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Abstract

Deep learning-based side-channel analysis is an extremely powerful op-
tion for profiling side-channel attacks. However, to perform well, one needs
to select the neural network model and training time hyperparameters care-
fully. While many works investigated these aspects, random search could
still be considered the current state-of-the-art. Unfortunately, random search
has drawbacks, since the chances of finding a good architecture significantly
drop when considering more complex targets.

In this paper, we propose a novel neural architecture search approach for
SCA based on grammatical evolution—SCAGE. We define a custom SCA
grammar that allows us to find well-performing and potentially unconven-
tional architectures. We conduct experiments on four datasets, considering
both synchronized and desynchronized versions, as well as using feature in-
tervals or raw traces. Our results show SCAGE to perform extremely well in
all settings, outperforming random search and related works in most of the
considered scenarios.

Keywords Side-channel Analysis, Deep Learning, Evolutionary Algorithms,
Neuroevolution, Grammatical Evolution
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1 Introduction

Cryptographic algorithms (ciphers) are essential in data communication as they
ensure the secrecy of sensitive information. While many ciphers are considered to
be theoretically secure, they leak information once they are implemented. Imple-
mentation attacks aim to retrieve secret information or bypass security measures
by exploiting vulnerabilities specific to how ciphers are implemented in practice.
Such attacks are powerful and represent a critical concern in practice [1]. Side-
channel Attacks (SCAs) typically represent non-invasive and passive attacks, as
they do not inject abnormal signals. More precisely, SCA exploits unintended
side-channel leakage occurring during the execution of cryptographic algorithms
on targeted devices. Common side-channel information includes power consump-
tion, electromagnetic emissions, and timings [24]. Furthermore, it is common to
divide SCA into direct and profiling attacks. Direct SCAs analyze traces from a
target device by directly relying on statistical methods. Depending on the attack,
direct SCAs can take from a single trace to millions of traces to break a target [28].
On the other hand, a profiling SCA assumes a more powerful attacker with access
to an open device similar (ideally, identical) to the target, allowing the attacker to
create a profiling model. Profiling attacks are also called two-stage attacks as they
unfold in two phases: 1) building a model using the clone device under control and
2) utilizing the model to obtain the secret from the target device. In the last decade,
machine (and especially deep) learning emerged as the most powerful option for
profiling SCA; see, e.g., [23, 7, 16, 12]. In fact, Deep Learning-based SCA (DL-
SCA) showed the capability of breaking protected targets with only a single attack
trace, both under masking and hiding countermeasures [26].

For deep learning to be so successful, the first phase of model building must be
carried out carefully. This commonly entails at least 1) pre-processing steps such
as feature normalization/standardization, feature engineering, and/or data augmen-
tation and 2) model selection, i.e., selecting a neural network (NN) type along with
its hyperparameters. This model selection task represents the core challenge for
most DL-SCA works [28].1 While related works explored diverse (and complex)
options to address this challenge, including evolutionary algorithms [2], reinforce-
ment learning [29], or Bayesian optimization [38], surprisingly, even a random
search can reach an optimal attack performance [26], meaning that it can break a
target with a single attack trace.

However, while often successful, random search has also serious drawbacks.
First, when using larger and more complex architectures like transformers [12],
there are many different potential combinations to choose from, and a random
search is unlikely to sample from all relevant parts of the search space since a
factor of luck is always involved.2 Second, as the targets become more difficult

1Recently published guidelines for machine learning-based evaluations also underline the impor-
tance of hyperparameter tuning [9].

2Note that even without sampling all relevant parts of the search space, we could still assume the
search to result in a well-performing architecture.
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to break, random search struggles to find well-performing architectures [26]. This
is intuitive, as higher target difficulty means fewer good architectures capable of
breaking the target. Consequently, it can easily happen that only a few architectures
out of hundreds of randomly generated ones are actually performing well. Third,
a random search still requires precisely defined hyperparameter ranges. Indeed,
if the ranges are too small, it could be that there are no well-performing architec-
tures. On the other hand, if the ranges are too large, it may become too difficult for
a random search to find a satisfactory architecture. Finally, while a random search
can produce any architecture, in practice, this is not the case. A random search
is usually constrained by designer-chosen rules that dictate the overall structure of
the network, which could, in turn, inhibit the approach from finding novel, less-
conventional solutions. Let us take convolutional neural networks (CNN) as an
example. Random search commonly works by building a number of convolutional
layers that are followed by pooling layers. After those, there are a number of fully
connected layers [14]. While this may often work, it prevents the construction of
an architecture that starts with, e.g., a pooling layer.

As already mentioned, related works explored diverse ways to build well-
performing neural network architectures for DL-SCA. However, there is a trade-off
to consider: from one side, there is the expressiveness of the possible solutions and
of the reward functions that guide the search process. On the other hand, the com-
putational complexity of the underlying search problem influences the difficulty of
finding a good solution.

In this work, we propose a novel approach to address the problem of hyperpa-
rameter tuning of deep neural networks for SCA: Side-channel Analysis driven by
Grammatical Evolution—SCAGE. This approach, built upon FastDENSER++ [6],
is based on Grammatical Evolution (GE), a type of evolutionary algorithm that al-
lows one to evolve computer programs by describing their general structure as a
context-free grammar [25]. In SCAGE, the underlying grammar yields a flexible
yet expressive medium to define the architecture and hyperparameters of neural
network models for DL-SCA. The genotype of a candidate solution in SCAGE
specifies a sequence of grammar production rules to construct a complete neu-
ral network. An Evolutionary Strategies (ES) approach is then implemented to
iteratively tweak a population of neural network genotypes, driving the selection
process with an appropriate reward function. The use of ES enables a good balance
between exploration (visiting diverse areas of the search space of neural networks)
and exploitation (finding well-performing neural network models in specific search
space areas). We tested our approach on four datasets, considering masking and
desynchronization countermeasures.

The obtained results showcase SCAGE to perform extremely well, outmatch-
ing the random search approach and other techniques from related works in most
settings. Although the underlying grammar can be easily tailored to a specific
attack scenario (e.g., allowing only certain types of layers), by analyzing the archi-
tectures of the best networks, we remark that SCAGE is also able to adapt auto-
matically to different scenarios under a generic grammar without enforcing explicit
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instructions. In particular, we observe that SCAGE evolves networks without con-
volutional layers on raw synchronized traces, while it employs them when dealing
with the trimmed scenario or when desynchronization is applied.

Contributions. In summary, the main contributions of this paper are as follows.
1. We propose a novel approach to hyperparameter tuning for DL-SCA that

leverages grammatical evolution—SCAGE. Our technique is suitable for di-
verse settings and delivers excellent attack results.

2. Our approach leverages a custom-developed SCA grammar that is robust
across all relevant SCA options but also allows for easy adjustments in new
scenarios.

3. We thoroughly test SCAGE on four masked datasets with different levels
of desynchronization. The results show an excellent attack performance,
outmatching current state-of-the-art approaches in most scenarios.

4. We analyze the best architectures evolved by SCAGE, remarking that they
often follow an unconventional structure compared to related works.

2 Background

2.1 Deep Learning-based SCA

Side-channel Analysis considers attacks that do not aim at the mathematical weak-
nesses of a cryptographic algorithm, but rather at those of its implementation [24].
The SCA core idea is to compare some secret data-dependent predictions of the
physical leakages and the actual (measured) leakage to identify the data most likely
to have been processed. As already stated in Section 1, SCA can be divided into di-
rect attacks and profiling attacks. Deep learning-based SCA in its usual form is an
example of a profiling attack. There, one commonly follows the supervised learn-
ing paradigm to perform a classification task. The supervised learning paradigm re-
quires that during the training phase, we have labeled examples. The classification
task requires the labels to be discrete values. The number of labels is determined
by the cipher and the leakage model. For instance, if we consider the AES cipher,
due to the divide-and-conquer approach and the fact that AES is a byte-oriented ci-
pher, we can consider every byte value separately. As commonly done, we can use
the byte value after the S-box part, which would give us 256 possible values. This
scenario is commonly called the Identity leakage model (denoted by ID). On the
other hand, if we assume that the implementation leaks in the Hamming weight (or
distance) leakage models (denoted by HW/HD), then there are 9 possible values,
i.e., one for each Hamming weight that an 8-bit vector can have.

Let us assume we have a training set of inputs x along with their corresponding
labels y. Then, our goal is to learn a function f that maps x to the corresponding
y. If the function f obtained after the training phase is a good approximation of
the relationship between the input and the output, it will generalize to unseen data
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when predicting the label y. More precisely, to measure how well the function
fits the training data, a loss function L is defined. The loss of predicting value ŷ
for the (x,y) is L(y, ŷ). The model is then trained through a learning process to
minimize the loss by adjusting its parameters (denoted as θ) using optimization
methods [11]. Finally, the model is tested on unseen data (test data) to measure
its capability to generalize. While it is common to use metrics such as accuracy or
recall in the usual machine learning scenarios, they make less sense in SCA [27].
As such, to assess the attack’s effectiveness, we use metrics that directly tell us
how many guesses one needs to make before finding the correct key. The simplest
metric, key rank, states the position of the correct key in the key guessing vector,
i.e., the vector of all possible keys sorted from the most likely to the least likely
guess. A more refined metric (and the one we will use throughout the paper) is the
guessing entropy (GE) [34], which is the average key rank. The averaging is done
to improve the statistical quality (i.e., to reduce the effect of specific traces used)
of the attack.

2.2 Neuroevolution

As we mentioned in the previous section, finding the correct set of weights for the
connections of a neural network to minimize a specific loss function is addressed
through standard optimization algorithms. However, this step still assumes that
the overall architecture and the other hyperparameters of the network have been
fixed. Neural Architecture Search (NAS) is a broad field encompassing various
techniques to automate the design of a neural network’s architecture with the ob-
jective of finding a suitable one to solve a specific task. Elsken et al. [8] observe that
a typical NAS problem involves the definition of three components: 1) a suitable
search space, 2) the search strategy used to explore the search space, and 3) how
to estimate the performance of the architectures explored by the search strategy.
In particular, when the search strategy is an evolutionary algorithm, the NAS pro-
cess is also called Neuroevolution [10]. In what follows, we cover the background
notions related to evolutionary algorithms and neuroevolution used throughout the
paper, focusing in particular on grammatical evolution.

Evolutionary Algorithms and Grammatical Evolution. Evolutionary Algo-
rithms (EAs) is a general term for a class of metaheuristic optimization algorithms
loosely inspired by the principles of biological evolution, which tweak a population
of candidate solutions for an optimization problem. An EA typically decouples the
genotype of the individuals (the representation on which the algorithm operates
on) from their phenotype (the final expression of the evolved individuals) and re-
quires a mapping process to perform this translation. In its general form, an EA
iteratively selects the best individuals in the population to be reproduced in the
next generation. The selection is driven by a fitness function, which evaluates how
good a candidate solution is in solving the specific optimization problem. New so-
lutions are then generated and injected in the population by applying crossover and
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Figure 1: An example of GE decoding, using a grammar for evolving expressions.

mutation operators on the selected parents. The most famous type of EAs are per-
haps Genetic Algorithms (GAs) [13], where the genotype of the solutions is usually
represented through fixed-length bitstrings. In Genetic Programming (GP) [18], in-
stead, the aim is to directly evolve computer programs encoded by syntactic trees
whose leaves represent the inputs to the program, while the internal nodes are op-
erators combining the values of these inputs. The output of the program is then
evaluated at the root node.

Grammatical Evolution (GE) was first introduced by O’Neil et al. [25] as a
variant of GP, which leverages context-free grammars to represent the candidate
programs instead of syntactic trees. At the core of GE, there is a formal language
expressed using a grammar in the Backus-Naur Form (BNF) notation. In particu-
lar, every production rule of the grammar is written in the form <non-terminal>
::= <expression>. The symbol on the left side of ::= is called a non-terminal,
and, during the derivation process, it is replaced by one of the options on the right.
The right-hand side of the rule can include other non-terminal symbols (which are
recursively substituted), terminals (i.e., actual tokens of the language), and the |
symbol that separates alternative substitutions. Each rule has a number of possible
choices, and GE employs a Genetic Algorithm to select which rule to use at ev-
ery junction in the derivation process. In GE, every individual is represented as a
variable-length list of randomly generated numbers. When mapping the genotype
to the phenotype, every time a decision has to be made during the derivation pro-
cess, the next number is read from the chromosome, and that determines the rule
to apply. Figure 1 provides an example of such a mapping process.

DENSER Approach to Neuroevolution. While there are several strategies to
search for the optimal architecture of a neural network by means of EA (e.g., the
NeuroEvolution Augmenting Topologies approach, or NEAT [35]), here we focus
only on those techniques based on grammatical evolution.

The initial work that leveraged grammars and evolutionary algorithms to search
for Convolutional Neural Networks (CNNs) was DENSER [4]. The genotype of
an individual in DENSER is an ordered linear structure where each position is a
functional unit (called module) of the corresponding network, and it is mapped to
a symbol in the grammar. By choosing a grammar-based approach, these units can
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< f e a t u r e s > : : = < c o n v o l u t i o n > | < p o o l i n g >
< c o n v o l u t i o n > : : = l a y e r : conv1d [ num− f i l t e r s , i n t , 1 , 4 , 5 1 2 ]
< p o o l i n g > : : = <pool − type > [ k e r n e l − s i z e , i n t , 1 , 2 , 2 0 ] [ s t r i d e , i n t , 1 , 2 , 2 0 ]
<pool − type > : : = l a y e r : pool −avg1d | l a y e r : pool −max1d
. . .
< c l a s s i f i c a t i o n > : : = < f u l l y − connec t ed > | < dropou t >
. . .
< l e a r n i n g > : : = <rmsprop > < e a r l y − s top > [ b a t c h _ s i z e , i n t , 1 , 5 0 , 5 0 0 ]

| . . .
. . .

Listing 1: Part of the grammar for evolving CNNs in FastDENSER++.

encode any component of the network that can be expressed using derivation rules:
in DENSER, this feature is also used to evolve hyperparameters like the optimiza-
tion algorithm to minimize the loss, the learning rate, and the batch size. Every unit
in the genotype is encoded similarly to Dynamic Structured Grammatical Evolu-
tion (DSGE) [3], which means that it encodes the expansion possibilities of the
grammar for that unit.

Basically, an individual has two genotypic levels: an outer one, such as <feature>
<feature> <classification> <learning>, which encodes the architecture of
the network and defines the starting symbol for every module; and an inner one,
which encodes the expansion possibilities and the numerical values required by the
single module. To ground our discussion with a specific example, let us consider
the grammar from Listing 1 and the following (partial) phenotype, layer:pool-max1
kernel-size:4 stride:2 <feature> <classification> <learning>. The
inner genotype for the first <feature> module contains the indices to pick (in or-
der) the second expansion possibility (for the pooling layer), then the first one (and
only one for <pooling>), and finally the second one (to get layer:pool-max1).
However, the <pooling> symbol also requires numerical values for kernel-size
and stride, and therefore, the genotype also contains values for those parameters:
in this specific example, the values are 4 and 2, respectively.

FastDENSER [5] is the successor of DENSER, and it was proposed as a faster
alternative with a few major changes; one of them is a new graph-like represen-
tation that enables the evolution of skip connections. This is achieved by adding
another level in the genotype to encode the connections, i.e., to which layers’ out-
puts the current layer has access to. A second change, which is the one responsible
for the speed-up, is the introduction of the (1+ λ) Evolution Strategy (ES) [22]
instead of a classic GA. This means that FastDENSER has a population of 1+λ

individuals, and only one is selected from the population to reproduce (i.e., the one
with the best fitness). Then, λ children are generated by randomly mutating the se-
lected parent. Finally, these λ children join the parent to form the next generation.

Finally, FastDENSER++ [5] is a direct extension of FastDENSER. The core
idea of this new version is to set the maximum training time independently for
each individual. Indeed, in FastDENSER, it could be the case that not enough time
is granted for an NN to fit the dataset properly, although the evolved topology and
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hyperparameters are promising. By allowing the training time of single individuals
to grow as needed, FastDENSER++ can evolve fully trained neural networks that
are ready for deployment.

2.3 Datasets

Below, we briefly describe the four datasets used to evaluate our approach for DL-
SCA. In particular, we selected these datasets for the sake of comparison with
state-of-the-art approaches recently published in the literature [26, 12, 15].

ASCADf. The ASCADf dataset3 contains measurements from an 8-bit AVR mi-
crocontroller, where the leakage sources are the electromagnetic emissions from
the chip. The AES-128 implementation is protected with first-order Boolean mask-
ing, except for the first two bytes that are left unprotected for testing purposes. The
acquisition window covers only the first round of AES and each trace consists of
100000 sample points. The dataset contains 60000 traces overall, which are split
into two groups: 50000 for the profiling phase and 10000 for the attack. All en-
cryption operations in both the profiling and attack groups are performed using the
same fixed key, hence the name of the dataset.

ASCADr. The ASCADr dataset4 has a similar setup to ASCADf concerning the
measurements source. The main difference stems from the fact that the traces in
the profiling group of ASCADr use random keys to perform the encryption instead
of a fixed one. The traces are also bigger as they consist of 250000 samples. In
total, 200000 traces are provided for the profiling phase and 100000 for the attack
phase. The encryption for the attack group is still performed using a fixed key.

CHES CTF 2018. The CHES CTF 20185 dataset contains power measurements
from ARM Cortex-M4 devices running a masked AES implementation. Each
trace consists of 650000 samples, but the analysis is commonly limited to the first
150000, which includes the first round of AES encryption. The traces are provided
in four sets of 10000 traces each: the first three use random keys and therefore are
combined to form the profiling set, while the remaining one uses a fixed key and is
left as the attacking set.

eShard. The last dataset, eShard6, also features an AES implementation pro-
tected with first-order Boolean masking running on ARM Cortex-M4 devices. The

3https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_
fixed_key

4https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1/ATM_AES_v1_
variable_key

5https://zenodo.org/record/3733418#.Yc2iq1ko9Pa
6https://gitlab.com/eshard/nucleo_sw_aes_masked_shuffled
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raw traces are not publicly available, and the authors only provide a trimmed ver-
sion of 1400 sample points. The dataset contains 100000 traces in total, without
any distinction on profiling and attack traces. Every encryption operation is per-
formed using the same fixed key.

3 Related Work

From the first work on deep learning-based SCA [23], the SCA community in-
vested significant effort into deploying more powerful and automated attacks. In
fact, a careful review indicates that finding effective neural network architectures
still represents the largest part of the published works [28]. Moreover, while in DL-
SCA, one can use diverse neural network architectures, common choices today are
the multilayer perceptron (MLP) and the convolutional neural network (CNN).

To design such architectures, we can recognize several characteristic directions.
First, works like [42] and [37] aim to find methodologies for designing neural net-
work architectures for SCA. The main advantage of such approaches is that, if
successfully designed and applied, they can significantly simplify the process of
finding good neural network architectures. At the same time, the main drawback
seems to be the relative fragility of such approaches and the difficulty in adapt-
ing them to different threat models and targets. Next, it is possible to use diverse
search strategies to design well-performing neural network architectures. Among
the various approaches is Random Search (RS), where one randomly constructs
a large number of architectures and uses the best ones. While simple, RS shows
good performance, and in some cases, even state-of-the-art results are achieved,
see, e.g., [26]. That work shows that when RS is applied to raw traces, it discovers
models for the ASCAD dataset able to recover one byte of the key with a single
attack trace, making it an optimal attack. Naturally, there are also more advanced
strategies, like reinforcement learning [29], Bayesian optimization [38], or evolu-
tionary algorithms [23]. The main advantage of such approaches is that they can
often find better-performing architectures (compared to random search and in cases
where random search does not perform as well) but at the cost of a more complex
setup and significantly higher computational requirements.

The success of deep learning-based attacks does not depend exclusively on the
underlying architecture but also on factors like data augmentation [20] or feature
selection. There, common options include working with an interval of traces [7] or
raw traces [21]. Interestingly, even in the case of raw traces (it is intuitively clear
that they can offer more information, but the process becomes computationally
more complex), state-of-the-art results are still achieved with a random search [26],
and the final architectures are relatively small. However, as the results from [26]
report, the main problem of a random search is the low success rate. In the first
place, this means that it is not easy to randomly generate a model capable of re-
covering the key and, more importantly, it does not imply that such a model can
perform this task efficiently, i.e., within a low number of attack traces. These short-
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comings become more evident when countermeasures such as desynchronization
are introduced: in such cases, the success rate in [26] does not go above 3.05% for
the ASCADf, ASCADr, and CHES CTF 2018 datasets.

Other works that achieve comparable performance without resorting to random
search often use more complex models: [12] and [21] chose transformer networks
to perform the attacks, [15] used Conditional Generative Adversarial Networks
(CGANs) to leverage knowledge from previous datasets, and [19] successfully
combined language models with multitask learning to attack ASCAD. It is worth
mentioning that instead of concentrating on architectures (of course, their tuning
is still an important factor), it is possible to consider different threat models, like
weakly profiling attack [39], leakage model-flexible attack [40], non-profiling at-
tack [36], and collision attack [33, 41].

Finally, looking into evolutionary algorithm-based approaches, and more specif-
ically the branch of neuroevolution, there are a number of works that showcase the
potential of such an approach. Even the first work on deep learning-based SCA [23]
reported the usage of genetic algorithms for hyperparameter tuning (however, with-
out providing details about the settings). Knezevic et al. used neuroevolution to
evolve custom activation functions for SCA [17]. On the other hand, Rioja et al.
used estimation of distribution algorithms to select points of interest [30].

InfoNEAT [2] is currently the best-performing neuroevolution framework for
SCA. Its main feature is the ability to discover so-called augmenting topologies:
as the algorithm operates at the level of individual neuron connections and their
weights, it can find irregular configurations that a human could hardly think of.
Moreover, it employs a One-vs-All approach for multi-class classification by train-
ing 256 submodels, one for each value of the target sub-key. The output of the
submodels is then combined into another classifier to improve the predictions.

An alternative to InfoNEAT is NASCTY [31], which is based on genetic al-
gorithms. NASCTY operates at a higher abstraction level: it uses a list of blocks
as the genome, which encodes the hyperparameters for convolutional and dense
layers. However, it does not perform as well as InfoNEAT, and it enforces a rigid
structure of the network’s topology, which can prevent the discovery of alternative
combinations that may outperform conventional ones.

4 SCAGE: SCA driven by Grammatical Evolution

As our objective is to implement a neuroevolution framework that could replace
random search to efficiently generate SCA models, neither InfoNEAT nor NASCTY
seems to be a suitable candidate to build upon. Indeed, the former focuses on in-
dividual connections and requires many submodels, while the latter imposes too
many constraints on the networks’ architecture. Hence, we decided to adapt Fast-
DENSER++ [6] as a flexible and configurable neuroevolution approach to evolve
good architectures for DL-SCA. FastDENSER++ resembles NASCTY in that it
operates at a higher layer of abstraction by focusing on the layers as the units of
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Figure 2: The evolutionary approach of SCAGE.

evolution. In fact, the focus of FastDENSER++ is to evolve both the architecture
of the neural networks and the hyperparameters of its individual layers.

FastDENSER++ is the latest version of a NAS tool specifically tailored to
evolve neural networks for image classification tasks. In this section, we present
SCAGE—Side-channel Analysis driven by Grammatical Evolution—which is our
variant of FastDENSER++ remodeled to suit the generation of neural network
models for SCA. Figure 2 provides an overview of the evolutionary approach im-
plemented by SCAGE. In the remainder of this section, we describe each step of
the approach in detail.

SCA Grammar. The first significant step to tackle is the definition of a new
grammar to suit the generation of SCA models, specifically CNNs. The gram-
mar is inspired by Perin et al.’s work [26], with the notable difference that the
parameter ranges are broadened, and more flexibility is given to the structure of
the networks. We made this choice to provide the framework with a larger search
space, encompassing both state-of-the-art networks discovered by random search
as well as unconventional topologies and hyperparameter combinations. The re-
sulting grammar is shown in Listing 2. One of the main features of the gram-
mar is that it does not enforce any specific order of the layers: each <features>
or <classification> symbol is derived independently from the others. There-
fore, the choice of the previous layer type does not have any effect on the rest
of the network. Notice that, in principle, we could impose certain patterns; for in-
stance, by changing the rule of <features> in <features> ::= <convolution>
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< f e a t u r e s > : : = < c o n v o l u t i o n >
| < p o o l i n g >
| < ba tch −norm>

< c o n v o l u t i o n > : : = l a y e r : conv1d [ num− f i l t e r s , i n t , 1 , 4 , 5 1 2 ]
↪→ [ f i l t e r −shape , i n t , 1 , 2 , 8 0 ] [ s t r i d e , i n t , 1 , 3 0 , 5 0 ]
↪→ < a c t i v a t i o n − f u n c t i o n >

< p o o l i n g > : : = <pool − type > [ k e r n e l − s i z e , i n t , 1 , 2 , 2 0 ] [ s t r i d e , i n t , 1 , 2 , 2 0 ]
<pool − type > : : = l a y e r : pool −avg1d | l a y e r : pool −max1d
< ba tch −norm> : : = l a y e r : ba tch −norm
< c l a s s i f i c a t i o n > : : = < f u l l y − connec t ed > | < dropou t >
< f u l l y − connec t ed > : : = l a y e r : f c < a c t i v a t i o n − f u n c t i o n > < r e g u l a r i z e r >

↪→ [ num− u n i t s , i n t , 1 , 1 0 , 1 0 0 0 ]
< r e g u l a r i z e r > : : = < r e g u l a r i z e r − type > [ r e g r a t e , f l o a t , 1 , 0 . 0 0 0 0 1 , 0 . 0 5 ]
< r e g u l a r i z e r − type > : : = r e g : l 1 | r e g : l 2 | r e g : none
< dropou t > : : = l a y e r : d r o p o u t [ r a t e , f l o a t , 1 , 0 . 0 5 , 0 . 5 ]
< a c t i v a t i o n − f u n c t i o n > : : = a c t : r e l u | a c t : s e l u
<output > : : = l a y e r : f c a c t : so f tmax num− u n i t s : 256 r e g : none
< l e a r n i n g > : : = < o p t i m i z e r > [ l r , f l o a t , 1 , 0 . 0 0 0 1 , 0 . 0 0 1 ] < e a r l y − s top >

↪→ [ b a t c h _ s i z e , i n t , 1 , 1 0 0 , 1 0 0 0 ] epochs :100
< o p t i m i z e r > : : = l e a r n i n g : adam | l e a r n i n g : rmsprop
< e a r l y − s top > : : = [ e a r l y _ s t o p , i n t , 1 , 5 , 2 0 ]

Listing 2: Grammar for evolving CNNs in SCAGE. Non-terminals in bold are
starting symbols, i.e., those that start the derivation process, and they correspond
to the modules in the genotype. The conditions for the numerical values required
by certain hyperparameters are specified within square brackets: for example,
[num-filters, int, 1, 4, 512] means that 1 integer value between 4 and 512
is generated for the number of filters.

| <convolution> <pooling> | <convolution> <pooling> <batch-norm>we
would obtain an architecture similar to the VGG convolutional neural network [32],
and also more similar to those explored until now. However, we decided to adopt a
more general grammar, allowing SCAGE to experiment also with unconventional
combinations that do not necessarily follow known architectures.

Initial Population. We initialize all networks by choosing uniformly at random
the derivation rules to apply and the numerical values for the remaining hyperpa-
rameters within the boundaries defined in the grammar. This process is repeated
for λ times: the initial population is, in fact, the only one that does not have size of
1+λ since the parent has not been selected yet.

The hyperparameters of the evolution process also include a minimum and
maximum number of layers per module type during the initialization. In the origi-
nal version of FastDENSER++, these values are 2, 3, or 4 for the features mod-
ules and 1 for the classification modules. However, during preliminary tuning
experiments we found that initializing the SCA models with 3, 4, or 5 features
modules and 1, 2, or 3 classification modules allowed SCAGE to generate a
better starting population, which in turns allows the evolution process to converge
faster. The initial maximum training time for a network has also been reduced
from 600 seconds of FastDENSER++ to 400 seconds. The reason for this choice
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is twofold: first, preliminary experiments indicated that 400 seconds was enough
for the majority of the models to complete their training; second, we decided to let
SCAGE figure out whether a network would require more training time by follow-
ing its evolutionary process.

Decoding Procedure. The decoding step works as in FastDENSER++, with the
main difference being the removal of the logic to encode skip connections. The mo-
tivation for this change is that most of the works in the field of DL-SCA [42, 38, 26]
do not use this kind of connection. In particular, we focus on discovering uncon-
ventional combinations of layers and hyperparameters for CNNs while maintain-
ing a linear topology for the neural networks. The phenotype generated from the
genome is a string description of the network that is later parsed during the evalua-
tion phase. The grammar provides the rule for this mini-language that encodes the
structure of the NNs. An example of phenotype is the following:

layer:conv1d num-filters:469 filter-shape:68 stride:35 act:selu
layer:pool-avg1d kernel-size:14 stride:13 layer:batch-norm layer:fc act:relu

reg:l1 num-units:154 layer:dropout rate:0.3318447376367588 layer:fc
act:softmax num-units:256 learning:rmsprop lr:0.0001 early_stop:19

batch_size:977 epochs:100

Fitness Evaluation. Before proceeding with the evaluation, the neural networks
have to be trained. The evolution process of FastDENSER++, however, requires
four sets in total: a training set, a validation set to track the overfitting of the net-
work during training and eventually trigger an early stopping, a test set to assess the
performance of the model after training, and a final test set that is used for the best
network discovered during the evolution to produce the final metrics. Therefore,
for SCA datasets that distinguish between profiling and attack traces, the strategy
to generate the four splits is the following: profiling traces are divided into training
and validation sets; attack traces are divided into test and final test sets.

FastDENSER++ originally uses the accuracy of the resulting networks as a fit-
ness score to rank the candidates in the population. However, as mentioned in Sec-
tion 2.1, accuracy is not a suitable metric for the SCA setting. Hence, in SCAGE,
we decided to adopt the guessing entropy (GE) as a fitness function. To compute
the GE, we take the average of 100 key ranks computed over 3000 traces randomly
selected from the test set. Remark that, during the computation of the fitness, mul-
tiple models may achieve GE = 1, thus recovering the key. In case such ties occur,
we use the TGE=1 metric, i.e., the number of traces required to get GE = 1.

In theory, one could directly use the TGE=1 metric as a fitness function. How-
ever, this strategy would lead to a significant problem: whenever the networks
under comparison fail to recover the correct key, even after processing the whole
test set, they would all report the same (maximum) value for the TGE=1 metric,
namely the size of the test set. To resolve this issue, the fitness function of SCAGE
is essentially split into three stages:
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• First, we evaluate the GE on the whole test set: the best network is the one
achieving the lowest GE after processing all traces; if a network manages
to recover the key, then it has GE = 1, and the evaluation would need to
consider the second stage.

• Only if the network achieves GE = 1 then we consider TGE=1: the best net-
work here is the one that uses the least number of traces.

• Finally, if multiple networks recover the key with the same number of traces,
we use the GE score computed just before it gets to 1 as a tie-breaker. For
example, if two NNs achieve GE of 1 with 20 traces, we compare their GE
using 19 traces. The rationale here is that the lower this value, the closer
the network was to recovering the key; therefore, it should be preferred as a
candidate to evolve.

Parent Selection. Since we use an evolutionary strategy of the form (1+ λ)-
ES, we only need to choose one parent for the next generation. The strategy is
simple: we pick the individual that has the lowest fitness, since in the SCA setting
the optimization objective is to minimize GE and TGE=1. This can potentially lead
to re-selecting the same individual over and over, until one of the children can
achieve a better fitness. This form of elitism helps preserve the best model that has
been discovered so far. Without it, given the limited number of individuals in the
population, it could easily happen that none of the children perform better than the
parent.

Offspring Generation The offspring is generated by applying only mutation op-
erators to the parent selected in the previous step. Each operator is not applied
deterministically but rather stochastically with a specific mutation probability. The
number of generated children is λ. While in FastDENSER++ λ is equal to 4, here
for SCAGE we set λ = 5, to favor the exploration of more SCA models from the
same parent. Compared to the original FastDENSER++, we kept all mutation op-
erators except those related to skip-connections (as we removed those from the
decoding procedure) and the operator that re-uses the same genome of an existing
layer when adding a new one to the network. We observed in preliminary exper-
iments that this operator was not providing any benefit in the evolution process.
In summary, these are the mutation operators in SCAGE along with the respec-
tive probabilities P of applying them (bold values indicate a difference from Fast-
DENSER++):

• add layer (P = 0.25): adds a new layer to one of the modules;
• remove layer (P = 0.25): removes a layer from one of the modules;
• DSGE mutation (P = 0.3): randomly change one of the parameters of a mod-

ule. The probability was increased from 0.15 to 0.3 to favor the exploration
of NNs with the same layers but with different hyperparameters;

• macro mutation (P = 0.2): like the DSGE mutation but applied on “macro”
modules, such as <learning>; this was reduced from 0.3 to 0.2 as prelimi-
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nary experiments suggested that the final performance was not so dependent
on the configuration of these learning hyperparameters;

• increase time (P = 0.2): does not mutate the network but trains it for longer.
Except for the increase time operator, every other mutation can occur indepen-
dently of the others, potentially leading to children with multiple changes to the
genotype of the parent. During the evolution, the mutation operators that change
the number of modules are applied only if the final genome respects the boundaries
on the number of layers. The remaining operators act according to the definitions
provided in the grammar.

Stopping Criteria and Best Model Evaluation. A perfect model can recover
the correct key using only one attack trace. Therefore, the computation is halted
when one of the evolved networks achieves such a fitness score. Otherwise, the
evolution continues until a maximum number of generations is reached. We set
this value to 30 generations, reducing the original value of 150 in FastDENSER++,
as preliminary experiments suggested that it was a good trade-off between the pos-
sibility of finding a successful model and the time required to run the framework.
After the stopping criteria are met, the best model found during the evolution is
tested again on a different set of attack traces, the final test set, which is not used
during the evolution process.

5 Experimental Results

5.1 Experimental Setup

Every experiment was run in a high-performance computing (HPC) cluster with
access to 2 CPU cores, one NVIDIA L40 GPU, and 90+ GB of RAM. For our im-
plementation, we relied on Python 3.10 and Tensorflow 2.14.1. We tested SCAGE
over the four datasets described in Section 2.3, namely ASCADf, ASCADr, CHES
CTF 2018, and eShard. The scenarios we considered for the traces are the follow-
ing:

• trimmed: available for ASCAD and eShard, this is a reduced version con-
taining the points of interest with the highest SNR;

• raw: available for ASCAD and CHES CTF 2018, but not for eShard; to
reduce the dimensionality they are resampled as in [26];

• desynchronized raw: with δmax up to 50, 100, and 200; these desynchroniza-
tion levels were applied to the raw traces before the resampling process.

For each combination of dataset and traces scenario, we repeated the search with
SCAGE for 30 independent runs to get statistically sound results.

Another important step when working with SCA measurements is the prepro-
cessing of the traces, as demonstrated by Wouter et al. [37], who tested different
approaches. In our implementation, we followed the standardization preprocess-
ing approach, which appeared to be slightly more consistent in the experiments
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Dataset
TGE=1

SCAGE RS [26] [12] [2]

trimmed 70 115 87 - 130
raw δmax = 0 1 118 1 13 -
raw δmax = 50 3 X - - -
raw δmax = 100 4 X 36 12 -
raw δmax = 200 10 X - 9 -

Table 1: TGE=1 of the best models found by SCAGE on ASCADf compared to
other approaches.

discussed in [37]. It is feature-based and instance-based on, respectively, synchro-
nized and desynchronized traces. Finally, all results in the sections are produced us-
ing the Identity leakage model. This is in line with recent works [42, 37, 2, 12, 15]
that chose this leakage model for their analysis.

As a baseline for comparison, we employed Random Search (RS). Specifically,
for each considered combination of dataset and trace scenario, we randomly gen-
erate 500 models, as done in [26]. On the other hand, a single run of SCAGE eval-
uates 150 models, since as described in Section 4 an offspring of λ = 5 individuals
is produced in each generation, and the algorithm runs for 30 generations. For the
comparisons with other works, we used the results reported in the corresponding
papers.

5.2 ASCADf

In Table 1, we compared the TGE=1 values of the best model found by SCAGE
over 30 runs and by random search over 500 attempts. We also include the re-
sults from the work on feature selection by Perin et al. [26], which is the first one
that broke ASCAD with a single trace. Further, we include the results obtained by
the transformer network Estranet [12], which provides a wide analysis of different
desynchronization levels with competitive results, and from InfoNEAT [2], which
is the best performing neuroevolution approach for DL-SCA published so far. Note
that EstraNet is not trained on raw traces but rather on a window of 10000 sample
points, which enlarges the trimmed dataset. We still decided to provide the com-
parison on the raw scenario, as the authors of [12] claim that the attack could be
executed on the full trace by repeating the attack over different segments. In this
table and in the following ones, the X mark indicates that the model for that sce-
nario is not able to recover the key, while the - symbol means that results are not
available for that combination of related work and trace setup.

SCAGE finds the best model for every scenario, except for raw traces with
δmax = 200, where it requires just one trace more than EstraNET to achieve a guess-
ing entropy of 1. On the other side, a random search fails to discover an appropriate
model when applied to desynchronized traces. On aligned traces, RS finds models
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k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

TGE=1 of the best
model found by

SCAGE for every ki

1 1 1 1 1 1 1 1 1 1 1 1 1 1

Search
Success Rate

70% 73% 70% 100%70% 63% 53% 76% 66% 53% 63% 63% 66% 73%

TGE=1 of SCAGE’s
best model for k2

retrained for every ki

1 2 2 1 1 2 X 1 9 1 818 153 7 3

TGE=1 of [26]’s
best model for k2

retrained for every ki

1 X 2 X X X X X 1 1 X X 3 X

Table 2: Comparison on all key bytes for ASCADf.

that can recover the key, but their TGE=1 is far from the results of SCAGE.
The target of attacks for the ASCAD datasets is usually the output of the third

S-box during the first round of AES, which allows to recover the third byte of the
key. We verified if SCAGE’s behavior is consistent on all the other bytes of the
key, except the first two since they are not protected. Table 2 reports the TGE=1
of the best model found for every byte and the corresponding search success rate,
i.e., the percentage of successful runs of SCAGE. One can see that SCAGE always
manages to evolve a model that recovers the corresponding byte of the key using
only a single trace. To compare how flexible the models found by SCAGE are,
we also retrained the best one evolved for the third byte on all other bytes, as
done in [26]. This model can successfully recover the correct value for every byte
except one, and for 11 of them, it does so in less than 10 traces. This finding
suggests that the best network architectures found by SCAGE are versatile enough
to adapt to different bytes. Combining these results with the performance obtained
by SCAGE when run on a specific byte, we argue that SCAGE could provide an
efficient search approach to recover the full key: the strategy would be to start by
targeting an individual byte with SCAGE, retrain the best evolved model for all the
others, and then only repeat the search with SCAGE when such a model fails to
meet the desired TGE=1.

Table 3 provides a more in-depth comparison of the average performance of
SCAGE against a random search. It can be observed that SCAGE achieves on
average TGE=1 scores that are much lower than a random search. More importantly,
the search success rate of SCAGE improves over RS in all scenarios, suggesting
that evolutionary strategies can investigate the search space of SCA models more
efficiently.
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Dataset
Average TGE=1 Search Success Rate

SCAGE RS SCAGE RS

trimmed 115 792 100% 20%
raw δmax = 0 25 648.33 70% 1.2%
raw δmax = 50 168 X 16.6% 0.0%
raw δmax = 100 4 X 3.3% 0.0%
raw δmax = 200 58 X 6.6% 0.0%

Table 3: Average TGE=1 of SCAGE versus random search on ASCADf.

Dataset
TGE=1

SCAGE RS [26] [12] [2] [20]

trimmed 23 85 78 - 120 -
raw δmax = 0 1 1 1 5 - -
raw δmax = 50 1 2 - - - 33
raw δmax = 100 1 X 73 5 - 251
raw δmax = 200 1 X - 4 - 44

Table 4: TGE=1 of the best models found by SCAGE on ASCADr compared to
other approaches.

5.3 ASCADr

The analysis on ASCADr has the same setup as ASCADf. Table 4 collects the
TGE=1 of the best models found by SCAGE over 30 runs and by RS. This time, we
also included the work on data augmentation from Li et al. [20], as they tested their
approach on ASCADr, including different levels of desynchronization. SCAGE
finds the best model for the trimmed scenario by recovering the key in only 23
traces. Further, SCAGE consistently manages to break the desynchronization coun-
termeasure with δmax up to 200 by requiring one single trace for every considered
level. Compared to ASCADf, in this case, the random search can find models when
δmax = 50 but fails with higher levels of desynchronization.

Another remark comes from the performance of SCAGE compared to the mod-
els discovered in [20], which are still found using a random search. Despite not
using data augmentation to train the networks, our evolutionary approach can con-
sistently produce models with state-of-the-art values for TGE=1. Therefore, it seems
that data augmentation can help when working with sub-optimal models, but it can-
not replace an efficient architecture. This is also in line with the ablation study per-
formed by the authors of EstraNet [12]. Indeed, when their transformer is trained
without data augmentation, its TGE=1 scores are barely affected.

Table 5 reports the results of running SCAGE on all bytes of the key for AS-
CADr, except the first two, as they are unprotected. As for ASCADf, SCAGE can
find models with TGE=1 = 1 for every key byte. For ASCADr as well, we retrained
the best model found by targeting the third byte on all the others and compared
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k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

TGE=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Search
Success Rate

90% 68% 83% 96% 70% 67% 66% 66% 80% 75% 100%100%80% 75%

TGE=1 of SCAGE’s
best model for k2

retrained for every ki

2 3 1 1 1 2 2 1 X 1 X 2 1 2

TGE=1 of [26]’s
best model for k2

retrained for every ki

2 10 1 1 5 7 4 1 3 1 19 7 1 3

Table 5: Comparison on all key bytes for ASCADr.

Dataset
Average TGE=1 Search Success Rate

SCAGE RS SCAGE RS

trimmed 85 771 100% 17%
raw δmax = 0 168 365 90% 0.6%
raw δmax = 50 147 961 40% 0.6%
raw δmax = 100 15 X 26.6% 0.0%
raw δmax = 200 77 X 15.3% 0.0%

Table 6: SCAGE versus random search on ASCADr.

the results with the same setup from [26]. This time, the retraining works for 12
bytes, where the model manages to recover the corresponding key byte in at most
three traces. On the other hand, the model found by [26] works on every byte of
the key: this simply implies that this specific model discovered by SCAGE is not
suitable for all ki. In such situations, we can re-run an explicit search with SCAGE
targeting the required byte.

Finally, Table 6 provides the detailed comparison with RS on average TGE=1
and search success rate. SCAGE consistently outperforms RS and achieves better
success rates even for high levels of desynchronization. We also note a remarkable
improvement when compared to the same results from ASCADf. The combination
of a much larger dataset (200000 traces vs 60000) and the use of random keys in
the profiling stage are probably the main reasons for the improved performance.

5.4 CHES CTF 2018

Since with the CHES CTF 2018 dataset, we are only provided with raw traces,
we focused our analysis on those and tested different levels of desynchroniza-
tion. Initially, we attempted to run SCAGE on synchronized traces in the same
configuration as on ASCAD, without success. This behavior aligns with the re-
sults from [26]: their random search could not find a successful CNN when us-
ing the Identity leakage model on raw traces. Nevertheless, when they search for
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MLPs in the same scenario, they had much better results, suggesting that MLPs
are better suited for this combination of dataset and trace type. Therefore, we re-
configured SCAGE to avoid any convolutional layer in the genotype: in practice,
we removed the <feature> grammar symbol from the setup. We also increased
the maximum number of <classification> layers to compensate for the miss-
ing convolutional ones. Finally, we reduced the maximum number of neurons per
dense layer from 1000 to 400 (as in [26]) to avoid the generation of huge MLPs.
These changes alone did not help SCAGE in discovering effective models against
the CHES CTF 2018 dataset. A more in-depth analysis revealed that many neural
networks were training only for a few epochs due to the intervention of the early-
stopping mechanism. While it worked for ASCAD, it seems that CHES CTF 2018
affects the performance of SCAGE, preventing the neural networks from learning
the dataset. Hence, we adjusted the grammar by modifying the derivation rules for
the <learning> symbol and by removing the option for early-stopping. This fi-
nally allowed SCAGE to discover successful MLPs on raw traces. However, when
we test for different desynchronization levels, we use CNN models, as convolu-
tional layers seem necessary to defeat this countermeasure [42].

The case of the CHES CTF 2018 dataset highlights one of the main properties
of SCAGE: its flexibility in the configuration and the rich expressivity provided by
the grammar. Our work focuses on CNNs by choice, but it can be immediately
adapted to other types of neural networks, like MLPs, and potentially extended
to even more diverse architectures. The role of the grammar in this context is to
provide a clear and effective mechanism to define the search space to suit our needs,
and the changes we reported are an example of how easily this can be achieved.

Table 7 reports our results on CHES CTF 2018. On raw traces, SCAGE is
on par with the best MLP found by [26] and [15]. We can also see a reduction
in the performance as the level of desynchronization rises, up to the point where,
for δmax = 200, SCAGE cannot find a successful model. Similarly to ASCAD, the
models found by a random search on aligned traces have high values of TGE=1. On
desynchronized traces, RS could not find any model that breaks the target. Overall,
it seems that the CHES CTF 2018 dataset is harder to attack compared to ASCAD.
This is also confirmed by the average TGE=1 and search success rates collected in
Table 8. SCAGE outperforms random search by quite some margin, but it is not
able to achieve the same success rate obtained on both ASCADf and ASCADr.

5.5 eShard

Table 9 reports the result of running SCAGE against every byte of the key in eS-
hard. To the best of our knowledge, we are the first to successfully retrieve the key
using the Identity leakage model on this dataset. The TGE=1 score of the models
evolved by SCAGE is mainly between 100 and 200 traces (with a few exceptions),
and the search success rate varies according to the target. We also tried to retrain
the model found by SCAGE on k0 and found that it works on 15 out of 16 of the
bytes, with slightly worse TGE=1 scores. We also reported TGE=1 scores from [15],
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Dataset
TGE=1

SCAGE RS [26] [15]

raw δmax = 0 28 1 606 13 22
raw δmax = 50 123 X - -
raw δmax = 100 715 X 906 -
raw δmax = 200 X X - -

Table 7: TGE=1 of the best models found by SCAGE on CHES CTF 2018 compared
to other approaches.

Dataset
Average TGE=1 Search Success Rate

SCAGE RS SCAGE RS

raw δmax = 0 313 1 606 56.6% 0.2%
raw δmax = 50 565 X 10.0% 0.0%
raw δmax = 100 715 X 3.3% 0.0%
raw δmax = 200 X X 0.0% 0.0%

Table 8: SCAGE versus random search on CHES CTF 2018.

which the authors obtained using their CGAN architecture under the Hamming
Weight leakage model. The main difference is that SCAGE is more consistent on
different bytes and generally performs better.

We also compared SCAGE to RS on the first byte, k0. While the absolute
performance is comparable, SCAGE’s best TGE=1 is 136, and RS’s best is 179.
Moreover, random search has a success rate of 3.80%, while SCAGE reaches 30%.
Following the trend of ASCAD and CHES CTF 2018, SCAGE can find successful
models in a reliable manner on eShard, compared to other techniques.

6 Discussion

The results presented in the previous section show that the models discovered using
SCAGE are overall better than those of the state-of-the-art models published in
the literature for all the considered datasets. More importantly, they highlight the
advantages of using an evolutionary approach in designing the architecture of a
neural network compared to a random search.

Search success rate. The main benefit of SCAGE is its search success rate,
which is consistently better than a random search in all considered scenarios. We
argue that this performance results from the iterative tweaking strategy inherent
to evolutionary algorithms: by slightly mutating the best networks, SCAGE has
higher chances of preserving their useful parts while modifying those that are sub-
optimal. On the other hand, a random search generates a new model from scratch
at each step, forgetting what it found before.
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k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15

TGE=1 of the best
model found by

SCAGE for every ki

136 134 153 162 220 172 152 142 232 135 135 167 143 133 118 163

Search
Success Rate

30%40%16%23%13%23%26%30%16%33%40%30%26%26%36%23%

TGE=1 of SCAGE’s
best model for k0

retrained for every ki

178 195 X 188 245 177 183 163 334 222 142 168 197 220 144 177

[15]
CGAN-SCA

(ref: ASCADr)
556 1 105312 224 709 257 396 206 967 385 244 272 309 294 292 299

Table 9: Comparison on all key bytes for eShard

Figure 3: Convergence plots of the TGE=1 metric over the number of generations
for ASCADr on raw trace with δmax = 0 and δmax = 100. The shaded area is a 95%
confidence interval on the average TGE=1.

To substantiate the above argument, Figure 3 shows the convergence of the
average TGE=1 score across all runs and generations of SCAGE as an example,
under the two scenarios of ASCADr where the traces are synchronized and with
desynchronization up to 100. The plots show how the evolutionary approach pro-
gressively brings the TGE=1 of the best individual towards the minimum of 1. As
expected, SCAGE requires more generations to converge when desynchronization
is applied.

Efficient Search. Another strength of our tool is the ability to efficiently ex-
plore a large search space, both in terms of numbers of layers and hyperparameter
ranges. Previous works that leveraged random search often had to significantly
limit the possible ranges for its hyperparameters, as the resulting search space was
already huge (e.g., more than 1 billion combinations in the setup of [26]). However,
SCAGE does not suffer from this limitation, as the main advantage of evolutionary
algorithms is to efficiently explore a large space by preserving the best compo-
nents of the candidate solutions through selective pressure. Consequently, we can
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Hyperparameter [26]
SCAGE

Range Max Average

Convolution Layers from 1 to 4 from 1 to 10 7 4.14

Convolution Filters
4 ·2i−1 ,8 ·2i−1,12 ·2i−1,

16 ·2i−1 (i is the conv. layer index)
from 4 to 512 496 253

Convolution Kernel 26 to 52 with a step of 2 from 2 to 80 75 42.8

Pooling Size 2, 4, 6, 8, 10 from 2 to 20 20 11.6

Pooling Stride same as Pooling Size from 2 to 20 18 9.8

Dense Layers from 1 to 4 from 1 to 6 6 3.42

Number of Neurons 10, 20, 50, 100, 200, 300, 400, 500 from 10 to 1 000 951 416

Table 10: Differences in the ranges of the search spaces explored by random search
and SCAGE, and the maximum and average values actually attained by SCAGE.

run SCAGE on much larger intervals. Table 10 compares the ranges between the
RS of [26] and those of SCAGE, together with the maximum and average values
attained by the latter for the best NNs. The max and average values demonstrate
that SCAGE actually uses values in the new region of the search space, suggesting
that optimal architectures can be found outside of the usual ranges.

Architecture of the best models found. In Figure 4, we also analyzed the layer
architecture of the best models found for ASCAD and CHES CTF 2018. For the
comparison, we chose the models with the best TGE=1 and, as a tie-breaker, picked
those with the smallest number of trainable parameters. Regarding both ASCADf
and ASCADr, we can immediately see how the best networks for the trimmed sce-
nario have many more layers compared to their counterparts on raw traces. This
difference, combined with the performance of SCAGE on the two scenarios, con-
firms the benefit of working with raw traces whenever possible, both in terms of
TGE=1 and final architecture. Another interesting remark concerns the preference
of SCAGE for different types of layers depending on the underlying trace sce-
nario. For the CHES CTF 2018 dataset, we intentionally evolved MLPs, but for
ASCAD, we kept the usual setup with convolutional layers. However, the best
models for ASCADf and ASCADr do not perform any convolution at all over the
raw synchronized traces. On the other hand, convolutional layers always occur
in the best networks evolved for trimmed synchronized and raw desynchronized
traces. Therefore, SCAGE is capable of distinguishing the situations where the
shift-invariance property of convolutional layers helps in circumventing the desyn-
chronization countermeasure and where it can be safely omitted. A third interesting
finding is on the best networks for the CHES CTF 2018 dataset with desynchro-
nized traces, where SCAGE found the same exact network topology to be effective
with δmax = 50 and δmax = 100, although it uses slightly different hyperparameters.
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trimmed B B C C C P C F D D D F F

raw P B D F D D F F

raw δ = 50 B P C C B D F D F F F

raw δ = 100 P C B P D F F F F F

raw δ = 200 P C C B P D F F F F F F

(a) ASCADf NN architectures

trimmed B P B B C C F F F F

raw P B B B F F

raw δ = 50 P C C B D F D F

raw δ = 100 B C C B F F

raw δ = 200 C C C P D F

(b) ASCADr NN architectures

raw F D F F F F

raw δ = 50 C B C C D F D F

raw δ = 100 C B C C D F D F

(c) CHES CTF 2018 NN architectures

Figure 4: Architectures of some of the best neural networks discovered by SCAGE
in various scenarios. C stands for convolutional layer, P for pooling, B for batch
normalization, F for fully connected, and D for dropout.

For eShard, we could not provide this type of comparison, having only the
trimmed traces scenario. However, we analyzed the architectures of the best mod-
els obtained on every byte of the key, and we observed some common patterns.
First, the number of convolutional layers remained well under the maximum of
10; in fact, the average was 4.7 layers, with a maximum of 6 used. Investigating
the specific types of layers, on average, there are between 2 and 3 convolutions, 1
batch normalization, and 1 pooling layer. Therefore, it appears that, for this dataset,
SCAGE naturally evolves neural networks without many nested convolution oper-
ations. The number of dense layers was also limited, with an average of 2 layers
per network.

Comparison with other automatic hyperparameter tuning frameworks. Thanks
to the unconventional combinations of layers, SCAGE can find models with com-
petitive performance on many datasets. This makes it the most complete automatic
hyperparameter tuning framework available for side-channel analysis, as the re-
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Dataset δ
Best Models’ TGE1

[29] [38] [2] [31]
SCAGE on

trimmed traces
SCAGE on
raw traces

ASCADf
0 202 120 130 314 70 1
50 443 - - 531 309 3

100 - - - - 282 4

ASCADr
0 490 2945 120 - 23 1
50 - - 880 - 261 1

100 - - 960 - X 1

Table 11: SCAGE vs. other automated search techniques.

sults collected in Table 11 demonstrate. All the considered methods are tested
against the trimmed version of ASCAD, even in the case of desynchronization.
Hence, we ran SCAGE also on this combination, and it also obtained the best result
overall, unable to discover a successful model only for the ASCADr dataset with
δmax = 100. In particular, it can be observed that SCAGE outperforms InfoNEAT
in all scenarios except the one with the highest desynchronization level of 100. We
hypothesize that this is due to the combined difficulty of considering both trimmed
and highly desynchronized traces. However, we speculate that SCAGE could also
break this scenario by further tailoring the grammar or tuning the parameters of the
evolutionary strategy.

Execution time. Beyond the bare performance of the framework, there are some
further considerations about the time required to run SCAGE. To provide a refer-
ence, the average times required to complete one evolution run of SCAGE (i.e.,
generate 5 offspring models for 30 generations) on the raw traces of ASCADf,
ASCADr, and CHES CTF 2018 are, respectively, 3.5 hours, 14.0 hours, and 3.3
hours. For ASCAD with trimmed traces, the average times are halved. On eS-
hard, the average time is between 2 and 3 hours. Using our HPC cluster, we could
schedule up to 8 runs in parallel, which brings the total time to approximately 3
times the number of hours required for one run. For a high-level comparison, In-
foNEAT [2] reports 2 days to complete an experiment, RL-SCA [29] states 100
hours, AutoSCA [38] 10 hours, and NASCTY [31] uses between 4 and 7 days.
Since the experimental setup is not the same for every tool, it is hard to make a
precise comparison. Nonetheless, these numbers confirm that SCAGE is aligned
with previous works regarding the time required for the execution.

The difference is more noticeable in the execution times of the random search.
The average time required to train a model is in the order of minutes. However, the
main point in using a tool like SCAGE is the much higher chance of finding suc-
cessful models, especially in harder scenarios where the success rate of a random
search drops dramatically.
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7 Conclusions and Future Work

Deep learning has proved to be a very effective tool to break implementations of
cryptographic algorithms. Still, choosing an appropriate model is not an easy task,
and researchers default to a random search when performing profiling attacks. In
this paper, we showed the limits of RS and proposed an evolutionary approach
based on grammar to mitigate them. Our tool, SCAGE, was extensively tested on
common SCA datasets, using different feature selection strategies and increasingly
higher levels of desynchronization. Our results demonstrate that SCAGE discov-
ers successful SCA models much more reliably than a random search, especially
in harder setups, where the chances of finding a good architecture drop signifi-
cantly for RS. The best neural networks found in our experiments outmatch the
performance of other state-of-the-art models in most of the considered settings. A
further analysis shows that SCAGE takes full advantage of the freedom granted by
the grammar we designed by developing unconventional architectures and hyper-
parameter combinations.

SCAGE mainly targets CNNs and can work with MLPs as well. In future work,
we plan to extend the supported models to include new types of layers, such as
those typical of transformer networks or recurrent neural networks. In our experi-
ments, we showed that CNNs can still cope with a high level of desynchronization.
However, this might not hold for other countermeasures, and different architectures
may have to be considered.
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