternative
which is actively secure with abort, namely the protocol AgreeRndom--Abort in Figure 48. In this
version the players confirm that they have indeed obtained the same random value; thus if the protocol
terminates (and does not abort) then the parties can proceed knowing the value is the same amongst
them all.

The final variant we have is a robust version of AgreeRndom, called AgreeRndom-Robst and
given in Figure 49, which consumes a valid secret shared random value 〈r〉. This function uses a hash
functionHAR which maps the Galois Ring GR(q, F) into the set of bit strings of length k, i.e. {0,1}k . We
implementHAR as

HAR(α) = SHAKE-256(DSep(AR)‖GRencode(α), k). (32)

The addition of the initial two bytes is for domain separation. Note, with this byte wise encoding the
input to the hash function SHAKE-256 in this case has byte size 2 + d · dq/8e .
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Protocol AgreeRndom--Abort(S, k)

The input is a subset S ⊆ {P1, . . . ,Pn} and a value k ∈ Nwhich is the length of the output.
1. All parties in S execute s← AgreeRndom(S, k).
2. Each P ∈ S sends s privately to all other players in S.
3. If the value received sj from player Pj is such that sj =⊥ or sj 6= s then bort.
4. Each P ∈ S outputs s to themselves.

Figure 48: Protocol AgreeRndom--Abort.

The assumptions on the input value (resp. share) r (resp. 〈r〉) are that
• The random value r is a uniformly random element in GR(q, F)which the adversary has no control
over.

• The secret sharing 〈r〉 is assumed to be a valid degree t sharing of r .
• The random value r is assumed to contain enough entropy, i.e. that

qd > 2k .

In our application wewill set k = sec, and this constraint will be satisfied by Parameter Choice 4.

Protocol AgreeRndom-Robst(S, k, 〈r〉)

The input is a subset S ⊆ {P1, . . . ,Pn} and a value k ∈ Nwhich is the length of the output, and
〈r〉 a valid random degree t sharing amongst the full set ofn players.

1. Execute RobstOpen(S, 〈r〉).
2. All parties in S execute s←HAR(r).
3. Each P ∈ S outputs s.

Figure 49: Protocol AgreeRndom-Robst.

The protocol AgreeRndom-Robst works since 〈r〉 is known on input to be a valid random sharing
between alln. Thus the RobstOpen procedure, even though it is towards the players in S , which may
contain only one honest player, will definitely generate the correct value for the honest players. This is
because the sendingn players contain at most t < n/3 adversaries.

7.2.6 Generating Random Shamir Secret Sharings

As explained earlier in Section 4.6 we use PRSS and PRZS methods in threshold profile nSm. As
explained earlier, these are very old techniques which go back to [CDI05]. The secret shared output
of the PRSS/PRZS operation in this section is an element in the full Galois Ring (in the case of a PRZS it
is the zero element), whereas the secret shared output of the PRSS-Msk.Net operation is a “small”
element in Z/(q).

7.2.6.1 PRSS Initialization: The algorithm for initializing all the instances of PRSS and PRZSwe use in
threshold profile nSm is given in Figure 50. We use a single initialization routine for all of our PRSS-style
applications (i.e. not only for PRSS but also for the PRZS and the PRSS-Msk functions below).

The algorithm PRSS.nt() iterates over all sets A of sizen − t. Thus the complexity of PRSS.nt(), i.e.
the number of sets Awe need to deal with, depends on

�n
t

�

, which can become very large for large n
and t. This is why we restrict the size of

�n
t

�

when using such a PRSS.
The PRSS.nt() algorithm comes in two variants. The first is a non-robust variant which is only

active-with-abort secure; i.e. it could output an bort if the parties do not agree on the correct values.
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However, if it does terminate then the keys are known to be distributed correctly and are in agreement.
The second variant is a fully robust version. The fully robust version makes use of the fact that the

value

c =

�n
t

�

n − t
is relatively small for threshold profile nSm (between 1.3 and 500). This means that we only need to
execute the full blown VSS protocol, from Figure 46, a this small number of times in order to generate
enough random shared values. This is indeed the only place were we execute the VSS protocol for
threshold profile nSm.

The VSS algorithm is executed dce times in order to generate random values, then
�n
t

�

random values
are extracted (using the methods from Section 7.1.3.3). Finally, the random values are then assigned to
each set S , and the associated random key is extracted using a private robust opening within the set S .

Implementation Note: In an implementation onemay want to execute a single call to PRSS.nt()
but then utilize the obtained PRSS/PRZS/PRSS-Msk in multiple different concurrent executions. We
refer to each concurrent executions as a session, to which we associate a unique and pseudo-random
session-id sd. In the case of distributed decryption of an FHE ciphertext, this sd could be derived by
hashing the input ciphertext for example. In order to avoid conflicts in accessing the counters from
multiple sessions, which happen in parallel and can start in different order on different parties, we utilize
per session counters, but then modify the values rA output from PRSS.nt() to rA ⊕ sd in each session.
This implementation modification to cope with out-of-order execution on the different parties is hidden
in this design document in order to make the overall exposition easier to follow.

7.2.6.2 PRSS: The algorithms for using the PRSS are defined in Figure 51. The PRSSmakes use of a
PRF ψ of the form

ψ :

¨

{0,1}sec × S −→ GR(q, F)
(κ, cnt) 7−→ ψ(κ, cnt)

where {0,1}sec is the key space and S is a set of counters. Note, the shared value which is output by
the PRSS.Net() invocation is the sharing of the value

s←
∑

A

ψ(rA, cnt).

We now describe how the function ψ is implemented in practice. Since GR(q, F)(Z/(q))[X]/F(X) we
define ψ as a sum of d different PRF evaluations

ψ(κ, cnt) =
d−1
∑

=0

ψ()(κ, cnt) · X,

where ψ() is a PRF of the form

ψ() :

¨

{0,1}sec × S −→ Z/(q)
(κ, cnt) 7−→ ψ()(κ, cnt)

.

One can then implement the ψ() using AES, in an obvious counter mode. We let

 =

¨

d(dst + log2 q)/128e q not a power of two,
d(log2 q)/128e q a power of two,

and then define

ψ()(κ, cnt) =
�

AESκ(0‖‖cnt) + 2128 · AESκ(1‖‖cnt) + 2256 · AESκ(2‖‖cnt) + . . .
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PRSSInit

PRSS.nt(): This is the version which is active-with-abort secure.
1. For every set A ⊆ {1, . . . ,n} of sizen − t:

(a) S← {P}∈A .
(b) Players P with  ∈ A store rA ← AgreeRndom--Abort(S, sec). The parties in S

should execute this protocol over private channels, as they wish to keep the value
rA from the other players.

(c) Define ƒA(X) ∈ (Z/(q))[X] to be the polynomial of degree t such that ƒA(0) = 1 and
ƒA(α) = 0 for all  6∈ A. Each party P only needs store ƒA(α) though.

2. cntPRSS ← 0.
3. cntPRZS ← 0.
4. cntMsk ← 0.

PRSS.nt(Corrpt): This is the version which is robustly secure.
1. Let c = d

�n
t

�

/(n − t)e .
2. Each player P generates a random value s,j ∈ GR(q, F) for j = 1, . . . , c.
3. In parallel each player enters s,j into the system by all parties executing

VSS(P, s,j, t, Corrpt) for  = 1, . . . ,n and j = 1, . . . , c, so all parties obtain 〈s,j〉.
If the player P is already identified as corrupt then the players can ignore their input
and simply set 〈s,j〉 to be a trivial sharing of the value zero for all values j.

4. Write 〈sj〉 = (〈s1,j〉, . . . , 〈sn,j〉)> for j = 1, . . . , c.
5. Extract c · (n − t) random shared values 〈tj〉 = (〈tj,1〉, . . . , 〈tj,n−t〉)> by executing locally

〈tj〉 = M>n,n−t · 〈sj〉.

6. Write R = {〈tj,〉}, for j = 1, . . . , c and  = 1, . . . , (n − t), so R is a set of c · (n − t) random
shared values.

7. For every set A ⊆ {1, . . . ,n} of sizen − t:
(a) S← {P}∈A .
(b) Take the next random sharing 〈r〉 from the list R, and delete it from R so it is not used

again.
(c) All players P execute AgreeRndom-Robst(S, sec, 〈r〉)with P storing resulting

rA if  ∈ A.
(d) Define ƒA(X) ∈ (Z/(q))[X] to be the polynomial of degree t such that ƒA(0) = 1 and

ƒA(α) = 0 for all  6∈ A. Each party P only needs store ƒA(α) though.
8. cntPRSS ← 0.
9. cntPRZS ← 0.

10. cntMsk ← 0.

PRSS.get-conters(): Access function.
1. Return (cntPRSS, cntPRZS, cntMsk).

Figure 50: Initialization of the Non-Interactive Pseudo-Random Secret Sharing. This is used for protocols in for
the nSm threshold profiles. We give two variants, one active-with-abort secure, and one robust..

+ 2128·(−1) · AESκ(( − 1)‖‖cnt)
�

(mod q),

where we treat the output block of the AES cipher as an integer in [0, . . . ,2128 − 1] . The input value is
made up of an index in [0, . . . , ( − 1)] padded to eight bits, an index  also padded to eight bits, and the
PRSS counter cnt padded to 112 bits. Note, the output of ψ() is only statistically uniform in Z/(q)with
distance bounded by 2−dst .

To obtain robustness for the offline phase of the MPC protocol below when t < n/3, we need to
add an extra command into our non-interactive PRSS functionality. This extra command allows us to
recompute all the shares from a given execution of the PRSS, this enables all parties to check in our
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PRSS

PRSS.Net():
1. Party P computes, where the sum is over every set A ⊆ {1, . . . ,n} of size n − t con-

taining ,
〈s〉 ←

∑

A:∈A
ψ(rA, cntPRSS) · ƒA(α).

2. cntPRSS ← cntPRSS + 1.
3. Return 〈s〉.

PRSS.Check(cnt, Corrpt):
1. Each party P 6∈ Corrpt computes the values ψ(rA, cnt) for all sets A ⊆ {1, . . . ,n} of

sizen − t such that  ∈ A.
2. Each party P 6∈ Corrpt broadcasts the values Ψ = {ψA, = ψ(rA, cnt)}∀A s.t. ∈A using

Synch-Brodcst(P,Ψ, Corrpt) to all other players.
3. Each partyP 6∈ Corrpt on receiving the sets Ψj = {ψA,j} for all j, takes as the true value

of ψA = ψ(rA, cnt), for each set A, the majority value. Note, even if one of the broadcasts
returned ⊥ the agreed ψA will still be correct.

4. For any j and A such that j ∈ A and ψA 6= ψA,j , add player Pj to Corrpt.
5. Party P 6∈ Corrpt computes for all j the value

〈s〉j ←
∑

A:j∈A
ψ(rA, cnt) · ƒA(αj).

6. Party P 6∈ Corrpt outputs (〈s〉1, . . . , 〈s〉n).

Figure 51: Non-Interactive Pseudo-RandomSecret Sharing. This is used for protocols in for the nSm threshold
profiles..

protocol who cheated in an execution. The protocol makes use of a broadcast step. This is important
to ensure correctness, if we just used point-to-point communication wewould need amore complex
dispute control framework below. However, this broadcast will only used on an unhappy path (when
we knowwe need to call PRSS.Check), and thus only when an error is detected. Thus we sacrifice an
expensive broadcast on the unhappy path, for a more simple protocol description and implementation.

7.2.6.3 PRZS: In the thresholdprofilenSmwealso requireamethod togenerate, in anon-interactive
manner, a degree 2 ·t sharing of zero, a so called PRZS. This is done in a standardmanner using Figure 52,
which also includes a checking procedure as above. The PRZS utilizes the same initialization procedure
as that for PRSS. This procedure makes use of a PRF χ of the form

χ :

¨

{0,1}sec × S × {1, . . . , t} −→ GR(q, F)
(κ, cnt, j) 7−→ χ(κ, cnt, j)

where {0,1}sec is the keyspace and S is a set of counters.

One can implement χmuch likewe did ψ above. We first write χ as the sum of d different PRF evaluations

χ(κ, cnt, j) =
d−1
∑

=0

χ()(κ, cnt, j) · X,

where χ() is a PRF of the form

χ() :

¨

{0,1}sec × S × {1, . . . , t} −→ Z/(q)
(κ, cnt, j) 7−→ χ()(κ, cnt, j)

.
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One can then implement the χ() much like we implemented ψ() above. We let, as before,

 =

¨

d(dst + log2 q)/128e q not a power of two,
d(log2 q)/128e q a power of two

and then define

χ()(κ, cnt, j) =
�

AESκ⊕1(0‖‖j‖cnt) + 2128 · AESκ⊕1(1‖‖j‖cnt) + 2256 · AESκ⊕1(2‖‖j‖cnt) + . . .

+ 2128·(−1) · AESκ⊕1(( − 1)‖‖j‖cnt)
�

(mod q),

where we treat the output block of the AES cipher as an integer in [0, . . . ,2128 − 1] . As inputs, we pad
with zeros the indexes of the block ,  and j to eight bits, and cnt is padded to 128 − 3 · 8 = 104 bits.
Notice, the use of κ ⊕ 1 in the key of the AES function, this is to ensure domain separation as we use the
same rA values (i.e. keys) for both the PRSS and the PRZS operations.

PRZS

PRZS.Net():
1. Party P computes, where the sum is over every set A ⊆ {1, . . . ,n} of size n − t con-

taining ,

〈z〉2·t

←

∑

A:∈A

 

t
∑

j=1

χ(rA, cntPRZS, j) · α
j
 · ƒA(α)

!

.

2. cntPRZS ← cntPRZS + 1.
3. Return 〈z〉2·t .

PRZS.Check(cnt, Corrpt):
1. Each party P 6∈ Corrpt computes the values χ(rA, cnt, j) for all sets A ⊆ {1, . . . ,n} of

sizen − t such that  ∈ A, and all j ∈ [1, . . . , t] .
2. Each party P 6∈ Corrpt broadcasts the values X = {χA,j, =

χ(rA, cnt, j)}∀A s.t. ∈A,j∈[1,...,t] using Synch-Brodcst(P, X, Corrpt) to all other
players.

3. Each party P 6∈ Corrpt on receiving the sets Xk = {χA,j,k} for all k, takes as the value
of χA,j , for each set A and index j, the majority value. Note, if the broadcast returned ⊥
above then χA,j will still be correct.

4. If for any k, A and jwe have χA,j 6= χA,j,k then add player Pk to Corrpt.
5. Party P 6∈ Corrpt computes for all k the value

〈z〉2·t
k
←

∑

A:k∈A

 

t
∑

j=1

χ(rA, cntPRZS, j) · α
j
k · ƒA(αk)

!

.

6. Party P 6∈ Corrpt outputs (〈z〉2·t1 , . . . , 〈z〉2·tn ).

Figure 52: Non-Interactive Pseudo-Random Zero Sharing. This is used for protocols in for the nSm threshold
profiles..

7.2.6.4 PRSS-Mask: The PRSS-Msk operations makes use of a PRF ϕ of the form

ϕ :

¨

{0,1}sec × S −→ Z

(κ, cnt) 7−→ ϕ(κ, cnt)

where {0,1}sec is the keyspace and S is a set of counters. The output of the function ϕ is assumed to
be bounded in absolute value by Bd1 = 2stt · Bd. Again, one can implement ϕ using AES, again as we

132



did ψ and χ above, with again using a key tweak (this time of ⊕2 to ensure domain separation). We let, as
before,

 =

¨

d(dst + log2(2 · Bd1))/128e Bd1 not a power of two,
d(log2(2 · Bd1))/128e Bd1 a power of two

and then define

ϕBd1 (κ, cnt) = −Bd1 +
��

AESκ⊕2(0‖cnt) + 2128 · AESκ⊕2(1‖cnt) + 2256 · AESκ⊕2(2‖cnt) + . . .

+ 2128·(−1) · AESκ⊕2(( − 1)‖cnt)
�

(mod 2 · Bd1),
�

where we treat the output block of the AES cipher as an integer in [0, . . . ,2128 − 1] . As input, we have
as before an index in [0, . . . , ( − 1)] padded to eight bits, and the input value cnt to the AES function
padded to 120 bits. Note, the output of ψ is only statistically uniform in [−Bd1, . . . , Bd1] with distance
bounded by 2−stt .

The shared value which is output by the PRSS-Msk.Net invocation is the sharing of the value

E←
∑

A

(ϕ(rA, cnt) + ϕ(rA, cnt + 1)) .

Since the output of ϕ is bounded as above, we have that the value E, whose sharing is output by Figure 53,
is bounded in absolute value by

2 ·
�

n

t

�

· Bd1 = 2 ·
�

n

t

�

· 2stt · Bd,

as the sum used in the PRSS has at most 2 ·
�n
t

�

terms.

PRSS-Mask

PRSS-Msk.Net(Bd, stt):
1. Set Bd1 = 2stt · Bd.
2. Party P computes, where the sum is over every set A containing ,

〈E〉 ←
∑

A:∈A

�

ϕBd1 (rA, cntMsk) + ϕBd1 (rA, cntMsk + 1)
�

· ƒA(α).

3. cntMsk ← cntMsk + 2.
4. Return 〈E〉.

Figure 53: Pseudo-Random Secret Sharing PRSS-Msk for use in Threshold Profiles in Category nSm.

7.2.7 CoinFlip

Given the VSS protocol from Figure 46 we can define a secure ConFp protocol as given in Figure 54.
This is the only place where we actually use the full VSS protocol in threshold profile nLrge. We use it
to generate a single random element in GR(q, F).
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Coin Flip

ConFp(Corrpt):
1. All players P 6∈ Corrpt pick a random value  ∈ GR(q, F) and call
VSS(P, , t, Corrpt), so that all players obtain 〈〉.

2. The players locally compute 〈〉 =
∑

P 6∈Corrpt〈〉.
3. The players execute ← RobstOpen({P1, . . . ,Pn}, 〈〉) and output .

Figure 54: Coin Flip Protocol. This is used for protocols in for the nLrge threshold profiles..

7.3 Layer Two

We summarize the relationship between the protocols in Layer Two in Figure 55 and Figure 56.

PRSS.nt PRSS.Net PRZS.Net PRSS.Check PRZS.Check

Synch-Brodcst

MPCS.nt MPCS.NetRndom MPCS.GenTrpes

Figure 55: Offline MPC Protocols for Threshold Profile Category nSm. These protocols assume synchronous
networks. .
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VSS RobstOpen

ConFp ShreDspte Synch-Brodcst

LocSngeShre

SngeShrng.nt

SngeShrng.Net

LocDobeShre

DobeShrng.nt

DobeShrng.Net
MPCL.nt

MPCL.NetRndom

ErrorCorrect

BW or Go

MPCL.GenTrpes

Figure 56: Offline MPC Protocols for Threshold Profile Category nLrge. These protocols assume synchronous
networks.

7.3.1 Offline MPC Protocol for Threshold Profile Category nSm

We now have all the basics needed to describe the offline MPC protocols for threshold profile category
nSm. The initialization and triple generation methods are given in Figure 57.

The generation of multiplication triples is done using the Damgård–Nielsen multiplication protocol.
Unlike in [DN07] we do not use batching/the “king” paradigm. As mentioned earlier, this is because the
“king” methodology, whilst decreasing communication complexity, increases round complexity. Thus
the number of players would have to be very large for this to produce amajor effect on performance
when implemented over WANs. See Section 7.2.3.1 for how to perform batching in this context. Applying
this optimization we leave for the reader to investigate in their specific implementation context.

To deal with the unhappy path we utilize our novel checking procedure, which utilizes two features
of our protocol. Firstly, the initial shares are generated using a PRSS, and thus can be regenerated by
everyone using the PRSS.Check function. Secondly, the opening in the Damgård–Nielsen multiplication
is opened via a broadcast, and thus each player is committed to their message to all other players. We
note that this simplification appears to be novel, we could not find it in the existing literature, thus we
shall show this is secure in Section 8.3.1.

We assume that the broadcast communication in Figure 57 line 1h, is executed in parallel (so that the
work to authenticate the broadcasts are performed onmany triples at once, rather than executed per
triple). This parallel execution is ignored in the protocol description for ease of exposition.

The broadcast could be amortized over many executions if one is willing to assume digital signatures,
and not just authentic channels. For this optimization one exchanges the shares of the 〈d〉2·t values for ℓ
values of d using pair-wise channels and signing the messages. Then the parties proceed, and execute
a single broadcast to signal if they are happy or not. In the case of one unhappy player the ℓ signed
messages are exchanged, the signatures verified, and the checking procedure is executed as stated. On
the happy path this means that the expensive broadcast is amortized over ℓ triples, however it comes at
the expense of a more complex processing on the unhappy path, and the need for digital signatures.
This “optimization” is not considered further in this document.

In Figure 57 we also define the functionMPCS.NetRndom(Dspte), which is simply an alias for
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MPCS

Note, this assumes t < n/3, and synchronous networks.

MPCS.nt():
1. Call PRSS.nt() or PRSS.nt(Corrpt) depending on whether active-with-abort or

robust security is required forMPCS.nt().
2. Define T ,B← ∅. The set T is the set of multiplication triples generated, whilst the set B

is the set of shared random bits generated.

MPCS.GenTrpes(Dspte):
1. Execute the following a sufficient number of times in parallel in order to generate enough

triples for the online phase:
(a) (cnt1, cnt2, cnt3)← PRSS.get-conters().
(b) 〈〉 ← PRSS.Net().
(c) 〈y〉 ← PRSS.Net().
(d) 〈〉 ← PRSS.Net().
(e) 〈z〉2·t ← PRZS.Net().
(f) 〈〉2·t ← 〈〉 + 〈z〉2·t .
(g) Locally compute for all P the share 〈d〉2·t ← 〈〉 · 〈y〉 + 〈〉2·t .
(h) All players P 6∈ Corrpt execute Synch-Brodcst(P, 〈d〉2·t , Corrpt). If Pj is

added to Corrpt by this call to Synch-Brodcst, or Pj was in Corrpt before
the call, then the assumed broadcast value is assumed to be 〈d〉2·tj =⊥.

(i) All players P 6∈ Corrpt therefore have an agreed set of shares {〈d〉2·tj } of which
s ≤ t are equal to ⊥.

(j) All players P 6∈ Corrpt apply the error correction algorithm G(X) ←
ErrorCorrect(q, (〈d〉2·tj )

n
j=1). The algorithm is applied with v = 2 · t + 1, thus it

will output ⊥ only if there is more than (n − s − 2 · t − 1)/2 > (t − s)/2 errors in the
values {〈d〉2·tj }.

(k) If G(X) 6=⊥ then execute the following happy path
i. d← G(0).
ii. 〈z〉 ← d − 〈〉.
iii. T ← T ∪ {(〈〉, 〈y〉, 〈z〉)}.

(l) Else execute the following unhappy path
i. (〈〉1, . . . , 〈〉n)← PRSS.Check(cnt1, Corrpt).
ii. (〈y〉1, . . . , 〈y〉n)← PRSS.Check(cnt1 + 1, Corrpt).
iii. (〈〉1, . . . , 〈〉n)← PRSS.Check(cnt1 + 2, Corrpt).
iv. (〈z〉2·t1 , . . . , 〈z〉2·tn )← PRZS.Check(cnt2, Corrpt).
v. Compute for all  the values
A. 〈〉2·t ← 〈〉 + 〈z〉2·t .
B. 〈d′〉2·t ← 〈〉 · 〈y〉 + 〈〉2·t .
C. If 〈d′〉2·t 6= 〈d〉2·t then add player P to Corrpt.

vi. Triple production can then resume, but with the players in Corrpt removed
from the computation completely, and the triples “produced” from these values
of cnt1 and cnt2 being thrown away.

MPCS.NetRndom(Dspte):
1. 〈〉 ← PRSS.Net().
2. Return 〈〉.

Figure 57: The Offline Procedures for Threshold Profiles in Category nSm.
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PRSS.Net().

137



7.3.2 Offline MPC Protocol for Threshold Profile Category nLrge

This version of the offline protocol works when
�n
t

�

is large. This means we can no long rely on PRSS
operations to produce any sharings “for free”. To avoid, as much as possible, the usage of the expensive
VSS protocol we utilize the framework of [DN07]. What this framework does is provide a “batched”
VSS protocol which is statistically secure, i.e. it has a vanishingly small probability of outputting invalid
sharings. In the following we set this vanishingly small probability to be 2−dst , i.e. 2−80 given our global
choice of dst. This batched VSS protocol replaces the PRSS from above.

The “double sharings” needed toproduce themultiplication triplesare thenproducedbyamodification
of this “batched” VSS protocol. The “batched” VSS protocols take as input sharings from parties, and
then combine them using the standard technique of randomness extraction discussed in Section 7.1.3.3.

All the above needs to be accomplished, whilst ensuring that pairs of parties in Dspte do not keep
signaling the same dispute over and over again. To enable this, following [DN07] we define a “sharing
with disputes” protocol, which ensures that a party only shares input values with parties for which it is
not in dispute; see Figure 58.

Sharing with Disputes

ShreDspte(P, s, d,Dspte) : To share a value s ∈ R = GR(q, F) via a degree d sharing we
execute the steps.

1. P selects a randompolynomial F(X) ∈ R[X] of degree d such that F(0) = s and F(αj) = 0
for all Pj such that {P,Pj} ∈ Dspte.

2. Send 〈s〉dj = F(αj) privately to all player Pj for which {P,Pj} 6∈ Dspte.
If Pj receives nothing, then he assumes that the value sent was 〈s〉dj = 0.

3. Player P remembers the values 〈s〉dj for later.

Figure 58: Passive Securely Input a Sharing Disputes. This is used for protocols in for the nLrge threshold
profiles..

We implement, in practice, a parallel version of the protocol in Figure 58, where each party shares a
value with all other parties at he same time, as this is exactly how the protocol is used higher up in our
protocol stack. The security of this usage is guaranteed by the UC framework.

7.3.2.1 A “Batched” Statistical VSS: In this section we present a method to enable a single party to
enter a vector of sharings (or double sharings) via a “batched” VSS protocol, see Figure 60 and Figure 61.
These protocols, for the finite field case, form the backbone of the MPC protocol from [DN07]. The
extension to the case of Galois Rings is immediate, however for completeness, later, in Theorem 5, we
prove correctness and security in general.

The checking of the validity of the ℓ input sharings in these protocols makes use of the Schwartz-
Zippel Lemma (Lemma 10). For this lemma we make use of the exceptional sequence S = GR(p, F);
which has size pd . This means we need to repeat the checking a total ofm times where

�

1

pd

�m

≤ 2−dst ,

i.e. we set

m =
  dst

log2(pd)

£

. (33)

To obtain a challenge wemake use of a hash function to map the output of ConFp to a tuple which we
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then use to evaluate the multinomial

HLDS : GR(q, F) × {1, . . . ,m} × {1, . . . ,n} −→ Sℓ.

This hash function is defined in Figure 59. Since S = GR(p, F) is a finite field, there is a multiplicative
generator gen of the set S \ {0}, which we assume is fixed and known to all parties. Note that, in the
algorithm Figure 59 when pd is not a power of two we generate more data from the application of
SHAKE-256, in order to ensure the generated element in S = GR(p, F) is closer to uniformly selected.

HLDS(, g, )

HLDS(, g, ):
1. m← DSep(LDS)‖GRencode()‖g‖, where the index g is encoded as a single byte, and

the index  is encoded also as a two bytes.
Hence 0 ≤ g ≤ 255 and 0 ≤  ≤ 65535.

2. ← 8 · dpd/8e .
3. If p 6= 2 then ← 2 · .
4. (1, . . . , ℓ)← SHAKE-256(m, ℓ · d).
5. For  ∈ [1, . . . , ℓ]

(a) b ←  (mod pd) ∈ [0, . . . , pd − 1] .
(b) If b = pd − 1 then y ← 0.
(c) Else y ← genb .

6. Return (y1, . . . , yℓ).

Figure 59: The Hash FunctionHLDS(, g, ).

Note, the use of the dispute control framework is restricted only to the execution of the protocols
LocSngeShre and LocDobeShre, everything else in our protocol is robust “by default”. In addi-
tion the only placewherewe require broadcast, or any form of synchronicity, is also in LocSngeShre
and LocDobeShre (and by implication in all the implemented sub-protocols). Thuswe have isolated
the main issues re dispute resolution, broadcast and synchronicity to one location.

As with the previous protocols, we implement in our code a parallel version of LocSngeShre,
where every party shares their own vector of secrets in parallel. Contrary to previous protocols, here we
do not just execute the stated protocol in parallel n times because we use the same ConFp across the
parallel executions. Thus the actual implemented protocol realizes not quite the same UC functionality
as just executing the stated protocol in parallel. This modification to the protocol description is easy to
cope with in the modeling, and is thus left to the reader. We adopt the more simple presentation here for
readability reasons.

Our explanation of ConFp(Corrpt) above has an “optimization” which is not in the presenta-
tion in [DN07]. This optimization is that the ConFp(Corrpt) can update the known set of corrupt
parties. This means that in protocols LocSngeShre and LocDobeShre, if the execution of
ConFp(Corrpt), on line 4, results in an increase in the set Corrpt then we need to return to the
start of the protocol to ensure that the execution of ShreDspte is consistent with this new set
Corrpt(Corrpt) (and hence the new set Dspte).

Note, a similar optimization to that used in the protocol ConFp(Corrpt) is applied also in the
protocol Synch-Brodcst(P, ·, Corrpt), however in this case one only adds to Corrpt if the sender’s
actions result in an ⊥ value being broadcast. This would trip the error processing in LocSngeShre
and LocDobeShre to add P to Corrpt even if Synch-Brodcst(P, ·, Corrpt) did not. Thus for
the single call to the protocol Synch-Brodcst(P, ·, Corrpt), no modification it appears to be needed.
However, if one runs LocSngeShre and LocDobeShre in the parallel setting, described above,
then this update to Corrpt can effect the correctness of the other parallel executions. Thus to be safe
we execute a return to the first step always if the size of Corrpt increases. This return should happen
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for all parallel executions.

Local Checked Single Sharing

LocSngeShre(P, (s1, . . . , sℓ), Dspte) : For s ∈ R = GR(q, F) chosen by P this procedure
goes as follows.

1. If P ∈ Corrpt then set sj = 0, 〈sj〉k = 0 for j = 1, . . . , ℓ and k = 1, . . . , n, and return.
2. Player P calls ShreDspte(P, sj, t, Dspte) for j = 1, . . . , ℓ to obtain 〈sj〉.
3. Player P , for g = 1, . . . ,m, generates a random rg ∈ R and then calls 〈rg〉 ←

ShreDspte(P, rg, t, Dspte), wherem is defined by equation (33).
4. ← ConFp(Corrpt) ∈ R.

When executing this protocol in parallel, this is a single call to ConFp and not n such
calls.

5. If the call to ConFp(Corrpt) above resulted in an increase to the set Corrpt then
return to the first step for all parallel executions.

6. For g ∈ [1, . . . ,m] (can be executed in parallel)
(a) (1,g, . . . , ℓ,g)←HLDS(, g, ), note ,g ∈ S.
(b) All parties compute

〈yg〉 ← 〈rg〉 +
ℓ
∑

j=1

j,g · 〈sj〉.

(c) Player P , using the values remembered from calling ShreDspte, computes the
values 〈yg〉j for all j, call this share 〈y∗

g
〉j .

(d) All partiesPj inAgree execute Synch-Brodcst(Pj, 〈yg〉j, Corrpt), by convention
all parties in Dspte are “defined” to broadcast 〈yg〉j = 0.

(e) Simultaneously player P executes Synch-Brodcst(P, 〈y∗g 〉j, Corrpt) for all j.
(f) If anyof theprecedingcalls toSynch-Brodcst(·, ·, Corrpt) results in an increase

to Corrpt then return to step 1 for all parallel executions.
(g) If the sharing 〈y∗

g
〉j broadcast by P is not a degree t sharing with all parties in

Dspte having the zero share, then add P to Corrpt, and return to step 1 for all
parallel executions.
If this is not being run in parallel then one could simply set sj = 0 and 〈sj〉k = 0 for
j = 1, . . . , ℓ and k = 1, . . . , n, and not return to step 1.

(h) If 〈yg〉j 6= 〈y∗〉j then add {P,Pj} to Dspte for all Pj ∈ Agree , and return to step 1
for all parallel executions.
Note all parties will agree on the dispute having happened as they can all do the
checks, which are on broadcast values.

7. Return (〈s〉)ℓ=1 .

Figure 60: Locally Produced, by P , Checked Single Sharing of Multiple Values with Disputes. This is used for
protocols in for the nLrge threshold profiles..
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Local Checked Double Sharing

LocDobeShre(P, (s1, . . . , sℓ), Dspte) : For s ∈ R = GR(q, F) chosen byP this procedure
goes as follows.

1. If P ∈ Corrpt then set sj = 0, 〈sj〉k = 0 and 〈sj〉2·tk = 0, for j = 1, . . . , ℓ and k = 1, . . . , n,
and return.

2. Player P calls ShreDspte(P, sj, t, Dspte) for j = 1, . . . , ℓ to obtain 〈sj〉.
3. Player P calls ShreDspte(P, sj,2 · t, Dspte) for j = 1, . . . , ℓ to obtain 〈sj〉2·t .
4. Player P , for g = 1, . . . ,m, generates a random rg ∈ R and then calls 〈rg〉 ←

ShreDspte(P, rg, t, Dspte) and 〈rg〉2·t ← ShreDspte(P, rg,2 · t, Dspte),
wherem is defined by equation (33).

5. ← ConFp(Corrpt) ∈ R.
When executing this protocol in parallel, this is a single call to ConFp and not n such
calls.

6. If the call to ConFp(Corrpt) above resulted in an increase to the set Corrpt then
return to the first step for all parallel executions.

7. For g ∈ [1, . . . ,m] (can be executed in parallel)
(a) (1,g, . . . , ℓ,g)←HLDS(, g, ), note ,g ∈ S.
(b) All parties compute

〈yg〉 ← 〈rg〉 +
ℓ
∑

j=1

j,g · 〈sj〉

and

〈yg〉2·t ← 〈rg〉2·t +
ℓ
∑

j=1

j,g · 〈sj〉2·t.

(c) Player P , using the values remembered from calling ShreDspte, computes the
values 〈yg〉j and 〈yg〉2·tj for all j, call these 〈y∗

g
〉j and 〈y∗g 〉

2·t
j .

(d) All parties Pj in Agree execute Synch-Brodcst(Pj,{〈yg〉j, 〈yg〉2·tj}, Corrpt),
whilst all parties in Dspte are deemed to have broadcast 〈yg〉j = 〈yg〉2·t = 0.

(e) Simultaneously playerP executes Synch-Brodcst(P,{〈y∗g 〉j, 〈y
∗
g
〉2·tj }, Corrpt).

(f) If anyof theprecedingcalls toSynch-Brodcst(·, ·, Corrpt) results in an increase
to Corrpt then return to step 1 for all parallel executions.

(g) If one of the following is true
• The sharing 〈y∗

g
〉j broadcast by P is not a degree t sharing with all parties in

Dspte having the zero share,
• The sharing 〈y∗

g
〉2·tj broadcast by P is not a degree 2 · t sharing with all parties

in Dspte having the zero share,
• Upon reconstructing yg from both 〈y〉 and 〈y〉2·t the two values are different

then add P to Corrpt, and return to step 1 for all parallel executions.
If this isnotbeing run in parallel then one could simply set sj = 0 and 〈sj〉k = 〈sj〉2·tk =
0 for j = 1, . . . , ℓ and k = 1, . . . , n, and not return to step 1.

(h) If 〈yg〉j 6= 〈y∗g 〉j or 〈yg〉
2·t
j 6= 〈y∗

g
〉2·tj then add {P,Pj} to Dspte for all Pj ∈ Agree ,

and return to step 1 for all parallel executions.
Note all parties will agree on the dispute having happened as they can all do the
checks, which are on broadcast values.

8. Return (〈s〉, 〈s〉2·t)ℓ=1 .

Figure 61: Locally Produced, by P , Checked Double Sharing of Multiple Values with Disputes. This is used for
protocols in for the nLrge threshold profiles..

7.3.2.2 Randomness Extraction: Given these two “batched” statistically secure VSS protocols we
now present the randomness extraction methodology used to extract the “global” single and double
sharings, see Figure 62 This randomness extraction is done using the Vandermonde matrices Mr,c

presented earlier in the standard manner.
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Single and Double Sharing

The production of single and double sharings, of values  ∈ R = GR(q, F), which are random and
unknown to any party.

SngeShrng.nt(Dspte):
1. For  ∈ [1, . . . ,n] do

(a) Player P generates s
()
j ∈ R for j = 1, . . . , ℓ.

(b) (〈s()j 〉)
ℓ
j=1 ← LocSngeShre(P,{s

()
j }

ℓ
j=1, Dspte).

2. cnt0 ← 0, cnt1 ← n − t.

SngeShrng.Net(Dspte):
1. If cnt1 = n − t then

(a) If cnt0 = ℓ then call SngeShrng.nt(Dspte).
(b) Locally compute

(〈j〉)n−tj=1 ← (〈s
()
cnt0
〉)n
=1 ·Mn,n−t.

(c) cnt0 ← cnt0 + 1.
(d) cnt1 ← 0.

2. cnt1 ← cnt1 + 1.
3. Return 〈cnt1 〉.

DobeShrng.nt(Dspte):
1. For  ∈ [1, . . . ,n] do

(a) Player P generates s
()
j ∈ R for j = 1, . . . , ℓ.

(b) (〈s()j 〉, 〈s
()
j 〉

2·t)ℓj=1 ← LocDobeShre(P,{s
()
j }

ℓ
j=1, Dspte).

2. cnt0 ← 0, cnt1 ← n − t.

DobeShrng.Net(Dspte):
1. If cnt1 = n − t then

(a) If cnt0 = ℓ then call DobeShrng.nt(Dspte).
(b) Locally compute

(〈j〉)n−tj=1 ← (〈s
()
cnt0
〉)n
=1 ·Mn,n−t.

(〈j〉2·t)n−tj=1 ← (〈s
()
cnt0
〉2·t)n

=1 ·Mn,n−t.

(c) cnt0 ← cnt0 + 1.
(d) cnt1 ← 0.

2. cnt1 ← cnt1 + 1.
3. Return (〈cnt1 〉, 〈cnt1 〉2·t).

Figure 62: Interactive Single and Double Sharing. This is used for protocols in for the nLrge threshold profiles..

7.3.2.3 Offline Protocols: Wecan nowpresent themain offline protocols for threshold profile nLrge,
MPCL.nt(Dspte), MPCL.GenTrpes(Dspte) and MPCO.NetRndom(Dspte) which we give in
Figure 63. The error correction in line 1e of protocol MPCL.GenTrpes works because for threshold
profile nLrgewe have assumed, following Design Decision 9, t < n/4, and not t < n/3. Extending the
protocol, robustly, to the more relaxed setting of t < n/3 is possible using the techniques of [DN07].
However, the added complexity on the unhappy path creates a very complex protocol, which we feel is
unlikely ever to be implemented.
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MPCL

Note, this assumes t < n/4, and synchronous networks.

MPCL.nt(Dspte):
1. Call SngeShrng.nt(Dspte)
2. Call DobeShrng.nt(Dspte)
3. Define T ,B← ∅.

MPCL.GenTrpes(Dspte):
1. Execute the following a “sufficient” number of times in parallel:

(a) 〈〉 ← SngeShrng.Net(Dspte).
(b) 〈y〉 ← SngeShrng.Net(Dspte).
(c) (〈〉, 〈〉2·t)← DobeShrng.Net(Dspte).
(d) Locally compute for all P the share 〈d〉2·t ← 〈〉 · 〈y〉 + 〈〉2·t .
(e) d← RobstOpen(P , 〈d〉2·t).
(f) 〈z〉 ← d − 〈〉.
(g) T ← T ∪ {(〈〉, 〈y〉, 〈z〉)}.

MPCL.NetRndom(Dspte):
1. 〈〉 ← SngeShrng.Net(Dspte).
2. Return 〈〉.

Figure 63: The Offline Procedures for Threshold Profiles in Category nLrge.

7.4 Layer Three

We summarize the relationship between the protocols in Layer Three in Figure 64–Figure 66.

MPCO.nt MPCO.GenTrpes

MPC.Mt

MPC.Open MPCO.NetRndom

RobstOpen

ErrorCorrect

BW or Go

MPC.GenBts

Soe

Figure 64: Online MPC Protocols for All Threshold Profile Categories and q = 2k . Those protocols markedMPCO
come from the offline phase; thus depending on the profile one replace Owith S or L. The protocols in the online
phase can work in asynchronous networks, even though the offline phase assumes synchronous networks.
Depending on the implementation choices, one could considerMPC.GenBts as actually part of the Offline phase.
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MPCS.nt

MPCS.GenTrpes MPC.Open

MPC.Mt

RobstOpen

ErrorCorrect

BW or Go

MPCS.NetRndom

MPC.GenBts

Sqrt PRSS-Msk.Net

Figure 65: Online MPC Protocols for nSm Threshold Profile Categories when q = p1 . . . pt . Those protocols
markedMPCS come from the offline phase. The protocols in the online phase canwork in asynchronous networks,
even though the offline phase assumes synchronous networks. Depending on the implementation choices, one
could considerMPC.GenBts as actually part of the Offline phase.

MPCL.nt MPCL.GenTrpes MPC.Open

RobstOpen

ErrorCorrect

BW or Go

MPC.Mt

Figure 66: Online MPC Protocols for nLrge Threshold Profile Category when q = p1 · · ·pk . Those protocols
markedMPCL come from the offline phase. The protocols in the online phase canwork in asynchronous networks,
even though the offline phase assumes synchronous networks. There is noMPC.GenBts protocol here, thus this
set of protocols are just for expository purposes. They are not used in any of our threshold protocols.

7.4.1 Online MPC Protocol for All Threshold Profile Categories

Here we describe the online phase of the MPC algorithm. Our MPC online algorithm will be used in a
rather special situation; in particular there is no need for an input routine (recall Design Decision 6). The
online algorithms are all robustly secure, over asynchronous networks, assuming t < n/3. However, the
underlying offline algorithms may not meet these requirement. In particular none of our offline methods
are valid over asynchronous networks, and we can only obtain t < n/3 for the offline phase for threshold
profile categories nSm, otherwise we need to assume t < n/4.

An algorithm built on top of the MPC engine can perform linear operations (for free), request random
pre-computed bits, performmultiplication operations and output a shared value to all parties. These
routines are presented in Figure 67.

7.4.1.1 Multiplication: Our multiplication routine is the basic Beaver multiplication algorithm. The
twoMPC.Open’s in the multiplication routine can be run in parallel.

7.4.1.2 MPC.Msk: One can think of our operation PRSS-Msk.Net as either a subroutine at Layer
Two, or as a special command of our MPC protocol, which one could denote MPC.Msk. For ease of
exposition of the protocols we take the former approach, by calling it PRSS-Msk.Net. However, when
presenting the security rationale behind this operation, in Section 8.4.1.2, we think of it as an extension
to the online MPC functionality.
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MPC Online

We utilize the notation MPCO to denote a call to the offline process, where O = S or O = L
depending on the specific parameters for our MPC instantiation.

MPC.Open(〈〉):
1. Execute RobstOpen({P1, . . . ,Pn}, 〈〉).

MPC.Mt(〈〉, 〈y〉):
1. If T = ∅ then executeMPCO.GenTrpes(Dspte).
2. Write T = {(〈〉, 〈b〉, 〈c〉)}N=1 .
3. T ← T \ {(〈1〉, 〈b1〉, 〈c1〉)}.
4. 〈ε〉 ← 〈〉 + 〈1〉.
5. 〈ρ〉 ← 〈y〉 + 〈b1〉.
6. ε← MPC.Open(〈ε〉).
7. ρ← MPC.Open(〈ρ〉).
8. 〈z〉 ← 〈c1〉 + ε · 〈y〉 − ρ · 〈〉.

MPC.GenBts(): This algorithm returns  bits for use in further algorithms
1. While |B| <  then execute the following a “sufficient” (or “desired”) number of times in

parallel
(a) 〈〉 ← MPCO.NetRndom(Dspte).
(b) 〈s〉 ← MPC.Mt(〈〉, 〈〉).
(c) If q odd then

i. If profile nLrge then bort.
ii. Let pL denote the largest prime divisor of q.
iii. s← MPC.Open(〈s〉).
iv. If s ≡ 0 mod pL then return to step 1a.
v. c← Sqrt(s, pL).
vi. 〈〉 ← 〈〉 / c.
vii. 〈b〉 ← (1 + 〈〉) / 2.
viii. 〈r〉 ← PRSS-Msk.Net(1, stt) + 2 ·

�n
t

�

· 2stt .
ix. c← MPC.Open(〈b + r〉).
x. t← c (mod pL).
xi. 〈b〉 ← t − 〈r〉.

(d) Else
i. 〈〉 ← 〈〉 + 〈s〉.
ii. ← MPC.Open(〈〉).
iii. r ← Soe(). Using the method from Section 7.1.5.1.
iv. d← (−1 − 2 · r) (mod q).
v. 〈b〉 ← (〈〉 − r) / d.

(e) B← B ∪ {〈b〉}.
2. Write B = {〈b〉}N=1 .
3. B← B \ {〈b〉}=1 .
4. Return {〈b1〉, . . . , 〈b〉}.

Figure 67: Online MPC Routines.

7.4.1.3 MPC Algorithms: On top of this MPC engine (consisting of addition, multiplication, opening
andmasking of secret shared values) we can run algorithms. As long as these algorithms only make
use of these basic operations the resulting algorithmswill only leak the data which is leaked by their
outputs. After all this is what an MPC algorithm is designed to do. To aid exposition however, we treat
the bit generation algorithms as part of the MPC engine itself (i.e. we place them at Layer Three, rather
than perhaps at a Layer Three-point-Five). Thus the two methods for bit generation in Figure 67 can be
seen as simple MPC programsmore akin to the MPC programs wewill execute at Layer Four.
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7.4.1.4 Bit Generation when q = 2k : The bit-generation method, when q = 2k , is a direct translation
of the “in-the-clear” method from Section 7.1.5 to the MPC environment.

7.4.1.5 Bit Generation when q = p1 · · ·pk : When q = p1 · · ·pk we noted in Section 7.1.5 that the
method is more complex when k > 1. The “in-the-clear” method produces can produce a shared bit
modulo any single prime divisor of q, but obtaining a consistent shared bit is the problem. Following
Design Decision 13 we present a solution to this problem only in the case of threshold profiles nSm.
Our solution method makes usage of the PRSS in a key way; in particular the PRSS-Msk.Net given
earlier is shifted to ensurewe alwaysworkwith positive numbers, avoiding anymismatch in themapping
of negative numbers mod pL and mod q. A proof of this method is given in Theorem 7 later. The method
requires that we have

pL > nSmBnd · 2stt+3 > 8 ·
�

n

t

�

· 2stt ,

which holds by Parameter Choice 2.
A solution to producing shared random bits in threshold profile nLrge is possible, using an adaption

of the checking techniques of [RST+22, RW19, EGK+20]. However, thesemethods are relatively complex,
and when applied out-of-the-box they only result in protocols which are active-with-abort secure, and
not robustly secure. Thus these methods are worthy of more research in the context of the Shamir
Sharings over Galois rings discussed in this document.
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7.5 Layer Four

We discuss the three schemes algorithms (BGV, BFV and TFHE) in turn. In each scheme we need to
see how to map the scheme parameters Q,P,N etc onto the parameters of the underlying MPC/secret
sharing scheme q,n, t etc. And how these are related, and what constrains are placed upon the various
parameters. We summarize the relationship between the protocols in Layer Four in Figure 68– Figure 74.

MPCS.nt MPC.GenBts

MPC.NeHope

MPC.Open MPCO.NetRndom MPC.Mt

BGV.Threshod-KeyGen
BFV.Threshod-KeyGen

Figure 68: Threshold Key Generation for Threshold Profile Category nSm (BGV/BFV). These protocols can
work in asynchronous networks.

PRSS.nt PRSS-Msk.Net RobstOpen

ErrorCorrect

BW or Go

BGV.Sce

BGV.Threshod-Dec
BFV.Threshod-Dec

Figure 69: Threshold Decryption for Threshold Profile Category nSm (BGV/BFV). These protocols can work in
asynchronous networks.

MPCS.nt MPC.GenBts

MPC.TUnƒorm MPC.Open MPCO.NetRndom MPC.Mt

TFHE.Threshod-KeyGen

Figure 70: Threshold Key Generation for all Threshold Profile Categories (TFHE). These protocols can work in
asynchronous networks.
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PRSS.nt PRSS-Msk.Net RobstOpen

ErrorCorrect

BW or Go

TFHE.StchSqsh

TFHE.Threshod-Dec-1

Figure 71: Threshold Decryption (Version 1) for Threshold Profile Category nSm (TFHE). These protocols can
work in asynchronous networks.

MPCL.nt MPC.GenBts

MPC.TUnƒorm MPC.Open TFHE.StchSqsh

TFHE.Threshod-Dec-1

Figure 72: Threshold Decryption (Version 1) for Threshold Profile Category nLrge (TFHE). These protocols can
work in asynchronous networks.

MPCO.nt

MPC.Mt MPC.GenBts MPC.Open

XOR

BtAddBtSm

BtDec

TFHE.Threshod-Dec-2

Figure 73: Threshold Decryption (Version 2) for All Threshold Profile Categories (TFHE). These protocols can work
in asynchronous networks.

MPCO.nt

MPC.Open

MPCO.NetRndom RobstOpen

ErrorCorrect

BW or Go

SynDecodeGR

Synch-Brodcst

ReShre

Figure 74: Resharing Protocol for all Threshold Profiles. These protocols work in synchronous networks.
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7.5.1 Distributions

We first discuss how to generate our random distributions in our MPC engines, i.e. we want to sample
from NeHope(N,B) and TUnƒorm(N, −2b,2b)within the secret shared domain. These algorithms are
immediate, given our ability to generate shared random bits, and are given in Figure 75.

Secret Shared Distributions

MPC.NeHope(N,B) :
1. 〈b〉 = (〈b1〉, . . . , 〈b2·N·B〉)← MPC.GenBts(2 ·N · B).
2. 〈e〉 = (〈e1〉, . . . , 〈eN〉)← (〈0〉, . . . , 〈0〉).
3. For  ∈ [1, . . . , N] do

(a) For j ∈ [1, . . . , B] do
i. t← 2 · ( − 1) · B + 2 · (j − 1) + 1.
ii. 〈e〉 ← 〈e〉 + 〈bt〉 − 〈bt+1〉.

4. Return 〈e〉.

MPC.TUnƒorm(N, −2b,2b) :
1. 〈b〉 = (〈b1〉, . . . , 〈bN·(b+2)〉)← MPC.GenBts(N · (b + 2)).
2. For  ∈ [1, . . . , N] do

(a) r ← ( − 1) · (b + 2).
(b) 〈e〉 ← 〈br+b+2〉 − 2b .
(c) For j ∈ [1, . . . , b + 1] do

i. 〈e〉 ← 〈e〉 + 〈br+j〉 · 2j−1 .
3. Return 〈e〉.

Figure 75: Protocols to Secret Shared Samples from NeHope(N,B) and TUnƒorm(N, −2b,2b).

7.5.2 BGV

Recall we only provide threshold BGV protocols in threshold profile nSm. For threshold key generation
for BGV we will utilize our MPC/secret sharing schemes with q = Q · R, however when we switch to
threshold decryption operations we will switch to using q = Q1 . This switching is simple, since Q1|Q · R,
as given a valid secret sharing modulo Q · Rwe can obtain a valid secret sharing modulo Q1 simply by
each player locally reducing their share modulo Q1 .

7.5.2.1 Threshold Key Generation: Recall we have selected Q = Q1 · · ·QL such that, by Parameter
Choice 5,

Q1 ≈ 4 · nSmBnd · 2stt · EM · BMt .

Inparticular thismeans (for keygeneration) that the largest prime pL dividingQ is larger than nSmBnd·
2stt+3 . Hence, Parameter Choice 2 is automatically satisfied, and our bit generation technique will work
for our secret sharing modulo q = Q · R. This means that our threshold key generation algorithm for BGV
is immediate, and we produce BGV keys with exactly the same noise distribution as we would in the
clear.

Thealgorithm is simply a thresholdization (usingourgenericMPCmachinery) ofKeyGen fromFigure8,
whichwepresent inFigure76. Notice that all thearithmeticoperationsperformed inBGV.Threshod-KeyGen
on shared values are all linear; except for the generation of the sharing of sk2 . Thus, apart from the
generation of the random bits and the opening of the final sharings, the entire algorithm is completely
local, except for the layer of multiplications (in line 10) needed to compute sk2 . This multiplication can
be implemented either using a naive loop, or using an NTT/iNTT methodology as described in Sec-
tion 5.3. In either way it requires a single parallel execution of O(N2) (resp. Nwhen using an NTT based
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BGV Threshold Key Generation

BGV.Threshod-KeyGen(N,Q, P, B, R):
Unless otherwise marked, all the secret sharings in this algorithm are modulo q = T = Q · R.

1. 〈sk〉 ← MPC.NeHope(N,1).
2. 〈pk〉 ← MPCO.NetRndom().
3. 〈pk′


〉 ← MPCO.NetRndom().

4. pk ← MPC.Open(〈pk〉).
5. pk′


← MPC.Open(〈pk′


〉).

6. pk ← pk (mod Q).
7. 〈epk〉 ← MPC.NeHope(N,B).
8. 〈pkb〉 ← pk � 〈sk〉 + P · 〈epk〉.
9. 〈e′

pk
〉 ← MPC.NeHope(N,B).

10. 〈s〉 ← 〈sk〉 � 〈sk〉.
11. 〈pk′

b
〉 ← pk′


� 〈sk〉 + P · 〈e′

pk
〉 − R · 〈s〉.

12. pkb ← MPC.Open(〈pkb〉).
13. pk′

b
← MPC.Open(〈pk′

b
〉).

14. pkb ← pkb (mod Q).
15. 〈sk〉Q1 ← 〈sk〉 (mod Q1), i.e. restrict 〈sk〉 to a secret sharing modulo Q1 .
16. pk← {(pk,pkb), (pk

′

,pk′

b
)}.

17. Return (pk, 〈sk〉Q1 ).

Figure 76: BGV Threshold Key Generation, for Threshold Profile nSm.

methodology18) MPC multiplications. Note, NTT based multiplication can also be used in lines 8 and 11 if
desired.

Note, the openings on lines 4 and 5 can be performed in parallel, as can the openings on lines 12 and
13.

7.5.2.2 Threshold Decryption: Recall at this point we hold a secret key in secret shared form 〈sk〉,
where the sharing is performed modulo q = Q1 . Also recall, that a BGV ciphertext is a tuple ct =
(c0,c1, ℓ, B)where we have

Q(ℓ) = Q1 · · ·Qℓ,

c0,c1 ∈ RQ(ℓ) ,

c0 − c1 � sk =m + P · e (mod Q(ℓ))

‖c0 − c1 � sk‖cn ≤ B.

Toproceedwith threshold decryptionwe transform the ciphertext first from level ℓ to level one. Assuming
the (standard BGV) parameters have been set up correctly, this will result in a ciphertext of the form
ct′ = (c′0,c

′
1,1, B

′)where we have
B′ < BMt ,

and hence wewill have the infinity norm bound

‖c0 − c1 � sk‖∞ ≤ EM · BMt .

18Applying the NTT/iNTT is a linear, and hence local, operation.
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In setting the parameters for the threshold version for BGV, recall, we selected Q1 so that

2 ·
�

n

t

�

· 2stt · EM · BMt < Q1/2.

Indeed we selected
Q1 ≈ 4 · nSmBnd · 2stt · EM · BMt .

This means there is enough “noise gap” between the infinity norm of the pre-decryption of ct′ and the
modulus Q1 in order to apply noise-flooding to the pre-decryption. The noise-flooding can then be
applied, as we are in threshold profile nSm, using the PRSS-Msk operations, as described in Figure 77.

BGV Threshold Decryption

BGV.Threshod-Dec(ct, 〈sk〉):
1. ct′ = (c′0,c

′
1,1, B

′)← BGV.Sce(ct,1).
2. 〈p〉 ← c′0 − 〈sk〉 � c

′
1 .

3. 〈t〉 ← PRSS-Msk.Net(EM ·BMt /P, stt); note this is in factN calls to PRSS-Msk.Net
as t is a vector of length N.

4. 〈c〉 ← 〈p〉 + P · 〈t〉.
5. c← RobstOpen({P1, . . . ,Pn}, 〈c〉); again this in N parallel calls.
6. m← c (mod P).
7. Returnm.

Figure 77: BGV Threshold Decryption, for Threshold Profile nSm.

Note inBGV.Threshod-Dec theNparallel calls to PRSS-Msk.Net andRobstOpencanbe reduced
if it is known before hand that the number of coefficients returned in the message is actually less than N.

This distributed decryption protocol is secure, since the opening of the value c leaks no information
about the noise value inside ct′ , since the addition of the value returned by the PRSS-Msk.Net function
“floods” the value. This follows from Theorem 6; but wewill provide a full simulation proof later.

For correctness note that the value c has infinity norm bounded by (with overwhelming probability)

EM · BMt ·
�

1 + 2 ·
�

n

t

�

· 2stt
�

≈ 2 ·
�

n

t

�

· 2stt · EM · BMt , < Q1/2.

Thus there is no wrap-around error introduced by adding on the value P · t. That we obtain the same
message then follows because we added on a multiple of P; which does not affect the final decrypted
value.

7.5.3 BFV

Given our earlier discussion that BFV is just a “converted” version of BGV, the translation of the in-the-
clear BFV key generation and decryption operations to their threshold versions is then immediate.

7.5.3.1 Threshold Key Generation: BFV threshold key generation follows from Figure 12, and is given
in Figure 78 Notice that we only provide a solution for threshold profile nSm, for exactly the same
reason as for threshold BGV, namely that the generation of shared random bits for composite odd q is
beyond the scope of this document. The only change from the BGV threshold key generation method
from Figure 76 is in line 8

7.5.3.2 Threshold Decryption: Recall for a BFV ciphertext ct = (c0,c1, ℓ, Bct) the bound Bct is on
the canonical norm of the pre-decryption of the ciphertext in BGV format. Also recall a Sce operation
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BFV Threshold Key Generation

BFV.Threshod-KeyGen(N,Q, P, B, R):
Unless otherwise marked, all the secret sharings in this algorithm are modulo q = T = Q · R.

1. 〈sk〉 ← MPC.NeHope(N,1).
2. 〈pk〉 ← MPCO.NetRndom().
3. 〈pk′


〉 ← MPCO.NetRndom().

4. pk ← MPC.Open(〈pk〉).
5. pk′


← MPC.Open(〈pk′


〉).

6. pk ← pk (mod Q).
7. 〈epk〉 ← MPC.NeHope(N,B).
8. 〈pkb〉 ← pk � 〈sk〉 + 〈epk〉.
9. 〈e′

pk
〉 ← MPC.NeHope(N,B).

10. 〈s〉 ← 〈sk〉 � 〈sk〉.
11. 〈pk′

b
〉 ← pk′


� 〈sk〉 + P · 〈e′

pk
〉 − R · 〈s〉.

12. pkb ← MPC.Open(〈pkb〉).
13. pk′

b
← MPC.Open(〈pk′

b
〉).

14. pkb ← pkb (mod Q).
15. 〈sk〉Q1 ← 〈sk〉 (mod Q1), i.e. restrict 〈sk〉 to a secret sharing modulo Q1 .
16. pk← {(pk,pkb), (pk

′

,pk′

b
)}.

17. Return (pk, 〈sk〉Q1 ).

Figure 78: BFV Threshold Key Generation, for Threshold Profile nSm.

down to level one needs to be applied to perform threshold decryption, and this is only defined for BGV
format ciphertexts. Thus, if a ciphertext is presented in BFV format, we actually simply convert it to BGV
format and then apply the BGV threshold decryption operation. Thus threshold BFV is defined as in
Figure 79.

BFV Threshold Decryption

BFV.Threshod-Dec(ct, 〈sk〉):
1. ct′ = BFV.toBGV(ct).
2. m← BGV.Threshod-Dec(ct′, 〈sk〉).
3. Returnm.

Figure 79: BFV Threshold Decryption, for Threshold Profile nSm.

7.5.4 TFHE

For TFHE we provide two different methodologies for threshold decryption. The first is a one round
variant, which requires us to boost the ciphertext modulus from the typical Q = 264 to one of Q = 2128 .
Thus for this variant we need to execute our secret sharing operations (and hence key generation below)
using the modulus Q. The second variant is a higher round complexity variant, which means we can
maintain the ciphertext modulus of Q = 264 . In this second case we run the threshold key generation
using secret sharing modulo Q.

7.5.4.1 Threshold Key Generation: As remarked above this method is either executed using secret
sharing modulo q = Q = 2128 or q = Q = 264 . The algorithm is simply a thresholdization (using our
generic MPCmachinery) of KeyGen from Figure 17, which we present in Figure 81. This in turn uses MPC
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versions of the encryption algorithms from Figure 14, which we present in Figure 80. The method is the
samewhether one is in threshold profile nSm or threshold profile nLrge (the only thing changing
being the underlying MPC mechanics). An astute reader may notice that, contrary to KeyGen from
Figure 17, the thresholdized version in Figure 81 always outputs shares of the LWE secret key as the first
component of sk irrespective of the type. This is because, for efficiency reasons, our second distributed
decryption protocol described in Figure 85 first performs a key switch if type = F-GLWE.

The MPC Internal TFHE Encryption Operations

MPC.EncLWE(〈m〉, 〈s〉;XOF, P′, Q, ℓ, ƒ g):
1. ← EpndLWE(XOF,Q, ℓ).
2. 〈e〉 ← MPC.TUnƒorm(1, −2bℓ ,2bℓ ).
3. 〈b〉 ←  · 〈s〉 + 〈e〉 + (Q/P′) · 〈m〉.
4. If ƒ g return (, 〈b〉), else return 〈b〉.

MPC.EncGLWE(〈m〉, (〈s0〉, . . . , 〈s−1〉);XOF, P′, Q,N,, ƒ g):
1. (0, . . . ,−1)← EpndGLWE(XOF,Q,N,).
2. 〈e〉 ← MPC.TUnƒorm(N, −2b·N ,2b·N ).
3. 〈b〉 ←

∑−1
=0  � 〈s〉 + 〈e〉 + (Q/P′) · 〈m〉 (mod Q).

4. If ƒ g return (0, . . . ,−1, 〈b〉), else return 〈b〉.

MPC.EncLe(〈m〉, 〈s〉;XOF, β,Q, ℓ, ν, ƒ g):
1. For  ∈ [0, . . . , ν − 1] do

(a) 〈ct〉 ← MPC.EncLWE(m,s;XOF, β+1, Q, ℓ, ƒ g).
We abuse notation here as not all of ct may be secret shared.

2. Return (〈ct0〉, . . . , 〈ctν−1〉).

MPC.EncGLe(〈m〉, (〈s0〉, . . . , 〈s−1〉);XOF, β,Q,N,,ν, ƒ g):
1. For  ∈ [0, . . . , ν − 1] do

(a) 〈ct〉 ← MPC.EncGLWE(〈m〉, (〈s0〉, . . . , 〈s−1〉);XOF, β+1, Q,N,, ƒ g).
We abuse notation here as not all of ct may be secret shared.

2. Return (〈ct0〉, . . . , 〈ctν−1〉).

MPC.EncGGSW(〈m〉, (〈s0〉, . . . , 〈s−1〉);XOF,Q,N,, β, ν, ƒ g):
1. For  ∈ [0, . . . , − 1] do

(a) 〈t〉 ← −MPC.Mt(〈s〉, 〈m〉).
Note, this requires interaction.

(b) 〈ct〉 ← MPC.EncGLe(〈t〉, (〈s0〉, . . . , 〈s−1〉);XOF, β,Q,N,,ν, ƒ g).
Again, we abuse notation here as not all of ct maybe secret shared.

2. 〈ct〉 ← MPC.EncGLe(〈m〉, (〈s0〉, . . . , 〈s−1〉);XOF, β,Q,N,,ν, ƒ g).
3. Return (〈ct0〉, . . . , 〈ct〉).

Figure 80: The MPC Internal TFHE Encryption Operations.

Note that all the methods in Figure 80 on secret sharings, are either generation of random bits or
purely linear operations; except for line 1a of the method for MPC.EncGGSW , which requires a secure
multiplication algorithm to be performed. Thus after an “offline” phase used to generate the bits, the
operations in Figure 80 are purely local operations, except for this single execution of multiplications.
However, clearly all of these multiplications can be done in parallel. Hence, the total round cost of all
the calls to the functions in Figure 80 during the entire threshold key generation algorithmwill be one;
except for the rounds needed to generate the shared random bits. Indeed, examining Figure 81 we see
that these are the only multiplications required during key generation; and thus (except for the offline
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TFHE Threshold Key Generation

TFHE.Threshod-KeyGen(P,Q, type, ℓ̂, ℓ, N,, βpksk , βksk , βbk , νpksk , νksk , νbk , N,,Q, βbk ,
νbk , ƒ g, ƒ g): Unless otherwise marked, all the secret sharings in this algorithm are
modulo q = Q or Q, depending on the method chosen for threshold decryption.

1. If ƒ g then 〈·〉 denotes secret sharing modulo q = Q, otherwise it denotes secret
sharing modulo q = Q.

2. For  = 1, . . . , dsec/(d · log2 q)e do
(a) 〈seed〉 ← MPCO.NetRndom().
(b) seed ← MPC.Open(〈seed〉).

3. seed← (seed1‖ . . . ‖seeddsec/ log2 qe ) (mod 2sec).
4. XOF.nt(seed,DSep(TFHE)).
5. 〈ŝ〉 ← MPC.GenBts(ℓ̂).
6. 〈s〉 ← MPC.GenBts(ℓ).
7. For  ∈ [0, . . . , − 1] do 〈s〉 ← MPC.GenBts(N).
8. pk ← XOF.Net(ℓ̂, Q).
9. 〈e〉 ← MPC.TUnƒorm(ℓ̂, −2bℓ̂ ,2bℓ̂ ).

10. 〈pkb〉 ← pk �
↔
〈ŝ〉 + 〈e〉.

Note this is a linear operation.
11. pkb ← MPC.Open(〈pkb〉) (mod Q).
12. For  ∈ [0, . . . , − 1] do

(a) For j ∈ [0, . . . , N − 1] do
i. 〈KSK ,j〉 ← MPC.EncLe(〈s[ j]〉, 〈s〉;XOF, βksk , Q, ℓ, νksk , ƒ g).
ii. KSK ,j ← MPC.Open(〈KSK ,j〉) (mod Q).

13. If ƒ g then
(a) For  ∈ [0, . . . , − 1] do 〈s〉 ← MPC.GenBts(N).

14. For  ∈ [0, . . . , ℓ − 1] do
(a) 〈BK 〉 ← MPC.EncGGSW(〈s[ ]〉, (〈s0〉, . . . , 〈s−1〉);XOF,Q,N,, βbk , νbk , ƒ g).
(b) BK  ← MPC.Open(〈BK 〉) (mod Q).
(c) If ƒ g then

i. 〈BK 〉 ← MPC.EncGGSW(〈s[ ]〉, (〈s0〉, . . . , 〈s−1〉);XOF,Q,N,, βbk , νbk , ƒ g).
ii. BK  ← MPC.Open(〈BK 〉).

(d) Else
i. BK  ←⊥.

15. If type = F-GLWE then 〈sF-GLWE〉 ← (〈s0[0]〉, . . . , 〈s0[N − 1]〉, 〈s1[0]〉, . . . , 〈s1[N −
1]〉, . . . , 〈s−1[0]〉, . . . , 〈s−1[N − 1]〉).

16. For  ∈ [0, . . . , ℓ̂ − 1] do
(a) If type = LWE then 〈PKSK 〉 ← MPC.EncLe(〈ŝ[ ]〉, 〈s〉;XOF, βpksk , Q, ℓ, νpksk , ƒ g).
(b) Else 〈PKSK 〉 ← MPC.EncLe(〈ŝ[ ]〉, 〈sF-GLWE〉;XOF, βpksk , Q, ·N,νpksk , ƒ g).
(c) PKSK  ← MPC.Open(〈PKSK 〉) (mod Q).

17. If ƒ g then
(a) pk← (pk,pkb).
(b) PK ← (pk,{PKSK },{KSK ,j},j,{BK },{BK }).

18. Else
(a) PKb ← (pkb,{PKSK },{KSK ,j},j,{BK },{BK }).
(b) PK ← (seed, PKb).

19. If ƒ g then 〈sk〉 ← (〈s〉 (mod Q), (〈s0〉, . . . , 〈s−1〉)), else 〈sk〉 ← (〈s〉,⊥).
20. If FFT optimizations are to be applied, then the data in BK could be translated into the

Fourier domain.
21. Return (PK, 〈sk〉).

Figure 81: TFHE Threshold Key Generation.

phase) the “online” phase can be done in three rounds (one to open the seed values, one for the batched
multiplications, and one for the batched opening operations of the data in the public key).

For efficiency one could also pre-process the shared random bits into the shared random values
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from the relevant TUnƒorm distributions in a pre-processing phase. Our implementation indeed does
this to avoid a huge memory overhead, and to aid deployment. We will discuss this later in more detail in
Section 9.6.14.

7.5.4.2 ThresholdDecryptionMethod 1: Thismethod is executedwhenweset ƒ g = tre in thekey
generationmethodology. Recall at this pointwehold a secret key in secret shared form s = (s0, . . . ,s−1)
modulo Q, and has LWE dimension ℓ =  · N. The input ciphertext ct = (, b) is one with respect to
modulo Q, and has LWE dimension ℓ, and has noise bound Bct , i.e.

‖ b −  · s − Δ ·m (mod Q) ‖ < Bct

for Δ = Q/P and an underlying secret key s ∈ {0,1}ℓ .
The TFHE.StchSqsh operation maps the input ciphertext into a ciphertext ct = (, b)with LWE

dimension ℓ = ·N, modulus Q and noise bound BStchSqsh , i.e.

‖ b −  · s − Δ ·m (mod Q) ‖ < BStchSqsh,

where Δ = Q/P. The key condition on the output of TFHE.StchSqsh is that

2 · nSmBnd · 2stt · BStchSqsh <
Δ

2
.

Thismeans there is enough “noise gap” between the noise term in ct and the “modulus” Δ in order to apply
noise-flooding to the pre-decryption. The noise-flooding can then be applied, using the PRSS-Msk
operations in threshold profile nSm, or using a series of random bits in threshold profile nLrge, as
described in Figure 82.

TFHE Threshold Decryption - V1

TFHE.Threshod-Dec-1(ct = (, b), PK, 〈s〉):
We use the shorthand 〈s〉 = (〈s0〉, . . . , 〈s−1〉).

1. If PK = (seed, PKb) then
(a) (pk,{KSK


,j
},j,{BK },{BK




}) ← TFHE.Epnd(seed, ℓ, N,,νksk , νbk , N,,

βbk , Q, tre).
(b) Parse PKb as (∗,∗,∗, BK

b
).

(c) BK ← ({BK



}, BK

b
).

2. Else
(a) Parse PK = (∗,∗,∗,∗, BK).
(b) If BK = {⊥} then bort.

3. ct = (, b)← TFHE.StchSqsh(ct, BK).
4. 〈p〉 ← b −  · 〈s〉.
5. If threshold profile nSm then

(a) 〈t〉 ← PRSS-Msk.Net(BStchSqsh, stt).
6. Else

(a) Set bd ← stt + d log2 BStchSqshe .
(b) 〈t〉 ← MPC.TUnƒorm(1, −2bd ,2bd ) +MPC.TUnƒorm(1, −2bd ,2bd ).

7. 〈c〉 ← 〈p〉 + 〈t〉.
8. c← MPC.Open(〈c〉).
9. Write c as Δ ·m + e (mod Q); this is done by settingm← bc/Δc and e← c − m · Δ.

10. Returnm.

Figure 82: TFHE Threshold Decryption - Version 1.

This distributed decryption protocol is secure, since the opening of the value c leaks no information
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about the noise value inside ct, since either the addition of the value returned by the PRSS-Msk.Net
function “floods” the value, or the addition of the two uniform distributions “floods” the value. This follows
from Theorem 6 or Lemma 18; but wewill provide a full simulation proof later.

For correctness note that the value e has norm bounded by (with overwhelming probability) either
by (for threshold profiles nSm)

BStchSqsh ·
�

1 + 2 ·
�

n

t

�

· 2stt
�

< 2 · nSmBnd · 2stt · BStchSqsh <
Δ

2
.

by (for threshold profiles nLrge)

BStchSqsh ·
�

1 + 2 · 2stt
�

< 2 · nSmBnd · 2stt · BStchSqsh <
Δ

2
.

Thus there is no wrap-around error introduced by adding on the value t, and thus the message is not
damaged by the noise flooding.

7.5.4.3 Threshold Decryption Method 2: Our second threshold decryption method for TFHE as-
sumes the secret key s has been shared with respect to a secret sharing scheme modulo Q = 264 .
The idea behind this variant is that we use our generic MPC engine in order to extract the bits of the
pre-decryption in secret shared form. Thus we can output the message part of the pre-decryption
directly, and have no need to worry about noise flooding. The disadvantage of this method is that the
methods to extract secret shared bits have relatively large round complexity (for log2Q = 64 this is 16
rounds). Hence, this methodmay be prohibitively expensive onWAN type networks.

Our bit manipulation methods are based on standard techniques to be found in [CdH10], [DFK+06],
[NO07] and [sec09]. In the algorithms in Figure 83 and Figure 84 we assume K is a power of two for
ease of exposition. In fact the hassle of dealing with non-power of two K is probably not worth it, and
vectors can be padded to being of length a power of two. The method used to define BtDec for q = 2K

is then immediate, see Figure 84; this method uses the bit-manipulation algorithms defined in Figure 83.
In these techniques a binary adder is required to perform one addition mod q = 2K , with no carry

output (i.e. the input is two integers of K bits in length, and the output is also of K bits in length). For
ease of implementation and efficiency we chose the Kogge-Stone carry look-ahead adder [KS73] with
its iterative version described in Algorithm 1 of [CGTV15]. We describe the adder in Figure 83, which
has a total of 2 · log2 K + 1 communication rounds and requires K + 2 · K · log2 K triples. In Figure 83 the
operation 〈〉 � j, for 0 ≤ j < K , is the operation which takes as input the secret shared vector (〈〉)K−1=0

and outputs the vector (〈0〉)j−1=0, (〈〉)
K− j
=0 .

Given the ability to bit decompose a secret shared value modulo q, it is easy to see how to perform
threshold decryption for TFHE, see Figure 85. Recall we have Q = 2K and P = 2p ; typically K = 64 and
p = 3 or 5.
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MPC Bit Manipulation Algorithms

XOR(〈〉, 〈b〉):
1. Return 〈〉 + 〈b〉 − 2 · 〈〉 · 〈b〉.

BtAdd
�

〈〉 = (〈〉)K−1=0 , 〈b〉 = (〈b〉)
K−1
=0

�

: Here bit zero is the least significant bit, and the adap-
tion towhen one set of inputs are in the clear is immediate (sowe do not describe it). Note in
the followingwe process a vector of secret shared bits at each stage, thus the bit operations
(shifting, XOR, Mult etc) correspond to parallel operations on these vectors.

1. 〈s〉 ← XOR(〈〉, 〈b〉).
2. 〈p〉 ← 〈s〉.
3. 〈g〉 ← MPC.Mt(〈〉, 〈b〉).
4. For  ∈ [0, . . . , log2 K − 1] do

(a) 〈t〉 ← MPC.Mt(〈p〉, 〈g〉 � 2).
(b) 〈g〉 ← XOR(〈t〉, 〈g〉).
(c) 〈p〉 ← MPC.Mt(〈p〉, (〈p〉 � 2)).

5. 〈s〉 ← XOR(〈s〉, 〈g〉 � 1).
6. Return (〈s〉)K−1=0 = 〈s〉.

BtSm
�

(〈〉)K−1=0

�

:
1. 〈s〉 ← 0.
2. For  ∈ [0, . . . , K − 1] do

(a) 〈s〉 ← 〈s〉 + 2 · 〈〉.
3. Return 〈s〉.

Figure 83: MPC Bit Manipulation Algorithms.

MPC Bit Decomposition

BtDec(〈〉):
1. (〈r〉)K−1=0 ← MPC.GenBts(K).
2. 〈r〉 ← BtSm((〈r〉)K−1=0 ).
3. 〈t〉 ← 〈〉 − 〈r〉.
4. t← MPC.Open(〈t〉).
5. Write t =

∑

 2
 · t for t ∈ {0,1}.

6. (〈b〉)K−1=0 ← BtAdd
�

(t)
K−1
=0 , (〈r〉)

K−1
=0

�

.
7. Return (〈b〉)K−1=0 .

Figure 84: MPC Bit Decomposition.
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TFHE Threshold Decryption - V2

TFHE.Threshod-Dec-2(ct = (, b), 〈s〉, PK):
1. If ctType(ct) = F-GLWE then

(a) ct = (, b)← TFHE.KeyStch(ct, KSK;Q, ℓ,N,, βksk , νksk).
2. 〈p〉 ← b −  · 〈s〉.
3. 〈p〉 ← 〈p〉 + Δ/2.
4. (〈b〉)K−1=0 ← BtDec(〈p〉).

5. 〈m〉 ←
∑p−1
=0 〈bK−1−p+〉 · 2

 .
6. 〈m〉 ← 〈m〉 − 〈bK−1〉 · 〈m〉.

If the error is negative (i.e. bK−1 = 1) this produces a sharing of zero, otherwise if
produces a sharing ofm.

7. m← MPC.Open(〈m〉).
8. Returnm.

Figure 85: TFHE Threshold Decryption - Version 2.
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7.5.5 Resharing

Following Design Decision 2 we present methodologies to perform re-sharing of the underlying shared
FHE secret key 〈sk〉 in all situations. To ensure pro-active security the method for secret sharing needs
to be combined with a mechanism for securely erasing the previous shared key. We denote such an
erasure operation by Erse(), which means that the party removes  frommemory and storage.

We assume the more general case where we wish to transfer the sharing 〈sk〉 from a set of players
S1 , of sizen1 , to a set of players S2 of sizen2 . The maximum number of corrupted parties in each set is
denoted by t1 and t2 , and we assume that t1 < n1/3 and t2 < n2/3.

The resharing protocol is built on top of each set of players running an independent MPC protocol;
thus the same protocol works in threshold profiles nSm and nLrge. We assume that the secret
〈sk〉S1 is already shared between the players in S1 , the goal is to obtain a sharing of the same value
between the players in S2 , i.e. we aim to obtain 〈sk〉S2 . The case of resharing amongst the same group of
players, i.e. S = S1 = S2 , follows from the general case. The protocol is described in Figure 86; here we let
q denote whatever modulus is used to share the underlying secret key in the above FHE schemes; i.e.
either q = Q1 in the case of BGV/BFV, or q = Q or q = Q in the case of TFHE, and we let N denote the
dimension of the secret key.

ReShre(S1, S2, 〈sk〉S1 )

ReShre(S1, S2, 〈sk〉S1 ):
1. The players in S2 executeMPCO.nt().

If S1 = S2 then this initializes an independent MPC engine from any existing engine
amongst the players in S1 .

2. Write 〈sk〉S1 = (〈s〉S1 )N=0 for s ∈ GR(q, F).
3. For  ∈ [1, . . . , N] and j ∈ [1, . . . ,n1] in parallel execute

(a) The players in S2 execute 〈r,j〉S2 ← MPCO.NetRndom().
(b) Execute r,j ← RobstOpen(Pj, 〈r,j〉S2 ), so that player Pj ∈ S1 learns r,j .
(c) Player Pj ∈ S1 computes ,j = r,j + 〈s〉

S1
j .

(d) If S1 = S2 then
i. Player Pj executes Synch-Brodcst(Pj, ,j).

(e) Else
i. Player Pj ∈ S1 sends ,j to all players in S2 .
ii. Players Pk ∈ S2 execute Synch-Brodcst(Pk , ,j) amongst the players in S2 .
iii. The players in S2 take as the agreed value ,j the value which has the majority

vote from the previous step (with some deterministic way of solving a tie).
(f) Player Pj ∈ S1 executes Erse(〈s〉

S1
j ) and Erse(r,j).

(g) The players in S2 compute 〈〈s〉
S1
j 〉

S2 ← ,j − 〈r,j〉S2 .
4. For  ∈ [1, . . . , N] the players in S2 compute

(a) Locally compute a sharing of the syndrome polynomial 〈Se (Z)〉S2 for the sharing
〈s〉

S1
j hidden in the shares 〈〈s〉

S1
j 〉

S2 .
(b) Se (Z)← MPC.Open(〈Se (Z)〉S2 ).
(c) e ← SynDecodeGR(q, Se (Z)).
(d) For j ∈ [1, . . . ,n1] do 〈〈s〉

S1
j 〉

S2 ← 〈〈s〉
S1
j 〉

S2 − e(j) .

(e) 〈s〉S2 ←
∑

j〈〈s〉
S1
j 〉

S2 · δj(0), where δj(Z) is the Lagrange polynomial for the secret
sharing used by the players in S1 .

Figure 86: ReShre(S1, S2, 〈sk〉S1 )..

Note in line 3(e)i an adversarial Pj may not send the same value to each player in S2 . Thus in the next
broadcast step we ensure that all honest players agree on the same value ,j via taking the majority
value as the value ,j in line 3(e)iii. If Pj is honest then clearly the honest players in S2 will agree on ,j .
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The value computed in line 3g is thus, for honest Pj , a valid secret sharing of Pj ’s share value. If Pj is
dishonest then we do not care what value is picked for ,j as we can correct for it later, as long as the
value is consistent amongst all the honest players in S2 . Note the robust open of r,j allows Pj to totally
masks 〈s〉j ; with RobstOpenworking as we have t2 < n2/3.

The next steps determine which values are actually dishonestly sent. This is done by computing
the syndrome polynomial, opening it, and then determining the error locations and error values. That
SynDecodeGR works since t1 < n1/3, so only t1 errors can exist in total after line 3g. Note, this is the
only place where we actually use syndrome decoding in this document.
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7.6 Layer Five

Recall from Section 4.11 we present three types of zero-knowledge proofs of correct encryption for
our FHE schemes. Two types which is based on elliptic curves, and a third type which is based on
MPC-in-the-Head. All types of proof are provide post-quantum zero-knowledge, but the two based on
elliptic curves are not post-quantum secure with respect to the soundness property, whereas the latter
are. The proofs based on elliptic curves are more suited to TFHE-style FHE, as the elliptic curve needs
to be pairing friendly and have group order significantly larger than the FHE ciphertext modulus. This
means their application for BGV and BFV style encryption is less appropriate.

7.6.1 Interpreting Encryption as a Subset Sum

Recall from Section 4.11 we phrase two of our zero-knowledge proofs for correct encryption, in terms
of showing, in zero-knowledge, the knowledge of a solution to a subset-sum problem. Thus our zero-
knowledge proofs need to show knowledge of a witness to a subset-sum problem instance. We deal
with amore general subset-sumproblem, than that considered normally, in that our subset-sumproblem
will consist of a set of linear equations, rather than just one.

Definition 10 (Subset-Sum Problem). A (generalized) subset-sum problem is to solve the given linear
system

s = A · b (mod q),

where s ∈ (Z/(q))d and A ∈ (Z/(q))d×B are known, and b ∈ {0,1}B is unknown.

Such subset-sum problems have two problem parameters,
• d: The subset-sum dimension, i.e. the number of subset-sums in a given problem instance.
• B: The total number of secret bits underlying the statement being proved. The actual values we
denote by the vector b ∈ {0,1}B .

We now recap on the various encryption methods here and how they relate to these subset-sum
parameters.

7.6.1.1 BGV: For BGVwe have the linear equations

c0 = Bpk · v + P · e0 +m,

c1 = Apk · v + P · e1,

where Apk and Bpk are N × N public matrices, v is a secret binary vector of length N, and e0 (resp. e1) is
a secret vector of length N, each component of which is derived from a linear combination of 2 · BBGV
secret bits. Thus we have

d = 2 ·N

linear equations in our subset-sum system in

B = N + 2 · (N · 2 · BBGV ) + log2 P = N · (4 · BBGV + 1) + log2 P

binary variables.

7.6.1.2 BFV: For BFVwe have the linear equations

c0 = Bpk · v + e0 + Δ ·m,

c1 = Apk · v + e1,
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where Apk and Bpk are N × N public matrices, v is a secret binary vector of length N, and e0 (resp. e1) is
a secret vector of length N, each component of which is derived from a linear combination of 2 · BBGV
secret bits. Thus, just as for BGV, we have

d = 2 ·N

linear equations in our subset-sum system in

B = N + 2 · (N · 2 · BBGV ) + log2 P = N · (4 · BBGV + 1) + log2 P

binary variables.

7.6.1.3 TFHE: For TFHEwe have the linear equations

 = Apk ·
↔
r + e1,

b = pkb · r + e2 + Δ ·m,

where
• Apk is an ℓ̂ × ℓ̂ public matrix,
• r is a secret binary vector of length ℓ̂,
• e1 is secret and chosen from TUnƒorm(ℓ̂, −2bℓ̂ ,2bℓ̂ ),
• and e2 is secret and chosen from TUnƒorm(1, −2bℓ̂ ,2bℓ̂ ).

Recall
↔
r is the vector rwritten backwards. Thus we have

d = ℓ̂ + 1

linear equations in our subset-sum system in

B = ℓ̂ + (ℓ̂ · (bℓ̂ + 2)) + (bℓ̂ + 2) + log2 P = ℓ̂ · (bℓ̂ + 3) + (bℓ̂ + 2) + log2 P

binary variables.

7.6.2 Pairing Based Elliptic Curves

The soundness of our vector commitment based proofs are based on the hardness of the discrete
logarithm problem given in Definition 1, namely the (m,n)-Discrete Logarithm assumption. Recall, this
problem requires a set of pairing based groups (G, Ĝ,GT ). The pairing will be denoted as a map

e :G× Ĝ −→GT .

In our instantiation wewill assume that the associated prime group order satisfies

r >mx(2(sec),2d log(B̄+1)e+1 · q̄),

for some polynomial  : N → N. For security recommendations as to the exact choice of underlying
pairing group see Section 8.6.2.

7.6.3 ZKPoKs Based on Vector Commitments

In this section we present our ZKPoKs which are not post-quantum secure with respect to soundness.
Recall there are twosuchapproaches, onewhich treats the input problemas a subset-sum, andproduces
zero-knowledge proofs with no soundness slack, and another which introduces some soundness slack.
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7.6.3.1 Required Hash Functions: Our CRS construction and NIZK proofs use hash functions

Hc,Ht ,Hω : {0,1}∗ → (Z/(r))B̄1 Hgg, Hsh
′ : {0,1}∗ → (Z/(r))2

Hgg′ : {0,1}∗ → Z/(r)7 Hnmp : {0,1}∗ → (Z/(r))d̄+1

Hϕ,Hξ : {0,1}∗ → (Z/(r))128 Hχ,Hz : {0,1}∗ → Z/(r)

Hsh : {0,1}∗ → (Z/(r))∗ HR : {0,1}∗ → D128×(B̄r+d̄+4)

where D is a distribution over {−1,0,1} that outputs zero with probability 1/2 and 1 and −1 with
probability 1/4 each. These hash functions are modeled as random oracles, and are explicitly defined in
Figure 87. Theoretically, speaking these hash functions are ‘chosen’ during the CRS generation phase,
but in practice they are implemented as in Figure 87, with only a session identifier being chosen during
the CRS generation phase. We treat the session identifier as an implicit input to the hash functions
in order not to overload notation. Practically, the same hash function is used, i.e., SHAKE-256 in XOF
mode. The session identifier is also acting as domain separator, since some of these functions have
the same inputs. Then, for each of the hash functions we use DSep(X), where X is randomly chosen
during the CRS generation. In what follows, for a hash functionHy we simply denote by DSep(ZKHY)
the associated domain separator, where ZKHY stands for “ZKPoKs Hash function Y”. If the hash function
name is too long, the name string is truncated to fit into 5 characters. The inputs of the hash functions
are abstracted, soberly written as  but fully detailed in the scheme descriptions. In the algorithms
related to the ZKPoKs, the concatenation of inputs is denoted by a comma, e.g., , y is equivalent to ||y.
Regarding the implementation, all input data are concatenated as list of bytes, and, as usual, the value of
dst = 128 is used within the calls to XOF.Net. Note that the implementation of Hsh is the same as
Hχ andHz because the probability of obtaining 0 as an output is negligible.
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Hash Functions for VC-based Proofs

Hc(), Ht() , Hω() :

1. XOF.nt(,DSep(ZKHVC) DSep(ZKHT) DSep(ZKHW) ); i.e. use DSep(ZKHVC) for
functionHc , DSep(ZKHT) for functionHt and DSep(ZKHW) for functionHω .

2. Return XOF.Net(B̄1, r)

Hgg(), Hsh′ :
1. XOF.nt(,DSep(ZKHAG) DSep(ZKH′) ); i.e. use DSep(ZKHAG) for function Hgg

and DSep(ZKH′) for function Hsh′ .
2. Return XOF.Net(2, r)

Hgg′ ():
1. XOF.nt(,DSep(ZKHA′))
2. Return XOF.Net(7, r)

Hnmp():
1. XOF.nt(,DSep(ZKHL))
2. Return XOF.Net(d̄ + 1, r)

Hϕ(), Hξ() :

1. XOF.nt(,DSep(ZKHPH) DSep(ZKHX) ); i.e. useDSep(ZKHPH) for functionHϕ and
DSep(ZKHX) for functionHξ .

2. Return XOF.Net(128, r)

Hχ(), Hz() , Hsh() :

1. XOF.nt(,DSep(ZKHCH) DSep(ZKHZ) DSep(ZKHW) ); i.e. use DSep(ZKHCH) for
functionHχ DSep(ZKHZ) for functionHz , and DSep(ZKH) for Hsh().

2. Return XOF.Net(1, r)

HR(): Hash  into a vector in D128×(B̄r+d̄+4)

1. XOF.nt(,DSep(ZKHR))
2. o← []
3. For  ∈ [1,128]

(a) h← XOF.Net(2 × (B̄r + d̄) + 4)
(b) Treating h as a bitstring, For odd j ∈ [1, (B̄r + d̄) + 4],

i. If h[j]||h[j+1] = ’00’ or ’01’, v← 0
ii. Else if h[j]||h[j+1] = ’10’, v← 1
iii. Else v← (−1)

(c) o[i]← o[i]||
4. Return o

Figure 87: Hash functions for use in the VC-based ZKPoKs.

7.6.3.2 CRS and the CRS SetUp: Both of our vector commitment basedmethods make use of the
same structured CRS generationmethod, given in Figure 88 and Figure 89. Several distributed protocols
can be used to generate the structured CRSwithout relying on a centralized trusted party. Among them,
the ceremony protocols of [NRBB24, KMSV21] make it possible for K parties to sequentially contribute
to the secret trapdoor α, which is a obtained as a product α =

∏K
=1 τ of individual randomizers {τ}K=1 .
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CRS Generation

CRS-Gen(sec, prms):
On input of a security parameter sec and public parameters prms consisting of either
{q̄, d̄, B̄} (in the case of Type-1 proofs) or {q̄, d̄, B̄, B̄r , Ū∞} (in the case of Type-2 proofs)
where d̄, B̄, q̄ are upper bounds for d, B and q, whereas Ū∞ , B̄ and B̄r are upper bounds for
U∞ , B and Br conduct the following steps to generate the CRS p.

1. Generate pairing-friendly groups (G, Ĝ,GT ) of prime order r >

mx(2(sec),2d log(B̄+1)e+1q̄), for some polynomial  : N→ N.
2. If using the first type of vector commitment based proofs then B̄1 ← B̄+ d̄ ·(1+ b log(B̄+

1)c). If using the second type of VC-based proofs, set Ū2 ¬ Ū∞ ·
Æ

B̄r , Ūk ¬ (B̄ + B̄r)/2,
ŪH ¬ 13.32 ·

Ç

Ū2
2 + Ū

2
k · d̄ and m̄ = d1 + log ŪHe . Then, set B̄1 ←mx(B̄ + 128 · m̄, B̄r +

d̄ + 4).
3. Run the distributed ceremony protocol of Figure 89 to jointly generate a secret random

α← Z/(r) and public g1, . . . , gB̄1
, gB̄1+2, . . . , g2B̄1

∈G as well as ĝ1, . . . , ĝB̄1
∈ Ĝ, where

g = g(α
) for each  ∈ [2B̄1] \ {B̄1 + 1} and ĝ = ĝ(α

) for each  ∈ [B̄1] .
4. Return the common reference string

p =
�

(G, Ĝ,GT ), g, ĝ,{g}∈[2B̄1]\{B̄1+1},{ĝ}∈[B̄1]}
�

.

Figure 88: CRS Generation for the Vector-Commitment-Based NIZK.
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Ceremony Protocol

CRS-Gen.nt((G, Ĝ,GT ), g, ĝ,H):
The initial state after round zero is the default CRS pp0

pp0 ←
�

g1,0 = g, g2,0 = g, . . . , gB̄1,0 = g, gB̄1+2,0 = g, . . . , g2B̄1,0 = g

ĝ1,0 = ĝ, ĝ2,0 = ĝ, . . . , ĝB̄1,0 = ĝ
�

CRS-Gen.Updte(ppj−1):
At the beginning of round j, the current CRS ppj−1 is assumed to be

ppj−1 =
�

g1,j−1 = gαj−1 , g2,j−1 = g
(α2

j−1), . . . , gB̄1,j−1 = g
(α

B̄1
j−1),

gB̄1+2,j−1 = g
(α

B̄1+2
j−1 ), . . . , g2B̄1,j−1 = g

(α
2B̄1
j−1 ),

ĝ1,j−1 = ĝαj−1 , ĝ2,j−1 = ĝ
(α2

j−1), . . . , ĝB̄1,j−1 = ĝ
(α

B̄1
j−1)

�

1. The j-th contributor chooses a random τj ← Z/(r) and computes

ppj ←
�

g1,j = gτjαj−1 , g2,j = g
(τ2

j
α2
j−1), . . . , gB̄1,j = g

(τ
B̄1
j α

B̄1
j−1),

gB̄1+2,j = g
(τ

B̄1+2
j α

B̄1+2
j−1 ), . . . , g2B̄1,j = g

(τ
2B̄1
j α

2B̄1
j−1 ),

ĝ1,j = ĝτjαj−1 , ĝ2,j = ĝ
(τ2

j
α2
j−1), . . . , ĝB̄1,j = ĝ

(τ
B̄1
j α

B̄1
j−1)

�

,

which implicitly defines αj = τj · αj−1 .
2. Then, the contributor proves knowledge of τj ∈ Z/(r) such that g1,j = g

τj
1,j−1 . This

non-interactive proof ~πPoK,j = (hPoK,j, sPoK,j) ∈ (Z/(r))∗ × Z/(r) is obtained by choosing
rPoK,j ← Z/(r), computing RPoK,j ← g

rPoK,j
1,j−1 , hPoK,j ← Hsh(g1,j, g1,j−1, RPoK,j), and

sPoK,j ← rPoK,j + hPoK,j · τj mod r.

3. All parties verify the proof ~πPoK j = (hPoK,j, sPoK,j) by testing the equality

hPoK,j = Hsh
�

g1,j, g1,j−1, g
sPoK,j
1,j−1 · g

−hPoK,j
1,j

�

(34)

and reject ppj if (34) does not hold or if g1,j = 1G .
4. All parties then compute (ρ1, ρ2)← Hsh′(ppj) ∈ (Z/(r))2 and reject ppj if one of the

equalities

e
�

2B̄1
∏

=1
 6=B̄1+1
 6=B̄1+2

g
(ρ−1

1
)

,j , ĝ ·
B̄1−1
∏

ℓ=1

ĝ
(ρℓ

2
)

ℓ,j

�

= e
�

g ·
2B̄1−1
∏

=1,
 6=B̄1,
 6=B̄1+1

g
(ρ

1
)

,j ,
B̄1
∏

ℓ=1

ĝ
(ρℓ−1

2
)

ℓ,j

�

(35)

e(gB̄1+2,j, ĝ) = e(gB̄1,j, ĝ2,j)

does not hold.
5. If the previous checks are all satisfied, then all parties accept ppj as the updated CRS

after round j.

CRS-Gen.Otpt():
At the end of round K , the parties output pp← ppj , where j ∈ [K] is the largest index such
that ppj was accepted by all parties.

Figure 89: Ceremony for the CRS Generation.
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7.6.3.3 Method 1 Proof Construction: Our first, subset-sum based, approach is similar to that of
Del Pino et al. [dPLS19], and it appeared in [Lib24]. Namely, we re-write the subset sum relation over
the integers as an equation

s = A · b − k · q (36)

for some vector k ∈ Zd of infinity norm ‖k‖∞ ≤ (B + 1)/2 < 2b log(B+1)c . Note that both members of (36)
are bounded by (B + 1) · q in infinity norm. So, if we prove that (36) holds modulo a sufficiently large
prime r (i.e., such that r > 2d log(B+1)e+1q), we also prove that it holds over the integers. To prove (36)
over Z, we will prove that b ∈ {0,1}B and k ∈ [−2b log(B+1)c ,2b log(B+1)c − 1]d . The respective prover and
verifier are given in Figure 90 and Figure 91 respectively.

VC-Proe-1

VC-Proe-1(p, (A,s),b):
Where p is the CRS, s ∈ (Z/(q))d and A ∈ (Z/(q))d×B are the public subset-sum statement
which, along with q ≤ q̄, d ≤ d̄, and B ≤ B̄ form the complete statement x, and b ∈ {0,1}B is
the private witness. The bounds q̄, d̄ and B̄ are in the CRS p. For the proof we think of s and
A consisting of elements in Z/(r).

1. Compute k ∈ [− B+1
2 , B+12 ]

d satisfying (36) and let k̃ ← g−11+b log(B+1)c (k) ∈
{0,1}d·(1+b log(B+1)c) .

2. Commit to w̃ = (b> | k̃> | 0B̄1−B−d·(1+b log(B+1)c))> ∈ {0,1}B̄1 by choosing γ ← Z/(r)
and computing Ĉ← ĝγ ·

∏B̄1
j=1 ĝ

j

j .

3. Compute y = (y1, . . . , yB̄1
)←Hc

�

x, Ĉ
�

∈ (Z/(r))B̄1 .
4. Choose γy ← Z/(r) and compute

Cy ← gγy ·
B̄1
∏

j=1

g
yj ·j

B̄1+1− j

5. Compute t = (t1, . . . , tB̄1
)←Ht(y,x, Ĉ, Cy) ∈ (Z/(r))B̄1 .

6. Compute h̄ ← Hnmp
�

x, Ĉ, Cy
�

∈ (Z/(r))d̄+1 and let h ∈ (Z/(r))d+1 be the first d + 1
entries of h̄.

7. Compute (δeq, δy)←Hgg(x, Ĉ, Cy) ∈ (Z/(r))2 .
8. Parse h as h =

�

h>0 | δh
�> , with h0 ∈ (Z/(r))d .

9. Compute th ← h>0 · smod p and >h ← h>0 · A1 mod r , where A1 ∈ Zd×B̄1 is defined in
(38).

10. Compute the polynomial Pπ[X] =
∑2B̄1
=0 ν · X

 given by

Pπ[X] ←
�

δy · γy +
B̄1
∑

=1

�

δy · y · + (δeq · t − δy) · y + δh · h[ ]
�

· XB̄1+1− 
�

· (γ +
B̄1
∑

=1

 · X)

−
�

γy +
B̄1
∑

=1

y · · XB̄1+1− 
�

· (
B̄1
∑

=1

δeq · t · X) − th · δh · XB̄1+1.

11. Compute π← gν0 ·
∏2B̄1

=1, 6=B̄1+1
g
ν
 .

12. Return the proof prƒ = (Ĉ, Cy, π) ∈ Ĝ× G2 .

Figure 90: The First Vector-Commitment-Based NIZK Prover.

To understand, and justify the correctness, of this proof system we first need to set up some no-
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VC-Verƒy-1

VC-Verƒy-1(p, (A,s), prƒ ):
Given a statement (A,s), along with q ≤ q̄, d ≤ d̄, and B ≤ B̄ to form the complete statement
x and a purported proof prƒ = (Ĉ, Cy, π) ∈ Ĝ× G2 .

1. y = (y1, . . . , yB̄1
)←Hc

�

x, Ĉ
�

∈ (Z/(r))B̄1 .
2. t = (t1, . . . , tB̄1

)←Ht(y,x, Ĉ, Cy) ∈ (Z/(r))B̄1 .
3. h̄←Hnmp

�

x, Ĉ, Cy
�

∈ (Z/(r))d̄+1 .
4. (δeq, δy)←Hgg(x, Ĉ, Cy) ∈ (Z/(r))2 .
5. Let h ∈ (Z/(r))d+1 be the first d + 1 elements of h̄.
6. Parse h as h =

�

h>0 | δh
�> , with h0 ∈ (Z/(r))d .

7. Compute th ← h>0 · smod p and >h ← h
>
0 ·A1 mod r .

8. Return one if the following equality holds and zero otherwise:

e(π, ĝ) = e
�

C
δy
y ·

B̄1
∏

=1

g
(δeq ·t−δy)·y+δh ·h[ ]
B̄1+1− 

, Ĉ
�

· e
�

Cy,
B̄1
∏

=1

ĝ
δeq ·t


�−1
· e(g1, ĝB̄1

)−th ·δh .

Figure 91: The First Vector-Commitment-Based NIZK Verifier.

tation: For any integer z ∈ Z, we define g = (1,2,4, . . . ,2z−2, −2z−1)> ∈ Z1×z so that any integer
 ∈ [−2z−1,2z−1 − 1] can be decomposed as binary vector v = g−1() ∈ {0,1}z such that  = g> · v.
The prover will then prove knowledge of a binary vector (b> | k̃>)> ∈ {0,1}B+d·(1+b log(B+1)c , where
k̃ ∈ {0,1}d·(1+b log(B+1)c) is the binary decomposition of k, and also prove knowledge of the vector
w ∈ {0,1}B+d·(1+b log(B+1)c) satisfying the subset-sum relation

s =
�

A | −q ·
�

d ⊗ g>1+b log(B+1)c
�
�

·
�

b

k̃

�

︸︷︷︸

¬ w

modr (37)

over Z/(r).
Recall that the goal is to prove knowledge of a binary b ∈ {0,1}B satisfying s = A · bmod q, for a

public matrix A ∈ (Z/(q))d×B and vector s ∈ (Z/(q))d . Here, each element of Z/(q) is interpreted as an
integer in the interval [−q/2, q/2).

In order to be able to prove instances of variable size with a fixed common reference string, we
prepare a CRS (see Figure 88) according tomaximal dimensions B̄ and d̄ for thematrixA. We thus define
a bound B̄1 = B̄ + d̄ · (1 + b log(B̄ + 1)c as the maximal dimension of committed binary vectors and prove
knowledge of a witness w̃ = (b> | k̃> | 0)> ∈ {0,1}B̄1 satisfying

s =
�

A | −q ·
�

d ⊗ g>1+b log(B+1)c
�

| 0d×(B̄1−(B+d·(1+b log(B+1)c)))
�

︸ ︷︷ ︸

¬ A1 ∈ Zd×B̄1

·







b

k̃

0







︸︷︷︸

¬ w̃

modr (38)

7.6.3.4 Method 2 Proof Construction: This method still proves a linear relation but it is no longer a
subset sum instance since the witness is not completely binary. Specifically, it proves knowledge of a
witness b = (b> | b

>
r
)> ∈ {0,1}B × [−U∞, U∞]Br such that

s = A · b (mod q) (39)

The prover and verification algorithms are given in Figure 92–Figure 96.
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VC-Proe-2: Part I

VC-Proe-2(p, (A,s),b):
Where p is the CRS, s ∈ (Z/(q))d , A = [A | Ar] ∈ (Z/(q))d×(B+Br ) and q, d, B, Br , U∞ form
the public statement x, and b = (b | br) ∈ {0,1}B × [−U∞, U∞]Br is the private witness.
Where q ≤ q̄, d ≤ d̄, and B ≤ B̄ , Br ≤ B̄r , U∞ ≤ Ū∞ for q̄, d̄ and (Ū∞, B̄, B̄r) being in the
CRS pwhich also specifies Ū2 ¬ Ū∞ ·

Æ

B̄r , Ūk ¬ (B̄ + B̄r)/2, ŪH ¬ 13.32 ·
Ç

Ū2
2 + Ū

2
k · d̄ and

m̄ = d1 + log ŪHe . For the proof we think of s and A consisting of elements in Z/(r).
1. Define U2 = U∞ ·

p

Br ≤ Ū2 and Uk = B/2 + Br · U∞/q ≤ Ūk . Let UH = 13.32 ·
Ç

U2
2 + U

2
k · d ≤ ŪH andm = d1 + logUHe ≤ m̄.

2. Compute k ∈ Zd such that ‖k‖∞ ≤ Uk and

s = A · b + Ar · br − k · q (over Z)

3. Choose γ̂e, γe ← Z/(r) and commit to b̄r = (br | (1, . . . , 4)) ∈ ZBr+4 by computing

Ĉe = ĝγ̂e ·
Br+4
∏

=1

ĝ
b̄r [ ]
 , Ce = gγe ·

Br+4
∏

=1

g
b̄r [ ]
B̄1+1− 

,

where 1, . . . , 4 ∈ [0, U2] are integers such that
∑4
=1 

2
 = U2

2 − ‖br‖
2
2 . Also, choose

γk ← Z/(r) and compute

Ck = gγk ·
d
∏

=1

g
k[ ]
 .

4. Compute R̄ = HR(x, Ĉe, Ce, Ck) ∈ {−1,0,1}128×(B̄r+d̄+4) whose columns are dis-
tributed as per D128 . Let R ∈ {−1,0,1}128×(Br+d+4) the submatrix consisting of the
first Br + d + 4 columns of R̄. Let

wR = R ·
�

b̄r
k

�

∈ Z128

the compressed version of b̄r ∈ Zd+4 and k ∈ Zd . If ‖wR‖∞ > UH , abort and return ⊥.
5. Choose γR ← Z/(r) and compute

CR = gγR ·
128
∏

=1

g
wR[ ]


Then, compute ~ϕ = (ϕ1, . . . , ϕ128) =Hϕ(x,R, Ĉe, Ce, CR, Ck) ∈ (Z/(r))128 .
6. LetwR,bn ∈ {0,1}128·m the binary decomposition ofwR ∈ [−UH, UH]128 such that

wR,bn[( − 1) ·m + 1,  ·m] = ~g−1m (wR[ ]) ∀ ∈ [128].

Define the vector wbn = (b | wR,bn | 0B̄1−(B+128·m)) ∈ {0,1}B̄1 . Commit to it by
computing

Ĉbn = ĝγbn ·
B+128·m
∏

=1

ĝ
wbn[ ]


where γbn ← Z/(r).

Figure 92: The Second Vector-Commitment-Based NIZK Prover – Part I.

Since the RLWE modulus q is much smaller than the order r of the discrete-log-hard group, we
will proceed again as in [dPLS19] by proving (39) over the integers. Namely, we write A = [A | Ar] ∈
(Z/(q))d×(B+Br ) and prove knowledge of b ∈ {0,1}B , br ∈ [−U∞, U∞]Br , and k ∈ Zd satisfying the linear
relation

s = A · b + Ar · br − k · q (44)
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VC-Proe-2: Part II

VC-Proe-2(p, (A,s),b): (continued)
7. Compute ~ξ =Hξ(x, Ĉe, Ce,R, ~ϕ,CR, Ĉbn, Ck) ∈ (Z/(r))128 .
8. Compute ~y = (y1, . . . , yB̄1

) = Hc
�

x,R, ~ϕ, ~ξ, Ĉe, Ce, CR, Ĉbn, Ck
�

∈ (Z/(r))B̄1 . For each
 ∈ [B + 128 ·m + 1, B̄1] , set y = 0. Next, choose γy ← Z/(r) and compute

Cy = gγy ·
B+128·m
∏

j=1

g
yj ·wbn[ j]
n+1− j

Compute ~t = (t1, . . . , tB̄1
) =Ht(x, ~y, ~ϕ, ~ξ, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy) ∈ (Z/(r))B̄1 .

9. Compute ~θ = Hnmp
�

x, ~y,~t, ~ϕ, ~ξ, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy
�

∈ (Z/(r))d̄+1 and let the
matrix Ã = [A | Ar | −q · d] ∈ Zd×(B+Br+d)) from (45). Let ~θ0 ∈ (Z/(r))d the first d
entries of ~θ.

10. Let tθ = ~θ>0 · smod r , ~>θ, = ~θ
>
0 ·A ∈ Z

1×B mod r and ~>
θ,r
= ~θ>0 ·Ar ∈ Z

1×Br mod r . Let

~̄>θ, = (~
>
θ, | 0

B̄1−B ), ~̄>
θ,r
= (~>

θ,r
| 0B̄1−Br ), ~̄θ0 = ( ~θ0 | 0B̄1−d) ∈ (Z/(r))B̄1 .

11. Compute ~ω = (ω1, . . . , ωB̄1
) =Hω

�

x, ~y,~t, ~ϕ, ~ξ, ~θ, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy
�

.

12. Let ~δ = (δr , δdec, δeq, δy, δθ, δe, δℓ) =Hgg′
�

x, ~y,~t, ~ϕ, ~ξ, ~θ, ~ω, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy
�

.

13. Let ~̄θ0 = ( ~θ0 | 0B̄1−d) ∈ (Z/(r))B̄1 and define matrices R′ ∈ (Z/(r))128×B̄1 and Hξ ∈
(Z/(r))128×(B+128·m) such that

∀ ∈ [128] : R′[ , j] =
�

R[ , j] if j ∈ [1, Br + d + 4]
0 if j ∈ [Br + d + 5, B̄1].

∀ ∈ [128] : Hξ[ , j] =
�

~ξ[ ] ·H[ , j − B] if j ∈ [B + 1, B + 128 ·m]
0 if j ∈ [1, B].

Figure 93: The Second Vector-Commitment-Based NIZK Prover – Part II.

over the integers. As in [dPLS19], the latter equality is proven over Z by providing evidence that

s =
�

A Ar −q · d
�

︸ ︷︷ ︸

¬ Ã

·







b
br
k






mod r, (45)

where r is theorderof thediscrete-log-hardgroup. As long (45) holds for anextendedwitness (b | br | k)
of sufficiently small infinity norm, both members are guaranteed to have infinity norm smaller than r/2,
which implies that (45) holds over Z and not only modulo r . In (44), we note that ‖k‖∞ ≤ B/2 + BrU∞ . If
the prover can convince the verifier that ‖k‖∞ ≤ B/2 + Br · U∞ , ‖br‖ ≤ U∞ and b ∈ {0,1}B , the verifier
knows that the right-hand-side member of (45) is smaller than B · q + 2Br ·U∞ in infinity norm. Hence, if
r/2 > B · q + 2Br · U∞ , the verifier is convinced that (44) holds over Z. In order to prove the smallness of
(b | br | k), we do not directly decompose br and k into bits because it would significantly increase the
dimension of committed vectors in the vector commitment scheme. Instead, we first project (br ,k) to
a smaller dimension 128 by computingwR = R · (b>r | k

>)> mod r for a matrix R ∈ {−1,0,1}128×(Br+d)

sampled from a distribution D that outputs zero with probability 1/2 and one and −1with probability
1/4 each. We then prove thatwR ∈ Z128 has small infinity norm via its binary decomposition, which is
much cheaper than directly proving the smallness since the dimension of wR is only 128 (instead of
2048 or more).
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VC-Proe-2: Part III

VC-Proe-2(p, (A,s),b): (continued)
14. Compute the polynomial

Pπ[X] =
�

δy · γy+

�

B+128m
∑

j=1

�

δy · yj · (wbn[ j] − 1) + δθ · ~̄θ,[ j] + δeq · tj · yj

+ δdec ·
128
∑

=1

Hξ[ , j]
�

· XB̄1+1− j
�

�

·
�

γbn +
B+128m
∑

j=1

wbn[ j] · Xj
�

+
�

δℓ ·
�

γe +
Br+4
∑

j=1

~̄e[ j] · XB̄1+1− j
�

+
B̄1
∑

j=1

�

δθ · ~̄θ,r[ j] +
128
∑

=1

δr · ϕ ·R′[ , j] + δe ·ωj
�

· XB̄1+1− j

�

·
�

γ̂e +
Br+4
∑

j=1

~̄e[ j] · Xj
�

+
�

γr +
d
∑

j=1

k[ j] · Xj
�

·
�

d
∑

j=1

�

− δθ · q · ~θ0[ j] +
128
∑

=1

δr · ϕ ·R[ , Br + 4 + j]
�

· XB̄1+1− j
�

−
�

γR +
128
∑

j=1

wR[ j] · Xj
�

·
�

128
∑

j=1

(δr · ϕj + δdec · ~ξ[ j]) · XB̄1+1− j
�

− δe ·
�

γe +
Br+4
∑

j=1

~̄e[ j] · XB̄1+1− j
�

·
�

Br+4
∑

j=1

ωj · Xj
�

− δeq ·
�

γy +
B+128m
∑

j=1

yj ·wbn[ j] · XB̄1+1− j
�

·
�

B̄1
∑

j=1

tj · Xj
�

− (δθ · tθ + δℓ · U2
2) · X

B̄1+1.

From the coefficients of Pπ[X] =
∑B̄1+B+128m
=1 ν · X , compute π = gPπ(α) = gν0 ·

∏B̄1+B+128m
=1, 6=B̄1+1

g
ν
 .

Figure 94: The Second Vector-Commitment-Based NIZK Prover – Part III.
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VC-Proe-2: Part IV

VC-Proe-2(p, (A,s),b): (continued)
15. Compute deterministic KZG commitments Ĉt =

∏B̄1
j=1 ĝ

tj
j , Ĉω =

∏Br+4
=1 ĝ

ω

 and

Ch,1 =
B+128·m
∏

j=1

g
δθ · ~̄ ,θ[ j]−δy ·yj+δeq ·tj ·yj+δdec ·

∑128
=1 Hξ[ ,j]

B̄1+1− j

Ch,2 =
B̄1
∏

j=1

g
δθ · ~̄ ,rθ[ j]+

∑128
=1 δr ·ϕ ·R

′[ ,j]+δe ·ωj

B̄1+1− j

Ĉh,3 =
d
∏

j=1

ĝ
−δθ ·q· ~θ0[ j]+δr ·

∑128
=1 ϕ ·R[ ,Br+4+j]

B̄1+1− j

to the polynomials Pt[X] =
∑B̄1
=1 t · X

 , Pω[X] =
∑Br+4
=1 ω · X and

Ph,1[X] =
B+128m
∑

j=1

�

δθ · ~̄θ,[ j] − δy · yj + δeq · tj · yj + δdec ·
128
∑

=1

Hξ[ , j]
�

· XB̄1+1− 

Ph,2[X] =
B̄1
∑

j=1

�

δθ · ~̄θ,[ j] +
128
∑

=1

δr · ϕ ·R′[ , j] + δe ·ωj

�

· XB̄1+1− j

Ph,3[X] =
d
∑

j=1

�

− δθ · q · ~θ0[ j] + δr ·
128
∑

=1

ϕ ·R[ , Br + 4 + j]
�

· XB̄1+1− j (40)

16. Compute z = Hz
�

x, ~y,~t, ~ϕ, ~ξ, ~θ, ~δ, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy, Ch,1, Ch,2, Ĉt , Ĉh,3, Ĉω
�

∈
Z/(r) as an evaluation input for the polynomials (40). Let the evaluations

(ph,1, ph,2, pt , ph,3, pω) = (Ph,1(z), Ph,2(z), Pt(z), Ph,3(z], Pω(z)). (41)

17. Compute a batch evaluation proof for the polynomial evaluations (41). To do this, com-
pute

χ =Hχ
�

x, ~y,~t, ~ϕ, ~ξ, ~θ, ~δ, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy, Ch,1, Ch,2, Ĉt , Ĉh,3, Ĉω,

z, ph,1, ph,2, pt , ph,3, pω
�

.

Then compute the polynomial Q[X] =
∑B̄1−1
=0 q · X such that

QKZG[X] =
�

Ph,1[X] + χ · Ph,2[X] + χ2 · Ph,3[X] + χ3 · Pt[X] + χ4 · Pω[X])

− (ph,1 + ph,2 · χ + χ2 · ph,3 + χ3 · pt + χ4 · pω)
�

�

(X − z)

Finally, compute πKZG = gq0 ·
∏B̄1−1

=1 g
q
 = g

QKZG(α) .

18. Output the final proof

prƒ =
�

Ĉe, Ce, Ck , CR, Ĉbn, Cy, Ch,1, Ch,2, Ĉt , Ĉh,3, Ĉω, π, πKZG
�

.

Figure 95: The Second Vector-Commitment-Based NIZK Prover – Part IV.
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VC-Verƒy-2

VC-Verƒy-2(p, (A,s, U∞), prƒ ):
Given a statement (A,s, U∞)which, along with q, d, B, Br form the public statement x and
a purported proof

prƒ =
�

Ĉe, Ce, Ck , CR, Ĉbn, Cy, Ch,1, Ch,2, Ĉt , Ĉh,3, Ĉω, π, πKZG
�

∈ Ĝ×G3× Ĝ×G3× Ĝ3×G2,

return zero if prƒ does not parse properly. Otherwise, setU2 = U∞ ·
p

Br and do the following.

1. Compute R̄ = HR(x, Ĉe, Ce, Ck) ∈ {−1,0,1}128×(B̄r+d̄+4) whose columns are dis-
tributed as perD128 . Let R ∈ {−1,0,1}128×(d+4) the submatrix consisting of the first d
columns of R̄.

2. Set ~ϕ = Hϕ(x,R, Ĉe, Ce, CR, Ck) ∈ (Z/(r))128 , ~ξ = Hξ(x, Ĉe, Ce,R, ~ϕ,CR, Ĉbn, Ck) ∈
(Z/(r))128 , and ~y = Hc

�

x,R, ~ϕ, ~ξ, Ĉe, Ce, CR, Ĉbn, Ck
�

∈ (Z/(r))B̄1 . For each index
 ∈ [B + 128 ·m + 1, B̄1] , set y = 0. Then, compute

~t =Ht(x, ~y, ~ϕ, ~ξ, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy) ∈ (Z/(r))B̄1 ,

~θ =Hnmp
�

x, ~y,~t, ~ϕ, ~ξ, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy
�

∈ (Z/(r))d̄+1

~ω =Hω
�

x, ~y,~t, ~ϕ, ~ξ, ~θ, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy
�

∈ (Z/(r))B̄1 ,

~δ = (δr , δdec, δeq, δy, δθ, δe, δℓ) =Hgg′
�

, ~y,~t, ~ϕ, ~ξ, ~θ, ~ω, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy
�

3. Let the matrix Ã = [A | Ar | −q · d] ∈ Zd×(B+Br+d)) from (45). Let ~θ0 ∈ (Z/(r))d the first
d entries of ~θ. Let tθ = ~θ>0 · smod r , ~>θ, = ~θ

>
0 · A ∈ Z

1×B mod r and ~>
θ,r
= ~θ>0 · Ar ∈

Z
1×Br mod r .

4. Let ~̄θ0 = ( ~θ0 | 0n−(d+k)) ∈ (Z/(r))B̄1 and define the matrices R′ ∈ (Z/(r))128×B̄1 and
Hξ ∈ (Z/(r))128×(B+128·m) as in step 13 of VC-Proe-2. Return zero if the following
equality does not hold:

e
�

C
δy
y · Ch,1, Ĉbn

�

· e
�

Cδℓ
e
· Ch,2, Ĉe

�

· e
�

Cr̃ , Ĉh,3
�

· e
�

CR,
128
∏

j=1

ĝ
δr ·ϕj+δdec · ~ξ[ j]
n+1− j

�−1

· e
�

Cδe
e
, Ĉω

�−1 · e
�

C
δeq
y , Ĉt

�−1 · e(g1, ĝB̄1
)−δθ ·tθ−δℓ ·U

2
2 = e(π, ĝ) (42)

5. Compute

z =Hz
�

x, ~y,~t, ~ϕ, ~ξ, ~θ, ~δ, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy, Ch,1, Ch,2, Ĉt , Ĉh,3, Ĉω
�

and

χ =Hχ
�

x, ~y,~t, ~ϕ, ~ξ, ~θ, ~δ, Ĉe, Ce,R, CR, Ĉbn, Ck , Cy, Ch,1, Ch,2, Ĉt , Ĉh,3, Ĉω,

z, ph,1, ph,2, pt , ph,3, pω
�

.

Compute (ph,1, ph,2, ph,3, pt , pω) = (Ph,1(z), Ph,2(z), Ph,3(z), Pt(z), Pω(z)) by evaluat-
ing the polynomials in (40).

6. Return zero if the following equality does not hold:

e
�

Ch,1 · C
χ
h,2 · g

−ph,1−χ·ph,2 , ĝ
�

· e
�

g, Ĉ
(χ2)
h,3 · Ĉ

(χ3)
t · Ĉ(χ

4)
ω
· ĝ−(χ

2)·ph,3−(χ3)·pt −(χ4)·pω
�

= e
�

πKZG, ĝ1 · ĝ−z
�

. (43)

If equalities (42) and (43) both hold, return one.

Figure 96: The Second Vector-Commitment-Based NIZK Verifier.
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7.6.4 ZKPoKs Based on MPC-in-the-Head

The basic MPC-in-the-Head protocols are parameterized by a number of hyper-parameters;
• n: The number of parties in the MPC-in-the-Head protocol.
• M: The total number of executions of the MPC protocol which are committed to.
• τ: The total number of executions which are opened in the online phase.

We present three different ZKPoKs based on MPC in the head. One for a general value of q, based on full
threshold sharing (from [FMRV22]) a second one which is an optimization of the first technique also for
general q (from [AGH+23]), and a third for q = p1 · · ·pk , for large primes p , which is an adaption of the
method from [FR23].

In the ZKPoKs based on full threshold secret sharing (from [FMRV22]) we have the additional parame-
ters:

• η: The number of opening rejections allowed.
• A: A parameter used to “squish” the commitments down (see [FMRV22]), we assume A = 2 in
what follows.

In the ZKPoKs based on full threshold sharing, which make use of the hyper-cube trick from [AGH+23],
we have the additional two parameters related by n = ND .

• N: The length of the hyper-cube edge.
• D: The hyper-cube dimension.

In the ZKPoKs based on Shamir sharing (from [FR23]) we have the additional parameters:
• t: The threshold for the underlying Shamir scheme.

All proofs require access to some XOF-like object as per Section 5.6.3, and a TreePRG algorithm, as per
Section 7.1.6 for a security parameter sec. In addition, the ZKPoKs can easily be changed into a signature
proof of knowledge, by simply hashing in any desired message into the hash function invocations of H2

andH4 below.

7.6.4.1 Method 1: Full Threshold Based Proofs: In this sectionwe let [] denote an additive sharing
over Z/(q) of a value  ∈ Z/(q), i.e.

 = 1 + · · · + n (mod q).

with  ∈ Z/(q). Note the number of players n here is different from that considered earlier, the precise
number is a parameter of our zero-knowledge proof. We et []() denote the value  in the sharing, i.e.
the -th players share.

We let H1, . . . ,H6 denote six independent collision resistant hash functions. The first four hash
functions H1, . . . ,H4 are normal hash functions, with normal bit-string outputs. We define these as
follows:

H1() = Hsh2·sec(DSep(KKW1)‖),

H2() = Hsh2·sec(DSep(KKW2)‖),

H3() = Hsh2·sec(DSep(KKW3)‖),

H4() = Hsh2·sec(DSep(KKW4)‖).

HoweverH5 andH6 are special.
• The functionH5 will take an input string and output a random subset J ⊂ {1, . . . ,M} of size τ.
• The functionH6 will take an input string and output a random element in {1, . . . , n}τ .

The pseudo-code for these two functions are given in Figure 97. The proofs are presented in Figure 98-
Figure 100.

174



Hash Functions H5 and H6

Shƒ ƒ e(XOF,A1, . . . , An):
This implements a Fisher-Yates shuffle of n elements based on the randomness provided by
the XOF. Note that n is exponentially smaller than 264 .

1. For  ∈ [n,1] :
(a) r ← XOF.Net(64), treat this as an integer over 64 bits.
(b) k← (r mod ) + 1.
(c) Sp(A, Ak).

i.e. execute t← Ak , Ak ← A, A ← t.
2. Return A

H5():
Hash  into a random subset of {1, . . . ,M} of size τ.

1. y← Hsh2·sec(DSep(KKW5)‖).
2. XOF.nt(y,DSep(KKW51))
3. For  ∈ [1,M] :

(a) A ← .
4. B← Shƒ ƒ e(XOF,A).
5. Return B1, . . . , Bτ

RndEem(XOF, n, τ):
Obtain a random element of {1, . . . , n}τ , assumes n� 264 .

1. y← Hsh2·sec(DSep(KKW6)‖).
2. XOF.nt(y,DSep(KKW61))
3. For  ∈ [1, τ]

(a) A ← (XOF.Net(64)mod n) + 1.
4. Return (A1, . . . , Aτ).

H6():
Hash  into a random element of {1, . . . , n}τ

1. y← Hsh2·sec(DSep(KKW6)‖).
2. XOF.nt(y,DSep(KKW61)).
3. (A1, . . . , Aτ)← RndEem(XOF, n, τ).
4. Return (A1, . . . , Aτ).

Figure 97: H5 andH6 .
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KKW Protocol for Multiple Subset Sum Equations: Part I

MPCtHed-Proe-1((A,s),b):
Where s ∈ (Z/(q))d and A ∈ (Z/(q))d×B are public, and b ∈ {0,1}B is private.

Phase 1: First Commitment
1. seed← {0,1}sec .
2. {seed}M=1 ← TreePRG.Gen(seed, d log2Me).
3. For e ∈ [1, . . . ,M] :

(a) {seede,}n=1 ← TreePRG.Gen(seede, d log2 ne).
(b) XOF.nt(seede, DSep(KKW1)), add the string for domain separation with the

TreePRG.
(c) re ← XOF.Net(B). These are the input masks for the bits, we think of re ∈ {0,1}B .
(d) For  ∈ [1, . . . , n] :

i. ρe, ← XOF.Net(sec).
ii. comme, ← Commt(seede,;ρe,).
iii. XOF′.nt(seede,).
iv. For ℓ ∈ [1, . . . , B] :

A. [re,ℓ]() ← XOF′.Net(), treating the result as an integer in {0, . . . , A − 1}.
(e) For ℓ ∈ [1, . . . , B] :

i. Δe,ℓ ←
∑n
=1[re,ℓ]

() (mod q) − r(ℓ)e . Note that Δe,ℓ ∈ [−1, . . . , n · (A − 1)] and thus
needs at most log2(n · A) bits to represent it.

ii. [r′
e,ℓ
] ← [re,ℓ] .

iii. [r′
e,ℓ
](n) ← [r′

e,ℓ
](n) − Δe,ℓ (mod q). This means that [r′

e,ℓ
] is now a sharing over

Z/(q) of the bit r(ℓ)e .
(f) he ←H1

�

{Δe,}B=1 ‖ {comme,}n=1
�

.
4. h←H2(h1, . . . , hM).
5. prƒ1 ← h.

Figure 98: KKW Protocol for Multiple Subset Sum Equations: Part I.
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KKW Protocol for Multiple Subset Sum Equations: Part II

Phase 2: Second Commitment
1. J←H5(h).
2. For e ∈ J:

(a) ye ← b ⊕ re .
(b) For ℓ ∈ [1, . . . , B] :

i. [be,ℓ] ← [r′e,ℓ] +y
(ℓ)
e − 2 ·y(ℓ)e · [r′e,ℓ] . This linear operation on shares, makes [be,ℓ]

a sharing of the input bit b(ℓ) .
(c) Let {[se,j]}dj=1 denote the sharing of the values in the subset-sum statement being

proved, Recall this will be a linear function of the values {[be,ℓ]}Bℓ=1 . i.e. we set, for
j = 1, . . . , d,

[se,j] ←
B
∑

ℓ=1

Aj,ℓ · [be,ℓ].

(d) h′
e
←H3

�

ye ‖ {{[se,j]()}dj=1}
n
=1

�

.
3. h′ ←H4({h′e}e∈J).
4. D← TreePRG.Pnc(seed, d log2Me , J):
5. prƒ1 ← prƒ1 ‖ h′ ‖ D.

Phase 3: Completion of Proof
1. L←H6(prƒ1). Write L = {e}e∈J ←∈ {1, . . . , n}τ .
2. cnt← 0.
3. If there exist values (e, ℓ) ∈ J × {1, . . . , B} such that

• Either r(ℓ)e = 1 and [re,ℓ](e) = 0,
• Or r(ℓ)e = 0 and [re,ℓ](e) = A − 1,

then prƒ ← prƒ1 ‖ (0 ‖ he ‖ h′e) and set cnt← cnt + 1, else prƒ ← prƒ1 ‖ 1. In the former
case we say this value of e is rejected, otherwise we say it is accepted. The verifier can
determine the state from the appended zero or one bit.

4. If cnt ≥ η then abort the proof and start again.
5. For e ∈ J and e accepted:

(a) De ← TreePRG.Pnc(seede, d log2 ne ,{e}).
(b) e ← De , the value e will contain a string of values.
(c) For ℓ 6= e :

i. e ← e ‖ρe,ℓ .
(d) For ℓ ∈ [1, . . . , B] :

i. r̃e,ℓ ← r
(ℓ)
e − [re,ℓ](e) .

(e) e ← e ‖ {r̃e,ℓ}Bℓ=1 ‖ ye ‖ comme,e .
6. prƒ ← prƒ ‖ {e}e∈J .
7. Return prƒ .

Figure 99: KKW Protocol for Multiple Subset Sum Equations: Part II.
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KKW Protocol for Multiple Subset Sum Equations - Verification

MPCtHed-Verƒy-1((A,s), prƒ ):
1. Parse the proof prƒ into it’s constituent parts.
2. J←H5(h).
3. L←H6(prƒ1). Write L = {e}e∈J .
4. {seede}e 6∈J ← TreePRG.GenPnc(D, J, d log2Me).
5. For e 6∈ J compute he as in Step 3 of Figure 98 using seede .
6. For e ∈ J and e rejected, recover he and h′

e
from the values supplied in the proof.

7. For e ∈ J and e accepted:
(a) {seede,} 6=e ← TreePRG.GenPnc(De,{e}, d log2 ne).
(b) For  6= e :

i. comme, ← Commt(seede,;ρe,).
ii. Compute [re,ℓ]() using seede, just as in Step 3(d)iv of Figure 98.

(c) For ℓ ∈ [1, . . . , B] :
i. Δe,ℓ ←

∑

 6=e [re,ℓ]
() − r̃e,ℓ .

(d) he ←H1
�

{Δe,}B=1 ‖ {comme,}n=1
�

.
(e) For  6= e :

i. Compute [r′
e,ℓ
]() , using the Δe, values, just as in Steps 3e of Figure 98.

ii. Compute [be,ℓ]() , using ye , just as in Step 2b of Figure 99.
iii. Compute [se,j]() for j = 1, . . . , d using Step 2c of Figure 99.

(f) Compute [se,j](e) for j = 1, . . . , d by subtracting
∑

 6=e [se,j]
() from the actual

subset-sum values, i.e. compute for j = 1, . . . , d,

[se,j](e) ← sj −
∑

 6=e

[se,j]().

(g) h′
e
←H3

�

ye ‖ {{[se,j]()}dj=1}
n
=1

�

.
8. If h′ 6=H4({h′e}e∈J) then reject the proof.
9. If h 6=H2(h1, . . . , hM) then reject the proof.

Figure 100: KKW Protocol for Multiple Subset Sum Equations - Verification.
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7.6.4.2 Method 2: Full Threshold Based Proofs - Hyper-Cube Variant: This variant of the above
proof is based on the strategy from [AGH+23]. The basic idea is to partition the above n players into a
hyper-cube of dimension D, and side length N, so that n = ND . We then in themain MPC part of the proof
execute D executions of the MPC protocol amongst N parties, instead of one MPC protocol amongst ND

parties.
Given a secret sharing of [r] , where each player  ∈ [1, . . . , n] holds the value [r]() , we create D

different sharings of the same value amongst N different players as follows. We first map  ∈ [1, . . . , n]
into a vector i representing a coordinate in the hyper-cube of size ND , i.e. we effectively write  in base N.
Write i = (1, . . . , D)with j ∈ [1, . . . , N] . By abuse of notation, we write [r](i) to represent the value of
[r]() under this mapping.

For each  ∈ [1, . . . , D] we can now define a new sharing of the value r shared in [r] amongst players
k ∈ [1, . . . , N] by setting

[[r]](,k) =
N
∑

1=1

. . .
N
∑

−1=1

N
∑

+1=1

. . .
N
∑

D=1

[r](1,...,−1,k,+1,...,D)

=
∑

t∈[1,...,N],t 6=j
[r](1,...,−1,j,+1,...,D). (46)

We then have that, for each , the values [[r]](,·) form an additive sharing of r since

[[r]](,1) + . . . + [[r]](,N) = r.

Phase 1 of the proof is executed exactly as in Figure 98, in particular this means the correction values
Δe, are applied to the full sharing over the n-parties. Thismeanswe can apply the same abort probability
analysis as for the original variant of the proof.

However, for Phase 2 we switch from the normal n party sharing into our D sharings via the hyper-
cube. This is explained in Figure 101. Note that, the “cost” of executing Phase 2 goes from something
proportional to

d · B · τ · (n − 1) = d · B · τ · (ND − 1)

to something more akin to
B ·
�

ND + d ·D · (N − 1)
�

.

Thus for “big” d this should give an improvement in the execution time.
Phase 3 is identical to that given in Figure 99. In particular it is the tweak values r̃e,ℓ for the sharing

amongst the n parties, which are placed in the proof transcript. This means the proof sizes (indeed the
proof) for the HyperCube variant is identical to the original variant. The HyperCube variant does however
have a potentially shorter run time.
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KKW Protocol Phase 2 HyperCube Variant

Phase 2: Second Commitment
1. J←H5(h).
2. For e ∈ J:

(a) ye ← b ⊕ re .
(b) For ℓ ∈ [1, . . . , B] :

i. [be,ℓ] ← [r′e,ℓ] +y
(ℓ)
e − 2 ·y(ℓ)e · [r′e,ℓ] . This linear operation on shares, makes [be,ℓ]

a sharing of the input bit b(ℓ) .
ii. For  ∈ [1, . . . , D] and k ∈ [1, . . . , N] compute [[be,ℓ]](,k) via equation (46).

(c) For each  ∈ [1, . . . , D] let {[[se,j]](,·)}dj=1 denote the sharing of the values in the
subset-sum statement being proved. Recall this will be a linear function of the
values {[[be,ℓ]](,·)}Bℓ=1 . i.e. we set, for j = 1, . . . , d,

[[se,j]](,·) ←
B
∑

ℓ=1

Aj,ℓ · [[be,ℓ]](,·).

(d) h′
e
←H3

�

ye ‖ {{{[[se,j]](,)}dj=1}
D
=1}

N
=1

�

.
3. h′ ←H4({h′e}e∈J).
4. D← TreePRG.Pnc(seed, d log2Me , J):
5. prƒ1 ← prƒ1 ‖ h′ ‖ D.

Figure 101: KKW Protocol Phase 2 HyperCube Variant.

KKW Protocol HyperCube Variant - Verification

MPCtHed-Verƒy-2((A,s), prƒ ):
Steps 1-6 are the same as in Figure 100.

7. For e ∈ J and e accepted:
(a) {seede,} 6=e ← TreePRG.GenPnc(De,{e}, d log2 ne).
(b) For  6= e :

i. comme, ← Commt(seede,;ρe,).
ii. Compute [re,ℓ]() using seede, just as in Step 3(d)iv of Figure 98.

(c) For ℓ ∈ [1, . . . , B] :
i. Δe,ℓ ←

∑

 6=e [re,ℓ]
() − r̃e,ℓ .

(d) he ←H1
�

{Δe,}B=1 ‖ {comme,}n=1
�

.
(e) Let l = (1, . . . , D) denote the D-dimensional vector associated to the value e .
(f) For  6= e :

i. Compute [r′
e,ℓ
]() , using the Δe, values, just as in Steps 3e of Figure 98.

ii. Compute [be,ℓ]() , using ye , just as in Step 2(b)i of Figure 101.
iii. Compute [[be,ℓ]](,k) , for all ℓ ∈ [1, . . . , B],  ∈ [1, . . . , D] and k 6=  , just as in

Step 2(b)ii of Figure 101.
iv. Compute [[se,j]](,k) for all j = 1, . . . , d,  ∈ [1, . . . , D] and k 6=  , using Step 2c

of Figure 101.
(g) Compute [[se,j]](,) for all j = 1, . . . , d and  ∈ [1, . . . , D] by subtracting the

partial sums
∑

k 6= [[se,j]]
(,k) from the actual subset-sum values. In other words

compute
[[se,j]](,) ← sj −

∑

k 6=

[[se,j]](,k).

(h) h′
e
←H3

�

ye ‖ {{{[[se,j]](,)}dj=1}
D
=1}

N
=1

�

.
Steps 8 and 9 are identical to those in Figure 100.

Figure 102: KKW Protocol HyperCube Variant - Verification.
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7.6.4.3 Method 3: Shamir Based Proofs: This variant only is specifically targeted a values of q for
which one does not need aGalois Ring extension in order to define Shamir Secret Sharing. In the context
of this document this is when q = p1 · pt for prime values p with p ≥ n. The proof technique below was
presented in [FR23] in the context of prime q; that it works for primes of the above form is immediate.

In this section we let 〈〉 denote a degree t Shamir sharing of the value  ∈ Z/(q) amongst n players.
We utilize n and t here, as opposed to ourn and t of our main MPC protocols, as these n players (with a
threshold of t) are not actual players in a protocol, but are hyper-parameters of the proof system. We
assume in what follows that n is smaller than the smallest prime factor of q, and hence we can take
{0,1, . . . , n} as an exceptional set in Z/(q).

The share values (〈〉1, . . . , 〈〉n)will be derived in our protocol from a XOF, via the call

(〈〉1, . . . , 〈〉n)← XOF-Shre(,XOF)

to the function XOF-Shre(,XOF) in Figure 103.

XOF-Shre(,XOF)

XOF-Shre(,XOF)
1. f← XOF.Net(t + 1, q).
2. For  ∈ [1, . . . , n] compute 〈〉 ←

∑t+1
j=1 ƒj · 

j−1 .
3. Return (〈〉1, . . . , 〈〉n)

Figure 103: Subroutine XOF-Shre(,XOF)..

We let H1, . . . ,H5,H7 denote six independent collision resistant hash functions. The functions
H1, . . . ,H5 are as before, whilstH7 is defined by

• The functionH7 will take an input string and outputs τ random subsets of {1, . . . , n} of size t + 1.
The pseudo-code for the functionH7 is given in Figure 104 and protocol for the proof in Figure 105 and
Figure 106.

Hash Function H7

H7(): Hash  into τ random elements of {1, . . . , n}t+1
1. y← Hsh2·sec(DSep(KKW7)‖).
2. XOF.nt(y,DSep(KKW71)).
3. For  ∈ [1, . . . , τ] do:

(a) S ← RndEem(XOF, n, t + 1).
4. Return (S1, . . . , Sτ).

Figure 104: H7 .

In line 2c of Figure 105 the prover only needs to compute the share values for players 1, . . . , t. Then
the (t + 1)’th players share can be deduced from the statement itself, via the reconstruction equation
for player 1, . . . , t + 1. Finally the shares for players t + 2, . . . , n can be deduced from the uniqueness of
the Shamir sharing given t + 1 players shares. Thus this step only requires (essentially) t effort and not n
on the part of the prover.
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Shamir Based KKW Protocol for Subset Sums - Proof Generation

MPCtHed-Proe-3((A,s),b):
Where s ∈ (Z/(q))d and A ∈ (Z/(q))d×B are public, and b ∈ {0,1}B is private.

Phase 1: First Commitment
1. seed← {0,1}sec .
2. {seed}M=1 ← TreePRG.Gen(seed, d log2Me).
3. For e ∈ [1, . . . ,M] :

(a) XOF.nt(seede, DSep(KKW3)).
(b) re ← XOF.Net(B). These are the input masks for the bits, we think of re ∈ {0,1}B .
(c) (〈re〉1, . . . , 〈re〉n)← XOF-Shre(re, XOF).
(d) For  ∈ [1, . . . , n] :

i. ρe, ← XOF.Net(sec).
ii. comme, ← Commt(〈re〉;ρe,).

(e) he ←H1({comme,}n=1).
4. h←H2(h1, . . . , hM).
5. prƒ1 ← h.

Phase 2: Second Commitment
1. J←H5(h). These are the executions we open in the C&C
2. For e ∈ J:

(a) ye ← b ⊕ re .
(b) For ℓ ∈ [1, . . . , B] :

i. 〈b(ℓ)e 〉 ← 〈r
(ℓ)
e 〉 + y

(ℓ)
e − 2 · y(ℓ)e · 〈r

(ℓ)
e 〉. This linear operation on shares, makes 〈b(ℓ)e 〉

a sharing of the input bit b(ℓ) .
(c) Let {〈se,j〉}dj=1 denote the sharing of the values in the subset-sum statement being

proved. Recall this will be a linear function of the share values {〈b(ℓ)e 〉}Bℓ=1 .

〈se,j〉 ←
B
∑

ℓ=1

Aj,ℓ · 〈b(ℓ)e 〉.

(d) h′
e
←H3

�

ye ‖ {{〈se,j〉}dj=1}
n
=1

�

.
3. h′ ←H4({h′e}e∈J).
4. D← TreePRG.Pnc(seed, d log2Me , J):
5. prƒ1 ← prƒ1 ‖ h′ ‖ D.

Phase 3: Completion of Proof
1. L←H7(prƒ1). Write L = {(1

e
, . . . , t+1

e
)}e∈J .

2. For e ∈ J:
(a) e ← ye .
(b) For  ∈ [1, . . . , t] :

i. e ← e ‖ ρe, ‖ 〈re〉
e
.

(c) For  6∈ [1, . . . , t] :
i. e ← e ‖ comme,

e
.

3. prƒ ← prƒ ‖ {e}e∈J .
4. Return prƒ .

Figure 105: Shamir Based KKW Protocol for Subset Sums - Proof Generation.
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Shamir Based KKW Protocol for Subset Sums - Verification

MPCtHed-Verƒy-3((A,s), prƒ ):
1. Parse the proof prƒ into it’s constituent parts.
2. J←H5(h).
3. L←H7(prƒ1). Write L = {(1

e
, . . . , t+1

e
)}e∈J .

4. {seede}e 6∈J ← TreePRG.GenPnc(D, J, d log2Me).
5. For e 6∈ J compute he as in Step 3 of Phase 1 of Figure 105 using seede .
6. For e ∈ J:

(a) For  ∈ [1, . . . , t] :
i. Recover ρe,

e
and 〈re〉

e
from the proof.

ii. comme,
e
← Commt(〈re〉

e
;ρe,

e
).

(b) For  6∈ [1, . . . , t] :
(c) Recover comme,

e
from the proof.

(d) he ←H1({comme,}n=1).
(e) For  ∈ [1, . . . , t] :

i. Compute 〈b(ℓ)e 〉
e
, using ye , just as in Step 2b of Phase 2 of Figure 105.

ii. Compute 〈se,j〉
e
for j = 1, . . . , d using the method as in Step 2c of Phase 2 of

Figure 105.
(f) Compute 〈se,j〉t+1

e
from the actual subset-sum values and the shares 〈se,j〉

e
for

 = 1, . . . , t.
(g) Compute 〈se,j〉

e
, for  > t + 1, from the shares 〈se,j〉

e
for  = 1, . . . , t + 1.

(h) h′
e
←H3

�

ye ‖ {{[se,j]()}dj=1}
n
=1

�

.
7. If h′ 6=H4({h′e}e∈J) then reject the proof.
8. If h 6=H2(h1, . . . , hM) then reject the proof.

Figure 106: Shamir Based KKW Protocol for Subset Sums - Verification.
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8 Security analysis

Tomake it easier to follow this section we adopt exactly the same subsection numbering as we did in
Section 7. In addition to covering security aspects, we also cover correctness aspects of the protocols
where are they not immediate. If the results for a particular section are well known, or in the literature,
we simply refer to the literature for the resulting justification.

8.1 Layer Zero

8.1.1 Galois Rings

Asmentioned in Section 4.6 most of the results and definitions of this section can be found in references
such as [Feh98] and [ACD+19]. The (relatively trivial) result which is perhaps not stated explicitly
elsewhere is that we can take the subset GR(p, F) as an exceptional sequence of maximal length in the
Galois Ring GR(q, F).

Lemma 11. The set GR(p, F) (as a set) is a maximal exceptional sequence in GR(q, F).

Proof. To see that this set is an exceptional sequence, notice that since Fpd is a finite field we have that
every element is invertible, thus for α, αj ∈ GR(p, F) ⊂ GR(q, F)

α − αj 6≡ 0 (mod p).

When q = pk this means that the inverse of α − αj exists in GR(q, F) for any k, by “Hensel Lifting” of the
inverse modulo p. When q = p1 · · ·pk this means the inverse of α − αj exists in GR(q, F), and since p is
the smallest prime dividing q, we have that α − αj cannot be divisible by any other prime dividing q.

To see that GR(p, F) (as a set) is a maximal exceptional sequence in GR(q, F) consider any sequence
of size greater than pd lying in GR(q, F). By definition this will contain two elements α and αj such
that α ≡ αj (mod p). In which case α − αj is not invertible in GR(q, F). We call GR(p, F) (as a set) the
canonical maximal exceptional sequence in GR(q, F). From now on, for implementation purposes, we
will make the choice that E ⊆ GR(p, F) \ {0} and |E | = n.

8.1.2 Reed–Solomon Codes over Galois Rings

The results of Section 7.1.2 can be found in a number of places. For example [ACD+19] contains most of
the material on Reed-Solomon codes over Galois Rings, including the generalization of the Berlekamp–
Welch algorithm. The syndrome decodingmethod for traditional view Reed–Solomon coding, comes
from [Hal15][Chapter 5]; which is described for fields, but the proofs in that document are seen to easily
carry over to the case of Galois Rings. As remarked in an earlier section one can consider our algorithms
in this section as a simplification of the more general presentation given in [GTLBNG21] or [QBC13].

We note the following proof, which was omitted from Section 7.1.2 for readability issues.

Lemma 12. We have c ∈ RSn,v if and only if Sc(Z) = 0.

Proof.

c ∈ RSn,v ⇐⇒ Sc(Z) ≡
n
∑

=1

c

L(α) · (1 − α · Z)
(mod Zr)

≡
n
∑

=1

c

L(α)
·

1

(1 − α · Z)
(mod Zr)

=
n
∑

=1

c

L(α)
·

 

r−1
∑

j=0

(α · Z)j
!
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=
r−1
∑

j=0





n
∑

=1

c · α
j


L(α)



 · Zj

= 0.

8.1.2.1 Error Correction over Finite Fields via Berlekamp–Welch: This is standard. See, for example,
[BW86]

8.1.2.2 Error Correction over Finite Fields via Gao: Again, this is also standard. See, for example,
[Gao03].

8.1.2.3 Error Correction over Rings via Berlekamp–Welch/Gao: The method given in Figure 31 for
q = p1 · · ·pk is an immediate application of undergraduate algebra. The lifting procedure in Figure 31
for the case of q = pk appears as Figure 1 in [ACD+19] and as Algorithm 2 in [QBC13]; we repeat the
correctness result here for completeness.

Lemma 13. When q = pk the algorithm in Figure 31 corrects a received vector into a codeword assuming
the number of errors is bounded by e ≤ b(n − s − v)/2c , where s is the number of erasures in the received
vector.

Proof. To simplify the exposition assume s = 0 for the received input vector. Suppose the underlying
codeword is generated from the polynomial ƒ (Z) ∈ R[Z] of degree less than v. We can write ƒ (Z) in
terms of it’s p-adic expansion up to precision k, i.e.

ƒ (Z) = ƒ0(Z) + p · ƒ1(Z) + p2 · ƒ2(Z) + · · · + pk−1 · ƒk−1(Z),

where ƒ(Z) is a polynomialwith coefficients in the range [0, . . . , p−1] of degree less thanv. The received
vector should be given by

c ≡ ƒ (α) (mod q),

however, it is wrong in e positions, where e ≤ b(n − v)/2c . Obviously we can find ƒ0(Z) by applying
the standard Berlekamp–Welch/Gao algorithm over the finite field. Having found ƒ0(Z)we produce the
vector

y = c − t

where t ≡ ƒ0(α) (mod q). Note that, we evaluate ƒ0(α) over the full ring and not modulo p here. The
vector ywill be divisible by p for all positions where there was no error modulo p, if there is a position
which is not divisible by p then this corresponds to an error position, and wewill treat it as an erasure
position in the next loop. Thus by dividing y by p, we have, for all positions for where there is no error,

y/p = (c − t)/p = (ƒ (α) − ƒ0(α)) /p

≡ ƒ1(α) + p · ƒ2(α) + · · · + pk−2 · ƒk−1(α) (mod pk−1).

Thus, we can recover ƒ1(Z) by applying the standard Berlekamp–Welch algorithm over finite fields to the
vector z← (y/p) (mod p). By repeating this k times we recover the corrected vector.

8.1.2.4 Syndrome Decoding: As noted before the method in Section 7.1.2.4 is derived from the
presentation in [Hal15][Chapter 5]. We start with explaining syndrome decoding over the finite field
GR(p, F) = Fpd , see Figure 32. Our method, to produce the correction value, takes as input the syndrome
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polynomial, Sc(Z); plays a crucial role in this method. Suppose we have that c ∈ RSn,v , then we know
that Sc(Z) = 0. However if e is an error vector then we have

Sr(Z) = Sc+e(Z) = Sc(Z) + Se(Z) = Se(Z),

for the received vector r = c + e. Now if we define B to be the set of error locations, i.e. B = { : e 6= 0}
then we have

Se(Z) ≡
∑

b∈B

eb

Lb(αb) · (1 − αb · Z)
(mod Zr).

Thus Se(Z) encodes the error locations B, as well as the error values eb . Our goal is then to extract these
values from the syndrome polynomial. The syndrome polynomial encodes both the error positions, and
the error values via the equation

σ(Z) · Se(Z) ≡ ω(Z) (mod Zr) (47)

where

σ(Z) =
∏

b∈B
(1 − αb · Z), (48)

ω(Z) =
∑

b∈B

eb

Lb(αb)
·

 

∏

∈B\{b}
(1 − α · Z)

!

. (49)

If equation (47) has a unique solution then we can determine the unique error vector which resulted in
us receiving c + e instead of c.

Following the arguments inChapter 5 of [Hal15]we see that there is atmost one solution (σ(Z), ω(Z))
of this equation with the following conditions satisfied:

deg(σ(Z)) ≤ r/2,

deg(ω(Z)) < r/2,

σ(0) = 1,

gcd(σ(Z), ω(Z)) = 1.

Once one has determined σ(Z) and ω(Z) then one can determine the error locations and values by
working out which values of α are such that σ(1/α) = 0 etc.

One could solve equation (47) much like we solved the equation in Figure 29 above; i.e. by creating a
linear systemwith r equations in the r unknown coefficients of σ(Z) and ω(Z). We can solve this linear
systemmodulo p, and then, given the polynomials σ(Z) and ω(Z), we can compute the error vector e,
and correct the received vector into a valid codeword. A more elegant solution, for finite fields, is to use
the extended Euclidean Algorithm, as we have in Figure 32, again see [Hal15][Chapter 5] for the full
justification of this method.

The method in Figure 33 for the case of syndrome decoding over Galois Rings when q = pk can
be justified as follows: Consider as input the received vector r = c + e. By definition we know that we
have, in GR(q, F), that c = Mn,v · f, for some vector f of dimension v. In the first iteration of the algorithm
SynDecodeGR(q, Se(Z)), the vector e(0) clearly corresponds to the value of e (mod p). The algorithm
then proceeds to compute

S(1)
e
(Z)← S(0)

e
(Z) − Se(0) (Z) = Se(Z) − Se(0) (Z).

This is the syndrome polynomial which would have been computed if we had started with the received
vector r(1) ← c + e − e(0) . We know that e ≡ e(0) (mod p), thus we know that Se(1) (Z) is divisible by p
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(so the division by p in line 1(c)i of the next iteration of the loop will be valid). We have also (implicitly)
determined c(0) = c (mod p), and we know c(0) = Mn,v · f(0) for some vector f(0) = f (mod p), i.e.
f = f(0) + p · g for some vector g ∈ RS(pk−1, F). Hence,

c − c(0) = Mn,v · (f − f(0))

= p ·Mn,v · g

Thus our algorithm is working (implicitly), at the next iteration, with the vector

(c − c(0))/p = Mn,v · g,

the algorithmwill be correct since this vector is also a codeword for the code. Thus we can recurse with
our algorithm to obtain the desired solution modulo q.

The method for the case of q = p1 · · ·pk is an immediate application of the Chinese Remainder
Theorem.

8.1.3 Shamir Secret Sharing over Galois Rings

Themethods described in Section 7.1.3 are all standard, see for example [Feh98] and [ACD+19].

8.1.3.1 Error Detection: Again this is standard given the above results on Reed–Solomon codes.

8.1.3.2 Error Correction: Again this is standard given the above results on Reed–Solomon codes.

8.1.3.3 Randomness Extraction: Themethod in Section 7.1.3.3 is a standard result for secret sharing
over finite fields, which was generalized to Galois Rings in [ACD+19].

8.1.4 Commitment Schemes

Our commitment scheme given in Figure 35 appears to be a folklore construction; we could not find
a good a reference for it in the literature. To break the binding property of the commitment scheme
the adversary needs to come upwith a collision in the hash function Hsh2·sec(DSep(COMM)‖m‖r) =
Hsh2·sec(DSep(COMM)‖m′‖r′). To break hiding the adversary needs to invert the hash function. How-
ever, there could bemany pre-images for a specific image, thus even inverting the hash function may
not result in determining the precise committed pre-image. Both collision resistance and pre-image
resistance are implied by the fact that the hash function is modelled as a random oracle, and the fact
that the output size is of bit-length 2 · sec.

8.1.5 Bit Generation

The bit generation methods of Section 7.1.5 are all relatively standard algorithms from the literature.

8.1.5.1 Soe(): This algorithm is an application of standard results in finite fields (see for example
[BSS99, page 26]) combined with a standard application of Hensel Lifting.

8.1.5.2 Sqrt(, p): As remarked these are classical algorithmswhich can be found in [Coh93, Sho05].

8.1.5.3 Random Bits p Odd Prime: As remarked in the text this method seems to have been first
proposed in [DKL+13].
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8.1.5.4 Random Bits q Power of Two: Again as remarked in the text this seems to have been first
proposed in [OSV20], with a simplification presented in [DDE+23].

8.1.6 TreePRG

As explained in the text in Section 7.1.6, the algorithm in Figure 40 is adapted from the presentation in
the full version of [GGHAK22] and that given in [NNL01].

8.2 Layer One

8.2.1 Broadcast

As explained in Section 7.2.1 our protocol in Figure 42 is based on modifications to Bracha’s proto-
col [Bra87], which are taken from https://hackmd.io/@alxiong/bracha-broadcast. Intuitively the
protocol is secure for the following reasoning (which can be made formal if desired following the ar-
guments in the references above): We have n parties, of which t at most are malicious, with n > 3 · t.
Consider a messagem such that no honest party has echoed it. In this case, in round two, an honest
party sees at most t echos onm. Thus in round three no honest party will vote form as an honest party
will only vote if it sees n − t echos and t < n − t for n < 3 · t. Thus no honest party will ever vote for
m, because if no honest party has ever voted for m in a previous round, an honest party never sees
more than t votes onm, and t < t + r − 3 for r ≥ 4. Finally, if no honest party has ever voted form, no
honest party will outputm. So for honest parties to agree on a messagem, some honest party must
have echoed it, and by definition of “honest”, all the (honest) parties will have seen this echo.

8.2.2 Dispute Control

The dispute control framework description is taken from [DN07]. The modification of the broadcast
protocol Synch-Brodcst(S,m) to obtain Synch-Brodcst(S,m,Corrpt) of Figure 43 is immediate.

8.2.3 Robust Opening

The algorithm RobstOpen in Figure 44 is a classical method. The method for asynchronous networks
and d = t < n/3 is called “online error correction”, and was first presented in [BCG93]. Assuming the
input sharing is of an element in Z/(q) then the robust open protocol in Figure 44 will output the value
in Z/(q), even if adversarial parties introduce errors. This is despite the shares themselves, and the
Lagrange interpolation coefficients, being defined by elements in the Galois Ring.

8.2.3.1 Optimization via the King Paradigm: The protocol in Figure 45 is a standard method, which
first appeared for the case of Shamir sharing over finite fields in [DN07]. That this optimization from
[DN07] also applies to the Galois Ring case follows from [ACD+19].

8.2.4 Verifiable Secret Sharing

As marked in Section 7.2.4, the protocol VSS(Pk , s, t, Corrpt) in Figure 46 first appeared in the case of
sharing over finite fields in [GIKR01]. That the protocol, and it’s proof (given in [GIKR01]), generalizes
from finite fields to Galois Rings is immediate.

8.2.5 Agree on a Random Number

The methods AgreeRndom(S, k), AgreeRndom--Abort(S, k) and AgreeRndom-Robst(S, k, 〈r〉)
of Section 7.2.5 are all relatively standard protocols which enable subsets of parties to agree on common
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random values amongst themselves. That the protocols implement the ideal functionalities given in
Figure 107 is easy to see.

FAgreeRndom

AgreeRndom: On input of (AgreeRndom,S, k) from alln parties the functionality executes
the following steps:

1. Waits for input s,j from all corrupt players P in S where j runs over all indices of players
Pj ∈ S ; where s,j ∈ {0,1}k or s,j =⊥.

2. If s,j ⊥ then player Pj aborts.
3. The ideal functionality generates s′ ∈ {0,1}k at random.
4. For all Pj ∈ S the ideal functionality outputs sj ← s′

⊕

 s,j to player Pj .

AgreeRndom--Abort: On input of (AgreeRndom--Abort,S, k) from alln parties the func-
tionality executes the following steps:

1. Waits for input s from all corrupt players P in S where s ∈ {0,1}k or s =⊥.
2. If s ⊥ then all players aborts
3. The ideal functionality generates s′ ∈ {0,1}k at random.
4. The ideal functionality outputs sj ← s′

⊕

 s to all players in S.

AgreeRndom-Robst: On input of (AgreeRndom-Robst,S, k) from all n parties the func-
tionality executes the following steps:

1. The ideal functionality generates s ∈ {0,1}k at random.
2. The ideal functionality outputs s to all players in S.

Figure 107: The ideal functionality FAgreeRndom .

Strictly speaking to implement the robust version of the functionality we need to combine the
protocol in AgreeRndom-Robstwith amethod to generate valid secret sharings of random values. In
our protocols this is exactly what we do; we use a VSS for each player to enter a random sharing, then
we apply randomness extraction to extract a subset of unknown random sharings, and then we utilize
AgreeRndom-Robst to open this random value to the required parties.

8.2.6 Generating Random Shamir Secret Sharings

The PRSS methodologies in Section 7.2.6 are all very much standard applications of the original method-
ology as introduced in [CDI05]; except for

• Our checking procedures PRSS.Check and PRZS.Check which wewill discuss below.
• The method PRSS-Msk.Net which produces a shared value which is a “small” value in Z/(q). This
latter method is derived from ideas given in [CLO+13] and [DDE+23].

8.2.6.1 PRSS Initialization: Toperform the initializationsof our PRSSkeyswesimply need togenerate
a secret key value for every relevant subset. This is done by applying the various methods in Section
7.2.5 to the relevant subsets.

8.2.6.2 PRSS: This is the method described in [CDI05] but with an explicit description of how the
relevant PRF is constructed via using AES in counter mode. When q is not a power of two, the use of a
larger value of  in order to generate a secret shared value, and secret shares, which are statistically
close to uniform is standard. That the method PRSS.Check is valid follows from the following Lemma.

Lemma 14. The procedure PRSS.Check recovers the PRSS shares correctly irrespective of any adver-
sarial behavior as long as t < n/3.
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Proof. Notice that when t < n/3 the sets A have size n − t > 2 · t, thus the set A always contains an
honest majority, and hence the method of selecting the correct value in Figure 51 will always produce
the correct sharing. This means that PRSS.Check(cnt, Corrpt)will output the correct set of shares,
for the counter cnt, irrespective of adversarial behavior.

Also note that, as the sets Ψ are broadcast, all players agree on what was sent by all other players.
Hence, corrupt players can be identified and agreed upon. This means that in line 4 of PRSS.Check, all
honest players will agree on Pj due to the use of the previous reliable broadcast in line 2. The identified
corrupt player can then be removed from any further computations.

8.2.6.3 PRZS: Again this is standard, and the correctness of PRZS.Check follows from the analogue
of Lemma 14.

8.2.6.4 PRSS-Mask: That the PRSS-Msk.Net operation creates the correct output is immediate.

8.2.7 CoinFlip

The ConFp protocol is standard, the method we present is given in [DN07]. It is only used within the
batched VSS protocols in the nLrge setting, which are themselves only used in the offline phase of the
MPC protocol in the nLrge setting. Thus the ConFp does not actually implement (directly) any of the
commands of the ideal functionalities used to model our MPC protocol, it is only used internally in the
implementing protocols.

8.3 Layer Two

The Layer Two of our protocol stack implements the ideal functionality FPrep given in Figure 108. The set
of adversaries in our protocolwill be denotedA, we haveA ⊆ {P1, . . . ,Pn} and |A| ≤ t, of which atmost t
are assumed to be statically corrupted by the adversary before the protocol starts. Recall, when reading
FPrep that the routineMPCO.nt comes in two variants: Either an active-with-abort secure variant or a
robustly secure variant. These two variants are captured by the functionality given in Figure 108.

Note in our functionality FPrep the adversary does not get to select their share values for either the
output of NetRndom or the output of GenTrpes. This is because in the protocol the adversaries
share values get given to them by either the evaluation of the PRSS (in the case of threshold profile
nSm) or the randomness extraction methodology (in the case of threshold profile nLrge).

That our protocols emulate this ideal functionality in both the nSm and nLrge threshold profiles
follows from the security proofs/arguments in the MPC literature; and the results we outline in the
following sub-sections. In particular our protocols follow the blueprint of [DN07]; and the arguments
there carry over to our protocols19 We note that the extension of the proof techniques alluded to in
[DN07] from arbitrary finite field to Galois Rings is immediate, given the previously mentioned results on
about the methods and protocols on our Layer Zero and Layer One;

8.3.1 Offline MPC Protocol for Threshold Profile Category nSm

In the case of threshold profile nSm we utilize PRSS and PRZS evaluations to define much of the
functionalityFPrep . We have already remarked that these are all secure given standard arguments dating
back to [CDI05]. The offline protocol for nSm uses our novel checking procedure, which we show to
be correct and secure in the following theorem.

Theorem 4. The offline protocol in Figure 57 is both private and robust.
19The paper [DN07] does not provide an explicit security proof of their protocol. They claim UC security of their protocol, but state

“We will however not prove this with full simulation proofs in the following, as the security of our protocols follow using standard proof
techniques.” We follow the same approach here in saying that it all follows “using standard proof techniques.”
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Ideal Functionality FPrep

nt(): On receiving (nt) from all parties:
1. If the robustly secure variant then this functionality is a No-Op.
2. If the active-with-abort secure variant is desired, then the functionality waits for in-

put from the adversary. On receiving this input, if the adversary says bort then the
functionality aborts, otherwise the functionality returns.

NetRndom: On receiving (NetRndom,rd) from all parties:
1. The ideal functionality generates a uniformly random ← GR(q, F).
2. The ideal functionality generates a secret sharing 〈〉 of  (for example using algorithm

Shre() from Figure 34).
3. The values 〈〉 for all P ∈ A are given to the adversary.
4. The functionality stores the value  into the location with handle rd .

GenTrpes(): On receiving (GenTrpes, rd, rdb, rdc) from all parties:
1. The ideal functionality generates a uniformly random , b← GR(q, F).
2. The ideal functionality computes c =  · b.
3. The ideal functionality generates secret sharings 〈〉, 〈b〉 and 〈c〉 (for example by using

algorithm Shre(·) from Figure 34).
4. The values (〈〉, 〈b〉, 〈c〉) for all P ∈ A are given to the adversary.
5. The functionality stores the values , b and c into the locations with handles rd ,

rdb and rdc .

Figure 108: The MPC Offline Ideal Functionality FPrep .

Proof. The protocol is obviously private, what is less obvious is that it is robust.
The main issue we need to deal with in the triple generation protocol is that the error correction on

line 1j of Figure 57, may fail whenwe havemore thann/4 adversaries; sincewe are trying to error correct
a sharing of degree 2 · t. When t < n/4, this will always be correct and we will never leave the happy
path. However, when t ≥ n/4, the adversaries could force us onto the unhappy processing in line 1l of
MPCS.GenTrpes in Figure 57.

To force the players into the unhappy path the adversary needs to introduce (t − s)/2 errors into the
values which have been broadcast. The maximum number of errors which can be introduced by the
adversary in a given round is t− s, since s counts the number of⊥ values, and hence the number of players
in Corrpt, this ability to introduce errors decreases the more errors that the adversary introduces over
time as long as our unhappy processing detects which values have been introduced incorrectly.

The unhappy processing ofMPCS.GenTrpes in Figure 57 determines the players to add to the set
Corrpt as follows: Because the opening is broadcast, as opposed to done via point-to-point channels,
we know that all parties agree on the values {〈d〉2·tj } opened. So when we perform the check against

the values 〈d′〉2·tj , which are by definition the same for all parties, then we know (and agree) on who is
cheating. Upon agreeing who is cheating we can ignore them on the next iteration.

In line 1j we then have a degree 2 · t sharing to recover, from n shares of which we know at most
t are bad, but for which we also know the location of  errors. Thus (in effect) we are executing error
correction for a Reed–Solomon codewith parametersn′ = n − , v = 2 · t + 1 andwith at most t −  bad
players. Alternatively, we are applying normal Reed–Solomon error correction with we have  erasures
and at most t −  errors.

The bad parties canmake the honest parties pass to the unhappy path atmost t times, before honest
parties would obtain s = t. At this point there are guaranteed to be no errors, and recovery, in line 1j,
will succeed as we are recovering a degree 2 · t polynomial fromn − t honest shares; which is always
possible as t < n/3.
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8.3.2 Offline MPC Protocol for Threshold Profile Category nLrge

The blueprint for our offline protocols for threshold profile nLrge is almost identical to that followed in
[DN07].

8.3.2.1 A “Batched” Statistical VSS: The only (slightly non-trivial) deviation from [DN07] is in the
method used to check correctness within the procedures LocSngeShre and LocDobeShre
used in threshold profile nLrge given in Figure 60 and Figure 61. In particular the variant in [DN07],
finite fields, extends the underlying base field in order to obtain a suitable rejection probability when
the base field is small. It turns out that in the case of Galois Rings GR(pk , F) for a small prime p, parallel
repetition is more efficient.

Whilst these two modifications (from finite fields to Galois Rings, and from field/ring extension to
parallel repetition) are obvious we feel it appropriate to reprove the statement in relation to security and
correctness. The proof follows much the same argument as in [DN07], and for simplicity, we restrict to
a proof for the procedure LocSngeShre, with the proof for LocDobeShre proceeding in much
the samemanner, much like in [DN07].

Theorem 5. The output of LocSngeShre are, with probability at least 1 − 2−dst , valid degree t

sharings of elements in s ∈ R even in the case of dishonest P . If P is honest then no information leaks
to dishonest parties.

Proof. We first prove correctness and then security.

Degree t: Wewant to show that the sharings are of degree t and not some higher degree.
We let ƒ0,g(X) denote the lowest degree polynomial consistent with the honest players sharings of

〈rg〉 and we let ƒj(X) denote the lowest degree polynomial consistent with the honest shares of 〈sj〉.
We define Fg(X) to be the polynomial

Fg(X) = ƒ0,g(X) +
ℓ
∑

j=1

j,g · ƒj(X).

This polynomial is consistent with the honest shares of 〈yg〉, but is not necessarily the lowest degree
such polynomial.

If (at least) one of the sharings of sj or rg is not of degree t, then this implies that (at least) one of the
polynomials ƒj(X) or ƒ0,g(X) is of degree d > t. Let d be the maximal such degree and write

ƒ0,g(X) = α0,g · Xd + · · · ,

ƒj(X) = αj · Xd + · · · .

The coefficient of Fg(X) of degree d is then given by

Mg(Y1, . . . , Yℓ) = α0,g +
ℓ
∑

j=1

αj · Yj,

ThusMg(1,g, . . . , ℓ,g)will be zero with probability at most 1/ |S|. Assuming themultinomialMg is not
identically zero for all g, this means there exists an index k (except with probability 1/ |S|m ≤ 2−dst) such
that Fk(X) has degree d.

For this value of k we consider Gk(X), the polynomial of lowest degree which is consistent with the
honest shares of 〈yk〉. Write Hk(X) = Fk(X) − Gk(X). We clearly have that Hk(α) = 0 for all honest parties
P andHc(X) has degree at most d, which is less than the number of honest parties by definition. Thus
we have that Hk(X) is the zero polynomial.
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Hence we have that Gk(X) = Fk(X), and so the honest shares of 〈yk〉 are on a polynomial of degree
d > t. This implies a dispute will be generated.

If no dispute is generated this implies (with probability at least 1 − 2−dst) that all the sharings are of
the correct degree t.

Privacy: If P is honest then the value for each index g the underlying value behind the shares
∑ℓ
j=1  · 〈sj〉 is an element of R, which is a function of the secret values 〈sj〉. However, this value is then

masked information theoretically by adding in 〈rg〉, for a uniformly random chosen value of rg ∈ R. Thus
no information leaks to the adversary on reconstruction.

8.3.2.2 Randomness Extraction: The randomness extraction performed in Figure 62, is exactly an
application of what we discussed in Section 8.1.3.3 above.

8.3.2.3 Offline Protocols: The offline protocol in Figure 63 is then identical to that in [DN07] in the
case of t < n/4; so we refer to that paper for a discussion of its security and properties.

8.4 Layer Three

8.4.1 Online MPC Protocol for All Threshold Profile Categories

We now present the ideal functionality FMPC given in Figure 109. The ideal functionality deals with
handles on values, it passes the handles (which we denote by rd etc) to the players, yet maintains a
list of the secret values indexed by these handles in an internal store. The functionality FMPC acts like the
traditional Arithmetic Black Box (ABB) functionality (see for example [KOS16]); except that there is no
ability for the players to enter an input value (we do not need that in our protocols). Instead of allowing
players to enter their own secret values we only enable players to jointly sample a secret random value.

8.4.1.1 Multiplication: Using standard techniques it is easy to show that the protocols emulating
FMPC (i.e. the multiplication routine om Figure 67) is secure in the FPrep-hybrid model.

8.4.1.2 MPC.Msk: In the threshold profile nSm we add an additional procedure into the func-
tionality FMPC which is given in Figure 110. It is obvious that the implementation in PRSS-Msk.Net
produces the same distribution of random value as in the functionality commandMsk. That the leakage
of the values (rA, r′A) given in the ideal functionality happens also in the implementation follows from the
fact that the adversary has the PRSS keys for these values, and hence can determine these summands
in the clear.

What is less obvious is that it provides something useful. So we now discuss how it will be used, and
the relevant proofs. In a number of placeswe need to generate a secret sharedmask value 〈E〉, of a value
E ∈ Z/(q) of a specific size. This mask value will be used to mask another (small) secret shared value
〈e〉, also with e ∈ Z/(q), via addition, i.e. we compute 〈E + e〉. This masked value E + e is then opened
and processed. The idea being that Ewill be large enough to ensure that E + e contains statistically no
information about the value e; whereas E + e is small enough to enable additional useful processing.

So we assume that we have the value e (mod q) that we want to mask is of size bounded by Bd, i.e.
|e (mod q)| < Bd, where we take the centred modular reduction. In particular, the value of e is given via
a secret sharing 〈e〉, for which we are guaranteed that |e (mod q)| < Bd. We wish to construct a secret
shared value 〈E〉 that we will add onto 〈e〉where E is bounded in size by

|E| < 2 ·
�

n

t

�

· 2stt · Bd = Bd′.
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Ideal Functionality FMPC

nt(): On receiving (nt) from all parties:
1. If the robustly secure variant then this functionality is a No-Op.
2. If the active-with-abort secure variant, then the functionality waits for input from the

adversary. If the adversary says bort then the functionality aborts, otherwise the
functionality returns.

NetRndom(): On receiving (NetRndom,rd) from all parties:
1. The ideal functionality generates a uniformly random ← GR(q, F).
2. The ideal functionality stores  into the location with handle rd .

LnerComb(): On receiving (LnerComb,rd,{c, rd}
t
=1, c) from all parties where

c, c ∈ GR(q, F):
1. The functionality retrieves the values {}t=1 stored in the locations with handles
{rd}

t
=1 .

2. The functionality computes ← c +
∑t
=1 c ·  .

3. The value  is stored in the location with handle rd .

Mt(): On receiving (Mt, rd, rdb, rdc) from all parties:
1. The ideal functionality retrieves the values  and b stored in the locations with handles
rd and rdb .

2. The ideal functionality computes c←  · b.
3. The value c is stored in the location with handle rdc .

Open(): On receiving (Open,rd,U) from all parties:
1. The functionality obtains the value  stored in the location with handle rd .
2. The value  is returned to all players in the subset U , with players not in U obtaining

nothing.

Figure 109: The MPC Ideal Functionality FMPC .

Msk Command

Msk: On receiving (Msk, rd, Bd) from all parties:
1. For every set A ⊆ {1, . . . ,n} of size n − t generate two random values rA, r′A ←
U(−Bd,Bd), i.e. rA, r′A ∈ (−Bd, . . . , Bd] .

2. Set ←
∑

A(rA + r
′
A
).

3. Assign  to the rd .
4. Return (rA, r′A) to the adversary for every subset A such that there exists an adversarial

player P with  ∈ A.

Figure 110: Additional Command for Threshold Profile nSm for Functionality FMPC .

Using PRSS-Msk.Net the shared value E is not chosen uniformly in the range [−Bd′, . . . , Bd′] . Instead
itwill be chosen as a sumof atmost 2·

�n
t

�

uniformly randomvalues in the range [−2stt ·Bd, . . . ,2stt ·Bd] .
The adversary has the potential to learn all bar two of these uniform random variables. That this secret
shared value 〈E〉 is not only easy to generate, via a modification to our PRSSmachinery, it also gives us
the following strong statistically security result.

Theorem 6. To distinguish e+E and Ewhere e is an unknown fixed value of size |e| < Bd and E is chosen
as the sum of at least two unknown uniformly chosen random values in the range [−2stt ·Bd, . . . ,2stt ·
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Bd] requires 22·stt such samples.

Toprove this theoremweneed to introducesome lemmataonstatistical distances. We letΔSD(D1, D2)
denote the standard statistical distance between two distributions D1 and D2 which are defined over a
common domain X, i.e.

ΔSD(D1, D2) =
1

2

∑

∈X
|D1() − D2()|.

Security of our usage of PRSS-Msk.Net will rely on the following Lemma’s, all of which are variants of
the following standard Smudging Lemma (see for example Lemma 2.1 of [AJW11]).

Lemma 15 (Standard Smudging Lemma). Let e ∈ Z and B,m ∈ N denote fixed integers, then we have

ΔSD
�

(e + U(−B,B))m , U(−B,B)m
�

≤
m · |e|

B
,

where U(−B,B) is the uniform distribution on the integer interval [−B, . . . , B] .

From the data processing inequality, which says that the statistical distance between two distribu-
tions cannot increase by applying any (possibly randomized) function to them, one can immediately
deduce

Lemma 16. Let e ∈ Z and B,m, ∈ N denote fixed integers, then we have

ΔSD

 

(e +

∑

=1

U(−B,B))m ,

∑

=1

U(−B,B)m
!

≤
m · |e|

B
,

where U(−B,B) is the uniform distribution on the integer interval [−B, . . . , B] .

However, a more accurate estimation, when  ≥ 2, can be given by Lemma 18 (see below), which
follows, via the data processing inequality, from the following Lemma, whose proof is given in the full
version of [DDE+23], which we reproduce here for completeness.

Lemma 17. Let e ∈ Z and B,m ∈ N denote fixed integers, and let P = U(−B,B) + U(−B,B). Then

ΔSD(Pm, (e + P)m) ≤
m · |e|

B2
+

√

√

√

m ·
|e|2 · logB + 2

2 · (B2 + B)
.

Proof. In the following, we show the case of e = 1. The general case follows from the triangle inequality
and |e| applications of the lemma for e = 1.

Let b = 2 ·B+1 and note thatP() = (b − ||)/b2 for all  ∈ [−2 ·B,2 ·B] . We begin by introducing two
truncated distributions, P⊥ and P> . Define P⊥ such that it is proportional to P , except that P⊥(−2 ·B) = 0,
i.e. we haveP⊥() = S · (b − ||)/b2 for all  ∈ [−2 ·B+1,2 ·B] , where S = b2/(b2 − 1) is the normalization
factor. Similarly, we define P> to be proportional to 1 + P but truncated at the top such that we have
P>(2 · B + 1) = 0. Note that, the normalization factor of P> matches the one of P⊥ and that the two
distributions have the same support. We will show the result by bounding ΔSD(Pm,Pm

⊥ ), ΔSD(P
m
⊥ ,P

m
> ),

and ΔSD(Pm
> , (1 + P)m). The rest follows by the triangle inequality.

First note that ΔSD(P,P⊥) = ΔSD(P>,1 + P) = 1/b2 . Accordingly, we have ΔSD(Pm,Pm
⊥ ) ≤m/b2 and

ΔSD(Pm
> , (1 + P)m) ≤m/b2 .

It remains to bound ΔSD(Pm
⊥ ,P

m
> ). We first consider the KL-divergence between P⊥ and P> :

ΔKL(P⊥,P>) = −
2·B
∑

=−2·B+1
P⊥() · log

P>()
P⊥()

= −S ·
2·B
∑

=−2·B+1
P() · log

P( − 1)
P()
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= −S ·
�

�

P(0) · log
P(−1)
P(0)

�

+
�

P(2 · B) · log
P(2 · B − 1)
P(2 · B)

�

+
−1
∑

=−2·B+1
P() ·

�

log
P( − 1)
P()

+ log
P( + 1)
P()

�

�

Note that, we have

P(2 · B) · log
P(2 · B − 1)
P(2 · B)

=
log2

b2
≥ 0

so this term may be ignored (due to the negative sign of the expression). In the following, we make use
of the fact that log(1 − 1/) ≥ −2/ for all  ≥ 2. Then we have

P(0) · log
P(−1)
P(0)

=
1

b
· log

b − 1

b
=
1

b
· log(1 − 1/b) ≥ −2/b2 .

Similarly, we have for all  ∈ [−2 · B + 1, −1]

P()·
�

log
P( − 1)
P()

+ log
P( + 1)
P()

�

= P() ·
�

log
�P( − 1)

P()
P( + 1)
P()

��

=
b + 

b2
· log

�

(b +  − 1)(b +  + 1)

(b + )2

�

=
b + 

b2
· log

�

(b + )2 − 1

(b + )2

�

=
b + 

b2
· log

�

1 −
1

(b + )2

�

≥ −
2

b2 · (b + )
.

Combined, we get

ΔKL(P⊥,P>) ≤ S ·





2

b2
+

−1
∑

=−2·B+1

2

b2 · (b + )





=
2 · S

b2
·

 

1 +
2·B
∑

=2

1/

!

=
2 · S

b2
·
2·B
∑

=1
1/

≤
2 · (log(2 · B) + 1)

(b2 − 1)

=
logB + 2

2 · (B2 + B)
.

By the sub-additive property of ΔKL we now have

ΔKL(Pm
⊥ ,P

m
> ) ≤m ·

logB + 2

2 · (B2 + B)
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and by Pinsker’s inequality

ΔSD(Pm
⊥ ,P

m
> ) ≤

Ç

ΔKL(Pm
⊥ ,P

m
> ) =

√

√

√

m ·
logB + 2

2 · (B2 + B)
.

Lemma 18. Let e ∈ Z and B,m, ∈ N denote fixed integers with  ≥ 2, then we have,

ΔSD
�

(e +

∑

=1

U(−B,B))m ,

∑

=1

U(−B,B)m
�

≤
m · |e|

B2
+

√

√

√

m ·
|e|2 · logB + 2

2 · (B2 + B)
,

where U(−B,B) is the uniform distribution on the integer interval [−B, . . . , B] .

In our application to proving Theorem 6we always utilize  ≥ 2. Fromwhich the proof of Theorem
6 then follows from applying Lemma 18. In our application we will set B = 2stt · |e|, where stt = 40,
since Lemma 18 tells us that distinguishing the two distributions (for fixed e) requires around

B2

|e|2 · logB
=

22·stt · |e|2

|e|2 · (stt + log |e|)

=
22·stt

stt + log |e|
≈ 22·stt

samples.
Later, when we apply this (say) for m distributed decryption queries we are actually sampling a

different value of e per query. On each application, the specific e value used is the output noise term from
a bootstrapping operation for a given input ciphertext. Thus the above distances are simplified, upper
bounds in our application scenario of the actual statistical distances between the various distributions
we analyze.

8.4.1.3 MPC Algorithms: As explained in Section 7.4.1.3, on top of the basic MPC functionality of
Figure 109 (possibly extendedwith thecommand inFigure 110)weexecute “programs”. These “programs”
consist of sequences of additions and multiplications of secret shared values, the generation of random
secret sharings, and the opening of secret sharings to various subsets of parties. Thus, these programs
consist of parties executing the operations on the functionality in Figure 109. As argued in [BDO+21]
the security of running these programs (within the MPC engine) is related to whether the “trace” of the
program execution can itself be simulated. With the security of the program being related to whether
the said simulation is perfect, or just statistically secure. This formalizes arguments that have been prior
used to argue about the security of MPC algorithms.

As explained in Section 7.4.1.3 one can treat the algorithms to generate secret shared random bits as
part of the application of the MPC engine, or we can add them as commands to the MPC functionality
itself. It is convenient for presentation purposes to treat them as parts of Layer Three, i.e. they are given
in Figure 67, thuswe need to treat them as part of theMPC functionality. Hence, to theMPC functionality
we also add the additional command GenBt to the ideal functionality FMPC , as described in Figure 111.
We call the resulting functionality FMPC+ .

8.4.1.4 Bit Generation when q = 2k : Our protocol, given in Figure 67, to implement the ideal func-
tionality command GenBt in the case of q = 2k follows from the method of [OSV20], extended to the
Galois Ring setting from the finite field setting. That this method is correct is trivial, and that it is secure
in the FMPC-hybrid model follows from the fact that FMPC implements an ABB over the Galois Ring.
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GenBt Command

GenBt: On receiving (GenBt, rd) from all parties
1. The functionality samples a value  ∈ {0,1} and assigns it to rd .

Figure 111: Additional Command for Functionality FMPC . This command is only addedwhen q = 2k or in threshold
profile nSm..

8.4.1.5 Bit Generation when q = p1 · · ·pk : When q = p1 · · ·pk we only provide a protocol, in Figure 67,
to implement the ideal functionality command GenBt in the case of threshold profile nSm. This is
becausewe require access to the additional ideal functionality commandMsk, as well as the basic ABB
operations, andMsk is only available in threshold profile nSm. The method (in Figure 67) combines
the classical method of [DKL+13] for a large prime, given in Section 7.1.5.3, with a methodology to
translate this to a shared bit amongst the product of primes. This extensionmethod is new, but relatively
trivial. We prove the following theorem:

Theorem7. Thebit-generationmethodMPC.GenBts() for thresholdprofilenSm (i.e.
�n
t

�

< nSmBnd)
and q = p1 · · ·pk , given in Figure 67, is both correct and statistically secure.

Proof. Let pL denote the largest prime dividing q, by Parameter Choice 2, we can assume that

pL > nSmBnd · 2stt+3 > 8 ·
�

n

t

�

· 2stt .

The value of 〈b〉 in line 1(c)vii of method GenBts of Figure 67 is clearly a shared bit b ∈ {0,1}modulo pL ;
since the generation of this value of 〈b〉 is just the “in-the-clear” bit generation method for prime fields
mapped to the secret shared domain.

The problem is that 〈b〉 is not a bit modulo q. We have

b = b + pL · λ

for some integer λ. We thus want to removemultiples of pL .
As we are using the PRSS-Msk.Net(1, stt) operation shifted by 2 ·

�n
t

�

· 2stt the unknown value r
which we add on to b in line 1(c)ix is generated as a random positive value bounded by

r < 4 ·
�

n

t

�

· 2stt < pL/2.

In particular 0 ≤ r < pL/2, and hence b + r does not wrap around modulo pL . This means that b
mod pL = b + r , thus subtracting the sharing of r as we do in line 1(c)xi gives us a share of b. This proves
correctness of the method for bit generation when q = p1 · · ·pk .

The final question is whether the value opened in line 1(c)ix reveals any information. By Theorem 6we
have that only after performing this operation 22·stt times, for the same value of b, would the adversary
be able to distinguish c = b + r from the value r . Since, we only ever execute this once per value of b,
clearly the methodology statistically leaks no information.

8.5 Layer Four

We have shown that our core MPC protocols implement the ideal functionality Figure 109, which itself
implements what is known in the literature as an Arithmetic Black Box (ABB). We augmented this with a
Msk command in Figure 110. This functionality we denoted by FMPC .

We also augmented it with the GenBt command in Figure 111, and also showed that this was secure.
Recall we denoted this extended ideal functionality by FMPC+ . Thus any algorithm which only uses
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the commands of the arithmetic black box (augmented with theMsk and GenBt command) will be
securely implemented by theMPC functionality; i.e. the only information that can leak from the execution
of the algorithm is that which can be determined from the algorithms outputs.

The goal of Layer Four of our protocol stack is to implement two ideal functionalities. The first
FKeyGen , in Figure 112, acts as a set-up assumption for our protocol, needed for the UC proof we provide.
It generates a key pair, and secret shares the secret key among the players using the secret sharing
scheme. Themodulus q for the secret sharing of the key is equal to Q1 in the case of BGV and BFV, is
equal to Q in the case of TFHE when TFHE.StchSqsh is used, and is equal to Q in the case of TFHE
when the high round threshold decryption protocol is used. Note, despite wanting active security we do
not “complete” adversarially input shares into a complete sharing (as is often done in such situations), as
the implementing robustly secure protocol for FKeyGen does not actually need to do this.

FKeyGen

nt():
1. Execute (pk,s)← KeyGen(1κ) for the underlying FHE scheme.
2. Generate a secret sharing 〈s〉of the secret key. using algorithmShre(s) fromFigure34.
3. Send pk to all players (including the adversary), and send 〈s〉 to player P (including

adversarially controlled players).

Figure 112: The Ideal Functionality for Distributed Key Generation.

The second functionality we want to implement is FKeyGenDec , given in Figure 113. Note that, this
functionality always returns the correct result, irrespective of what the adversary does.

FKeyGenDec

nt():
1. Execute (pk,s)← KeyGen(1κ) for the underlying FHE scheme.
2. Send pk to all players, including the adversary and store the value s.

Threshod-Dec(ct,U): For a “decryptable” ciphertext ct.
1. Computem← Dec(ct,s).
2. If U contains any adversarially controlled players then send (ct,m) to the adversary.
3. Otherwise sendm to the players in U and ct to the adversary.

Figure 113: The Ideal Functionality for Distributed Key Generation and Decryption.

8.5.1 Distributions

Since the protocolsMPC.NeHope(N,B) andMPC.TUnƒorm(N, −2b,2b) in Figure 75 utilize only com-
mands from the functionality FMPC+ , and they implement exactly the same algorithms as one would do
to sample from these distributions in the clear, we can conclude that the protocols are both correct and
secure.

8.5.2 BGV

8.5.2.1 Threshold Key Generation: The protocol BGV.Threshod-KeyGen(N,Q, P, B, R), i.e. thresh-
old key generation protocol for BGV, given in Figure 76, is the execution (over the augmented ABB)
of the in-the-clear operations one would execute to implement the key generation in the clear; i.e.
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BGV.KeyGen(N,Q, P, B, R) from Figure 8. The only difference being that the secret values are secret
shared as opposed to being operated on directly. Thus the algorithm is simply the execution of an
arithmetic circuit, combined with a method to securely generate secret shared random bits from the
uniform distribution on {0,1}. Thus, trivially, our protocol for BGV key generation securely realize the
functionality FKeyGen in the FMPC+-hybrid model.

8.5.2.2 Threshold Decryption: See the analysis for TFHE.Threshod-Dec-1, the TFHE threshold
decryption method, below.

8.5.3 BFV

8.5.3.1 Threshold Key Generation: Again, the same argument as applied above re threshold BGV
key generation also applies here. Thus we can easily conclude that our protocol for threshold BFV key
generation is both correct and secure.

8.5.3.2 Threshold Decryption: See the analysis for TFHE.Threshod-Dec-1, the TFHE threshold
decryption method, below.

8.5.4 TFHE

8.5.4.1 Threshold Key Generation: Again, the same argument as applied above re threshold BGV and
threshold BFV key generation also applies here. Thus we can, again, easily conclude that our protocol for
threshold TFHE key generation is both correct and secure.

8.5.4.2 ThresholdDecryptionMethod 1: Recall, for TFHEwehave two formsof thresholddecryption,
which are controlledby the variable ƒ g. When ƒ g = treweutilize themethodbasedonextending the
modulus from Q to Q and using noise flooding, i.e. TFHE.Threshod-Dec-1 from Figure 82. In threshold
profile nSm this protocol we will show to be secure in the {FKeyGen,FMPC}-hybrid model. The same
argument applies to the protocols BGV.Threshod-Dec and BFV.Threshod-Dec so we do them all
together.

Before doing so we note that in threshold profile nLrge the protocols security (in the case of TFHE
threshold decryption), follows from basically the same reason for being secure as that given below.
Indeed the analysis is slightly simpler as we do not have to worry about PRSS-Msk.Net evaluations,
and simply need to simulate uniformly randommasks pulled from the distribution TUnƒorm(1, −2b,2b)
for b = stt + d log2 BStchSqshe . We thus leave the simplifications to the following discussion to the
reader to work out.

Our threshold decryption operation is not quite the same as just evaluating the in-the-clear method
for decryption in secret shared form, and then revealing the answer. In these cases we first apply noise
flooding and then we open the result, to obtain a value which is sufficiently random, but still encodes the
message.

We thus need to demonstrate that the three protocols BGV.Threshod-Dec, BFV.Threshod-Dec
and TFHE.Threshod-Dec-1 reveal no information about the underlying message, i.e. that the noise
flooding applied is large enough to mask the information encoded in the noise term, yet also small
enough to not return an invalid decryption value. We discuss the case for TFHE, with the analysis for
BGV and BFV following in the same manner. The case for TFHE is slightly more complex in any case
due to the need to apply the TFHE.StchSqsh operation in order to produce enough “room” to apply
noise flooding.

Correctness for TFHE.Threshod-Dec-1wasdiscussed inSection 7.5.4.2wherewenoted that thepa-
rameters are chosen to enable the output of the TFHE.StchSqsh operation to produce a ciphertext
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ct = (, b, σct) such that
‖p‖ = ‖b −  · s‖ ≤ BStchSqsh

where

2 · nSmBnd · 2stt · BStchSqsh <
Δ

2
.

To demonstrate security we provide a simulator SmTFHE.Threshod-Dec which simulates the output of
the algorithm TFHE.Threshod-Dec-1 given only access to the functionality FKeyGenDec . Having access
to this functionality means the simulator has access to themessage which is encrypted by the input
ciphertext ct. The simulator works in the {FKeyGen,FMPC}-hybrid model; thus the simulator emulates
these functionalities, and hence the simulator has access to the secret keys of the dishonest parties, as
well as the keys rA used for the PRSS-Msk.Net evaluation of the dishonest parties.

Simulator Threshold Decryption

SmTFHE.Threshod-Dec(ct, PK,m, ,{〈s〉}∈ ,{rA}A∩ 6=∅, cntMsk):
On input of

• A ciphertext ct = (, b) and a public key PK .
• The underlying messagem encrypted by ct.
• A set of adversarial parties  with || ≤ t.
• The share values 〈s〉 for  ∈  .
• The PRSS secret keys rA for all subsets A ⊂ {1, . . . ,n} of sizen − t such that A ∩  6= ∅.
• The counter cntMsk used by the PRSS-Msk.Net algorithm for this specific execution.

this algorithm outputs the simulated shares {〈c〉j}j 6∈ which the honest parties respond
with in the simulated protocol execution.

1. ct = (, b)← TFHE.StchSqsh(ct, BK).
2. Bd1 ← 2stt · BStchSqsh = 2stt · cerr,1 · σct .
3. The simulator computes, for  ∈  , the shares of 〈c〉which the dishonest parties should

compute if they followed the protocol. These are given by

〈c〉 = b −  · 〈s〉 +
∑

A:∈A

�

ϕBd1 (rA, cntMsk) + ϕBd1 (rA, cntMsk + 1)
�

· ƒA(α),

where the sum is over all the sets A above such that  ∈ A.
4. The simulator computes a simulated value for the flooding term added on

t =
∑

A:A∩ 6=∅

�

ϕBd1 (rA, cntMsk) + ϕBd1 (rA, cntMsk + 1)
�

+
∑

B:B∩=∅
(rB + r′B)

where rB and r′
B
are chosen uniformly at random so that |rB|, |r′B| ≤ Bd1 , and the first

sum is over all the subsets A of sizen − twhich have a non-trivial intersection with  ,
and the second sum is over all subsets of size n − twhich have no intersection with
the set  .

5. The simulator computes c = Δ ·m + t.
6. The simulator generates the decryption shares {〈c〉j}j 6∈ via Lagrange interpolation (and

possibly generating random shares if || < t) from c and the values {〈c〉}∈ .
7. The simulator outputs {〈c〉j}j 6∈ .

Figure 114: Simulator for TFHE.Threshod-Dec-1(ct = (, b), PK, 〈s〉)..

We present the heart of the simulator in Figure 114. The method in Figure 114 produces the simulated
shares (turning this into a simulator for the full threshold decryption protocol is easy left to the reader).
The simulator essentially outputs a simulator value cSm , which has a different distribution from the value
cRe which a genuine execution will follow. In particular cRe will be of the form

Δ ·m + e + t
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whereas cSm will be of the form
Δ ·m + t.

The distinguisher after threshold decryption knows the value ofm, and so the task of the distinguisher
is essentially to distinguish samples of the form e + t from samples of the form t, where e is a value
bounded by BStchSqsh .

In line 4 the simulator contributes at least two uniformly random values in the range [−2stt ·
Bd1, . . . ,2stt · Bd1] to the sum for t, which are unknown to the adversary, and hence unknown to
the distinguisher. Lemma 18 tells us that to have any advantage in such a distinguishing game the
adversary would need to obtain at least 22·stt such samples, for the same value of e. In particular this
would require at least 22·stt calls to the threshold decryption operation for the same input ciphertext ct.

8.5.4.3 Threshold Decryption Method 2: When ƒ g = ƒsewe use a threshold decryptionmethod
based on bit-decomposition modulo Q, i.e. TFHE.Threshod-Dec-2 from Figure 85. This protocol can be
shown to be secure in the {FKeyGen,FMPC+}-hybrid model.

The bit-manipulation methods of Figure 83 and Figure 84 are all translations of the standard in-
the-clear bit-manipulation algorithms into the MPC domain, and so by security of the underlying ABB
they are correct and secure. The threshold decryption algorithm TFHE.Threshod-Dec-2 is (essentially)
the translation of the in-the-clear algorithm (partial decryption followed by message extraction via
truncation), albeit in a slightly round-about way. Since the bit-manipulation methods are all secure it is
clear that the algorithm realizes the functionality FKeyGenDec in the {FKeyGen,FMPC+}-hybrid model.

8.5.5 Resharing

The method given in Figure 86 for robustly resharing a secret sharing from one set of parties S1 to
another set of parties S2 is folklore, and can be seen alluded to in the literature dating back to the late
1980s. The idea is simply one of masking, computing the syndrome polynomial in secret shared form,
opening the syndrome polynomial and then applying syndrome decoding (in the clear) in order to detect
error locations.

8.6 Layer Five

8.6.1 Interpreting Encryption as a Subset Sum

There is nothing to discuss about this section in relation to security or analysis.

8.6.2 Pairing Based Elliptic Curves

If sec is the security parameter, we need at least (sec) > 2 · sec (due to Pollard’s rho algorithm) but the
specific  depends on the underlying elliptic curve and on the application. Indeed,GT is a subgroup of
order r in F∗

tk
, where k is the smallest integer such that r|tk − 1 if Ft is the base field of the curve E(Ft)

containingG. So, the extension field F∗
tk

should be large enough to make sure that computing discrete
logarithms in F∗

tk
is infeasible. Moreover, to guarantee the hardness of computing discrete logarithms α

whenmany elements {g(α)}B̄=1 are given, we need to slightly increase the group order (i.e., by log B̄ bits)
to hedge against Cheon’s attack [Che06].

If a BLS12 curve (where k = 12) is used, r and t can be generated from the parameterization

r = 4 − 2 + 1

t = (6 − 2 · 5 + 2 · 3 − 2 + 1)/3 + 
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by tuning the seed  (see, e.g., [Sco19]). The BLS12-381 curve20 (for which r ≈ 2255) is widely used but
is believed to provide slightly less than 128 bits of security (between 117 and 120 bits). To obtain 128
bits of security, one way use the BLS12-446 curve21 which yields a group order r ≈ 2299 (thus providing
a sufficient margin against Cheon’s algorithm) such that r − 1 is divisible by a large power of 2 (which
allows large-dimension FFTs in Z/(r)). This curve is obtained from the seed  = −(274 + 273 + 263 +
257 + 250 + 217 + 1).

8.6.3 ZKPoKs Based on Vector Commitments

8.6.3.1 Required Hash Functions: The security of the hash functions reduces to the security of the
underlying XOF construction.

8.6.3.2 CRS and the CRS SetUp: The protocols in Figure 88 and Figure 89 are designed in such a
way that the NIZK and soundness properties are preserved as long as at least one of the K participants
is honest. Due to their sequential nature, they cannot guarantee that the resulting product α =

∏K
=1 τ is

uniformly distributed. Indeed, a rushing adversary can choose αK as a function of g
∏K−1

=1 τ and force a
few bits of g

∏K
=1 τ to be zero.

Despite this bias, [KMSV21] showed that ceremonial versions of [Gro16], for example, can still be
proven secure as long as one of the contributors behaves honestly (meaning that it randomly chooses
its contribution τ and erases it after the ceremony protocol). For security reasons, at each round ,
the -th participant has to demonstrate knowledge of its randomizer τ . In [KMSV21], this was done
using BLS-type [BLS01] proofs-of-possessions [RY07] that were shown to satisfy a suitable notion
of simulation-extractability. Nikolaenko et al. [NRBB24] used Schnorr-type [Sch90] -protocols in
order to optimize the consistency checks on the CRS updates after each round. We recall the ceremony
protocol of Nikolaenko et al. [NRBB24] in Figure 89.

If the j-th contributor is honest and generates a well-formed ppj , then (35) is satisfied because

e
�
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20https://neuromancer.sk/std/bls/BLS12-381
21https://neuromancer.sk/std/bls/BLS12-446.
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The second equality of (35) can be verified in the sameway.

8.6.3.3 Method 1 Proof Construction: The soundness of the argument system of Figure 90 and
Figure 91 is proven in the algebraic group model [FKL18] and the random oracle model under the
assumption that, given

(g, ĝ,{g(α
)}2B̄1

=1 ,{ĝ
(α)}B̄1

=1)

for a random α ∈ Z/(r), computing α is infeasible. In [Lib24, Theorem 6], the construction given in
Figure 90–Figure 91 is shown to provide the strong notion of simulation-extractability which preserves
knowledge-soundness against malicious provers that can observe simulated proofs and try to modify
them in an attempt to create a proof that defeats the knowledge-extractor.

The security proof in [Lib24, Theorem 6] shows that the soundness of the NIZK argument under
the assumption that computing α from (g, ĝ,{g(α)}2B̄1

=1 ,{ĝ
(α)}B̄1

=1) is infeasible. However, the latter
assumption assumes that α is uniformly distributed in Z/(r). As previously mentioned, the ceremony
protocol described in Figure 89 does not guarantee the uniformity of the trapdoor α =

∏K
=1 τ hidden in

the CRS. Fortunately, we can still prove the security of the ceremonial version of the NIZK argument
as long as at least one participant is honest during the ceremony. This will be given in the full version
of [Lib24] in which it is shown in the combined AGM+ROM model, that, under the (2B̄1, B̄1)-DLOG
assumption, the knowledge extractor can always extract the witness τj from the Schnorr proofs ~πPoK j
at each round j involving an adversarial contribution to the CRS.

8.6.3.4 Method 2 Proof Construction: Similarly to the first pairing-based construction given above,
the simulation-extractability of the NIZK argument of Figure 93–Figure 96 is proven in the combined
algebraic group and random oracle model.

Intuitively, the proof builds a polynomial-time knowledge extractor that uses the algebraic represen-
tation of all group elements contained in an adversarially-generated NIZK proof to extract a witness
 for the proven statement. Then, the security proof shows that, if the witness  obtained by the
knowledge extractor is not a valid witness, the extractor can break the (2B̄1, B̄1)-DLOG assumption by
computing α from the group elements contained in the CRS. This is done by computing α as a root of a
polynomial which is non-zero with overwhelming probability if the extracted is not a valid witness. A
detailed proof is given [BEL+24, Theorem 2]. It proceeds in a similar way to the security analysis of the
NIZK construction of Method 1 with the difference that it also uses ideas from [LNS21, GHL22] to argue
that the knowledge extractor obtains a valid witness.

8.6.4 ZKPoKs Based on MPC-in-the-Head

Security of the MPC-in-the-Head based proofs given in Section 7.6.4 follows the standard analysis
introduced in [KKW18]; and the associated extensions given in [FMRV22, AGH+23, FR23]. In this
section we present a less formal/intuitive explanation of the security analysis, and the reasoning behind
the soundness values from Section 7.6.4. For a more formal analysis, and the relevant theorems we refer
to the papers [FMRV22, AGH+23, FR23] fromwhich we take our MPC-in-the-Head protocols.

An MPC-in-the-Head zero-knowledge proof consists of two stages, an offline stage which corre-
sponds to the pre-processing stage of many MPC protocols. In this stage pre-processed “sharings” are
produced which are shown with high probability to satisfy a given predicate. In our protocols the offline
phase generates secret shared random bits. This offline phase is proven secure using a traditional cut
and choose argument, just as in [KKW18]. Note, we do not need an offline phase which produces data
to check ‘multiplication gates’, as the statements we are proving are purely linear statements on the
underlying secret values. This is because we are only proving correctness of subset-sum equations,
and so the overall MPC-in-the-Head machinery we need is simpler than that required for more general
statements.
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In the online stage the pre-processed values are consumed, as anMPCprotocol is emulated between
n virtual parties (we say virtual parties, as the parties live in the provers head and are not actual parties in
a real protocol). The views of all virtual parties are committed to by the prover. The virtual parties view
consists of the internal randomness and the communication received by the specific virtual party during
the simulated protocol execution from the other virtual parties.

To ensure a sound proof system the combined online and offline phases need to be secure. We only
fully execute the τ combined offline and online phases, but we executeM offline phases (and by execute
we again mean ‘in-the-head’). These executions are committed to, via the viewsmentioned earlier.

To check the offline phase has been executed correctlyM−τ of the offline phases are fully opened and
verified. To check the τ online phases are executed correctly a given number of parties’ online executions
are opened. The precise number of parties opened depends on the threshold of the underlying secret
sharing scheme. By opening a view one means revealing the commitment to the previous virtual parties’
view. The zero-knowledge property of the final proof relies on the privacy of the underlying secret
sharing scheme; thus for full threshold based secret sharing we can open a maximum of n − 1 parties,
and for Shamir sharing we can open a maximum of t parties.

We select the maximum value to open (subject to our privacy constraint) in order to minimize the
soundness error of our proof. This is because the soundness of the online phase is given by the inability
of the adversary to ahead of time select which set of parties will not be opened, thus the soundness is
(roughly) either 1/n or 1/

�n
t

�

(depending on the precise variant one is considering). To obtain a suitably
small soundness ratio the protocol needs to be repeated.

To cheat the adversary can also select, ahead of time, c of the offline phases in which it will cheat. Of
courseweneed the number of correct offline executionsM − c to be at least the number of opened offline
executionsM − τ otherwise the adversary is always caught (so c ≤ τ). Then, on the assumption that the
adversary passes the offline check, there are c out of the τ executions which are already corrupted, for
those the adversary does not have to do anything else. But for the remaining τ − c unbiased executions
the adversary has to cheat, and for these it has to guess which party is not going to be opened.

The adversarywants tomaximize its probability of cheating. Let c be the number of offline executions
out of theM in which the prover cheats, equivalently he executes j = M − c of these executions validly. Let
Ac denote the event that of theM total offline executions, none of theM − τwhich are opened coincide
with the c ones which the adversary cheats on. SinceM − τ executions are totally revealed and checked
by the verifier, the success probability of the adversary in the offline phase is

Pr[Ac] =

�M−c
M−τ

�

� M
M−τ

�

=

� j
M−τ

�

� M
M−τ

�

.

Thus wemust have c ≤ τ, i.e. j ≥ M − τ, i.e. the adversary has to be lucky enough that all of his cheating
occurs in the τ executions processed in the online phase.

On the assumption that the offline phase passes successfully despite the verifier cheating in c of
them, we can compute the probability that the online phase passes successfully too. This probability is
approximately pc = nc−τ or pc =

�n
t

�c−τ , corresponding to the probability that on all of the τ − c online
phases that rely on a correct offline phase, the verifier has correctly guessedwhich party to cheat in.
For the protocols based on full threshold the probability gets modified slightly, as we are simultaneously
executing a form of rejection sampling in order to keep the proof size small. Thus we obtain pc ≈ nc−τ

only when η = 0 in the full threshold proofs. For the protocol based on Shamir sharing this probability is
pc ≈

�n
t

�c−τ . The ≈ in these values is because we also need to take into account the false positive rate
for the statement.
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Thus the overall success probability is given by

err = mx
0≤c≤τ

(�M−c
M−τ

�

� M
M−τ

�

· pc

)

= mx
M−τ≤j≤M

(� j
M−τ

�

� M
M−τ

�

· pM− j

)

.

This leads to the formulae for err given below.

8.6.4.1 Method 1: Full Threshold Based Proofs: The statement we are trying to prove has a false
positive rate of roughly 1/qd , since a random assignment to the input variables will produce a solution
with probability 1/qd (as we have d equationsmodulo qwe need to solve). Thus a single execution of the
“online” part of the MPC-in-the-Head zero-knowledge proof will have soundness error (if we set η = 0)

1

n
+

1

qd
·
�

1 −
1

n

�

.

Since in our applications we have n � q we will approximate this soundness error by 1/n. However,
a non-zero ηwill increase this value slightly to the value pj below, where j is the number of complete
executions which are validly executed.

The proof parameters are constrained by the following equations:

poc-rej =
B

A
< 1,

pgob-rej = 1 −
η
∑

=0

�

τ



�

· (1 − poc-rej)τ−  · poc-rej,

pj =
η
∑

=0

�

�

j − M + τ



�

·
�

1 −
1

n

� �1

n

�j−M+τ− 
�

,

err = mx
M−τ≤j≤M

(� j
M−τ

�

� M
M−τ

�

· pj

)

.

We require that pgob-rej is “small”, as this is the probability that the prover will not be able to complete
a proof and will need to restart the proof process; a value around 0.01 or less for this will be sufficient.
We also require that err is exponentially small, as it is the soundness error; so a value of err < 2−dst is
sufficient. These values need to be selected also to keep the proof size small as well.

8.6.4.2 Method 2: Full Threshold Based Proofs - Hyper-Cube Variant: The analysis of this method
is virtually identical to that of Method 1 above.

8.6.4.3 Method 3: Shamir Based Proofs: This method has a slightly different analysis to the first
two; although the general strategy remains the same. The statement we are trying to prove has a false
positive rate of roughly 1/qd , since a random assignment to the input variables will produce a solution
with probability 1/qd (as we have d equations modulo qwe need to solve). Thus a single execution of
the “online” part of the MPC-in-the-Head zero-knowledge proof will have soundness error

pn,t =
1
�n
t

� +
t · (n − t)

qd · (t + 1)
.

For “large” q (aswhen proving BGV or BFV encryptions) thiswill be approximated by the first term. Hence,
in this case we use this exact formulae for the soundness error of one execution.
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The overall soundness of the entire proof system is then given by

err = mx
M−τ≤j≤M

(� j
M−τ

�

� M
M−τ

�

· pM−τ− jn,t

)

.
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9 Analytic complexity

In this section we analyze the various complexities of our protocols and algorithms, and the related
constraints on configurable parameters. We examine round complexity, communication complexity and
computational complexity. Whenmeasuring communication complexity we give the total amount of
data sent, whereas when giving computational complexity we present the amount of work per player.

We also measure complexity on the happy path, i.e. when no errors are detected. The reason for this
is that in practice active deviation from protocols by adversaries are rare, and once one is detected in
our protocol they are removed from the protocol (which may have adverse business consequences).
Thus wemodel the complexity in terms of the expected real life execution of the protocols.

The basic high level parameter input to the threshold protocols are the number of players n, the
threshold t, the MPC modulus q = pk or q = p1 · · ·pk and the security parameter sec. In the case of
q = p1 · · ·pk we let p denote the smallest prime dividing q and pL the largest prime dividing q. We aim to
express complexity in terms of the basic high level parameters, i.e. n, q and sec. Note that k = O(logq)
and t = O(n).

To simplify computational complexity we assume that operations modulo q (or modulo Q/Qwhen
looking at the complexity of the FHE schemes) take unit time. This is a gross simplification as addition
takes time linear in logq, whilst multiplication lies somewhere between O((logq)1+ε) and O((logq)2)
(depending on the type of implementation one implemented for multiplication modulo q). We also
assume that executions of symmetric primitives such as hash functions also take unit time, and that
their output length is a linear function of sec (usually sec for application of a block cipher like AES and
2 · sec for application of a hash function like SHA-2 or SHA-3).

The first meta-parameter which must then be defined is the Galois Ring degree, d, which we recall by
Parameter Choice 3 and Parameter Choice 4 must satisfy

pd > n and qd > 2sec.

To simplify exposition we assume a naive school-book multiplication algorithm in the Galois Ring, thus
operations in the Galois Ring will take time O(d2). When applied to the BGV/BFV systemwewill have
d = 1 in any case, and for TFHE the size of d is d log2ne (since q = 2128 andn ≥ 4). A ring element can
thus be represented in O(d · logq) = O(logn · logq) bits.

9.1 Conventional Algorithm Complexities

In this subsection we examine the computational complexity of the underlying FHE schemes. As the
focus of this document is on threshold implementations we do not examine, or consider, optimizations
of the FHE operations themselves which a real system will implement. Thus the complexities in this
section should be considered only “first approximations”; we only list them here as wewill sometimes
need to refer to themwhen considering the complexity of the threshold protocols below.

When giving the complexities of these algorithms, recall we assume that operations modulo Q take
unit time. In addition, for the TFHE algorithms, we do not analyze the Epnd sub-routines as they are
relatively simple.

9.1.1 BGV.KeyGen(N,Q, P, B, R), BGV.Enc(m,pk) and BGV.Dec(ct,sk)

Assuming one uses an NTT algorithm for the ring multiplications the complexity of these algorithms
will be O(N · logN); if naive methods are used it will be O(N2). When using encryption followed by a
zero-knowledge proof of correctness it is likely that the O(N2) algorithmwill be used, since it is in this
representation that the subset-sum is created for passing into the proof system.
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9.1.2 ModStchQ→q(,b) and BGV.Sce(ct, ℓ′)

These operations require only modular operations on the coefficients of the associated ring elements,
and thus are O(N). However, if the inputs are represented in the NTT domain, thenwe require O(N · logN)
operations.

9.1.3 BGV.KeyStch((d0,d1,d2), ℓ, Bnpt)

The complexity is dominated by the ring multiplications again; which take O(N · logN), if we assume
the modular operations on the coefficient domain takes unit time. However, the base operations in this
algorithm are on integers of size at most R ·Q. Thus the complexity is more akin to

O(N · logN · (logR)2)

base operations modulo Q.

9.1.4 BGV.Add(ct, ctb) and BGV.Mt(α, ct)

These operations are linear in nature and so have complexity O(N).

9.1.5 BGV.Mt(ct, ctb)

This operation’s complexity is dominated by the KeyStch operation, and so has complexityO(N · logN ·
(logR)2).

9.1.6 BFV.KeyGen(N,Q, P, B, R), BFV.Enc(m,pk) and BFV.Dec(ct,sk)

These are essentially identical to the operations for BGV .

9.1.7 BGV.toBFV(ct) and BFV.toBGV(ct′)

These are both linear operations, applied to the coefficients of the ring elements, and so have complexity
O(N).

9.1.8 EncLWE(m,s; . . .)

This requires O(ℓ) operations modulo Q.

9.1.9 EncGLWE(m, (s0, . . . ,s−1); . . .)

This performs  operations in a ring of dimension N, and hence can be performed in O( · N · logN)
operations modulo Q.

9.1.10 EncLe(m,s; . . .)

This requires ν calls to EncLWE and hence requires O(ν · ℓ) operations.

9.1.11 EncGLe(m, (s0, . . . ,s−1); . . .)

This requires ν calls to EncGLWE and hence requires O(ν · ·N · logN) operations; if we assume an FFT
implementation is used for the ring multiplication.
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9.1.12 EncGGSW(m, (s0, . . . ,s−1); . . .)

This requires + 1 calls to EncGLe and hence requires O(ν ·2 ·N · logN) operations.

9.1.13 TFHE.KeyGen(. . .)

This executes ℓ̂ EncLe of dimension ℓ or ·N depending on type, ·N executions of EncLe of dimension
ℓ, and ℓ executions of EncGGSW with parameters  and N and if ƒ g also ℓ executions of EncGGSW

with parameters  and N. Since the (,N) parameters are much bigger and the generation of the
bootstrapping key dominates that of the other keys, the complexity is either O(ℓ · νbk ·2 ·N · logN) if
ƒ g, or O(ℓ · νbk ·2 ·N · logN) otherwise.

9.1.14 TFHE.Decompose(,Q, β, ν)

This decomposes an integer into ν parts, thus requiring O(ν) operations.

9.1.15 TFHE.DmensonStch(ct, PKSK)

Themain cost is step 5 in which we sum ℓ̂ vector by matrix products where the the vector has length
νpksk and integer components and thematrix is νpksk × d having integer coefficients modulo Q. As such
the cost is O(ℓ̂ · νpksk · d).

9.1.16 TFHE.Enc-Sb(m,pk)

Themain cost here is a ring multiplication in a ring of dimension ℓ. Thus the complexity (assuming an
FFT operation is used) is O(ℓ · log ℓ). However, just as for BGV/BFV above it may be the case that it is
simpler to use naive methods if the encryption is followed by a zero-knowledge proof of correctness.

9.1.17 TFHE.Enc(m,pk)

This is just TFHE.Enc-Sb followed by TFHE.DmensonStchwith the latter dominating the complex-
ity so we require O(ℓ̂ · νpksk · d) operations.

9.1.18 TFHE.Dec(ct,sk)

This executes a dot-product of dimension ℓ, and so requires O(ℓ) operations.

9.1.19 TFHE.Add(ct1, ct2), TFHE.ScrMt(α, ct) and TFHE.ModStch(ct)

These are both linear operations on a vector of size ℓ, and so require O(ℓ) operations.

9.1.20 TFHE.Ftten(ct)

This is just a reorganization of the input data, of size ·N, and thus requires O( ·N) operations.

9.1.21 TFHE.KeyStch(ct, KSK)

This is an extension of TFHE.DmensonStchwhich for the sake of complexity we can simply replace
ℓ̂ by ·N and d by ℓ. As such that complexity is O( ·N · νksk · ℓ).
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9.1.22 TFHE.EternProdct(ct, CT)

The main complexity is step 6 which involves the sum of vector-matrix products with elements in RQ .
The vector is of dimensionν and thematrix of sizeν×(+1) so theoverall complexity isO(2 ·ν ·N·logN)
assuming use of the FFT.

9.1.23 TFHE.BootStrp(ct, ƒ , BK)

This executes ℓ TFHE.EternProdct operations using the bootstrapping key, thus the complexity is
O(ℓ ·2 · νbk ·N · logN) if using the FFT.

9.1.24 TFHE.PBS(ct, ƒ , BK)

This executes a TFHE.BootStrp and a TFHE.KeyStch, the order depending on the type of the input.
As the TFHE.BootStrp is the more costly operation, the overall complexity is O(ℓ ·2 · νbk ·N · logN)
when using the FFT.

9.1.25 TFHE.StchSqsh(ct, BK)

This is similar to a TFHE.PBS however the external product operations are done over the larger dimen-
sional ring, however now the operations are modulo Q and not modulo Q (which gives a slightly larger
implied constant in the complexity estimate). As such, the complexity isO(ℓ ·2 ·νbk ·N · logN) assuming
the use of the FFT.

9.1.26 Conventional Algorithm Summary

We summarize the above discussion in the following table:

Computational
Algorithm Complexity
BGV.KeyGen(N,Q, P, B, R) O(N · logN)
BGV.Enc(m,pk) O(N · logN) / O(N2)
BGV.Dec(ct,sk) O(N · logN)
ModStchQ→q(,b) O(N)
BGV.Sce(ct, ℓ′) O(N)
BGV.KeyStch((d0,d1,d2), ℓ, Bnpt) O(N · logN · (logR)2)
BGV.Add(ct, ctb) O(N)
BGV.Mt(α, ct) O(N)
BGV.Mt(ct, ctb) O(N · logN · (logR)2)
BFV.KeyGen(N,Q, P, B, R) O(N · logN)
BFV.Enc(m,pk) O(N · logN) / O(N2)
BFV.Dec(ct,sk) O(N · logN)
BGV.toBFV(ct) O(N)
BFV.toBGV(ct′) O(N)
EncLWE(m,s; . . .) O(ℓ)
EncGLWE(m, (s0, . . . ,s−1); . . .) O( ·N · logN)
EncLe(m,s; . . .) O(ν · ℓ)
EncGLe(m, (s0, . . . ,s−1); . . .) O(ν · ·N · logN)
EncGGSW(m, (s0, . . . ,s−1); . . .) O(ν ·2 ·N · logN)
TFHE.KeyGen(. . .) O(ℓ · νbk ·

2 ·N · logN)
TFHE.Decompose(,Q, β, ν) O(ν)

212



TFHE.DmensonStch(ct, PKSK) O(ℓ̂ · νpksk · d)
TFHE.Enc-Sb(m,pk) O(ℓ · log ℓ) / O(ℓ2)
TFHE.Enc(m,pk, PKSK) O(ℓ̂ · νpksk · d)
TFHE.Dec(ct,sk) O(ℓ)
TFHE.Add(ct1, ct2) O(ℓ)
TFHE.ScrMt(α, ct) O(ℓ)
TFHE.ModStch(ct) O(ℓ)
TFHE.Ftten(ct) O( ·N)
TFHE.KeyStch(ct, KSK) O( ·N · νksk · ℓ)
TFHE.EternProdct(ct, CT) O(2 · ν ·N · logN)
TFHE.BootStrp(ct, ƒ , BK) O(ℓ ·2 · νbk ·N · logN)
TFHE.PBS(ct, ƒ , BK) O(ℓ ·2 · νbk ·N · logN)
TFHE.StchSqsh(ct, BK) O(ℓ ·2 · νbk ·N · logN)

Table 11: Computational Complexity of the Conventional Algorithms for FHE.

9.2 Layer Zero Algorithm Complexities

9.2.1 BW(c, e)

In the worst case this is called with e = b(n − v)/2c = O(n). The method requires solving e linear
equations inO(n) unknowns in the finite field Fpd . Given the sizes of the values involved, naive algorithms
will work best, and hence the complexity of this algorithmwill be

O(e ·n2 · d2) = O(d2 ·n3).

9.2.2 Go(c, e)

The method is called once and requires interpolating a polynomial using Lagrange interpolation, comput-
ing the extended Euclidean algorithm and divisions in Fpd . When implemented naively, the overall cost of
this algorithm, which is due to polynomial multiplications and divisions, will be

O(d2 ·n2).

This complexity can be reduced by implementing polynomial arithmetic via fast Fourier transform (FFT),
but it is likely that this only pays off for for large values ofn, e.g. n� 100.

9.2.3 ErrorCorrect(q,c, e)

This requires k iterations of the algorithm BW(c, e)/Go(c, e) and thus the complexity is either

O(k · d2 ·n3) = O(logq · d2 ·n3)

or
O(k · d2 ·n2) = O(logq · d2 ·n2).

We select using the Go algorithm in what follows (and in our code).
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9.2.4 SynDecodeF(p, Se(Z))

This requires a loop of O(n), where the main cost is multiplication and division of polynomials of degree
at more r = O(n), with coefficients in Fpd . So a crude complexity estimate is given by

O(d2 ·n3).

9.2.5 CorrectF(p,e)

This is essentially the cost of SynDecodeF(p, Se(Z)) and so has complexity

O(d2 ·n3).

9.2.6 SynDecodeGR(q, Se(Z))

This requires k iterations of the algorithm SynDecodeF(p, Se(Z)) and thus the complexity is

O(k · d2 ·n3) = O(logq · d2 ·n3).

9.2.7 CorrectGR(q,e

This is essentially the cost of SynDecodeGR(q, Se(Z)) and so has complexity

O(k · d2 ·n3) = O(logq · d2 ·n3).

9.2.8 Shre()

This requires evaluating a polynomial of degree t at n distinct points in the Galois Ring, and thus naively
has a complexity of

O(d2 · t ·n) = O(d2 ·n2).

9.2.9 OpenShre({〈〉}∈S)

To create the polynomial g(X) requires naively O(n · t)multiplications in the Galois Ring, thus we have a
complexity of

O(d2 · t ·n) = O(d2 ·n2).

9.2.10 Commt(m)

This requires one hash function evaluation in order to produce an output of size |Hsh2·sec| = 2 · sec.
Thus we treat the complexity as unit time.

9.2.11 Verƒy(c, o,m)

This requires another hash function evaluation, and hence takes unit time.

9.2.12 Soe()

Theexecutionof the sub-procedureSoe1 requiresO(d2)operations in thefinite fieldF2d . Theexecution
of the main loop in the Hensel lifting requires O(log2 k) operations in the Galois Ring. Hence, the overall
complexity is

O(logk · d2) = O(log logq · d2).
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9.2.13 Sqrt(, p)

The complexity of computing a square root is roughly d · log2 pmultiplications in the Galois RingGR(p, F).
Thus the overall complexity in terms of operations modulo p < q is

O(logp · d3).

9.2.14 TreePRG.Gen(seed, d)

This requires O(2d) executions of the PRG, in order to define seeds at each leaf and internal node of the
tree. Thus the complexity is

O(2d).

9.2.15 TreePRG.GenSb(seed, b, d, )

This subroutineis similar to TreePRG.Gen except it starts from depth which is not necessarily the root.
Thus the complexity is

O(2d− ).

9.2.16 TreePRG.Pnc(seed, d, T)

From Equation 30, we know the output of this subroutine has size |D|. Every output requires a prefix
comparison of at most d bits for every element in T . Thus the complexity is

O

�

d · |T |2 · log2

�

2d

|T |

��

.

9.2.17 TreePRG.PncSb(D, b, T, )

We use the same analysis as TreePRG.Pnc, except for the set T = T \ {1, . . . ,2} and depth d − . Thus
the complexity is

O

�

d · |T|2 · log2

�

2d− 

|T|

��

.

9.2.18 TreePRG.GenPnc(D,T, d)

The subroutine TreePRG.GenSb needs to be executed |D| times, thus the overall complexity is.

O(|D| ·O(2d)).

But in practice the complexity is much better since the depth  is not always 0.

9.2.19 Layer Zero Summary

We summarize the above discussion in the following table:

Complexities
Protocol Rounds Communication Computation
BW(e, e) - - O(d2 ·n3)
Go(e, e) - - O(d2 ·n2)
ErrorCorrect(q,e, e) - - O(logq · d2 ·n2)
SynDecodeF(p, Se(Z)) - - O(d2 ·n3))
CorrectF(p, r) - - O(d2 ·n3))
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SynDecodeGR(q, Se(Z)) - - O(logq · d2 ·n3))
CorrectGR(q, r) - - O(logq · d2 ·n3))
Shre() - - O(d2 ·n2)
OpenShre({〈〉}∈S) - - O(d2 ·n2)
Commt(m) - - O(1)
Verƒy(c, o,m) - - O(1)
Soe() - - O(log logq · d2)
Sqrt(, p) - - O(logp · d3)
TreePRG.Gen(seed, b∗, d) - - O(2d)
TreePRG.GenSb(seed, b, d, ) - - O(2d− )

TreePRG.Pnc(seed, d, T) - - O
�

d · |T |2 · log2
�

2d
|T |

��

TreePRG.PncSb(D, b, T, ) - - O
�

d · |T|2 · log2
�

2d− 
|T |

��

TreePRG.GenPnc(D,T, d) - - O(|D| ·O(2d))

Table 12: Complexity of Layer Zero Algorithms.

9.3 Layer One Algorithm and Protocol Complexities

9.3.1 Synch-Brodcst(S,m)

As discussed Section 7.2.1 in the text, this requires t + 3 rounds of communication. Note, as we are
assuming this protocol is usedwithin a synchronous protocol, even if all parties are honestwe still require
t + 3 rounds. It may appear that the parties can continue with the calling protocol after three rounds
when all are honest, but each party does not know whether all the other parties are able to proceed.
Thus the synchronicity of the parties in the calling protocol will be affected if some parties return after
three rounds, and some need to wait.

The senders communication complexity is

O(n · |m|).

The receivers communication complexity is |m| data received from the sender, and the sending to n
players the send and otemessages (the first requiring |m| bits, whilst the second |Hsh2·sec| = 2 · sec
bits), and the receiving of at mostn send and otemessages. Thus the total amount of communication
sent by a receiving player isO(n · |m|+n ·sec) = O(n · |m|), resulting in a total communication complexity
of

O(n2 · |m|).

The computational complexity is O(1).

9.3.2 RobstOpen(P, 〈〉d)

The round complexity of this protocol is equal to one. The communication complexity of this step is that
each player needs to send a single ring element to player P . Thus the total communication complexity is

O(logq · d ·n).

The computational complexity of these protocols depend on whether one is executing the online
error correction method, or one is waiting to receive enough shares to execute the ErrorCorrect in
one go. In both cases the happy path computational complexity is (roughly) the same as that of
ErrorCorrect(q,c, t). The main advantage of using the second variant, for asynchronous networks,
when d + 2 · t ≤ n is that one can optimistically proceed with an execution of ErrorCorrect, whilst
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waiting for slow players to respond. We model computational complexity on the happy path and hence
have a computational complexity of

O(logq · d2 ·n2).

9.3.3 RobstOpen(S, 〈〉d)

This has exactly the same round and computational complexity as the operation RobstOpen(P, 〈〉d),
except now the communication complexity is increased by a factor of |S |.

9.3.4 BtchRobstOpen((〈〉d)ℓ=1)

This has round complexity two, with the computational complexity dominated by the two executions
of ErrorCorrect per player. In total each player sends O(n) ring elements in the protocol, making for a
total communication complexity of

O(logq · d ·n2).

9.3.5 VSS(Pk , s, t, Corrpt)

In [CCP22] the round complexity of the finite field variant of this scheme is indicated as four “rounds”,
which include three rounds of broadcast. The communication complexity is listed as O(n2) finite field
elements of normal communication and O(n2) finite field elements needing to be broadcast.

Recall we are only giving complexities for the happy path of protocols. In this case we see that
the protocol terminates after the second round of communication. In which case we see that the
communication over normal channels (non-broadcast) channels in Round 1 is that the sender sends
2 · (t + 1) values privately to each player. Then in the second round each player broadcasts 2 ·n values
to all other players.

Thus on the happy path we have a round complexity of

t + 4,

a total communication complexity of

O(n · logq · d + n4 · logq · d) = O(logq · d ·n4).

The computational complexity is bounded by each player needing to evaluate a polynomial of degree at
most t in O(n) points, i.e. roughly

O(d2 ·n2).

9.3.6 AgreeRndom(S, k)

Each party in S needs to send one commitment, and then the opening value. Thus the round complexity
is two, and the communication complexity is O((k + sec) · |S|), and the computational complexity is O(1).

9.3.7 AgreeRndom--Abort(S, k)

Aswell as executing AgreeRndom(S, k) this executes a second confirmation round of commitment
and opening. Thus the total round complexity is four, and the communication complexity is again
O((k + sec) · |S |) and the computational complexity is O(1).

9.3.8 AgreeRndom-Robst(S, k, 〈r〉)

This is essentially (bar the hash function evaluation) just the same as RobstOpen(S, 〈r〉.
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9.3.9 PRSS.nt()

This is the active-with-abort secure variant of PRSS.nt(). The algorithm in Figure 51 requires
�n
t

�

executions of AgreeRndom--Abort(A, sec). Assuming these are all done in parallel, this equates to
four rounds, and a communication complexity of

O

� �

n

t

�

· sec
�

.

The computational complexity depends also on the same exponential term, i.e.

O

� �

n

t

� �

.

9.3.10 PRSS.nt(Corrpt)

The robust version PRSS.nt(Corrpt) is more involved. A total of c ·n number of the VSS protocol are
executed in parallel by each of then players, where

c = O
�

1

n
·
�

n

t

��

,

i.e. we execute a total of c · n2 versions of VSS in parallel. After which the players extract a set of
random secret shared values, by local computation. Finally a total of

�n
t

�

number of executions of
AgreeRndom-Robst operations are executed; where again these last executions can be performed
in parallel.

Thus we have a round complexity (on the happy path) of (t + 4) + 1 = t + 5. The total communication
complexity is given by, as usuallyn� logqwill hold in most instantiations,

O

�

logq · d ·n6 ·
1

n
·
�

n

t

�

+ logq · d ·n · (n − t) ·
�

n

t

��

= O
�

logq · d ·n3 ·
�

n

t

��

.

Finally the computational complexity is

O

�

d2 ·n4 ·
1

n
·
�

n

t

�

+ logq · d2 ·n2 ·
�

n

t

��

= O
�

logq · d2 ·n2 ·
�

n

t

��

.

9.3.11 PRSS.Net()

This has zero round complexity (which is after all the point), but the computational complexity is

O

�

logq ·
�

n

t

��

,

since each application of ψ requires logq AES evaluations, and the multiplication of the output into the
stored values ƒA(α) requires O(d2) operations, and in most instantiations wewill have d2 � logq.

9.3.12 PRSS.Check(cnt, Corrpt)

Recall this is only ever called on an unhappy path, thus (aswe are not focusing on the unhappy path com-
plexity). However, for those interested: The main cost is the rounds needed to execute the synchronous
broadcast. Assuming this is executed in parallel for all players, we have a total round complexity of t + 4.
The message size, per player, of the broadcast is given by

O

��

n

t

�

· sec
�

.
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Thus the total communication complexity is

O

�

n2 ·
�

n

t

�

· sec
�

.

The computational complexity is essentiallyn times that of PRSS.Net().

9.3.13 PRZS.Net()

This is similar to PRSS.Net(), however nowwe execute per player t ·
�n
t

�

evaluations of the PRF χ, before
multiplying the value into the stored values αj · ƒA(α). However, the multiplication of the Z/(q) values
output by χ into the stored values requires O(d2) operations. Thus the computational complexity is
given by, as d2 � logq,

O

�

logq ·n ·
�

n

t

��

.

9.3.14 PRSS.Check(cnt, Corrpt)

This is much like PRSS.Check(cnt, Corrpt), however the message size per player in the broadcast is
now of size

O

�

t ·
�

n

t

�

· sec
�

.

Hence, the total communication complexity is

O

�

n3 ·
�

n

t

�

· sec
�

.

The computational complexity is essentiallyn times that of PRZS.Net().

9.3.15 PRSS-Msk.Net(Bd, stt)

The computational complexity, per player, is given by

O

�

logq ·
�

n

t

��

.

9.3.16 ConFp(Corrpt)

The ConFp operations requires then to execute one call to the VSS operation each, in parallel, followed
by a call to RobstOpen({P1, . . . ,Pn}, 〈〉). Thus the round complexity is t+5. The total communication
complexity is

O(logq · d ·n5 + logq · d ·n2) = O(logq · d ·n5).

The computational complexity per player is given by

O(d2 ·n3).

9.3.17 Layer One Summary

We summarize the above discussion in the following table:

Complexities
Protocol Rounds Communication Computation
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Synch-Brodcst(S,m) t + 3 O(n2 · |m|) O(1)
RobstOpen(P , 〈〉d) 1 O(logq · d ·n) O(logq · d2 ·n2)
RobstOpen(S, 〈〉d) 1 O(logq · d ·n · |S |) O(logq · d2 ·n2)
BtchRobstOpen((〈〉d)ℓ=1) 2 O(logq · d ·n2) O(logq · d2 ·n2)
VSS(Pk , s, t, Corrpt) t + 4 O(logq · d ·n4) O(d2 ·n2)
AgreeRndom(S, k) 2 O((k + sec) · |S |) O(1)
AgreeRndom--Abort(S, k) 4 O((k + sec) · |S |) O(1)
AgreeRndom-Robst(S, k, 〈r〉) 1 O(logq · d ·n · |S |) O(logq · d2 ·n2)
PRSS.nt() 4 O(sec ·

�n
t

�

) O(·
�n
t

�

)
PRSS.nt(Corrpt) t + 5 O(logq · d ·n5 ·

�n
t

�

) O(logq · d2 ·n2 ·
�n
t

�

)
PRSS.Net() - - O(logq ·

�n
t

�

)
PRSS.Check(cnt, Corrpt) t + 3 O(n2 ·

�n
t

�

· sec) O(logq ·n ·
�n
t

�

)
PRZS.Net() - - O(logq ·n ·

�n
t

�

)
PRZS.Check(cnt, Corrpt) t + 3 O(n3 ·

�n
t

�

· sec) O(logq ·n2 ·
�n
t

�

)
PRSS-Msk.Net(Bd, stt) - - O(logq ·

�n
t

�

)
ConFp(Corrpt) t + 5 O(logq · d ·n5) O(d2 ·n3)

Table 13: Complexity of Layer One Algorithms and Protocols.

9.4 Layer Two Algorithm and Protocol Complexities

9.4.1 MPCS.nt()

This is identical to the cost of PRSS.nt() or PRSS.nt(Corrpt) depending on which one is selected.

9.4.2 MPCS.GenTrpes(Dspte)

On the happy path this protocol consists of three PRSS evaluations, one PRZS evaluation, a parallel
execution of Synch-Brodcst for a message of size logq · d, and the application of the algorithm
ErrorCorrect.

The communication complexity (on the happy path) is thus

O(logq · d ·n3),

and the computational complexity is

O

�

logq ·n ·
�

n

t

�

+ logq · d2 ·n2
�

= O
�

logq ·n ·
�

n

t

��

.

The the round complexity is t + 3, however, in practice one will execute many of the broadcast calls in
parallel and thus the overall round complexity per triple is close to zero.

9.4.3 MPCS.NetRndom(Dspte)

This is simply an execution of PRSS.Net(), and so has the same complexity.

9.4.4 ShreDspte(P, s, d,Dspte)

This requires evaluation of a degree d polynomial atn points over GR(q, F) and so requires a computa-
tional cost of

O(d · d2 ·n)
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from the sending player. The communications requires one round, and requires the sending of one ring
element per player, i.e.

O(logq · d ·n).

9.4.5 LocSngeShre(P, (s1, . . . , sℓ), Dspte)

We first examine a single (non parallel) execution of this algorithm as it is described in Figure 60 (the
execution of the parallel version we discuss afterwards). We examine each step requiring computation
or communication in turn:

• Line 2: This requires ℓ parallel executions of ShreDspte(P, s, t, Dspte). Thus it requires one
round of communication, a communication complexity of O(ℓ · logq · d ·n) and a computational
complexity of O(ℓ · d2 ·n2).

• Line 3: This can be executed in parallel with the previous step, and so costs no extra rounds. The
communication and computational complexity is given by O(m · logq · d ·n) and O(m · d2 ·n2).

• Line 4: This is simply an execution of the ConFp protocol. As determined above this requires t + 5
rounds, and costs a communication complexity of O(logq · d ·n5) and a computational complexity
of O(d2 ·n3).

• Line 6: This requires the parallel execution ofm evaluations of the following steps:
– Amaximum ofn send data to all the other players using Synch-Brodcst. These can all be

done in parallel, with eachmessage being of size O(ℓ · logq ·d). Thus these steps will consume
t + 3 rounds, and consume bandwidth of O(m · ℓ · logq ·n2). The computation requires in this
step is roughly O(m · ℓ · d2).

We make the reasonable assumption thatm� ℓ, since the point of this protocol is to agree on many
sharings in one go (i.e. ℓwill be very large in comparison tom). Hence the complexity of line 3 can be
ignored. We also assume that n4 � ℓ as well, for much the same reasons. We can also assume that
m� n3 , since this protocol will only be applied whenn > 10 and we knowm ≤ dst = 80.

Parameter Choice 6: Size of ℓ in LocSngeShre

We assume ℓ > n4 This is mainly for our complexity estimates to hold, but also this makes sense
from an implementations stand point as well.

Summing up the above analysis: We find a round complexity of

1 + (t + 5) + (t + 3) = 2 · t + 9.

A communication complexity of

O
�

ℓ · logq · d ·n + logq · d ·n5 + m · ℓ · logq ·n2� = O(ℓ · logq · d ·n).

The computational complexity is given by

O
�

ℓ · d2 ·n2 + d2 ·n3 + m · ℓ · d2
�

= O(ℓ · d2 ·n2).

Whenwe execute LocSngeShre in parallel, with each player P executing it to enter ℓ values into the
system, the round complexity stays the same, and the communication and computational complexities
simply increase by a factor ofn.

Note, that in our code we do not actually execute lines 2, 3 and 6 in parallel, thus in practice we have
one extra round. As this round is eventually amortized away, this makes no significant difference to the
final protocol round complexity.
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9.4.6 LocDobeShre(P, (s1, . . . , sℓ), Dspte)

This is essentially the same as LocSngeShre, except one processes two sharings at once and
performs some additional checks. All these extra factors are swallowed in the constant of the big-Oh
notation.

9.4.7 SngeShrng.nt(Dspte)/DobeShrng.nt(Dspte)

Wedo not count the execution of the initialization routines into the complexity counts, aswe shall instead
amortize the call’s here into the Net operations discussed next.

9.4.8 SngeShrng.Net(Dspte)/DobeShrng.Net(Dspte)

These operations take a batch of ℓ values per player, obtained by executing LocSngeShre (resp.
LocDobeShre) in paralleln times. Then these ℓ ·n values are used to produce ℓ · (n − t) = O(ℓ ·n)
output values. Thus the complexity per invocation of the respective Net() command is actually the
complexity of the parallel invocation of the LocSngeShre (resp. LocDobeShre) commands,
divided by ℓ · n, i.e. the cost of a single invocation of LocSngeShre (resp. LocDobeShre)
divided by ℓ. The round complexity gets amortized into an O(1) term, which in practice is on average
approximately zero (as ℓ is large).

9.4.9 MPCL.nt(Dspte)

As above we consider this call to be amortized into the following calls to SngeShrng.Net(Dspte)
and/or DobeShrng.Net(Dspte).

9.4.10 MPCL.GenTrpes(Dspte)

To generate each triple requires a total of two calls to the procedure SngeShrng.Net(Dspte) and
one call to the procedure DobeShrng.Net(Dspte). Then each parties sends one sharing value to
all other parties, and finally ErrorCorrect is called. The communication complexity is O(logq · d ·n), and
the computational complexity is O(d2 ·n2). The round complexity is approximately one, however, the
round complexity can be amortized over many calls, and thus we can ignore it if many executions are
done in parallel.

9.4.11 MPCL.NetRndom(Dspte)

This is simply a renaming of SngeShrng.Net(Dspte), and thus has the same complexity.

9.4.12 Layer Two Summary

We summarize the above discussion in the following table:

Complexities
Protocol Rounds Communication Computation
MPCS.nt() Same as PRSS.nt() or PRSS.nt(Corrpt)
MPCS.GenTrpes(Dspte) t + 3/≈ 0 O(logq · d ·n3) O(logq ·n ·

�n
t

�

)
MPCS.NetRndom(Dspte) - - O(logq ·

�n
t

�

)
ShreDspte(P, s, d,Dspte) 1 O(logq · d ·n) O(d · d2 ·n)
LocSngeShre(P, (s1, . . . , sℓ), Dspte) 2 · t + 9 O(ℓ · logq · d ·n) O(ℓ · d2 ·n2)
LocDobeShre(P, (s1, . . . , sℓ), Dspte) 2 · t + 9 O(ℓ · logq · d ·n) O(ℓ · d2 ·n2)
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SngeShrng.nt(Dspte) - - -
SngeShrng.Net(Dspte) (2 · t + 9)/ ℓ ≈ 0 O(logq · d ·n) O(d2 ·n2)
DobeShrng.nt(Dspte) - - -
DobeShrng.Net(Dspte) (2 · t + 9)/ ℓ ≈ 0 O(logq · d ·n) O(d2 ·n2)
MPCL.nt(Dspte) - - -
MPCL.GenTrpes(Dspte) ≈ 1/ ≈ 0 O(logq · d ·n) O(d2 ·n2)
MPCL.NetRndom(Dspte) ≈ 0 O(logq · d ·n) O(d2 ·n2)

Table 14: Complexity of Layer Two Algorithms and Protocols.

9.5 Layer Three Algorithm and Protocol Complexities

9.5.1 MPC.Open(〈〉)

This is exactly the same as RobstOpen, for a receiving set of size n, hence the round complexity is one,
the communication complexity is

O(logq · d ·n2)

and the computational complexity is
O(logq · d2 ·n2).

9.5.2 MPC.Mt(〈〉, 〈y〉)

This requires one call toMPC.GenTrpes and two parallel calls toMPC.Open thus the round complexity
is effectively equal to one. The communication and computational complexity depends on which regime
(nSm vs nLrge) one is in, and whether one considers the online and offline phases to be distinct or
not. Again we only consider the complexity on the more important happy path. The online complexity is
the same irrespective of which regime one is in, and it is asymptotically the same as forMPC.Open.

The combined offline and online complexity in the nSm regime are for communication

O(logq · d ·n3 + logq · d ·n2) = O(logq · d ·n3),

and for computation

O

�

logq ·n ·
�

n

t

�

+ logq · d2 ·n2
�

= O
�

logq · d2 ·n ·
�

n

t

��

.

In the nLrge regime the combined offline and online communication and computational complexi-
ties are given by

O(logq · d ·n + logq · d ·n2) = O(logq · d ·n2)

and
O(d2 ·n2 + logq · d2 ·n2) = O(logq · d2 ·n2).

9.5.3 MPC.GenBts()

Recall this only works in the nSm regime when q = p1 · · ·pk . Also recall, there are different algo-
rithms depending on whether q = pk or q = p1 · · ·pk . Per bit generated the routine requires one call to
MPC.NetRndom, one call toMPC.Mt, and depending on the value of q either one (q a power of two)
or two (odd q) calls to MPC.Open, plus some book keeping. The rounds can be merged for each call
toMPC.GenBts, thus irrespective of , the round complexity is two or three. The communication and
computational complexities are dominated by the calls toMPC.Mt.
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9.5.4 Layer Three Summary

We summarize the above discussion in the following table, forMPC.Mt andMPC.GenBtswe present
the combined online and offline complexities:

Complexities
nSm nLrge

Protocol Rounds Communication Computation Communication Computation
MPC.Open(U , 〈〉) 1 O(logq · d ·n2) O(logq · d2 ·n2) O(logq · d ·n2) O(logq · d2 ·n2)
MPC.Mt(〈〉, 〈y〉) 1 O(logq · d ·n3) O(logq · d2 ·n ·

�n
t

�

) O(logq · d ·n2) O(logq · d2 ·n2)
MPC.GenBts() 2 or 3 O( · logq · d ·n3) O( · logq · d2 ·n ·

�n
t

�

) O( · logq · d ·n2) O( · logq · d2 ·n2)

Table 15: Complexity of Layer Three Algorithms and Protocols.

Note the nSm communication complexity is larger than that of nLrge, which seems counter
intuitive given that nSm uses PRSS to reduce communication. However this can be explained by two
facts:

• The nSm profile achieves t < n/3 as opposed to the t < n/4 of the nLrge profile. Thus “more”
is being achieved in the threshold profile nSm.

• The low communication costs in nLrge is caused by the amortization over the ℓ = O(n4) parallel
repetitions. Ifn is very large, then achieving this level of amortization may not be feasible, in which
case the communication complexity will increase by however much one decreases ℓ.

9.6 Layer Four Algorithm and Protocol Complexities

Recall here we utilize themodulus Q (BGV, BFV and TFHEwhenwe use the second threshold decryption
algorithm) or Q (for TFHE and the first threshold decryption algorithm).

9.6.1 MPC.NeHope(N,B)

The cost of this is the cost of the call to MPC.GenBts(2 · N · B). The rest of the algorithm is local
computation, which is marginal, and hence does not affect the overall computational complexity. We
only ever use this algorithm for BGV and BFV, for threshold profile nSm. The round complexity of
MPC.GenBts is three in this case.

9.6.2 MPC.TUnƒorm(N, −2b,2b)

Just like forMPC.NeHope(·, ·), thecost of this operation is thecostof thecall toMPC.GenBts(N·(b+1)).
In this case the round complexity of GenBts is two. The rest of the algorithm is local computation,
which is marginal, and hence does not affect the overall computational complexity.

9.6.3 BGV.Threshod-KeyGen(. . .) and BFV.Threshod-KeyGen(. . .)

Due to our way of generating random bits when q is a produce of odd primes in our MPC engine; this
algorithm can only be called in threshold profile nSm. The calls toMPC.NeHope can all be performed
in parallel (resulting in a total round complexity of three for these calls). The rounds for opening pk , pk

′


and those for the multiplication, can also all be done together. As can the rounds to open pkb and pk′
b
.

Thus the total number of rounds is five.
The communication complexity of BGV.Threshod-KeyGen is given by

O(N · (2 · B + 1) · logQ · d ·n3) + O(N · logQ · d ·n3)

= O(N · B · logQ · d ·n3).
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The computational complexity is given by

O(N · (2 · B + 1) · logQ · d2 ·n ·
�

n

t

�

) + O(N · logQ · d2 ·n ·
�

n

t

�

)

= O(N · B · logQ · d2 ·n ·
�

n

t

�

).

9.6.4 BGV.Threshod-Dec(ct, 〈sk〉) and BFV.Threshod-Dec(ct, 〈sk〉)

The dominating cost here in terms of complexity, and indeed the only part which requires interaction is
the RobstOpen execution; which is evaluated N times in parallel. Here we assume that the execution of
the N openings is performed in one round, and not via the two round BtchRobstOpen protocol which
batches openings together. Assuming alln parties obtain the output, this operation takes one round of
communication, has a communication complexity of

O(logQ · d ·n2 ·N)

and a computational complexity of
O(logQ · d2 ·n2 ·N).

9.6.5 TFHE.Threshod-KeyGen(. . .)

Assuming all the secret shared random bits are produced in one batch, which requires two rounds,
the rest of the protocol requires three additional rounds; one to open seed, one to open (in parallel)
pkb, PKSK , KSK ,j, BK  and BK  , and one to perform themultiplications needed in the execution of the
MPC.EncGGSW sub-routine (which we assume are done in parallel). Thus a total of five rounds in total are
required.

The communication and computational complexity are dominated by the need to generate triples, in
order to produce the requisite number of bits. The number of triples required is (roughly)

O(ℓ · ·N
2
).

See below for a more precise analysis. This means the communication and computational complexities
are given by

O(ℓ · ·N
2
· logQ · d ·n3)

and
O(ℓ · ·N

2
· logQ · d2 ·n ·

�

n

t

�

)

in the nSm regime, and
O(ℓ · ·N

2
· logQ · d ·n2)

and
O(ℓ · ·N

2
· logQ · d2 ·n2)

in the nLrge regime. The (Q,,N) terms can be replaced by (Q,,N) if we are using the second
threshold decryption algorithm here.

9.6.6 TFHE.Threshod-Dec-1(ct, PK, 〈sk〉)

This algorithms complexity is dominated by the application of TFHE.StchSqsh and thenMPC.Open.
Thus, the round complexity is one, the computational complexity is

O(ℓ ·2 · νbk ·N · logN),
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whilst the communication complexity is

O(logQ · d ·n2).

9.6.7 XOR(〈〉, 〈b〉)

This has the same complexity asMPC.Mt.

9.6.8 BtAdd((〈〉)K−1=0 , (〈b〉)
K−1
=0 )

Wecall this algorithmwhenQ = 2K , and so the number of rounds is 2 · log logQ+1, inwhich one executes
O(logQ · log logQ)multiplication operations.

9.6.9 BtSm((〈〉)k−1=0 )

This is a purely local operation, and so is essentially for free.

9.6.10 BtDec(〈〉)

This requires a call toMPC.GenBts (consuming two rounds) to generate K secret shared random bits,
one call toMPC.Open (consuming one round) and then a call to BtAdd. Thus we require 2 · log logQ + 4
rounds of communication. The communication and computational complexity is dominated by the call
to BtAdd.

9.6.11 TFHE.Threshod-Dec-2(ct, 〈sk〉)

Apart fromtheBtDecoperation this requires twoextra rounds; one to implemen thesecuremultiplication
and one to executeMPC.Open.

9.6.12 ReShre(S1, S2, 〈sk〉S1 )

The round complexity here is (assuming S1 6= S2) three plus the round complexity of two synchronous
broadcasts, and is thus

3 + 2 · (t + 3) = 2 · t + 9.

Themain computational complexity comes from the application of SynDecodeGR and is thus

O(logq · dimsk ·d2 ·n3).

The communication complexity is, assuming parallel execution of the various Synch-Brodcsts, is
around

O(n2 · dimsk ·d · logQ),

where dimsk is the dimension of the secret key. This is N in the case of BGV/BFV. For TFHE it is ℓ if ƒ g is
unset, or ℓ + ·N if ƒ g is set.

9.6.13 Layer Four Summary

We summarize the above discussion in the following table:

Complexities
nSm/
nLrge

Protocol Rounds Communication Computation
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MPC.NeHope(N,B) 3 O(N · B · logQ · d ·n3) O(N · B · logQ · d2 ·n ·
�n
t

�

)
- - -

MPC.TUnƒorm(N, −2b,2b) 2 O(N · b · logQ · d ·n3) O(N · b · logQ · d2 ·n ·
�n
t

�

)
2 O(N · b · logQ · d ·n2) O(N · b · logQ · d2 ·n2)

BGV.Threshod-KeyGen(. . .) 5 O(N · B · logQ · d ·n3) O(N · B · logQ · d2 ·n ·
�n
t

�

)
- - -

BFV.Threshod-KeyGen(. . .) 5 O(N · B · logQ · d ·n3) O(N · B · logQ · d2 ·n ·
�n
t

�

)
- - -

BGV.Threshod-Dec(ct, 〈sk〉) 2 O(logQ · d ·n2 ·N) O(logQ · d2 ·n2 ·N)
- - -

BFV.Threshod-Dec(ct, 〈sk〉) 2 O(logQ · d ·n2 ·N) O(logQ · d2 ·n2 ·N)
- - -

TFHE.Threshod-KeyGen(. . .) 5 O(ℓ · ·N
2
· logQ · d ·n3) O(ℓ · ·N

2
· logQ · d2 ·n ·

�n
t

�

)

5 O(ℓ · ·N
2
· logQ · d ·n2) O(ℓ · ·N

2
· logQ · d2 ·n2)

TFHE.Threshod-Dec-1(ct, PK, 〈sk〉) 1 O(logQ · d ·n2) O(ℓ ·2 · νbk ·N · logN)
1 O(logQ · d ·n2) O(ℓ ·2 · νbk ·N · logN)

XOR(〈〉, 〈b〉) 1 O(logQ · d ·n3) O(logQ · d2 ·n ·
�n
t

�

)
1 O(logQ · d ·n2) O(logQ · d2 ·n2)

BtAdd((〈〉)K−1=0 , (〈b〉)
K−1
=0 ) 2 · log logQ + 1 O((logQ)2 · log logQ · d ·n3) O((logQ)2 · log logQ · d2 ·n ·

�n
t

�

)
2 · log logQ + 1 O((logQ)2 · log logQ · d ·n2) O((logQ)2 · log logQ · d2 ·n2)

BtSm((〈〉)K−1=0 ) - - -
- - -

BtDec(〈〉) 2 · log logQ + 4 O((logQ)2 · log logQ · d ·n3) O((logQ)2 · log logQ · d2 ·n ·
�n
t

�

)
2 · log logQ + 4 O((logQ)2 · log logQ · d ·n2) O((logQ)2 · log logQ · d2 ·n2)

TFHE.Threshod-Dec-2(ct, 〈sk〉) 2 · log logQ + 6 O((logQ)2 · log logQ · d ·n3) O((logQ)2 · log logQ · d2 ·n ·
�n
t

�

)
2 · log logQ + 6 O((logQ)2 · log logQ · d ·n2) O((logQ)2 · log logQ · d2 ·n2)

ReShre(S1, S2, 〈sk〉S1 ) 2 · t + 9 O(n2 · dimsk ·d · logQ) O(logq · dimsk ·d2 ·n3)
2 · t + 9 O(n2 · dimsk ·d · logQ) O(logq · dimsk ·d2 ·n3)

Table 16: Complexity of Layer Four Algorithms and Protocols. The top complexities for each row are for the
profiles nSm, whereas the bottom of each row are for the profiles nLrge.

9.6.14 Concrete Complexity of Key Generation

The above analytic complexities for key generation can seema little opaque, and in practice one executes
keygeneration for concrete FHEparameter sets, and thus asymptoticsmaynot give the correct feeling of
the complexity. Thus it is perhaps instructive to examine the concrete complexity of the key generation
methods for our particular parameter sets; which are by-far the most complex and time consuming of
our threshold operations.

The key concrete measure of performance in key generation is the number of multiplication triples
which need to be generated. Thus we concentrate solely on this metric. We write |NeHope(N,B)|T
etc to express the number of triples needed to execute the algorithm NeHope(N,B). This allows us to
recursively build up the formulae for |BGV.Threshod-KeyGen()|T using the following values:

|MPC.Mt(·, ·)|T = 1,

|MPC.GenBts()|T =  · |MPC.Mt(·, ·)|T (plus ε for BGV and BFV),

|MPC.NeHope(N,B)|T = |MPC.GenBts(2 ·N · B)|T ,

|BGV.Threshod-KeyGen(N,Q, P, B, R)|T = |MPC.NeHope(N,1)|T

+ 2 · |MPC.NeHope(N,B)|T

+ N · |MPC.Mt(·, ·)|T ,

|BFV.Threshod-KeyGen(N,Q, P, B, R)|T = |BGV.Threshod-KeyGen(N,Q, P, B, R)|T ,

|MPC.TUnƒorm(N, −2b,2b)|T = |MPC.GenBts(N · (b + 2))|T ,

|MPC.EncLWE(· · · , ℓ, ·)|T = |MPC.TUnƒorm(1, −2bℓ ,2bℓ )|T ,
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|MPC.EncGLWE(· · · , N,, ·)|T = |MPC.TUnƒorm(N, −2b·N ,2b·N )|T ,

|MPC.EncLe(· · · , ℓ, ν, ·)|T = ν · |MPC.EncLWE(· · · , ℓ, ·)|T ,

|MPC.EncGLe(· · · , N,,ν, ·)|T = ν · |MPC.EncGLWE(· · · , N,, ·)|T ,

|MPC.EncGGSW(· · · , N,, ·, ν, ·)|T = ·N · |MPC.Mt(·, ·)|T

+ ( + 1) · |MPC.EncGLe(· · · , N,,ν, ·)|T ,

|TFHE.Threshod-KeyGen(· · · , ℓ̂, ℓ, N,, · · · ,

· · · , νpksk , νksk , νbk , N,, ·, νbk , ·, ƒ g)|T = |MPC.GenBts(ℓ)|T

+ |MPC.GenBts(ℓ̂)|T

+ |MPC.TUnƒorm(ℓ̂, −2bℓ̂ ,2bℓ̂ )|T

+ ℓ̂ · |MPC.EncLe(· · · , ℓ, νpksk)|T

+ · |MPC.GenBts(N)|T

+ ·N · |MPC.EncLe(· · · , ℓ, νksk)|T

+ ƒ g · · |MPC.GenBts(N)|T

+ ℓ · |MPC.EncGGSW(· · · , N,, ·, νbk , ·)|T

+ ℓ · ƒ g · |MPC.EncGGSW(· · · , N,, ·, νbk , ·)|T ,

where we have interpreted ƒ g = ƒse to be the integer zero, and ƒ g = tre to be the integer one.
We can then plug in our parameters for BGV, BFV and TFHE, given in tables Table 5 and Table 7, to

find the exact value of the number of triples needed to be generated, in order to perform threshold key
generation for the threshold parameters of our three FHE schemes. These values are given in Table 17.

Scheme Table Number Triples
BGV/BFV Table 5 458,752

TFHE, type = LWE, P = 8, ƒ g = ƒse Table 7 53,432,222
TFHE, type = LWE, P = 8, ƒ g = tre Table 7 469,706,654

TFHE, type = LWE, P = 32, ƒ g = ƒse Table 7 21,867,500
TFHE, type = LWE, P = 32, ƒ g = tre Table 7 741,538,796

TFHE, type = F-GLWE, P = 8, ƒ g = ƒse Table 7 48,891,728
TFHE, type = F-GLWE, P = 8, ƒ g = tre Table 7 430,102,352

TFHE, type = F-GLWE, P = 32, ƒ g = ƒse Table 7 19,577,758
TFHE, type = F-GLWE, P = 32, ƒ g = tre Table 7 683,338,654

Table 17: Number of Triples Required for Threshold Key Generation.

Asonecan see thenumber are very large in termsof thenumber of tripleswhichneed tobecomputed.
In Appendix Bwe present a different methodology, in the threshold regime nSm, to perform threshold
key generation. The idea behind the modified method, is to replace the calls to MPC.NeHope and
MPC.TUnƒormwith a call to PRSS-Msk.Net in order to produce the underlying LWE noise samples.
This however entails changing the underlying FHE parameters, and so incurs a computational cost during
homomorphic operations.

The main issue with the number of triples is one of storage, especially if the offline phase is executed
before the online phase. Thus another solution, in order to avoid storing a large number of triples, one
could, within the offline phase, preprocess the shared random bits, and shares from the distributions
TUnƒorm and NeHope and just store these. This signficantly reduces the storage from billions of
secret sharings (recall each triple is itself three sharings) down to at most tens of millions. To see the
effect of this we present in Table 18 a table giving the storage required of the different offline data for
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the different parameter sets. Note, the (potentially) billions of triples still need to be generated, they just
do not need to be stored with this modification. It is this modification to the protocols which we adopt
in our implementation22 .

Number
Scheme Bits Triples NewHope TUniform
BGV/BFV 0 65536 3 0

TFHE, type = LWE, P = 8, ƒ g = ƒse 3,998 1,896,448 0 2,851,840
TFHE, type = LWE, P = 8, ƒ g = tre 8,094 5,689,344 0 17,075,200

TFHE, type = LWE, P = 32, ƒ g = ƒse 7,148 4,112,384 0 8,255,488
TFHE, type = LWE, P = 32, ƒ g = tre 11,244 8,224,768 0 32,929,792

TFHE, type = F-GLWE, P = 8, ƒ g = ƒse 3,920 1,736,704 0 2,611,200
TFHE, type = F-GLWE, P = 8, ƒ g = tre 8,016 5,210,112 0 15,636,480

TFHE, type = F-GLWE, P = 32, ƒ g = ƒse 7,070 3,792,896 0 7,602,176
TFHE, type = F-GLWE, P = 32, ƒ g = tre 11,166 7,585,792 0 30,359,552

Table 18: Number of Bits, Triples and Disitribution Samples Required for Threshold Key GenerationWhen Using
Less Offline Storage.

9.7 Layer Five Algorithm and Protocol Complexities

We also here elaborate on the proof sizes for the different proof

9.7.1 CRS-Gen.nt(sec, q̄, d̄, B̄)

There is nothing to analyze here.

9.7.2 CRS-Gen.Updte(ppj−1)

This is a protocol between a contributor, and the other parties. There is a single round of communication
from the contributor to the other parties, this consists of

(2 · B̄1) · |G| + (B̄1) · |Ĝ|,

where |G| denote the size of an element in the first pairing source group, and |Ĝ| denotes the size of an
element in the second pairing source group. Thus, assuming an elliptic curveG = E(Ft) and extension
degree k for Ĝ = E(Ftk ) and point compression is used, these require O(log t) and O(k · log t) bits to
represent them. Thus the communication complexity (per verifying party) is given by

O(k · B̄1 · log2 t).

The computational complexity of each verifier is dominated by 2 · B̄1 point multiplications inG, B̄1 point
multiplications in Ĝ, and two pairing product equations in order to check the verification equations (35).
The contributor needs to compute 2 · B̄1 point multiplications inG and B̄1 point multiplications in Ĝ to
compute ppj from ppj−1 .

9.7.3 CRS-Gen.Otpt()

There is nothing to analyze here.

22The changes to the protocol descriptions are immediate, but we opted to present the protocols in this document in there most
easy to understand manner; i.e. without this storage optimization.
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9.7.4 VC-Proe-1(p, (A,s),b)

The prover is required to compute B̄1 point multiplications inG and B̄1 point additions in Ĝ. The point
multiplications will dominate, and so we approximate this by

B̄1 ·G.

The above is a loose bound since the prover actually compute amulti-exponentiationswith B̄ generators
in a single multi-exponentiation.

9.7.5 VC-Verƒy-1(p, (A,s), prƒ )

The verifier is required to compute B̄1 point multiplications in bothG and Ĝ, as well as a single pairing
product equation of three terms. We express this as

B̄1 · (G + Ĝ) + PP.

The proof size of this proof system is given by (assuming an elliptic curve G = E(Ft) and extension
degree k for Ĝ = E(Ftk ) and point compression is used.)

sz = 2 · |G| + |Ĝ| = (2 + k) · log2 t.

9.7.6 VC-Proe-2(p, (A,s),b)

The prover is required to compute 6 · B̄1+2 ·N pointmultiplications inG and B̄1+3 ·N pointmultiplications
in Ĝ. We denote this by

(6 · B̄1 + 2 ·N) ·G + (B̄1 + 3 ·N) · Ĝ.

The above is a loose bound since the prover actually computes several multi-exponentiations with B̄ + 1
generators in each multi-exponentiation.

9.7.7 VC-Verƒy-2(p, (A,s), prƒ )

The verifier is required to compute 128 exponentiations in Ĝ and a product of eight pairings. We denote
this by

128 · Ĝ + 8 · PP.

The proof size of this proof system is given by (again, assuming an elliptic curveG = E(Ft) and extension
degree k for Ĝ = E(Ftk ) and point compression is used.)

sz = 8 · |G| + 5 · |Ĝ| = (8 + 5 · k) · log2 t.

9.7.8 MPCtHed-Proe-1((A,s),b)

Proof generation has time complexity dominated by

O(d · B · τ · (n − 1)).

The size of the proof as we have written is (in the absolutely worst case, where all bar one transcript is
rejected):

sz ≤ |H2| + |H4| + τ · sec · log2

�

2d log2Me

τ

�

+ η · (1 + |H1| + |H3|)
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+ τ · sec ·
�

n − 1 + log2
�

2d log2 ne
��

+ τ · (B · log2 A + B + |Commt|).

Note, as we use a hash based commitment we have

|H1| = |H2| = |H3| = |H4| = |Commt| = 2 · sec.

We also have A = 2 so this formula becomes:

sz ≤ 4 · sec · (1 + η) + η + τ · B · ( + 1)

+ sec · τ ·
�

2 + log2

�

2d log2Me

τ

�

+
�

n − 1 + log2
�

2d log2 ne
��

�

. (50)

To obtain specific parameters one strategy would be to minimize the proof time estimate above, subject
to a specific desired upper bound on the proof size.

9.7.9 MPCtHed-Verƒy-1((A,s), prƒ )

The verification takes roughly the same time as the proof generation, thus the complexity is

O(d · B · τ · (n − 1)).

9.7.10 MPCtHed-Proe-2((A,s),b)

Proof generation has time complexity dominated by

O
�

B ·
�

ND + d ·D · (N − 1)
�

�

.

The proof size is the same as that described in equation 50 but with n = ND .

9.7.11 MPCtHed-Verƒy-2((A,s), prƒ )

Again, verification takes roughly the same time as the proof generation, thus the complexity is

O
�

B ·
�

ND + d ·D · (N − 1)
�

�

.

9.7.12 XOF-Shre(,XOF)

This clearly has complexity O(t · n).

9.7.13 MPCtHed-Proe-3((A,s),b)

Proof generation has time complexity dominated by

O(d · B · τ · t).

9.7.14 MPCtHed-Verƒy-3((A,s), prƒ )

Once again, verification takes roughly the same time as the proof generation, thus the complexity is

O(d · B · τ · t).
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The proof size for this third set of MPC-in-the-Head proofs is given by

sz ≤ |H2| + |H4| + τ · sec · log2

�

2d log2Me

τ

�

+ τ · (B + t · sec + B · log2 q + (n − t) · |Commt|)

= 4 · sec + τ · sec · log2

�

2d log2Me

τ

�

+ τ · (B + t · sec + B · log2 q + 2 · (n − t) · sec)

= sec ·
�

4 + τ ·
�

2 · n − t + log2

�

2d log2Me

τ

���

+ τ · B · (1 + log2 q)

Note that, the proof size depends on the parameter q, unlike the prior proof.

9.7.15 Layer Five Summary

We summarize the above discussion in the following table:

Complexities
Protocol Rounds Communication Computation
CRS-Gen.nt(sec, q̄, d̄, B̄) - - -
CRS-Gen.Updte(ppj−1) 1 O(k · B̄1 · log2 t) 2 · B̄1 ·G + B̄1 · Ĝ
CRS-Gen.Otpt() - - -
VC-Proe-1(p, (A,s),b) - - 3 · B̄1 ·G
VC-Verƒy-1(p, (A,s), prƒ ) - - B̄1 · (G + Ĝ) + PP
VC-Proe-2(p, (A,s),b) - - (6 · B̄1 + 2 ·N) ·G + (B̄1 + 3 ·N) · Ĝ
VC-Verƒy-2(p, (A,s), prƒ ) - - 128 · Ĝ + 8 · PP
MPCtHed-Proe-1((A,s),b) - - O(d · B · τ · (n − 1))
MPCtHed-Verƒy-1((A,s), prƒ ) - - O(d · B · τ · (n − 1))
MPCtHed-Proe-2((A,s),b) - - O

�

B ·
�

ND + d ·D · (N − 1)
�

�

MPCtHed-Verƒy-2((A,s), prƒ ) - - O
�

B ·
�

ND + d ·D · (N − 1)
�

�

XOF-Shre(,XOF) - - O(t · n)
MPCtHed-Proe-3((A,s),b) - - O(d · B · τ · t)
MPCtHed-Verƒy-3((A,s), prƒ ) - - O(d · B · τ · t)

Table 19: Complexity of Layer Five Algorithms and Protocols.
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10 Notation

10.1 Acronyms

Term Meaning
ABB Arithmetic Black Box
AES Advanced Encryption Standard

A-w-A Active-with-Abort
API Application Programming Interface
BCH Bose–Chaudhuri–Hocquenghem code
BFV Brakerski–Fan–Vercauteren FHE Scheme
BGV Brakerski–Gentry–Vaikuntanathan FHE Scheme
BGW Ben-Or–Goldwasser–Wigderson MPC Protocol
CCD Chaum–Crépeau–Damgård MPC Protocol
CRT Chinese Remainder Theorem
DCRT Double CRT Representation
FFT Fast Fourier Transform
FHE Fully Homomorphic Encryption

F-GLWE Flattened GLWE
GLWE Generalized Learning-With-Errors
GMW Goldreich–Micali–Wigderson MPC Protocol
KEM Key Encapsulation Mechanism
LAN Local Area Network
LWE Learning-With-Errors
MAC Message Authentication Code
MPC Multi-Party Computation

MK-FHE Multi-Key Fully Homomorphic Encryption
MP-FHE Multi-Party Fully Homomorphic Encryption

NTT Number Theoretic Transform
PBS Programmable Bootstrapping
PRF Pseudo-Random Function
PRG Pseudo-RandomGenerator
PKI Public Key Infrastructure
PRSS Pseudo-Random Secret Sharing
PRZS Pseudo-Random Zero Sharing
ROM RandomOracle Model
SFE Secure Function Evaluation
SPDZ Smart–Pastro–Damgård–Zakarias Protocol
TFHE Torus Fully Homomorphic Encryption Scheme
TLS Transport Layer Security Protocol
UC Universal Composability
VSS Verifiable Secret Sharing
WAN Wide Area Network
XOF Extendable Output Function

ZKPoK Zero-Knowledge Proof-of-Knowledge

Table 20: Table of Acronyms.
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10.2 Mathematical Symbols

Term Meaning See Page
sec A computational security parameter (usually set to 128) 23
dst A statistical distance security parameter (usually set to 80) 23
stt A statistical security parameter related to masking (usually set to

40)
23

n Number of players in our protocols 23
t Maximum number of players who can be corrupted 23
�n
t

�

Number of combinations of t items selected fromn things 27
q = pk or p1 · · ·pk Themodulus for the Galois Ring we require 27

Q LWE ciphertext modulus 32
P LWE plaintext modulus 32

NeHope(N,B) The NewHope distribution on [−B,B]N 33
TUnƒorm(N,A,B) An approximately uniform distribution on [A,B]N 35

← Assignment 22
Zp Ring of p-adic integers 22
Z/(m) Ring of integers modulom 22
nSm The profiles {nSƒH, nmƒH} 27
nLrge The profiles {nMƒH+ , nLƒH+ , nEƒH+} 27

nSmBnd The division between the profiles nSm and nLrge 28
N Ring-LWE ring dimension 51
R(M) Global (non-reduced) LWE cyclotomic ring of degree N = ϕ(M) 51
R
(M)
Q The ring R(M) localized at Q 51
RQ Abuse of notation for R(M)Q whenM is implied by the context 51
 · b Dot product of two vectors 51
 � b Ring product of two ring elements 51

Δ = bQcP Scaling factor for BFV/TFHE 51
↔
 The reverse of a vector 52

erƒc The complimentary error function 56
cn() Canonical embedding of a ring element  ∈ R 56
‖‖∞ Polynomial basis norm of  ∈ R 56
‖‖cn Canonical basis norm of  ∈ R 56
EM The ring constant of RM 56

cerr,N The error constant for applying erƒc in a ring of dimension N 57
Kn(z) Themodified Bessel function of the second kind 58
BSce Noise increase due to Type-I modulus switching 62
σsk BGV secret key standard deviation 63

BKeyStch BGV key switch noise bound 66
BMt BGV noise management constant after multiplications 66
nSƒH A NIST defined threshold profile 99
nMƒH A NIST defined threshold profile 99
nLƒH A NIST defined threshold profile 99
nEƒH A NIST defined threshold profile 99
nmƒH Amodified threshold profile 99
nLƒH+ Amodified threshold profile 99
nEƒH+ Amodified threshold profile 99
nMƒH+ Amodified threshold profile 99
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p The smallest prime dividing q 106
d The degree of the Galois Ring wewill use, we have the constraint

pd > n

106

F(X) A fixedmonic polynomial in Z[X] of degree d, which is irreducible
modulo all primes dividing q

106

GR(q, F) The Galois Ring Z/(q)[X]/F(X) 106
Fpd The finite field GR(p, F) 106

E = {α1, . . . , αn} A fixed exceptional sequence in GR(q, F) 107
L(Z) The -th Lagrange polynomial associated with the fixed exception

sequence
107

Mr,c The Vandermonde matrix of dimension r × c associated to the
sequence {α1, . . . , αr}

108

RSn,v Reed–Solomon code consisting of vectors of length n, defined by
polynomials of degree bounded by v, evaluated at the set E

109

Sc(Z) The syndrome polynomial of a received vector c 109
〈s〉 Shamir secret sharing of degree t 113
〈s〉d Shamir secret sharing of degree d 113

Hsh2·sec(m) A hash function such as SHA-256 or SHA-3 117
G, Ĝ Elliptic curve groups related to a pairing 162
GT The pairing target group (a subgroup of a finite field) 162
e(·, ·) The pairing map itself 162

ΔSD(D1, D2) Statistical distance between distribution D1 and D2 196

Table 21: Table of Mathematical Symbols.

10.3 Algorithms and Protocols

Algorithm/Protocol Meaning See Page
DSep(str) Creation of domain separation string 22

SHAKE-256(m,d) Application of SHA-3 SHAKE256 on a messagem producing d
bits of output

50

XOF.nt(seed, str) Initialization of a XOF object 50
XOF.Net(n) Get the next n output bits from the XOF object 50
XOF.Net(N,q) Get the next N output elements in Z/(q) from the XOF 50

ModStchQ→q(,b) Modulus switching method for Ring-LWE ciphertexts 60
BGV.KeyGen() Conventional BGV key generation 64
BGV.Enc(m,pk) Conventional BGV encryption 64
BGV.Dec(ct,sk) Conventional BGV decryption 64
BGV.Sce(ct, ℓ′) Conventional BGV scaling operation 65

BGV.KeyStch(ct, ℓ′) Conventional BGV key switching operation 65
BGV.Add(ct, ctb) Conventional BGV homomorphic addition 67
BGV.Mt(ct, ctb) Conventional BGV homomorphic multiplication 67
BGV.toBFV(ct) BGV to BFV conversion routine 72
BFV.toBGV(ct′) BFV to BGV conversion routine 72
BFV.Enc(m,pk) Conventional BFV encryption 74
BFV.Dec(ct,sk) Conventional BFV decryption 74
BFV.Add(ct, ctb) Conventional BFV homomorphic addition 74
BFV.Mt(ct, ctb) Conventional BFV homomorphic multiplication 74

EncLWE(m,s) LWE encryption sub-procedure for TFHE 78
EncGLWE(m, (s0, . . . ,s−1)) GLWE encryption sub-procedure for TFHE 78

EncLe(m,s) LWE leveled encryption sub-procedure for TFHE 79
EncGLe(m, (s0, . . . ,s−1)) GLWE leveled encryption sub-procedure for TFHE 79
EncGGSW(m, (s0, . . . ,s−1)) GGSW leveled encryption sub-procedure for TFHE 79

EpndLWE(XOF,Q, ℓ) LWE key expansion sub-procedure for TFHE 80
EpndGLWE(XOF,Q,N,) GLWE key expansion sub-procedure for TFHE 80
EpndLe(XOF,Q, ℓ, ν) LWE leveled key expansion sub-procedure for TFHE 80
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EpndGLe(XOF,Q,N,,ν) GLWE leveled key expansion sub-procedure for TFHE 80
EpndGGSW(XOF,Q,N,,ν) GGSW leveled key expansion sub-procedure for TFHE 80

TFHE.KeyGen(. . .) Conventional TFHE key generation 81
TFHE.Epnd(seed) Conventional TFHE public key expansion 81
TFHE.Enc(m,pk) Conventional TFHE encryption 82
TFHE.Dec(ct,sk) Conventional TFHE decryption 82

TFHE.DmensonStch(ct, KSK) Conventional TFHE dimension switching 84
TFHE.Add(ct1, ct2) Conventional TFHE addition 87

TFHE.ScrMt(α, ct) Conventional TFHE scalar multiplication 87
TFHE.ModStch(ct) Conventional TFHEmodulus switching 76
TFHE.Ftten(ct) Convert a GLWE to LWE ciphertext 90

TFHE.KeyStch(ct, KSK) Conventional TFHE key switching 89
TFHE.EternProdct(ct, CT) Form an external product between a GLWE and a GGSW cipher-

text
91

TFHE.BootStrp(ct, ƒ , BK) Conventional TFHE programmable bootstrapping with no key
switching

92

TFHE.PBS(ct, ƒ , PK) Conventional TFHE programmable bootstrapping and refresh 92
TFHE.StchSqsh(ct, BK) Conventional TFHE boosting of the ciphertext modulus and di-

mension, and reducing the relative error
93

GRencode(α) Conversion of a Galois Ring element to a byte string 107
BW(c, e) Berlekamp–Welch algorithm for the finite field F

pd
110

Go(c, e) Gao decoding algorithm for the finite field F
pd

111
ErrorCorrect(q,c, e) Error correction algorithm for the Galois Ring GR(q, F) 112
SynDecodeF(p, Se(Z)) Syndrome decoding algorithm for the finite field F

pd
113

CorrectF(p, r) Error correction via syndrome decoding for the finite field F
pd

113
SynDecodeGR(q, Se(Z)) Syndrome decoding algorithm for the Galois Ring GR(q, F) 114

CorrectGR(q, r) Error correction via syndrome decoding for the Galois Ring
GR(q, F)

114

Shre() Algorithm to generate a sharing of a specific value in Z/(q) 114
OpenShre({〈〉}∈S) Algorithm to open a sharing (could abort if invalid) 114

Commt(m) Committing to a message 117
Verƒy(c, o,m) Opening a commitment 117

Soe() Solve a quadratic equation in GR(2k , F) 118
Sqrt() Finding square roots in GR(q, F), for q odd 118

TreePRG.Gen(seed, d) TreePRG initialization 121
TreePRG.GenSb(seed, b, d, ) TreePRG sub-routine for initialization 121
TreePRG.PncSb(D, b, T, ) TreePRG sub-routine for creation of a punctured ordered list 121
TreePRG.Pnc(seed, d, T) TreePRG creation of a punctured ordered list 121
TreePRG.GenPnc(D,T, d) TreePRG generate the seeds from a punctured ordered list 121
Synch-Brodcst(S,m) Synchronous reliable broadcast mechanism 123
RobstOpen(P , 〈〉d) Robustly open a sharing of degree d to playerP 125
RobstOpen(S, 〈〉d) Robustly open a sharing of degree d to the players in S 125
VSS(Pk , s, t, Corrpt) A VSS protocol forPk to share s amongst the parties 126
AgreeRndom(S, k) Allow a subset S of players to agree on a random number 127

AgreeRndom--Abort(S, k) Allow a subset S of players to agree on a random number, with
confirmation

128

HAR(α) Hash function used in AgreeRndom-Robst 127
AgreeRndom-Robst(S, k, 〈r〉) A robust version of AgreeRndom 128

PRSS.nt() Active-with-abort initialize a method for obtaining sharings of
random values

130

PRSS.nt(Corrpt) Robust initialize a method for obtaining sharings of random val-
ues

130

PRSS.get-conters() Return the internal counters for a PRSS object 130
PRSS.Net() Obtain the next random PRSS sharing 131

PRSS.Check(cnt, Corrpt) Obtain data needed to check PRSS usage in a protocol 131
PRZS.Net() Obtain the next random PRZS sharing 132

PRZS.Check(cnt, Corrpt) Obtain data needed to check PRZS usage in a protocol 132
PRSS-Msk.Net(Bd, stt) Obtain the next random PRSS-Mask sharing 133

ConFp(Corrpt) A coin flipping protocol 134
MPCS.nt() Initialization for the MPC routines in threshold profile nSm 136

MPCS.GenTrpes(Dspte) Offline triple generation for the MPC routines in threshold profile
nSm

136

MPCS.NetRndom(Dspte) A renaming of PRSS.Net() for the MPC engine 136
ShreDspte(P, s, d,Dspte) Secret sharing with disputes 138

HLDS(, g, ) Hash function for use in LocSngeShre etc 139
LocSngeShre(P, (s1, . . . , sℓ), Dspte) Batched VSS of single degree t sharings 140
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LocDobeShre(P, (s1, . . . , sℓ), Dspte) Batched VSS of double degree (t,2 · t) sharings 141
SngeShrng.nt(Dspte) Initialize a single sharing for threshold profile nLrge 142
SngeShrng.Net(Dspte) Output the next single sharing for threshold profile nLrge 142
DobeShrng.nt(Dspte) Initialize a double sharing for threshold profile nLrge 142
DobeShrng.Net(Dspte) Output the next double sharing for threshold profile nLrge 142

MPCL.nt(Dspte) Initialization for the MPC routines in threshold profile nLrge 143
MPCL.GenTrpes(Dspte) Offline triple generation for the MPC routines in threshold profile

nLrge

143

MPCL.NetRndom(Dspte) A renaming of SngeShrng.Net(Dspte) for the MPC en-
gine

143

MPC.Mt(〈〉, 〈y〉) Method to multiply two secret shared values 145
MPC.Open(〈〉,U) Method to open value in the MPC engine (a rename of

RobstOpen)
145

MPC.GenBts() Returns  random shared bit values 145
MPC.NeHope(N,B) MPC generation of N samples from the NeHope distribution

with parameter B
149

MPC.TUnƒorm(N, −2b,2b) MPC generation of N samples from a tweaked uniform distribu-
tion on [−2b, . . . ,2b]

149

BGV.Threshod-KeyGen(. . .) Threshold key generation for the BGV scheme 150
BGV.Threshod-Dec(ct, 〈sk〉) Threshold decryption for the BGV scheme 151
BFV.Threshod-KeyGen(. . .) Threshold key generation for the BFV scheme 152
BFV.Threshod-Dec(ct, 〈sk〉) Threshold decryption for the BFV scheme 152

MPC.EncLWE(. . .) AnMPC version of EncLWE 153
MPC.EncGLWE(. . .) AnMPC version of EncGLWE 153
MPC.EncLe(. . .) AnMPC version of EncLe 153
MPC.EncGLe(. . .) AnMPC version of EncGLe 153
MPC.EncGGSW(. . .) AnMPC version of EncGGSW 153

TFHE.Threshod-KeyGen(. . .) Threshold key generation for the TFHE scheme 154
TFHE.Threshod-Dec-1(ct, PK, 〈sk〉) First TFHEmethod for threshold decryption using noise flooding 155

XOR(〈〉, 〈b〉) MPC XOR evaluation of shared bits 157
BtAdd

�

(〈〉)K−1=0 , (〈b〉)
K−1
=0

�

MPC evaluation of bitwise addition of two K-bit numbers 157
BtSm

�

(〈〉)K−1=0

�

MPC evaluation of the sum
∑

 · 2 157
BtDec(〈〉) MPC bit decomposition of the shared value 〈〉 157

TFHE.Threshod-Dec-2(ct, 〈sk〉) Second TFHE method for threshold decryption using bit-
decomposition

158

ReShre(S1, S2, 〈sk〉S1 ) Reshare a secret from set of players S1 to set of players S2 159
CRS-Gen(sec, q̄, d̄, B̄) CRS generation method for the VC-based ZKPoKs 165

Hc Hash function used in VC-based proofs 164
Ht Hash function used in VC-based proofs 164
Hω Hash function used in VC-based proofs 164
Hgg Hash function used in VC-based proofs 164
Hsh′ Hash function used in VC-based proofs 164
Hgg′ Hash function used in VC-based proofs 164
Hnmp Hash function used in VC-based proofs 164

Hϕ Hash function used in VC-based proofs 164
Hξ Hash function used in VC-based proofs 164
Hχ Hash function used in VC-based proofs 164
Hz Hash function used in VC-based proofs 164
Hsh Hash function used in VC-based proofs 164
HR Hash function used in VC-based proofs 164

CRS-Gen.nt(sec, q̄, d̄, B̄) The CRS generation ceremony initialization phase 166
CRS-Gen.Updte(ppj−1) The CRS generation ceremony update phase 166

CRS-Gen.Otpt() The CRS generation ceremony output phase 166
VC-Proe-1(p, (A,s),b) The first VC commitment based prover 167
VC-Verƒy-1(p, (A,s), prƒ ) The first VC commitment based verifier 168
VC-Proe-2(p, (A,s),b) The second VC commitment based prover 169
VC-Verƒy-2(p, (A,s), prƒ ) The second VC commitment based verifier 173

H1() Hash function used in MPC-in-the-Head proofs 174
H2() Hash function used in MPC-in-the-Head proofs 174
H3() Hash function used in MPC-in-the-Head proofs 174
H4() Hash function used in MPC-in-the-Head proofs 174
H5() Hash function used in MPC-in-the-Head proofs 175
H6() Hash function used in MPC-in-the-Head proofs 175

Shƒ ƒ e(XOF,A1, . . . , An) Fisher-Yates shuffle 175
RndEem(XOF, n, τ) Obtain a random element of {1, . . . , n}τ 175

H7() Hash function used in MPC-in-the-Head proofs 181

237



MPCtHed-Proe-1((A,s),b) Basic KKW-based MPC-in-the-Head prover 176
MPCtHed-Verƒy-1((A,s), prƒ ) Basic KKW-based MPC-in-the-Head verifier 178
MPCtHed-Proe-2((A,s),b) Hypercube-variant of KKW-based prover 180
MPCtHed-Verƒy-2((A,s), prƒ ) Hypercube-variant of KKW-based verifier 180

XOF-Shre(,XOF) XOF-based secret sharing for Shamir-based MPC-in-the-Head 181
MPCtHed-Proe-3((A,s),b) Shamir based MPC-in-the-Head prover 182
MPCtHed-Verƒy-3((A,s), prƒ ) Shamir based MPC-in-the-Head verifier 183

Table 22: Table of Algorithms and Protocols.
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Appendix

A Security Parameter Tables

These tables provide the values which were discussed in Section 5.2. They provide ball park figures
for security of the LWE problemwith the given secret key distribution, size of Q, the generalized LWE
dimension ·N andwith the noise distribution given by either by TUnƒorm(·, −2b,2b) orNeHope(·, B).
There were computed with the lwe-estimator [APS15] update from December 16th 2024.

Q ≈ 2512 Q ≈ 2768 Q ≈ 21024 Q ≈ 21536 Q ≈ 22048

B  ·N sec  ·N sec  ·N sec  ·N sec  ·N sec

1 20000 131.3 30000 132.1 40000 132.5 60000 133.3 80000 133.7
2 20000 131.5 30000 132.1 40000 132.6 60000 133.3 80000 133.8
3 20000 131.5 30000 132.2 40000 132.7 60000 133.3 80000 133.8
4 20000 131.5 30000 132.3 40000 132.7 60000 133.3 80000 133.8

Table 23: BGV/BFV Style Parameters. Secret key distribution NeHope(N,1), noise distribution NeHope( ·
N,B), ·N a multiple of 5000, and large Q.

Q = 264 Q = 2128

b  ·N sec  ·N sec

0 2626 130.11 5120 130.72
1 2595 130.10 5120 131.58
2 2559 130.09 5120 132.50
3 2520 130.08 5120 133.65
4 2481 130.06 5120 134.79
5 2442 130.05 5120 135.94
6 2403 130.04 5120 136.94
7 2363 130.32 4864 130.74
8 2328 131.87 4864 131.74
9 2290 130.14 4864 132.89
10 2251 130.12 4864 134.05
11 2212 130.11 4864 135.46
12 2173 130.10 4864 136.47
13 2133 130.08 4608 130.13
14 2094 130.07 4608 131.27
15 2055 130.05 4608 132.27
16 2016 130.04 4608 133.70
17 1977 130.03 4608 134.85
18 1941 132.70 4608 136.14
19 1902 130.13 4608 137.28
20 1862 130.11 4352 130.66
21 1823 130.09 4352 131.66
22 1784 130.08 4352 133.09
23 1744 130.06 4352 134.25
24 1705 130.04 4352 135.67
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25 1666 130.02 4352 136.95
26 1630 130.01 4352 138.38
27 1593 130.26 4096 131.03
28 1554 130.24 4096 132.32
29 1514 130.22 4096 133.50
30 1475 130.19 4096 135.18
31 1435 130.17 4096 136.19
32 1396 130.15 4096 137.69
33 1359 130.21 3840 130.13
34 1319 130.19 3840 131.42
35 1279 130.17 3840 132.89
36 1240 130.16 3840 134.52
37 1200 130.13 3840 135.85
38 1163 130.22 3840 137.37
39 1123 130.19 3840 139.00
40 1083 130.17 3584 130.86
41 1044 130.14 3584 132.22
42 1004 130.12 3584 133.94
43 966 130.19 3584 135.38
44 926 130.16 3584 136.94
45 886 130.13 3584 138.66
46 848 130.26 3584 140.23
47 808 130.17 3328 131.16
48 768 130.13 3328 132.87
49 729 130.19 3328 134.60
50 - - 3328 136.17
51 - - 3328 138.17
52 - - 3328 139.90
53 - - 3072 130.39
54 - - 3072 132.04
55 - - 3072 133.96
56 - - 3072 135.81
57 - - 3072 137.61
58 - - 3072 139.56
59 - - 3072 141.60
60 - - 2816 130.89
61 - - 2816 132.93
62 - - 2816 134.90
63 - - 2816 137.03
64 - - 2816 139.06
65 - - 2816 141.34
66 - - 2560 130.09
67 - - 2560 131.95
68 - - 2560 134.24
69 - - 2560 136.38
70 - - 2560 138.71
71 - - 2560 141.11
72 - - 2560 143.45
73 - - 2304 130.79
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74 - - 2304 133.15
75 - - 2304 135.59
76 - - 2304 138.16
77 - - 2304 140.60
78 - - 2304 143.49
79 - - 2304 146.18
80 - - 2048 131.99
81 - - 2048 134.78
82 - - 2048 137.49
83 - - 2048 140.49
84 - - 2048 143.42
85 - - 2048 146.65
86 - - 1792 130.51
87 - - 1792 133.41
88 - - 1792 136.66
89 - - 1792 139.96

Table 24: TFHE Style Parameters. Secret key distribution {0,1}N , noise distribution TUnƒorm( ·N, −2b,2b),
restricted ·N to a multiple of 256when Q = 2128 .

B A Modified Threshold Key Generation

In the main body we comment that the method for threshold key generation presented requires an
offline phase which needs to produce a large number of secret shared random bit values, which in turn
require us to produce a large number of multiplication triples. This is because, due to Design Decision 22
we aim to produce FHE keys for use in our threshold protocol have the same properties/sizes as in
non-threshold protocols. Thus the FHE parameters should not depend on eithern or t.

In this Appendix we present a half-way-house approach in which the FHE parameters depend
slightly on the values ofn and t, but the number of multiplication triples required to be produced in the
offline phase are smaller. This method only works for threshold profiles nSm as it requires access to
the operation PRSS-Msk.Net.

Recall PRSS-Msk.Net(Bd, stt) produces the secret sharing of a sumof uniformly randomvalues in
the range [−2stt ·Bd, . . . ,2stt ·Bd] . It was used previously to statisticallymask a value of size bounded
by Bd. The sum consists of

�n
t

�

terms, and during the execution of PRSS-Msk.Net(Bd, stt) adversary
can learn up to all bar one of the random values making up the sum. Write the shared value produced by
a call to PRSS-Msk.Net(Bd, stt) as eh + e , where eh is a value unknown to the adversary and e is
the part of the sum known by the adversary.

However, if we call PRSS-Msk.Net(Bd,0) then we can treat the output as the noise term for an
LWE sample, i.e.

(, b =  · s + e)

where e is the underlying value secret shared by the call to PRSS-Msk.Net(Bd,0). The size of the
noise sample is bounded by

|eh + e| ≤
�

n

t

�

· Bd.
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On one hand it has standard deviation

σBd =

√

√

√

�

n

t

�

·
2 · Bd
p
12

=

√

√

√

�

n

t

�

/3 · Bd.

On the other hand the LWE security is only achieved from the unknown value eh and not the sum eh + e .
One can think of using such amethod to generate the LWE sample as sampling eh + e as the LWE noise
to produce the LWE sample,

(, b =  · s + eh + e)

and then leaking the value e to the adversary. Thus the adversary obtains the LWE sample

(, b′ =  · s + eh).

In the worst case we can assume there is only one uniformly random value in the sum eh , and so our
LWE security depends solely on the size of Bd.

Thus whilst we can sample the noise using a fixed parameter Bd, the noise analysis (which produces
the final FHE parameters) will depend on the standard deviation, i.e. it will depend on

�n
t

�

. The advantage
though is that the randombits, needed to produce the noise values in our previousmethods, are replaced
by a non-interactive call to PRSS-Msk.Net. We still require random bits to produce the secret key
distribution, but these are a relatively small number of bits.

This results in the following algorithmic changes, which we outline in Figure 115, Figure 116, and
Figure 117. The main changes are as follows:

• BGV:The change is in line 7 and9,wherewe replace a call toNeHope by a call to PRSS-Msk.Net.
Random bits are still required in line 1, in order to generate the secret key.

• BFV: Exactly the same change is applied in this algorithm as was done for BGV.
• TFHE:We replace calls toMPC.TUnƒormwith calls to PRSS-Msk.Net in three places. In line 2
ofMPC.EncLWE , in line 2 ofMPC.EncGLWE and in line 9 of TFHE.Threshod-KeyGen-2.

The concrete complexities, from Section 9.6.14, become, with the other formulae remaining the same,

|BGV.Threshod-KeyGen-2(N,Q, P, B, R)|T = |MPC.NeHope(N,1)|T

+ N · |MPC.Mt(·, ·)|T ,

|MPC.EncGGSW(· · · , N,, ·, ν, ·)|T = ·N · |MPC.Mt(·, ·)|T ,

|TFHE.Threshod-KeyGen-2(· · · , ℓ̂, ℓ, N,, · · · ,

· · · , νpksk , νksk , νbk , N,, ·, νbk , ·, ƒ g)|T = |MPC.GenBts(ℓ)|T

+ |MPC.GenBts(ℓ̂)|T

+ · |MPC.GenBts(N)|T

+ ƒ g · · |MPC.GenBts(N)|T

+ ℓ · |MPC.EncGGSW(· · · , N,, ·, νbk , ·)|T

+ ℓ · ƒ g · |MPC.EncGGSW(· · · , N,, ·, νbk , ·)|T
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BGV Threshold Key Generation - V2

BGV.Threshod-KeyGen-2(N,Q, P, B, R):
Unless otherwise marked, all the secret sharings in this algorithm are modulo q = T = Q · R.

1. 〈sk〉 ← MPC.NeHope(N,1).
2. 〈pk〉 ← MPCO.NetRndom().
3. 〈pk′


〉 ← MPCO.NetRndom().

4. pk ← MPC.Open(〈pk〉).
5. pk′


← MPC.Open(〈pk′


〉).

6. pk ← pk (mod Q).
7. 〈epk〉 ← PRSS-Msk.Net(B, stt).

This is in fact N calls to PRSS-Msk.Net, one per coefficient
8. 〈pkb〉 ← pk � 〈sk〉 + P · 〈epk〉.
9. 〈e′

pk
〉 ← PRSS-Msk.Net(B, stt).

This is intact N calls to PRSS-Msk.Net, one per coefficient.
10. For , j ∈ [0, . . . , N − 1] do

(a) 〈s,j〉 ← MPC.Mt(〈sk〉, 〈skj〉).
11. 〈s〉 ← 〈0〉.
12. For , j ∈ [0, . . . , N − 1] do

(a) If  + j < N then 〈s+j〉 ← 〈s+j〉 + 〈s,j〉.
(b) Else 〈s+j−N〉 ← 〈s+j−N〉 − 〈s,j〉.

13. 〈pk′
b
〉 ← pk′


� 〈sk〉 + P · 〈e′

pk
〉 − R · 〈s〉.

14. pkb ← MPC.Open(〈pkb〉).
15. pk′

b
← MPC.Open(〈pk′

b
〉).

16. pkb ← pkb (mod Q).
17. 〈sk〉Q1 ← 〈sk〉 (mod Q1), i.e. restrict 〈sk〉 to a secret sharing modulo Q1 .
18. pk← {(pk,pkb), (pk

′

,pk′

b
)}.

19. Return (pk, 〈sk〉Q1 ).

Figure 115: BGV Threshold Key Generation V2, for Threshold Profile nSm.
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BFV Threshold Key Generation - V2

BFV.Threshod-KeyGen-2(N,Q, P, B, R):
Unless otherwise marked, all the secret sharings in this algorithm are modulo q = T = Q · R.

1. 〈sk〉 ← MPC.NeHope(N,1).
2. 〈pk〉 ← MPCO.NetRndom().
3. 〈pk′


〉 ← MPCO.NetRndom().

4. pk ← MPC.Open(〈pk〉).
5. pk′


← MPC.Open(〈pk′


〉).

6. pk ← pk (mod Q).
7. 〈epk〉 ← PRSS-Msk.Net(B, stt).

This is infant N calls to PRSS-Msk.Net, one per coefficient
8. 〈pkb〉 ← pk � 〈sk〉 + 〈epk〉.
9. 〈e′

pk
〉 ← MPC.NeHope(N,B).

10. 〈e′
pk
〉 ← PRSS-Msk.Net(B, stt).

This is infect N calls to PRSS-Msk.Net, one per coefficient
11. For , j ∈ [0, . . . , N − 1] do

(a) 〈s,j〉 ← MPC.Mt(〈sk〉, 〈skj〉).
12. 〈s〉 ← 〈0〉.
13. For , j ∈ [0, . . . , N − 1] do

(a) If  + j < N then 〈s+j〉 ← 〈s+j〉 + 〈s,j〉.
(b) Else 〈s+j−N〉 ← 〈s+j−N〉 − 〈s,j〉.

14. 〈pk′
b
〉 ← pk′


� 〈sk〉 + P · 〈e′

pk
〉 − R · 〈s〉.

15. pkb ← MPC.Open(〈pkb〉).
16. pk′

b
← MPC.Open(〈pk′

b
〉).

17. pkb ← pkb (mod Q).
18. 〈sk〉Q1 ← 〈sk〉 (mod Q1), i.e. restrict 〈sk〉 to a secret sharing modulo Q1 .
19. pk← {(pk,pkb), (pk

′

,pk′

b
)}.

20. Return (pk, 〈sk〉Q1 ).

Figure 116: BFV Threshold Key Generation V2, for Threshold Profile nSm.
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TFHE Threshold Key Generation - V2

MPC.EncLWE(〈m〉, 〈s〉;XOF, P′, Q, ℓ, ƒ g):
1. ← EpndLWE(XOF,Q, ℓ).
2. 〈e〉 ← PRSS-Msk.Net(2bℓ , stt).
3. 〈b〉 ←  · 〈s〉 + 〈e〉 + (Q/P′) · 〈m〉.
4. If ƒ g return (, 〈b〉), else return 〈b〉.

MPC.EncGLWE(〈m〉, (〈s0〉, . . . , 〈s−1〉);XOF, P′, Q,N,, ƒ g):
1. (0, . . . ,−1)← EpndGLWE(XOF,Q,N,).
2. 〈e〉 ← PRSS-Msk.Net(2b·N , stt).

This is infarct N calls to PRSS-Msk.Net, one per coefficient
3. 〈b〉 ←

∑−1
=0  � 〈s〉 + 〈e〉 + (Q/P′) · 〈m〉 (mod Q).

4. If ƒ g return (0, . . . ,−1, 〈b〉), else return 〈b〉.

TFHE.Threshod-KeyGen-2(P,Q, ƒ g, ℓ̂, ℓ, N,, βpksk , βksk , βbk , νpksk , νksk , νbk , N,,Q, βbk ,
νbk , ƒ g, ƒ g):

1. If ƒ g then 〈·〉 denotes secret sharing modulo q = Q, otherwise it denotes secret
sharing modulo q = Q.

2. For  = 1, . . . , dsec/ log2 qe do
(a) 〈seed〉 ← MPCO.NetRndom().
(b) seed ← MPC.Open(〈seed〉).

3. seed← (seed1‖ . . . ‖seeddsec/ log2 qe ) (mod 2sec).
4. XOF.nt(seed,DSep(TFHE)).
5. 〈ŝ〉 ← MPC.GenBts(ℓ̂).
6. 〈s〉 ← MPC.GenBts(ℓ).
7. For  ∈ [0, . . . , − 1] do 〈s〉 ← MPC.GenBts(N).
8. pk ← XOF.Net(ℓ̂, Q).
9. 〈e〉 ← PRSS-Msk.Net(2bℓ̂ , stt).

This is infarct ℓ̂ calls to PRSS-Msk.Net, one per element of e.

10. 〈pkb〉 ← pk �
↔
〈ŝ〉 + 〈e〉.

11. pkb ← MPC.Open(〈pkb〉) (mod Q).
12. ....
13. Return (PK, 〈sk〉).

Figure 117: TFHE Threshold Key Generation V2, for Threshold Profile nSm.
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B.1 Changes to BGV/BFV Parameter Analysis

The change in above method of generating the noise for BGV and BFV changes the noise equations
slightly. We basically need to change the standard deviation of

p

B ·N/2, used for the NeHope(N,B)
distribution in the original analysis, with the value σB ·

p
N. Thus the standard deviation increases by a

factor of
Ç

�n
t

�

/3 · B ·
p
N

p

B ·N/2
=

√

√

√

2 ·
�

n

t

�

· B/3,

assuming we use the same (minimal) value of B = 1 as chosen for BGV/BFV key generation earlier. In
what follows we utilize the bound of nSmBnd on

�n
t

�

in order to bound

σB ≤
p

nSmBnd/3 · B.

Our associated constants then become

Bct = cerr,N · P ·
�
p

N/12 + cerr,N · σB ·
p

N ·
p

N/2 + σB ·
p

N + cerr,N · σB ·
p

N ·
p

N/2
�

= cerr,N · P ·
�
p

N/12 + σB ·
�

cerr,N ·
p

2 ·N +
p

N
��

,

BKeyStch = c2err,N · P · σB ·N/
p

12.

The value of BSce stays the same at

BSce = cerr,N · (P + 1) ·
p

N/12 · (1 + cerr,N ·
p

N/2)

In terms of setting parameters, the analysis changes as follows. We select R so that

R ≈
256 · BKeyStch ·Q

BSce
,

=
256 ·Q · c2

err,N
· P · σB ·N/

p
12

cerr,N · (P + 1) ·
p

N/12 · (1 + cerr,N ·
p

N/2)
,

= 256 ·
p

72 · σB ·Q.

This gives us the parameters in Table 25, which also summarizes the parameters for the non-threshold
version of BGV, our original threshold version from themain body, as well as the number of multiplication
triples needed to perform key generation.

Main Body Appendix
Non-Threshold Threshold Threshold

λ 16 16 16
N 65536 65536 65536
B 1 1 1
λ 16 16 16
L 16 15 15

BMt ≈ 237.49 237.49 237.49

Qℓ ≈ (ℓ 6= 1) 246.56 246.56 246.56

Q1 ≈ 239.07 292.78 292.78

Q ≈ 2737.52 2744.66 2744.65

R ≈ 2745.52 2752.66 2761.59

Q · R ≈ 21483.04 21497.32 21506.25

BSce ≈ 236.49 236.49 236.49

BKeyStch ≈ 236.49 236.49 242.84
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Bct ≈ 238.78 238.78 245.14

Number Triples - 458,752 196,608

Table 25: Summary of all the parameters for BGV/BFV in this document for a plaintext modulus of P = 65537.

We see that the parameters change slightly, but not that much, with the number of triples reducing
by over one half. These parameters are produced assuming

�n
t

�

can increase up to nSmBnd, i.e.
10,000. For smaller values of nSmBnd the values in the final columnwill be closer to the values in the
penultimate column.

B.2 Changes to TFHE Parameter Analysis

The noise analysis for the TFHE algorithmalso changes aswemove fromusing the TUnƒorm distribution
to generate noise via secret shared bits, to the non-interactive use of the PRSS-Msk.Net operation.
The analysis of Section 5.6.3 carries over. The difference being that we replace

σbℓ = σksk =
q

(22·bℓ+1 + 1)/6,

σbk =
q

(22·b·N+1 + 1)/6,

σbk =
q

(22·b·N+1 + 1)/6,

with

σbℓ = σksk = 2bℓ ·

√

√

√

�

n

t

�

/3,

σbk = 2b·N ·

√

√

√

�

n

t

�

/3,

σbk = 2b·N ·

√

√

√

�

n

t

�

/3.

However, this dependence of the σ values on
�n
t

�

means we need to decrease the maximum value of
nSmBnd from 10,000 to 100. We need to do this for TFHE, as opposed to BGV/BFV, due to the limited
space to accommodate noise due to the smaller value of the ciphertext modulus Q.

This gives us the parameters in Table 26, which also summarizes the parameters from the original
threshold version from the main body, as well as the number of multiplication triples needed to perform
threshold key generation. We are unable to find suitable parameterswhen P = 32 and type = LWE due to
the increased noise terms. As one can see, when we are able to find parameters, the number of required
triples decreases significantly using the threshold key generation of this section, compared to that in
the main body.

Main Body Version Appendix Version
nSmBnd 10,000 100

type = LWE type = F-GLWE type = LWE type = F-GLWE

P = 8 P = 32 P = 8 P = 32 P = 8 P = 32 P = 8 P = 32
λ 2 5 2 5 2 - 2 5
ℓ̂ 1024 2048 1024 2048 1024 - 1024 2048
ℓ 926 1004 848 926 1004 - 1004 1004
 2 1 2 1 2 - 2 1
N 1024 4096 1024 4096 1024 - 1024 4096
Q 264 264 264 264 264 - 264 264

νpksk 2 4 1 1 3 - 1 1
βpksk 27 24 215 217 25 - 215 217

νbk 1 1 1 1 1 - 1 1
βbk 218 221 218 222 218 - 218 222

νks 2 5 2 3 3 - 2 5
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βks 27 24 26 25 25 - 26 23

bℓ̂ 42 16 42 16 42 - 42 16
bℓ 44 42 46 44 42 - 42 42

b·N 16 0 16 0 16 - 16 0
 4 1 4 1 4 - 4 1
N 1024 4096 1024 4096 1024 - 1024 4096
Q 2128 2128 2128 2128 2128 - 2128 2128

νbk 3 3 3 3 3 - 3 3
βbk 224 224 224 224 224 - 224 224

b·N 27 27 27 27 27 - 27 27
Number of Triples

ƒ g = ƒse 53,432,222 21,867,500 48,891,728 19,577,758 2,060,268 - 2,060,268 4,119,532
ƒ g = tre 469,706,654 741,538,796 430,102,352 683,338,654 6,176,748 - 6,176,748 8,236,012

Table 26: Summary of all the parameters for TFHE in this document.
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