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Abstract. Amortized bootstrapping techniques have been proposed for FHEW/TFHE
to efficiently refresh multiple ciphertexts simultaneously within a polynomial modulus.
Although recent proposals have very efficient asymptotic complexity, reducing the
amortized cost essentially to Õ(1) FHE multiplications, the practicality of such algo-
rithms still suffers from substantial overhead and high decryption failure rates (DFR).
In this study, we improve upon one of the state-of-the-art amortized bootstrapping
algorithms (Guimarães et al., ASIACRYPT 2023) for FHEW/TFHE-like schemes by
introducing an alternative algorithmic strategy. Specifically, we combine Guimarães
et al.’s strategy based on a two-part NTT with an incomplete Number Theoretic
Transform (NTT) algorithm. The resulting construction is such that the multipli-
cation of higher-degree polynomials that would usually create a bottleneck in an
incomplete NTT setting actually comes for free. As a result, we demonstrate a 2.12×
speedup compared to the algorithm of Guimarães et al. and a 1.12× improvement
over the state-of-the-art (sequential) TFHE-rs while achieving a DFR close to 2−32

for 7-bit messages, although the DFR is higher for 8-bit messages. We also explore
trade-offs between execution time and DFR, identifying parameter sets that improve
the execution time of Guimarães et al. by 1.41×, while simultaneously reducing the
DFR by a factor of 2−22 for 8-bit messages.
Keywords: Fully homomorphic encryption · FHEW/TFHE · amortized bootstrap-
ping · incomplete NTT · efficient implementation

1 Introduction
Fully homomorphic encryption (FHE) was first introduced by Gentry in [Gen09] and has
since been extensively studied and improved both in terms of efficiency and security. Al-
though most modern FHE schemes are based on the Ring Learning With Errors (RingLWE)
problem [SSTX09, LPR10], different strategies have been adopted in their construction.
In schemes such as BGV/BFV [BGV14, Bra12, FV12], ciphertexts encrypt vectors of
values, while operations on ciphertexts (e.g., addition and multiplication) are performed
component-wise using ring operations. Such schemes benefit from an amortized operation
cost by simultaneously performing computations on all the entries of the ciphertext vector.
However, this comes at the cost of an expensive bootstrapping procedure and large param-
eters. Such large parameters also imply the need for stronger security assumptions, like
relying on worst-case lattice-based problems with super-polynomial approximation factors.

In contrast, schemes such as FHEW/TFHE [DM15, CGGI20] operate at the bit level,
and ciphertexts are LWE encryptions without additional ring structure. Nonetheless, the
ring structure can still be explored in the context of programmable bootstrapping, where
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an encryption of f(m) is computed for any function f and message m. By combining
homomorphic LWE addition and programmable bootstrapping, FHEW/TFHE can evaluate
any given circuit, i.e., perform arbitrary homomorphic computations. The resulting
schemes benefit from simpler and, in principle, faster bootstrapping algorithms than in
BGV/BVF. Moreover, they use much smaller parameters, allowing for (weaker) security
assumptions based on worst-case lattice-based problems with polynomial approximation
factors – similarly to the assumptions found in general lattice-based public key encryption
schemes.

However, when closely analyzing the bootstrapping procedures of FHEW/TFHE and
BGV/BFV, which are the main bottlenecks in those schemes, the latter has one clear perk:
the amortization resulting from packing several messages into a large ring ciphertext greatly
outweighs its higher execution costs. In light of this observation, amortized bootstapping
algorithms were also proposed to refresh multiple FHEW/TFHE ciphertexts at once.
The ultimate goal of such proposals is to bridge the gap between the BGV/BFV and
FHEW/TFHE strategies, while preserving the latter’s weaker security assumptions. Our
work follows this trend, contributing to a line of investigation that attempts to answer
the following research question: can we bring amortized bootstrapping algorithms to be as
efficient as (or more efficient than) their sequential counterparts?

Related Works. The first amortized method for FHEW-like ciphertexts was proposed
by Micciancio and Sorrell in [MS18]. The work shows that the cost of bootstrapping n
ciphertexts can be reduced from Õ(n) cryptographic operations to Õ(nϵ), for any ϵ > 0.
The main idea of their method is to pack n LWE input ciphertexts into a single RingLWE
ciphertext, and then perform the bootstrapping operation over the latter to amortize the
overall cost over n messages. The main bottleneck of the resulting bootstrapping procedure
is that it requires a homomorphic polynomial multiplication. Since FHEW [DM15] uses
RingGSW registers to encrypt messages m in the exponent as monomials Xm, homomorphic
addition is rather straightforward, as it translates to ciphertext multiplication. However,
other homomorphic operations required by fast polynomial multiplication algorithms,
such as subtraction or multiplication by so-called “twiddle factors”, become much more
challenging. To address this issue, the original algorithm employs (a variant of) the
Nussbaumer Transform [Nus80] to perform fast polynomial multiplication. Although the
proposed method offers a major asymptotic performance improvement, the algorithm is
hardly practical due to a large constant 2O(1/ϵ) hidden in the asymptotic notation.

In subsequent works [GPVL23, DMKMS24], the Nussbaumer Transform is replaced
with the much more practical Number Theoretic Transform (NTT), where the multiplication
by twiddle factors is done via exponentiations, taking advantage of ring automorphisms.
This approach for homomorphic multiplication is not new, as it was used in FHEW-related
algorithms in [BDF18, LMK+23], for example. The result is that [GPVL23, DMKMS24]
provide a much smaller overhead than [MS18], effectively reducing the underlying costs
from 2O(1/ϵ) · n1/ϵ to (1/ϵ) · n1/ϵ. Although both algorithms follow the same structure,
[DMKMS24] centers its algorithm around RingLWE registers to perform exponentiations,
while [GPVL23] extends the automorphism multiplication technique to work directly on
RingGSW ciphertexts. Moreover, the latter work proposes a concrete C++ implementation
of their algorithm, which is the main target of our proposed improvements.

In another recent result, Liu and Wang [LW23a, LW23b] introduced a new algebraic
framework for batch homomorphic computation relying on the tensoring of three rings.
This alternative framework improves the efficiency of amortized boostrapping algorithms,
using Õ(1) homomorphic multiplications while still considering a polynomial modulus.
While the asymptotic cost is (almost) optimal, it is shown in [DMKMS24] that the batch
algorithm presented in [LW23b] suffers from the same limitations as [MS18]: its actual
overhead is very high, making the algorithm impractical for concrete parameters. To
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overcome this issue while preserving the same asymptotic complexity as [LW23b], Liu and
Wang [LW23c] proposed an alternative algorithm that is efficient for concrete parameters.
Their strategy relies on a scheme-switching technique from FHEW/TFHE to BFV/BGV
ciphertexts, whose drawback is the need for using superpolynomial modulus instead of the
polynomial moduli commonly found in all aforementioned schemes.

Contributions. In this paper, we enhance the amortized bootstrapping approach by
Guimarães et al. [GPVL23] by targeting its NTT-based homomorphic polynomial mul-
tiplication required for homomorphic decryption. Specifically, their algorithm operates
in cyclotomic rings of the form Zp[X]/(XN + 1), where N is a power of two and p is
a prime modulus. When p ≡ 1 (mod 2N), such rings are known to support fast NTT
computations using FFT-like iterative algorithms. However, [GPVL23] observes that these
cannot be used in a homomorphic setting because they lead to a large error growth, raising
the scheme’s decryption failure rate (DFR). They then propose a two-part NTT to provide
a good balance between performance and error growth.

In contrast, our proposal for homomorphic polynomial multiplication leverages the
concept of incomplete NTT [LS19, ABD+21, Kan22, DMKMS24]. This requires a redesign
of the homomorphic decryption algorithm to account for a more complex multiplication
in the NTT domain, as well as a different two-part inverse NTT (INTT) algorithm.
This multiplication of higher-degree polynomials that usually creates a bottleneck in an
incomplete NTT setting actually comes for free in our novel construction. We can then
benefit from one important property of an incomplete NTT: its implementation allows for
relaxed constraints and, hence, supports a wider set of parameters. Specifically, while the
complete NTT in cyclotomic rings of the form Zp[X]/(XN + 1) requires p ≡ 1 (mod 2N),
the ℓ-incomplete NTT only requires the less restrictive condition p ≡ 1 (mod 2N/2ℓ). This
flexibility allows using a smaller prime modulus p, which is one source of performance
gains in the amortized bootstrapping algorithm we propose. At the same time, the broader
choices of p allow us to explore new tradeoffs between DFR and performance.

In summary, our contributions are as follows:

1. Algorithmic contribution. We introduce an improved amortized bootstrapping algo-
rithm that exploits incompleteness in homomorphic (inverse) NTT operations without
incurring any additional overhead. Specifically, we propose an alternative two-part
incomplete NTT that generalizes the two-part inverse NTT used in [GPVL23], while
preserving the same algorithmic complexity. This generalization enables using a
radix-2 incomplete NTT formulation, setting the stage for different performance
gains and speed-DFR tradeoffs.

2. Performance improvements and tradeoffs. We explore different parameter settings
and introduce concrete, optimized amortized bootstrapping instantiations that are
faster than the state of the art. In particular, our experimental results show up
to a 2.12× improvement in execution time compared to [GPVL23] and a 1.12×
speedup compared to the state-of-the-art (sequential) TFHE-rs [Zam22] for a DFR
close to 2−32 for 7-bit messages, although the DFR is higher for 8-bit messages. In
addition, we analyze the tradeoff between execution time and DFR in our algorithm
and identify configurations where execution time improves by 1.41× over [GPVL23],
while simultaneously reducing the DFR from 2−17 to 2−39 for 8-bit messages. Finally,
we demonstrate that DFR can be reduced below that of TFHE-rs (2−131 < 2−128)
at the cost of a 2.9× performance slowdown for 8-bit messages.

3. Reproducible results with open-source implementation. We provide a C++ implemen-
tation of our algorithm, built on top of the codebase from [GPVL23]. The code will
be open-sourced upon acceptance of the paper.
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Remark 1. We became aware of a very recent work [GP25], published on ePrint on April
15th, which also improves upon the amortized bootstrapping algorithm of Guimarães
et al. [GPVL23], albeit using very different techniques. While our work optimizes the
original NTT-based polynomial multiplication, [GP25] introduces a novel multiplication
technique based on sparse polynomials. Due to the timing of its publication, we do not
discuss [GP25] further in this version.

Organization. Section 2 reviews the necessary mathematical background and theory
relevant to our work, including the concept of incomplete NTT and amortized bootstrap-
ping. Section 3 gives an overview of the amortized bootstrapping strategy proposed in
[GPVL23], discussing their two-part inverse NTT along with security considerations and
implementation aspects. Section 4 details our bootstrapping algorithm, including our
alternative two-part inverse incomplete NTT. Section 5 describes our implementation and
experimental results, which are compared with state-of-the-art sequential and amortized
approaches. Finally, Section 6 presents our conclusions and ideas for future work.

2 Preliminaries
Throughout this paper, we will write polynomials x =

∑
xiX

i in italic bold to differentiate
them from vectors v that are written in bold. For a polynomial x we will use both xi to
refer to its ith coefficient or the notation x[i] in algorithms’ pseudo-code. For matrices, we
will denote as X[i] their ith row. We use lg to denote the logarithm in base 2.

2.1 Rings and schemes
2.1.1 Rings

The algorithm given in [GPVL23] operates over a circulant ring of the form Z[X]/(Xp− 1)
for some prime p. Using the same notation as in [GPVL23], we will refer to this ring as R̃.
When the coefficients of the elements of the ring are taken modulo Q for any positive
integer Q, then we will write R̃Q = ZQ[X]/(Xp − 1). The algorithm (both in [GPVL23]
and ours) will also rely on power-of-two cyclotomic rings of the form Z[X]/(XN + 1) where
N = 2k for some k ∈ N. We will denote this ring R̂ or R̂Q if taken modulo Q.

2.1.2 Standard encryption schemes

We recall definitions and notations for the standard LWE encryption scheme used in the
bootstrapping algorithm. We also extend our description to the ring version of LWE, the
circulant version of LWE and GSW, all used in the algorithm.

LWE. Consider some positive integers n and q. Let s← χ be a secret key sampled from
a distribution χ, m ∈ Z a message, and ∆ ∈ Z a scaling factor. The LWE encryption of
the message m under the secret key s is given by

LWEq,s(∆ ·m) =
[
a⊤, b

]
∈ Z1×(n+1)

q ,

where a ← Znq , b = −a · s + e + ∆ · m ∈ Zq and e ← χ′ is the error, sampled from a
distribution χ′, and ciphertexts are represented as row vectors.

Ring LWE. The ring version of LWE considers the ring Rq = Zq[X]/(Φm(X)), where
Φm is the mth cyclotomic ring. Let sk← χ be a secret key sampled from a distribution χ,
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m ∈ Rq a message and ∆ ∈ N a scaling factor. The RingLWE encryption of the message
m under the secret key sk is given by

RingLWEq,sk(∆ ·m) = [a, b] ∈ R1×2
q ,

where a← Rq and b = −a · sk + e + ∆ ·m and ei ← χ′ for each coefficent ei of the error.
In order to decrypt a RingLWE ciphertext, one computes the quantity b+a ·sk = e+∆ ·m
and performs a rounding operation to recover the message m. Most schemes, including the
bootstrapping algorithms considered in this work, consider Φm(X) = XN + 1 for N = 2k
and any k ∈ N, and thus the RingLWE problem is built with R̂.

Circulant LWE. As mentioned above, the algorithm introduced in [GPVL23] relies on
circulant rings and thus considers the hardness of a variant of LWE called circulant-LWE
(CLWE). This variant was introduced in [BDF18] and proven to be as hard as the Ring
LWE variant on prime-order cyclotomic polynomials. It essentially considers the ring R̃
instead of R̂, and samples are obtained by considering RingLWE samples and projecting
them onto R̃.

GSW. Consider a modulus q and a dimension parameter N . The GSW scheme encrypts
a message m when C · v = m · v + e, where the ciphertext C is an N ×N matrix over Zq,
the secret key v is N -dimensional vector over Zq and e is a small error vector [GSW13].
In [GPVL23], the authors consider a double-CRT version of GSW, motivated by the fact
that the modulus considered is quite large. More precisely, the modulus Q is decomposed
into a product of smaller primes qi, and CRT is used to operate independently modulo each
qi. Moreover, the polynomials in the ciphertexts are all represented in the FFT domain,
thus the name double-CRT or RNS representation (see [GPVL23, Section 2.5] for more
details).

2.2 Standard operations
Modulus switching. Modulus switching is a standard operation that changes the modulus
of a ciphertext. For RingLWE ciphertext, the operation takes (a, b) = RingLWEq,sk(∆ ·m)
and outputs a ciphertext (a′, b′) = RingLWEq′,sk(∆ · m) for a new (usually smaller)
modulus q′. We refer to [GPVL23, Algorithm 2] for the pseudo-code of the modulus
switching algorithm. In their bootstrapping algorithm, the modulus switching operation is
executed on RingLWE ciphertexts only.

Key switching. Key switching is a standard operation that allows to switch of the secret
key from sk to another key zk. More precisely, in the RingLWE case, it takes a ciphertext
(a, b) = RingLWEq,sk(∆ ·m) and a public key-switching key generated from the secret
key sk and outputs a ciphertext (a′, b′) = RingLWEq,zk(∆ · m). The specific case of
circulant rings defined modulo Xp − 1 can pose some security issues. Indeed, as explained
in [GPVL23], it was proven in [BDF18] that the GSW scheme over such circulant rings is
secure when only encryptions of powers of X are considered. However, in key switching,
one must consider the encryption of the new secret key zk, which is not a power of X. To
address this, [GPVL23, Section 3.5] introduces two algorithms specifically for GSW key
switching with a noise-memory tradeoff. We refer the reader to [GPVL23, Algorithms 5
and 6] for details about their algorithms.

Automorphisms. Ring automorphisms can be used to perform scalar multiplication with
registers. Recall that an automorphism is a bijective map from a ring R to itself such
that for a given t ∈ Z∗

q , we have a(X) 7→ a(Xt). Both [LMK+23] and [DMKMS24] apply
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ring automorphisms on RingLWE ciphertexts. In [GPVL23, Section 3.6], automorphisms
are defined over GSW ciphertexts. Consider the GSW ciphertext C (a matrix) defined
over the ring R̃Q, which encrypts a given message m under a certain key sk. We also
consider a switching key akt. An automorphism ψt : R̃Q → R̃Q can be applied to each
row of C such that ψt(C) ∈ R̃QGSWψt(sk)(ψt(m)). Applying key switching with akt on
ψt(C) allows to recover a ciphertext C′ ∈ R̃QGSWsk(ψt(m)).

2.3 Incomplete NTT
The number-theoretic transform (NTT) is a finite-field analogue of the fast Fourier trans-
form (FFT) that can be used for fast polynomial multiplication under certain conditions.
For negacyclic rings of the form Zp[X]/(XN + 1), NTT-based multiplication requires the
existence of a 2N -root of unity in Zp, which is guaranteed to exist when p ≡ 1 mod 2N .
Similar to the FFT, the NTT is efficiently computed using O(N logN) operations by
an iterative process. Because of the strict requirements on the modulus p from using
the NTT in Zp[X]/(XN + 1), many works consider the so-called ℓ-incomplete NTT
formulation [ABD+19, CHK+21, Lip21, ABC19, CP05, Moe76, DMKMS24]. This is a
generalization of the NTT where, instead of running all the lgN layers, one stops the
iterations at lgN − ℓ layers, for an integer 0 ≤ ℓ ≤ lgN . This requires a 2N/2ℓ-root of
unity to exist in Zp, which relaxes the condition on the modulus to p ≡ 1 mod 2N/2ℓ.

Due to the properties of cyclotomic polynomials, when a 2N/2ℓ-root of unity exists in
Zp, the polynomial XN + 1 can be factored as XN + 1 =

(
X2ℓ − ψ1

)
. . .

(
X2ℓ − ψN/2ℓ

)
,

where each ψi is a different power of the root of unity that can be easily computed. Then,
for a given polynomial a ∈ Zp[X]/(XN + 1), the ℓ-incomplete NTT returns a sequence of
N/2ℓ polynomials defined as NTT(a) =

(
â1, . . . , âN/2ℓ

)
, where each âi = a mod XN − ψi.

To compute the product c = ab of two polynomials a, b ∈ Zp[X]/(XN + 1) using the
ℓ-incomplete NTT, one starts by computing â = NTT(a) and b̂ = NTT(b). Then, one
computes the products ĉi = âib̂i mod XN − ψi for i = 1, . . . , N/2ℓ. The process of
multiplying polynomials modulo XN − ψi for each ψi, which is a frequent operation
in the NTT formulation, is usually referred to as the base multiplication. Finally, the
product c is computed by taking the inverse incomplete NTT as c = INTT(ĉ), where
ĉ =

(
ĉ1, . . . , ĉN/2ℓ

)
.

The ℓ-incomplete NTT is known to enable faster polynomial multiplication than the
complete NTT (which corresponds to the case where ℓ = 0) in some cases, typically when
using small values of ℓ such as ℓ = 1, 2 [ABD+21, Kan22]. However, in general, increasing
ℓ beyond these values degrades performance as the complexity of the base multiplication,
typically executed using the schoolbook algorithm, grows exponentially in ℓ.

3 Guimarães et al.’s [GPVL23] amortized boostrapping
The amortized bootstrapping algorithm presented in [GPVL23] follows the same structure
as the original amortized bootstrapping algorithm introduced in [MS18], that is, it can be
decomposed into three main steps:

1. Packing takes as input N LWE ciphertexts, each encrypting a (scaled) κ-bit message
mi ∈ Z2κ under the same secret key s, i.e., we consider a set {LWEp

⋆

s (∆ ·mi)}Ni=1
for prime modulus p⋆ and a scaling factor ∆ = ⌊p⋆/2κ⌉, a packing key consisting
of RingLWE encryptions of coefficients of the LWE secret key and outputs a single
“packed” RingLWE ciphertext encrypting a (scaled) message m(X) =

∑
imiX

i−1.
The algorithm was introduced in [MS18, Section 3] and we refer to [MS18, Lemma
4] for a proof of its correctness and the corresponding pseudocode. In [GPVL23],
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the packing step is not modified from the original work, and the authors report the
pseudocode in Appendix E.

2. Homomorphic decryption is the core of the algorithm and corresponds to the boot-
strapping step. Homomorphically decrypting the RingLWE ciphertext obtained from
packing essentially consists of computing a homomorphic polynomial multiplication
as explained in Section 2.1.

3. Message extraction is the last step of the amortized bootstrapping algorithm,
where one recovers from the bootstrapped ring ciphertext the N LWE ciphertexts
with reduced noise. This technique was introduced in [DM15] and adapted to this
algorithm (in particular to the cyclic ring setup) in [GPVL23, Algorithm 10].

Let us now focus on the second step, i.e., the homomorphic decryption. The output of
the previous step, the packing algorithm, is a RingLWE ciphertext (a, b) ∈ R̂2

Q. Recall
from Section 2.1 that in order to (homomorphically) decrypt such a ciphertext encrypted
under some key zk, one must compute the quantity b + a · zk (with an encryption of zk
given as bootstrapping key). For the polynomial multiplication, [GPVL23] replaces the
Nussbaumer transform and the SlowMult algorithm from [MS18] by an NTT and a pointwise
multiplication. However, in order for this substitution to work, the algorithm must rely on
an accumulator that enables the evaluation of a standard NTT homomorphically. This
includes being able to perform operations in the exponent such as addition, subtraction,
scalar multiplication, and key-switching.

The algorithm introduced in [GPVL23] primarily operates over the circulant ring
R̃Q = ZQ[X]/(Xp − 1) for some prime p and modulus Q and the registers on which the
homomorphic operations are performed are RingGSW ciphertexts over this ring encrypting
with the secret key sk. While homomorphic multiplications and external products are
common operations already well-defined for (ring) GSW, [GPVL23] extends the use of
automorphisms and key switching to the GSW scheme [GPVL23, Section 3.5, Algorithm
5] to enable the use of the homomorphic NTT. Now, as the inputs of the polynomial
multiplication are elements a, zk ∈ R̂Q, a negacyclic polynomial ring, the multiplication
(and addition of b ∈ R̂Q) is done by computing

INTT (NTT(a) ·NTT(zk) + NTT(b)) ≡ a · zk + b ∈ R̂Q.

The quantities NTT(a) and NTT(b) are first computed along with the bootstrapping keys
which correspond to RingGSW encryptions of NTT(zk). The pointwise multiplication is
performed using automorphisms. Finally, the inverse NTT is applied homomorphically
in order to recover the GSW ciphertexts encrypting b + a · zk. The correctness of the
amortized bootstrapping algorithm is given in [GPVL23, Theorem 1] and the noise growth
is reported in [GPVL23, Corollary 2]. We report in Table 1 the parameters used in
both [GPVL23] and our algorithm.

In the following section, we describe the inverse NTT algorithm used by Guimarães et
al. [GPVL23] in more details. We note that the presentation is adapted to better suit the
comparison with our own work.

3.1 Two-part inverse NTT for controlling error growth
Consider the most costly operation when bootstrapping a ciphertext (a, b) ∈ R̂Q encrypted
with a secret key zk, which is the homomorphic multiplication of the polynomials a and zk
given an encryption of the coefficients of zk. Usually, multiplications in the cyclotomic ring
R̂Q = ZQ[X]/

(
XN + 1

)
can be done very efficiently in O(N lgN) using the fast inverse

NTT (INTT), which is analogous to the in-place inverse FFT.
However, fast INTT can be problematic when using homomorphic computations due

to the resulting error growth. Indeed, at each level i, for i = 1 to lgN , the algorithm
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Table 1. Summary of the parameters used in [GPVL23] and our algorithm.
Type Parameter Description

Message κ Bitsize of the messages

Degree N Power-of-two degree of RLWE samples
p Prime degree of circulant-LWE samples

Modulus Q Ciphertext modulus
p⋆ Plaintext modulus

Rings

R̂ = Z[X]/(XN + 1) Power-of-two cyclotomic ring
R̂Q = ZQ[X]/(XN + 1) Power-of-two cyclotomic ring with coeffients modulo Q

R̃ = Z[X]/(Xp − 1) Circulant ring
R̃Q = ZQ[X]/(Xp − 1) Circulant ring with coeffients modulo Q

Secret Key
s LWE secret key
sk RingGSW secret key in R̃Q.
zk RingLWE secret key in R̂Q

NTT-related
m Radix of NTT
ℓ NTT incompleteness degree
α Balancing parameter for the two-part NTT

performs N/2 multiplications and N additions. While this would require only (N/2) lgN
multiplications for cleartext operations, in the homomorphic case each INTT level requires
scalar multiplications on ciphertexts, thus increasing the depth of multiplications. With
resulting ciphertexts having a depth of lgN multiplications, their decryption will likely
fail due to error growth except for very small values of N .

Let us compare this to the naive INTT computation using a matrix-vector multiplication.
The inverse NTT is a linear operation and thus can be described with a matrix M ∈ ZN×N

p ,
so that the INTT computation now takes N2 multiplications. In this case, all homomorphic
multiplications are done in depth 1, and then combined with additions, making it much
more manageable with respect to ciphertext error growth. However, on the downside, the
large number of multiplications required can make it impractical for larger values of N .

The approach taken by Guimarães et al. [GPVL23] is to find a good balance between
performance and depth of homomorphic multiplications (with respect to error growth). In
particular, they use a two-part INTT computation based on a radix-m formulation of the
INTT, which limits the homomorphic multiplication depth to only two levels. Algorithm 1
shows their INTT algorithm without considering homomorphic operations. It takes an
input1 0 ≤ α ≤ lgN that defines the radix m = 2α used for the computation using
N2/m + Nm = N2/2α + N2α operations. After a simple optimization argument, the
authors conclude that using α ≈ lgN/2, the value that best balances Part 1 and Part 2 in
Algorithm 1, is the theoretically optimal choice.

However, in practice, there are cases where another choice of α may yield better
performance. This can be explained by making the following observations. In efficient FHE
implementations, it is not uncommon to merge steps between different procedures that
are run sequentially to improve performance and error growth. This is done in Guimarães
et al.’s implementation for example as they partially merge the homomorphic inverse
NTT with the message extraction step to reduce the noise growth [GPVL23, Algorithm
10 (see Remark 1)]. Moreover, to optimize performance, one may prefer to use a more
efficient (but with higher noise growth) scalar multiplication or a slower (but more precise)
multiplication in different parts of the code. This can also be seen in Guimarães et al.’s
implementation where either scalar multiplications with RGSW or RLWE registers are

1The algorithm by Guimarães et al. [GPVL23] takes parameter m directly. We introduce the auxiliary
variable α = lg m to make our algorithm (described in Section 4.1) more easily comparable to theirs.
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1: procedure INTT_gpvl(â, α)
▶ â ∈ ZN

p is the vector of coefficients to which the INTT is applied, i.e., â = NTT(a)
▶ α ∈ Z is the balancing parameter between parts 1 and 2

2: ω ← a primitive 2N -th root of unity of p
3: m = 2α ▷ Defines the radix-m INTT computation

4: ▷ Part 1: O
(
m(N/m)2

)
= O

(
N2/2α

)
5: for k = 0 to m− 1 do
6: g← (â[k], â[k +m], . . . , â[N − 2m], â[N −m])
7: hk ← 0 ∈ ZN/mp

8: for j = 0 to N/m− 1 do
9: hk[j]←

∑N/m−1
i=0 g[i]ω−2ij(N/m) mod p

10: ▷ Part 2: O
(
m2(N/m)

)
= O(N2α)

11: for k1 = 0 to N/m− 1 do
12: for k2 = 0 to m− 1 do
13: j ← k1 + k2(N/m)
14: a[j]← 1

N

∑m−1
i=0 hi[k1]ω−j−2i(k1−k2(N/m)) mod p

15: ▷ Notice that the output is in natural, not bit-reversed, order
16: return a ∈ ZNp
17: end procedure

Algorithm 1. Two-part inverse NTT computation used by Guimarães et al. [GPVL23].

considered in each parts of Algorithm 1.
Such practical considerations may result in some imbalance in the performance of the

two parts of Algorithm 1, making the choice of α different than the theoretical optimum.
This leads to different ways of computing sums of products in Part 1 and Part 2 of
Algorithm 1 and, to the best of our knowledge, explains why they use α = 6 (i.e. m = 64)
for N = 1024 in their code, whereas the theoretically best value of α would be α = 5 if
INTT was individually considered.

3.2 Secure and reliable instantiations
The security of Guimarães et al.’s [GPVL23] algorithm is based on the hardness of LWE
under two different settings: one related to the LWE problem used for encryption of the
original messages, and another for the RingLWE problem used to define the GSW-based
accumulator. These are explicitly defined as follows.

1. For a prime modulus p⋆ and a power-of-two N , the first LWE setting is defined
over the vector space ZNp⋆ . The secret key s ∈ ZNp⋆ and the error vector e ∈ ZNp⋆

are sampled according to distributions χ and χ′, where χ is a balanced ternary
distribution2 of even Hamming weight w, and χ′ is a discrete Gaussian with standard
deviation of 1.

2. The second setting is a RingLWE defined over the circulant polynomial ring R̃Q =
ZQ[X]/(Xp − 1). The secret key sk ∈ R̃Q and the error polynomial e ∈ R̃Q
are sampled according to discrete Gaussians of standard deviations of 3.2 and 1,
respectively.

2A balanced ternary distribution of even Hamming weight w and length N samples vectors in {−1, 0, 1}N

whose numbers of positive and negative coordinates are equal to w/2.
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While parameters (N, p⋆, w, p,Q) used above define the security of the scheme, for it
to be practical, the decryption failure rate (DFR) must be sufficiently small. Naturally,
the DFR also depends on the message space Z2κ , which affects the scaling factor used
when encoding coefficients of κ-bit messages into Zp⋆ . Guimarães et al. [GPVL23] show
that the DFR can be upper bounded by

Pr (Decryption of κ-bit message fails) ≤ 1− erf
(
p/2κ+1
√

2ε

)
, (1)

where erf is the Gaussian error function and ε =
(
p+N2/2

)
(lg p⋆)(p/p⋆)2 + w/12.

Notice that the authors provide a generic formulation of the upper bound that takes into
account different parameter formulations (mainly standard deviations for LWE noise that
are later set to 1). However, we chose the simpler and more concrete presentation above
that both matches their results and is enough for our case. Then, to select parameters
achieving 128-bit security and low DFR, Guimarães et al. [GPVL23] rely on the LWE
estimator [APS15] and used a manual search. We report their parameter choices and
performance in Section 5 Table 2 when comparing to our own results.

3.3 Acceleration using the Intel HEXL library

The code provided by Guimarães et al. [GPVL23] uses the Intel HEXL library [BKS+21]
to speedup some of the mathematical computations. While HEXL comes with efficient
vectorized implementations for number theory-related functions and multiplications in
polynomial rings, they make some necessary adjustments to their code to be able to
use HEXL for their purposes. For example, some of the most costly operations during
bootstrapping take place inside the ring R̃ = Z[X]/(Xp − 1), but HEXL is optimized for
fast NTT-based multiplication over rings of the form R̃′ = Z[X]/(XN ′ − 1), where N ′ is a
power of two (recall that p is a prime).

In order to use HEXL for operations in R̃, they then notice that a product a · b of
polynomials a, b ∈ R̃ has degree at most 2p− 2. Hence, if they consider N ′ as the first
power of two larger than 2p− 2, and represent the polynomials a and b as elements in R̃′,
the resulting product in R̃′ would be efficiently computed in HEXL and, because N ′ is
larger than the maximum degree of the product, the result is not affected by the modulo
(XN ′ − 1). Therefore, by manually reducing the result by (Xp − 1), they can obtain the
desired product a · b ∈ R̃.

The drawback of this approach is that memory usage and element-wise operations take
roughly 2× more when operating in R̃′ instead of R̃ directly. They conclude that one
should choose p as close to the next power of two as possible, which can be explained for
two reasons. First, the bootstrapping performance is very similar for values of p with the
same number of bits. Second, the LWE hardness and DFR are better when p is larger.

4 Amortized bootstrapping using the incomplete NTT
In this section, we describe how to use the incomplete NTT in the context of Guimarães
et al.’s amortized bootstrapping algorithm. First, we show how to define a two-part
incomplete NTT whose error growth is exactly the same as that obtained by Guimarães
et al. [GPVL23]. We then show how the base multiplication can also be integrated into
the formulation without impacting the error growth. Finally, we present a surprising
property of our construction: it incurs no performance penalty when using moderate levels
of incompleteness, which we refer to as incompleteness for free.
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4.1 An incomplete formulation of the two-part inverse NTT
The main idea is to use a similar approach to the two-part inverse NTT used by Guimarães
et al., but generalizing it to enable the use of the radix-2 incomplete NTT formulation.
One challenge is that the twiddle factors are not easily defined by a closed expression in
this case because there is no guarantee that a primitive 2N -th root of unity exists in Zp.

An easy way to compute the twiddle factors is by considering the factorization of the
inverse NTT into matrices, analogously to how Gentleman and Sande [GS66] considered for
the FFT. If we let M ∈ ZN×N

p be the matrix associated with the inverse NTT operation
over bit-reversed vectors, then the well-known fast inverse incomplete NTT [LS19, Kan22]
yields a factorization of M into

M = 2−(lgN−ℓ)M1 . . .M(lgN−ℓ),

where ℓ is the incompleteness level, and each Mi is a sparse matrix, often referred to as
a butterfly matrix. Figure 1 shows the overall shape of the butterfly matrices for the
particular case when N = 16 and ℓ = 1.

Let α be an integer such that 0 ≤ α ≤ lgN − ℓ. We can factor M into two matrices as
M = MBMA, where MB = 2−(lgN−ℓ)M1 . . .Mα and MA = Mα+1 . . .M(lgN−ℓ). Since
MA and MB are products of the sparse butterfly matrices, they are somewhat sparse:
each row of MB has 2α nonzero coefficients and MA is a block diagonal matrix in which
each block is an (N/2α)× (N/2α) matrix. Figure 2 shows the sparsity of MA and MB for
N = 16, ℓ = 1 and α = 2.

Algorithm 2 shows how the sparsity of the matrices MA and MB can be used to
compute the incomplete NTT in two steps: the multiplications required by both parts
1 and part 2 are implemented by discarding the null entries of matrices MA and MB,
respectively. Notice that, since N and p are part of the scheme parameters, we can easily
precompute matrices MA and MB for the targeted incompleteness level ℓ. With these
precomputed matrices, Algorithm 2 uses O

(
N2α +N2/2α

)
operations and hence has the

same complexity as Algorithm 1.

Generalizing to three-part inverse NTT or more. We remark that it is possible to split
the inverse NTT into more than only two parts by grouping more products of butterfly
matrices that factor M. This is analogous to using a larger number of radix-m splitting
layers as considered by Guimarães et al. [GPVL23]. While this would make the inverse
NTT computation more efficient3, their conclusion also holds for our formulation: if we

3To see why more splittings make the inverse NTT more efficient, remember that the fastest way to
compute the INTT is to split it into lg N parts, each corresponding to one butterfly matrix.

M1 M2 M3

Figure 1. The shape of the butterfly matrices that decompose the inverse NTT for
N = 16 and ℓ = 1. White and black squares represent the positions of null and non-null
values, respectively.
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1: procedure INTT_incomplete(â, ℓ, α)
▶ â ∈ ZN

p is the vector of coefficients to which the INTT is applied, i.e., â = NTT(a)
▶ ℓ ∈ Z is the incompleteness level (compatible with N and p)
▶ α ∈ Z is the balancing parameter between parts 1 and 2

2: ▷ Build matrices MA and MB (can be precomputed for fixed (N, p, ℓ, α))
3: M← Matrix associated with the ℓ-incomplete INTT of length N in Zp
4: M1, . . . ,M(lgN−ℓ) ← Butterfly matrices that factor M
5: MA ←Mα+1 . . .M(lgN−ℓ)
6: MB ← 2−(lgN−ℓ)M1 . . .Mα

7: m← 2α

8: ▷ Part 1: Compute a′ = MAâ in O
(
N2/m

)
= O

(
N2/2α

)
9: a′ = 0 ∈ ZNp

10: for j = 0 to m− 1 do
11: for k = 0 to N/m− 1 do
12: a′[jm+ k]←

∑N/m−1
i=0 MA[jN/m+ k][i] · â[jN/m+ i]

13: ▷ Part 2: Compute a = MBa′ in O(Nm) = O(N2α)
14: a = 0 ∈ ZNp
15: for i = 0 to N − 1 do
16: for k = 0 to m− 1 do
17: j ← i+ kN/m mod N
18: a[i]← a[i] + MB[i][j] · a′[j]

19: return a ∈ ZNp
20: end procedure

Algorithm 2. Two-part inverse ℓ-incomplete NTT.

splitted into more than two parts, the error growth would be too high due to the increased
homomorphic multiplication depth. Therefore, we only considered the two-part inverse
NTT in our experiments.

4.2 Free incompleteness: embedding the base multiplication into Part 1

We know that the incomplete NTT provides some clear advantages compared to the
complete formulation: it is faster to compute because of the reduced number of layers and
enables us to use a strictly larger set of prime moduli. The only drawback is the increased
complexity of the multiplication of polynomials in the incomplete NTT domain, often
called the base multiplication, or basemul for short. While it is well-known that, in some
lattice-based cryptographic schemes [ABD+21, Nat24], the complete NTT can be slower
than the incomplete NTT with ℓ = 1, the optimal level of incompleteness can depend on
the scheme parameters and hardware characteristics [Kan22]. Interestingly, when using
the two-part INTT, we noticed that the base multiplication can be embedded into the
first part, i.e., the multiplication by MA. In what follows, we show that it is possible to
use the two-part INTT in a way that a small incompleteness level ℓ can be used for fast
multiplication without any performance impact.

Embedding the base multiplication into Part 1. Suppose we want to compute the
product c = a · b of polynomials a, b ∈ Zp[X]/

(
XN + 1

)
, and let us assume p and N
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enable the use of ℓ-incomplete NTT. This means the polynomial
(
XN + 1

)
factors as

(
XN + 1

)
=
N/2ℓ∏
i=1

(
X2ℓ

− ψi
)

mod p,

for a particular set of elements ψ1, . . . , ψ(N/2ℓ) ∈ Zp. In the ℓ-incomplete NTT domain, each
polynomial a and b is represented by a sequence {âi} and {b̂i}, respectively, for i = 1 to
N/2ℓ, where âi, b̂i ∈ Zp[X]/

(
X2ℓ − ψi

)
. In this case, the base multiplications correspond

to the computations of the products ĉi = âi · b̂i for all i. The product polynomial can
then be computed using the inverse NTT as c = INTT

(
ĉ1, ĉ2, . . . , ĉN/2ℓ

)
.

Since we use the two-part inverse NTT based on matrix-vector multiplications in the
amortized bootstrapping application, let us put the base multiplications in the same form.
The base multiplication is typically done using a naive schoolbook multiplication algorithm
as it is often the best choice for small values of ℓ [Kan22]. Notice that the schoolbook
multiplication of polynomials âi, b̂i ∈ Zp[X]/

(
X2ℓ − ψi

)
can be easily represented in the

matrix-vector form as follows. Let ĉi = âi · b̂i and let âi, b̂i, ĉi ∈ Z2ℓ

p be the vectors of
coefficients of polynomials âi, b̂i, and ĉi, respectively. Then, ĉi = Aib̂i, where

Ai =


âi[0] âi[n− 1]ψi · · · âi[1]ψi
âi[1] âi[0] · · · âi[2]ψi

...
...

. . .
...

âi[n− 1] âi[n− 2] · · · âi[0]

 ∈ Z2ℓ×2ℓ

p .

If we choose parameter α in 0 ≤ α ≤ lgN − ℓ, we can define the 2-part INTT matrices
MB and MA as discussed in the previous section. Furthermore, define the block diagonal
matrix A as

A =

A1 · · · 0
...

. . .
...

0 · · · A(N/2ℓ)

 ∈ ZNp .

Then, if c ∈ ZNp is the vector of coefficients of the product c = a · b, we obtain the matrix
description of the inverse NTT as c = MBMAAb̂.

Notice that MAA is a product of two block diagonal matrices, where the square blocks
in MA and A have size (N/2α) and 2ℓ, respectively, as illustrated in Figure 2. Since N
is a power of 2, both dimensions are also powers of 2, which means MAA is also a block
matrix with square blocks of size max

{
N/2α, 2ℓ

}
. However, since α ≤ lgN − ℓ, then

max
{
N/2α, 2ℓ

}
= N/2α. Therefore, if X = MAA, the computation of the matrix-vector

product Xy has exactly the same complexity as computing MAy, for an arbitrary vector
y. We then say that matrix X = MAA embeds the base multiplication into the first part
of the two-part INTT.

Incompleteness for free. Suppose we use the complete NTT formulation for a prime p
and a power-of-two N , and let us assume α⋆ is the balancing factor that yields the best
performance of the two-part INTT. Let p′ be a prime for which we can use the ℓ-incomplete
negacyclic NTT for polynomials in Zp′ [X]/

(
XN + 1

)
. Then, as long as ℓ ≤ lgN − α⋆,

if we use the two-part INTT with embedding of the base multiplication to Part 1, the
operation count for these two procedures is the same:

1. computing the pointwise product between two vectors in the NTT domain followed
by the complete INTT for fast multiplication in Zp[X]/

(
XN + 1

)
;
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MB MA A

Figure 2. Shapes of the matrices MA, MB and A for N = 16, ℓ = 1 and α = 2. White
and black squares represent the positions of null and non-null values, respectively.

2. computing the base multiplication of vectors in the ℓ-incomplete NTT domain
followed by the incomplete INTT for fast multiplication in Zp′ [X]/

(
XN + 1

)
.

This observation is at the core of our contribution, since it enables us to leverage
incompleteness to use smaller primes. While on one hand, the number of operations is
the same even when using smaller primes – on the other hand, homomorphic operations
modulo smaller primes can be processed faster.

4.3 Homomorphic polynomial multiplication using the incomplete NTT

We now give a full description of the homomorphic implementation of our multiplication
algorithm. To do that, we use the homomorphic dot product presented in [GPVL23,
Algorithm 7] as a building block. This function, denoted as homomorphic_dot_product,
uses the encryption Ksk of the secret key sk, which we recall is the secret key used
for the R̃QGSW encryptions, and the set of key-switching keys {Kv}p−1

v=0 together with
automorphisms X 7→ Xv to compute the dot product between a plaintext vector u ∈ Zkp
and an encrypted vector m ∈ Zkp. Concretely, if m,u ∈ Zkp and each Ci encrypts Xmi ,

C′ ← homomorphic_dot_product
(
{Ci}ki=1,u,Ksk, {Kv}p−1

v=0

)
results in an encryption C′ of X⟨u,m⟩.

Algorithm 3 shows the homomorphic implementation of the polynomial multiplication
using the two-part ℓ-incomplete NTT. The algorithm homomorphically multiplies the
polynomial a ∈ R̂p by an encrypted polynomial zk as follows. More precisely, the core
inputs are the polynomial a ∈ R̂p and the GSW encryptions Zi of each coefficient ẑi of
the NTT representation of the polynomial zk ∈ R̂p. It also receives the encryption Ksk of
the secret key sk, and a set {Kv} of key-switching keys, used to perform the dot products.
The last parameters are the incompleteness parameter ℓ and the balancing parameter α,
which define the two-part incomplete NTT.

The algorithm begins by performing some non-homomorphic operations, which have
negligible cost compared to the homomorphic ones. First, it computes the auxiliary
matrices MA and MB and the base multiplication embedding matrix X. Then it performs
two rounds of homomorphic dot products, first for the multiplication by X, then for the
multiplication by MB. Each element Ci from the output (C0, . . .CN−1) consists of the
encryption of Xci where ci is the ith coefficient of the polynomial product a · z.
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1: procedure homomorphic_polymul
(

a, {Zi}N−1
i=0 ,Ksk, {Kv}p−1

v=0, ℓ, α
)

▶ a ∈ R̂p

▶ {Zi}N−1
i=0 are the bootstrapping keys, where each Zi ∈ R̃QGSWsk

(
X−ẑ[i]

)
▶ Ksk ∈ R̃QGSWsk(−sk)
▶ Each Kv ∈ R̃QKSsk(sk(Xv)) is a key-switching key for the automorphism X 7→ Xv

▶ ℓ ∈ Z is the incompleteness level (compatible with N and p)
▶ α ∈ Z is the balancing parameter between parts 1 and 2

2: ▷ Build matrices MA and MB (can be precomputed for fixed (N, p, ℓ, α))
3: M← Matrix associated with the ℓ-incomplete INTT of length N in Zp
4: M1, . . . ,M(lgN−ℓ) ← Butterfly matrices that factor M
5: MA ←Mα+1 . . .M(lgN−ℓ)
6: MB ← 2−(lgN−ℓ)M1 . . .Mα

7: ▷ Build matrix X embedding the base multiplication by â into MA
8: â← NTT(a) ∈ ZNp
9: A← block matrix representing the base multiplication by â

10: X←MAA
11: ▷ No homomorphic operations used yet, so all code above has negligible impact on

performance
12: ▷ Part 1: Homomorphic computation of Xẑ in O

(
N2/2α

)
13: for i = 0 to N − 1 do
14: C′

i ← homomorphic_dot_product
(

Zi,X[i],Ksk, {Kv}p−1
v=0

)
15: ▷ Part 2: Homomorphic computation of MB(Xẑ) in O(N2α)
16: for i = 0 to N − 1 do
17: Ci ← homomorphic_dot_product

(
{C′

i}N−1
i=0 ,MB[i],Ksk, {Kv}p−1

v=0

)
18: return {Ci}N−1

i=0 ▷ Each Ci ∈ R̃QGSWsk
(
X(a·zk)[i])

19: end procedure

Algorithm 3. Proposed homomorphic polynomial multiplication using the two-part
incomplete INTT formulation. This function can be plugged into the partial decryption
function defined in the GPVL algorithm [GPVL23, Algorithm 9].

4.4 The bootstrapping algorithm
Finally, we present our amortized bootstrapping algorithm in Algorithm 5, which closely
follows the structure of [GPVL23, Algorithm 11], with the only difference occurring in
the homomorphic decryption procedure. Indeed, we refer to [GPVL23, Algorithm 16] for
PackLWE and [GPVL23, Algorithm 10] for MsgExtract, respectively, as we mentioned in
Section 3 that these algorithms are somewhat standard and not the focus of either our
work or [GPVL23]. The last procedure, NTTDecModified, is very similar to [GPVL23,
Algorithm 9], but the homomorphic polynomial multiplication step is executed with our
Algorithm 3. The pseudocode for it is given in Algorithm 4.

We now provide an analysis of the cost, error growth, and correctness of our algorithm,
which naturally closely follows the results presented in [GPVL23].

Theorem 1 (Cost of the bootstrapping algorithm, from [GPVL23] Lemma 9). Let
Q =

∏u
i=1 qi be the ciphertext modulus and d be the number of CRT digits used in the

GSW ciphertexts. Given at most N LWE ciphertexts and the relevant bootstrapping keys,
Algorithm 5 outputs LWE ciphertexts at the cost of O(N1+1/ρ · ρ · d2 · u) NTTs and
O(N1+1/ρ · ρ · d · u2 · p) multiplications in Zqi where ρ = lgN/α.
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1: procedure NTTDecModified
(

(a, b), {Zi}N−1
i=0 ,Ksk, {Kv}p−1

v=0, ℓ, α
)

▶ (a, b) ∈ R̂2
p is the packed ciphertext

▶ {Zi}N−1
i=0 are the bootstrapping keys, where each Zi ∈ R̃QGSWsk

(
X−ẑ[i]

)
▶ Ksk ∈ R̃QGSWsk(−sk)
▶ Each Kv ∈ R̃QKSsk(sk(Xv)) is a key-switching key for the automorphism X 7→ Xv

▶ ℓ ∈ Z is the incompleteness level (compatible with N and p)
▶ α ∈ Z is the balancing parameter between parts 1 and 2

2: {Ci}N−1
i=0 ← homomorphic_polymul

(
a, {Zi}N−1

i=0 ,Ksk, {Kv}p−1
v=0, ℓ, α

)
3: for i = 0 to N − 1 do
4: C̃i ← Xb[i] ·Ci

5: return
(
C̃0, · · · , C̃N−1

)
▷ Each C̃i ∈ R̃QGSWsk

(
X(a·zk+b)[i])

6: end procedure

Algorithm 4. Homomorphic partial decryption.

Proof. In [GPVL23], the radix m is set to m = N1/ρ where ρ is the recursive depth of
the bootstrapping algorithm. In our work, we set m = 2α and thus ρ = lgN/α. The
overall cost of Algorithm 5 is asymptotically dominated by the cost of NTTDecModified
and within this algorithm, the cost of homomorphic_polymul. Both Algorithm 1 (the
original two-part inverse NTT computation) and Algorithm 3 (homomorphic_polymul)
have the same asymptotic cost where Part 1 uses O(N2/2α) homomorphic operations
and Part 2 uses O(N2α) homomorphic operations. Thus NTTDecModified has the same
complexity as NTTDec, and the overall complexity of the algorithm remains unchanged
from [GPVL23].

Noise growth is another important factor of bootstrapping as it directly influences
the correctness of the algorithm. The only difference between Algorithm 5 and [GPVL23,
Algorithm 11] is the NTTDec procedure, more precisely, the homomorphic polynomial
multiplication within it.

Theorem 2 (Noise growth of the boostrapping algorithm). Given at most N LWE cipher-
texts and the relevant bootstrapping keys, Algorithm 5 outputs refreshed LWE ciphertexts
with at most the same noise as given in [GPVL23, Lemma 9].

Proof. Given N input LWE ciphertexts with associated initial error, the resulting error of
the packed ring ciphertext after applying PackLWE remains the same as in [GPVL23] as no
modification is done to this initial step of the amortized bootstrapping algorithm (we refer
to [GPVL23, Algorithm 16] for the exact expression of the associated error). To prove that
we expect a similar final error, it then suffices to show that the noise associated with the
GSW ciphertexts Ci outputted by NTTDec is the same as the noise of the equivalent GSW
ciphertexts outputted by NTTDecModified. The final outputted noise after MsgExtract
follows from [GPVL23, Lemma 11].

In Algorithm 4, NTTDecModified, the noise growth solely comes from the call to
homomorphic_polymul as the multiplication by Xb[i] modulo Xp − 1 (line 4) will only
rotate the coefficients of the noise term.

We also know that both Algorithm 1 (the original two-part inverse NTT computation)
and Algorithm 3 (homomorphic_polymul) follow a very similar structure and have the
same number of homomorphic operations along with the same inputs. Thus it is reasonable
to assume that the noise growth resulting from Algorithm 1 and Algorithm 3 will be the
same as given by [GPVL23, Lemma 7].

Finally, we note that NTTDec needs to account for noise coming from a key switching
operation (line 6) after applying the GSW Galois automorphisms (line 5). Our algorithm
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1: procedure Bootstrap
(

(c0, . . . , cN ), (f0, . . . , fN ), {Zi}N−1
i=0 ,Ksk, {Kv}p−1

v=0, ℓ, α
)

▶ Each ci ∈ LWEp⋆

s (∆ · mi) ∈ ZN
p⋆ for 0 ≤ i < N and ∆ = ⌊p⋆/2κ⌉

▶ Each fi : Z2κ → Z2κ is the function that will be applied to the ith packed ciphertext
▶ {Zi}N−1

i=0 are the bootstrapping keys, where each Zi ∈ R̃QGSWsk
(

X−ẑ[i]
)

▶ Ksk ∈ R̃QGSWsk(−sk)
▶ Each Kv ∈ R̃QKSsk(sk(Xv)) is a key-switching key for the automorphism X 7→ Xv

▶ ℓ ∈ Z is the incompleteness level (compatible with N and p)
▶ α ∈ Z is the balancing parameter between parts 1 and 2

2: (a,b)← PackLWE(c0, · · · , cN−1)
3:

(
a′,b′)← ModSwitchQ→p(a,b)

4: (C0, · · · ,CN−1) = NTTDecModified
((

a′,b′), {Zi}N−1
i=0 ,Ksk, {Kv}p−1

v=0, ℓ, α
)

5: ▷ Each Ci ∈ R̃QGSWsk
(
Xei+∆·mi

)
for small error ei

6: for i = 0 to N − 1 do
7: c′

i ← MsgExtract(Ci, fi)
8: return

(
c′

0, · · · , c′
N−1

)
9: end procedure

Algorithm 5. Amortized bootstrapping algorithm for message space Z2κ .

NTTDecModified does not require this operation and thus does not need to account for
the error growth resulting from it.4

Corollary 1 (From [GPVL23] Corollary 2). The bootstrapping algorithm presented in
Algorithm 5 has noise overhead of Õ(λ1.5+ρ), where λ is the security parameter and
ρ = lgN/α.

Proof. This follows from Theorem 2 and arguments given in [GPVL23, Corollary 2].

Theorem 3 (Correctness of bootstrapping, adapted from [GPVL23] Theorem 1). Let λ
be a security parameter and p⋆ = Õ(λ2.5+ρ) for ρ = lgN/α. Consider the input ciphertexts
ci ∈ LWEp

⋆

s (∆ ·mi, E) ∈ Zp+1 encrypting messages mi ∈ Z2κ for 0 ≤ i < N with initial
error satisfying E = O(p⋆/λ) and ∆ = ⌊p⋆/2κ⌉. Then, with probability 1− 2−λ, the output
of Algorithm 5 is correct, i.e., it outputs valid LWE encryptions of f(mi) for arbitrary
functions f : Z2κ → Z2κ .

Proof. We refer to the proof of [GPVL23, Theorem 1] for the technical details.

5 Experimental results
In this section, we present the experimental results of our work. We first recall the
advantages of the use of incompleteness for NTT and in particular illustrate the wide
range of moduli that can be chosen as a function of the incompleteness degree ℓ. We then
present our best timings and trade-offs between execution time and DFR and compare
our results with the results given in [GPVL23] and with the state-of-the-art sequential
algorithm TFHE-rs.

4Note that, in the original code, these extra key switching operations are avoided by multiplying the
twiddle factors directly by the corresponding coefficients of â = NTT(a).
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5.1 How incompleteness enables faster bootstrapping and lower DFR
We now discuss how incompleteness can help us achieve more efficient or reliable boot-
strapping by reducing the constraints on p. Unfortunately, these goals oppose each other:
there are parameters that achieve very low decryption failure rates but whose performance
is impractical, and vice-versa.

Let us assume that, by the requirements of some particular application, both the number
N of LWE ciphertexts that are packed, and the bit-length κ of the plaintext messages are
fixed. In this case, the most critical parameter affecting the bootstrapping performance is
the prime p, since most operations are done in the circulant ring R̃ = Z[X]/(Xp − 1). On
the one hand, for performance, smaller values of p are better, as the reduced number of
coefficients will entail less costly operations. On the other hand, interestingly, regarding the
DFR, the most critical parameter is also p, as can be seen in Equation 1 from Section 3.2.5
However in this case, to reduce the DFR, we want p as large as possible.

Recall that to accelerate operations in R̃ using HEXL optimized implementations,
Guimarães et al. [GPVL23] use the auxiliary ring R̃′ = Z[X]/

(
XN ′ − 1

)
, where N ′ =

2⌈lg p⌉+1, as described in Section 3.3. Therefore, to significantly improve the bootstrapping
performance, it is not enough to simply reduce p. Indeed, we have to reduce it to prime
values with a smaller number of bits. This has an important consequence: when considering
DFR and performance together, the optimal choices of p are close to, but below, powers of
two. This ensures we are taking somewhat large values of p (to guarantee a reasonable
DFR), without crossing over to the next power of two (which would cause a significant
performance impact).

The advantage provided by the incomplete NTT for our amortized bootstrapping is
that it allows us to select values that are close to powers of two. Figure 3 shows how the
increased incompleteness levels ℓ allows us to find parameters much closer to powers of two
than the complete NTT (ℓ = 0), considering the negacyclic NTT over Zp[X]/

(
XN + 1

)
for N = 1024. Our proposed technique allows us to keep the performance similar for all
primes between the powers of two, represented by dotted vertical bars in Figure 3. So,
without impacting the performance, from the pool of primes with a fixed number of bits,
we have the flexibility to choose an optimal prime that is the closest to the bars to achieve
the best DFR. For concreteness, for the range of interest between 13-bit and 15-bit primes,
there are only two possible values of p when considering a complete NTT: 12289 (14-bit),
which is what is used by Guimarães et al. [GPVL23] and 18433 (15-bit). However, using
the incomplete NTT with ℓ ≤ 4 we can find significantly better parameters, such as 16001
and 32257, for the 14-bit and 15-bit ranges, respectively.

In the next section, we explore the possible tradeoffs between performance and DFR.
In particular, we consider the different values p possible by the incomplete NTT and their
interaction with other parameters such as N , p⋆ or the Hamming weight of the secret
key in order to achieve significantly better results than what Guimarães et al. [GPVL23]
obtain for the complete NTT.

5.2 Comparison with Guimarães et al.
We tested our algorithm with different sets of parameters varying the ring R̂ size N , the
prime moduli p and p∗, and the hamming weight w of the secret key. We run all our
experiments on the same machine using an Intel Xeon Platinum 8260 CPU at 2.4 GHz
with 250 GB of RAM, running Ubuntu 20.04.6 LTS, and report results for single-threaded
executions. All the parameter sets considered achieve at least a 128-bit security level based
on the LWE estimator [APS15]. We report our results in Table 2, where the amortized

5We remark that p⋆ and w that appear in the definition of ε used in Equation 1 also impact the DFR,
but their impact is somewhat limited since the square root of ε is considered.
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Figure 3. Possible prime values of p ≡ 1 mod 2N/2ℓ that enable the use of ℓ-incomplete
NTT for fast multiplication in Zp[X]/

(
XN + 1

)
for N = 1024 and different incompleteness

levels ℓ. For N = 1024, the optimal balance parameter is α⋆ = 6, which means that
incompleteness levels ℓ ≤ lgN − α⋆ = 4 come for free in this case.

execution time (in milliseconds) is the median observed over 10 experiments (with standard
deviation at most 1.3%). The DFR for κ-bit messages is computed using Equation 1. The
first row of Table 2 shows the parameters and results obtained using [GPVL23]’s code with
no modifications. The table shows the smallest values of ℓ for which prime p is compatible
with N , i.e., p ≡ 1 mod 2N/2ℓ.

With the flexibility and benefits of incompleteness, we are able to lower the modulus p
to 7937 and obtain a much improved amortized time of 584 ms for N = 1024. This results
in a 2.12× speedup compared to [GPVL23]. However, in this case, our DFR is worse
than in the original work and as high as 2−9 for 8-bit messages. When considering 7-bit
messages, the DFR lowers to 2−31.7. In order to improve upon the DFR for 8-bit messages
while still maintaining good timings, we increase the ring size to N = 2048. In this case, we
are able to decrease the DFR significantly to 2−39.1 while still improving on the amortized
time for p = 7681. More precisely, we obtain an amortized time of 879ms, corresponding
to a 1.41× speedup compared to [GPVL23].

Overall, Table 2 showcases an interesting tradeoff between the execution time of our
algorithm and the observed DFRs. We identify the best values in bold. Indeed, as we are
able to explore a wide range of modulus values p, we can significantly lower the execution
time of the algorithm by considering much smaller primes, however, at the cost of a high
DFR, but also significantly lower the DFR by increasing the prime modulus p. For both
N = 1024 and N = 2048, by choosing p larger than the original modulus 12289, we are
able to improve the DFR of [GPVL23] by 2−7 and 2−41, respectively, with only a small
effect on performance. More precisely, by choosing p = 16001 and p = 15361 for N = 1024
and N = 2048 respectively, we obtain DFR values of 2−24 and 2−131 (while the original
algorithm obtains 2−17 for 8-bit messages) while the performance drops of 0.94× and
0.64× respectively. In the case of N = 2048 and p = 15361, we even obtain a better DFR
than the 2−128 failure probability guaranteed by TFHE-rs v1.0 (see also [BJSW24] for
technical details). We also note that when considering 9-bit messages, we achieve a DFR
of at most 2−35 by considering the largest prime p = 15361 and N = 2048.
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Table 2. Parameter sets offering different tradeoffs between performance and decryption
failure rate (DFR). All parameters considered satisfy a 128-bit security level. The execution
time is shown for single-threaded runs. While the parameter set for N = 2048 and ℓ = 0
was not proposed by GPVL, it can be used with their original code. All parameters use
α = 6 (the optimal value for the complete NTT), which means every incompleteness level
ℓ ≤ 4 comes for free for N = 1024 and 2048.

Algorithm N p lg (p⋆) w ℓ
DFR for κ-bit messages Amortized

time (ms) Speedup
κ = 7 κ = 8 κ = 9

[GPVL23] 1024 12289 24 256 0 2−62.4 2−17.3 2−5.4 1,237.9 –

Ours

1024 7681 24 256 2 2−30.0 2−8.8 2−3.0 585.6 2.11×
1024 7937 24 256 3 2−31.7 2−9.3 2−3.1 584.7 2.12×
1024 16001 24 256 4 2−88.8 2−24.1 2−7.2 1,311.1 0.94×

2048 7681 27 52 3 2−147.8 2−39.1 2−11.2 879.8 1.41×
2048 7937 27 52 4 2−157.2 2−41.5 2−11.8 882.7 1.40×
2048 12289 27 52 0 2−350.3 2−90.2 2−24.4 1,872.5 0.66×
2048 15361 27 52 2 2−516.3 2−131.9 2−35.0 1,931.5 0.64×

Table 3. Comparison with state-of-the-art implementations of sequential and amortized
bootstrapping algorithms. For TFHE-rs, we run pbs128-bench. All experiments are
single-threaded.

Bootstrapping type Algorithm Source LWE secret
key type

Time per LWE
ciphertext (ms)

Number of
ciphertexts per
bootstrapping

Sequential TFHE PBS TFHE-rs Binary 660.68 1

Amortized
[GPVL23] Code Ternary 1,255.5 1024
Ours Code Ternary 584.7 1024
Ours Code Ternary 879.8 2048

5.3 Comparison with state-of-the-art

In addition to the improvement over [GPVL23] already reported in Table 2, we compare
our algorithm with its sequential counterpart for programmable bootstrapping, namely
TFHE-rs [Zam22], the latest version v1.0 (from February 2025). In Table 3, we report
the amortized cost in milliseconds. Similarly to before, the experiments were all run on
the same machine with single-threaded executions. For our algorithm, we provide two
timings: our fastest time using N = 1024 but where the DFR is high (2−9 as reported
in Table 2 for 8-bit messages) and our fastest time for N = 2048 where the increased
ring size allows us to lower the DFR significantly (2−39 as reported in Table 2 for 8-bit
messages) while still achieving better time than [GPVL23]. For the sequential algorithm
benchmarks, the only implementation for programmable (or functional) bootstrapping
is TFHE-rs with a running time of 660ms, which is only 1.33× faster than our timing
with reasonable DFR, i.e., 2−39. Our best time is actually 1.12× faster than TFHE-rs
but this is ignoring the high DFR for 8-bit messages. If we consider 7-bit messages, the
speedup remains 1.12× faster than TFHE-rs and in this case, our DFR is about 2−32.
Note that when considering 7-bit messages, our algorithm is 1.12× faster than TFHE-rs
while the DFR has the acceptable value of 2−31.7. We leave for future work the exploration
of techniques to lower the DFR while maintaining our best timings.
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6 Conclusion and future work
In this work, we present an improved amortized bootstrapping algorithm for FHEW/TFHE
ciphertexts, building on the algorithm introduced by Guimarães et al. [GPVL23]. While the
asymptotic complexity of our algorithm remains the same as in [GPVL23] and [DMKMS24],
we introduced algorithmic refinements that yield practical speedups. In particular, we
leveraged the notion of incompleteness in the NTT to expand the set of usable moduli
and explore trade-offs between amortized runtime and decryption failure rates (DFRs).
Our alternative two-part incomplete NTT formulation embeds the base multiplication
into the first part, allowing the use of incomplete NTT with no additional performance
cost. Although we observe significant speedups compared to [GPVL23], as well as to the
sequential TFHE-rs implementation, our best timings come at the cost of higher DFRs.
Reducing the DFR while maintaining comparable performance remains an open question
and presents a promising direction for future research.

Additionally, we note that [GPVL23] relies on the HEXL library for optimization,
which supports only power-of-two cyclotomic rings. Future improvements to amortized
bootstrapping may benefit from extending support to arbitrary cyclotomics in widely used
FHE libraries such as OpenFHE. Our work, aligned with recent advancements, further
highlights the potential of amortized bootstrapping algorithms to outperform sequential
counterparts or, at the very least, serve as viable alternatives in advancing the practicality
of FHE.
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