
Efficient Foreign-Field Arithmetic in PLONK
Miguel Ambrona
Input Output Global

Spain
miguel.ambrona@iohk.io

Denis Firsov
Input Output Global

Estonia
denis.firsov@iohk.io

Iñigo Querejeta-Azurmendi
Input Output Global

Spain
querejeta.azurmendi@iohk.io

Abstract
PLONK is a prominent universal and updatable zk-SNARK for
general circuit satisfiability, which allows a prover to produce a
short certificate of the validity of a certain statement/computation.
Its expressive model of computation and its highly efficient veri-
fier complexity make PLONK a powerful tool for a wide range of
blockchain applications.

Supporting standard cryptographic primitives (such us ECDSA
over SECP256k1) or advanced recursive predicates (e.g. incremen-
tally verifiable computation) on a SNARK presents a significant
challenge. It requires so-called foreign-field arithmetic (enforcing
constraints over algebraic fields that differ from the SNARK native
field) which was previously believed to incur an overhead of two
or three orders of magnitude.

We build on the techniques by Lubarov and Baylina and observe
that, by considering tight bounds on their encoding of foreign-field
multiplication, the number of PLONK constraints can be signifi-
cantly reduced.We show that these techniques also extend to elliptic
curve emulation, with an overhead of just one order of magnitude
(with respect to its native counterpart). We validate soundness
and completeness of our main results in EasyCrypt. Finally, we
implement an open-source library with support for foreign-field
arithmetic. Our experimental results showcase the generality of our
techniques and confirm their suitability for real-world applications.

Contents

Abstract 1
Contents 1
1 Introduction 1
1.1 Our contributions 2
1.2 Technical overview and related work 2
2 Preliminaries 3
3 Foreign-field arithmetic 4
3.1 Foreign-field multiplication 4
3.2 Foreign-field addition, subtraction and other

operations 6
4 Foreign-field elliptic curve operations 7
4.1 Implementing the custom identities 7
4.2 Witnessing a point 8
4.3 Point doubling 8
4.4 Point addition 8
4.5 Multi-scalar multiplication 9
5 Formal Verification 10
6 Performance Evaluation 10
6.1 Emulation parameters 11
6.2 Threshold ECDSA over SECP256k1 11
6.3 Self-recursion 12
References 12

1 Introduction
SNARKs [GGPR13, BCG+13, PHGR13, Gro16], succinct non-inte-
ractive arguments of knowledge, are a class of cryptographic sche-
mes that allow a prover to produce a certificate of the validity of a
certain statement/computation, which can then be publicly verified.
Remarkably, the proof size and verification complexity are sublinear
(if not constant) in the size of the statement being proven. SNARK
proofs can be optionally performed in zero-knowledge [GMR85,
BFM88] mode, which will ensure that the certificate does not reveal
any additional information beyond the fact that the statement holds.

PLONK [GWC19] is a universal and updatable zk-SNARK for gen-
eral circuit satisfiability. PLONK is based on a very powerful model
of computation with so-called custom gates which allow for a very
versatile and expressive encoding of constraints. This efficient arith-
metization has led to its widespread adoption in many state-of-the-
art blockchain projects. PLONK has been integrated into systems
like Zcash [HBHW], Mina [BMRS20], the Dusk Network [MKF21],
Anoma [GYB21], or Midnight [Mid24], among many others.

Indeed, PLONK (and SNARKs in general) have become a fun-
damental tool in applications requiring verifiable computation or
privacy, particularly in blockchain technology. In the context of
rollups, projects such as Aztec [Wil18], zkSync [Mat23], and Poly-
gon [Pol23] leverage SNARKs to bundle multiple transactions1
into a single proof, significantly reducing on-chain computation
and gas costs. Privacy-focused blockchains like Zcash [HBHW],
Dusk [MKF21], or Midnight [Mid24] use SNARKs to enable confi-
dential transactions, allowing users to shield sensitive financial data
while maintaining cryptographic integrity. SNARKs are also play-
ing an increasingly important role in proofs of identity, particularly
in privacy-preserving frameworks. With the growing adoption of
self-sovereign identity systems (SSI) and digital identity standards
such us eID or ePassport, SNARKs offer a unique way of proving
ownership or possession of certain credentials without revealing
any unnecessary personal information.

Another very prominent application of SNARKs is recursion. The
high efficiency of SNARK verifiers (with sublinear, even constant,
verification complexity) makes it possible to involve the SNARK
verifier in the NP predicate being proven. Incrementally verifiable
computation (IVC) [Val08] is one of the applications of recursion
and enables continuous verification of an ongoing computation
without reprocessing previous steps. With IVC one can generate
a succinct proof of the validity of a blockchain state. Such proof
guarantees the validity of the whole chain, but can be verified very
efficiently (its verification complexity is independent of the chain
length). The Mina [BMRS20] blockchain is an example of IVC put
into practice. Recursion is the Holy Grail of cryptographic proofs,
enabling unbounded scalability, constant verification time, and

1Or even smart contract executions, in so-called ZK virtual machines (zkVMs).

https://orcid.org/0000-0001-5927-9235
https://orcid.org/0000-0003-1267-7898
https://orcid.org/0000-0003-3679-2276

Miguel Ambrona, Denis Firsov, and IñigoQuerejeta-Azurmendi

seamless composability. However, achieving efficient recursion is
extremely challenging in practice, given the high cost of the prover
and the fact that SNARK verification typically involves operations
that are costly to express in the SNARK’s model of computation.

Actually, most of the above-mentioned compelling applications
rely on modeling complex predicates within a SNARK. These often
involve standard cryptographic primitives like ECDSA signatures
over SECP256k1, combined with hash functions such as SHA256
or Keccak [BDPV13]. Encoding these primitives as a SNARK com-
putation is inherently challenging and can introduce substantial
computational costs. Nevertheless, these requirements are driven
by the specific use case and switching to more SNARK-friendly
primitives may not always be a feasible alternative.

Foreign-Field Arithmetic. Every SNARK has its own dedicated
model of computation, typically a set of multivariate polynomial
equations (of a predefined shape) over a finite field 𝐾 . Performing
arithmetic over𝐾 , known as the native field, is highly efficient. How-
ever, encoding computations over a different field with polynomial
constraints over 𝐾 can result significantly more involved. This is
known as foreign-field arithmetic, also referred to as wrong-field
arithmetic and was believed to incur an overhead of two or three
orders of magnitude [DH20].

In order to circumvent the problem of emulating foreign-fields,
some attempts try to use less standard but SNARK-friendly primi-
tives such as algebraic hash functions [GKR+21, GLR+20, GKL+22,
GKS23] or embedded elliptic curves (whose base field is the SNARK
native field). In the case of recursion, a very clever and popular
workaround [ECC21] consists of running two SNARKs over a so-
called cycle of curves: a pair of elliptic curves such that the scalar
field of one is the base field of the other and vice versa. This cyclic
structure allows them to encode part of the recursive verification
circuit in one SNARK and the rest in the other. This, however, leads
to an extremely complex and error-prone recursive predicate. Be-
sides, these schemes must give up constant verification complexity
as the existing cycles of curves are not equipped with an efficient
pairing in both curves.2

Designing techniques for emulating foreign-field arithmetic over
different fields more efficiently is extremely valuable, as it can lead
to conceptually simpler, more elegant, and less error-prone recur-
sive SNARKs. It also serves to support the standard cryptographic
primitives required by many real-world applications.

1.1 Our contributions
We pursue the study of foreign-field emulation in PLONK’s model of
computation. We present several new and very general techniques
for encoding emulated field and elliptic curve operations.

Field emulation. We build on the techniques by Lubarov and
Baylina [LB22]. We observe that, by considering tighter bounds in
their analysis of foreign-field multiplication, the number of PLONK
constraints can be dramatically reduced.

We also present a novel way of encoding simpler operations
like addition, subtraction, negation, or multiplication by constants,

2Some examples are the Pasta cycle [Hop20], used by Mina [BMRS20], which
does not have an efficient pairing in either curve; or the Pluto-Eris cycle [Hop21],
where Pluto has a pairing but Eris does not.

which does not require range-checks. This new encoding takes
advantage of the fact that these operations are linear with respect
to the representation of emulated field elements in limbs form.

Elliptic curves emulation. We demonstrate that the above tech-
niques extend to the case of elliptic curve emulation. Instead of
enforcing EC operations via black-box use of foreign-field addition
and multiplication, we develop dedicated custom foreign-field iden-
tities. This, combined with new ideas for maximizing the use of
incomplete (but more efficient) building blocks, leads to an efficient
encoding of non-native EC operations.

For example, we can model a multi-scalar multiplication (with
full-size scalars) of ℓ points of the SECP256k1 curve, emulated over
the BLS12-381 scalar field, with about 3900ℓ +5000 PLONK rows (on
an architecture of 9 witness columns and range-check lookups of
16 bits). This is arguably only one order of magnitude more costly
than the same operation over a curve whose base field is the native
field (e.g. Jubjub [ECC18] in this case).

Formal verification of our results. We formulate and prove our
main results in EasyCrypt, to validate their soundness and com-
pleteness within a rigorous formal framework.We believe this effort
eliminates potential soundness vulnerabilities that often emerge
when working with such complex sets of equations. We hope that
this level of assurance boosts trust in our approach and encourages
its wider adoption. Our formal proofs of soundness and complete-
ness (in EasyCrypt) can be found in GitHub [AFQ25].

Implementation and evaluation. We implement our foreign-field
emulation techniques on top of the Halo2 Rust library [ECC21]. Our
framework is highly versatile and supports the emulation of differ-
ent fields with configurable parameters. Our implementation lever-
ages advanced PLONK features, including custom gates and lookup
tables, to efficiently encode our foreign-field arithmetic equations.
To demonstrate the generality of our approach, we evaluate our
techniques by computing KZG-based PLONK proofs over the BN254
and BLS12-381 curves, implementing two use cases: (i) verification
of standard signature schemes (such as ECDSA over SECP256k1);
(ii) self-recursion, where the SNARK predicate includes the verifica-
tion of a SNARK proof. Our benchmarks demonstrate the efficiency
of our techniques across various emulation settings, confirming
their suitability for real-world applications. Our implementation
will be released as open-source software.

1.2 Technical overview and related work
The state-of-the-art techniques for emulating integer and foreign-
field arithmetic [LB22, Gab22, SQ22] are based on the idea that an
equality over the integers can be enforced through equalities mod-
ulo a set𝑀 of auxiliary moduli. In virtue of the Chinese Remainder
Theorem:

∀𝑚 ∈ 𝑀. 𝑥 = 0 (mod𝑚) ⇐⇒ 𝑥 = 0 (mod LCM(𝑀)) .

This equation, combined with additional bounds on the magni-
tude of 𝑥 , e.g. imposing that |𝑥 | < LCM(𝑀), imply that 𝑥 must be
the integer 0. Naturally, through algebra over the integers, one can
easily emulate algebra over any prime field.

We will constrain an expression 𝑥 to be zero modulo several aux-
iliary moduli𝑀 , one of which will of course be the native modulus

Efficient Foreign-Field Arithmetic in PLONK

of the SNARK. However, how come it is possible to constrain an
equality modulo other moduli? Was not that the problem in the
first place? It turns out this is possible if the moduli are small or
structured enough so that the terms in the equation are guaran-
teed not to “wrap-around” the native modulus. If our modulus of
interest were of this amenable form, it would be very easy to emu-
late arithmetic over it as one custom identity would probably be
enough. Unfortunately, the modulus we are interested in will often
be similar in size to our native modulus, or even larger, requiring a
more complex approach.

There exist different approaches for choosing the moduli in𝑀 .
As we mentioned, all of them use the native modulus (which is
“free”), but they differ in how the remaining moduli are chosen.
• The approach by Aztec [Gab22] and the one by O(1) Labs [SQ22,
Lab23] only use one extra auxiliary modulus of the form 2𝑡 , for
a sufficiently large 𝑡 . The fact that this modulus is a power of
the base of representation of integers in limbs leads to impor-
tant cancellations (large powers of the base are congruent to 0
modulo 2𝑡), which makes it possible to assert the corresponding
equalities modulo 2𝑡 . This design usually requires 𝑡 to be quite
large and involves many expensive range-checks. Also, note that
this approach is ad hoc and highly specialized to the concrete
emulation case.

• Polygon [LB22] uses a significantly different approach. Instead
of having one big additional auxiliary modulus, they use many
small ones. This design choice is driven by the fact that they
use STARKs and their native modulus is relatively small (64-bits
long). Not only is the contribution of the native modulus to
boosting the LCM less impactful, but also the auxiliary moduli
need to be significantly smaller in order to avoid wrap-arounds.
To achieve a better performance, Lubarov and Baylina [LB22]
consider the possibility of choosing the set of auxiliary moduli
probabilistically. This allows them to use fewer auxiliary moduli
than necessary to strictly enforce the desired constraints. The
randomized choice of 𝑀 makes it infeasible for a malicious
prover to leverage the fact that the system is under-constrained.
Let us highlight the generality of this method over the other ad
hoc approaches: a single implementation (parametric on the set
of auxiliary moduli) can be used for any emulation scenario.

In this work, our techniques are inspired by the approach by
Lubarov and Baylina [LB22]. We observe that by computing tight
bounds, the number of necessary auxiliary moduli can be dramat-
ically reduced. In most cases just one extra auxiliary modulus is
enough to deterministically enforce the desired constraints. On the
other hand, their approach (with loose bounds) requires dozens of
auxiliary moduli and only achieves probabilistic soundness.

Concretely, their techniques require analyzing equations that
involve terms of the form:

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
((𝐵𝑖+𝑗 % 𝑞) %𝑚)𝑥𝑖𝑦 𝑗 ,

where 𝑞 is the emulated modulus, 𝐵 is a constant (the base of repre-
sentation in limbs form),𝑚 is an auxiliary modulus and 𝑥𝑖 , 𝑦𝑖 are
further restricted to be in the range [0, 𝐵). A simple upper-bound for
the above term, used by Lubarov and Baylina, is 𝑛2𝐵2𝑚. This bound

leads to the conclusion that 4𝑛2𝐵2𝑚 < 𝑝 is sufficient for avoid-
ing wrap-arounds in their concrete equation, here 𝑝 is the native
modulus.3 Equivalently, it is enough to select𝑚 < 𝑝/(4𝑛2𝐵2).

We observe that (𝐵𝑖+𝑗 % 𝑞) % 𝑚 can be very small, depend-
ing on the value of 𝑞 with respect to the base 𝐵 or depending
on the value of 𝑚. We argue that, considering the tight bound
(𝐵−1)2 ∑𝑛−1

𝑖=0
∑𝑛−1
𝑗=0 ((𝐵𝑖+𝑗 % 𝑞) % 𝑚), the condition on 𝑚 can be

significantly relaxed, because the bound may be small even when𝑚
is large. Manually handling these tight bounds can be tedious and
error-prone, but the benefits they offer are well worth the effort. We
recommend computing them programmatically and we also employ
formal verification to ensure the soundness of our conclusions.

Based on this idea, we propose a revisited and more efficient en-
coding of foreign-field multiplication. Using similar techniques, we
also develop dedicated foreign-field identities for modeling elliptic
curve operations over foreign base fields.

2 Preliminaries
Notation. For𝑚,𝑛 ∈ N with𝑚 ≤ 𝑛, the range {𝑚,𝑚+1, . . . , 𝑛} is

denoted by [𝑚,𝑛]. We use [𝑛] as a shorthand for [1, 𝑛] and [𝑚,𝑛)
as a shorthand for [𝑚,𝑛−1]. We denote by Z𝑛 the ring of integers
modulo 𝑛. Elements in Z𝑛 , unless stated otherwise, are represented
canonically as integers in the range [0, 𝑛). Equality modulo 𝑛 ∈ N is
denoted by =𝑛 , i.e. for any 𝑎, 𝑏 ∈ Z, 𝑎 =𝑛 𝑏 iff there exists 𝑘 ∈ Z such
that 𝑎 − 𝑏 = 𝑘𝑛. Equality over the integers is sometimes explicitly
denoted by =Z. We denote by % themodulo operation, that is, 𝑛 %𝑚
is the remainder of dividing 𝑛 by𝑚.

PLONK’s arithmetization. One of the remarkable features of
PLONK is its versatile and powerful arithmetization, the model
of computation in which NP relations are described.

In a nutshell, a PLONK “circuit” is a table 𝑇 whose entries take
values over a finite field 𝐾 (the so-called native field). Let ℓ be the
number of rows in 𝑇 and𝑚 be the number of columns. Let 𝑇𝑖, 𝑗 be
the table entry at row 𝑖 and column 𝑗 . In this model, NP instances
are represented as partially-filled tables, whereas the NP witness of
a given instance is a valid completion of the remaining entries. A
completion is valid if it satisfies all the constraints imposed by the
arithmetization.

These constraints, often referred to as custom gates, are specified
through low-degree polynomial identities of the form:

∀𝑖 ∈ [ℓ] . 𝑓 (𝑇𝑖,1, . . . ,𝑇𝑖,𝑚) =𝐾 0 .

That is, they enforce polynomial relations between the values in
each row of the table. It is common to have multi-row identities, i.e.
polynomial constraints that span over several adjacent rows. For
example:

∀𝑖 ∈ [ℓ] .𝑓 (𝑇𝑖,1, . . . ,𝑇𝑖,𝑚,𝑇𝑖+1,1, . . . ,𝑇𝑖+1,𝑚) =𝐾 0 .

(The table is cyclic, i.e. the last row has a next one: the first row.)
Multi-row identities can be considered as long as the number of
rows they span over is small, since it affects proof size and verifier
complexity.

3The factor of 4 is due to the fact that the above was not the only term in the
equation.

Miguel Ambrona, Denis Firsov, and IñigoQuerejeta-Azurmendi

In order for this model of computation to be non-trivial, PLONK
is equipped with a permutation argument that allows one to in-
troduce so-called copy-constraints that enforce some values from
different table entries to be the same. Furthermore, PLONK incorpo-
rates more advanced tools such as lookup arguments, which can be
used to efficiently enforce constraints of the form “this table entry
must take a value among this set of pre-established values”.

For the purpose of understanding this work, simply note that
PLONK’s model of computation allows one to define custom low-
degree polynomial identities over the native field, which can be
enforced very efficiently across all the rows in the table. In our
implementation, 𝐾 := Z𝑝 for some prime 𝑝; all our identities span
over 3 rows or less and their polynomial degree is at most 6. Further-
more, we use lookups for performing efficient 𝑡-bits range-checks,
i.e. asserting that some table entries belong to the range [0, 2𝑡).

3 Foreign-field arithmetic
From now on, we will denote by 𝑝 the native (prime) modulus and
by 𝑞 the one we want to emulate, which may be any natural number
(not necessarily prime). Our techniques are generic with respect
to the relative size of 𝑝 and 𝑞. For that, integers over Z𝑞 will be
represented in limbs form in a certain base 𝐵.

Let 𝑛 be the lowest integer such that 𝐵𝑛 ≥ 𝑞, we represent an
integer 𝑥 ∈ Z𝑞 with 𝑛 limbs as (𝑥𝑛−1, . . . , 𝑥0)𝐵 , where 𝑥𝑖 ∈ [0, 𝐵)
for every 𝑖 , and 𝑥 =

∑
𝑖 𝐵
𝑖𝑥𝑖 . This way, the values of 𝑥𝑖 fit in the

native field Z𝑝 (if 𝐵 is sufficiently small, thus 𝑛 sufficiently large).
As we will see, we will require that 𝐵 be significantly lower than√𝑝
in order to avoid wrap-arounds; otherwise, the upper-bound in (4)
would exceed 𝑝 . This means that at least 2 limbs will be necessary
unless 𝑞 ≪ √𝑝 (if √𝑝 < 𝑞 < 𝑝 , there would be enough space to
represent integers in Z𝑞 with native scalars over Z𝑝 , but there must
exist extra room for “computing”).

3.1 Foreign-field multiplication
Given three integers 𝑥 , 𝑦, 𝑧 in limbs form, we would like to assert
that they are in a multiplicative relation 𝑥 · 𝑦 =𝑞 𝑧, that is:

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐵𝑖+𝑗𝑥𝑖𝑦 𝑗 −
𝑛−1∑︁
𝑖=0

𝐵𝑖𝑧𝑖 =𝑞 0 .

Note that we highlight variables (in blue) to differentiate them from
constants. The above equality can be enforced with an equality
over the integers by exhibiting 𝑘 ∈ Z such that:

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
(𝐵𝑖+𝑗 % 𝑞)𝑥𝑖𝑦 𝑗 −

𝑛−1∑︁
𝑖=0
(𝐵𝑖 % 𝑞)𝑧𝑖 =Z 𝑘 · 𝑞 . (1)

The left-hand side of this equation can be lower-bounded by
−𝑛𝑞𝐵 and upper-bounded by 𝑛2𝑞𝐵2. These are the bounds consid-
ered in [LB22]. They are simple and elegant, but not tight. In this

work, we consider the following tight bounds instead:

lower-bound: − (𝐵−1)
𝑛−1∑︁
𝑖=0
(𝐵𝑖 % 𝑞)

upper-bound: (𝐵−1)2
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
(𝐵𝑖+𝑗 % 𝑞)

These tight bounds can be significantly lower than their non-
tight counterparts, e.g. note that (𝐵𝑖+𝑗 % 𝑞) can be much lower than
𝑞 if the base is chosen appropriately.

These bounds allow us to bound 𝑘 in the range [𝑘min, 𝑘max],
where 𝑘min and 𝑘max are the result of dividing the above lower-
bound and upper-bound (respectively) by 𝑞 (ignoring the remain-
der4). The value of 𝑘 will be enforced (via range-checks) to be in
such range in order to assert bounds on the right-hand-side of equa-
tion (1). However, the range-check protocol that we consider in this
work can only assert ranges of the form [0, 2𝑡) for 𝑡 ∈ N. We can
transform the range [𝑘min, 𝑘max] into this form via the change of
variables 𝑢 := 𝑘 − 𝑘min. This way, equation (1) becomes:

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
(𝐵𝑖+𝑗 % 𝑞)𝑥𝑖𝑦 𝑗 −

𝑛−1∑︁
𝑖=0
(𝐵𝑖 % 𝑞)𝑧𝑖 − (𝑢 +𝑘min) ·𝑞 =Z 0 . (2)

Let𝑢max be the lowest power of 2 such that𝑢max > 𝑘max−𝑘min, we
can now range-check𝑢 in [0, 𝑢max). We stress that this range-check
on 𝑢 is performed in order to have reliable bounds on the left-hand
side of equation (2). The range on 𝑢 could be larger, but that would
lead to looser bounds, potentially requiring more auxiliary moduli.
On the other hand, the range on 𝑢 should not be smaller, because
that could hinder completeness (soundness would not be affected).

We will assert equation (2) modulo 𝑝 (the native modulus) and
also modulo𝑚 for every auxiliary modulus in a set𝑀 . If LCM(𝑀 ∪
{𝑝}) is large enough, namely it satisfies the below inequalities,
then (in virtue of the Chinese Remainder Theorem) the assertion
of equation (2) modulo every 𝑚 in 𝑀 ∪ {𝑝} will imply that the
equation holds over the integers, as desired.

(𝐵−1)
𝑛−1∑︁
𝑖=0
(𝐵𝑖 % 𝑞) + (𝑢max + 𝑘min) · 𝑞 < LCM(𝑀 ∪ {𝑝})

∧ (𝐵−1)2
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
(𝐵𝑖+𝑗 % 𝑞) − 𝑘min · 𝑞 < LCM(𝑀 ∪ {𝑝}) .

3.1.1 Asserting equation (2) over an auxiliary modulus. We are
ready to add constraints which enforce that equation (2) is satisfied
modulo our auxiliary moduli in𝑀 . Let𝑚 ∈ 𝑀 , we start by reducing
the coefficients once again, this time modulo𝑚. As before, we will
exhibit an integer ℓ and enforce that:

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
((𝐵𝑖+𝑗 % 𝑞) %𝑚)𝑥𝑖𝑦 𝑗 −

𝑛−1∑︁
𝑖=0
((𝐵𝑖 % 𝑞) %𝑚)𝑧𝑖

− 𝑢 · (𝑞 %𝑚) − (𝑘min · 𝑞) %𝑚 − ℓ ·𝑚 =Z 0 . (3)

We can now establish bounds on ℓ :
4By “ignoring the remainder” we mean taking the floor on positive numbers or

the ceiling on negative ones.

Efficient Foreign-Field Arithmetic in PLONK

ℓmin := − (𝐵−1)∑𝑖 ((𝐵𝑖 % 𝑞) %𝑚) + 𝑢max (𝑞 %𝑚) + (𝑘min 𝑞) %𝑚
𝑚

,

ℓmax :=
(𝐵−1)2 ∑𝑖 ∑𝑗 ((𝐵𝑖+𝑗 % 𝑞) %𝑚) − (𝑘min · 𝑞) %𝑚

𝑚
.

Again, by applying a shift to ℓ in order to get a range of the
proper form, let 𝑣 := ℓ − ℓmin and let 𝑣max be the lowest power of 2
such that 𝑣max > ℓmax − ℓmin. We will range-check 𝑣 in the range
[0, 𝑣max). This allows us to establish the following bounds for the
left-hand side of equation (3).

lower-bound:

− (𝐵−1)
𝑛−1∑︁
𝑖=0
((𝐵𝑖 % 𝑞) %𝑚) − 𝑢max · (𝑞 %𝑚)

− (𝑘min · 𝑞) %𝑚 − (𝑣max + ℓmin) ·𝑚 ,

upper-bound:

(𝐵−1)2
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
((𝐵𝑖+𝑗 % 𝑞) %𝑚) − (𝑘min · 𝑞) %𝑚 − ℓmin ·𝑚 .

(4)

If 𝑝 is strictly greater than both bounds in absolute value, there
will be no wrap-around and equation (3) should hold over the
integers, as desired.

3.1.2 Putting it all together. Given 𝑥 and 𝑦 in limbs form, assumed
to be well-formed, i.e. whose limbs are in the range [0, 𝐵), the
multiplication gate between 𝑥 and 𝑦 is enforced as follows.

The prover will exhibit limbs 𝑧𝑖 for the result 𝑧, as well as a value
𝑢 and values 𝑣𝑚 for every auxiliary modulus𝑚 ∈𝑀 . Then, we en-
force the following identity, corresponding to the check modulo 𝑝 :

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
(𝐵𝑖+𝑗 % 𝑞)𝑥𝑖𝑦 𝑗 −

𝑛−1∑︁
𝑖=0
(𝐵𝑖 % 𝑞)𝑧𝑖 − (𝑢 + 𝑘min) · 𝑞 =𝑝 0 .

Furthermore, for every𝑚 ∈ 𝑀 , the following identity will be en-
forced:

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
((𝐵𝑖+𝑗 % 𝑞) %𝑚)𝑥𝑖𝑦 𝑗 −

𝑛−1∑︁
𝑖=0
((𝐵𝑖 % 𝑞) %𝑚)𝑧𝑖

− 𝑢 · (𝑞 %𝑚) − (𝑘min · 𝑞) %𝑚 − (𝑣𝑚 + ℓmin) ·𝑚 =𝑝 0 .

Finally, the following range-checks will also be enforced:

𝑧𝑖 ∈ [0, 𝐵) ∀𝑖 ∈ [0, 𝑛) 𝑢 ∈ [0, 𝑢max) 𝑣𝑚 ∈ [0, 𝑣𝑚 max) ∀𝑚 ∈𝑀 .

3.1.3 Soundness and completeness of multiplication. The following
theorems ensure the soundness and completeness of our encoding
of foreign-field multiplication. Both theorems are stated with re-
spect to any positive natural numbers 𝑝, 𝑞, 𝐵, 𝑛 such that 𝐵𝑛 ≥ 𝑞,
and any set of positive integers𝑀 satisfying the conditions below.

Define:

𝑘min := −
(𝐵−1)∑𝑛−1

𝑖=0 (𝐵𝑖 % 𝑞)
𝑞

𝑘max :=
(𝐵−1)2 ∑𝑛−1

𝑖=0
∑𝑛−1
𝑗=0 (𝐵𝑖+𝑗 % 𝑞)

𝑞

ℓmin (𝑚) := − (𝐵−1)∑𝑖 ((𝐵𝑖 % 𝑞) %𝑚) + 𝑢max (𝑞 %𝑚) + (𝑘min 𝑞) %𝑚
𝑚

ℓmax (𝑚) :=
(𝐵−1)2 ∑𝑖 ∑𝑗 ((𝐵𝑖+𝑗 % 𝑞) %𝑚) − (𝑘min · 𝑞) %𝑚

𝑚
.

Also, let 𝑡 be the lowest integer such that 𝑘max−𝑘min < 2𝑡 . Anal-
ogously, for every𝑚 ∈𝑀 , define 𝑡𝑚 as the lowest integer satisfying
ℓmax (𝑚) − ℓmin (𝑚) < 2𝑡𝑚 . We require:

(𝐵−1)
𝑛−1∑︁
𝑖=0
(𝐵𝑖 % 𝑞) + (2𝑡 + 𝑘min) · 𝑞 < LCM(𝑀 ∪ {𝑝})

(𝐵−1)2
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
(𝐵𝑖+𝑗 % 𝑞) − 𝑘min · 𝑞 < LCM(𝑀 ∪ {𝑝}) .

And, for every𝑚 ∈ 𝑀 :

(𝐵−1)
𝑛−1∑︁
𝑖=0
((𝐵𝑖 % 𝑞) %𝑚) + 2𝑡 · (𝑞 %𝑚)

+ (𝑘min · 𝑞) %𝑚 + (2𝑡𝑚 + ℓmin (𝑚)) ·𝑚 < 𝑝

(𝐵−1)2
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
((𝐵𝑖+𝑗 % 𝑞) %𝑚)

− (𝑘min · 𝑞) %𝑚 − ℓmin (𝑚) ·𝑚 < 𝑝 .

We are ready to state the following theorem on the soundness of
foreign-field multiplication. It guarantees that the only solutions
satisfying the system of constraints resulting from our encoding
are precisely those that semantically correspond to multiplication
modulo 𝑞.

Theorem 3.1 (Soundness of Multiplication). For all integers
{𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈ [0, 𝐵)}𝑛𝑖=0, 𝑢 ∈ [0, 2

𝑡), and {𝑣𝑚 ∈ [0, 2𝑡𝑚)}𝑚∈𝑀 with:

𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
(𝐵𝑖+𝑗 % 𝑞)𝑥𝑖𝑦 𝑗 −

𝑛−1∑︁
𝑖=0
(𝐵𝑖 % 𝑞)𝑧𝑖 − (𝑢 + 𝑘min) · 𝑞 =𝑝 0

and such that for all𝑚 ∈ 𝑀 :
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
((𝐵𝑖+𝑗 % 𝑞) %𝑚)𝑥𝑖𝑦 𝑗 −

𝑛−1∑︁
𝑖=0
((𝐵𝑖 % 𝑞) %𝑚)𝑧𝑖

− 𝑢 · (𝑞 %𝑚) − (𝑘min · 𝑞) %𝑚 − (𝑣𝑚 + ℓmin (𝑚)) ·𝑚 =𝑝 0 ,

it holds: (𝑛−1∑︁
𝑖=0

𝐵𝑖𝑥𝑖

) (𝑛−1∑︁
𝑖=0

𝐵𝑖𝑦𝑖

)
=𝑞

𝑛−1∑︁
𝑖=0

𝐵𝑖𝑧𝑖 .

Finally, our completeness theorem guarantees that it is always
possible to satisfy the system of constraints for values of that are
in a multiplicative relation modulo 𝑞.

Miguel Ambrona, Denis Firsov, and IñigoQuerejeta-Azurmendi

Theorem 3.2 (Completeness of Multiplication). For all inte-
gers {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈ [0, 𝐵)}𝑛𝑖=0, such that(𝑛−1∑︁

𝑖=0
𝐵𝑖𝑥𝑖

) (𝑛−1∑︁
𝑖=0

𝐵𝑖𝑦𝑖

)
=𝑞

𝑛−1∑︁
𝑖=0

𝐵𝑖𝑧𝑖 ,

there exist integers 𝑢 ∈ [0, 2𝑡), and {𝑣𝑚 ∈ [0, 2𝑡𝑚)}𝑚∈𝑀 , satisfying:
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
(𝐵𝑖+𝑗 % 𝑞)𝑥𝑖𝑦 𝑗 −

𝑛−1∑︁
𝑖=0
(𝐵𝑖 % 𝑞)𝑧𝑖 − (𝑢 + 𝑘min) · 𝑞 =𝑝 0

and such that for all𝑚 ∈ 𝑀 :
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0
((𝐵𝑖+𝑗 % 𝑞) %𝑚)𝑥𝑖𝑦 𝑗 −

𝑛−1∑︁
𝑖=0
((𝐵𝑖 % 𝑞) %𝑚)𝑧𝑖

− 𝑢 · (𝑞 %𝑚) − (𝑘min · 𝑞) %𝑚 − (𝑣𝑚 + ℓmin (𝑚)) ·𝑚 =𝑝 0 .

We prove both theorems in EasyCrypt. The proof will be publicly
available.

3.2 Foreign-field addition, subtraction and other
operations

Most references from the literature focus on describing how to
implement foreign field multiplication, since addition is a simpler
case that can be addressed in a similar way [Lab23].

In this work, however, we propose a novel method for perform-
ing modular addition. We will simply add two modular integers
limb-wise (over the native field). This is highly efficient, as it can
be performed with native constraints and does not require range-
checks. Addition can be performed limb-wise, because the repre-
sentation in base 𝐵 is linear in the following sense:

𝑛−1∑︁
𝑖=0

𝐵𝑖𝑥𝑖 +
𝑛−1∑︁
𝑖=0

𝐵𝑖𝑦𝑖 =

𝑛−1∑︁
𝑖=0

𝐵𝑖 (𝑥𝑖 + 𝑦𝑖)

But how about well-formedness? The resulting limbs 𝑥𝑖 + 𝑦𝑖
may not be well-formed (they may exceed the base 𝐵). In order to
address this problem, we will have a normalization procedure that
takes a possibly non-well-formed modular integer and produces
a well-formed one encoding the same value. This is possible as
long as the limb values of the non-well-formed integer have not
exceeded a certain limit (the so-called maximum limb value, 𝐿).

Implementing subtraction with this limb-wise method seems
problematic, as computing 𝑥𝑖 − 𝑦𝑖 with native constraints may
wrap-around under the native zero. However, this will not be a
problem because, after all, every single identity is enforced modulo
𝑝 . What is important is to keep track of proper bounds on the
integer value of every limb. For example, if we subtract two well-
formed limbs 𝑥𝑖 , 𝑦𝑖 ∈ [0, 𝐵), the resulting limb 𝑥𝑖−𝑦𝑖 is known to
be in the range (−𝐵, 𝐵). Our normalization procedure is applicable
as long as these bounds are contained in the interval [−𝐿, 𝐿].

We note that before a multiplication or a comparison, a nor-
malization will be necessary. However, one can perform several
additions/subtractions without normalizing.

3.2.1 Normalization. Our mechanism for normalization will intro-
duce a custom identity similar to the one for foreign-field multipli-
cation. Given a possibly non-well-formed integer 𝑥 , normalization

will produce an equivalent well-formed modular integer 𝑧 by as-
serting that 𝑧𝑖 ∈ [0, 𝐵) for all 𝑖 ∈ [0, 𝑛) and:

𝑛−1∑︁
𝑖=0
(𝐵𝑖 % 𝑞)𝑥𝑖 −

𝑛−1∑︁
𝑖=0
(𝐵𝑖 % 𝑞)𝑧𝑖 =Z 𝑘 · 𝑞 . (5)

Assuming that we know bounds on the possibly not well-formed
𝑥𝑖 and that these bounds fall5 in the range [−𝐿, 𝐿], we can lower-
bound the LHS of equation (5) by −(𝐿+𝐵)∑𝑛−1

𝑖=0 (𝐵𝑖 % 𝑞); and upper-
bound it by 𝐿

∑𝑛−1
𝑖=0 (𝐵𝑖 % 𝑞). After having bound the left-hand side,

we can proceed as in Section 3.1 to enforce the identity over a set
of auxiliary moduli. We omit the details here for simplicity. Since
this identity is linear (it has degree 1, unlike the multiplication
one), the LCM threshold will be lower and we may need fewer
auxiliary moduli to enforce it. However, this depends on how big 𝐿
is. For 𝐿 < 𝐵2, this identity can almost certainly be enforced with
the same auxiliary moduli used for multiplication. This is because
𝐿 is the dominant factor in the bounds for the left-hand side of
equation (5) and if 𝐿 ≈ 𝐵2, the bounds would be comparable to
those of the multiplication equation (1) whose terms are of the form
(𝐵𝑖+𝑗 % 𝑞)𝑥𝑖𝑦𝑖 (and 𝑥𝑖 , 𝑦𝑖 can be upper-bounded by 𝐵). Note that a
bound of 𝐿 ≈ 𝐵2 is quite generous in the sense that it allows one to
perform 𝐵 additions in a row before normalizing.

3.2.2 Other operations. Other functions like addition by constant
or multiplication by constant can be easily enforced limb-wise.
For the former, perform limb-wise addition with the limbs of the
constant. For the latter, multiply every limb by the constant of
interest. The limb values should never exceed 𝐿, so this method for
multiplying by a constant cannot be used if the constant is greater
than 𝐿/𝐵, in that case one would need to use standardmultiplication
(Section 3.1). Table 1 summarizes the process of performing these
limb-wise operations and how the limb bounds should be updated
in each case.

Division can be modeled as a multiplication (and a non-zero as-
sertion) and inversion can be captured similarly (where the dividend
is the constant one).

3.2.3 Comparisons. Observe that, unless the emulated modulus
is a perfect power of the base 𝐵, there will be values that admit
at least two different representations in limbs form. This is not a
problem for the custom gates developed so far, they work flawlessly
with the double representation. However, when comparing two
modular integers, extra care is needed. We cannot simply compare
the integers limb-wise, as two different sets of limbs could be encod-
ing the same modular integer. A simple way of performing sound
comparisons (when the emulated modulus is prime) is to exhibit
a modular inverse of the difference of two integers. Such inverse
would exist if and only if they are really different. This, however,
requires a subtraction, a normalization and a multiplication.

3.2.4 The unique-zero representation technique. When 𝑞 is such
that 𝐵𝑛 < 2𝑞, there exist integers with only one representation. One
such element is 𝑞−1 (also known as −1). In this case, we suggest
the following modification to the encoding in order to speed-up
comparisons with 0, which are highly important, as they are the
basis for other functions like division or (dis)equalities.

5An integer whose limbs exceed 𝐿 in magnitude can no longer be normalized
with this identity.

Efficient Foreign-Field Arithmetic in PLONK

Table 1: Simple modular operations that can be performed limb-wise. Each operation takes as input 𝑥 in limbs form (and 𝑦
or 𝜅 when applicable) and produces a new modular integer 𝑧. Limb lower/upper bounds are respectively annotated with an
under/upper bar over the limb.

Operation Limb-wise computation New limb bounds

Addition 𝑧𝑖 = 𝑥𝑖 + 𝑦𝑖 𝑧
¯𝑖

= 𝑥
¯𝑖
+ 𝑦
¯𝑖

𝑧𝑖 = 𝑥𝑖 + 𝑦𝑖
Subtraction 𝑧𝑖 = 𝑥𝑖 − 𝑦𝑖 𝑧

¯𝑖
= 𝑥
¯𝑖
− 𝑦𝑖 𝑧𝑖 = 𝑥𝑖 − 𝑦

¯𝑖Negation 𝑧𝑖 = −𝑥𝑖 𝑧
¯𝑖

= −𝑥𝑖 𝑧𝑖 = −𝑥¯𝑖Addition of constant 𝑧𝑖 = 𝑥𝑖 + 𝜅𝑖 𝑧
¯𝑖

= 𝑥
¯𝑖
+ 𝜅𝑖 𝑧𝑖 = 𝑥𝑖 + 𝜅𝑖

Multiplication by constant 𝑧𝑖 = 𝑥𝑖 · 𝜅 𝑧
¯𝑖

= 𝑧
¯𝑖
· 𝜅 if 𝜅 ≥ 0, else 𝑧𝑖 · 𝜅. 𝑧𝑖 = 𝑧𝑖 · 𝜅 if 𝜅 ≥ 0, else 𝑧

¯𝑖
· 𝜅.

Instead of encoding integers as before, let limbs (𝑥𝑛−1, . . . , 𝑥0)
represent integer 1 +∑𝑖 𝐵𝑖𝑥𝑖 . This way, 0 inherits the unique rep-
resentation of −1 of our previous encoding, allowing for limb-wise
comparisons with zero. (Because the representation of 0 is now
unique, a well-formed integer is zero iff all its limbs are the limbs
of 0.)

This subtle change would introduce variations in the multiplica-
tion identity:(

1 +
𝑛−1∑︁
𝑖=0

𝐵𝑖𝑥𝑖

) (
1 +

𝑛−1∑︁
𝑖=0

𝐵𝑖𝑦𝑖

)
−

(
1 +

𝑛−1∑︁
𝑖=0

𝐵𝑖𝑧𝑖

)
=𝑞 0 ,

now expands to
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐵𝑖+𝑗𝑥𝑖𝑦 𝑗 +
𝑛−1∑︁
𝑖=0

𝐵𝑖 (𝑥𝑖 + 𝑦𝑖) −
𝑛−1∑︁
𝑖=0

𝐵𝑖𝑧𝑖 =𝑞 0 .

Observe the extra
∑
𝑖 𝐵
𝑖 (𝑥𝑖 +𝑦𝑖) term in the identity, with respect

to equation (1). The normalization identity remains the same as the
extra +1 of 𝑥 gets canceled with the extra (negated) +1 of −𝑧.

This new encoding would also affect all functions that operate
limb-wise. They would need to be slightly modified in order to
account for this new representation. For example, addition would
become limb-wise addition 𝑧𝑖 = 𝑥𝑖 + 𝑦𝑖 for all limbs, except for the
least-significant limb, 𝑧0 = 𝑥0 + 𝑦0 + 1, which would include an
extra shift of +1.

4 Foreign-field elliptic curve operations
We now consider the problem of emulating group operations on
an elliptic curve 𝐸 defined over finite field Z𝑞 , with equation 𝑦2 =𝑞

𝑥3 + 𝑎𝑥 + 𝑏. We assume that the curve (or the relevant subgroup)
has no low-order points. In particular, that there are no points of
order 2 or 3. It will be explicit in the analysis of double why this
assumption is needed. Note that this assumption is satisfied by all
curves of cryptographic interest, which define a cyclic group of
(large) prime order.

We could leverage the addition and multiplication modulo 𝑞 that
we have developed in Section 3 in order to enforce constraints for
elliptic curve addition, doubling, etc. For example, for point addition
𝑅 := 𝑃 +𝑄 , we could perform:

𝜆 :=
𝑦𝑄 − 𝑦𝑃
𝑥𝑄 − 𝑥𝑃

𝑥𝑅 := 𝜆2 − 𝑥𝑄 − 𝑥𝑃 𝑦𝑅 := 𝜆(𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃 .

This would require 5 subtractions, 5 normalizations, 3 multiplica-
tions and 1 non-zero assertion. Similarly, for point doubling 𝑅 := 2𝑃 ,

we could perform:

𝜆 :=
3𝑥𝑃 2 + 𝑎

2𝑦𝑃
𝑥𝑅 := 𝜆2 − 2𝑥𝑃 𝑦𝑅 := 𝜆 (𝑥𝑃 − 𝑥𝑅) − 𝑦𝑃 .

Nevertheless, we can do better. Given how versatile the approach
from Section 3 is, we suggest to implement elliptic curve operations
in an alternative way. We will define foreign-field custom gates
enforcing the following identities:

curve membership 𝑦2 =𝑞 𝑥3 + 𝑎 𝑥 + 𝑏
𝜆-slope assertion 𝑦𝑄 − 𝑦𝑃 =𝑞 (𝑥𝑄 − 𝑥𝑃) 𝜆

𝜆-tangent assertion 3𝑥𝑃 2 + 𝑎 =𝑞 2𝑦𝑃 𝜆

𝜆2 assertion 𝜆2 =𝑞 𝑥𝑃 + 𝑥𝑄 + 𝑥𝑅

4.1 Implementing the custom identities
Unlike the two custom identities from Section 3, (multiplication and
normalization), which have degree 2 and 1 (respectively), the custom
identity for curve membership has degree 3. This is undesirable
because it may require a larger FFT domain and because it would
involve a cubic number of cross-limb products. This problem can
be mitigated by introducing a third variable 𝑧, representing (and
enforced elsewhere to be equal to) 𝑥2. This will reduce its degree
to 2.

We describe the four identities in detail.We do not use the unique-
zero representation here, but note that the identities could be easily
adapted to this alternative representation. The identities (here ex-
pressed with =𝑞) can be enforced with equations modulo 𝑝 as in
Section 3: by exhibiting an integer 𝑘 , the quotient of the corre-
sponding expression (resulting of moving all terms to the left-hand
side) on division by 𝑞, which gives an equation over the integers.
Such equation over the integers can be enforced by verifying it
with respect to sufficiently many auxiliary moduli. We omit the full
details here (and keep the =𝑞 description of the identities) for the
sake of space and simplicity.

4.1.1 Identity for curve membership. This foreign-field identity
asserts curvemembership of a point (𝑥,𝑦) as long as 𝑧 is instantiated
with a well-formed limbs-representation of 𝑥2 (a condition that can
be enforced with an additional multiplication identity).
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐵𝑖+𝑗𝑦𝑖𝑦 𝑗 −
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐵𝑖+𝑗𝑥𝑖𝑧 𝑗 −
𝑛−1∑︁
𝑖=0

𝑎𝐵𝑖𝑥𝑖 − 𝑏 =𝑞 0 . (6)

Miguel Ambrona, Denis Firsov, and IñigoQuerejeta-Azurmendi

4.1.2 Identity for 𝜆-slope assertion. This foreign-field identity as-
serts that the slope between points 𝑃 and 𝑄 equals 𝜆. (As long as
𝑥𝑃 ≠𝑞 𝑥𝑄 .) Note that this identity does not depend on the curve
parameters (𝑎, 𝑏). Furthermore, this identity does not guarantee
that the points differ in the 𝑥-coordinate (this may be enforced else-
where). Here,𝑦𝑄𝑖 represents the 𝑖-th limb of the limb-representation
of the𝑦-coordinate of𝑄 . Other values are defined analogously. Vari-
able 𝜇 ∈ {−1, 1} can be used to flip the sign of the first summand, in
which case the equation asserts that the slope between 𝑃 and −𝑄
equals 𝜆. This way, this identity can be used for checking 𝜆 with
respect to both the inputs and the output of an addition.

𝜇

𝑛−1∑︁
𝑖=0

𝐵𝑖𝑦𝑄𝑖 −
𝑛−1∑︁
𝑖=0

𝐵𝑖𝑦𝑃 𝑗 −
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐵𝑖+𝑗 (𝑥𝑄𝑖 − 𝑥𝑃 𝑖)𝜆 𝑗 =𝑞 0 .

(7)

4.1.3 Identity for 𝜆-tangent assertion. This foreign-field identity
asserts that 𝜆 is the slope of the tangent to the curve at point 𝑃 . (As
long as 𝑃 is in the curve.)

3
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐵𝑖+𝑗𝑥𝑃 𝑖𝑥𝑃 𝑗 + 𝑎 − 2
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐵𝑖+𝑗𝑦𝑃 𝑖𝜆 𝑗 =𝑞 0 . (8)

4.1.4 Identity for 𝜆2 assertion. This foreign-field identity asserts
that, under the assumption 𝜆 is the correct slope between points 𝑃
and 𝑄 , then 𝑥𝑅 is the correct 𝑥-coordinate of the addition 𝑃 +𝑄 .
𝑛−1∑︁
𝑖=0

𝐵𝑖𝑥𝑃 𝑖 +
𝑛−1∑︁
𝑖=0

𝐵𝑖𝑥𝑄 𝑗 +
𝑛−1∑︁
𝑖=0

𝐵𝑖𝑥𝑅 𝑗 −
𝑛−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝐵𝑖+𝑗𝜆𝑖𝜆 𝑗 =𝑞 0 .

(9)

The above identities will be further multiplied by a Boolean term
that allows us to “disable” the check conditionally on its value. Note
that this term does not have an impact in the magnitude of the
bounds for the foreign-field identities.

In the following, for the sake of simplicity we will write:
(a) (𝑥3 + 𝑎𝑥 + 𝑏 − 𝑦2) 𝜎 =𝑞 0 as a shorthand for equation (6),
(b) (𝜇 𝑦𝑄 −𝑦𝑃 − 𝜆(𝑥𝑄 −𝑥𝑃)) 𝜎 =𝑞 0 as a shorthand for equation (7),
(c) (3𝑥𝑃 2 + 𝑎 − 2𝑦𝑃𝜆) 𝜎 =𝑞 0 as a shorthand for equation (8),
(d) (𝑥𝑃 + 𝑥𝑄 + 𝑥𝑅 − 𝜆2) 𝜎 =𝑞 0 as a shorthand for equation (9),
all of them conditioned on bit 𝜎 ∈ {0, 1}.

4.2 Witnessing a point
Wewill represent a point with two emulated modular integers (𝑥,𝑦)
and a Boolean value 𝛽 indicating whether the point is the identity.
This mean, a point is represented with 2𝑛 + 1 PLONK native values,
where 𝑛 is the number of limbs necessary to express 𝑥 (or 𝑦) in the
chosen base. We have the convention that if 𝛽 =𝑝 1, the point is the
identity, regardless of the values of (𝑥,𝑦). This way, we can enforce
(with PLONK constraints) that a point is valid by asserting that:

(𝑥𝑧 + 𝑎𝑥 + 𝑏 − 𝑦2) (1 − 𝛽) =𝑞 0 and 𝑥2 − 𝑧 =𝑞 0 ,

where 𝑧 is an auxiliary modular integer. The former is the actual
foreign-field identity that we will implement for curve membership.
The latter can be expressed with the foreign-field multiplication
identity from Section 3.1.

Double(𝑃 := (𝑥𝑃 , 𝑦𝑃 , 𝛽𝑃)):

Require: 𝑃 is on the curve or it is the identity point

Ensure: 𝑅 = 2𝑃

1: exhibit the result (𝑥𝑅, 𝑦𝑅, 𝛽𝑅) ⊲ 2𝑃

2: exhibit slope 𝜆 ⊲ (3𝑥𝑃 2 + 𝑎)/ 2𝑦𝑃 (or arbitrary if 𝑃 = O)
3: assert 𝛽𝑅 =𝑝 𝛽𝑃

4: assert (3𝑥𝑃 2 + 𝑎 − 2𝑦𝑃𝜆) (1 − 𝛽𝑃) =𝑞 0

5: assert (𝑥𝑃 + 𝑥𝑃 + 𝑥𝑅 − 𝜆2) (1 − 𝛽𝑃) =𝑞 0

6: assert (−𝑦𝑅 − 𝑦𝑃 − 𝜆(𝑥𝑅 − 𝑥𝑃)) (1 − 𝛽𝑃) =𝑞 0

7: return 𝑅 := (𝑥𝑅, 𝑦𝑅, 𝛽𝑅)

Figure 1: Point doubling enforced through the custom
identities from Section 4.1.

In curves like BLS12-381, where the group of interest is a sub-
group of the underlying curve, it may be necessary to perform
further checks that guarantee that the witnessed point belongs
to the desired subgroup. These checks can be performed with a
scalar multiplication by a constant (the algorithm from Figure 4
can be optimized when the scalars are constant) and only need to
be performed once, when “loading a point”, as all point operations
are closed in the subgroup.

4.3 Point doubling
Figure 1 describes how point doubling can be enforced through our
foreign-field identities.

The assertion in Step 3 is justified by our assumption that there
are no order-2 points in the curve (or at least in the relevant cryp-
tographic subgroup), which guarantees that the result of doubling
is identity point iff the input is the identity point.

The remaining assertions are dedicated to the case where 𝑃 is
not the identity. (Note that all of them are disabled if 𝛽𝑃 =𝑝 1.)
Step 4 guarantees that 𝜆 is the slope of the tangent of the curve
at 𝑃 (which is on the curve by assumption). Once 𝜆 is correctly
constrained, Step 5 ensures that 𝑥𝑅 is the correct 𝑥-coordinate of
2𝑃 . Finally, Step 6 constrains 𝑦𝑅 such that the slope between 𝑃 and
(𝑥𝑅,−𝑦𝑅) equals 𝜆, as desired. Importantly, Step 6 requires 𝑥𝑃 ≠ 𝑥𝑅 ,
because we are modeling a division as a multiplication (so the
denominator cannot be zero). Note that 𝑥𝑃 ≠ 𝑥𝑅 is guaranteed by
our assumption that there do not exist order-3 points, thus 2𝑃 ≠ −𝑃 .
That, combined with the fact that at this “branch” we have 𝑃 ≠ O,
implies 2𝑃 ≠ ±𝑃 , and thus 𝑥𝑅 ≠ 𝑥𝑃 , as desired. Observe that
assertions (4)-(6) combined implicitly imply that the constrained
coordinates (𝑥𝑅, 𝑦𝑅) satisfy the curve equation, or 𝛽𝑅 = 1.

4.4 Point addition
Figures 2 and 3 describe how point addition can be enforced through
our foreign-field identities. The former is incomplete, but more
efficient.

Efficient Foreign-Field Arithmetic in PLONK

IncompleteAdd(𝑃 := (𝑥𝑃 , 𝑦𝑃 , 𝛽𝑃), 𝑄 := (𝑥𝑄 , 𝑦𝑄 , 𝛽𝑄)):

Require: 𝑃,𝑄 satisfy the curve equation (𝑃,𝑄 ≠𝑞 O) and
𝑥𝑃 ≠ 𝑥𝑄

Ensure: 𝑅 = 𝑃 +𝑄

1: exhibit the result (𝑥𝑅, 𝑦𝑅, 𝛽𝑅) ⊲ 𝑃 +𝑄
2: exhibit slope 𝜆 ⊲ (𝑦𝑄 − 𝑦𝑃) / (𝑥𝑄 − 𝑥𝑃)
3: assert 𝛽𝑅 =𝑝 0

4: assert 𝑦𝑄 − 𝑦𝑃 − 𝜆(𝑥𝑄 − 𝑥𝑃) =𝑞 0

5: assert 𝑥𝑃 + 𝑥𝑄 + 𝑥𝑅 − 𝜆2 =𝑞 0

6: assert −𝑦𝑅 − 𝑦𝑃 − 𝜆(𝑥𝑅 − 𝑥𝑃) =𝑞 0

7: return 𝑅 := (𝑥𝑅, 𝑦𝑅, 𝛽𝑅)

Figure 2: Point incomplete addition enforced through
the identities from Section 4.1.

4.4.1 Incomplete addition. The routine from Figure 2 is incomplete
in the sense that it requires the given points not be the identity nor
share the same 𝑥-coordinate.

These requirements can be enforced with PLONK constraints
elsewhere if necessary, or may be skipped if a certain invariant
guarantees that they are met. In particular, adding constraints that
enforce 𝑃 (respectively 𝑄) is not the identity comes “for free” in
PLONK, as this can be encoded via “copy-constraints” between 𝛽𝑃
(respectively 𝛽𝑄) and a PLONK native value with a constant value
of 0. On the contrary, the check 𝑥𝑃 ≠𝑞 𝑥𝑄 will have some cost, so
it is preferable to skip it when possible. The cost of this check can
be lowered if the unique-zero representation of modular integers is
used.

The assertion in Step 3 guarantees that the resulting point will
not be the identity. This preserves completeness given our precon-
ditions. Step 4 guarantees that 𝜆 is the slope of the line intersecting
𝑃 and𝑄 (which are on the curve by assumption). Once 𝜆 is correctly
constrained, Step 5 ensures that 𝑥𝑅 is the correct 𝑥-coordinate of
𝑃 +𝑄 . Finally, Step 6 constrains 𝑦𝑅 such that the slope between 𝑃
and (𝑥𝑅,−𝑦𝑅) equals 𝜆, as desired. Observe that these three asser-
tions combined implicitly imply that the constrained coordinates
(𝑥𝑅, 𝑦𝑅) satisfy the curve equation.

4.4.2 Complete addition. The routine from Figure 3 implements
complete point addition. It is significantly more costly than its
incomplete counterpart, so it should only be used when strictly
necessary.

Steps 3 and 4 model the cases where one of the inputs is the
identity point. Constraint 𝛽𝑃 =𝑝 1 ⇒ 𝑅 = 𝑄 is a shorthand for
a conditional assertion, which can be modeled with the following
equations:

𝛽𝑃 (𝑥𝑅 −𝑥𝑄) =𝑞 0, 𝛽𝑃 (𝑦𝑅 −𝑦𝑄) =𝑞 0 and 𝛽𝑃 (𝛽𝑅 −𝛽𝑄) =𝑝 0 ,

where, in turn, 𝛽𝑃 (𝑥𝑅−𝑥𝑄) =𝑞 0 is short for 𝛽𝑃 (𝑥𝑅𝑖 −𝑥𝑄𝑖) =𝑝 0 for
every limb 𝑖 . Steps 5 and 6 model the case where the inputs share
the same 𝑥 coordinate. Here, 𝑃 = −𝑄 represents a Boolean variable
that is 1 iff 𝑥𝑃 − 𝑥𝑄 =𝑞 0 and 𝑦𝑃 + 𝑦𝑄 =𝑞 0. Finally, when none

CompleteAdd(𝑃 := (𝑥𝑃 , 𝑦𝑃 , 𝛽𝑃), 𝑄 := (𝑥𝑄 , 𝑦𝑄 , 𝛽𝑄)):

Require: 𝑃,𝑄 are on the curve or the identity point

Ensure: 𝑅 = 𝑃 +𝑄

1: exhibit the result (𝑥𝑅, 𝑦𝑅, 𝛽𝑅) ⊲ 𝑃 +𝑄
2: assert 𝛽𝑅 (1 − 𝛽𝑅) =𝑝 0

3: assert 𝛽𝑃 =𝑝 1 ⇒ 𝑅 = 𝑄

4: assert 𝛽𝑄 =𝑝 1 ⇒ 𝑅 = 𝑃

5: assert 𝑃 = −𝑄 ⇒ 𝛽𝑅 =𝑝 1

6: assert 𝑃 = 𝑄 ∧ 𝛽𝑃 , 𝛽𝑄 =𝑝 0 ⇒ 𝑅 = Double(𝑃)
7: assert 𝑥𝑃 ≠𝑞 𝑥𝑄 ∧ 𝛽𝑃 , 𝛽𝑄 =𝑝 0⇒ 𝑅 = IncompleteAdd(𝑃,𝑄)

8: return 𝑅 := (𝑥𝑅, 𝑦𝑅, 𝛽𝑅)

Figure 3: Point incomplete addition enforced through
the identities from Section 4.1.

of the above cases applies, all the preconditions of IncompleteAdd
apply.

4.5 Multi-scalar multiplication
We now use the above ingredients for implementing (multi-)scalar
multiplication via double-and-add.

Given the high cost of complete additions, we would like to use
incomplete additions when possible. However, the preconditions of
incomplete addition may not hold in the middle of the double-and-
add loop. A common technique to overcome this challenge [DH20]
is to use a random point as the initial value of the double-and-add
accumulator. Such point is freely chosen by the prover. Importantly,
the probability that a precondition (of incomplete addition) is vio-
lated in the loop is negligible over the choice of this point, which
makes this method statistically complete. On the downside, for
soundness, we must subtract the (scaled) random point from the
result of the MSM and constraining such correction term to be the
scaled version of the initial accumulator can be quite expensive.

We propose a novel idea that makes the random term in the
accumulator invariant throughout the loop. This prevents it from
scaling, thus significantly simplifying the final correction step. Let
bases 𝑃1, . . . , 𝑃ℓ ∈ 𝐸 (Z𝑞) and scalars 𝑠1, . . . , 𝑠ℓ ∈ Z. We will com-
pute

∑
𝑗 𝑠 𝑗 𝑃 𝑗 via a windowed double-and-add loop with w-bits

windows. Let the prover select a random point𝑈 and set the initial
accumulator of the double-and-add loop to be acc := ℓ 𝑈 . Also,
define 𝑉 := (2w−1)𝑈 .6 On the 𝑖-th iteration of the double-and-add
loop, we will double acc w times and then, for every 𝑗 ∈ [ℓ], add
𝑠 𝑗,𝑖 𝑃 𝑗 −𝑉 , where 𝑠 𝑗,𝑖 ∈ [0, 2w) is the 𝑖-th (little-endian) window of
scalar 𝑠 𝑗 .7 After this, the random term in the accumulator becomes:

2w (ℓ 𝑈) − ℓ𝑉 = 2w (ℓ 𝑈) − ℓ (2w−1)𝑈 = ℓ𝑈 ,

which makes the random term invariant (ℓ𝑈) at the beginning of
every iteration.

6The consistency of acc (resp. 𝑉) with respect to𝑈 needs to be enforced with
constraints, but this is relatively cheap given that ℓ (resp. 2w−1) is constant and small.

7The values𝑘 𝑃 𝑗 −𝑉 can be tabulated for every𝑘 ∈ [0, 2w) , see Step 4 of Figure 4.

Miguel Ambrona, Denis Firsov, and IñigoQuerejeta-Azurmendi

Table 2: Cost of encoding a multi-scalar multiplication of ℓ SECP256k1 points (by full-size scalars) emulated over BLS12-381 or
BN254, with different emulation parameters.

Emulation parameters (for SECP256k1 base field) PLONK circuit architecture PLONK proof size

of limbs 𝑛 Base 𝐵 Auxiliary moduli𝑀 # of columns # of rows for ℓ-MSM BLS12-381 BN254

3 286 {286, 286−1} 8 5600ℓ + 7300 4.92 KB 4.40 KB
4 264 {2128} 9 3900ℓ + 5000 5.09 KB 4.56 KB
5 252 {2156} 11 4060ℓ + 5500 5.37 KB 4.81 KB
6 244 {2172} 13 4360ℓ + 5850 5.65 KB 5.06 KB

MultiScalarMul({𝑃 𝑗 := (𝑥𝑃 𝑗 , 𝑦𝑃 𝑗 , 𝛽𝑃 𝑗)} 𝑗∈[ℓ] , {𝑠 𝑗,𝑖∈Z}
𝑖∈[𝑇]
𝑗∈[ℓ]):

Require: 𝑃 𝑗 is on the curve (and 𝑃 𝑗 ≠ O) ∀𝑗 ∈ [ℓ]

Ensure: 𝑅 =
∑
𝑗 𝑠 𝑗 𝑃 𝑗 , where 𝑠 𝑗 :=

∑
𝑖 2w(𝑖−1)𝑠 𝑗,𝑖 , ∀𝑗 ∈ [ℓ]

1: choose a point𝑈 ⊲ uniformly, for statistical completeness

2: assert 𝛽𝑈 =𝑝 0 and 𝑥𝑈 3 + 𝑎𝑥𝑈 + 𝑏 − 𝑦𝑈 2 =𝑞 0

3: set 𝑉 := (2w−1)𝑈
4: set Table𝑗 := [−𝑉 , 𝑃 𝑗−𝑉 , 2𝑃 𝑗−𝑉 , . . . , (2w−1)𝑃 𝑗−𝑉]

for every 𝑗 ∈ [ℓ]
5: set acc := ℓ 𝑈

6: for 𝑖 = 1 to 𝑇 do

7: for _ = 1 to w do ⊲ double

8: set acc := Double(acc)

9: for 𝑗 = 1 to ℓ do ⊲ and add

10: set aux := Table𝑗 [𝑠 𝑗,𝑖] ⊲ enforced with a lookup

11: assert 𝑥acc ≠𝑞 𝑥aux
12: assert acc ≠ O
13: set acc := IncompleteAdd(acc, aux)

14: set 𝑅 := CompleteAdd(acc,−ℓ𝑈)
15: return 𝑅

Figure 4: Multi-scalar multiplication. Scalars are en-
coded as 𝑇 little-endian integer windows in the range
[0, 2w), which in-circuit can be represented as native
values, since 2w ≪ 𝑝.

The full algorithm is described in Figure 4. The tables in Step 4
can be computed with incomplete addition by adding 𝑃 𝑗 to the
previous table element (the first being −𝑉). It can be shown that all
the preconditions of IncompleteAdd are satisfied across the table
computation as long as 𝑥𝑃 𝑗 ≠𝑞 𝑥𝑉 , which may be asserted explic-
itly, only once per base 𝑃 𝑗 . Similarly, multiplications by a small
constant term like in Steps 3 and 5 can be mainly computed with
incomplete addition. We denote by −𝑉 the opposite of𝑉 , which can
be obtained by negating the𝑦 coordinate of𝑉 , i.e., as (𝑥𝑉 ,−𝑦𝑉 , 𝛽𝑉),
see Section 3.2 for details about foreign-field negation (over Z𝑞).

Importantly, the last addition in Step 14 must be performed with
CompleteAdd as nothing prevents the final result 𝑅 from being the
identity point.

Note that the algorithm presented in Figure 4 is compatible with
further optimizations. An example is the the well-known optimiza-
tion based on the the GLV endomorphism [GLV01], which we have
also implemented in our library.

5 Formal Verification
We recognize that our approach for FFA presented in Section 3 is
involved and mission critical at the same time. In such situations
doing manual pen-and-paper proofs might lead to oversights and
subtle mistakes in the implementation. As a result, we decided to
use EasyCrypt theorem prover to implement our definitions and
formally verify our main results.

More specifically, we formalized correctness of our approach by
splitting it into soundness and completeness theorems as presented
in Section 3.1.3. In our formalization [AFQ25]. we reused the Easy-
Crypt’s multi limb library which was initially developed for the
Jasmin workbench. This considerably simplified the development
and with the use of built-in SMT solvers we managed to tame the
complexity of the proofs so that the entire formalization is about
1K LOC.

We are currently working on formalizing the correctness of the
ECC algorithms from Section 4.

6 Performance Evaluation
In this section, we present the experimental evaluation of our ap-
proach through a series of case studies. All benchmarks were con-
ducted on a commodity laptop, a MacbookPro with Apple M3 Pro
chip and 16GB of RAM.

Our implementation, which will be made publicly available, is
built on the PSE’s fork of Halo2 [ECC21], utilizing the KZG com-
mitment scheme [GWC19]. The emulation method is designed to
be highly flexible, allowing parameterization over various emu-
lation curves and settings, such as limb size and the number of
limbs, which influence the circuit architecture. Additionally, our
implementation is parametric over the “parent curve” (the curve
on which the proof is generated) enabling its reuse for generating
proofs that can be verified using precompiles in Ethereum [But13],
Cardano [DGKR18], Solana [Yak18], and other platforms.

We begin by introducing the circuit architecture for different
emulation parameters, specifically for SECP256k1, and analyze the
cost in terms of rows, columns, and proof size for proving the

Efficient Foreign-Field Arithmetic in PLONK

BLS raw-𝑆 BLS committed-𝑆 BN raw-𝑆 BN committed-𝑆

10 30 50 70 90 110 130 150
0

50

100

Number of threshold signatures 𝑡

Pr
ov
er

tim
e
(s
)

10 30 50 70 90 110 130 150
0

5

10

15

20

Number of threshold signatures 𝑡

Ve
rifi

er
tim

e
(m

s)

Figure 5: Prover and verifier times of a proof of knowledge of 𝑡-out-of-2𝑡 ECDSA signatures (over SECP256k1) on a public
message; emulated over BLS12-381 and BN254. We evaluate two approaches: (i) the set 𝑆 of verifying keys is passed directly as
public inputs, (ii) 𝑆 is passed in committed form (as its Poseidon hash).

execution of a multi-scalar multiplication (MSM). Next, we examine
the verification of ECDSA signatures over the SECP256k1 curve
and extend our approach to support threshold ECDSA signatures.
We then evaluate the performance of self-recursion by executing
the PLONK verifier within a circuit, emulating curve operations
using the techniques outlined in this work. All our benchmarks
are conducted a KZG-based PLONK where the underlying curve
is BLS12-381 and BN254, to assess performance across different
settings.

In the following benchmarks, all our custom identities span
over at most 3 rows8 and their polynomial degree is at most 6.
We use lookups for performing efficient 𝑡-bits range-checks. In
particular, we run 4 parallel lookups, which allow us to assert that
4 table entries (per row) belong to the range [0, 2𝑡), for some row-
dependent 𝑡 ≤ 16.

6.1 Emulation parameters
Table 2 presents a comparison of various emulation configurations
for performing SECP256k1 multi-scalar multiplications (MSMs)
emulated over the scalar field of BLS12-381 and the scalar field
of BN254. Notably, in this case, the emulation parameters are the
same in both emulation scenarios. This is because (for the same
emulation scenario) the choice of emulation parameters is primarily
dictated by the size of the native field and, in this case, the size of
both scalar fields is about 32 bytes.

Our analysis indicates that the most efficient configuration con-
sists of 4 limbs (utilizing 9 columns) and requires 3900ℓ + 5000 rows
for an MSM of size ℓ . Given this, we adopt the 4-limb configura-
tion for all subsequent benchmarks to ensure optimal performance
while maintaining consistency across evaluations.

6.2 Threshold ECDSA over SECP256k1
In this section we showcase the performance of our techniques
with benchmarks on proving knowledge of ECDSA signatures on a
public message. Recall the definition of ECDSA signatures, defined

8The number of columns is minimized in order to meet this condition.We typically
have 2𝑛+1 columns where𝑛 is the number of limbs for the emulation, which is enough.

over an elliptic curve (SECP256k1 in this case) of order 𝑝 with
designated generator 𝐺 . For key generation, one samples a secret
key sk←$ Z𝑝 and defines the verifying key as vk := sk𝐺 .

ECDSA.Sign(sk,msg) : ECDSA.Verify(vk,msg, (𝑟, 𝑠)) :
𝑘 ←$ Z𝑝 assert 𝑟, 𝑠 ∈ [0, 𝑝)
𝐾 := 𝑘 𝐺 𝑢1 := Hash(msg) · 𝑠−1 (mod 𝑝)
𝑟 := 𝐾𝑥 mod 𝑝 𝑢2 := 𝑟 · 𝑠−1 (mod 𝑝)
𝑠 := 𝑘−1 (Hash(msg) + sk · 𝑟) 𝐾 := 𝑢1𝐺 + 𝑢2 vk
return (𝑟, 𝑠) accept iff 𝑟 = 𝐾𝑥 mod 𝑝

To isolate the impact of the foreign-field arithmetic in ECDSA
verification, we benchmark a scenario where the message hash is
treated as a public input, eliminating the need for SHA-256 compu-
tations in-circuit. We implement ad-hoc threshold multi-signatures
(ATMS) as described by Gaži, Kiayias, and Zindros [GKZ18]. ATMS
enable threshold signatures without a setup ceremony, where an
untrusted third party can generate the threshold public key, and
threshold signatures can be produced non-interactively. The rela-
tion being proved is:

PoK
{
{𝜎𝑖 , vk𝑖 }𝑡𝑖=1 : ∀𝑖 ∈ [𝑡], ECDSA.Verify(vk𝑖 ,msg, 𝜎𝑖) = 1

vk𝑖 ∈ 𝑆 ∧ vk𝑖 ≠ vk𝑗 ∀𝑗 ∈ [𝑡]\ 𝑖

}
,

where 𝑆 is a set of 𝑘 designated verifying keys. This relation can
be described as a proof of knowledge of 𝑡-out-of-𝑘 signatures on a
public message msg.

Naturally, the set 𝑆 and the messagemsg are public inputs to the
underlying circuit. This makes the verifier complexity linear in 𝑘 =

|𝑆 |. In order to have constant verification complexity, we consider
another version of the same predicate where set 𝑆 is a witness,
which is publicly quantified as a commitment to it (computed with
the SNARK-friendly Poseidon hash function [GLR+20]). Namely:

PoK
(𝑆, {𝜎𝑖 , vk𝑖 }𝑡𝑖=1) :

Poseidon(𝑆) = com𝑆
ECDSA.Verify(vk𝑖 ,msg, 𝜎𝑖) = 1 ∀𝑖
∀𝑖, vk𝑖 ∈ 𝑆 ∧ vk𝑖 ≠ vk𝑗 ∀𝑗 ≠ 𝑖

 ,

Miguel Ambrona, Denis Firsov, and IñigoQuerejeta-Azurmendi

Table 3: Benchmarks on self-recursion over BN254 andBLS12-
381, emulating foreign-field operations with our techniques.

Curve Proof size Verifier Prover # rows # cols

BLS12-381 6.10 KB 11 ms 35 s 241 K 15
BN254 4.71 KB 9 ms 29 s 177 K 11

we coin this the committed-𝑆 version of the predicate.
Figure 5 presents the performance of the prover and verifier for

the two version of our threshold ECDSA predicate, The experiments
are conducted over BLS12-381 and BN254 as the underlying KZG
curves.

The “hops” in prover time are due to the need of a new larger
power-of-2 domain (in order to perform FFTs, the number of rows
in PLONK is always padded to the next power of 2). Also, observe
how the committed-𝑆 version is slightly more costly for the prover,
as the predicate involves an extra Poseidon hash. On the other hand,
the verifier time is constant in the committed-𝑆 version and linear
otherwise, as expected.

This example showcases a powerful application of our tech-
niques. It allows one to emulate e.g. Bitcoin signatures over frame-
works that do not support the SECP256k1 curve natively. Further-
more, it provides a rich threshold policy for signatures schemes that
may not allow for this by design, and it enjoys constant verification
complexity on the number of verified signatures.

6.3 Self-recursion
Self-recursion is the concept of “verifying yourself”, i.e. building
a SNARK circuit that involves one or several copies of its own
SNARK verifier. Self-recursion can be used for proof composition,
incrementally verifiable computation [Val08] or proof-carrying
data [BCMS20], with multiple applications like scalable rollups
or even succinct blockchains.

We implement self-recursion using our techniques for encod-
ing the foreign-field elliptic curve operations from the verifier cir-
cuit. We use the techniques introduced by Bowe, Grigg, and Hop-
wood [BGH19, BCMS20] that move part of the verifier logic "out of
circuit" via an accumulator scheme (in our case, for the KZG poly-
nomial commitment scheme). This allows us to ignore the pairing
in the recursive logic and defer its evaluation until the very end (the
final off-circuit verifier). A detailed explanation of these techniques
is beyond the scope of this section, and we refer the reader to the
original works for a comprehensive discussion. In our experiments,
we consider a small application function that simply increases a
counter, thus most of the logic corresponds to the in-circuit recur-
sive verifier. We evaluate the proving times over BLS12-381 and
BN254 as the underlying curves. BLS12-381 is self-emulated with
parameters 𝐵 = 256, 𝑛 = 7 and𝑀 = {2136, 2136−2}, whereas BN254
is self-emulated with 𝐵 = 252, 𝑛 = 6 and𝑀 = {2142}. Table 3 sum-
marizes our results. We highlight that proving a full recursive step
only requires about half a minute in both emulation scenarios.

Implementing recursion by emulating foreign-field arithmetic
is elegant, conceptually simpler and less error-prone than other
approaches based on cycles of curves [ECC21, BMRS20]. It leads to

very short proofs and is applicable to scenarios where the there is
a built-in proving system that cannot be altered.

References
[AFQ25] Miguel Ambrona, Denis Firsov, and Iñigo Querejeta-Azurmendi. Sound-

ness and completeness of ffa, 2025. https://github.com/input-output-
hk/efficient-ffa/releases/tag/sound-and-complete-ffa. Accessed on April
16, 2025.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying program executions succinctly and
in zero knowledge. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part II, volume 8043 of LNCS, pages 90–108. Springer, Berlin, Heidelberg,
August 2013.

[BCMS20] Benedikt Bünz, Alessandro Chiesa, PratyushMishra, and Nicholas Spooner.
Recursive proof composition from accumulation schemes. In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS,
pages 1–18. Springer, Cham, November 2020.

[BDPV13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Kec-
cak. In Thomas Johansson and PhongQ. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 313–314. Springer, Berlin, Heidelberg, May
2013.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-
knowledge and its applications (extended abstract). In 20th ACM STOC,
pages 103–112. ACM Press, May 1988.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive proof com-
position without a trusted setup. Cryptology ePrint Archive, Report
2019/1021, 2019.

[BMRS20] Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Mina:
Decentralized cryptocurrency at scale, 2020. https://docs.minaprotocol.
com/static/pdf/technicalWhitepaper.pdf. Accessed on April 16, 2025.

[But13] Vitalik Buterin. Ethereum: A next-generation smart contract and decen-
tralized application platform, 2013. https://ethereum.org/en/whitepaper/.
Accessed on April 16, 2025.

[DGKR18] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake
blockchain. In Jesper Buus Nielsen and Vincent Rijmen, editors, EURO-
CRYPT 2018, Part II, volume 10821 of LNCS, pages 66–98. Springer, Cham,
April / May 2018.

[DH20] Ying Tong Lai Daira Hopwood. Deep dive on halo 2, 2020. https://raw.
githubusercontent.com/daira/halographs. Accessed on April 16, 2025.

[ECC18] Electric Coin Company ECC. Jubjub: A twisted Edwards curve for zk-
SNARKs, 2018. https://zips.z.cash/protocol/protocol.pdf. Accessed on April
16, 2025.

[ECC21] Electric Coin Company ECC. Halo2: A plonk-based proof system, 2021.
https://github.com/zcash/halo2. Accessed on April 16, 2025.

[Gab22] Ariel Gabizon. Aztec emulated field and group operations, 2022. https:
//hackmd.io/@relgabizon/B13JoihA8. Accessed on April 16, 2025.

[GGPR13] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Qua-
dratic span programs and succinct NIZKs without PCPs. In Thomas Jo-
hansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of
LNCS, pages 626–645. Springer, Berlin, Heidelberg, May 2013.

[GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian
Rechberger, Markus Schofnegger, and Roman Walch. Reinforced concrete:
A fast hash function for verifiable computation. In Heng Yin, Angelos
Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 1323–
1335. ACM Press, November 2022.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy,
and Markus Schofnegger. Poseidon: A new hash function for zero-
knowledge proof systems. InMichael Bailey and Rachel Greenstadt, editors,
USENIX Security 2021, pages 519–535. USENIX Association, August 2021.

[GKS23] Lorenzo Grassi, Dmitry Khovratovich, andMarkus Schofnegger. Poseidon2:
A faster version of the poseidon hash function. In Nadia El Mrabet, Luca
De Feo, and Sylvain Duquesne, editors, AFRICACRYPT 23, volume 14064
of LNCS, pages 177–203. Springer, Cham, July 2023.

[GKZ18] Peter Gaži, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake
sidechains. Cryptology ePrint Archive, Report 2018/1239, 2018.

[GLR+20] Lorenzo Grassi, Reinhard Lüftenegger, Christian Rechberger, Dragos Ro-
taru, and Markus Schofnegger. On a generalization of substitution-
permutation networks: The HADES design strategy. In Anne Canteaut
and Yuval Ishai, editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS,
pages 674–704. Springer, Cham, May 2020.

[GLV01] Robert P. Gallant, Robert J. Lambert, and Scott A. Vanstone. Faster point
multiplication on elliptic curves with efficient endomorphisms. In Joe
Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 190–200. Springer,
Berlin, Heidelberg, August 2001.

https://github.com/input-output-hk/efficient-ffa/releases/tag/sound-and-complete-ffa
https://github.com/input-output-hk/efficient-ffa/releases/tag/sound-and-complete-ffa
https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.pdf
https://docs.minaprotocol.com/static/pdf/technicalWhitepaper.pdf
https://ethereum.org/en/whitepaper/
https://raw.githubusercontent.com/daira/halographs
https://raw.githubusercontent.com/daira/halographs
https://zips.z.cash/protocol/protocol.pdf
https://github.com/zcash/halo2
https://hackmd.io/@relgabizon/B13JoihA8
https://hackmd.io/@relgabizon/B13JoihA8

Efficient Foreign-Field Arithmetic in PLONK

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Berlin, Heidelberg, May
2016.

[GWC19] Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Per-
mutations over Lagrange-bases for oecumenical noninteractive arguments
of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.

[GYB21] Christopher Goes, Awa Sun Yin, and Adrian Brink. Anoma: Undefining
money: A protocol for private, asset-agnostic digital cash and n-party
bartering, 2021. https://anoma.network/papers/whitepaper.pdf. Accessed
on April 16, 2025.

[HBHW] Daira Hopwood, Sean Bowe, Taylor Hornby, and Nathan Wilcox. Zcash
protocol specifiation. https://zips.z.cash/protocol/protocol.pdf. Accessed
on April 16, 2025.

[Hop20] Daira Hopwood. The Pasta curves for Halo 2 and beyond, 2020. https:
//electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond. Accessed
on April 16, 2025.

[Hop21] Daira Hopwood. Pluto-Eris: a half-pairing cycle of elliptic curves, 2021.
https://github.com/daira/pluto-eris. Accessed on April 16, 2025.

[Lab23] O(1) Labs. Foreign field addition rfc (mina book), 2023. https://o1-labs.
github.io/proof-systems/kimchi/foreign_field_add.html. Accessed on April
16, 2025.

[LB22] Daniel Lubarov and Jordi Baylina Melé. Casting out primes: Bignum
arithmetic for zero-knowledge proofs. Cryptology ePrint Archive, Report

2022/1470, 2022.
[Mat23] Matter Labs. zkSync Documentation, 2023. https://docs.zksync.io/. Accessed

on April 16, 2025.
[Mid24] Midnight Network. Nightpaper: A litepaper introducing midnight, 2024.

https://midnight.network/whitepaper. Accessed on April 16, 2025.
[MKF21] Toghrul Maharramov, Dmitry Khovratovich, and Emanuele Francioni. The

dusk network whitepaper, 2021. https://dusk.network/uploads/The_Dusk_
Network_Whitepaper_v3_0_0.pdf. Accessed on April 16, 2025.

[PHGR13] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. In 2013 IEEE Symposium on
Security and Privacy, pages 238–252. IEEE Computer Society Press, May
2013.

[Pol23] Polygon Labs. Polygon zkEVM Documentation, 2023. https://docs.polygon.
technology/zkEVM/. Accessed on April 16, 2025.

[SQ22] Joseph Spadavecchia and Anaïs Querol. Non-native field and group opera-
tions, 2022. https://hackmd.io/XZUHHGpDQsSOs0dUGugB5w. Accessed
on April 16, 2025.

[Val08] Paul Valiant. Incrementally verifiable computation or proofs of knowledge
imply time/space efficiency. In Ran Canetti, editor, TCC 2008, volume 4948
of LNCS, pages 1–18. Springer, Berlin, Heidelberg, March 2008.

[Wil18] Zachary J. Williamson. Aztec network (white paper), 2018. https://github.
com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf. Accessed on April
16, 2025.

[Yak18] Anatoly Yakovenko. Solana: A new architecture for a high performance
blockchain, 2018. https://solana.com/solana-whitepaper.pdf. Accessed on
April 16, 2025.

https://anoma.network/papers/whitepaper.pdf
https://zips.z.cash/protocol/protocol.pdf
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://electriccoin.co/blog/the-pasta-curves-for-halo-2-and-beyond
https://github.com/daira/pluto-eris
https://o1-labs.github.io/proof-systems/kimchi/foreign_field_add.html
https://o1-labs.github.io/proof-systems/kimchi/foreign_field_add.html
https://docs.zksync.io/
https://midnight.network/whitepaper
https://dusk.network/uploads/The_Dusk_Network_Whitepaper_v3_0_0.pdf
https://dusk.network/uploads/The_Dusk_Network_Whitepaper_v3_0_0.pdf
https://docs.polygon.technology/zkEVM/
https://docs.polygon.technology/zkEVM/
https://hackmd.io/XZUHHGpDQsSOs0dUGugB5w
https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf
https://github.com/AztecProtocol/AZTEC/blob/master/AZTEC.pdf
https://solana.com/solana-whitepaper.pdf

	Abstract
	Contents
	1 Introduction
	1.1 Our contributions
	1.2 Technical overview and related work

	2 Preliminaries
	3 Foreign-field arithmetic
	3.1 Foreign-field multiplication
	3.2 Foreign-field addition, subtraction and other operations

	4 Foreign-field elliptic curve operations
	4.1 Implementing the custom identities
	4.2 Witnessing a point
	4.3 Point doubling
	4.4 Point addition
	4.5 Multi-scalar multiplication

	5 Formal Verification
	6 Performance Evaluation
	6.1 Emulation parameters
	6.2 Threshold ECDSA over SECP256k1
	6.3 Self-recursion

	References

