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Abstract. At CRYPTO 2019, Gohr pioneered the integration of differ-
ential cryptanalysis with neural networks, demonstrating significant ad-
vantages over traditional distinguishers. Subsequently, at Inscrypt 2020,
Su et al. proposed the concept of constructing polyhedral differential
neural distinguishers by leveraging multiple effective input differences.
More recently, at FSE 2024, Bellini et al. introduced a general-purpose
tool for automating the training of single-key differential neural distin-
guishers for various block ciphers. Inspired by this body of work, we aim
to extend automated search techniques to related-key differential neu-
ral distinguishers, enabling the discovery of effective input differences
and key differences for such distinguishers. To achieve this, we employ a
genetic optimization algorithm to identify effective differential combina-
tions. To validate the efficacy of our method, we apply it to the Simeck
and Simon cipher families, successfully identifying effective differential
combinations for the three variants of Simeck and ten variants of Simon.
Furthermore, inspired by the concept of polyhedral neural distinguishers,
we adopt a novel data format that leverages multiple distinct input dif-
ferences and key differences to construct positive and negative samples,
providing the neural network with a richer set of features. Our approach
not only identify high-quality distinguishers for previously unexplored ci-
pher variants but also achieve higher accuracy for related-key differential
neural distinguishers compared to the state-of-the-art.

Keywords: Related-key · Differential neural distinguisher · Genetic op-
timization algorithm · Simeck cipher · Simon cipher.

1 Introduction

In resource-constrained environments, lightweight block ciphers have gained widespread
application due to their ability to provide adequate security while operating effi-
ciently on small-scale devices. The cryptanalysis of lightweight ciphers has thus
emerged as a highly active area of research. Differential cryptanalysis, one of the
most classical techniques in this field, was introduced by Biham and Shamir in
1991 for chosen-plaintext attacks [1]. The core concept of this method involves
⋆ Corresponding author.
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analyzing how specific plaintext differences propagate to ciphertext differences.
Assuming a fixed key, the process of feeding back ciphertext differences to plain-
text for analysis is known as single-key differential cryptanalysis. Related-key
differential cryptanalysis [2] extends the differential cryptanalysis framework
by considering not only the influence of input differences on output differences
but also incorporating key differences into the analytical framework. This ap-
proach is particularly suited for investigating cryptographic algorithms with key-
dependent structures. The rapid advancement of artificial intelligence, particu-
larly deep learning, has introduced transformative opportunities for cryptanal-
ysis. By leveraging deep learning algorithms, the process of differential crypt-
analysis can be automated, thereby significantly enhancing both the efficiency
and precision of attacks. Deep learning excels at capturing latent patterns in
encryption algorithms, demonstrating strong analytical capabilities when pro-
cessing large-scale datasets. This technology not only shows extensive potential
for application in traditional symmetric cryptography but also provides novel
perspectives for the design and security evaluation of lightweight block ciphers.

At CRYPTO 2019, Gohr [3] proposed the use of residual networks as un-
derlying distinguishers to analyze the Speck32/64 block cipher, successfully con-
structing an 8-round single-key differential neural distinguisher and performing
an 11-round key recovery attack. Since this groundbreaking work, differential
neural distinguishers have been widely adopted in both single-key and related-
key scenarios. Subsequent research has primarily focused on explaining why neu-
ral networks are more effective at distinguishing ciphertext pairs and on enhanc-
ing the performance of neural distinguishers.At EUROCRYPT 2021, Benamira
et al. [4] provided a compelling explanation of differential neural distinguish-
ers, demonstrating that these distinguishers rely on the differential distribution
of ciphertext pairs as well as the differential distributions in the penultimate
and antepenultimate rounds. Numerous efforts have been made to improve the
performance of neural distinguishers: studies such as [5–9] proposed structural
enhancements to the neural networks, while works like [8–14] introduced im-
proved input data formats to provide neural networks with richer features. Ad-
ditionally, research in [15–17]focused on identifying optimal input differences
and constructing high-quality datasets for training neural networks. We observe
that most of these works concentrate on neural distinguishers in single-key sce-
narios, with comparatively limited research addressing related-key settings. This
paper focuses on improving the performance of differential neural distinguishers
in related-key scenarios, specifically for the Simon and Simeck cipher families.

Our contributions : In this study, we develop a training framework for
neural distinguishers in related-key scenarios. The framework comprises five key
components: differential selection, sample generation, network architecture, dis-
tinguisher training, and distinguisher evaluation. Our primary contributions fo-
cus on the differential selection and sample generation processes. For differential
selection, inspired by the work of Bellini et al. [15], we enhanced the automated
search tool proposed in [15] to make it applicable to related-key scenarios. This
modification enables the identification of effective combinations of input and
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key differences. To validate the effectiveness of these differentials, we utilize the
identified differentials to generate sample datasets following the data construc-
tion methodology outlined in [14]. Additionally, we employ the same network
architecture, training procedures, and evaluation metrics as in [14] and [16] for
a direct performance comparison. The results demonstrate that the differentials
identified by our approach provide richer and more effective features. Regard-
ing sample generation, we further improved the data structure to enhance the
performance of the distinguisher. Building on the principles of polyhedral neural
distinguishers introduced in [12], we refine the data structure by using multiple
distinct differentials to construct positive and negative samples. This approach
minimizes the potential for confusion between positive and negative samples
while providing the neural network with a broader set of useful features. Exper-
imental results confirm that this improved data structure effectively optimizes
the performance of the distinguisher, leading to increased accuracy. The detailed
results are presented in Table 1.

Specifically, for Simeck32/64, the accuracy of the 14-round and 15-round dis-
tinguishers is improved from 0.730 and 0.568 to 0.802 and 0.593, respectively.
Similarly, for Simeck48/96, the accuracy of the 18-round and 19-round distin-
guishers is increased from 0.572 and 0.523 to 0.603 and 0.533. For Simeck64/128,
the accuracy of the 21-round and 22-round distinguishers is rised from 0.572 and
0.526 to 0.605 and 0.535. Additionally, for Simon32/64 (12 and 13 rounds), Si-
mon48/96 (13 rounds), and Simon64/128 (13 and 14 rounds), the accuracy of
the related-key differential neural is improved from 0.740, 0.567, 0.696, 0.916,
and 0.618 to 0.788, 0.581, 0.744, 0.963, and 0.651, respectively.

Beyond these improvements, we train new distinguishers for seven additional
variants of the Simon cipher. Specifically, we identify new related-key differen-
tial neural distinguishers for 17-round Simon128/256, 12-round Simon48/72, 13-
round Simon64/96, 14-round Simon96/144, 16-round Simon128/192, 13-round
Simon96/96, and 15-round Simon128/128. The detailed results are presented in
Table 6.



4 X. Yuan, Q. Wang

Table 1: Comparison of Related-Key Differential Neural Distinguishers for
Simeck and Simon Ciphers

Ciphers Round Accuracy TPR TNR Ciphers Round Accuracy TPR TNR Source

Simeck32/64

14r 0.668 0.643 0.693

Simon32/64

12r 0.648 0.652 0.644 [14]
14r 0.730 0.722 0.738 12r 0.740 0.729 0.750 [16]
14r 0.802 0.805 0.800 12r 0.788 0.782 0.794 Sect. 4
15r 0.547 0.517 0.576 13r 0.526 0.544 0.508 [14]
15r 0.568 0.553 0.582 13r 0.567 0.564 0.570 [16]
15r 0.593 0.595 0.590 13r 0.581 0.573 0.589 Sect. 4

Simeck48/96

18r 0.572 0.572 0.572

Simon48/96

12r 0.997 0.998 0.996 [16]
18r 0.603 0.628 0.578 12r 0.999 0.999 0.999 Sect. 4
19r 0.523 0.527 0.518 13r 0.696 0.698 0.695 [16]
19r 0.533 0.524 0.541 13r 0.744 0.748 0.741 Sect. 4

Simeck64/128

21r 0.552 0.425 0.679

Simon64/128

13r 0.840 0.839 0.841 [14]
21r 0.572 0.580 0.563 13r 0.916 0.910 0.922 [16]
21r 0.605 0.590 0.619 13r 0.963 0.966 0.960 Sect. 4
22r 0.518 0.391 0.646 14r 0.579 0.589 0.568 [14]
22r 0.526 0.523 0.529 14r 0.618 0.596 0.639 [16]
22r 0.535 0.526 0.544 14r 0.651 0.657 0.645 Sect. 4

2 Preliminaries

2.1 Simon Cipher Overview

In 2013, the National Security Agency (NSA) proposed the Simon cipher [18],
whose core design principle relies on simple bitwise operations such as XOR,
AND, and circular shifts to construct an efficient encryption structure. Based
on different combinations of block length and key length, Simon provides a to-
tal of ten variants, denoted by Simon 2n/mn, where n represents half of the
block size and m denotes the number of initial key words. Examples include Si-
mon32/64, Simon48/72, Simon48/96, Simon64/96, Simon64/128, Simon96/96,
Simon96/144, Simon128/128, Simon128/192, and Simon128/256. These variants
mainly differ in block length and key length, thereby influencing both the initial
number of key words m and the required number of rounds.

Simon employs an unbalanced Feistel network as its core structure, with a
block size of 2n bits. The input block is divided into two n-bit halves, denoted as
Li and Ri. During each encryption round, the left half undergoes transformation
through the round function F (·), after which the result is combined with the
round key ki using XOR or other bitwise operations. The modified left half then
interacts with the right half to complete the round transformation. This iterative
encryption process is mathematically expressed as follows:Li+1 = Ri,

Ri+1 = Li ⊕ F
(
Ri

)
⊕ ki.
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where ki is the ith round key and the round function F (x) is defined as

F (x) =
(
S1(x) ∧ S8(x)

)
⊕ S2(x)

with Sj(x) representing a j-bit circular left rotation of x. The symbols ∧ and ⊕
stand for bitwise AND and bitwise XOR, respectively.

The key expansion algorithm in Simon is likewise simple and efficient, primar-
ily based on circular shifts, XOR operations, and a predefined constant sequence.
The initial key is composed of m n-bit words, with m taking different values in
different variants (for example, m = 4 is commonly used in Simon32/64). De-
noting the initial key by k =

(
km−1, . . . , k1, k0

)
, the recursive relations for the

key schedule can be categorized into three cases corresponding to m = 2, 3, 4,
generally described as follows:
ki+2 = c ⊕ (zj)i ⊕ ki ⊕

(
S−3

(
ki+1

)
⊕ S−4

(
ki+1

))
,m = 2.

ki+3 = c ⊕ (zj)i ⊕ ki ⊕
(
S−3

(
ki+2

)
⊕ S−4

(
ki+2

))
,m = 3.

ki+4 = c ⊕ (zj)i ⊕ ki ⊕
[
S−3

(
ki+3

)
⊕ ki+1 ⊕ S−4

(
ki+3

)
⊕ S−1

(
ki+1

)]
,m = 4.

where c is a fixed constant, and (zj)i is taken from a predefined constant sequence
whose selection differs among variants [18]. Here, S−j(x) denotes a j-bit circular
right shift of x. Because both the number of initial key words m and the chosen
sequence vary across different Simon variants, the specific expansion rules exhibit
certain nuances among them.

2.2 Simeck Cipher Overview

Proposed in 2015 by Yang et al. [19], Simeck can be viewed as a lightweight
cipher that builds upon and improves the Simon structure. It integrates the
Feistel framework from Simon with a round function inspired by Speck, aiming
to enhance hardware efficiency while still maintaining Simon’s hardware-friendly
features and providing higher security. Simeck also offers multiple variants, de-
noted as Simeck 2n/mn, where n represents half the block size and m stands
for the number of initial key words. Currently, there are three main variants of
Simeck: Simeck32/64, Simeck48/96, and Simeck64/128.

Simeck adopts a Feistel structure in the same manner as Simon, with a round
function F (·) closely resembling that of Simon. Specifically, F (x) is defined by

F (x) =
(
S5(x) ∧ x

)
⊕ S1(x)

Its key schedule is further simplified, aiming to reduce hardware implementation
complexity; the round keys are updated through minimal operations, including
XOR, circular shifts, and constant addition. Denoting the initial key by k =
(t2, t1, t0, k0), the iterative relations in the key expansion can be summarized as{

ki+1 = ti,

ti+3 = ki ⊕ ti ⊕ S5(ti) ⊕ S1(ti) ⊕ c ⊕ (zj) i.
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where c is a constant, (zj) i is a predefined sequence (see [19] for details), and
Sj(x) denotes a j-bit circular left rotation of x. Because all three variants of
Simeck employ four n-bit words as their initial key, they share the same key
expansion rules as illustrated above.

2.3 Related-Key Differential Cryptanalysis

Differential cryptanalysis [1] has been widely applied to the security evaluation of
block ciphers since its inception. In differential cryptanalysis, the attacker typi-
cally considers a known plaintext difference δp and studies its effect on the cipher-
text difference δc. On the other hand, related-key differential cryptanalysis [2]
extends traditional differential analysis by incorporating key differences, thus
enabling a more in-depth investigation of the algorithm’s security. In related-key
differential cryptanalysis, the attacker assumes the existence of a pair of related
keys k1 and k2, which satisfy a specific differential relationship, i.e., k1⊕k2 = δk.
Based on this assumption, the attacker analyzes the relationship between the ci-
phertext differences obtained from encrypting the plaintext pair p1 and p2 using
the keys k1 and k2, respectively.

Definition 1 (Related-Key Differential Characteristic) Consider a
block cipher with r rounds, and let the plaintext pair (p, p′) and key pair (k, k′)
satisfy δp = p ⊕ p′, δk = k ⊕ k′. During the encryption process, define the out-
put ciphertext pair of the i-th round as (ci, c

′
i), where δci = ci ⊕ c′i, 1 ≤ i ≤ r.

This sequence (δp, δc1 , δc2 , . . . , δcr ) is referred to as the related-key differential
characteristic of the block cipher for r rounds. Here, δc is the final ciphertext
difference, which can be derived from δc = c⊕ c′, c = Ek(p), c

′ = Ek′(p′). Thus,
the characteristic describes the propagation of plaintext and key differences to
the final ciphertext difference.

Definition 2 (Related-Key Differential Probability) Given a plaintext
difference δp, a key difference δk, and a target ciphertext difference δc, the related-
key differential probability is defined as

RDP(δp, δk, δc) =

∣∣∣(x, k) ∣∣Ek⊕δk

(
x⊕ δp

)
⊕ Ek(x) = δc

∣∣∣
2|p|+|k| ,

where |p| and |k| represent the bit lengths of the plaintext and key, respectively,
and x runs over all possible plaintexts, while k runs over all possible keys. This
probability quantifies the likelihood that, when the difference δp in the plaintext
and the difference δk in the key both exist simultaneously, a ciphertext difference
δc will result. The higher this probability, the more likely it is that the cipher-
text difference δc will appear, enabling an attacker to perform a related-key
differential cryptanalysis attack.

3 Finding Effective Input and Key Differences for New
Ciphers

Currently, there are two primary approaches to selecting differentials for neural
distinguishers. The first involves utilizing existing optimal differential character-
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istics, while the second selects optimal differential characteristics from n− 1 or
n− 2 rounds for an n-round neural distinguisher. Both approaches require man-
ually identifying input differentials, yet neither effectively enhances the accuracy
of the distinguisher. In [15], Bellini observed that the input differential corre-
sponding to the best n-round differential path does not necessarily yield optimal
results for neural distinguishers. Through experimental analysis, Bellini discov-
ered that well-chosen input differentials enable high biases to persist into later
rounds. Based on this observation, the author hypothesized that effective input
differentials for neural distinguishers exhibit high bias scores. This hypothesis
was experimentally validated, generalizing the findings of Benamira [4] to other
ciphers. Using an evolutionary optimizer, Bellini [15] automated the selection
of effective input differentials for various ciphers and identified favorable input
differentials in related-key scenarios. However, these results do not surpass the
latest or achieve superior performance.

Inspired by Bellini’s work, we seek to improve the optimizer to make it ap-
plicable to related-key neural distinguishers. Our primary focus is on identify-
ing effective combinations of input and key differentials that can improve the
accuracy of neural distinguishers. According to Bellini’s findings, effective dif-
ferentials tend to exhibit high bias scores. We hypothesize that while Bellini’s
approach successfully identifies good input differentials, it fails to find optimal
combinations of input and key differentials because the heuristic search process
is limited to a single directional optimization, neglecting the interplay between
the two types of differentials. Thus, we aim to investigate whether a relation-
ship exists between input and key differentials. If such a relationship can be
established, heuristic search methods could be employed to identify effective dif-
ferential combinations. These combinations, like their individual counterparts,
should also exhibit high bias scores. The definition of the bias score is presented
below.

Definition 3 (Exact bias score for related-key scenario). Let E :
Fn
2 × Fk

2 → Fn
2 be a block cipher, δp ∈ Fn

2 an input difference, and δk ∈ Fk
2 a key

difference. The exact bias score for the pair (δp, δk), denoted as b(δp, δk), is the
sum of the biases of each bit position j in the output difference, i.e.,

b(δp, δk) =
1

n

n−1∑
j=0

∣∣∣∣∣∣∣∣∣0.5−
1

2n+k

∑
X∈Fn

2

K∈Fk
2

(EK(X)⊕ EK⊕δk(X ⊕ δp))j

∣∣∣∣∣∣∣∣∣ .
The computation of the exact bias score is infeasible for practical ciphers, as

it involves exhaustive enumeration of all possible keys and plaintexts. Instead,
an approximation can be employed, which is derived from a finite set of samples
t.

Definition 4 (Bias score for related-key scenario). Let E : Fn
2 × Fk

2 →
Fn
2 be a block cipher, δp ∈ Fn

2 an input difference, and δk ∈ Fk
2 a key difference.

The bias score for the pair (δp, δk), denoted as b̃t(δp, δk), is the sum of the biases
of each bit position j in the output difference, computed for t samples (Xi,Ki),
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i.e.,

b̃t(δp, δk) =
1

n

n−1∑
j=0

∣∣∣∣∣0.5− 1

t

t−1∑
i=0

(EKi
(Xi)⊕ EKi⊕δk(Xi ⊕ δp))j

∣∣∣∣∣ .
Conjecture 1. Input and key difference pairs (δp, δk) that reach the most rounds
with a neural distinguisher have a high bias score b(δp, δk). We further assume
that b̃t(δp, δk) is a good estimation of b(δp, δk).

To investigate whether a relationship exists between input differentials and
key differentials, we employ an exhaustive search algorithm to enumerate all com-
binations of input and key differentials with Hamming weights of 1 and 2 for the
Simon32/64 cipher, resulting in a total of (C1

32·C1
64+C1

32·C2
64+C2

32·C1
64+C2

32·C2
64)

combinations. Our analysis reveals that for differential combinations with high
bias scores, the values of the input differential and the key differential are iden-
tical. Based on this observation, we hypothesize that effective differential com-
binations are characterized by equal input and key differentials. To validate this
hypothesis, we conduct experiments to test whether constructing datasets using
differential combinations where the input and key differentials are identical leads
to higher accuracy in neural network training. If such combinations result in im-
proved accuracy, our hypothesis would be supported. Using the same network
architecture and evaluation methods as Lu et al. [14], we perform experiments
and confirmed that datasets constructed with equal input and key differentials in-
deed enhance the accuracy of the distinguishers. This improvement suggests that
these combinations provide the neural network with more transferable features,
demonstrating the effectiveness of high-bias differential combinations where the
input and key differentials are equal. Given that exhaustive search requires sub-
stantial memory and is computationally time-consuming, we propose utilizing
heuristic search methods to identify effective differential combinations more ef-
ficiently.

We improve the automated search tool proposed in [15]. Since well-performing
input differentials typically have a relatively small Hamming weight, we aim to
generate an initial population with Hamming weights constrained within a spe-
cific range to guide the subsequent search process. During the search, the key
differential is enforced to remain identical to the input differential. Following
this approach, we adopt the heuristic search framework based on the genetic
optimization algorithm in [15]. The algorithm proceeds as follows:

We filter the obtained results, selecting differential combinations whose bias
scores deviate by no more than 0.06 from the highest bias score for subsequent
experiments. In the following, we present the number of candidate differentials
identified for each cipher. The detailed results are presented in Table 2.
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Algorithm 1: Evolutionary optimizer
1 Input: L²: length of the initial population, plain_bits: plaintext length,

min_hw: minimum hamming weight, max_hw: maximum hamming weight;
2 plain_population ← GeneratePopulation(L², plain_bits, min_hw, max_hw);
3 key_population ← plain_population;
4 starting_population ← key_population and plain_population;
5 Sort starting_population by b̃(·) (descending order);
6 current_population ← first 32 elements of starting_population;
7 for iterations ← 0 to 50 do
8 candidates ← [];
9 for i← 0 to 32 do

10 for j ← i+ 1 to 32 do
11 m← 1;
12 Add current_populationi ⊕ current_populationj ⊕ (m≪

RandomInt(0, n− 1)) to candidates;

13 Sort candidates by b(·) (descending order);
14 current_population ← first 32 elements of candidates;

15 return candidates

Table 2: Total Number of Searched Differences and Effective Differences for Each
Cipher

Cipher Total 0.06-close
Simeck32/64 244 16
Simeck48/96 235 24
Simeck64/128 219 26
Simon32/64 229 32
Simon48/96 218 24
Simon64/128 217 25
Simon128/256 227 28
Simon48/72 198 23
Simon64/96 212 24
Simon96/144 178 27
Simon128/192 194 31
Simon96/96 150 28

Simon128/128 161 29

4 Related-Key Differential-Neural Distinguishers

4.1 Distinguisher Model

Differential neural distinguishers are a type of supervised model designed for
the binary classification of ciphertext pairs. As such, their datasets consist of
positive and negative samples, with positive samples labeled as 1 and negative
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samples labeled as 0. In most scenarios, these distinguishers are used to deter-
mine whether ciphertext pairs are generated by encrypting plaintext pairs that
satisfy specific input and key differentials or by random encryption. In such cases,
there is a possibility of confusion between positive and negative samples. In this
study, the distinguisher is primarily used to differentiate whether ciphertexts are
generated by encryption with one set of input and key differential combinations
or another distinct set of differential combinations. To ensure fairness in exper-
imental comparisons, we follow the methodology of Lu et al. [14] and Wang et
al. [16], using ciphertext pairs in the data format proposed in [14] to construct
a dataset. Specifically, eight ciphertext pairs in the specified format are used to
train the related-key differential neural distinguisher.

Basic Distinguisher Model For the target ciphers Simon and Simeck, the
i-th (1 ≤ i ≤ 8) plaintext pair (P, P ′)i is encrypted for r rounds to obtain the
ciphertext pair (Cl, Cr, C

′
l , C

′
r)i. Using partial decryption as described in [14], the

enhanced data structure (∆Lr, ∆Rr, Cl, Cr, C
′
l , C

′
r, ∆Rr−1, p∆Rr−2)i is derived

and regarded as a single sample. Then each sample is assigned a label Y .

Y =

{
1, if Pi ⊕ P ′

i = δp and Ki ⊕K ′
i = δk.

0, if Pi ⊕ P ′
i = Random and Ki ⊕K ′

i = Random.

During model training, a related-key differential neural distinguisher is consid-
ered effective if its accuracy exceeds 0.5.

Enhanced Distinguisher Model From the basic model description, it can be
observed that the enhanced data structure proposed by Lu et al. [14] already in-
corporates all features from the last three encryption rounds. To further improve
the performance of the distinguisher, we draw inspiration from the polyhedral
distinguisher construction proposed by Su et al. [12] and utilized t combinations
of input and key differentials to construct positive and negative samples. This
approach eliminates the possibility of positive and negative samples satisfying
the same differential, while simultaneously providing the neural network with
a greater number of usable features. The labels for the enhanced samples are
defined as follows:

Y =

{
1, if Pi ⊕ P ′

i = δpj
and Ki ⊕K ′

i = δkj
, j ∈ [0, t− 1].

0, if Pi ⊕ P ′
i = δp′

j
and Ki ⊕K ′

i = δk′
j
, j ∈ [0, t− 1].

In this study, we set t = 2. Consequently, constructing the sample dataset
requires four combinations of input and key differentials.

4.2 Description of Neural Network

We evaluate the neural network models proposed by Gohr [3], Bao [5], and
Zhang [8] and determine that the following architecture achieves the highest ac-
curacy while maintaining a reasonable balance between computational efficiency
and memory overhead.
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This network architecture is composed of three fundamental modules (Mod-
ule 1, Module 2, and Module 3) along with an attention mechanism module
(SENet Module). The input data first undergoes preprocessing in the input layer,
where it is reshaped before sequentially passing through each module for feature
extraction and transformation. Ultimately, the model generates classification or
regression outputs. The overall architecture incorporates one-dimensional con-
volutional layers (Conv), batch normalization (BN), ReLU activation functions,
fully connected layers (Dense), and the SENet attention mechanism (Squeeze-
and-Excitation Networks) to enhance feature representation and improve the
model’s generalization capability.

Fig. 1: Network Architecture

Input Representation. We employ eight partially decrypted and enhanced
data structures as inputs to the neural network. These inputs are reshaped in
the network’s input layer into an 8× L matrix, where L denotes the size of the
enhanced structure corresponding to the target cipher.
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Initial Convolution Layer (Module 1). This module reformats the input
for one-dimensional convolutional processing. A 1D convolutional layer with 64
filters (Nf = 64) extracts local features, followed by batch normalization and
ReLU activation to stabilize training and introduce nonlinearity. Two fully con-
nected layers, each containing d neurons, are subsequently applied, with batch
normalization and ReLU activation after each layer. This module establishes a
foundational feature representation, facilitating deeper extraction in later stages.

Residual Blocks (Module 2). This module stacks two 1D convolution layers
of size 3×3, each with 64 filters (Nf = 64). Batch normalization and ReLU acti-
vation immediately follow each convolutional operation, ensuring stable training
and favorable convergence in a deep architecture. A SENet module is intro-
duced as an attention mechanism to compute channel-wise weights and perform
channel-wise multiplication along with residual addition, thereby recalibrating
the features. The SENet module obtains importance scores for each channel and
multiplies these scores with the corresponding channels of the input feature map,
emphasizing critical information. The resulting feature maps are subsequently
added back to the original input, ensuring that gradients are effectively propa-
gated as network depth increases and preventing performance degradation. By
integrating residual connections with channel attention, this module adaptively
focuses on pertinent channels, thereby enhancing the network’s ability to capture
and express key information.

Prediction Head (Module 3). This module processes high-level features for
classification or regression. The feature maps are first flattened into a 1D vector
before passing through fully connected layers. A dropout mechanism is intro-
duced to mitigate overfitting, followed by two Dense layers with 128 neurons
(d = 128), each paired with batch normalization and ReLU activation to ensure
numerical stability and nonlinearity. The final output layer applies an appropri-
ate activation function (e.g., Sigmoid or Softmax) depending on the task.

SE-Net Module. As the central attention mechanism, the SENet module adap-
tively reweights the importance of each channel. Global average pooling (GAP)
across spatial dimensions yields a single descriptor per channel. This descriptor
is fed into a Dense layer with d = 128 neurons and a ReLU activation, cap-
turing channel interdependencies. A second Dense layer followed by a Sigmoid
activation then maps these interdependencies into weights in [0, 1]. Finally, these
weights are multiplied element-wise with the original feature map, and a residual
connection fuses the reweighted features back to the network flow. This adaptive
recalibration enhances the model’s focus on critical information while mitigating
irrelevant noise.

4.3 Model Training Process

The experiment consists of training both the basic differential neural distin-
guisher and the enhanced differential neural distinguisher. The training process
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is divided into two phases: offline training and online evaluation. In the offline
phase, the attacker generates the training set and validation set based on prede-
fined plaintext differentials and key differentials, then trains the neural network.
If the accuracy on the validation set exceeds 0.5, the distinguisher is considered
effective in distinguishing between positive and negative samples. In the online
phase, the trained distinguisher is used to analyze ciphertext data. If more than
half of the samples yield a score higher than 0.5, the ciphertext is classified
as originating from the block cipher; otherwise, it is considered the output of
a random function. For the enhanced distinguisher training, the ciphertext is
classified as satisfying the first set of differentials; otherwise, it is considered to
satisfy the second set of differentials.

Parameter setting In this experiment, we use a training set of 2 × 107 sam-
ples and a validation set of 2 × 106 samples. The training process spans 30
epochs with a batch size of 30,000. To accelerate computation and reduce train-
ing time, we utilize four A800-80GB GPUs in parallel. The network is optimized
using Adam [20], with Mean Squared Error (MSE) as the loss function and
accuracy as the evaluation metric. To prevent overfitting, we apply L2 regular-
ization with a coefficient of 10−5. Additionally, we adopt a cyclic learning rate
strategy, which dynamically adjusts the learning rate within a specified range
over training epochs. For the i-th iteration, the learning rate ℓi is computed as
ℓi = a+ (n−i) mod (n+1)

n × (b−a), where a = 0.0001 is the lower bound, b = 0.002
is the upper bound, and n = 10 represents the cycle period.

Training of the Basic Differential Neural Distinguishers In the exper-
iments, we use the data format of the Basic Distinguisher Model described in
Section 4.1, and generate training and validation samples using the Linux ran-
dom number generator, ensuring the randomness of the data. The data format of
the Basic Distinguisher Model includes information from the last three rounds of
the target cipher, providing the neural network with rich feature representations.
We construct the sample dataset using the effective differentials obtained from
the search in Section 3, and train the neural network. The results demonstrate
that the differential neural distinguisher we develop can match or even outper-
form the latest results in some cases. This further validates the correctness of
our hypothesis and the effectiveness of the differentials discovered. We present
the superior results obtained from the training in Table 3.



14 X. Yuan, Q. Wang

Table 3: The basic related-key differential neural distinguishers for Simeck32/64,
Simeck48/96, Simeck64/128, Simon32/64, Simon48/96 and Simon64/128

Ciphers Round Difference Accuracy TPR TNR Source

Simeck32/64

14r (0x0,0x40),(0x0,0x0,0x0,0x40) 0.6679 0.6425 0.6933 [14]
14r (0x0,0x8000),(0x0,0x0,0x0,0x8000) 0.6683 0.6585 0.6875 Sect. 4
15r (0x0,0x40),(0x0,0x0,0x0,0x40) 0.5467 0.5173 0.5762 [14]
15r (0x0,0x8000),(0x0,0x0,0x0,0x8000) 0.5471 0.5124 0.5818 Sect. 4

Simeck48/96

15r (0x0,0x2000),(0x0,0x0,0x0,0x2000) 0.9362 0.9202 0.9522 Sect. 4
16r (0x0,0x2000),(0x0,0x0,0x0,0x2000) 0.7812 0.7288 0.8335 Sect. 4
17r (0x0,0x2000),(0x0,0x0,0x0,0x2000) 0.6256 0.5317 0.7192 Sect. 4
18r (0x0,0x2000),(0x0,0x0,0x0,0x2000) 0.5503 0.4591 0.6418 Sect. 4
19r (0x0,0x2000),(0x0,0x0,0x0,0x2000) 0.5158 0.4220 0.6094 Sect. 4

Simeck64/128

21r (0x0,0x40),(0x0,0x0,0x0,0x40) 0.5519 0.4248 0.6790 [14]
21r (0x0,0x8),(0x0,0x0,0x0,0x8) 0.5521 0.4099 0.6944 Sect. 4
22r (0x0,0x40),(0x0,0x0,0x0,0x40) 0.5180 0.3906 0.6455 [14]
22r (0x0,0x8),(0x0,0x0,0x0,0x8) 0.5181 0.3875 0.6484 Sect. 4

Simon32/64

12r (0x0,0x40),(0x0,0x0,0x0,0x40) 0.6477 0.6518 0.6435 [14]
12r (0x0,0x8010),(0x0,0x0,0x0,0x8010) 0.6766 0.6793 0.6738 Sect. 4
13r (0x0,0x40),(0x0,0x0,0x0,0x40) 0.5262 0.5437 0.5081 [14]
13r (0x0,0x8010),(0x0,0x0,0x0,0x8010) 0.5444 0.5145 0.5742 Sect. 4

Simon48/96
11r (0x0,0x8),(0x0,0x0,0x0,0x8) 0.9999 1 0.9999 Sect. 4
12r (0x0,0x8),(0x0,0x0,0x0,0x8) 0.9924 0.9993 0.9854 Sect. 4
13r (0x0,0x8),(0x0,0x0,0x0,0x8) 0.6435 0.6627 0.6242 Sect. 4

Simon64/128

13r (0x0,0x40),(0x0,0x0,0x0,0x40) 0.8398 0.8398 0.8408 [14]
13r (0x0,0x1000),(0x0,0x0,0x0,0x1000) 0.8399 0.8412 0.8467 Sect. 4
14r (0x0,0x40),(0x0,0x0,0x0,0x40) 0.5788 0.5894 0.5682 [14]
14r (0x0,0x1000),(0x0,0x0,0x0,0x1000) 0.5789 0.5788 0.5790 Sect. 4

As shown in the table, the performance of the distinguisher trained with the
new differentials and a smaller dataset for fewer rounds is comparable to that of
Lu et al. [14]. Additionally, we have identify new distinguishers for the remaining
seven unstudied variants of the Simon cipher. The training results are presented
in Table 4.
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Table 4: The basic related-key differential neural distinguishers for Si-
mon128/256, Simon48/72, Simon64/96, Simon96/144, Simon128/192, Si-
mon96/96 and Simon128/128

Ciphers Round Difference Accuracy TPR TNR

Simon128/256
15r (0x0,0x10000000),(0x0,0x0,0x0,0x10000000) 0.9942 0.9943 0.9942
16r (0x0,0x10000000),(0x0,0x0,0x0,0x10000000) 0.8243 0.8060 0.8427
17r (0x0,0x10000000),(0x0,0x0,0x0,0x10000000) 0.6009 0.5574 0.6443

Simon48/72 11r (0x0,0x100000),(0x0,0x0,0x100000) 0.9926 0.9990 0.9863
12r (0x0,0x100000),(0x0,0x0,0x100000) 0.6565 0.6669 0.6460

Simon64/96
11r (0x0,0x180),(0x0,0x0,0x180) 0.9976 0.9996 0.9956
12r (0x0,0x2000000),(0x0,0x0,0x2000000) 0.8381 0.8326 0.8435
13r (0x0,0x2000000),(0x0,0x0,0x2000000) 0.5775 0.5885 0.5666

Simon96/144
12r (0x0,0x100),(0x0,0x0,0x100) 0.9998 0.9999 0.9998
13r (0x0,0x100),(0x0,0x0,0x100) 0.9361 0.9398 0.9324
14r (0x0,0x100),(0x0,0x0,0x100) 0.6733 0.6701 0.6764

Simon128/192
14r (0x0,0x8000000),(0x0,0x0,0x8000000) 0.9953 0.9945 0.9960
15r (0x0,0x8000000),(0x0,0x0,0x8000000) 0.8239 0.8000 0.8477
16r (0x0,0x8000000),(0x0,0x0,0x8000000) 0.6062 0.5714 0.6411

Simon96/96
11r (0x0,0x20),(0x0,0x20) 0.9999 0.9999 0.9998
12r (0x0,0x20),(0x0,0x20) 0.9709 0.9673 0.9745
13r (0x0,0x20),(0x0,0x20) 0.6753 0.6771 0.6735

Simon128/128
13r (0x0,0x2),(0x0,0x2) 0.9956 0.9949 0.9963
14r (0x0,0x2),(0x0,0x2) 0.8389 0.8160 0.8616
15r (0x0,0x2),(0x0,0x2) 0.6148 0.6009 0.6286

Training of the Enhanced Differential Neural Distinguishers To further
enhance the accuracy of differential neural distinguishers, we focus on optimiz-
ing the input data format to enrich the feature information that the neural
network can extract, thereby improving the model’s discriminative capability.
Inspired by the Polyhedral Distinguisher method [12], we utilize multiple ef-
fective differentials identified in Section 3 to construct positive and negative
samples in the dataset separately. This approach enables the neural network to
learn a broader set of distinguishing features, thereby enhancing its adaptabil-
ity to different data patterns. Specifically, we first generate the sample dataset
using the effective differentials obtained through the search process and train a
series of neural distinguishers. During this process, we select the top four dif-
ferentials with the highest classification accuracy as the target differentials and
further analyze their similarity in the feature space. We then use the two most
similar differentials to construct positive samples, while the remaining two dif-
ferentials are used to construct negative samples. This ensures that the feature
distributions between positive and negative samples exhibit greater divergence,
thereby enhancing the model’s distinguishing capability. Experimental results
demonstrate that this optimization strategy significantly improves the classifi-
cation accuracy of the distinguisher. Compared to the traditional approach of
constructing samples using a single differential, our method provides a more di-
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verse set of training features, further enhancing the neural network’s ability to
recognize cryptographic data structures. The detailed experimental results are
presented in Table 5, validating the effectiveness of our approach and offering a
novel optimization strategy for neural network-based differential analysis.

Table 5: The enhanced related-key differential neural distinguishers for
Simeck32/64, Simeck48/96, Simeck64/128, Simon32/64, Simon48/96 and Si-
mon64/128

Ciphers Round Input Difference Key Difference Accuracy TPR TNR

Simeck32/64
14r (0x0,0x10)

(0x0,0x80)
(0x0,0x2000)
(0x0,0x8000)

(0x0,0x0,0x0,0x10)
(0x0,0x0,0x0,0x80)

(0x0,0x0,0x0,0x2000)
(0x0,0x0,0x0,0x8000)

0.802 0.805 0.800

15r 0.593 0.595 0.590

Simeck48/96
18r (0x0,0x2)

(0x0,0x200)
(0x0,0x80000)
(0x0,0x800000)

(0x0,0x0,0x0,0x2)
(0x0,0x0,0x0,0x200)

(0x0,0x0,0x0,0x80000)
(0x0,0x0,0x0,0x800000)

0.603 0.628 0.578

19r 0.533 0.524 0.541

Simeck64/128
21r (0x0,0x8)

(0x0,0x20)
(0x0,0x80000)
(0x0,0x200000)

(0x0,0x0,0x0,0x8)
(0x0,0x0,0x0,0x20)

(0x0,0x0,0x0,0x80000)
(0x0,0x0,0x0,0x200000)

0.605 0.590 0.619

22r 0.535 0.526 0.544

Simon32/64
12r (0x0,0x8010)

(0x0,0x801)
(0x0,0x2004)
(0x0,0x1002)

(0x0,0x0,0x0,0x8010)
(0x0,0x0,0x0,0x801)
(0x0,0x0,0x0,0x2004)
(0x0,0x0,0x0,0x1002)

0.788 0.782 0.794

13r 0.581 0.573 0.589

Simon48/96
12r (0x0,0x1)

(0x0,0x8)
(0x0,0x200000)
(0x0,0x400000)

(0x0,0x0,0x0,0x1)
(0x0,0x0,0x0,0x8)

(0x0,0x0,0x0,0x200000)
(0x0,0x0,0x0,0x400000)

0.999 0.999 0.999

13r 0.744 0.748 0.741

Simon64/128
13r (0x0,0x1000)

(0x0,0x100000)
(0x0,0x200000)
(0x0,0x400000)

(0x0,0x0,0x0,0x1000)
(0x0,0x0,0x0,0x100000)
(0x0,0x0,0x0,0x200000)
(0x0,0x0,0x0,0x400000)

0.963 0.966 0.960

14r 0.651 0.657 0.645

It can be observed that for the Simeck32/64 cipher, using the first two differ-
entials from Table 5 to construct positive samples and the last two differentials
to construct negative samples resulted in a 7% improvement in the accuracy of
the 14-round distinguisher and a 2.5% improvement in the accuracy of the 15-
round distinguisher. For the other ciphers, the related-key distinguisher accuracy
also show significant improvement following this construction method. Further-
more, we achieve substantial performance enhancements for the distinguishers
of the remaining seven variants of the Simon cipher. Compared to the training
approach using the basic differential neural distinguisher, the accuracy of the
highest-round distinguisher for each variant is improved by approximately 10%.
The detailed results are presented in Table 6.
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Table 6: The enganced related-key differential neural distinguishers for
Simon128/256, Simon48/72, Simon64/96, Simon96/144, Simon128/192, Si-
mon96/96 and Simon128/128

Ciphers Round Input Difference Key Difference Accuracy TPR TNR

Simon128/256
16r (0x0,0x2)

(0x0,0x4)
(0x0,0x10000000)

(0x0,0x1000000000000000)

(0x0,0x0,0x0,0x2)
(0x0,0x0,0x0,0x4)

(0x0,0x0,0x0,0x10000000)
(0x0,0x0,0x0,0x1000000000000000)

0.936 0.931 0.942

17r 0.690 0.696 0.684

Simon48/72
11r (0x0,0x20)

(0x0,0x40)
(0x0,0x100000)
(0x0,0x400000)

(0x0,0x0,0x20)
(0x0,0x0,0x40)

(0x0,0x0,0x100000)
(0x0,0x0,0x400000)

0.999 0.999 0.999

12r 0.755 0.759 0.751

Simon64/96
12r (0x0,0x10000)

(0x0,0x20000)
(0x0,0x2000000)
(0x0,0x8000000)

(0x0,0x0,0x10000)
(0x0,0x0,0x20000)

(0x0,0x0,0x2000000)
(0x0,0x0,0x8000000)

0.956 0.954 0.957

13r 0.648 0.643 0.654

Simon96/144
13r (0x0,0x100)

(0x0,0x200)
(0x0,0x10000000)
(0x0,0x100000000)

(0x0,0x0,0x100)
(0x0,0x0,0x200)

(0x0,0x0,0x10000000)
(0x0,0x0,0x100000000)

0.993 0.991 0.995

14r 0.776 0.751 0.800

Simon128/192
15r (0x0,0x100)

(0x0,0x400)
(0x0,0x8000000)
(0x0,0x40000000)

(0x0,0x0,0x100)
(0x0,0x0,0x400)

(0x0,0x0,0x8000000)
(0x0,0x0,0x400000000)

0.928 0.913 0.943

16r 0.684 0.706 0.662

Simon96/96
12r (0x0,0x20)

(0x0,0x40)
(0x0,0x100000)
(0x0,0x400000)

(0x0,0x20)
(0x0,0x40)

(0x0,0x100000)
(0x0,0x400000)

0.996 0.997 0.996

13r 0.770 0.802 0.738

Simon128/128
14r (0x0,0x2)

(0x0,0x8)
(0x0,0x100)
(0x0,0x200)

(0x0,0x2)
(0x0,0x8)

(0x0,0x100)
(0x0,0x200)

0.951 0.943 0.958

15r 0.705 0.719 0.689

5 Conclusion

In this paper, we first experimentally determined the relationship between plain-
text differences and key differences necessary for constructing related-key dif-
ferential neural distinguishers. Subsequently, by applying a heuristic search,
we identified multiple effective differentials for all ten variants of the Simon
cipher and three variants of the Simeck cipher. We then trained new distin-
guishers for the cipher variants that had not been previously investigated, as
summarized in Table 4. Furthermore, to enhance the performance of these dis-
tinguishers, we proposed a new data construction method that employed mul-
tiple differentials to generate positive and negative samples, thereby providing
the neural network with more substantial features. Compared with the results
reported by Lu [14] and Wang [16], our approach significantly improved the
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accuracy of related-key differential neural distinguishers, as shown in Table 1.
Moreover, for several unstudied cipher variants, we further refined the distin-
guishers and presented the resulting performance in Table 6. Consequently, we
achieved higher accuracy and extended-round distinguishers for the following ci-
phers: Simeck32/64, Simeck48/96, Simeck64/128, Simon32/64, Simon48/96, Si-
mon64/128, Simon128/256, Simon48/72, Simon64/96, Simon96/144, Simon128/192,
Simon96/96, and Simon128/128.
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